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A B S T R A C T   

Air temperature has been the most commonly used exposure metric in assessing relationships between thermal 
stress and mortality. Lack of the high-quality meteorological station data necessary to adequately characterize 
the thermal environment has been one of the main limitations for the use of more complex thermal indices. 
Global climate reanalyses may provide an ideal platform to overcome this limitation and define complex heat 
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and cold stress conditions anywhere in the world. In this study, we explored the potential of the Universal 
Thermal Climate Index (UTCI) based on ERA5 – the latest global climate reanalysis from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) – as a health-related tool. Employing a novel ERA5-based thermal 
comfort dataset ERA5-HEAT, we investigated the relationships between the UTCI and daily mortality data in 21 
cities across 9 European countries. We used distributed lag nonlinear models to assess exposure-response re
lationships between mortality and thermal conditions in individual cities. We then employed meta-regression 
models to pool the results for each city into four groups according to climate zone. To evaluate the perfor
mance of ERA5-based UTCI, we compared its effects on mortality with those for the station-based UTCI data. In 
order to assess the additional effect of the UTCI, the performance of ERA5-and station-based air temperature (T) 
was evaluated. Whilst generally similar heat- and cold-effects were observed for the ERA5-and station-based data 
in most locations, the important role of wind in the UTCI appeared in the results. The largest difference between 
any two datasets was found in the Southern European group of cities, where the relative risk of mortality at the 
1st percentile of daily mean temperature distribution (1.29 and 1.30 according to the ERA5 vs station data, 
respectively) considerably exceeded the one for the daily mean UTCI (1.19 vs 1.22). These differences were 
mainly due to the effect of wind in the cold tail of the UTCI distribution. The comparison of exposure-response 
relationships between ERA5-and station-based data shows that ERA5-based UTCI may be a useful tool for 
definition of life-threatening thermal conditions in locations where high-quality station data are not available.   

1. Introduction 

Associations between ambient thermal conditions and human health 
are well documented in many geographical areas (Gasparrini et al., 
2015; Guo et al., 2016; Di Napoli et al., 2018; Kim et al., 2019). So far, 
air temperature has been the most commonly used exposure metric in 
studies assessing relationships between thermal (heat and cold) stress 
and mortality (Son et al., 2019), although thermal indices calculated 
from a combination of meteorological variables may describe the ther
mal environment better (Błażejczyk et al., 2012). Over the past century, 
many thermal indices have been developed to assess thermal conditions 
for humans. The earlier simple biometeorological indices (such as heat 
index, apparent temperature, etc.; McGregor, 2011) were based exclu
sively on meteorological parameters such as air temperature, humidity 
and/or wind speed. Later, more advanced thermal indices were based on 
human heat balance equation (Parsons, 2010). Currently, Physiologi
cally Equivalent Temperature (PET) (Mayer and Höppe, 1987; Höppe, 
1999), the Universal Thermal Climate Index (UTCI) (Jendritzky et al., 
2012) and Wet-Bulb Globe Temperature (WBGT) (Yaglou and Minard, 
1957) have been among the most widely used indices in thermal 
perception studies (Potchter et al., 2018). The UTCI, in particular, has 
been designed as a universal thermal indicator, possible to use in all 
climates and all biometeorological applications, including epidemio
logical studies (Jendritzky et al., 2012). 

Compared to the simple indices, however, the UTCI requires addi
tional weather parameters (i.e. wind velocity, radiation and/or cloudi
ness) that often are not available from station observations. The lack of 
proper in situ observations represents the main limitation for a wider use 
of thermal indices (such as the UTCI) in epidemiological studies. Whilst 
these mostly rely on ground-based observations that are collected at 
location-specific stations, historical time series of station data are often 
incomplete due to lack of capacity for maintaining routine record
keeping (Colston et al., 2018). This is particularly the case when vari
ables other than temperature and humidity (such as cloud cover, wind 
velocity, and solar radiation) are required for the calculation of thermal 
indices. Furthermore, high-quality professional stations are often 
located at city airports and do not necessarily represent environmental 
conditions of epidemiological surveillance sites within cities (Colston 
et al., 2018). 

Climate reanalyses constitute a possible way to overcome these 
limitations: they provide multiple meteorological variables that can be 
used to retrieve simple indices and compute thermal indices as gridded 
parameters having the same resolution (Buzan et al., 2015; Di Napoli 
et al., 2020a). Reanalysis datasets are often freely available and provide 
temporally and spatially homogeneous data (Colston et al., 2018). For 
example, the latest reanalysis by the European Centre for 
Medium-Range Weather Forecasts (ECMWF), ERA5 (Copernicus Climate 

Change Service (C3S), 2017), provides estimates of surface and atmo
spheric parameters at resolution over Europe approximately 28 × 28 
km, which is the highest possible resolution of a global climate rean
alysis (Dee et al., 2016; Hersbach et al., 2020). Although such resolution 
may not capture all meso- and micro-scale variations, especially in areas 
with a complex orography (Luo et al., 2019), it allows the assessment of 
relationships between ambient thermal conditions and mortality at the 
urban level (e.g., Royé et al., 2020). Evidence remains limited, however, 
as to the suitability of reanalysis data when meteorological variables 
other than air temperature are required to assess conditions of heat and 
cold stress. Based on ERA5 reanalysis, a novel ERA5-HEAT dataset has 
been introduced (Di Napoli et al., 2020a). This dataset provides a 
complete historical reconstruction of the UTCI (hourly data since 
01/01/1979) and therefore allows for the assessment of biometeoro
logical conditions across the globe in the same resolution and time span 
as ERA5 (28 × 28 km). 

In this study, we explore for the first time the suitability of the novel 
ERA5-HEAT dataset as a source of thermal comfort data for epidemio
logical studies. The aim is to evaluate the relationship between mortality 
and the thermal environment, with the latter described by the UTCI. The 
performance of ERA5-based UTCI as a thermal metric affecting mortality 
is investigated and compared with the station-based UTCI. As air tem
perature (T) is the most used thermal exposure metric in epidemiolog
ical studies, its performance is also assessed and compared with the 
station-based T. The study was carried out for 21 cities across 9 Euro
pean countries and used daily mortality data from European members of 
the Multi-City Multi-Country (MCC) Collaborative Research Network. 
Distributed lag nonlinear models (DLNM) were used to analyse 
exposure-response relationships between mortality, the UTCI, and T in 
each city. The city-specific exposure-response curves were pooled into 
four groups according to climate zones by the meta-analytic approach, 
and results for these groups were compared. 

2. Materials and methods 

2.1. Population under study 

The MCC network (http://mccstudy.lshtm.ac.uk) is an international 
collaboration of research teams producing epidemiological evidence on 
the association between weather and health across the globe. For Europe 
the MCC network currently gathers mortality data from 17 countries. 
Thus, it provides an ideal platform for continent-wide studies on the 
association between environmental stressors and mortality. MCC data 
are available for different time intervals in individual cities, and the time 
period used in the present analysis varies between the cities. Since sta
tion data of a sufficient quality were not available for all locations in the 
MCC database (see Section 2.4 and Supplementary Material details on 
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the station data quality control), weather and mortality data from 21 
cities in 9 European countries across the overall time span 1990–2015 
were included into the analysis (Table 1, Fig. 1). Mortality data were 
obtained from local authorities within each country or region included 
in the MCC network (Table S1 in Supplementary Material). Causes of 
death were classified according to the 9th or 10th version of Interna
tional Classification of Diseases (ICD) codes wherever these were 
available. In each location mortality is represented by daily counts of 
either all-cause or non-external causes only (ICD-9: 0–799; ICD-10: 
A0–R99). 

2.2. Definition of UTCI 

In order to describe thermal environment that affects human health, 
we employed the Universal Thermal Climate Index (UTCI). The UTCI is 
defined as the air temperature (◦C) of a reference environment that 
would elicit in the human body the same physiological response (sweat 
production, shivering, skin wittedness, skin blood flow and rectal, mean 
skin and face temperatures) as the actual environment (Fiala et al., 
2012). The reference environment is described as a condition of calm 
air, i.e. wind speed 0.5 m/s at 10 m above the ground, no additional 
thermal radiation, i.e. mean radiant temperature equal to air tempera
ture, 50% relative humidity (water vapour pressure capped at 20 hPa for 
air temperatures above 29 ◦C) where an average person walks at 4 km/h, 
generating a metabolic rate equal to 135 W/m2 ≃ 2.3 MET (Błażejczyk 
et al., 2012). For better comprehensibility of the study, we compared 
results for the UTCI with air temperature (T, ◦C) at 2 m above surface. 
The offset between the UTCI and T depends on the actual values of T, 
mean radiant temperature, wind speed and humidity (Bröde et al., 
2012). Two different types of datasets were used to express the UTCI and 
T (see Sections 2.3 and 2.4). 

2.3. Climate reanalysis data 

The ERA5 reanalysis is a climate dataset that merges a global climate 
model (i.e. a numerical representation of the physical processes and 
energy fluxes occurring in the Earth’s atmosphere, oceans, and land 
surfaces) with in situ and satellite observations (Hersbach et al., 2020). 
ERA5 data, currently spanning from 1979 to the present date, are pro
vided on regular latitude–longitude grids at approximately 28 km × 28 

km resolution (0.25 ◦ × 0.25 ◦) and up to 1-h frequency. ERA5-HEAT is a 
novel dataset derived from the ERA5 reanalysis (Di Napoli et al., 2020a). 
It is a historical dataset of bioclimate variables related to human thermal 
stress. It stores the gridded dataset of UTCI as computed via a six-order 
polynomial equation from ERA5-retrieved air temperature, humidity, 
wind, and radiation (Bröde et al., 2012). ERA5-HEAT is freely available 
from the Copernicus Climate Data Store (https://doi.org/10.24381/cds 
.553b7518), which has been developed as part of the Copernicus 
Climate Change Service implemented by ECMWF (https://cds.climate. 
copernicus.eu/). 

The gridded datasets of T and the UTCI were retrieved from ERA5 
and ERA5-HEAT, respectively, for the 1990–2015 period at a 3-h step. 
For each of the cities considered in the study, the corresponding T and 
UTCI time series was obtained by extracting the corresponding value 
across the study period from the grid cell where the city centre point is 
located. This applies also to cities larger than one grid cell. From the T 
and UTCI 3-hourly time series, daily mean temperature (Tmean) and 
UTCI (UTCImean) values were computed. 

2.4. Station data 

In order to compare results from the ERA5 and ERA5-HEAT datasets, 
respectively, with corresponding station-based data, weather observa
tions were collected for the 21 cities considered in the study. High- 
quality observations of air temperature, dew point temperature, wind 
speed, and cloud cover/global radiation were obtained for Rome, Tal
linn, and Zürich from their respective national weather providers 
(Centro Nazionale di Meteorologia e Climatologia Aeronautica Militare 
Italiana (CNMCA), Estonian Meteorological and Hydrological Institute, 
and MeteoSwiss). For the other cities, information about air tempera
ture, dew point temperature, wind speed, and total cloud cover were 
retrieved from the UK Met Office Integrated Data Archive System 
(MIDAS, Met Office, 2006). For each city, meteorological observations 
measured at the closest weather station (within 31 km radius from the 
city centre) were retrieved at 3-hourly intervals, namely at 0:00, 3:00, 
6:00, 9:00, 12:00, 15:00, 18:00, and 21:00 Coordinated Universal Time 
(UTC). The time periods covered by data for selected cities are as re
ported in Table 1. To obtain reasonably long time series, missing values 
were identified via an extensive data quality control and cleaning pro
cedure and treated as described in Supplementary Material. 

Table 1 
Characteristics of the cities selected to the study. Lat and Long denote latitude and longitude in decimal degrees. Clim. zone denotes a climate zone according to the 
updated Köppen-Geiger classification map (Beck et al., 2018). Temp. and UTCI indicate the station-based mean annual temperature and Universal Thermal Climate 
Index. Time span indicates the period of mortality and temperature data analysed in each city and Total deaths is number of deaths analysed during this period.  

City Acronym Country Lat Long Clim. zone Temp. (◦C) UTCI (◦C) Region Time span Total deaths 

Helsinki Hel Finland 60.17 24.94 Dfb 5.7 − 2.7 Northern Europe 1994–2012 138,020 
Tallinn Tal Estonia 59.44 24.75 Dfb 6.4 0.4 Northern Europe 1997–2015 84,052 

Berlin Ber Germany 52.52 13.40 Dfb 10.2 4.4 Central Continental 1993–2015 811,051 
Dresden Dres Germany 51.05 13.74 Dfb 9.6 2.2 Central Continental 1993–2015 125,866 
Leipzig Lei Germany 51.34 12.39 Dfb 9.8 2.3 Central Continental 1993–2015 152,861 
Stuttgart Stu Germany 48.78 9.18 Dfb 9.8 6.5 Central Continental 1993–2015 138,878 
Prague Pra Czechia 50.08 14.44 Dfb 10.2 4.5 Central Continental 1994–2015 287,518 
Zürich Zü Switzerland 47.38 8.54 Dfb 9.7 7.7 Central Continental 2004–2013 34,809 

Bremen Bre Germany 53.07 8.81 Cfb 9.7 2.5 Central Oceanic 1993–2015 150,608 
Düsseldorf Dü Germany 51.22 6.78 Cfb 10.9 4.6 Central Oceanic 1993–2015 160,069 
Frankfurt Fra Germany 50.11 8.68 Cfb 10.9 6.1 Central Oceanic 1993–2015 168,417 
Hamburg Ham Germany 53.55 9.99 Cfb 9.6 2.9 Central Oceanic 1993–2015 445,338 
Hannover Han Germany 52.37 9.73 Cfb 9.9 3.5 Central Oceanic 1993–2015 279,125 
Köln Kö Germany 50.93 6.95 Cfb 10.6 6.0 Central Oceanic 1993–2015 229,457 
London Lon UK 51.43 − 0.09 Cfb 11.6 6.1 Central Oceanic 1993–2006 847,362 
Lyon Lyo France 45.75 4.85 Cfb 12.5 8.5 Central Oceanic 2000–2010 77,106 
Paris Par France 48.87 2.33 Cfb 11.9 6.3 Central Oceanic 2000–2010 455,426 

Madrid Mad Spain 40.40 − 3.68 Csa 14.8 11.3 Southern Europe 1995–2014 513,115 
Valencia Val Spain 39.47 − 0.38 Csa 16.4 13.4 Southern Europe 1995–2014 139,180 
Zaragoza Zar Spain 41.65 − 0.88 BSk 17.6 14.5 Southern Europe 1995–2014 113,367 
Rome Rom Italy 41.90 12.50 Csa 15.4 9.4 Southern Europe 2000–2015 358,879  
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Quality-controlled, cleaned data were input into the RayMan Pro soft
ware (Version 2.1), a model that enables calculation of radiation fluxes 
and thermo-physiologically relevant indices using only basic meteoro
logical variables (air temperature, air humidity, wind speed, and cloud 
cover; Matzarakis et al., 2007, 2010). Using this software, we calculated 
UTCI in 3-h time steps at individual stations. Station-based UTCImean 
and Tmean were computed for each location. 

Although there have been studies about the importance of both 
minimum and maximum temperature for temperature-related mortality 
(e.g., Ragettli et al., 2017), the best predictor often differs for various 
populations, various health outcomes and at different time (Zhang et al., 
2014; Petitti et al., 2016). According to the authors’ experience, the 
mean temperature provides the most consistent results as it represents 
the whole-day exposure to the heat/cold better than any of the extremes. 
For these reasons we employed daily mean T and UTCI in the analysis. 

2.5. Statistical analysis 

All exposure-response modelling was conducted using R software 
(version 3.5.1). We adopted a two-stage time series analysis consistent 
with previous papers analysing similar data (e.g., Gasparrini et al., 2015; 
Vicedo-Cabrera et al., 2018). 

2.5.1. First-stage time series analysis 
A standard time-series quasi-Poisson regression was performed 

separately at each location to estimate location-specific exposure- 
response associations. These associations were reported as relative risk 
(RR), which means the ratio of the probability of dying in the exposed 
versus unexposed population. To take into consideration the delayed 
effects of thermal conditions on mortality, the exposure-response asso
ciation was modelled using a distributed lag nonlinear model (DLNM) 
via the dlnm R package (Gasparrini et al., 2010). This approach is based 
on the definition of a ‘cross-basis’ function, which is a two-dimensional 

matrix of functions that defines the shape of the relationship between RR 
and thermal conditions with respect to its lagged effects (Gasparrini 
et al., 2010). 

The cross-basis function was defined by a quadratic B-spline with 
three internal knots placed at the 10th, 75th, and 90th percentiles of 
location-specific distributions of the UTCI and T. The lag-response curve 
was defined with a natural cubic B-spline having an intercept and three 
internal knots placed at equally spaced values in the log scale. We 
extended the lag period to 21 days to include the long delay of the effects 
of cold and to exclude deaths that were advanced by only a few days (i.e. 
mortality displacement; Qiao et al., 2015). The cross-basis function was 
included into a generalized additive model (GAM; via the mgcv R 
package – Wood, 2006), defined by a natural cubic B-spline with 8 de
grees of freedom (df) per year controlling for seasonal and long-term 
trends, and a categorical variable indicating day of the week. The 
number of degrees of freedom (df) was selected based on a comparison 
of the generalized cross-validation (GCV) score of models with 5–10 df. 
The GCV score is a measure of goodness of fit in GAMs that takes into 
account the effective degrees of freedom of the model (Wood, 2006). 
The adopted choice of knot placement is based on previous studies, 
which undertook time-series analyses on datasets comparable to those 
considered in the present study (e.g., Gasparrini and Armstrong, 2013; 
Gasparrini et al., 2015; Royé et al., 2020). 

2.5.2. Second-stage meta-analysis 
City-specific estimates were pooled through a single multivariate 

meta-analysis model using the mixmeta R package (Sera et al., 2019). 
Specifically, the cumulative association between thermal conditions and 
the mortality risk in each city was used to fit a multivariate 
meta-analytic model including the mean and range of the city-specific 
UTCImean and Tmean distribution. An alternative meta-analytic 
model including a categorical variable for the four groups of cities was 
tested in a sensitivity analysis. The final model’s choice was made 

Fig. 1. Location of the 21 European cities considered in the study. Name acronyms are as in Table 1.  
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Fig. 2. Scatterplots of cumulative relative risks (RRs) at the 1st (a,b) and 99th (c,d) percentile of daily mean T (UTCI) vs minimum mortality T (UTCI) of best linear 
unbiased predictions (BLUPs) for individual cities. Panels a–d compare RRs based on T and the UTCI, respectively, calculated from station and ERA5 data. Panels e–h 
compare RRs at the 1st (e,f) and 99th (g,h) percentile of daily mean T (UTCI) when calculated from modelled (e,g) and observed (f,h) data, respectively. Black lines 
represent linear regression trend lines of compared variables and r values represent correlation coefficient of compared variables. Point colours indicate the four 
groups of cities as defined in Fig. 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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according to the Akaike information criterion (AIC; Akaike, 1974; Tong, 
1975) and the Bayesian information criterion (BIC, Schwarz, 1978). 
Lower AIC and BIC values indicate better models. Consequently, the 
meta-analysis models were used to extract the best linear unbiased 
predictions (BLUPs) of the exposure-response association for each city 
while centring the spline at the city-specific Tmean (UTCImean) of 
minimum mortality (MMT) (i.e., the value for which the RR of dying 
from thermal stress is lowest). BLUPs represent a trade-off between the 
location-specific association provided by the first-stage regression and 
the pooled association. This approach enables more robust estimates of 
RRs in individual cities compared to location-specific models. 

2.5.3. Comparison of regional differences 
In the last step of the analysis, four groups of cities were defined, to 

compare the performance of individual thermal datasets in different 
European regions (Fig. 1). Four cities from Southern Europe and two 
cities from Northern Europe were assigned to their groups according to 
geographical locations. The 15 remaining cities from the central part of 
Europe were split into two groups – Central Oceanic and Central Con
tinental – corresponding to the Cfb and Dfb climate zones, respectively, 
according to the updated Köppen-Geiger classification map with high 
spatial resolution (Beck et al., 2018). Examples of the time series of daily 
mortality (with a 91day filter), and station-based average UTCI and T 
(both with a 31day filter) in one city per category (Helsinki, Prague, 

Fig. 3. Pooled estimates of the exposure–response relationships in relative risk (RR) between daily mean T (left), UTCI (right) and mortality in the four city groups 
considered in the study. The x-axes represent percentiles of the T (UTCI) distribution. Vertical dotted line indicates minimum mortality T (UTCI) and vertical dashed 
lines represent the 1st and 99th percentile of daily mean T and UTCI, for a given group of cities. See Table S2 for the specific RR values. 
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London and Madrid) are presented in Fig. S1. Pooled exposure-response 
curves and RRs of mortality at the 1st, 2.5th, 97.5th, and 99th percen
tiles of the T and UTCI distribution versus the MMT were derived for 
each group of cities from the meta-analysis models. These thresholds 
were chosen as they have been often used as a proxy for moderate (2.5th 
and 97.5th percentile) and extreme (1st and 99th percentile) cold and 
heat stress, respectively (Son et al., 2019). We considered RRs at the 
cold- and heat-effect thresholds versus the city-specific MMT. 

3. Results 

3.1. Evaluation of datasets 

Fig. S2 represents strong correlation between ERA5 and station data. 
The correlation coefficient between aggregated ERA5 and station data 
from the 21 cities reached 0.99 for Tmean and 0.98 for UTCImean. The 
correlation was slightly weaker when UTCI and T datasets were 
compared (0.94 for both ERA5 and station data). The weaker correlation 
was mainly due to the effect of other variables on the cold tail of the 
UTCI distribution. Fig. S1 demonstrates larger differences between the 
station-based UTCImean and Tmean during the winter season. These 
differences can be explained by the effect of wind. Clear association 

Fig. 4. Predicted density functions of station- and ERA5-based daily mean T and UTCI values in the four city groups considered in the study. Vertical lines denote the 
1st and 99th percentile of T (UTCI) distribution. 
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between the average annual wind speed and the difference between the 
station-based average annual UTCI and T is shown in Fig. S3. 

3.2. City-specific exposure-response patterns 

Regardless of the region or city analysed, minor differences were in 
general observed between exposure-response curves modelled for ERA5 
and station data. Generally a good agreement was found also between 
results for UTCImean and Tmean. The similarity between results for 
individual datasets is illustrated in Fig. 2, comparing cumulative RRs at 
the 1st (cold effect) and 99th (heat effect) percentile of Tmean (UTCI
mean) vs MMT, estimated from BLUPs for individual cities (Figs. S4–S11 
in Supplementary Material). 

As for the cold effect, the correlations between station- and ERA5- 
based RR estimates were stronger for Tmean than for UTCImean (r =
0.90 vs. 0.83, respectively, Fig. 2 a,b). The association was considerably 
weaker, when the two thermal indices were compared between each 
other (r = 0.44 for ERA5 and 0.48 for station data, respectively) (Fig. 2e 
and f). The differences in r were, however, generally insignificant, as 
they were mainly caused by a few outliers in the datasets. In particularly 
in Valencia, the cold effect estimated by Tmean was considerably 
stronger than for the UTCI (cf. Figs. S10–11). 

For the heat effect, the correlation between the Tmean and UTCI
mean RR estimates was stronger than for the cold effect (r = 0.79 for 
ERA5 and 0.80 for station data, respectively), suggesting small differ
ences in the impact of hot environment on mortality when characterised 
by Tmean and UTCImean (Fig. 2g and h). On the other hand, a weaker 
correlation between ERA5-and station-data was observed when the two 
thermal indices were considered separately (Fig. 2c and d). This was true 
especially for the comparison of ERA5 vs station-based Tmean RRs (r =
0.47), which was affected by outliers in Paris and Lyon, due to the 
extraordinary impact of the 2003 heat wave. 

3.3. Pooled exposure-response patterns 

A strong correlation between ERA5-and station-based UTCImean and 

Tmean is illustrated also in Fig. 3, displaying the pooled estimates of 
exposure-response curves for the four groups of cities. As suggested 
already in Section 3.2, the main differences between RR estimates 
appeared at the cold extreme, when results for UTCImean and Tmean 
are compared. This is true especially in Southern Europe (Fig. 3g and h). 
A well pronounced U shape of the exposure-response curve, with a 
constant increase in RR for temperatures below the 1st percentile of T, is 
typical for cities in this region (see also Figs. S10 and S11), whilst a 
flattened cold-related RR was observed for UTCImean in Southern 
Europe (Fig. 3h) as well as for Tmean and UTCImean in groups from 
higher latitudes. In Southern European cities, mild winters with lowest 
daily temperatures slightly below 0 ◦C and a sharp increase of RR at 
these temperatures are typical (Fig. 4 and Fig. S10–11). This pattern is 
especially pronounced in Valencia, Spain, and other Southern European 
cities, but a similar pattern was revealed also for some cities in the 
Central Oceanic region, namely London, Hamburg, Bremen (Fig. 3e,f 
and Figs. S8–9). On the contrary, the RR reaches its maximum at values 
around the 1st percentile of UTCImean (and Tmean) in colder regions, 
followed by a decrease in RR (Fig. 3a–d,f,h). 

The exact RR estimates at the cold- and heat-effect thresholds (1st, 
2.5th, 97.5th and 99th percentile of Tmean and the UTCI) in the four 
groups of cities are presented in Table S2 and Fig. 5. Models employing 
the UTCImean estimate in general slightly larger RRs than those with 
Tmean, regardless of the source of data (station or ERA5) and whether 
the heat or cold effect is considered. This is not the case, however, when 
the cold effect in the Southern European group is assessed. In this group, 
the largest difference between the two thermal indices was observed, 
with the cold effect estimated by Tmean (1.30 [95% confidence interval 
(CI): 1.20, 1.41] vs 1.29 [1.21, 1.38] at the 1st percentile according to 
the ERA5 vs station data, respectively) being considerably larger than 
for UTCImean (1.19 [1.12, 1.27] vs 1.22 [1.14, 1.31]). This was related 
to the rapid increase of RR at low temperatures illustrated in Fig. 3 (g,h). 

Reported RRs for the cold effect in Southern Europe also show that 
the RR estimates modelled by the station data were larger than for ERA5. 
This was true also for other regions, except for the Northern European 
group of cities. However, the differences between ERA5 and station 

Fig. 5. Pooled estimates of cumulative relative risk (RR) of mortality at daily mean T and UTCI percentiles (variable) with respect to minimum mortality T (UTCI) in 
the four city groups considered in the study (region). 
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datasets were mostly small. 

4. Discussion 

In this study, we assessed the relationships between thermal stress 
and mortality in 21 cities from 9 European countries by comparing two 
sources of thermal stress data – climate reanalysis and station-based 
records. The novel ERA5-HEAT dataset was used here for the first 
time to provide a pan-European perspective on the relationship between 
human mortality and thermal conditions, with the latter represented by 
the UTCI. Performance of the ERA5-based UTCI was compared with 
results for the station-based UTCI. As a term of reference, performance of 
ERA5-based air temperature was also compared with results for station- 
based air temperature. Overall, we observed strong agreement between 
modelled exposure-response curves, regardless of whether comparing 
the results for (i) station and ERA5 data, (ii) the UTCI and T, (iii) indi
vidual cities, and/or (iv) the four groups of cities as defined in this study. 
Our findings complement previous work from the United States 
(Adeyeye et al., 2019) and Spain (Royé et al., 2020) and outline the great 
potential of climate reanalyses to provide comprehensive information 
about thermal conditions for studies modelling weather-health re
lationships. Gridded-observation products, such as PRIMS and Daymet 
in the United States (Spangler et al., 2018; Weinberger et al., 2019) and 
European E-OBS (Cornes et al., 2018), may have a similar potential. But 
these products do not provide all variables necessary for the calculation 
of thermal indices. 

4.1. Evaluation of ERA5-HEAT 

ERA5/ERA5-HEAT datasets are so valuable because they provide a 
comprehensive weather dataset, including wind and radiation. Wind is 
essential for estimating the wind chill effect on thermal comfort and 
hence for wind-dependent biometeorological indices such as the UTCI. 
Although wind is one of the most problematic weather variables to 
calculate in weather and climate models (Pappenberger et al., 2015), 
ERA5 near-surface wind measures show the best agreement with in situ 
observations in comparison to other global reanalyses (Ramon et al., 
2019). 

Radiation is also challenging to represent in models (e.g., Schreier 
et al., 2013). Model dynamics, physical parameterization, resolution, 
and cloudiness are some of the sources of uncertainty in relation to ra
diation as a reanalysis product. Recent improvements in how these as
pects are considered in numerical models have nevertheless helped 
reduce such uncertainty, thereby allowing radiation to be used in ap
plications studies, such as the present one, where the radiant environ
ment represented plays an important role (Di Napoli et al., 2020b). 

Although systematic errors exist in ERA5/ERA5-HEAT datasets, the 
advantages of homogenized, gridded, and freely available reanalyses 
considerably outweigh their disadvantages. Collecting station data is 
always fraught with difficulties (Colston et al., 2018). Most MCC 
members could not provide high-quality ground observation data 
necessary for the UTCI calculation. Thus, the required variables were 
retrieved from the MIDAS database by collecting surface observations 
from the SYNOP messages provided automatically by meteorological 
stations. Because these records contain errors and significant gaps at 
many locations (e.g., Estévez et al., 2011; Steinacker et al., 2011), we 
were not able to run the final analysis in all cities for which mortality 
data were available via the MCC network. Therefore, the final results are 
limited by the lack of high-quality ground observations at the MCC lo
cations. This demonstrates another reason why using climate reanalysis 
data is preferable in continent-wide studies (Colston et al., 2018). 

4.2. Definition of UTCI 

Although generally good agreement between results for different 
datasets and thermal indices was found, several important differences 

appeared. The main discrepancies between exposure-response patterns 
occurred when effects of the daily mean UTCI (UTCImean) and tem
perature (Tmean) were assessed. Whilst similar heat effects on mortality 
were generally observed for the two thermal indices, differences be
tween cold effects were much larger. This was true especially in the 
Southern European group of cities, but similar patterns were found also 
in other cities (London, Hamburg, Bremen). While the estimate of the 
cold effect in this region was clearly the largest among the city groups at 
the 1st percentile of the Tmean distribution, it was comparable with or 
even lower than estimates in other regions when UTCImean was 
considered. As these results were consistent for ERA5-and station-based 
data, we may assume that these differences were caused due to the effect 
of other variables in the UTCI definition. 

As stated above (Section 2.2), the overall thermal stress shown by the 
UTCI is defined as a combination of air temperature, mean radiant 
temperature, humidity, and wind speed. Wind speed considerably af
fects the UTCI in cold environment (Błażejczyk et al., 2012; Novák, 
2013; Urban and Kyselý, 2014), resulting in a much heavier cold tail of 
the UTCImean distribution compared to that of Tmean (see Fig. 4). A 
comparison of the UTCI and T time series with wind measurements 
(Figs. S1–S3) suggests that windier cities show larger differences be
tween the distributions of T and UTCI in the cold environment. This 
phenomenon is especially important for the exposure-response patterns 
in Southern European cities, where the lowest daily temperatures rarely 
drop below 0 ◦C while daily UTCI can decline to − 20 ◦C. In such cities, 
the RRs increase sharply for Tmean below the 1st percentile, whilst the 
cold effect is flattened at low UTCImean values because of the long left 
tail of the distribution (compare Figs. S10–S11). 

A similar pattern with sharp increase of mortality at the lowest 
percentiles of the temperature distribution was observed also in some 
Central Oceanic cities, e.g., London. A great percentage increase in 
mortality at low temperatures in regions with relatively mild winters has 
been well documented in previous studies (Eurowinter Group, 1997; 
Gasparrini et al., 2015). Absence of central heating and poor housing 
standards have been hypothesized as possible reasons for such strong 
cold-related mortality effect in these countries (e.g., Laake and Sverre, 
1996; Eurowinter Group, 1997). On the other hand, the flattened 
cold-related RR (with its maximum in moderately cold weather) in cities 
from higher latitudes is in accordance with findings from a previous 
Multi-City Multi-Country study (Gasparrini et al., 2015). 

The interpretation of the cold effect on mortality is very complex and 
depends on many factors (Kinney et al., 2015). More specifically, the 
shape of the exposure-response curve may strongly depend on model 
parameters. However, our results as well as previous studies (Gasparrini 
et al., 2015) suggest that death risk is generally larger at moderately 
than extremely cold conditions. The difference between moderately and 
extremely cold days is even more evident when the UTCI is used for the 
definition of cold days. This might be due to the emphasised effect of 
wind on the UTCI (Novák, 2013; Urban and Kyselý, 2014; Pappenberger 
et al., 2015). More specifically, the UTCI tends to overestimate the wind 
chill effect, especially on days with extreme wind speeds (Novák, 2013). 
Moreover, results by Urban and Kyselý (2014) suggest that urban pop
ulations are less vulnerable to the effect of wind than rural populations. 
Considering this, days with strong wind but moderately cold conditions 
might be defined as extremely cold by the UTCI, although they do not 
necessarily have to be as risky as days with both lower wind speed and 
lower temperature. 

4.3. Strengths and limitations 

Several limitations of this study need to be acknowledged. Firstly, as 
suggested above, the robustness of the study was affected by a lack of 
high-quality ground observations at some locations and extensive 
cleaning procedure as described in Supplementary Material. Therefore, 
many locations (where mortality data were available via the MCC 
network) had to be discarded from the analysis due to a considerable 
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amount of missing meteorological data. In cities that were finally used in 
this study, however, the amount of missing data was not larger than 
1.5%. Therefore, we believe that the results are representative for 
climate conditions typical in individual cities. 

The different classification, length and time span of mortality data
sets available for individual countries represents another limitation. A 
previous study using similar datasets documented that replacing all- 
cause with non-external mortality has a marginal effect on results 
(Gasparrini et al., 2015). The other factors, on the other hand, might 
have contributed to the over- or under-estimation of the cold- and 
heat-effects in some regions compared to others. This was true especially 
for French cities (Lyon and Paris). The French mortality time series 
spanned the period 2000–2010, which was the second shortest time 
period analysed (after Zürich’s). In addition, results for French cities 
were affected to an unprecedented extent by the 2003 heat wave 
(D’Ippoliti et al., 2010). Therefore, the estimates of the heat effect in 
these two French cities are extremely high compared to other cities 
(Fig. S8–9) and they might have affected also results for the Central 
Oceanic group of cities. Because the data for Paris and Lyon represent a 
very real phenomenon, however, we decided to keep them in the 
dataset. 

As mentioned above, the shape of the exposure-response curve may 
strongly depend on model parameters. It is worth noting that the present 
analysis uses a lag of 21 days, which is a common lag window to consider 
for both the acute heat effect (and related harvesting effect) and the 
delayed cold effect (Kinney et al., 2015; Gasparrini et al., 2015; Gas
parrini, 2016; Vicedo-Cabrera et al., 2018). As such it does not quantify 
the separate effects of heat and cold. Future work could achieve that by 
modelling heat and cold effects separately, e.g., by dividing the study 
period into warm and cold seasons and assigning different lag days to 
different temperature exposures (e.g. Fonseca-Rodríguez et al., 2019). 

The main strength of this study is the use of a novel climate rean
alysis product. ERA5-HEAT provides information about near-surface 
thermal conditions in a regular grid for the whole world with the 
highest possible resolution (Dee et al., 2016). This is especially impor
tant for heat and/or cold warning systems wherein forecasted data are 
usually derived from and/or shown as maps (Novák, 2013; Pappen
berger et al., 2015; Vitolo et al., 2019). 

The spatial resolution (28 km) and the land surface scheme (urban 
tile not included; Balsamo et al., 2009) of the ERA5 and ERA5-HEAT 
datasets might not capture all meso- and micro-scale variations of 
thermal conditions, especially in areas with a complex orography (Luo 
et al., 2019). Even at the smallest grid cell, a reanalysis is a collection of 
values averaged over an area whereas station measurements are values 
collected at one specific point. The difference between the two values 
depends on the grid cell size, the terrain complexity and the type of 
surface. However, work is in progress to overcome these uncertainties 
(Hogan, 2019). This is opening the pathway to more advanced, 
high-resolution climatological datasets from which the UTCI may be 
calculated at a scale closer to the city level. 

Several European weather services have recently developed systems 
to operationally forecast human biometeorological conditions via the 
UTCI (cf. Di Napoli et al., 2021). Although the national systems are able 
to forecast the UTCI with a higher resolution, developing 
continental-wide systems that integrate weather forecasts of a thermal 
comfort indicator with the corresponding epidemiologically defined 
relative risk, would represent a step forward in health action planning 
against heat and cold extremes. This is particularly valuable for those 
regions where very few such warning systems exist (Singh et al., 2019), 
but it is important also for revision of existing national heat–health 
warning systems which differ in definition of heat–health warning 
thresholds and methodology (Lowe et al., 2016; Casanueva et al., 2019). 
While local meteorological datasets in some regions remain often sparse 
and underfunded, the use of climate reanalyses offers many practical 
advantages (e.g., Colston et al., 2018). In this study, we have demon
strated the potential of the ERA5-HEAT dataset that may serve as a proxy 

for observations when developing a continental-wide health-related 
thermal hazard warning system based on a comprehensive description of 
thermal environment. 

5. Conclusions 

Analysing daily mortality data from 21 cities across 9 European 
countries, we explored the potential of the ERA5-based UTCI as a health- 
related tool. Distributed lag nonlinear models (DLNM) were employed to 
assess exposure-response relationships for ERA5 and station-based 
UTCI. For this purpose, a novel ERA5-HEAT dataset was used for the 
first time. In addition, the same associations were analysed for ERA5- 
and station-based air temperature as this is the most commonly used 
variable in environmental epidemiology. Meta-regression models were 
employed to pool the results for each city into four groups according to 
climate zones. 

The main findings of our analysis are as follow:  

• Generally consistent exposure-response relationships for the ERA5- 
and station-based UTCI confirm the suitability of the ERA5-HEAT 
dataset in health-related studies.  

• Strong correlation was found between results for the UTCI and air 
temperature in all groups of cities when assessing heat effects on 
mortality.  

• The role of wind in the UTCI definition, on the other hand, resulted in 
larger differences between the UTCI and air temperature when cold 
effects on mortality were assessed. 

We demonstrate that the ERA5-HEAT dataset provides a useful tool 
for climate and health studies, especially in locations where high-quality 
station data are not available. These findings are important for further 
development of continent-wide health-related warning systems. Anal
ysis of the cold effect on mortality highlights the importance of further 
investigation of the wind chill effect in cold exposure assessments. 
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