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Susceptibles-infectives-removals (SIR) and its derivatives are the classic mathematical 
models for the study of infectious diseases in epidemiology. In order to model and simu- 
late epidemics of an infectious disease, we use cellular automata (CA). The simplifying 
assumptions of SIR and naive CA limit their applicability to the real world charac- 
teristics. A global stochastic cellular automata paradigm (GSCA) is proposed, which 
incorporates geographic and demographic based interactions. The interaction measure 
between the cells is a function of population density and Euclidean distance, and has been 
extended to include geographic, demographic and migratory constraints. The progres- 
sion of diseases using traditional CA and classic SIR are analyzed, and similar behavior 
to the SIR model is exhibited by GSCA, using the geographic information systems (GIS) 
gravity model for interactions. The limitations of the SIR and naive CA models of homo- 
geneous population with uniform mixing are addressed by the GSCA model. The GSCA 
model is oriented to heterogeneous population, and can incorporate interactions based 
on geography, demography, environment and migration patterns. The progression of dis- 
eases can be modeled at higher levels of fidelity using the GSCA model, and facilitates 
optimal deployment of public health resources for prevention, control and surveillance 
of infectious diseases. 

 

Keywords: Global Stochastic Cellular Automata; Infectious Diseases; Computational 
Epidemiology. 

 
 

1. Introduction 

Globalization and the ever-increasing population diversity accelerates the spread 

of communicable diseases in the modern society.1,2 The World Health Organiza- 

tion (WHO)3 and the Centers for Disease Control and Prevention (CDC)4 involve 

in worldwide surveillance of infectious diseases, and prioritize prevention measures 

at the root cause of epidemics. As the significance of public health is being recog- 

nized, the role of epidemiologists has become more prominent. Epidemiology deals 
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with the study of cause, spread, and control of diseases. The goal for epidemi- 

ologists is to implement mechanisms for surveillance, monitoring, prevention and 

control of diseases. Epidemiological studies may require large data sets of disease 

outbreaks which are often spatially and temporally distributed. It is in fact ironic 

that, for epidemiologists to study the dynamics of different diseases, it is impera- 

tive for an outbreak to occur. Epidemiologists have been studying and analyzing 

disease outbreak data by means of statistical tools. In order for the epidemiologists 

to prepare for a sudden outbreak of an infectious disease or a bio-terror attack, 

the need for simulation arises. Hence, it is imperative to develop new models that 

take advantage of today’s computational capabilities, and help epidemiologists to 

analyze and quantify the progression of an epidemic in a given geographic region 

with specific demographic characteristics. The computational models also enhance 

the quality of information, accelerate the generation of answers to specific ques- 

tions and facilitate prediction. To this end, we propose the use of Global Stochastic 

Cellular Automata (GSCA) to simulate outbreaks of infectious diseases,5 thereby 

facilitating the optimal allocation of public health resources. 

 
2. Susceptibles-Infectives-Removals  Model 

Mathematical models of infectious diseases are based on the principles of sus- 

ceptibles, infectives, and removals, namely the SIR model. Susceptibles are those 

individuals in a population who can be infected by the disease under study. 

Infectives are those individuals who have been infected by the disease and are 

infectious. Removals include all individuals that are incapable of transmitting the 

infection, and are either recovering, fully recovered, expired from the disease, or 

immune to the disease. In complex models, the removals who recover may revert to 

susceptibles. In case of influenza, a recovered individual cannot be infected by the  

same influenza strain due to acquired immunity during the infection. Nevertheless, 

he/she may remain susceptible to other influenza strains. 

The Kermack-McKendrick Threshold Theorem6 is the basis for the SIR model. 

A continuous influx of susceptibles is a requisite for sustained infection in a pop- 

ulation. This is the case of endemic diseases, such as tuberculosis, which prevail 

in a community at all times. The model is based on the presumption of a closed 

population, assuming that the epidemic spreads rapidly enough that the changes 

brought in by births, deaths, migration and demographic changes are negligible.7 

During the start of a disease epidemic, the total population comprises of sus- 

ceptibles, excluding those that have inherent immunity to the disease. The index 

case is the first infected individual and is the source of the infection. During the 

infectious period, the infection is passed on to some susceptibles, who interact with 

the index case close enough to contract the infection. This triggers the cycle of 

infections spreading through the population. Once the infected individuals become 

non-infectious, they move over to the removals category. A point of interest is that 

the total number of susceptibles (S), infectives (I), and removals (R) is a constant 
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[Eq. (2.2)]. The rising infection on reaching the peak starts to recede due to the 

decrease in the number of susceptibles, and diminishes eventually. 

S + I + R = constant (2.1) 

dS 
= βSI 

dt 
 

dt 
= +βSI − γI (2.2) 

dR 
= +γI. 

dt 

The random mixing of susceptibles and infectives7 is given by the multiplicative 

product, S I. β defines the transmission coefficient
8
 based on contact rate between 

susceptibles (S) and infectives (I), and infectivity of the disease. γ defines the rate 
of infectives (I) becoming non-infectious. Hence, the average duration of infectivity 

is given by 1/γ.7 The set of differential equations used in classic SIR model for a 
closed population are shown in Eq. (2.2). The transfer rates of individuals from 

S     I and I     R are given by dS/dt and dR/dt, respectively. The rate of change 

of infectives is given by dI/dt. 

The SIR/SIRS state diagram (Fig. 1) illustrates the course of a disease in an 

individual. A susceptible individual may be exposed to a disease pathogen and con- 

tinue to be in the susceptible state. A susceptible becomes an infective, once the 

susceptible is able to transmit the pathogen onto others. The recovery state begins 

once the ability to infect ceases. The individual continues the state of recovery from 

the disease, or may expire. On full recovery, the individual may acquire full immu- 

nity from disease, and hence is no more susceptible to the disease (SIR model). The 

individual reverts to a susceptible on full recovery when lacking disease immunity 

(SIRS model). 

The SIR model provides a simple framework for understanding the spread of a 

disease. However, it cannot be used to model a real epidemic for a specific popu- 

lation and region at sufficient fidelity. The SEIR model is an extension of the SIR 

model, in which the exposed/latent stage of a disease transmission is considered 

to account for the time period between the onset of the infection in the body and 
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Fig. 1.    SIR/SIRS state diagram. 
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becoming infectious. The SIR and its related models do not take into consideration 

the geography or the spatial dimensions of a region. In general, interactions among 

individual is distance-dependent and it is often more likely to interact with indi- 

viduals at closer proximity. Consequently, the probability of acquiring an infection 

from an infectious individual is inversely proportional to the interaction proximity. 

The spread of a disease is dependent on the levels of interaction in the given pop- 

ulation of a specific region. The SIR model considers a uniform population with 

homogeneous mixing and null consideration of specific interaction measures. Also, 

it is assumed that the epidemic recedes to an end. The model cannot be used 

effectively for smaller population sizes. The SIR model can be extended to include 

geography and demographics, but makes it complicated and unwieldy. 

 

3. Cellular Automata 

Cellular automata have been used for several decades9 in the domain of computa- 

tional models. Nevertheless, in modeling epidemics, this paradigm has rarely been 

utilized to its full potential.9–12  Cellular  automata, as defined by Lyman Hurd, is 

a discrete dynamic system, where space, time, and the states of the system are 

distinct.13 An automaton is best exemplified by representing a point in space as a 

cell Ci surrounded by other cells, thereby defining the neighborhood Hi of Ci. The 

cells are most often arranged to constitute a regular spatial lattice (see Fig. 2). 

In general, we can define a cellular automaton of any dimension. One-, two-, 

and three- dimensional automata are often used in science. For a one-dimensional 

automaton, Hi = 2, i.e. cell Ci has a left and a right neighbor (ignoring edge 

conditions). A two-dimensional automaton is best represented as a regular spatial 

lattice or grid. Here, cell Ci,j is surrounded by cells that form its neighborhood 

Hi,j. Traditionally, there are two possible sizes of Ci,j’s neighborhood in a two- 

dimensional  automaton,  namely,  |Hi,j | = 4  in  the  von  Neumann  neighborhood  and 

|Hi,j | = 8 in the Moore neighborhood13  (see Fig. 2). Table 1 specifies the neighboring 
cells for Ci,j in both the neighborhoods. 

At a particular time t, each cell C of the automaton is said to be in a specific state 

s(t), which depends on the specific application. s(t) S where S is the state space 

of the cellular automaton. In a simple scenario, cells are assuming binary states 

 

 

 

Fig. 2.   von Neumann and Moore neighborhood. 



 

 

 

Table 1.  Neighborhood specification. 
 

Neighborhood Neighboring cells for Ci,j 
 

von Neumann Ci+1,j , Ci−1,j , Ci,j+1, Ci,j−1 

Moore Ci+1,j , Ci−1,j , Ci,j+1, Ci,j−1 , 

  Ci+1,j+1,  Ci−1,j−1, Ci−1,j+1 , Ci+1,j−1 

 

 

f 

 

Fig. 3.    Cellular automata update from time step t − 1 to t. 

 
(0, 1). For more complex applications, any size of discrete (and even continuous) 

state space can be defined. The state of cell Ci,j at time t is determined by the 
state of its neighborhood Hi,j at time t − 1 [see Eq. (3.1)]. The function f can 

be considered as the rule that dictates how a particular state configuration of Hi,j 

determines the next state of Ci,j. For a deterministic cellular automaton, the initial 

states of each cell and the update rule f completely describes the automaton. During 

a time step t, a new state s(t) is computed for every cell as described above. An 

initial state configuration will hence evolve, thus representing a dynamic system. 

si,j(t) = f (Hi,j(t − 1)). (3.1) 

An example of a cellular automata update rule is shown in Fig. 3. Here, the 

function f is defined by a majority rule. The state of the center cell transitions to 

a state, which is in majority among the cells in the neighborhood and itself. The 

update rule determines the deterministic or stochastic behavior of CA. Stochastic 

behavior is seen by probabilistic update rules in non-deterministic state transitions. 

For example, in stochastic CA, for every update, a cell can choose probabilistically 

from a set of update rules, or for a particular update rule, probabilistically choose 

from a set of states for the stochastic transition. 

 

4. Disease Modeling with Cellular Automata 

The traditional cellular automata paradigm forms the basis of our disease model 

and incorporates the spatial distribution of the population using the Moore neigh- 

borhood. The basic unit of cellular automata is a cell. In our model, a cell represents 

an individual or a sub-population. Each cell can be characterized with state and 

likelihood risks for exposure and contracting the disease. Unlike the SIR model, 

every cell comes in contact with the cells in its defined neighborhood. Similar to 

the SIR model, state S for susceptible is defined as the state in which the cell is 
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Fig. 4.  Infection time-line. 

 
 

capable of contracting a disease from its neighbors. In the infectious state I, the cell 

is capable of transmitting the infection to its neighbors. In the recovery state R, 

the cell is neither capable of passing on the infection nor capable of contracting the 

infection. On full recovery and acquiry of disease immunity, the cell shall continue 

in the removal state (R). The time-line for infection is illustrated in Fig. 4. 

Infectivity ψ of a disease is defined as the probability of a susceptible cell becom- 

ing infectious, when coming in contact with an neighboring infectious cell. Latency 

λ is defined as the time period between the cell becoming infected and it becom- 

ing infectious. Infectious period θ is the time period during which the infected cell 

is capable of transmitting the disease to neighboring cells. Recovery period ρ is 

defined as the time period the cell takes to recover, wherein it is neither capable of  

transmission of the infection nor capable of contracting the infection. 

 
4.1. Rules for disease spread 

The rules described below determine the state transitions of individual cells in the 

CA for the SEIR and SEIRS models. 

(1) A cell changes its state from susceptible to latent (S L) when it comes in 

contact with an infected cell in its defined neighborhood. The probability of 

acquiring the disease from an infected neighbor is a function of infectivity ψ. 

The cell remains in the latent state for the number of time steps (updates) as 

defined by the parameter latency λ. 

(2) The state of the cell changes from latent to infectious (L I) after being in 

state L for a given λ. In our model, we assume that every cell exposed to the 

pathogen will become infectious. In state I, the cells are capable of passing on 

the infection to neighborhood cells. For example for a disease , with λ =  2 

units the cell will enter the infectious state I after two time steps of initial 

exposure. 

(3) After the infectious period θ, the cell changes its state from infectious to recov- 

ered or removed (I R). Once the cell enters the state R, the cell is no more 

capable of passing on the infection. 

Time 

Latent period    Infectious period Recovering 
or dead 

Incubation period 



 

 

 

(4) From the state R, the cell’s state changes back to either susceptible S for 

the SEIRS model or it remains in state R, for the SEIR signifying complete 

immunity. 

 

4.2. Neighborhood saturation 

Figure 5 depicts the cell layers with respect to a central cell in layer1. Layer1 has 
eight neighboring cells in its outer-line layer2 in a Moore neighborhood model. The 
outer-line  neighborhood  of  layeri  is  layeri+1  and  the  inner-line  neighborhood  is 

layeri−1. The total neighbors of a layer is defined by a summation of its outer- and 
inner-line neighborhoods. The ratio of neighboring cells to the cells in the current 

layer defines the effective neighbors per cell of the current layer. Li is the number of 

cells in layeri and is defined in Eq. (4.1). It can be visualized as the area enclosed by 

layer Li−1 subtracted from the area enclosed by layer Li [see Eq. (4.1)]. The effective 
outer-line neighbors of layeri are defined by Li+1/Li and the inner-line neighbors 
are Li−1/Li. Figure 6 illustrates the effective inner- and outer- line neighbors from 
layer1 up to layer50. Even though the effective outer-line neighbors of layer1 is 8, 

it converges to 1 for higher layers. The effective inner-line neighbors increase from 

0 for layer1 to 1 for higher layers. 

Li =  1 i = 1  

= (2 ∗ i − 1)2 − (2 ∗ i − 3)2 i > 1 

Li+1/Li → 1 i → ∞. 

(4.1) 

 
 

  
 
 
 

Fig. 5.   Cell layers. 
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Fig. 6.   Effective neighborhood. 
 
 

In the context of epidemiology, we consider a disease progressing at 100% infec- 
tivity through neighboring layers. An index case at the central cell in layer1 shall 

effectively infect eight outer-line neighbors at layer2. However, at higher layers, each 

cell  at  layeri  is  able  to  infect  effectively  only  one  outer-line  cell  at  layeri+1.  This 

resulting neighborhood saturation is a primary limitation of naive cellular automata 
in depicting the spatial progression of a disease. 

 
4.3. Restrictions of classic cellular automata 

The classic cellular automata methodology suffers from saturation of a limited 

neighborhood, as described above. A neighborhood of eight cells quickly saturates 

and thus reduces the number of susceptibles. In such a situation the increase of 

infectivity parameter plays no role and has the same effect on the spread of the dis- 

ease. Neighborhood saturation dominates the effects of increasing infectivity and 

limits the spread of the disease. Further, the need to model a disease where an infec- 

tive can spread the disease to an extended neighborhood in one time step cannot 

be modeled. The movement of individuals, migration, or travel is not considered. 

Some of the models discussed in the literature, deal with movement of individuals 

from one cell to another in the defined neighborhood. Clearly as discussed above 

they are deemed to be hampered by early saturation. In order to overcome the 

limitations posed by naive cellular automata, we introduce the global stochastic 

model for cellular automata, that shall incorporate the demographics of location 

and population density. 
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5. Global Stochastic Cellular Automata 

Disease modeling over small regions with local interactions can be implemented 

using traditional cellular automata. However, its accuracy diminishes for simulat- 

ing disease spread over large geographic regions because of neighborhood saturation.  

We propose global stochastic cellular automata (GSCA) that includes demographic 

parameters of a given geographic region.14 This facilitates understanding of the 

effects of different demographics, the population density, socio-economics and cul- 

ture of a region. It can also be used effectively for investigating different vaccination 

strategies and understanding the effects of travel. 

For simulating the spread of diseases in such an environment, contacts need to be 

established between cells. In this model, every cell may interact with every other cell 

in the environment. The probability of contact varies based on what is defined to be 

the interaction coefficient. The interaction coefficient reflects the factors which are 

important when considering contact between two cells, such as distance, population 

and other demographics or socio-economic factors. The interaction coefficient in the 

present model is based on the distance between cells. 

The neighborhood of cell Ci,j in GSCA is defined using a fuzzy set formulation 

as follows: 

Gi,j  := {(Ck,l, ΥCi,j ,Ck,l) | ∀Ck,l ∈ C, 0 ≤ ΥCi,j ,Ck,l   ≤ 1}. (5.1) 

Here C is the set of all cells in the CA. The above formulation allows for the construc- 

tion of arbitrary neighborhoods. The membership strength ΥCi,j ,Ck,l    represents an 
interaction coefficient that controls all possible interactions between a cell Ci,j and 

its  global  neighborhood  Gi,j.  Further,  it  should  be  noted  that  ((Ck,l, ΥCi,j ,Ck,l ) 

E  Gi,j)   =I    ((Ci,j , ΥCk,l,Ci,j )  E  Gk,l).  In  what  follows,  the  interaction  coefficient 
ΥCi,j ,Ck,l   is a function of inter-cell distance and cell population density and has 
been extended to include geographic and demographic constraints. 

 
5.1. Interaction metrics 

The interaction coefficient ΥCi,j ,Ck,l is defined as the strength or likelihood of inter- 

action between two cells, Ci,j and Ck,l. We presently consider the distance between 

cells as the factor influencing the interaction coefficient. It is calculated as the  

inverse of the Euclidean distance between the cells [see Eq. (5.2)]. Experiments 

were conducted on calculating the coefficient based on distance and population 

as derived from the geographic information systems (GIS) gravity model.15 Equa- 

tion (5.3) shows the calculation of interaction coefficient based on distance and 

population of the two cells, PCi,j and PCk,l . 

ΥCi,j ,Ck,l 

1 
 

  
(i − k)2 + (j − l)2 

(5.2) 

ΥCi,j ,Ck,l = 
PCi,j   

× PCk,l 

(i − k)2 + (j − l)2 

. (5.3) 
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The state of infection δCi,j   for a cell Ci,j indicates the level of infection present in 

the  cell,  and  δCi,j [0, 1].  0  indicates  null  infection,  and  1  indicates  full  infection. 

This parameter is used to determine whether the subject or group is capable of 
transmission of the infection. 

The global interaction coefficient ΓCi,j of cell Ci,j is the sum of all the individual 

n
2
 1 interaction coefficients of the cell in a n n grid. This coefficient represents the 

overall interaction of the particular cell. It varies for every cell based on its location. 
Figure 7 shows the global interaction coefficient based on distance for every cell on 
a 50   50 grid. The center cell has the maximal interaction coefficient, since it has 
a relatively higher number of neighbors at closer proximity. Figure 8 illustrates the 

 

 
 

Global Interaction Coefficient 

200 

150 

 
100 

 
50 

 
0 

 
 

 
0 5 

 
 
 
 
 
 
 

 
25 

30 

 
 
 
 
 
 
 

35 
40 

 
 
 
 
 
 
 
45 

50 

180 

170 

160 
150 

140 

130 

120 

110 
100 

90 

10 15   20
 

x axis 

25   30   35
  

40   45   50 0 
5 

15 
20 

10 

y axis 

 

Fig. 7.  Global interaction coefficient based on distance. 

 
 

 
Global Interaction Coefficient 

 

1400 
1200 
1000 

800 
600 
400 
200 

0 

 
 
 

0    5 

 
 
 
 
 
 
 

 
25

30 

 
 
 
 
 
 
 

35
40 

 
 
 
 
 
 

 
45

50 

1600 

1400 

1200 

1000 

800 

600 

400 

200 

0 

10 15 20 25
 

x axis 
30 35 40

 
 

45 50 0 
5 

10 
15

20 y axis 

 

Fig. 8.  Global interaction coefficient based on distance and population. 



 

 

∗ 

  

∗ 

 

global interaction coefficient based on distance and population for every cell on a 

50 50 grid. Experiments were conducted on two cities with significantly higher 

population. In the example shown in Fig. 8, population dominates distance. This 

however may not hold true if the interaction coefficient incorporates measures of 

population and other demographic values. To normalize ΥCi,j ,Ck,l , we calculate the 

global interaction coefficient Γ [Eq. (5.4)]. 

ΓCi,j 
= 

∀Ck,l  =Ci,j 

ΥCi,j ,Ck,l . (5.4) 

The  infection  factor  ΦCi,j    of  cell  Ci,j  with  respect  to  cell  Ck,l  is  calculated  as 

a ratio of the interaction coefficient between the two cells to the global interaction 
coefficient ΓCi,j . It is also based on the virulence and infectivity of a disease (ψ) 

and the state of infection (δ) of the infecting agent. 
 

ΦCi,j 
= 

ΥCi,j ,Ck,l 

ΓCi,j 

 

 
Ck,l × ψ. (5.5) 

 

5.2. Global stochastic models 

Global stochastic cellular automata (GSCA) models the population with uniform 

distribution over the grid. Each cell is considered as a sub-population, with certain 

epidemiological and demographic properties. As derived by the GIS gravity model, 

the probability of contacts between cells is inversely proportional to the distance 

between them. This concept is applied in the global model to select contacts for 

interaction of individual cells. 

Although the global model simulates the SIR model, the basic global model con- 

siders homogeneous population, and demographics or distances are not included. 

Figure 9 shows the result of an outbreak simulated in a uniform population with 

homogeneous mixing, and exhibits similar disease progression behavior of the SIR 

model. The experiment was conducted on a 50 50 grid consisting of 2500 cells 

where every cell constituted one individual. The disease parameters considered 

were those of influenza. Every individual had an average contact rate of six con- 

tacts per day. In a similar experiment, traditional cellular automata restricts the 

spread of infection due to neighborhood saturation. This is evident in Fig. 10 

which compares the infection in traditional CA and the global neighborhood 

model. 

Experiments were also conducted in the global model to investigate the effects 

of distance based interaction coefficient. Figure 11 depicts the results that illustrate 

that the rate of disease progression is relatively slower in the global model, when 

the distance demographic parameter is incorporated. 

Using the same metrics of population and grid size, experiments were conducted 

with the global neighborhood model for three different diseases, namely, com- 

mon cold, conjunctivitis and influenza, under the assumption of similar virulence/ 

infectivity of disease. The infectious period, latency period and recovery period of 

× δ 
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Fig. 9.  Global model simulation. 
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Fig. 10. Comparison of spread of infection in traditional cellular automata with neighborhood 
saturation and global neighborhood model. 

 
 

 

the diseases, shown in Table 216,17 were used in the experiments. Due to the rela- 

tively smaller incubation period and higher infectious period of conjunctivitis, the 

rate of spread and the prevalence of conjunctivitis is relatively higher in comparison 

to common cold and influenza (see Fig. 12). 
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Fig. 11.    Disease progression with and without distance demographic parameter. 
 

 
Table 2. Infection timelines for common cold, conjunctivitis and influenza. 

 

Disease Incubation period Latent period Infectious period 

Common cold 3 days 2 days 5 days 
Conjunctivitis 3 days 1 day 6 days 
Influenza 3 days 3 days 5 days 

 

 
5.3. Heterogeneous population models 

The GSCA model is extended to incorporate heterogeneous populations. Rasterized 

GIS census block data of the area around city of Denton, Texas for the total popula- 

tion of 110,000 is overlaid on a grid of size 50 98. Each cell is involved in k contacts, 

where k is computed based on the cell population and contact rate of individuals 

per day. Assuming that contacts among individuals are Poisson distributed over 

time, and individuals make contacts at an average rate of λ, the effective contact 

rate for a cell is determined by a Poisson random variate. For a cell with population 

p, k = pλ. The probability of exposure along with infectivity decides the transmis- 

sion of infection for a given contact. This leads to heterogeneous interactions in 

the population, thereby overcoming the presumption of homogeneous mixing in the 

SIR model. An interaction is a contact between two individuals that may result 

in successful disease transmission. Figure 13a shows the heterogeneous population 

distribution of area around Denton city, while Fig. 13b illustrates the disease preva- 

lence of influenza over that region. The total population of the region is 110,000 

and the total number of infected people is 48,000. 
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Fig. 12.   Comparison of spread of infection for different diseases. 
 
 

We have implemented a dichotomy of global and local interactions to model 

distance dependency. For global interactions, contacts are initiated between any 

two cells in the grid, while for local interactions, the contacts are between neigh- 

boring cells. In general, locality can be defined as the set of cells (census blocks) 

within a specified distance range. The mixing patterns of the population are var- 

ied over different proportions of global and local interactions. The prevalence lev- 

els of influenza is witnessed to be the same, irrespective of the proportions of 

local and global mixing. This suggests that influenza prevalence is independent 

of the spatial domain, and correlates to the results of influenza prevalence in 

France.18 The incidence of influenza is further analyzed for varied rates of local 

and global interactions to generate the corresponding epidemic curves, as shown in 

Fig. 14. The incidence decreases with higher proportions of local interactions. The 

results indicate that although influenza prevalence is independent of the spatial 

domain, the incidence of the epidemic is lowered with higher proportions of local 

interactions. 

The modeling of disease progression through classic SIR and traditional CA are 

limited by the assumptions of homogeneous population and uniform mixing. These 

limitations are addressed by the GSCA model, which is oriented towards heteroge- 

neous population. The cell interactions are currently based on population density 

and Euclidean distance, and can be extended to incorporate geography, demogra- 

phy, environment and migration patterns. The following section summarizes related 

work in CA epidemiological models as well as the classic SIR models and the newer 

modes of mathematical reasoning methodologies for epidemiology. 
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Fig. 13.   Disease prevalence in heterogeneous population. 
 
 
 
 

6. Related Work 

Most of the work in modeling infectious disease epidemics is mathematically 

inspired and based on differential equations and SIR/SEIR model.7,19 Differential 
equation SIR modeling rely on the assumption of closed population and neglect the 

spatial effects.20,21 They often fail to consider individual contact/interaction pro- 
cess and assume populations are homogeneously mixed and do not include variable 
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Fig. 14. Epidemic curves for varied rates of global and local interactions in the heterogeneous 
population of Denton city. 

 

 
susceptibility. Both partial and ordinary differential equation models are determin- 

istic in nature and neglect stochastic or probabilistic behavior.12 Nevertheless, these 

approaches/models have been shown to be effective in regions of small population.12 

Boccara and Cheong20 study the SIS model for spread of infectious diseases in a 
population of mobile individuals, thereby introducing non-uniform population den- 

sity. Ahmed and Elgazzar22 model variations in population density by allowing 

cyclic host movement. Ahmed and Agiza10 introduce incubation and latency time 
that lends to an accelerating impact on the spread of a disease epidemic. Boccara 

et al.21 concentrate on SIR epidemic models and take into consideration the fluc- 
tuation in the population by births and deaths, exhibiting a cyclic behavior with 
primary emphasis on moving individuals. 

The earliest example of use of cellular automata is Bailey’s lattice model
23
 for 

the spread of diseases from micro-level interactions. Schönfisch has analyzed varied 

cellular automata models to study the dynamics of epidemics.24 Di Stefano et al.12 

have developed a lattice gas cellular automata model to analyze the spread of epi- 
demics of infectious diseases. The model is based on individuals who can change 

their state independent of others and can move from one cell to other. However, this 

approach does not consider the critical factor of the infection time-line. Fu has used 

stochastic cellular automata to model epidemic outbreaks that take into account the 

heterogeneous spatiality.25 Situngkir has developed a dynamic model of spatial epi- 

demiology to study avian influenza disease in Indonesia and uses cellular automata  

for computing analysis.26 Bonabeau has studied the spatio-temporal characteristics 

of influenza outbreaks in France. The study infers that the global transportation 
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systems of the modern world lend to propagation of influenza epidemics domi- 

nated by a global mixing process in comparison to local dynamic heterogenities.18 

Duryea has analyzed spatially detailed epidemic models using probabilistic cellular 

automata for heterogeneous population densities in a region.27 Benyoussef has used 
a one-dimensional lattice model and a two-dimensional automata network model to 

illustrate the spatial spread of rabies among foxes.
28
 Fuks describes a SIR epidemic 

in the spatio-temporal domain via a lattice gas cellular automaton for both human 
and animal populations. Vaccination strategies are incorporated and dynamics of 
the disease spread are investigated in relation to the spatial distribution of the 

vaccinated individuals.29
 

Disease epidemics have been modeled using mean field type (MFT) approxi- 

mations.30 Even though the MFT models are similar to the differential equations, 

they add a probabilistic nature by adding different probabilities for the mixing 

among individuals. According to Boccara and Cheong,20 mean field approxima- 

tions tend to neglect spatial dependencies and correlations and assume that the 

probability of the state of a cell being susceptible or infective is proportional to 

the density of the corresponding population. Bayesian analysis of epidemiological 

data highlights the significance of analyzing demographics to uncover the higher 

risk spectrums of the population for infectious diseases.31 A Monte Carlo simula- 

tion using a Markov model is implemented to study the infection models that occur 

naturally, such as influenza, whose viral pathogen spreads through a susceptible 

community, or induced deliberately, as in the case of bio-terror attacks.32 

 
7. Conclusion 

Modeling outbreaks of infectious diseases using the traditional cellular automata 

(CA) model is constrained by neighborhood saturation. The classic susceptibles- 

infectives-removals (SIR) model is oriented towards a homogeneous population 

with uniform mixing. The limitations of traditional CA and classic SIR models 

necessitates the need for new computational models to study the complexity of 

the spread of diseases in the real world. The global stochastic cellular automata 

(GSCA) paradigm is used to model outbreaks of infectious diseases. The GSCA 

model supports modeling and analysis of disease progression in heterogeneous envi- 

ronments, and can incorporate geography, demography, environment, and migration 

patterns into the interaction measure between cells on a global neighborhood level. 

The GSCA model includes interactions based on population density and Euclidean 

distance, and has been implemented to model the progression of three diseases, 

namely, common cold, conjunctivitis, and influenza. Rasterized GIS population data 

of Denton city is incorporated to model heterogeneous population through GSCA. 

The spatial progression of influenza across the heterogeneous population reveals 

the independence of influenza prevalence for the spatial domain, while influenza 

incidence decreases with higher rates of local interactions. To facilitate surveillance, 

monitoring, prevention and control of different diseases, computational models must 



 
 

 

be developed. To this end, the GSCA model shall prove to be an valuable asset in the 

analysis of progression of infectious diseases, thereby leading to optimal utilization 

of public health resources. 
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