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Abstract

Diseases spread by the Aedes genus of mosquitoes are some of the fastest growing and

fastest spreading viral pathogens in the world. Large dengue virus (DENV) epidemics

have emerged in Fiji since the Second World War and there was widespread transmission

of Zika virus (ZIKV) throughout the Pacific between 2013 and 2017. However, very

few ZIKV cases were confirmed in Fiji. I conducted a serological survey in Fiji in 2017

and used these serological data, combined with mathematical modelling, to analyse

transmission dynamics of arboviruses in Fiji.

I found evidence for ZIKV circulation in Fiji between 2013 and 2015 followed by low

ZIKV seroprevalence in 2017. I used paired serum samples to analyse the immunological

response to ZIKV following outbreaks in Fiji and French Polynesia and found that

neutralising antibodies declined in adults within two years of the outbreak in each

country. I combined serological data with surveillance and molecular data to model

unobserved ZIKV transmission and compare ZIKV and DENV transmission dynamics

in Fiji. I found that the introduction time of a virus in Fiji could explain different

transmission dynamics and concluded that ZIKV was likely introduced to Fiji in late

2014.

I found high seroprevalence for all four DENV serotypes. I used a mathematical model

of DENV transmission to analyse a DENV outbreak in 2017 to predict the duration and

peak of the outbreak in real-time. I found that jointly fitting the model to a historic

outbreak as well as the emerging outbreak improved the accuracy of the predictions

from the model.
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Overall, I combined multiple data sources with mathematical modelling to reveal a

diverse range of outbreak dynamics and serological responses to outbreaks of closely

related viruses in the same location. I found that ZIKV and DENV do not necessarily

generate a similar immune response in the same population and that both can cause

low level multi-year outbreaks as well as large single season epidemics. Despite these

challenges, mathematical modelling can improve our understanding of arbovirus out-

break dynamics such that it is possible to accurately forecast outbreak dynamics in

real-time.

iii



Acknowledgements

I completed this thesis only thanks to the enormous contributions and support of a

great many people. First and foremost my thanks to Adam Kucharski for supervising

this project. Thank you for being so generous with your knowledge and your time,

even in the midst of a global pandemic. I have thoroughly enjoyed working together

and I am greatly going to miss your ability to diagnose and solve problems through a

simple slack message. Thank you also to John Edmunds for the timely and valuable

input throughout this PhD. My thanks to the MRC London Intercollegiate Doctoral

Training Partnership Studentship for funding this project and the Wellcome Trust for

funding the fieldwork in Fiji. Thank you also to Lara, Jenny, and Lauren for dealing

with all the administration that has made this research possible.

I owe an enormous debt of gratitude to the people of Fiji who participated in this study.

Vinaka vakalevu to those that made my trip to Fiji a joy as well as a success: Mike,

Isireli, Jima, Mere, Jokaveti, Daniel, Renata, Jess, Amele, Warren, Manisha, Mosese,

Jone, Taina, and Vina. Thank you to Mai and Maite and the team at ILM, it was a

pleasure to work with you and learn so much in such a short space of time. Thank you

to other experts from the Pacific that have made valuable contributions throughout

my PhD: Colleen Lau and Eric Nilles. I would also like to thank Anton Camacho and

Cheikh Loucoubar for enriching experiences while I was on placement.

I have been fortunate to be a part of such a supportive group with the centre for

mathematical modelling of infectious diseases. Thanks in particular to Sebastian Funk,
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Chapter 1. Introduction

1.1 Background

Diseases spread by the Aedes genus of mosquitoes are responsible for millions of viral

infections globally (James et al., 2018). This doctoral thesis focuses on dengue virus

(DENV) and Zika virus (ZIKV) which are two viruses that share the same primary

vector of transmission, the Aedes aegypti mosquito. The public health burden of DENV

and ZIKV is increasing annually as temperatures increase and the viable range of Aedes

mosquitoes expands (Kraemer et al., 2019). The devastating impact of these arboviruses

means that more needs to be understood about how these viruses transmit.

This PhD thesis investigates the transmission dynamics of DENV, ZIKV and other

related arboviruses in Fiji and the wider Pacific. This thesis describes a population-

representative longitudinal serological data collection study I led in Fiji in 2017. These

data have been used to understand serological dynamics following arbovirus outbreaks

and, combined with mathematical modelling, I have developed transmission dynamic

models for ZIKV and DENV in Fiji. The overall aims of this research are (i) to improve

understanding of population immune dynamics following arbovirus outbreaks and (ii)

identify the determinants of arbovirus transmission dynamics in island outbreaks. This

introduction will introduce the three main topics in the thesis title in turn: ‘arbovirus

outbreaks’, ‘Fiji and the wider Pacific’ and ‘mathematical modelling’.

1.1.1 Dengue virus and Zika virus outbreaks

DENV and ZIKV are two closely related members of the virus family Flaviviridae,

genus flavivirus. Both are arboviruses, a contraction of arthropod-borne viruses, and

therefore exist in nature because of transmission between a susceptible vertebrate host

– in this case, humans – and a hematophagous arthropod – in this case, mosquitoes

(Gubler, 1998; Musso and Gubler, 2016).

ZIKV is a positive-sense, single-stranded RNA virus that can cause mild, acute febrile

illness in humans (Musso and Gubler, 2016). The flavivirus ZIKV was first isolated

in a sentinel Rhesus Macaque in the Zika forest, near the East African Virus Research
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Institute in Entebbe, Uganda in 1947 (Dick, 1952). The first phylogenetic study of ZIKV

based on the full genome found two distinct lineages, African and Asian. Haddow et al.

(2012), found evidence that the ZIKV that caused outbreaks in the Pacific was the

Asian lineage.

DENV is another flavivirus and has four antigenically distinct serotypes. DENV-1

was first isolated in 1943 in Japan (Hotta, 1952) and 1945 in Calcutta (Sabin and

Walter Schlesinger, 1945), and the first full sequence was published in 1987 (Mason

et al., 1987). DENV-2 was first isolated in Trinidad in 1954 (Anderson et al., 1956)

and the full sequence published in 1988 (Hahn et al., 1988). DENV-3 was isolated

and sequenced in 1963 and 1988 respectively (Osatomi et al., 1988; Russell et al.,

1966). Finally, DENV-4 was isolated in 1981 and sequenced in 1987 (Lanciotti et al.,

1997; Mackow et al., 1987). There is considerable genetic variation between these

serotypes. The genomes of the four DENV serotypes share approximately 60% sequence

identity (Blok, 1985; Holmes and Burch, 2000; Yap et al., 2007). Even within serotypes,

distinct genotypes have been identified (Rico-Hesse, 1990) and the serotypes are not

antigenically homogeneous (Katzelnick et al., 2015). Despite this genetic variation the

disease and clinical symptoms caused by infection with any serotype are consistent.

Virus infection and vectors

The primary route of transmission of ZIKV and DENV is through the bite of an infected

female Aedes mosquitoes but other transmission routes are possible (Epelboin et al.,

2017). Other mosquito species, including from genera Anopheles and Mansonia, carried

detectable ZIKV in Senegal in 2011 (Diallo et al., 2014). Similarly, DENV is transmitted

to humans by the Aedes genus of mosquitoes (Halstead, 2008; Simmons et al., 2012).

The main mosquito species for ZIKV and DENV transmission in Fiji and the wider

Pacific is Aedes aegypti because it is an urban-adapted mosquito and thrives in close

proximity to humans (Gubler, 1998). Aedes aegypti are day-biting mosquitoes and

propagate when the female mosquito lays eggs in standing water, often near human-

inhabited dwellings (Gubler, 1987; Kraemer et al., 2015). Transmission of ZIKV and
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DENV is almost always seasonal and is affected by temperature and rainfall. Trans-

mission increases in warmer and wetter seasons (Halstead, 2008). Notable effects of

increased temperature are the shortening of the extrinsic incubation period and in-

creased biting rate (Mordecai et al., 2017). Aedes aegypti mosquitoes are the most

efficient arbovirus vector in Fiji. However, there are 26 known species of mosquitoes

in Fiji of which several are recognised as vectors of DENV including Aedes albopictus,

Aedes polynesiensis and Aedes pseudoscutellaris (Prakash et al., 2001).

ZIKV virus can also persist in semen and there are reports of sexual transmission of

ZIKV (Foy et al., 2011; Musso et al., 2015a). There is also evidence of perinatal trans-

mission of ZIKV from mother to child and through transfusion of infected blood (Musso

et al., 2014). The evidence on transmission through breastfeeding is not conclusive (Colt

et al., 2016). Mosquito-borne transmission remains the primary route of transmission

(Althaus and Low, 2016; Yakob et al., 2016).

Disease burden and epidemiology

Between 1947 and 2007 there were only 14 documented cases of ZIKV infection in

humans. The first ZIKV epidemic was recorded in the Yap islands of the Federated

States of Micronesia in 2007 (Duffy et al., 2009) and outbreaks followed across the

Pacific from 2013 (Baud et al., 2017; Musso and Gubler, 2016) then the Americas where

over 750,000 cases were confirmed or suspected (Pan American Health Organization,

2018b).

DENV virus outbreaks have a longer recorded history and are ubiquitous in tropical

regions where Aedes species of mosquitoes thrive. An estimated 2.5 billion people live

in DENV endemic countries (World Health Organisation, 2009). DENV-like epidemics

have been recorded for centuries (Henchal and Putnak, 1990) and DENV incidence has

increased 30-fold since the middle of the 20th century (World Health Organisation,

2009). This rapid increase in transmission is attributed to a combination of increasing

urbanisation within tropical countries, increased travel between countries and ineffective

control strategies (Simmons et al., 2012). Another key factor in the increase of DENV
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incidence is the expanding geographical range of Aedes mosquitoes because of increasing

global temperatures, attributed to climate change (Messina et al., 2014).

In 2009, the World Health Organisation (WHO) reported an estimated annual incidence

of DENV of 50-100 million (Rigau-Pérez et al., 1998; World Health Organisation, 2009).

Over the past decade, methods to estimate and map the annual incidence of DENV have

improved. Bhatt et al. (2013), estimated that there were 390 million DENV infections

per year in 2013. This estimate was based on risk maps which have since been updated

with global climate projections (Messina et al., 2019). The authors estimate that, in

2015, approximately half the world’s population lived in areas that are environmentally

suitable for DENV transmission and by 2080 this will increase to 62% of the world’s

population.

Clinical presentation and complications

The first clinical description of ZIKV is from a human challenge study conducted in

1956 and the patient reported a fever and slight headache (McFadzean and Tsang,

1956). During the first ZIKV epidemics in Yap and French Polynesia the most common

clinical symptoms reported were fever, rash, arthritis and/or arthralgia and/or myalgia,

conjunctivitis and fatigue (Musso and Gubler, 2016).

Analysis of blood samples after the French Polynesia outbreak estimated that 50-66% of

the population experienced a ZIKV infection (Aubry et al., 2015). During the outbreak

an estimated 11.5% of the population reported with symptoms (Musso et al., 2014),

which suggests that approximately 10-20% of ZIKV infections were symptomatic dur-

ing this outbreak. The proportion of asymptomatic infections is likely to be highly

dependent on setting due to the variety of laboratory tests used for case definition and

cross-reactivity in serum samples from variable levels of other circulating flaviviruses.

A systematic review of the prevalence of asymptomatic ZIKV infections found that a

pooled estimate would not be robust due to the large heterogeneity in estimates, which

ranged from 29% to 82% (Haby et al., 2018). Causes for this heterogeneity could include

the representativeness of sampled individuals, different case definitions and different age
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structures in studied populations (Burger-Calderon et al., 2020; Haby et al., 2018).

ZIKV can also cause severe neurological and neonatal complications. Microcephaly is a

severe congenital malformation in neonates where the head circumference is smaller than

normal because the brain has not developed properly. In Brazil there was evidence that

an increase in microcephaly cases was causally associated with ZIKV (Schuler-Faccini

et al., 2016) and a study of babies born during the ZIKV epidemic found that 14%

had severe developmental problems (Elisabeth Lopes Moreira et al., 2018). In French

Polynesia, ZIKV infection in the first trimester dramatically increased the rate of micro-

cephaly cases (Cauchemez et al., 2016). Another neurological complication potentially

associated with ZIKV is Guillain-Barré syndrome (GBS), an autoimmune disease caus-

ing acute, or subacute flaccid paralysis. No clear etiologies were found for a cluster of

nine GBS cases in Fiji in 2014 (Pastula et al., 2016). However, a larger cluster of 42

GBS cases during the French Polynesia outbreak was associated with the circulating

ZIKV (Cao-Lormeau et al., 2016). A systematic review of evidence was conducted by

Krauer et al. (2017), and concluded that ZIKV is a cause of congenital brain abnormal-

ities including microcephaly and that ZIKV is a trigger for, but insufficient to cause,

GBS.

DENV infection leads to a wide range of clinical presentations. The majority of DENV

infections are subclinical (Gubler, 1998) and 300 million of the estimated 390 million

annual infections are subclinical or mildly symptomatic (Bhatt et al., 2013). There

is strong evidence that human hosts with asymptomatic infection can still transmit

DENV to mosquitoes (Duong et al., 2015).

In those that become symptomatic, these symptoms follow an incubation period of 3-7

days. Symptom onset after the incubation period is acute, typically a fever accompa-

nied by headache (Henchal and Putnak, 1990; Rigau-Pérez et al., 1998). A generalised

muscular rash may be seen during the first 1-2 days of fever, followed by anorexia,

nausea and vomiting and the fever typically persists for 4-6 days (Henchal and Putnak,

1990). A small proportion of patients will progress to a critical phase that results in the

severe form of the disease, dengue hemorrhagic fever (DHF) (Gubler, 1998; Rigau-Pérez

et al., 1998; Stephenson, 2005).
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Non-pharmaceutical interventions

The most common method to attempt to reduce the burden of these arboviruses is

through management of the main vector, Aedes mosquitoes. The increase of DENV

transmission and the emergence of a ZIKV pandemic is evidence that current control

strategies are insufficient to slow the spread of these arboviruses. However, they re-

main the most effective means of control until a vaccine becomes available. Integrated

vector management (IVM) is “a rational decision-making process for the optimal use

of resources for vector control” and recommended by WHO (Pan American Health

Organization, 2018a; World Health Organisation, 2009). Strategies for controlling the

Aedes aegypti population can be broadly split into three categories: strategies to stop

mosquito propagation, strategies to kill adult mosquitoes and strategies to change in-

dividual human behaviour and risk of exposure.

Environmental management is a principal strategy to stop mosquito propagation through

the elimination of non-essential containers that provide larval habitats for Aedes mosquitoes

(Buhler et al., 2019). Long-term strategies may include improved sanitation and water

access, which would remove the need for water tanks at dwellings. In the short-term

it is often the physical removal of breeding sites and collection of waste (Vanlerberghe

et al., 2009). Another strategy to stop mosquito propagation is larviciding, chemical

treatment of potential breeding sites to kill mosquito larvae (Kroeger et al., 2006). The

WHO instructions state that this is to be considered complimentary to environmental

management, not a primary means of reducing mosquito propagation.

A second technique for reducing mosquito density is adulticides, which are insecticides

that are targeted to kill adult mosquitoes. These can be applied as either residual

surface treatments or as space treatments, fogging areas with adulticide to reduce adult

mosquito density. Residual surface application is challenging with Aedes aegypti since

these female mosquitoes lay a small number of eggs at multiple cites (Reiter, 2007,

2016). Space spraying is used in emergency situations and is designed to rapidly and

significantly reduce the adult mosquito population to stop the spread of a virus (Esu

et al., 2010).
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Finally, the interactions between humans and mosquitoes can be minimised through

guidance and individual behavioural change (Parks and Lloyd, 2004). In response to

the emergence of ZIKV in the Americas, the Pan-American Health Organisation out-

lined “personal prevention measures” to be promoted alongside IVM (Pan American

Health Organization, 2018a). These included sleeping under mosquito nets, wearing

long sleeves and application of repellents containing DEET, IR3535 or Icaridin (Pan

American Health Organization, 2018a).

The evidence for the effectiveness of IVM and personal prevention measures in reducing

arbovirus transmission is sparse and weak. Buhler et al. (2019), reviewed studies on

environmental management and found some evidence of effectiveness in reducing larval

and pupal densities of Aedes mosquitoes. Bowman et al. (2016), conducted a systematic

review of studies that evaluated vector control against Aedes aegypti or Aedes albopictus

for a period of at least three months. The authors concluded that their review and

analysis “demonstrate the remarkable paucity of reliable evidence for the effectiveness

of any dengue vector control method”. Heintze et al. (2007), similarly concluded that

“evidence that community-based dengue control programmes alone and in combination

with other control activities can enhance the effectiveness of dengue control programmes

is weak”. Reiter (2016), stated that “there are very few published studies and even

fewer studies that formally assess the impact of existing insecticide-based strategies

on dengue”. Studies have even shown that vector control can create a false sense of

security that exacerbates transmission (Bouzid et al., 2016).

Investigating the impact of vector control on epidemics is challenging because out-

breaks can end due to a combination of several factors, including population immunity,

seasonal factors and human movement. Until the point that future pharmaceutical

interventions prove effective, and several are being developed (Pang et al., 2017; Yakob

et al., 2016), the effectiveness of vector control in the prevention of DENV, ZIKV and

related arbovirus transmission remains a major gap in our understanding.

Finally, a novel non-pharmaceutical intervention against arbovirus transmission is the

use of Wolbachia in mosquitoes which blocks the transmission of many important human

pathogens. There is research that shows introduction of Wolbachia in a mosquito
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population reduces R0 by 66-75% (Ferguson et al., 2015). Ndii et al. (2015), show that

the effect of Wolbachia on DENV transmission can be via multiple routes such as a

reduction in lifespan and cytoplasmic incompatibility which gives Wolbachia carrying

females a competitive advantage in mating. Research also shows that this intervention

is effective against ZIKV transmission (Dutra et al., 2016). Introduction of Wolbachia

needs to be combined with a broader integrated vector control programme for their

release to be effective (Yakob et al., 2017).

Pharmaceutical interventions

There are no specific anti-viral treatments available for either DENV or ZIKV. There is

one licensed vaccine available for DENV, a recombinant, live-attenuated DENV vaccine

(Dengvaxia) that was approved in several countries in 2016. However, due to the

complexity in DENV pathogenicity, this vaccine is only recommended in specific settings

(Ferguson et al., 2016b; Flasche et al., 2016) and is not distributed in Fiji or other Pacific

countries studied in this doctoral project. There is no vaccine currently available for

ZIKV.

1.1.2 Diagnosis, serology and cross-reaction of DENV and ZIKV

Laboratory diagnosis of DENV or ZIKV can be performed either directly or indirectly.

Direct methods involve detection of viral components in serum. Indirect methods in-

volve detection of short-term immunoglobulin class M (IgM) or long-term immunoglob-

ulin class G (IgG) antibodies against the virus. The choice of method depends on

the duration of the illness in the patient with the suspected infection and affects the

sensitivity of the diagnosis (Peeling et al., 2010) (Figure 1.1). In the case of DENV,

during the febrile phase of infection viral nucleic acid can be detected by means of

reverse transcription polymerase chain reaction (RT-PCR). After the onset of illness,

the virus can be detected in serum, plasma, circulating blood cells and other tissues for

4–5 days (Gubler, 1998; World Health Organisation, 2009). Alternatively, detection of

the virus-expressed soluble nonstructural protein 1 (NS1) by means of enzyme-linked
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immunosorbent assay (ELISA) or the lateral-flow rapid test is sufficient to confirm a

diagnosis of DENV (Simmons et al., 2012). The RT-PCR is very sensitive but NS1

detection by ELISA is less so with approximately 60 to 80% sensitivity in secondary

infections, but sensitivity exceeds 90% in primary infections (Simmons et al., 2012).

Diagnosis of ZIKV is also ideally performed with detection of viral nucleic acid by

RT-PCR. A rapid NS1 detection diagnostic test is not currently available (Musso and

Gubler, 2016). ZIKV is also detectable in saliva samples and filter papers spotted

with dried blood that can be shipped to reference laboratories if local facilities cannot

perform these diagnostic tests, as has been done in the Pacific (Musso and Gubler, 2016;

Musso et al., 2015b).

Viraemia

RNA, NS1,
other antigens
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Figure 1.1: Antibody dynamics following suspected ZIKV or DENV infection (adapted from

Peeling et al. (2010)). The earliest opportunity to detect DENV is through reverse transcrip-

tion polymerase chain reaction to detect viral nucleic acid during the febrile phase of infection.

Non-structural protein 1 (NS1) antigen and short-term immunoglobulin class M (IgM) anti-

bodies are detectable with serology shortly after. Long-term antibodies immunoglobulin class

G (IgG) antibodies are detectable for the rest of the patient’s life

At the end of the acute phase of infection, serology is the method of choice for diagnosis

of DENV (Gubler, 1998; Innis et al., 1989; Peeling et al., 2010). Antibody response

to infection is not consistent and depends on the immune status of the host includ-

ing previous flavivirus infections and vaccinations against tick-borne encephalitis virus

(TBEV), Japanese encephalitis virus (JEV) and yellow fever virus (YFV) (Mansfield
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et al., 2011). IgM are the first antibodies to appear following DENV infection and are

detectable in 50% of patients by days 3-5 after onset of illness, increasing to 80% by

day 5 and 99% by day 10 (Innis et al., 1989; World Health Organisation, 2009).

Serological diagnosis can be used for ZIKV as well, as was done during the 2007 Yap

outbreak with IgG and IgM ZIKV ELISA. A post-outbreak review of diagnostic testing

for ZIKV found that IgM antibodies to ZIKV were detectable approximately 1 week

following infection. In over 80% of individuals however, IgM antibodies were still de-

tectable more than 2 months following infection. Using detection of IgM antibodies as

evidence of recent ZIKV infection could therefore be misleading since the individual

could have been infected several months prior to sample collection (Theel and Jane

Hata, 2018).

In Fiji, DENV outbreaks are confirmed through non-structural protein 1 (NS1) antigen

detection or IgM ELISA. This laboratory reporting switches to clinical-based report-

ing during outbreaks when laboratory capacity is exceeded (Kucharski et al., 2018).

Clinical-based reporting relies on a standard case definition for DENV. Clinical cases

are defined as suspected cases if they presented to health practitioners with rash and/or

mild fever and at least two of the following signs: conjunctivitis, arthralgia, or oedema

(Kucharski et al., 2018). ZIKV diagnosis of suspected cases in Fiji are performed at

Institut Louis Malardé in French Polynesia. Serum samples blotted on filter paper

cards and saliva samples collected on dry oral swabs from suspected cases are tested by

real-time RT-PCR for the presence of RNA from the four DENV serotypes, ZIKV and

chikungunya virus (CHIKV) (Aubry et al., 2012; Kama et al., 2019).

The consequences of cross-reaction between DENV and ZIKV

Cross-reactivity is the reaction between an antibody raised against one virus recognising

another virus. Cross-reactivity between flaviviruses has been well documented (Calisher

et al., 1989; Mansfield et al., 2011; Scott et al., 1983). The window to diagnose flavivirus

infection through detection of viraemia is short and is often missed so serological di-

agnosis is necessary. However, differential classification in serological diagnosis is more
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challenging because of cross-reactivity (Kerkhof et al., 2020). The main problem when

using serological detection – for either recent or historical flavivirus infection – is that

it increases the probability of a false positive result (Hirota et al., 2010). For example,

vaccination for another flavivirus, yellow fever virus, can result in false DENV positive

results by enzyme ELISA (Houghton-Triviño et al., 2008). It was apparent following

the ZIKV outbreak in Yap island in 2007 that cross-reaction could complicate ZIKV

diagnostics (Duffy et al., 2009; Lanciotti et al., 2008). Antibodies generated following

DENV and ZIKV infections are highly cross-reactive (Balmaseda et al., 2017; Musso

and Gubler, 2016; Priyamvada et al., 2016; Speer and Pierson, 2016; Van Meer et al.,

2017), which can affect results from commercially available test kits (Felix et al., 2017;

Kikuti et al., 2018). In the absence of a perfect diagnostic test, serological studies in

settings where flaviviruses co-circulate must be accompanied with sensitivity analyses

to validate findings from any one assay because of this cross-reactivity.

Cross-reactivity can complicate serological testing, but it can also lead to complex

immune responses to repeat infections. There is evidence that previous infection with

a DENV serotype or ZIKV can both suppress and enhance subsequent infection with

a heterologous DENV serotype or ZIKV. I will introduce the evidence of the impact of

cross-reactivity as follows: the effect of prior DENV infection on subsequent heterotypic

DENV infection, prior DENV infection on subsequent ZIKV infection, finally prior

ZIKV infection on subsequent DENV infection.

Human infection with one DENV serotype confers long-term immunity to that serotype

(Halstead, 1974; Simmons et al., 2012). It is well established that infection with a

single DENV serotype confers a strong cross-protective immunity against heterologous

serotypes but that this protection is temporary (months) (Montoya et al., 2013; Reich

et al., 2013; Sabin, 1952; Snow et al., 2014). Clapham et al. (2016), found that antibody

titres increased from convalescence to 6 months following DENV infection. After this

period of cross-protection prior DENV infection may be a significant risk factor for

more severe disease from a secondary heterotypic DENV infection (Burke et al., 1988;

Cummings et al., 2005; Dejnirattisai et al., 2010; Halstead et al., 1970; Kliks et al.,

1988; Simmons et al., 2012). This phenomenon – antibody-dependent enhancement
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(ADE) – is one in which pre-existing DENV antibodies bind to the virus particles but

are non-neutralising and subsequently enhance the growth of the virus. Salje et al.

(2018), characterised antibody dynamics in a cohort in Thailand and found that one

year after infection individuals with moderate antibody titres (≤ 1:40) were at much

greater risk of the more severe dengue hemorrhagic fever than those with high titres

(>1:40) or DENV näıve individuals. Post-secondary infections are rarely reported and

appear to reduce, but not eliminate, the risk of disease (Gibbons et al., 2007; Olkowski

et al., 2013; Wikramaratna et al., 2010).

Secondly, prior DENV infection could affect future ZIKV infection. ZIKV outbreaks

spread rapidly from 2013 in the Pacific and in the Americas which are both areas with

a high burden of DENV infection. Urgent research was therefore necessary to assess

whether prior DENV immunity would enhance the severity of ZIKV disease as it could

for heterotypic DENV infections. Experimental evidence demonstrated enhanced ZIKV

infection in the presence of DENV antibodies (Bardina et al., 2017; Dejnirattisai et al.,

2016; Paul et al., 2016; Priyamvada et al., 2016). However, other in vivo experiments

have shown no evidence that prior flavivirus immunity had a detrimental effect on

ZIKV infection (Castanha et al., 2016; McCracken et al., 2017; Pantoja et al., 2017).

Conversely, experimental evidence that a previous DENV infection can cross-neutralise

and protect from ZIKV infection has been supported in studies of longitudinal seroepi-

demiological cohorts. In Salvador, northeast Brazil, a cohort of 1436 urban residents

were followed and pre-existing high antibody titres to DENV were associated with re-

duced risk of ZIKV infection and symptoms (Rodriguez-Barraquer et al., 2019). Within

a large paediatric cohort in Nicaragua, prior DENV infection was protective against

ZIKV (Gordon et al., 2019). Montoya et al. (2018), analysed antibody dynamics in this

cohort with others from Latin America and Asia. The authors found that neutralising

antibody titres can distinguish ZIKV from the DENV serocomplex and did not enhance

ZIKV infection. Evidence from Brazil shows that multitypic DENV infection may pro-

tect from development of more severe ZIKV disease (Pedroso et al., 2019). These results

support a large body of experimental evidence (Barba-Spaeth et al., 2016; Swanstrom

et al., 2016; Wen et al., 2017). The duration of cross-neutralising antibodies from

DENV infection is less certain. It has also been shown in vitro that cross-neutralising
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antibodies are not present in the late DENV convalescent stage of infection (≥ 6 months

after infection) (Collins et al., 2017).

There is less evidence about the effect of ZIKV on subsequent DENV infection be-

cause the ZIKV epidemic was so recent. Models in nonhuman primates (NHP) have

demonstrated that cross-reactive antibodies generated from ZIKV infection enhanced

a subsequent DENV infection (George et al., 2017; Valiant et al., 2018). However, an-

other NHP model showed no evidence of enhanced DENV infection following ZIKV

(Pérez-Guzmán et al., 2019). It has been hypothesised that the DENV season following

the ZIKV epidemic in many locations across the Americas was less severe because of

protection from ZIKV (Borchering et al., 2019; Perez et al., 2019; Ribeiro et al., 2018).

Cross-reactivity between DENV and ZIKV is unquestionably a limitation in serological

studies. However, the impact it has on outbreak dynamics when both viruses can

circulate in the same location at the same time is less clear and needs further study

(Culshaw et al., 2017; Langerak et al., 2019). Fiji and the wider Pacific are locations

where such studies are appropriate because of the presence of Aedes aegypti mosquitoes

on many islands which can transmit both DENV and ZIKV.

1.1.3 Fiji and the wider Pacific

This doctoral project analysed data from two countries from the South Pacific: Fiji and

French Polynesia. Fiji is an island country in the South Pacific, situated approximately

2,000 kilometres northeast of New Zealand. The country is made up of over 330 islands,

approximately one third of which are permanently inhabited. It is an economically

developing country and is classified as “upper middle income” by the World Bank

(World Health Organisation Western Pacific Region, 2011).

There are two major islands in Fiji in terms of population and economic activity. Vanua

Levu, in the Northern Division, and Viti Levu which is split between the Central and

Western Divisions (Figure 1.2). Approximately 80% of the Fijian population of 884,887

people live in Central and Western Division. The capital city, Suva, is in the southeast
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Figure 1.2: Map of Divisions within Fiji

corner of Viti Levu and is home to 94,088 Fijians (Fiji Bureau of Statistics, 2018a).

French Polynesia is the other country with data presented in this doctoral project.

It is of particular interest because, like Fiji, it has a long history of DENV epidemics

(Teissier et al., 2020) and a recent ZIKV epidemic (Cao-Lormeau et al., 2014b). French

Polynesia is to the east of Fiji and the other side of the international date line. French

Polynesia is a collection of 118 dispersed islands split into five archipelagos. The largest

of these are the Society Islands, including French Polynesia’s largest island Tahiti and

capital city Pape’ete. The population of French Polynesia recorded in 2017 is smaller

than Fiji at 281,764 (United Nations, 2019).
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Age has been shown to be an important risk factor for the severity of DENV clinical

presentation since older people are more likely to have experienced DENV infection

even in endemic settings (Flasche et al., 2016; Simmons et al., 2012). The mean age

of a confirmed or suspected DENV-3 case during the 2013-14 epidemic was 27.7 years

old (IQR: 16-38) (Kucharski et al., 2018). Consideration of the age distribution of a

population is therefore important when studying arbovirus transmission. The median

age in the Fijian population as recorded in the 2017 census was 27.5 years and 20% of the

population are children younger than 10 (Fiji Bureau of Statistics, 2018b) (Figure 1.3).

The population in French Polynesia has fewer young children (15.7% of the population)

but similar levels of people aged over 50 (20.5% in French Polynesia and 19/3% in Fiji)

according to a census from 2012 (Institut de la statistique de la Polynésie française,

2020) (Figure 1.4).

0...4

5...9

10−14

15−19

20−24

25−29

30−34

35−39

40−44

45−49

50−54

55−59

60−64

65−69

70−74

75+

5 0 5
Population (%)

A
ge

 g
ro

up Gender

female

male

Figure 1.3: Age pyramid of Fiji from census data collected in 2017 (Fiji Bureau of Statistics,

2018b)

Urbanisation is another important consideration in the study of DENV and ZIKV. The

primary vector of these flaviviruses, and therefore the burden of disease, are typically

concentrated in urban areas with dense populations. Fiji has seen increased urbanisa-

tion between censuses conducted in 2007 and 2017. The proportion of the population

living in urban areas increased from 50% in 2007 to 56% in 2017. The population
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Figure 1.4: Age pyramid of French Polynesia from census data collected in 2012 (Institut

de la statistique de la Polynésie française, 2020)

of Rewa province – which includes Suva – increased by 7% from 100,995 to 108,016

between 2007 and 2017 (Fiji Bureau of Statistics, 2018b). By contrast, the popula-

tion in French Polynesia is dispersed over five separate archipelagos with fewer urban

centres. However, the capital city Pape’ete is comparable to Suva, as each houses ap-

proximately 10% of that country’s total population (25,763 people in Pape’ete) (Institut

de la statistique de la Polynésie française, 2020).

Temperature is another critical factor in arbovirus transmission. Fiji and French Poly-

nesia are both tropical countries with warm climates that suit virus transmission by

Aedes mosquitoes (Mordecai et al., 2017; Nishiura et al., 2016a; Richard et al., 2016;

Roth et al., 2014). Average temperatures are very similar in both countries, at 26.4°C

in Fiji and 27°C in French Polynesia (Fiji Meteorological Service, 2017; Institut de la

statistique de la Polynésie française, 2020). However, French Polynesia is closer to the

equator and, as a result, temperature is less variable over a year compared to Fiji where

fluctuations are greater (Figure 1.5).
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Figure 1.5: Average monthly temperature (°C) in Fiji and French Polynesia (Fiji Meteoro-

logical Service, 2017) (Institut de la statistique de la Polynésie française, 2020)

Arboviruses in the Pacific

Island populations are isolated and typically have smaller populations so are therefore

less likely to sustain endemic transmission (Black, 1966; Keeling and Grenfell, 1997).

This is especially true of diseases that have a seasonal pattern of transmission – such as

DENV and ZIKV – with a low-transmission period through which an epidemic cannot

easily persist. This generates a pattern of self-contained single serotype epidemics in

the South Pacific with reintroduction from outside sources after an interval period of

several years (Cao-Lormeau et al., 2014a). DENV circulation in Pacific island countries

and territories (PICTs) in the 20th century began with the first recorded major outbreak

of DENV-1 towards the end of the Second World War (Imrie et al., 2007; Rosen, 1958).

Decades later, there was a DENV-2 outbreak in 1971 (Maguire et al., 1974) which was

closely followed by DENV-1 in Fiji in 1975 (Reed et al., 1977) and DENV-4 in 1979 in

French Polynesia (Chungue et al., 1999).

A pattern emerged of a single large outbreak invading a country with no transmission

for several years afterwards. This pattern can be clearly seen in data from French

Polynesia between 1978 and 2014 that has been collated by Teissier et al. (2020) (Figure

1.6). The authors defined eight epidemic periods and six inter-epidemic periods over

the 35 year time frame. Multiple serotypes were reported in two of these epidemic
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periods but most were monotypic or primarily single-serotype outbreaks. This pattern

of intermittent epidemics is observable at the regional level as well. Following DENV-4

in 1979, the next large regional outbreak was in 1989-90 (Chungue et al., 1999; Fagbami

et al., 1995; Taleo et al., 2000). This was followed in 1996-1999 with DENV-2 cases in

French Polynesia (Deparis et al., 1998) and Fiji (Prakash et al., 2001).

1970 1980 1990 2000 2010 2020

Year

DENV-1DENV-2 DENV-1
DENV-1
DENV-3

DENV-1
DENV-3

DENV-4DENV-4

Figure 1.6: Timing and serotype of DENV outbreaks in French Polynesia between 1978 and

2014, using data from Teissier et al. (2020)

Since 2000, DENV outbreaks have become more frequent (Kiedrzynski et al., 1996;

Singh et al., 2005). Taking Fiji as a case study, a large DENV-1 epidemic in 2001-04

(Singh et al., 2005) was followed by DENV-4 circulation in 2007 (Li et al., 2010; War-

rilow et al., 2012). DENV-3 then spread in 2013-2014 (Cao-Lormeau et al., 2014a) and

most recently, the Fiji Ministry of Health declared a DENV-2 outbreak in April 2017

(Fijivillage, 2017). Increased birth and immigration rates may be creating enough sus-

ceptible hosts for DENV to circulate every 3-4 years with a single serotype reappearing

every 10-12 years (Cao-Lormeau et al., 2014a). However, the relative contribution of

these causes remain poorly understood.

The first recorded outbreak of ZIKV occurred on the Pacific island of Yap, part of the

Federated States of Micronesia in 2007 (Duffy et al., 2009; Hayes, 2009). This was a

large and quick outbreak with an estimated 73% of the residents of Yap state infected

with ZIKV between April and July 2007 (Duffy et al., 2009). ZIKV next emerged in

French Polynesia in October 2013. The outbreak was short as well, lasting 21 weeks

and peaking at the end of February 2014 (Musso and Gubler, 2016). By the end of the

outbreak an estimated 11.5% of the population had ZIKV fever (Musso et al., 2014). A

serological survey conducted in 2015 in the general population estimated an infection

19



Chapter 1. Introduction

rate of 50 to 66% (Aubry et al., 2015).

Following the French Polynesia outbreak ZIKV spread quickly through the Pacific

(Musso and Gubler, 2016; Roth et al., 2014). In 2014 ZIKV outbreaks were confirmed

in New Caledonia, Cook Islands and Easter Island. In New Caledonia, less than 1% of

the population reported as confirmed ZIKV compared to 11.5% in the French Polyne-

sia outbreak (Musso and Gubler, 2016; Musso et al., 2018). The cause of this smaller

outbreak is still unknown but could be related to mosquito species, different popula-

tions, or the lack of a “cold season” in French Polynesia (Musso and Gubler, 2016).

The outbreak in the Cook Islands was small, with 905 cases reported and there were

50 suspected ZIKV cases reported in Easter Islands (Musso and Gubler, 2016). In

2015 ZIKV continued to spread through the Pacific as local transmission of ZIKV was

confirmed in Vanuatu, Solomon Islands, Samoa and Fiji. DENV has spread in all of

these countries and there were reports of concurrent circulation of DENV, ZIKV and

chikungunya virus (CHIKV) throughout the Pacific (Roth et al., 2014).

It is probable that the virus spread from the Pacific Islands to Brazil with some evidence

from molecular data and phylogenetics that ZIKV was introduced to Brazil from French

Polynesia and Easter Island around the same time (Delatorre et al., 2018). Once ZIKV

emerged in northeast Brazil, likely introduced between August 2013 and April 2014

(Faria et al., 2016), it spread through the Americas and was declared a Public Health

Emergency of International Concern by WHO (World Health Organisation, 2016).

Disease monitoring in the Pacific was enhanced in 2010 with the launch of the Pacific

Syndromic Surveillance System (PSSS). This is a sentinel surveillance system with 121

sentinel surveillance sites across twenty-one countries in the Pacific that report weekly

on five syndromes: (i) diarrhoea, (ii) influenza-like illness, (iii) prolonged fever, (iv)

acute fever and rash, and (v) dengue-like illness (Craig et al., 2016). However, most

countries in the PSSS are small and adapting to emerging diseases can be challenging.

Craig et al. (2016), found that existing reporting on acute flaccid paralysis (AFP) for

Polio eradication programmes was insufficient for the identification of ZIKV emergence

in the Pacific.
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Arboviruses in Fiji

There have been regular outbreaks of DENV in Fiji since the virus emerged after World

War II (Kiedrzynski et al., 1996; Kucharski et al., 2018; Singh et al., 2005). Fiji has

regular epidemics but has no evidence of sustained endemic DENV transmission. Most

of these outbreaks record thousands of cases which is consistent with a large monotypic

epidemic. Such outbreaks can deplete the susceptible population and prevent any other

DENV serotype from emerging for half a decade, and the same serotype from emerging

for 10-12 years (Cao-Lormeau et al., 2014a). Figure 1.7 shows a schematic of reported

DENV outbreaks in Fiji since 1970 and demonstrates this pattern of intermittent mono-

typic epidemics.

1970 1980 1990 2000 2010 2020

Year

DENV-2 DENV-1
DENV-1 DENV-?

DENV-?
DENV-1

DENV-1DENV-2DENV-4 DENV-4 DENV-3DENV-2 DENV-2

Figure 1.7: Timing and serotype of DENV outbreaks in Fiji between 1970 and 2017, using

data from Kucharski et al. (2018). Blue region highlights the main study period for this

doctoral project

Details on these outbreaks are shown in Table 1.1, adapted from Kucharski et al.

(2018) and demonstrate the diverse range of dynamics of these individual outbreaks,

with some very large outbreaks and some much smaller. There is a limited amount of

post-outbreak serological data to validate the size of these outbreaks in the population.

As reported elsewhere in the Pacific (Roth et al., 2014), there were concurrent outbreaks

of DENV, ZIKV and CHIKV between 2013 and 2018. This six-year window is the focus

of this doctoral project and includes four notable outbreaks of arboviruses in Fiji (Figure

1.8). Firstly a large DENV-3 outbreak in 2013-14 (Cao-Lormeau et al., 2014a). There

were a small number of confirmed locally-acquired ZIKV and CHIKV cases between

2015 and 2016 (Kama et al., 2019). Finally, a DENV-2 epidemic emerged in 2017
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Table 1.1: Reported arbovirus outbreaks in Fiji between 1930-2017. Adapted from Kucharski

et al. (2018)

Year Main virus Reported cases Seroprevalence Source

1930 ? Thousands (Maguire et al., 1971)

1944-5 DENV-1 Thousands (Reed et al., 1977)

1971-3 DENV-2 3,413 25%* (Maguire et al., 1974)

1974-5 DENV-1 16,203 (Reed et al., 1977)

1980 DENV-4 127 (Fagbami et al., 1995)

1981 DENV-1 18 (Kiedrzynski et al., 1996)

1982 DENV-2 676 (Kiedrzynski et al., 1996)

1984-6 DENV-? 490 (Fagbami et al., 1995)

1988 DENV-? 22 (Fagbami et al., 1995)

1989-90 DENV-1° 3,686 54%* (Fagbami et al., 1995; Waterman

et al., 1993)

1997-8 DENV-2 24,780 (World Health Organisation,

2015)

2001-3 DENV-1 ? (Halstead, 2008)

2008 DENV-4 1,306 (Pacnet Report, 2008; ProMED-

mail, 2008)

2013-14 DENV-3 25,496 53.2%** (Kucharski et al., 2018)

2015-17 ZIKV 16** 21.9%** (Kama et al., 2019)

2015-17 CHIKV 93** (Aubry et al., 2019; Kama et al.,

2019)

2017 DENV-2 755* Fiji MOH data

* Suva

** Central Division

°There is also evidence of DENV-3 circulation during this period (Singh et al., 2005) .
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(Fijivillage, 2017).

Previous serological surveys in Fiji

This thesis uses data from two previous serological surveys conducted in Fiji. In 2013,

Watson et al. (2017), collected 1,781 samples from across mainland Fiji; 695 of them

in Central Division. Watson et al. (2017), characterised the epidemiology of typhoid

fever and Lau et al. (2016), used the samples to analyse risk factors for leptospirosis

transmission in Fiji. The authors conducted a representative, clustered, cross-sectional

seroepidemiological survey of the two main Fijian islands. A follow-up study was con-

ducted in November 2015 in Central Division after the DENV-3 epidemic. 333 of the

same participants were resampled in 2015 to collect a data set of pre- and post-outbreak

serology (Kama et al., 2019; Kucharski et al., 2018).

Data from these serological surveys showed evidence of increased DENV-3 infections,

concentrated in DENV näıve children, as expected given the large reported outbreak.

Analysis of serology also showed that a large proportion of the population in Fiji had

seroconverted to ZIKV between 2013 and 2015, which is before cases were reported

(Figure 1.9). Kama et al. (2019), found evidence of undetected circulation of ZIKV

and CHIKV in Fiji using these data.

1.1.4 Mathematical modelling of arboviruses

Mathematical modelling of an infectious disease – shortened to ‘mathematical mod-

elling’ from this point – is an abstract simplification of reality that uses mathematical

language to describe the behaviour of a disease transmission system. The dynamics

of disease transmission can be complex at an individual level and fields of study such

as medicine, genomics and microbiology inform our understanding of these dynam-

ics. At a population level, however, the dynamics often conform to simple processes

which can be modelled mathematically. These models of infectious diseases include the

mechanisms driving transmission in a population and can therefore be differentiated
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Figure 1.8: Recent arbovirus outbreaks in Fiji between 2013 and 2018. Reported cases for

DENV-3. Confirmed cases for DENV-1, DENV-2, DENV-4, CHIKV and ZIKV
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Figure 1.9: Change in DENV-3 and ZIKV seroprevalence in Fiji between 2013 and 2015.

Circles show estimated seroprevalence for ZIKV and DENV-3 in the corresponding age group.

Vertical lines show 95% confidence intervals. The majority of the increase in seroprevalence

between 2013 and 2015 was in the youngest age group, but for ZIKV there was an increase in

seroprevalence across all age groups

from ‘statistical models’ that describe the relationship between observed quantities and

independent variables, common across the study of non-communicable diseases. By in-

cluding these mechanisms explicitly in the model we can ask more interesting questions

about an epidemic: When did the disease emerge? How quickly did it spread? When

did transmission peak, and why did it end?

Models are simplified representations of reality and as such there is trade-off between

the ‘detail’ and ‘transparency’ of the model. A model is usually simplified by making

more assumptions and omitting details that are deemed unimportant. This can make

the model easier to understand but conclusions from this model are only valid if these

assumptions hold. The choice of model complexity and the balance of this trade-off

will depend on the purpose of the model and what hypothesis is being tested.

A popular mathematical modelling approach is to use compartmental models. A popu-

lation is divided up into compartments based on their infectious status. An example of

compartmental modelling was first proposed by Ross and Hudson (Ross and Hudson,

1917) and expanded in the 1920s and 30s by Kermack and McKendrick (Kermack et al.,

1927, 1932, 1933). For a disease that confers lifelong immunity, a basic compartmental
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model has three compartments: all individuals in a population (N) are either suscep-

tible (S) to the virus, are infectious (I), or have recovered (R). The rate of transition

between these compartments determines the dynamics of an epidemic in this model,

which is typically expressed as a system of ordinary differential equations (Equations

1.1-1.3). These equations express the change in compartments for each time step t

(where t is small).

dS

dt
= −λS = −β I

N
S (1.1)

dI

dt
= λS − γI (1.2)

dR

1t
= γI (1.3)

Individuals move between the S and I compartment following infection at a rate known

as the ‘force of infection’ (λ). The force of infection is the product of transmission prob-

ability (β) and the probability of contact with an infectious individual (
I

N
). Individuals

remain infectious for a fixed period of time so transition to the R compartment occurs at

a constant rate (γ) (Figure 1.10). This simple model makes several assumptions about

how the disease spreads. Everyone mixes evenly and therefore has an equal probability

of becoming infected, everyone is infectious for the same length of time and is equally

infectious.

S I R
λ γ

Figure 1.10: Schematic of compartmental framework of an SIR model

The parameters in this model can be used to calculate important epidemiological quanti-

ties. The basic reproduction number (R0) is the average number of secondary infections

generated by a typical infectious individual in an entirely susceptible population. In

this basic SIR model R0 is equal to the ratio
β

γ
(Keeling and Rohani, 2011).
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DENV and ZIKV are vector-borne diseases, viruses that are transmitted between hu-

mans by vectors. In the case of DENV and ZIKV the intermediary host is a mosquito.

Modelling of vector-borne diseases is based on the work of Ronald Ross studying malaria

in the early 20th century (Ross, 1908, 1911). After the Second World War George Mac-

donald continued the work of Ross and focused on applied theory to support the WHO

Global Malaria Eradication Programme (Macdonald, 1956a,b, 1957; Macdonald and

Goeckel, 1964; WHO, 1956). This class of models has been refined but still carries a

common set of assumptions: mosquito bites are distributed randomly and evenly among

single vertebrate host populations, mosquito mortality is independent of age, both the

pathogen latent period and fraction of mosquitoes that blood feed on the host are con-

stant and there is only one mosquito vector species (Smith et al., 2012). A systematic

review conducted in 2013 found that even recent models were still largely dependent

on the same assumptions set out in Ross-Macdonald models (Reiner et al., 2013).

Compartmental modelling of DENV has a long history (Andraud et al., 2012; Reiner

et al., 2013). Newton and Reiter (1992), produced a compartment vector-host model

to estimate the R0 of DENV as 1.9. Other early modelling estimates for the DENV

R0 were 1.33 from serological data in Mexico (Koopman et al., 1991) and 2.03 from an

analysis of the early growth of a 1990-91 epidemic in Brazil (Marques et al., 1994). By

1995 researchers were comparing model outputs with data to validate their simulations

(Focks et al., 1995). Esteva and Vargas (1998) developed a compartmental model for

DENV to define the global stability of the endemic equilibrium and then extended it

to include demographic changes (Esteva and Vargas, 1999).

As these models developed they were targeted at increasingly complex areas of DENV

epidemiology. Compartmental models that included multiple serotypes were developed

to analyse the effects of ADE and cross-protection between DENV serotypes. Ferguson

et al. (1999), developed a DENV model with multiple serotypes to demonstrate that

ADE acts to generate complex and persistent cyclical or chaotic epidemic behaviour.

Cummings et al. (2005), used a two-serotype model to describe the effect of ADE on

the evolutionary dynamics of DENV. Adams et al. (2006), used a compartmental two-

serotype model for DENV transmission in Bangkok and found evidence that infection
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with one serotype must be moderately cross-protective to recreate the observed epi-

demiological data. The importance of a temporary period of cross-serotype protection

have been shown in models of DENV compared to data from Thailand (Nagao and

Koelle, 2008; Wearing and Rohani, 2006). DENV models have advanced to the point

of informing pivotal public health planning. The proven efficacy in phase III trials of

a DENV vaccine, Dengvaxia, led to the licensing of the vaccine in several countries.

Dynamic modelling of DENV and the effect of the vaccine informed WHO guidance

on optimal use of the vaccine only in settings with high DENV endemicity (Ferguson

et al., 2016b; Flasche et al., 2016).

Mathematical models can then be fitted to available data from infectious disease out-

breaks. Such data can include surveillance data on the number, location and timing

of cases as well as serological data on the proportion people infected. Outputs from

mathematical models can then be formally compared to observed data under the as-

sumption that these data follow a defined statistical distribution. Parameters from

the model can then be estimated and compared between diseases, between different

outbreaks and between locations. Further details are available in Chapter 2.

Modelling island outbreaks and models of DENV and ZIKV

Islands and remote settings have been a considerable source for epidemiological studies

of infectious diseases since the mid 20th century (Panum and Petersen, 1940). The

isolated nature of Pacific islands in particular led to several findings in the study of

measles. Black (1966), found that measles could probably not persist in dispersed island

communities with a population under 200,000. Cliff and Haggett (1984), used data

from Iceland to demonstrate that measles spread in a hierarchical pattern depending

on population size. Gould et al. (1971), studied the epidemiology of measles outbreaks

in Ponane (now part of the Federated States of Micronesia) and Rosen (1962), studied

a measles outbreak in 1951 in Tahiti using pre- and post-outbreak seroprevalence data.

Mathematical models of infectious diseases have similarly been used to great effect in

island settings. Camacho et al. (2011), modelled an influenza outbreak with multiple
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peaks on the remote island of Tristan da Cunha. The authors were able to characterise

a rapid rate of reinfection in their model by using the remoteness of the island as a justi-

fication that the second wave of infections could not have been caused by reintroduction

of the virus. The authors concluded that the second wave of infection was caused by

either a delayed or deficient immune response to the primary wave of infections in the

population. This insight into influenza transmission dynamics was facilitated by study-

ing the ‘natural experiment’ of the remote island outbreak. Mathematical models have

also been applied in island settings to design optimal pandemic preparedness strategies

(Nishiura et al., 2009) and to provide estimates of R0 for emerging diseases (Yakob and

Clements, 2013).

Small island outbreaks of DENV have been used to study the effect of seasonal cli-

mate variation on DENV transmission with statistical models including the association

between El Niño southern oscillations and DENV incidence (Hales et al., 1996) and

a characterisation of 40 years of DENV outbreaks in New Caledonia (Descloux et al.,

2012). However, the use of compartmental models to study DENV outbreaks on small

islands is limited. Chowell et al. (2013), used a compartmental model for a DENV

outbreak on Easter island and estimated a very high R0 for the outbreak assumed to

be linked to the high level of susceptibility in the population. Lourenço and Recker

(2014), modelled the first European DENV outbreak showing significant and prolonged

autochthonous transmission in Madeira in 2012, and defined a period of high epidemic

risk based on the climate in Madeira. Rodrigues et al. (2015), subsequently modelled

the effect of control measures on this same outbreak. More recently Funk et al. (2016),

used the dynamics of island outbreaks to compare DENV and ZIKV epidemics in is-

land settings. The authors found greater similarity between the reproduction number

of DENV and ZIKV in the same location, than between DENV outbreaks in separate

locations, suggesting that location is pivotal to outbreak dynamics.

The initial spread of ZIKV through the Pacific led to several mathematical models of

arboviruses in island settings. Kucharski et al. (2016), modelled the French Polynesia

epidemic and estimated that the majority of French Polynesia was infected during

the outbreak despite only 11.5% of the population reporting as cases (Cao-Lormeau
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et al., 2014a). Champagne et al. (2016), compared two compartmental model structures

to model ZIKV epidemics on several Pacific islands: Yap (Micronesia), Tahiti and

Moorea (French Polynesia), and New Caledonia. They estimated a range of R0 across

these islands between 1.5 and 4.1, with smaller islands displaying higher and more

variable values. Nishiura et al. (2016a), used a different modelling method to estimate

R0 for ZIKV based on the early exponential growth of the ZIKV epidemic in French

Polynesia and estimated R0 to between 1.8 and 2. Riou et al. (2017), analysed ZIKV

and CHIKV outbreaks across the Pacific with a time-dependent SIR model and found

similar transmission potential for both viruses in the same territory. Lourenço et al.

(2018), were able to model an outbreak of ZIKV in Africa on the island of Cabo Verde

and found similar characteristics to outbreaks in the Americas and Pacific. Finally,

Cousien et al. (2019), used a household model with the ZIKV outbreak on the island of

Martinique in the Caribbean to estimate that approximately one fifth of ZIKV infections

occurred in the household setting.

Following these initial island outbreaks of ZIKV, the virus spread to large countries

in the Americas. Here, mathematical models were important to characterise these

emerging outbreaks, including initial estimates of R0 (Nishiura et al., 2016b; Shutt et al.,

2017) and of the contribution of sexual transmission to outbreak dynamics (Gao et al.,

2016; Towers et al., 2016). Modelling also made a valuable contribution to outbreak

response. Ferguson et al. (2016a), modelled the spread of ZIKV in the Americas to

inform control strategies in real-time and Perkins et al. (2016), projected the number

of child-bearing age women at risk of ZIKV infection. After the epidemic Lourenço

et al. (2017), used a climate driven transmission model to characterise the determinants

of high attack rates of ZIKV transmission in urban settings in Brazil. Netto et al.

(2017), also used a compartmental model for the spread of ZIKV in one of the worst

affected regions during the pandemic, Salvador in northeast Brazil. The authors used

opportunistically sampled sera from blood donors and HIV registers to constrain their

model alongside the available case data and estimated ZIKV R0 was 2.1 (95% CI 1.8-2.5)

at the onset of the outbreak.

In summary, mathematical modelling is a useful tool in analysing transmission dynam-
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ics and is particularly valuable in island settings where outbreak periods, circulating

viruses, and pre-outbreak immunity can be more clearly defined. Available data from

Fiji shows regular DENV outbreaks of differing severity and silent circulation of ZIKV.

This thesis includes an analysis of serological data and development of mathematical

models of outbreak dynamics in the setting of Fiji and the wider Pacific.

1.2 Aims

The overall aim of this research is to better understand the transmission of DENV and

ZIKV by using serological data and mathematical modelling. Specifically (i) to improve

understanding of population immune dynamics following arbovirus outbreaks and (ii)

identify the determinants of arbovirus transmission dynamics in island outbreaks.

1.2.1 Objectives

This aim will be met by fulfilling the following objectives:

1. Conduct a serological survey in Fiji, resampling as many participants of previous

surveys in Central Division as possible

2. Analyse longitudinal serological data to determine the burden of ZIKV infection

in Fiji between 2013 and 2017

3. Evaluate the population level immune response to ZIKV from serological data

following outbreaks in Fiji and French Polynesia

4. Develop a mathematical model of arbovirus transmission and use it to explain

different transmission dynamics of recent arbovirus outbreaks in Fiji

5. Inform control strategies for DENV outbreaks in Fiji by estimating the effect of

vector control on DENV transmission
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1.3 Thesis structure

This is a research paper style thesis consisting of four chapters written in the style of

a journal article, preceded with this introduction chapter and followed by a discussion

of the research. This opening chapter provides background on arboviruses, serological

analysis of DENV and ZIKV and the principles of mathematical modelling to analyse

arbovirus outbreak dynamics. The results chapters are as follows:

1. Materials & Methods. This chapter details methods used in this doctoral

project. Methods are described for the data collection with a seroepidemiological

survey in Fiji in 2017, serological testing on samples collected from this survey

and mathematical modelling methods used in Chapters 5 and 6.

2. A longitudinal seroepidemiological survey of arbovirus burden in Fiji.

This chapter details the serological survey I led in Fiji 2017. This chapter describes

and discusses results about the burden of DENV, ZIKV and related arboviruses

in Fiji between 2013 and 2017.

3. Zika seroprevalence declines and neutralising antibodies wane in adults

following outbreaks in French Polynesia and Fiji. This is the only chapter

that is currently published, in eLife in 2020 (Henderson et al., 2020). This chapter

presents an analysis of eight serological survey across Fiji and French Polynesia

to analyse the long-term immune response to ZIKV in a population following an

outbreak.

4. Interactions between timing and transmissibility explain diverse fla-

vivirus dynamics in Fiji. This is the main modelling chapter of the thesis and

has been submitted for publication. This chapter presents a mathematical model

I developed to explain differing transmission dynamics of ZIKV and DENV in

Fiji since 2013.

5. Modelling dengue virus transmission in Fiji and assessing the contri-

bution of vector control interventions in ending DENV epidemics. The

final chapter presents a model of DENV transmission that I used in real-time

32



Mathematical Modelling of Arbovirus Outbreak Dynamics in Fiji and the Wider Pacific

in Fiji in 2017 to forecast the dynamics of a DENV outbreak. Post-outbreak, I

used this model to estimate the contribution of vector control to the outbreak

dynamics.

The thesis concludes with discussion of the findings, the strengths and limitations of the

research and aims to put the results in context of the wider understanding of arbovirus

outbreak dynamics.
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This Chapter describes the methods used in this doctoral project: the design and im-

plementation of a seroepidemiological study from 2017, the serological testing methods

used to test for antibodies against specific viral infections and the mathematical model

that is used to analyse trends in outbreak dynamics in Fiji between 2013 and 2017.

2.1 Data collection

2.1.1 Study design

Two previous serological studies have been conducted in Fiji. A nationally representa-

tive cross-sectional seroepidemiological study was conducted in 2013 (Lau et al., 2016;

Watson et al., 2017). In 2015, participants from Central Division were contacted and

another serum sample was collected. I led a third serological survey in the same area

between May and June 2017 to recontact and sample participants from previous sero-

logical surveys who had given consent to being recontacted. A sample of longitudinal

sera from the same individual is preferable to cross-sectional sampling because of the

variation between individual’s immune responses. By sampling repeatedly from the

same individuals we were able to control for this within-host variation as well as pre-

existing immunity. In addition, by successfully sampling a large proportion of these

original participants I could ensure that our sample remained nationally representa-

tive and would therefore provide better information on population immune response to

circulating arboviruses, compared to convenience sampling for instance.

This follow-up study, like the study performed in 2015 (Kama et al., 2019; Kucharski

et al., 2018), restricted the geographic coverage from the whole of Fiji to Central Di-

vision only. This restriction was made because the 2013-14 DENV-3 outbreak was

concentrated in Central Division. The reference laboratory for communicable diseases

in Fiji is based at Mataika House in Suva, Central Division, so collected samples from

Central Division could instantly be processed and stored. Central Division is the largest

Division in Fiji and includes a broad distribution of rurality – how urbanised an area is.

Sampling from Central Division could therefore potentially be generalised to the rest
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of Fiji. We planned to compare existing pre-epidemic serum collected from volunteers

in areas affected by arbovirus transmission with serum from another round of data

collection.

Between September and December 2013, serum samples were collected from 2,000

randomly-selected people across Fiji for a combined typhoid and leptospirosis study

by the Fijian Ministry of Health, LSHTM, the University of Queensland and World

Health Organisation (LSHTM ethics ref 6344, Fiji national research ethics review com-

mittee ref 2013 04) (Watson et al., 2017). 695 of the study participants were in Central

Division and 455 of these have available data for arboviruses. Between October and

November 2015 (LSHTM ethics ref 10207, Fiji national research ethics review com-

mittee ref 2015.111.C.D) (Kucharski et al., 2018), 390 participants were followed up

(56%). The 2017 study, which took place between May and June 2017, followed the

same protocol as the 2015 project and aimed to revisit up to 400 of the original 2013

participants.

2.1.2 Sample size and exclusion criteria

We aimed to follow up 350 participants as this was approximately 50% of the original

2013 study participants in 2017. We assumed that approximately 15% of these paired

samples would seroconvert between 2015 and 2017. Allowing for 5% seroreversion,

assuming no cross-reactivity and a probability of type-1 error of 0.05, with a sample

size of 350 we would be able to detect a 15% change in ZIKV seroprevalence between

2015 and 2017 with 88% power using McNemar’s test, and a 20% change with 98%

power.

Participants were eligible for inclusion if they were aged 12 months or older during the

first study in 2013. The youngest possible participants for inclusion would be at least

3 by May 2017. Exclusion criteria were clotting disorders, such as haemophilia and

other coagulopathies, concurrent medical anticoagulation such as through administra-

tion of warfarin or heparin, or the presence of severe underlying medical conditions

or significant acute illness. Non-medical exclusion criteria were needlephobia or other
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unwillingness to participate, inability to consent to treatment through lack of insight,

understanding, and for children, the refusal of, or inability to attain parental consent.

There were no additional exclusion criteria. These criteria were checked again in 2017

to confirm that the potential participant was still eligible.

2.1.3 Funding and ethical approval

The field work and serological analysis were funded by a grant from the Enhancing Re-

search Activity in Epidemic Situations (ERAES) programme, funded by the Wellcome

Trust. This grant covered all project costs, including consumables, staff, transport,

shipping and laboratory testing.

Ethical approval was obtained from the LSHTM ethics committee in February 2017

(ref: 12007) conditional on local ethics approval. I submitted our ethics application in

March 2017. I received a request for justification of our sampling method, storage of

samples in Fiji and testing of samples outside of Fiji. I sent my response on 23 May

2017 and received ethical approval for the study on 29 May 2017 (ref: 2017.20.MC).

2.1.4 Field team

Field team – recruitment

Working with Dr. Adam Kucharski, we developed a budget based on the experience

from the 2015 serological survey. We budgeted for recruitment of six operational field

workers for a period of twenty-eight working days. We established two working field

teams, each with a qualified phlebotomist and two field workers.

One field worker in each team would represent the team on field visits and was in

charge of coordinating field visits, administering questionnaires and reporting on data

and any problems in the field. Two such field workers were recruited through contacts

of the surveillance department at the Ministry of Health. Jessica Paka and Amele

52



Mathematical Modelling of Arbovirus Outbreak Dynamics in Fiji and the Wider Pacific

Ratevono were recruited to perform this role. Jessica and Amele both had a certificate in

public health at Fiji National University (FNU). Mosese Ligani and Jonetani Bola were

recruited as the second field workers for each team and were responsible for transport

and maintenance of the vehicles during field work. Both had good knowledge of Suva

and Central Division and were well recommended. Additionally, they were able to

represent the field team effectively at iTaukei villages where it is important that a male

performs rituals during a sevusevu ceremony to greet a village official. Finally, newly

qualified phlebotomists Warren Fong and Manisha Prakash were recruited and were

solely responsible for collecting venous blood samples and storage of samples until they

could be processed at Mataika House the same day. I also budgeted for 112 hours of

overtime laboratory work by an existing member of the laboratory staff at Mataika

House, Taina Naivalu.

Field team – training and risk management

The six members of the field teams came to Mataika House for a full day of training

and planning before the data collection began. I conducted training giving the team

a background to the study and setting out the aims and objectives of this 2017 study.

Formal training was then given in three key areas. Firstly, the plan to recontact partic-

ipants which would be led by Jessica and Amele. Secondly, the process and importance

of obtaining informed consent. Both Jessica and Amele were bilingual so could explain

the purpose of the study and the process of data collection in English or iTaukei accord-

ing to the preference of the participant. Finally, we covered the process of dealing with

adverse events – most likely a sharps injury in this study – and detailed the standard

operating procedures in the case of such events. The phlebotomists in the field teams

reviewed the equipment that had been provided and additional pharmaceutical supplies

were purchased to meet their requests.

I updated the standard operating procedures (SOPs) used in the previous serological

surveys in Fiji for this study in 2017. These SOPs covered sharps injuries management

and reporting, adverse event reporting, collection and transport of blood samples, ob-

taining informed consent, telephone follow up and processing and storage of blood
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samples.

Field team – equipment

The majority of fieldwork supplies were purchased in the UK and I brought them to

Fiji myself. We purchased enough phlebotomy and sample storage consumables for

400 samples. These included shielded needles, vacutainers, alcohol wipes and gel, first

aid kits and hygienic products for phlebotomists. I also carried pipettes, cryovials,

cryolabels, boxes and biohazard waste bags for the processing of samples at Mataika

House.

2.1.5 Field work

Field work – plan

Potential participants (or the parents of child participants) were first contacted by

telephone by a field worker, where phone details were provided. The field team explained

the details of the proposed study explained and answered any questions from potential

participants. Where a telephone number was not given or was no longer active, a visit

was made to the village or house to seek permission for further involvement in the

study. Address records, village governance systems, community nurses or community

health workers, local knowledge and previous GPS mapping were also used to help

locate participants.

Samples were collected in clusters in 2013. In Central Division these clusters all had

25 participants in the original 2013 study so in 2017, different clusters were targeted

each day depending on their location. The majority of clusters were located in Suva

so it was possible to visit several in a day. Others were very remote and took a whole

day to visit (Figure 2.1). As a result, I kept track of samples collected and the age

distribution of samples throughout the study and adapted where teams targeted their

data collection in the limited available time.
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Figure 2.1: Map of clusters of participants in serological surveys in Central Division, Fiji.

Blue circles show the centroid of a cluster of 25 participants originally recruited in 2013. The

red diamond shows the location of Suva, the capital and most populous city in Fiji

Once contact had been made, a blood sample was collected and questionnaire completed

at that time. In most cases however, permission was sought for a return visit at a

convenient time to complete the data collection.

Field work – permissions and consent

I initially met with the Divisional Medical Officer Central (DMOC), Dr. Dave Whippy,

to discuss plans for this study. I also presented the study plan to the National Task-

force for the Control of Outbreak Prone Diseases (NTCOPD) during my third week

in Fiji while setting-up the study. These meetings along with continued support from

established collaborators at the Ministry of Health ensured that we had administrative
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support to conduct the study. The DMOC also helpfully supplied me with regional and

local contacts across Central Division.

When visiting participants, essential information was provided in the form of written

information sheets, which were retained by the participants. Information was also

communicated by the field workers. Information sheets contained information on the

purpose of the study and answered potential questions from participants. The study

staff member who obtained the informed consent also signed the form.

For children age 12-17, study information was provided to the parent and the child.

Written consent was obtained from both the parent and the child. If either lacked the

capacity to give consent, or declined consent, then the child was not included in the

study.

For children aged 1 to 11, written consent was obtained from the parent only, though

information was provided to both. If the parent was unable to give consent, the child

was not included in the study. Appropriate age-based professional judgement was used

for children in this age range who indicated unwillingness or distress in participating in

the study.

Several of the clusters of participants were located in traditional iTaukei villages. In

these locations, local customs and traditions were respected and permission to enter

a village was sought from a village official. This was informal acceptance in some

locations but more typically it involved a sevusevu ceremony. A gift of dried yaqana

roots was presented and the purpose of the study was presented. Yaqana is pounded

into a powder and mixed with water to make a kava drink, a putative sedative drink

which is has strong social significance in Fijian culture. Once permission was obtained

from the village official, arrangements were made to come back to the village and sample

as many participants as possible. These close knit village social structures often meant

that many participants were located and could be sampled when we returned to the

village.
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Field work – implementation

We proceeded with the data collection as planned. The primary challenge was that

people rarely keep the same phone number in Fiji beyond 12 months so most of our

telephone records were obsolete. This increased the need to visit areas in person and

work with local nurses to locate last known addresses of participants.

Another challenge was that names were often passed down over generations in the same

family, especially down the male line, so cousins could often have the same name. This

meant that field workers asked extra questions of participants to ensure that we were

sampling the correct individual.

These serological studies were not originally designed to be longitudinal cohort stud-

ies. Permission from participants to be recontacted and followed up for further health

research was obtained in both 2013 and 2015, however several participants wanted to

learn about how their previous samples had helped inform health research. As a result,

I outlined previous successful research with the field teams so they could communicate

to participants that samples had been essential to the analysis of risk factors for typhoid

fever (Watson et al., 2017) and leptospirosis (Lau et al., 2016) transmission in Fiji and

quantifying dengue transmission during a large outbreak in 2013-14 (Kucharski et al.,

2018).

The majority of field visits were easily accessible and recruitment within Suva was

most efficiently done on foot. Other clusters of participants could only be reached on

rural roads so a four-wheeled drive vehicle was hired for the duration of the study.

More complicated still were clusters that could only be accessed by boat. Local boat

transport was hired to reach these sites as shown in Figure 2.2.

Recontacting participants was the largest challenge in this study and data collection

was routine once contact had been made. The study purpose was outlined and the

questionnaire completed before a blood sample was collected (details below). A short

questionnaire asked for details of fever and rash and healthcare-seeking behaviour during

the outbreak period.
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Figure 2.2: (Left) One of the study phlebotomists is led to a village field site in rural Central

Division. (Right) One study team travels by boat to reach a remote cluster of participants to

the East of Suva

Completed questionnaires and fieldwork operational management paperwork were kept

on paper in opaque folders or fold-over clipboards to protect confidentiality. Ques-

tionnaire data was entered using password-protected Microsoft Excel to a password

protected computer and encrypted before external transfer.

Data will be kept for at least 10 years in line with LSHTM policy. Paper records will

be kept at the national communicable disease surveillance centre at Mataika House.

Electronic records will be kept at LSHTM, the National Data Repository at Mataika

House. Mataika House records will be managed as per national surveillance data.

Access to the full data set at LSHTM will be limited to the research team. Data

are de-identified if shared with other researchers by removal of participant names and

demographic information.

Field work – sample collection

Approximately 2ml of blood was collected using conventional clinical practices. A ve-

nous blood sample was collected using a needle & holder system or luer needle system,

into the required vacutainer, as per manufacturer’s directions and WHO best practice

guidelines. All needles were disposed of in a designated ‘sharps’ bin. If the partici-

pant had veins that were difficult to palpate, or collapsed on the first fill attempt, the
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phlebotomist had the option to use a 10ml syringe attached to a 23G or 25G needle.

After collection, the vacutainer was inverted gently five times to mix the blood with

the tube content and left upright for 30 minutes to allow the clot to form.

Field work – sample management

Samples were transported to the laboratory at Mataika House, Suva, on the same day

as collection. The sample was centrifuged for 10 to 15 minutes at 1000 to 1300 Relative

Centrifugal Force (RCF) using a powered centrifuge. The samples were pipetted using

aseptic technique into screw top cryovials, pre-labelled with the participant ID and

participant initials according to the SOP. Two aliquots were pipetted in the following

quantities: 1ml to Institut Louis Malardé (ILM), Tahiti and the remainder (approxi-

mately 1ml) to remain at Mataika House, Fiji.

Aliquoted samples were stored in freezer boxes at Mataika House before half of the

samples were shipped to ILM in July 2017. The samples retained at Mataika House

are to be stored for at least 10 years as a public health research serum bank. The

information sheet informs participants that their samples and information may be used

for other health research as determined by the Ministry of Health, as per the original

survey.

2.1.6 Dissemination and follow up reporting

Preliminary results were shared with Dr. Mike Kama and his team at the Fiji Centre

for Disease Control. I travelled with Dr. Adam Kucharski to Institut Louis Malardé

to work directly with Dr. Van-Mai Cao-Lormeau, Dr. Maite Aubry and their team in

French Polynesia. We spent two weeks combining data from Fiji and data from French

Polynesia to analyse serological dynamics following ZIKV outbreaks which was later

published (Henderson et al., 2020) and is presented in chapter 4.
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2.2 Serological testing

Serological analysis of prior DENV and ZIKV infection

There are three serological tests for previous infection with arboviruses discussed in

this doctoral project: ELISA for detection of IgG antibodies, microsphere immunoassay

(MIA) for IgG antibodies and plaque reduction neutralisation assays (PRNTs) for the

detection of neutralising antibodies (NAbs) (Figure 2.3).

Indirect ELISA Microsphere
immunoassay Neutralisation assay

Enzyme-labeled
AB

Enzyme reaction

Antigen
Capture AB

Primary AB

Figure 2.3: Schematic of serological assays for detection of previous DENV and ZIKV infec-

tion used in this thesis. The ELISA test shows the process of generating a fluorescent signal if

the patient’s sera contains the primary antibody of interest. The higher the concentration of

primary antibody in a serum sample, the stronger the fluorescent signal. The microsphere im-

munoassay follows a similar process but for several antigens simultaneously with colour coded

fluorescent signals. The neutralisation assay uses a two-fold serial dilution of sera which

is then incubated with the antigen of interest. Serum samples with higher concentrations of

neutralising antibodies will prevent plaque formation at weaker dilutions

ELISAs can detect for anti-DENV or -ZIKV IgG antibodies. Most antibodies generated

following DENV or ZIKV infection are directed against the envelope (E) protein, which

is composed of three domains: EDI, EDII and EDIII. EDIII mediates virus attachment

to the cell membrane (Beck et al., 2015; Bhardwaj et al., 2001). For ELISAs, the EDIII

protein for DENV-specific antigens is bound to anti-DENV IgG antibodies in a patient’s

serum, blood on filter paper, or saliva. These antibodies are then bound to monoclonal

or polyclonal antibodies which are conjugated with an enzyme. This enzymic reaction

can transform a non-coloured substrate into coloured products that can be read using
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colorimetric readout (Aubry et al., 2015; Fernández and Vázquez, 1990). In general,

IgG ELISA lacks specificity within the flavivirus serocomplex group generating positive

reactions for closely related flaviviruses (Beck et al., 2015). This is especially true

following secondary infections as newly produced antibodies have stronger avidity than

antibodies produced months or years after infection (Midgley et al., 2011; Rothman,

2011). Theiler and Casals (1958), demonstrated that a secondary flavivirus infection

resulted in an increase in heterologous antibodies to other viruses of the same group.

Microsphere immunoassays (MIAs) use similar principles to the ELISA but are far more

efficient and increasingly popular (Anderson et al., 2011; Beck et al., 2015; Johnson

et al., 2005; van der Wal et al., 2012; Wong et al., 2003, 2004, 2017; Wynwood et al.,

2015). The need to detect a specific colour in assays has complicated the ability to

read multiple test results in a single sample volume. MIAs use technology based on

the covalent bonding of antigen or antibody to microspheres or beads (Mandy et al.,

2001). By colour-coding the beads into several spectrally distinct sects, each bead can

be coated with different recombinant antigens and it is possible to capture multiple

binding antibodies in a single sample. This tool retains the ease and rapidity of ELISA

with improved precision (Beck et al., 2015). The binding of secondary antibodies and

subsequent enzyme reactions follows, as before, except that the enzyme reactions are

spectrally distinct for each of the antigens included in the assay. This technology allows

for efficient testing of multiple viruses simultaneously as it only requires a small quantity

of sample and is very quick (<3 hours compared to 3–6 days for flavivirus neutralisation

tests) (Beck et al., 2015).

For this doctoral project, the detection of IgG antibodies against ZIKV, DENV and

CHIKV was performed using an MIA adapted from Beck et al. (2015). Sera were

diluted 1/400 and incubated with a mix of microspheres coupled with recombinant

antigens for CHIKV, DENV-1, -2, -3, -4, RRV and ZIKV. Recombinant antigens used

in both assays comprised domain III of the envelope glycoprotein of ZIKV, DENV-1,

DENV-2, DENV-3, or DENV-4 strains (respective GenBank accession no. KJ776791,

AF226686.1, FM986654, FJ44740.1, FM986672.1). Antigens were produced using the

Drosophila S2 expression system (Life Technologies, USA) as previously detailed (Aubry
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et al., 2015). The median fluorescence intensity was read on a MagPix instrument (Bio-

Rad Laboratories). The cut-off of the MIA was determined by colleagues at ILM using

ROC curve analysis for all the antigens with positive and negative control sera. The

positive control sera for DENV were collected within 3 months of an RT-PCR confirmed

infection, or confirmed positive for all DENV serotypes by neutralisation test. The

positive control sera for CHIKV and ZIKV were collected within one year of RT-PCR

confirmed infection. The sensitivity and specificity of the MIA assay were respectively

100% and 100% for CHIKV, DENV-1, and DENV-3, 89.5% and 97.1% for DENV-2,

96.9% and 100% for DENV-4, and 79.6% and 94.9% for ZIKV (Cao-Lormeau et al.,

2016).

The third serological test studied in this thesis is the virus neutralisation test (VNT).

These tests are often used as validation of results from quicker diagnostic methods such

as ELISA and MIA (Beck et al., 2015; Dauphin and Zientara, 2007). The purpose

of a VNT is to test for the ability of a patient’s sera to neutralise a virus. Plaque

reduction neutralisation assays (PRNTs) are a form of VNT (Roehrig et al., 2008;

Russell et al., 1967; Schmidt et al., 1976) and are the gold standard for determining

previous DENV exposure (Raafat et al., 2019). Briefly, cell cultures are inoculated with

serum that has been previously incubated with a specific antigen at serial dilutions (1:10,

1:20, ... , 1:1280). The cells are incubated for one week and if there are insufficient

neutralising antibodies in the diluted sera the viral particles will enter and kill the

cells creating a “plaque” of dead cells which can be counted (Salje et al., 2014). The

weakest dilution of sera that results in a 50% reduction in the number of plaques

compared to a serum free virus was used to determine the PRNT value of a sample.

The concentration of plaques can be measured by microscopic observation, fluorescent

antibodies (with an ELISA) or specific dyes that react with infected cells depending

on the virus (Schmidt et al., 1976). This alternative process means the assay is less

specific than ELISA based methods (Beck et al., 2015). However, VNTs do provide a

key measure of immunity to a virus given that they test the ability to neutralise the

virus (Salje et al., 2014), which also makes VNTs an excellent validation of previous

ELISA results. Katzelnick et al. (2016), found that neutralising antibody titres against

DENV correlated with protection from symptomatic infection in a cohort of Nicaraguan
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children. Venturi et al. (2006), used PRNTs to monitor protective immunity against

tick-borne encephalitis. PRNTs can also be used to analyse antibody dynamics in

longitudinal sera (Clapham et al., 2016). However, the variability in PRNT values is

poorly understood and potentially important. Salje et al. (2014), recommend repeated

testing of samples to obtain a measure of variability in the assay. The main limitation

with this approach, and therefore this test, is that it is very time consuming and

therefore expensive (Beck et al., 2015; Shan et al., 2017).

Detection of neutralising antibodies against ZIKV and each of the four DENV serotypes

was performed for all serum samples in 2017 and a subset of samples in 2015 and 2013.

Vero cells cultured on 96-well plates were inoculated with serial dilutions of each serum

previously incubated with titrated ZIKV [PF13-251013-18], DENV-1 [PF15-080108-

88], DENV-2 [PF96-300896-243/158], DENV-3 [PF90-300190-30/56] or DENV-4 [PF09-

290509-104]. One week later, infected cells were detected by ELISA using primary

mouse pan-flavivirus E mAb 4G2 which reacts with ZIKV E protein (Hamel et al.,

2015) and a secondary goat anti-mouse IgG HRP-conjugated antibody (Santa Cruz).

The neutralising antibody titre was defined as the inverse of the latest serum dilution

that inhibited the virus (Cao-Lormeau et al., 2016).

2.3 Mathematical modelling

A deterministic compartmental SEIR model is used throughout this thesis and is intro-

duced here. An SEIR model is an extension of the SIR model that includes a latency

period for those that are ‘exposed’ or ‘pre-infectious’ (E). The intrinsic incubation

period (IIP) is the duration between a human host being infected but before they are

infectious. A key distinction in model structure when using compartmental models

for vector-borne diseases is whether to explicitly model the mosquito population. A

vector-host model is a compartmental model with additional compartments to include

mosquito transmission dynamics explicitly, however this comes at the cost of estimating

more parameter values in the model. Pandey et al. (2013), compared the performance

of a vector-host model with a simple SIR model structure to estimate DENV incidence
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data from Thailand. The authors found that both model structures fit the data well,

but a comparison of model performance using Akaike’s information criterion strongly

selected the simpler SIR model. However, it may still be preferable to explicitly model

the vector population, especially if the model includes interventions that are directly

targeted at reducing mosquito density. In a systematic review of models of mosquito-

borne pathogens, Reiner et al. (2013), found that 62% of models in the review explicitly

modelled the mosquito population.

Two versions of an SEIR model are used in this thesis. In Chapter 5 an SEIR model

with only a human population is used and described in full. Here, I will introduce the

extension of this model which is used in Chapter 6 and includes a mosquito population.

This model allows for two latent periods: the intrinsic incubation periods (IIP) (αH)

and the extrinsic incubation period (EIP) is the equivalent period in mosquitoes (αM).

The length of the extrinsic and intrinsic incubation period differ (Chan and Johansson,

2012) and the EIP is dependent on seasonal climate factors (McLean et al., 1974; Watts

et al., 1987). The transmission rate from humans to mosquitoes, βM, is equal to cpM

where c is the mean rate of bites per female mosquito per unit of time and pM is the

human-to-mosquito transmission probability. The transmission rate from mosquitoes

to humans, βH = mcpH, where pM is the mosquito-to-human transmission probability

and m is the number of female mosquitoes per person (m) (Chitnis et al., 2006; Funk

et al., 2016; Manore et al., 2014; Pandey et al., 2013). By explicitly modelling these

rates separately we can allow for differences in transmission probability from human-

to-mosquito and vice versa. In this model, mosquitoes are born and die in the model at

a constant rate (δ) so the mosquito population size remains constant. These additional

complexities require additional parameters, which in turn require more data to estimate

accurately. This model is simplified by assuming that the total mosquito population

size is unknown so the proportion of susceptible (sm), exposed (em) and infectious (im)

mosquitoes are used in the model, hence the lower case characters in the compartments.

It is also assumed that mosquitoes do not recover from infection so there is no recovered

compartment for mosquitoes.

The basic reproduction number from this model is equal to the product of the average
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Figure 2.4: Schematic of a vector-borne disease model. The disease spread between a human

population (blue) and a vector population (orange). Humans move from being susceptible

(SH), to pre-infection (EH), to infectious (IH), then recover (RH). The vector population

follows the same process without a recovered compartment (sM , eM , iM )

number of mosquitoes infected by the typical infectious human and the average number

of humans infected by the typical infectious mosquito (Equation 2.1) (Diekmann et al.,

2010; Manore et al., 2014; Van Den Driessche and Watmough, 2002).

R0 =
βM
γ

αM
δ + αM

βH
δ

(2.1)

An important consideration in the modelling of DENV and ZIKV epidemics is the

effect of seasonal changes in climate on the spread of these viruses. It has been well

documented that temperature affects the vector biology of Aedes mosquitoes such that

the transmission of viruses such as DENV and ZIKV changes (Brady et al., 2014;

Lourenço and Recker, 2014; McLean et al., 1974; Mordecai et al., 2017; Watts et al.,

1987; Winokur et al., 2020). Mordecai et al. (2017), modelled the effect of temperature

on mechanisms driving Aedes aegypti and Aedes albopictus transmission of DENV,

ZIKV and CHIKV. The authors found non-linear relationships between temperature

and several factors, including the extrinsic incubation period, mosquito lifespan and

mosquito development rate. When combined, these effects show that transmission

occurs between 18-34°C with maximal transmission occurring in a range from 26-29°C

(Mordecai et al., 2017).
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Seasonal forcing is an important consideration in the modelling of a range of diseases

and a variety of methods exist to vary transmission rates over time (Altizer et al.,

2006; Bjørnstad, 2018; Keeling and Rohani, 2011). In Fiji and the wider Pacific the

temperature fluctuations over a year follow a sine wave-like pattern, therefore we can

capture the corresponding fluctuations in transmission by using a sine function. This

seasonal forcing function is characterised by a parameter for the amplitude (βamp) and

midpoint (βmid) (Equation 2.2). Again, the model has become more complicated and

a single transmission rate is not appropriate, but the model now better represents the

reality of arbovirus transmission.

β(t) = β0 (1 + βamp sin (2π (t+ βmid))) (2.2)

Several additional simplifying assumptions have been made in the model introduced

here as well as those assumptions previously outlined in all Ross-Macdonald models.

However, several of these assumptions are valid because of the advantages of the study

setting. Epidemics in Fiji are typically self-limiting after introduction from external

sources (Cao-Lormeau et al., 2014; Roth et al., 2014). This is likely because small,

centralised and geographically isolated populations are less likely to sustain endemic

transmission compared to a large populations (Black, 1966; Keeling and Grenfell, 1997).

Greater heterogeneities in age structure, spatial dispersion and movement patterns in

larger populations will decrease the probability of epidemic fade-out in the troughs

between epidemics (Grenfell et al., 1995; Keeling and Grenfell, 1997). Outbreaks of

DENV in the Pacific have also typically been monotypic – caused by one virus or

serotype of DENV – which simplifies models by removing the need to model several

serotypes simultaneously (Feng and Velasco-Hernández, 1997; Ferguson et al., 1999).

Island settings also make it easier to characterise the level of susceptibility at the start

of an outbreak (Camacho et al., 2011).

The time frame also has implications for the structure of the model. This model is

used for analysis of single outbreaks in this thesis and I do not include human births

since the mean human lifespan is much longer than the outbreak duration. I have
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also ignored disease induced mortality in the model because it is small (Arima and

Matsui, 2011; Burattini et al., 2008). I have assumed a simple homogeneously mixing

human population with no age structure for simplicity. Age structure can be included

by creating age-specific compartments in the model however this increases the number

of parameters and complexity in the model (Kucharski et al., 2018; Pongsumpun and

Tang, 2003; Supriatna et al., 2008). The small area and isolated nature of the Pacific

islands meant that I ignored international travel during outbreaks, though this is an

important consideration for studies over longer time periods (Bhatt et al., 2013; Messina

et al., 2019). Finally, I have removed human-to-human transmission from this model

because transmission of the arboviruses being studied is dominated by mosquito-borne

transmission, even though sexual transmission of ZIKV is possible (Althaus and Low,

2016; Foy et al., 2011; Yakob et al., 2016).

Fitting mathematical models to data

A model output for a given set of parameter values can be compared to observed data

to validate the model as well as provide estimates of unknown model parameters. We

can then use these estimates to answer hypotheses or the parameters themselves might

be of interest, for example estimating R0. There are many frameworks under which

models can be fit to data but this thesis will focus on Monte Carlo Markov Chains

(MCMC) under a Bayesian framework. MCMC is an efficient method to sample from a

posterior distribution when that distribution is unknown (Chan, 2013), which is often

the case with epidemiological parameters of infectious disease transmission.

I want to generate samples of the parameter set of my model (θ = {β, γ, ...}) from

the posterior distribution p(θ|data). Using Bayes theorem we know that this poste-

rior distribution is proportionate to the product of the likelihood of the data given θ

(p(data|θ)) and prior information on θ (p(θ)) (Equation 2.3). The posterior distribution

(p(θ|data)) is a probability distribution that represents our uncertainty about θ after

seeing the data. The posterior is not analytically tractable but the likelihood and prior

distributions can be obtained in closed form.
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p(θ|data) ∝ p(data|θ)p(θ) (2.3)

The likelihood can also be flexible enough to combine multiple data sets. This is

particularly valuable if data come from different sources and provide complimentary

information, for example surveillance data of the number of cases during an outbreak

and serological data of the proportion of the population infected (Birrell et al., 2011;

Goubar et al., 2008). We know something about the observation process for these data

and can define the probability of observing the data in data set 1 and data set 2 at

each data point i, given the parameter set θ:

log(p(data|θ)) =
∑
i

log(p(dataset1i|θ)) +
∑
i

log(p(dataset2i|θ)) (2.4)

Throughout this thesis surveillance data are assumed to follow a negative binomial dis-

tribution. The negative binomial (NB) distribution is a discrete probability distribution

for count data that relaxes the assumption in the Poisson distribution that the mean

and variance of the distribution are equal (Lloyd-Smith, 2007). The NB distribution

has been used in several other disease modelling studies including severe acute respi-

ratory syndrome (Lloyd-Smith et al., 2005), Middle East respiratory syndrome-related

coronavirus (Kucharski and Althaus, 2015) and DENV (Padmanabha et al., 2012). The

additional parameter in the NB distribution, the ‘dispersion’ parameter, gives greater

flexibility to captures the skew in the transmission distribution because of individual

variation in infectiousness. The NB distribution is preferable therefore to reflect both

under- or over-reporting of case data. When fitting models to seroprevalence data I

assumed that these data were binomially distributed as the result of n independent

experiments with a binary outcome with probability p =
x

n
where x is the positive

results from a sample size n.

The prior information facilitates formal inclusion of information from previous studies

in our estimation of the parameters. The prior, p(θ) quantifies our belief about the

parameter via a probability distribution before comparing the model output to data.

With the likelihood and prior defined, we can use Monte Carlo methods to draw de-
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pendent samples from a Markov chain with p(θ|data) as its equilibrium distribution.

There are several algorithms available to design a Markov chain with the required equi-

librium distribution but I used the popular Metropolis-Hastings algorithm throughout

this doctoral project (Hastings, 1970; Metropolis et al., 1953).

The Metropolis-Hastings algorithm uses MCMC to sample from the posterior distribu-

tion. An initial value of θ is chosen (θ0 = θt−1) as the ‘current’ sample. A ‘candidate’

sample, θ′, is chosen randomly from a proposal distribution g(θ′|θt−1), for example a

Gaussian distribution: θ′ ∼ N(θt−1, σ). The next sample in the chain (θt) is selected

as either the candidate θ′ or current value θt−1 with probability as defined in Equation

2.5. This process is repeated a large number of times to obtain a large sample of θ and

in the long-run this chain will converge towards the target distribution.

P (θt = θ′) = min

(
1,

P (θ′|data)/g(θ′|θt−1)

P (θt−1|data)/g(θt−1|θ′)

)
(2.5)

The parameter set from arbovirus transmission models can be large so this process can

be made more efficient by sampling all of θ from a multivariate Gaussian distribution.

The performance of this MCMC sampler can be improved by adapting the proposal

distribution. If the proposal distribution is too narrow the chain will be slow to reach

the target distribution as it takes longer to explore the parameter space. If the proposal

distribution is too broad then the chain will reject a lot of samples and ‘stick’ in the

same place for many steps. Roberts and Rosenthal (2009), showed that mixing of the

chain can be most efficient if the variance of the proposal distribution is tuned to a

target acceptance rate of 0.234.
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Abstract

Mosquito-borne diseases such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV)

carry a large public health burden globally. However, understanding of these viruses is

limited because a large proportion of infections are subclinical so are not detected by

surveillance systems. Longitudinal serological data can therefore help our understand-

ing of the quantity and timing of infections. In 2017 we collected 320 serum samples

from a population-representative sample of participants from Central Division, Fiji, to

combine with previous samples collected in 2013 and 2015. We found high levels of

seroprevalence for all four dengue serotypes in 2017 but low levels of seroprevalence for

ZIKV and CHIKV despite recent reports of transmission of these viruses. Analysis of

serological data between 2013 and 2017 revealed a diverse range of serological patterns.

CHIKV increased slightly 2015-17 in a predominantly näıve population. DENV-1 sero-

prevalence continued to increase despite an absence of recent case reports. DENV-3 and

DENV-2 seroprevalence increased rapidly following an outbreak and ZIKV increased

slightly then declined rapidly between 2013 and 2017. Given the challenge of accu-

rately recording infections with these closely related viruses, longitudinal serological

data reveals the diverse range of underlying outbreak dynamics.
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3.1 Background

3.1.1 Arbovirus burden globally

This chapter presents details and results of a serological study of arbovirus burden in Fiji

in 2017. Arboviruses such as dengue virus (DENV), Zika virus (ZIKV), chikungunya

virus (CHIKV) and Ross River virus (RRV) present a large global health burden. Our

understanding and ability to quantify how widely these viruses transmit, and interact

with each other, can be improved through the collection of serological data.

DENV and ZIKV are two flaviviruses primarily transmitted by the Aedes genus of

mosquito. The incidence of DENV transmission has increased 30-fold in the past 50

years (World Health Organisation, 2009). There is evidence that infection with one

of the four DENV serotypes provides lifelong immunity for that serotype (Halstead,

1974) and temporary heterogeneous immunity against all serotypes (Sabin, 1952). An

estimated 20-50% of cases are symptomatic (Bhatt et al., 2013; Endy et al., 2002; Funk

et al., 2016) so surveillance and modelling of the virus is complicated.

ZIKV is related to other flaviviruses such as DENV (Hayes, 2009; Priyamvada et al.,

2016). Symptoms of ZIKV infection include low grade fever, rash and conjunctivitis

(Heukelbach et al., 2016). ZIKV has additionally been associated with birth defects

and neurological complications such as microcephaly (Cauchemez et al., 2016; Schuler-

Faccini et al., 2016) and Guillain-Barré Syndrome (GBS) (Cao-Lormeau et al., 2016).

ZIKV spread throughout the Pacific between 2007 and 2016 (Craig et al., 2016; Musso

and Gubler, 2016) and the largest outbreak was in French Polynesia in 2013 (Cao-

Lormeau et al., 2014b). ZIKV spread to the Americas and was declared a Public

Health Emergency of International Concern in 2016 (World Health Organisation, 2016).

Between 2015 and 2017 there were fewer than one million confirmed or suspected ZIKV

cases reported (Pan American Health Organization, 2018) but over 100 million people

were estimated to have been infected (Moore et al., 2019).

CHIKV can also be transmitted by the Aedes genus of mosquito, primarily Aedes ae-
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gypti. Unlike ZIKV and DENV, which are flaviviruses, CHIKV is an alphavirus that

causes an acute febrile syndrome and severe, debilitating rheumatic disorders in hu-

mans that may persist for months (Wimalasiri-Yapa et al., 2019). Reports from the

Americas demonstrate that all three of these arboviruses – CHIKV, DENV and ZIKV

– are able to cocirculate in the same location (Carrillo-Hernández et al., 2018).

Finally, RRV is an arbovirus and alphavirus like CHIKV. Infection with RRV may

cause disease in humans, typically presenting as peripheral polyarthralgia or arthritis,

sometimes with fever and rash (Harley et al., 2001). There have been sporadic reports of

RRV outbreaks in Pacific islands countries and territories (PICTs) along with evidence

of silent circulation of RRV in French Polynesia (Aubry et al., 2015b).

There is an urgent need to better understand arbovirus transmission dynamics and

island populations present a unique opportunity to do this. Small populations are less

likely to sustain endemic transmission so the timing of outbreaks can be well defined

(Black, 1966; Keeling and Grenfell, 1997). Island populations are currently less likely

to sustain endemic transmission. However it is important to understand whether these

viruses will continue to pass through island populations as large but brief epidemics, or

exhibit longer-term ‘slow burn’ dynamics and become endemic as DENV has in areas of

Southeast Asia (Bhatt et al., 2013; Jentes et al., 2016; Salje et al., 2019; Shepard et al.,

2016). In particular it is not well understood how infection with multiple arboviruses

can affect the immune response to a novel but closely related virus in individuals and

in populations.

To better understand the burden of different diseases in the Pacific there are multiple

sources of data available. Surveillance data provides data on the number of people in-

fected with a particular disease and when they presented with symptoms. A syndromic

surveillance system is used in the Pacific to rapidly detect and assess infectious disease

outbreaks (Craig et al., 2016; Kool et al., 2012). This system is implemented across

twenty-one countries in the Pacific. Surveillance data provides important information

on the cause, timing and size of disease outbreaks. However, surveillance data for these

arboviruses are incomplete because some people will never show symptoms, some will

never report at a health centre especially if symptoms are mild and data can be entered
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incorrectly.

Individuals who are infected with these arboviruses develop specific and cross-reactive

neutralising antibodies to the virus that can be detected years later (Gubler, 2004;

Halstead et al., 1983; Imrie et al., 2007; Tesh et al., 1975). Serological surveys can

be used to detect antibodies against different viruses in serum samples and therefore

characterise the proportion of the population that has likely been exposed to the virus

at some point, regardless of whether the host experienced symptoms. These estimates

can be used to estimate the true burden of viral infections after an arbovirus outbreak

and to estimate the potential for that virus to emerge in a population (Aubry et al.,

2018; Rosen, 1958; Salje et al., 2018; Succo et al., 2018). Serological data can be used

to monitor risks to public health by estimating population immunity, for example with

ZIKV in Kenya where serum collected between 2007 and 2014 showed no evidence of

prior exposure to ZIKV (Kisuya et al., 2019). In the case of ZIKV the case definition

has been shown to miss the majority of ZIKV infections. Evidence from longitudinal

serological data collected in child participants in Managua, Nicaragua, showed evidence

that the majority of ZIKV infections would not be recorded as ZIKV cases under the

WHO case definition (Burger-Calderon et al., 2020). This is a demonstration of the

potential to study serological data to better understand the epidemiology of arboviruses.

3.1.2 Previous serological surveys of arboviruses in Fiji

This chapter presents results from a serological survey I led in 2017. This study built

on two recent serological studies conducted in Fiji and aimed to sample repeated mea-

surements from previous participants to estimate arbovirus burden and transmission

dynamics in Fiji. In 2013 Watson et al. (2017) collected 1,781 samples from across

the two main islands of Fiji with 695 of them collected from Central Division. They

characterised the epidemiology of typhoid fever and Lau et al. (2016), used the samples

to analyse risk factors for leptospirosis transmission in Fiji.

In 2013, the study team conducted a representative, clustered, cross-sectional seroepi-

demiological survey of the Fijian mainland. Population density sampling methods were

80



Mathematical Modelling of Arbovirus Outbreak Dynamics in Fiji and the Wider Pacific

used and in Central Division samples were collected in clusters of twenty-five partici-

pants. The age of the sampled participants ranged from 1 to 85 years old. To ensure

the sample was population representative nursing zones serving approximately 1,000

to 10,000 people were selected with probability proportional to population size (Ben-

nett et al., 1991). Random number generation using Ministry of Health administrative

records was used. Households were randomly selected and an occupant aged ≥1 year

was randomly selected. In Central Division, age-stratified sampling was used for repre-

sentativeness across age groups. This original study was not focused on arboviruses but

the serum samples collected were subsequently tested for evidence of previous infection

with chikungunya virus (CHIKV), dengue viruses serotypes 1, 2, 3, 4 (DENV-1, -2, -3,

-4), Ross River virus (RRV) and Zika virus (ZIKV).

A large DENV-3 outbreak began after this original serosurvey with suspected cases

reported between October 2013 and August 2014. To better understand the outbreak

dynamics a follow-up serological study was conducted in November 2015. 333 or the

same participants were resampled in 2015 to collect a data set of pre- and post-outbreak

serology. Between May and June 2017, I led a team of public health researchers and

phlebotomists to collect paired samples from the same individuals sampled in 2013, or

tripled samples if the individual was also sampled in 2015.

The two studies conducted in 2013 and 2015 add to a limited evidence base on post-

outbreak seroprevalence for DENV (Kucharski et al., 2018). There were two historic

seroprevalence estimates available but these studies estimated dramatically different

post-outbreak seroprevalence of 25% in 1971-3 following a DENV-2 epidemic (Maguire

et al., 1974) and 54% in 1989-90 after a predominantly DENV-1 epidemic (Water-

man et al., 1993) despite similar numbers of cases in both outbreaks, 3,413 and 3,686

respectively.

A modelling analysis of serum samples collected in 2015 showed evidence that herd

immunity alone was not sufficient for a DENV-3 outbreak to end. Kucharski et al.

(2018), found that seasonal variation and vector control measures contributed to the

end of the 2013-14 DENV-3 outbreak. This demonstrates the potential for serological

data to be used to infer transmission dynamics of a disease, as well as estimating the

81



Chapter 3. Seroepidemiological survey in Fiji

burden of the disease.

Another key contribution from these previous serological surveys was the identification

of low-level ZIKV circulation. ZIKV was first recorded in surveillance data in July

2015 (Kama et al., 2019) and 16 cases were confirmed in total between 2015 and 2017

in Central Division. An outbreak of ZIKV was never declared in Fiji. However, there

was evidence in serological data in 2015 that ZIKV transmission was widespread in Fiji

because an estimated 21.9% of the population were seropositive for ZIKV in 2015 and

phylogenetic analysis found evidence that ZIKV was introduced to Central Division in

late 2013 (Kama et al., 2019). Serological data can provide insight into outbreaks that

are not possible with surveillance data alone.

3.1.3 Expanding uses of serology

Serological data are a vital tool in epidemiological research. When only a single sample

is available for an individual, a threshold titre is often used as evidence of prior exposure

or protection or both. For example seroprevalence estimates of ZIKV in Fiji in 2015

(Kama et al., 2019) and RRV in French Polynesia between 2011 and 2013 (Aubry et al.,

2015b) both showed evidence of silent circulation of these viruses. Salje et al. (2016),

reconstructed sixty years of CHIKV transmission in the Philippines from serological

data. Age stratified serological data can be useful to analyse previous exposure in a

location and if we assume that low seroprevalence is equivalent to high susceptibility

in a certain age group, they can be used to detect potential future outbreaks (Aubry

et al., 2017).

To extend this, if multiple samples are available from the same individual it is possible

to gain more insight from serological data than simply estimating previous exposure.

When only one serum sample is available, a threshold titre is often used to define par-

ticipants as seropositive or seronegative. These threshold values can be used to infer

past exposure or protection or both (Hay et al., 2020). With multiple samples from

the same individuals, longitudinal serology can be used to estimate infection times or

attack rates, as has been done for influenza (Wu et al., 2014). These approaches have
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been used successfully with arboviruses. Salje et al. (2018), used longitudinal data in a

cohort from Thailand to detect sub-clinical infection of DENV. Longitudinal serology,

when paired with knowledge of circulating viruses over the same period, can also help us

better understand the complex cross-reactions of antibodies following flavivirus infec-

tions (Montoya et al., 2018). Generalised tools have been developed to enable analysis

of longitudinal serological data to better understand the immunology and epidemiology

of immune responses following infection (Hay et al., 2020).

3.1.4 2017 serological study outline

The primary outcome of the 2017 study was to characterise ZIKV transmission by esti-

mating seroprevalence and analysing changes in neutralising antibodies, but secondary

outcomes were prevalence and titres against other arboviruses. Before we collected

samples in 2017 we knew that there were 16 confirmed cases of locally acquired ZIKV

in Central Division, Fiji, between 2015 and 2016. We also had estimated that 21.9%

of the population were seropositive by multiplex immunoassay for ZIKV in samples

collected in November 2015 (Kama et al., 2019). The serological data indicated that

ZIKV was circulating before cases were detected by surveillance systems. Additionally,

at the time it appeared that major ZIKV epidemics on islands – such as in French

Polynesia in 2013-14 (Cao-Lormeau et al., 2014b) and Micronesia 2007 (Duffy et al.,

2009) – infected the majority of the population and hence there was sufficient herd im-

munity to prevent outbreaks in the near future (Kucharski et al., 2016). The situation

in Fiji however was less clear. Data from 2015 suggested that there had not been a large

ZIKV outbreak in Fiji yet. However, these results could have been consistent with a

large epidemic that was beginning when data were collected in 2015, or low level ZIKV

circulation over multiple years. We wanted to test more serum samples to characterise

ZIKV transmission over this period.

Representative pre- and post-epidemic paired data are extremely rare for ZIKV, so our

study presents a unique opportunity to investigate this pathogen – and its interaction

with related arboviruses – at multiple time points during an outbreak. Our study

83



Chapter 3. Seroepidemiological survey in Fiji

aimed to answer three main public health questions about ZIKV and other circulating

arboviruses. Firstly, what was the extent of ZIKV infection in Fiji and association

with other arboviruses? Paired serology would show what proportion of the population

are likely to have been infected between 2015-17 and how infection was distributed

spatially. Additionally, we could estimate risk factors for ZIKV infection and potential

association with serological evidence of other arbovirus infections, such as DENV.

Secondly, what proportion of ZIKV infections were reported and were they related

to other health complications? Sample collection would be accompanied by a health

questionnaire. This would make it possible to estimate the proportion of cases that

were asymptomatic, as well as health-seeking behaviour such as visiting their doctor or

healthcare centre.

Finally, what is the level of immunity in the population and what is the potential for

ZIKV to transition to an endemic state? Serological analysis would show how many

people remain susceptible to ZIKV infection and whether a threshold of herd immunity

has been reached. If the level of immunity in the population is too low to provide herd

immunity then it is possible that the effective reproduction number for ZIKV in Fiji

equals one and transmission could have become endemic.

3.2 Materials & Methods

Data collected in 2013 (Lau et al., 2016; Watson et al., 2017) and 2015 (Kama et al.,

2019) were combined with a third seroepidemiological survey in 2017 (Henderson et al.,

2020). The data collection in 2017 has been described in detail in Chapter 2. Briefly,

participants from previous serological surveys in Central Division were recruited for a

third round of data collection between May and July 2017.

Serum samples were tested at Institut Louis Malardé (ILM) in French Polynesia. Test-

ing has previously been described in several publications (Aubry et al., 2015a, 2017;

Beck et al., 2015; Cao-Lormeau et al., 2016; Henderson et al., 2020; Kama et al., 2019;

Kucharski et al., 2018; Watson et al., 2017) and is described in Section 2.2. Briefly, all
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320 serum samples collected in 2017 were tested for detection of immunoglobin class G

(IgG) antibodies against CHIKV, DENV, RRV, and ZIKV using a recombinant-antigen

based microsphere immunoassay (MIA).

3.2.1 Data analysis and serological modelling

I combined all data available from the three serological surveys in 2013, 2015 and 2017.

In total, over the three studies we collected 12,850 measurements of antibodies against

ZIKV, the four DENV serotypes, CHIKV and RRV. Seroprevalence was calculated using

prop.test in R. Tests for association for categorical variables were initially performed

with a χ2 test.

Explanatory variables with evidence of an association with the response variable from

the χ2 test were identified as potential risk factors. I wanted to analyse risk factors for

arbovirus seroprevalence in 2017. A multivariable model was developed from univari-

able risk factors with p values of less than 0.25, after-regrouping sparse cells for numer-

ical stability, using a backward step-wise approach, removing variables with p > 0.1

from a likelihood-ratio test (package lmtest (Hothorn et al., 2019)), with deletion of

observations with missing data.

To analyse non-linear relationships between seroprevalence (as measured by MIA) and

age (as measured by year of birth) I fit a Generalised Additive Model (GAM) (Hastie

and Tibshirani, 1986; Wood, 2017). I defined an explanatory variable X as the year of

birth and I defined serostatus as measured by MIA as the dependent variable Y in the

model, as follows:

g (E (Y )) = α + s1 (X) (3.1)

Where E(Y ) denotes the expected value, and g(Y ) denotes the link function, in this

case the logit function because of the binary outcome. The term s1(X) defines a

non-parametric function to model the non-linear relationship between X and Y and α

is the intercept value when X = 0. I used the mgcv package in R so smooth functions
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were represented using penalised regression splines (Wood, 2019).

3.3 Results

3.3.1 Study population

We collected 320 blood samples in 2017 from individuals in Central Division, Fiji, that

had been previously sampled in 2013. Our sample size decreased between 2013 and

2017, from 455 samples collected and tested in 2013, to 333 in 2015 and 320 in 2017

(Table 3.1). This presented us with a large data set to analyse arbovirus dynamics in

Fiji. To ensure comparability across the three data sets we wanted to validate that

our samples were similarly representative of the general population as they had been

in 2013.

We were particularly interested in the age distribution of the samples between surveys.

Age is strongly related to exposure to arboviruses and we expect seroprevalence to in-

crease with age. We therefore wanted each sample to be representative of the national

population. The sampling methods used in 2013 ensured that the collected sample

closely reflected the age distribution from census data (Figure 3.1). The samples col-

lected in 2015 and 2017 both included a higher proportion of children between 5 and 20

than are in the general population, suggesting that this age group was easier to recon-

tact and sample in follow up surveys. The sample collected in 2017 had a similar age

distribution to the 2013 study and 2007 census data for adults older than 20 (Figure

3.1).

As well as age, we wanted to collect a sample that was comparable across other de-

mographic variables. Table 3.1 shows a breakdown of the study population in each

sampling year by key demographic variables and Figure 3.2 shows these data graphi-

cally for four key variables: sex, rurality, ethnicity and occupation. Broadly, the three

samples collected in 2013, 2015 and 2017 have similar distributions for age, sex, house-

hold size, ethnicity. In 2017 43.8% of the sample were aged under 20, 57% were female
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Figure 3.1: Age distribution of Fijian population from 2007 census data compared to the age

distribution of serological surveys conducted in Central Division in 2013, 2015 and 2017

and 43% male, 42% of households had 4 or fewer occupants and 83.4% of the sample

were iTaukei ethnicity.

The main occupation of participants in the 2017 sample was similar to the previous

surveys in Fiji, although the proportion of our 2017 sample that were in out-of-home

work environments (neither at school or full time home keepers) did decrease (Figure

3.2D). 50% of study participants buried their garbage while 44% had it collected and

approximately one third (31%) of participants travelled regularly, 4-6 days per week

(Table 3.1).

87



Chapter 3. Seroepidemiological survey in Fiji

Table 3.1: Characteristics of the serological surveys conducted in Central Division, Fiji, in

2013, 2015 and 2017

Variable Level 2013 2015 2017

Total 455 [100%] 333 [100%] 320 [100%]

Age (in 2017) (5,10] 56 [12.3%] 32 [9.61%] 37 [11.6%]

(10,15] 42 [9.23%] 41 [12.3%] 42 [13.1%]

(15,20] 47 [10.3%] 38 [11.4%] 34 [10.6%]

(20,40] 145 [31.9%] 99 [29.7%] 105 [32.8%]

(40,60] 108 [23.7%] 81 [24.3%] 63 [19.7%]

(60+) 57 [12.5%] 42 [12.6%] 39 [12.2%]

Sex Male 207 [45.5%] 143 [42.9%] 139 [43.4%]

Female 248 [54.5%] 190 [57.1%] 181 [56.6%]

Rurality Peri-Urban 94 [20.7%] 77 [23.1%] 62 [19.4%]

Rural 157 [34.5%] 113 [33.9%] 135 [42.2%]

Urban 204 [44.8%] 143 [42.9%] 123 [38.4%]

Household (0,4] 227 [49.9%] 154 [46.2%] 135 [42.2%]

(4,8] 205 [45.1%] 159 [47.7%] 157 [49.1%]

(8,12] 22 [4.84%] 18 [5.41%] 21 [6.56%]

(12,16] 1 [0.22%] . .

Missing . 2 [0.601%] 7 [2.19%]

Ethnicity Indo-Fijian 67 [14.7%] 56 [16.8%] 49 [15.3%]

iTaukei 378 [83.1%] 269 [80.8%] 267 [83.4%]

Other 10 [2.2%] 8 [2.4%] 4 [1.25%]

Job Farming 34 [7.47%] 21 [6.31%] 28 [8.75%]

Housewife / husband 126 [27.7%] 95 [28.5%] 94 [29.4%]

Cont.
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Table 3.1: Characteristics of the serological surveys conducted in Central Division, Fiji, in

2013, 2015 and 2017

Variable Level 2013 2015 2017

Other 20 [4.4%] 14 [4.2%] 14 [4.38%]

Pre-School Child 50 [11%] 27 [8.11%] 32 [10%]

Office Worker 17 [3.74%] 12 [3.6%] 9 [2.81%]

Student 121 [26.6%] 102 [30.6%] 95 [29.7%]

Retired 28 [6.15%] 18 [5.41%] 13 [4.06%]

Skilled Manual Worker 35 [7.69%] 24 [7.21%] 21 [6.56%]

Unemployed 22 [4.84%] 19 [5.71%] 13 [4.06%]

Missing 2 [0.44%] 1 [0.3%] 1 [0.312%]

Home material Concrete / Brick 209 [45.9%] 143 [42.9%] 105 [32.8%]

Corrugated Iron 134 [29.5%] 105 [31.5%] 121 [37.8%]

Other 5 [1.1%] 5 [1.5%] 6 [1.88%]

Wood 105 [23.1%] 80 [24%] 88 [27.5%]

Missing 2 [0.44%] . .

Garbage Buried 197 [43.3%] 141 [42.3%] 161 [50.3%]

Collected 236 [51.9%] 169 [50.8%] 142 [44.4%]

Other 22 [4.84%] 23 [6.91%] 17 [5.31%]

Travel Every Day 5 [1.1%] 5 [1.5%] 7 [2.19%]

4 To 6 Days Per Week 147 [32.3%] 110 [33%] 100 [31.2%]

1 To 3 Days Per Week 78 [17.1%] 56 [16.8%] 54 [16.9%]

Once A Month Or More 141 [31%] 96 [28.8%] 96 [30%]

Less Than Once A Month 72 [15.8%] 55 [16.5%] 52 [16.2%]

Never 9 [1.98%] 9 [2.7%] 8 [2.5%]

Missing 3 [0.659%] 2 [0.601%] 3 [0.938%]
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Figure 3.2: Characteristics of serological survey samples in Central Division, Fiji. A, sex

distribution in samples between 2013 and 2017. B, rurality. C, ethnicity. D, occupation

The most notable deviation from previous sampling proportions in our 2017 sample

was with respect to rurality. The proportion of the 2017 sample from rural locations

increased to 42% in 2017 from previous levels in 2015 (34%) and 2013 (35%). Follow

up success rates were higher in rural areas compared to urban areas in 2017. 157 of the

original participants from 2013 lived in rural areas and in 2017 we resampled 86% (135)

of these participants. In peri-urban and urban areas, that percentage decreased to 66%

and 60.3% respectively. Figure 3.3 shows the follow-up success in rural areas compared

to the capital Suva. We typically resampled a higher proportion of participants in

clusters away from the capital and in more remote areas.

We also wanted to monitor the reason for loss to follow up in our study. We attempted

to contact all participants from the 2013 survey in each subsequent survey and did

not replace participants in our follow-up survey if they were lost to follow up. We

collected data on the reason a participant from 2013 was not sampled in follow-up

studies in 2015 and 2017. In 2015, 144 people were not resampled and the main reason

for failing to sample an individual was that they had moved home or could not be found.

By 2017, it was increasingly hard to find participants and 215 participants were not
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Figure 3.3: Follow up success rate in 2017 across Central Division. Dots are located at the

centroid of a cluster of 25 participants originally sampled in 2013. The opaqueness of the

dots indicated the percentage of that cluster successfully resampled in 2017. Darker indicates

a higher percentage were successfully resampled. All clusters in Suva (red diamond) have been

grouped for simplicity. We typically resampled a higher percentage (darker blue) of participants

in rural clusters away from the capital

resampled. It was also more difficult to ascertain whether the participant had moved

home (Figure 3.4). Loss to follow-up in our cohort due to death was small. However,

a larger proportion of potential participants refused to participate in the 2017 study

than had done in 2015.

3.3.2 Flavivirus seroprevalence in Fiji in 2017

We estimated that the most prevalent virus in Fiji was DENV-1 with an estimated 74%

(95% CI: 68.9-78.8%) of the population seropositive. While there have been no reported

outbreaks of DENV-1 in Fiji between 2013 and 2017, this high seroprevalence could

be a result of the large DENV-1 epidemic between 2001 and 2004 (Singh et al., 2005).

Seroprevalence against other DENV serotypes was below 50% for each. Only 25% (95%

CI: 21-30.8%) were seropositive against DENV-2, despite widespread transmission in
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Figure 3.4: Reasons for loss to follow up in serological surveys in 2015 and 2017

early 2017. Seroprevalence against DENV-3 and DENV-4 was estimated to be 45%

(DENV-3 95% CI: 39.8-50.9%) (DENV-4 95% CI: 39.5-50.6%), however there were no

reports of DENV-4 outbreaks in Fiji between 2013 and 2017 but there was a large

DENV-3 outbreak in 2013-14 (Cao-Lormeau et al., 2014a). Seroprevalence against

CHIKV (12.5%; 95% CI: 9.4-17%) and ZIKV (12.5%; 95% CI: 9.1-16.6%) was low

in 2017 and seroprevalence against Ross River virus was 39% (95% CI: 33.7-44.6%),

consistent with endemic circulation of RRV in Fiji (Aubry et al., 2019a) (Table 3.2).

I investigated the relationship between demographic data collected from questionnaires

in 2013 and arbovirus seroprevalence in 2017. I simplified analysis by focusing on

seropositivity to at least one DENV serotype instead of trying to analyse trends in

seroprevalence across all arboviruses that were tested. Overall, 289 of the 320 partici-

pants (90.3%; 95% CI: 86.5-93.3%) were seropositive to at least one DENV serotype in

2017. I used a χ2 test for uniform relationship between categorical variables (age, sex,

rurality etc.) and seroprevalence to at least one DENV serotype in 2017. I found strong

evidence that seroprevalence to at least one DENV serotype was different across groups

of age, rurality, occupation and garbage removal method (Table 3.2). The relative con-

tribution of these factors to risk of arbovirus infection is not known from these data

and there is likely to be strong confounding between groups. For example, younger

participants were more likely to be at school, and garbage removal method depends
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on the urbanisation of the area. Seroprevalence to at least one DENV serotype in-

creased with age from 51.4% (95% CI: 34.4-68.1%) in those between 5 and 10 years

old, to 97.4% (95% CI: 86.5-100%) in those over 60. Participants in rural areas had

lower seroprevalence for at least one DENV serotype compared to those living in ur-

ban or peri-urban settings. There was weak evidence that seroprevalence to at least

one DENV serotype varied by ethnicity with Indo-Fijian seroprevalence to at least one

DENV serotype higher than for iTaukei Fijians (p = 0.1). Seroprevalence to at least

one DENV serotype varied by job, but this is likely confounded by age since it was

highest for retired participants (100%; 95% CI: 75.3-100%) and lowest for students

(69.5%; 95% CI: 59.2-78.5%) and pre-school children (50%; 95% CI: 31.9-68.1%). Fi-

nally, seroprevalence varied by garbage collection method and was highest for those

that had garbage collected (90.1%; 95% CI: 84-94.5%) versus buried (70.2%; 95% CI:

62.5-77.1%). Garbage collection points are typically open areas at the end of residen-

tial streets and could plausibly lead to increased mosquito breeding grounds making

arbovirus infection more likely. There was no evidence of a difference in seroprevalence

to at least one DENV serotype by sex, home material or household size (Table 3.2 &

Figure 3.5).
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Table 3.2: Arbovirus seroprevalence in Fiji in 2017. Number seropositive defined by MIA [percentage of sample]. CHIKV, chikungunya virus.

DENV-1,-2,-3,-4, dengue virus serotypes 1,2,3,4. ZIKV, Zika virus. RRV, Ross River Virus. ≥ 1 DENV, seropositive to at least one DENV

serotype). p, χ2 test comparing seroprevalence to at least one DENV serotype across all levels of that variable (the null hypothesis is that

seroprevalence is the same across all levels in that variable. Smaller p values therefore present stronger evidence against this null hypothesis

and evidence that there is an association between that variable and seroprevalence to at least one DENV serotype)

Variable Level N CHIKV DENV1 DENV2 DENV3 DENV4 RRV ZIKV ≥ 1 DENV p

Total Total 320 41 [12.8] 237 [74.1] 82 [25.6] 145 [45.3] 144 [45] 125 [39.1] 40 [12.5] 289 [90.3] -

Age (5,10] 37 1 [2.7] 14 [37.8] 9 [24.3] 15 [40.5] 9 [24.3] 10 [27] 5 [13.5] 19 [51.4]

***

(10,15] 42 10 [23.8] 22 [52.4] 10 [23.8] 14 [33.3] 17 [40.5] 10 [23.8] 10 [23.8] 27 [64.3]

(15,20] 34 6 [17.6] 24 [70.6] 5 [14.7] 15 [44.1] 17 [50] 10 [29.4] 9 [26.5] 26 [76.5]

(20,40] 105 17 [16.2] 83 [79] 24 [22.9] 48 [45.7] 53 [50.5] 38 [36.2] 4 [3.81] 87 [82.9]

(40,60] 63 4 [6.35] 56 [88.9] 20 [31.7] 32 [50.8] 29 [46] 36 [57.1] 5 [7.94] 59 [93.7]

(60+) 39 3 [7.69] 38 [97.4] 14 [35.9] 21 [53.8] 19 [48.7] 21 [53.8] 7 [17.9] 38 [97.4]

Sex Male 139 21 [15.1] 101 [72.7] 35 [25.2] 65 [46.8] 60 [43.2] 54 [38.8] 18 [12.9] 107 [77]
0.3

Female 181 20 [11] 136 [75.1] 47 [26] 80 [44.2] 84 [46.4] 71 [39.2] 22 [12.2] 149 [82.3]

Cont
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Table 3.2: Arbovirus seroprevalence in Fiji in 2017. Number seropositive defined by MIA [percentage of sample]. CHIKV, chikungunya virus.

DENV-1,-2,-3,-4, dengue virus serotypes 1,2,3,4. ZIKV, Zika virus. RRV, Ross River Virus. ≥ 1 DENV, seropositive to at least one DENV

serotype). p, χ2 test comparing seroprevalence to at least one DENV serotype across all levels of that variable (the null hypothesis is that

seroprevalence is the same across all levels in that variable. Smaller p values therefore present stronger evidence against this null hypothesis

and evidence that there is an association between that variable and seroprevalence to at least one DENV serotype)

Variable Level N CHIKV DENV1 DENV2 DENV3 DENV4 RRV ZIKV ≥ 1 DENV p

Rurality Peri-Urban 62 12 [19.4] 52 [83.9] 20 [32.3] 38 [61.3] 39 [62.9] 28 [45.2] 11 [17.7] 53 [85.5]

***Rural 135 1 [0.741] 81 [60] 23 [17] 38 [28.1] 39 [28.9] 65 [48.1] 12 [8.89] 89 [65.9]

Urban 123 28 [22.8] 104 [84.6] 39 [31.7] 69 [56.1] 66 [53.7] 32 [26] 17 [13.8] 114 [92.7]

Household (0,4] 135 14 [10.4] 106 [78.5] 36 [26.7] 63 [46.7] 61 [45.2] 57 [42.2] 23 [17] 112 [83]

0.46
(4,8] 157 25 [15.9] 111 [70.7] 39 [24.8] 70 [44.6] 71 [45.2] 57 [36.3] 16 [10.2] 120 [76.4]

(8,12] 21 2 [9.52] 15 [71.4] 6 [28.6] 8 [38.1] 9 [42.9] 8 [38.1] 0 [0] 18 [85.7]

Missing 7 0 [0] 5 [71.4] 1 [14.3] 4 [57.1] 3 [42.9] 3 [42.9] 1 [14.3] 6 [85.7]

Ethnicity Indo-Fijian 49 15 [30.6] 42 [85.7] 15 [30.6] 27 [55.1] 27 [55.1] 10 [20.4] 7 [14.3] 44 [89.8]

0.1iTaukei 267 26 [9.74] 191 [71.5] 66 [24.7] 115 [43.1] 114 [42.7] 114 [42.7] 32 [12] 208 [77.9]

Other 4 0 [0] 4 [100] 1 [25] 3 [75] 3 [75] 1 [25] 1 [25] 4 [100]

Cont
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Table 3.2: Arbovirus seroprevalence in Fiji in 2017. Number seropositive defined by MIA [percentage of sample]. CHIKV, chikungunya virus.

DENV-1,-2,-3,-4, dengue virus serotypes 1,2,3,4. ZIKV, Zika virus. RRV, Ross River Virus. ≥ 1 DENV, seropositive to at least one DENV

serotype). p, χ2 test comparing seroprevalence to at least one DENV serotype across all levels of that variable (the null hypothesis is that

seroprevalence is the same across all levels in that variable. Smaller p values therefore present stronger evidence against this null hypothesis

and evidence that there is an association between that variable and seroprevalence to at least one DENV serotype)

Variable Level N CHIKV DENV1 DENV2 DENV3 DENV4 RRV ZIKV ≥ 1 DENV p

Job Farming 28 2 [7.14] 26 [92.9] 6 [21.4] 12 [42.9] 13 [46.4] 19 [67.9] 2 [7.14] 26 [92.9]

***

Housewife /

husband

94 9 [9.57] 81 [86.2] 29 [30.9] 44 [46.8] 50 [53.2] 49 [52.1] 6 [6.38] 84 [89.4]

Other 14 4 [28.6] 13 [92.9] 3 [21.4] 7 [50] 6 [42.9] 3 [21.4] 3 [21.4] 13 [92.9]

Pre-School

Child

32 1 [3.12] 12 [37.5] 8 [25] 12 [37.5] 8 [25] 7 [21.9] 5 [15.6] 16 [50]

Office Worker 9 0 [0] 6 [66.7] 2 [22.2] 5 [55.6] 5 [55.6] 2 [22.2] 0 [0] 8 [88.9]

Student 95 18 [18.9] 56 [58.9] 16 [16.8] 37 [38.9] 38 [40] 24 [25.3] 19 [20] 66 [69.5]

Retired 13 0 [0] 13 [100] 6 [46.2] 8 [61.5] 7 [53.8] 6 [46.2] 4 [30.8] 13 [100]

Skilled Manual

Worker

21 3 [14.3] 17 [81] 8 [38.1] 13 [61.9] 10 [47.6] 9 [42.9] 1 [4.76] 17 [81]

Unemployed 13 4 [30.8] 12 [92.3] 4 [30.8] 7 [53.8] 7 [53.8] 5 [38.5] 0 [0] 12 [92.3]

Missing 1 0 [0] 1 [100] 0 [0] 0 [0] 0 [0] 1 [100] 0 [0] 1 [100]

Cont
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Table 3.2: Arbovirus seroprevalence in Fiji in 2017. Number seropositive defined by MIA [percentage of sample]. CHIKV, chikungunya virus.

DENV-1,-2,-3,-4, dengue virus serotypes 1,2,3,4. ZIKV, Zika virus. RRV, Ross River Virus. ≥ 1 DENV, seropositive to at least one DENV

serotype). p, χ2 test comparing seroprevalence to at least one DENV serotype across all levels of that variable (the null hypothesis is that

seroprevalence is the same across all levels in that variable. Smaller p values therefore present stronger evidence against this null hypothesis

and evidence that there is an association between that variable and seroprevalence to at least one DENV serotype)

Variable Level N CHIKV DENV1 DENV2 DENV3 DENV4 RRV ZIKV ≥ 1 DENV p

Home Concrete /

Brick

105 16 [15.2] 82 [78.1] 32 [30.5] 57 [54.3] 57 [54.3] 39 [37.1] 11 [10.5] 89 [84.8]

0.41
Corrugated

Iron

121 14 [11.6] 88 [72.7] 26 [21.5] 44 [36.4] 43 [35.5] 52 [43] 12 [9.92] 93 [76.9]

Other 6 0 [0] 3 [50] 2 [33.3] 1 [16.7] 1 [16.7] 2 [33.3] 1 [16.7] 4 [66.7]

Wood 88 11 [12.5] 64 [72.7] 22 [25] 43 [48.9] 43 [48.9] 32 [36.4] 16 [18.2] 70 [79.5]

Garbage Buried 161 4 [2.48] 105 [65.2] 34 [21.1] 54 [33.5] 56 [34.8] 82 [50.9] 18 [11.2] 113 [70.2]

***Collected 142 36 [25.4] 118 [83.1] 44 [31] 82 [57.7] 80 [56.3] 38 [26.8] 21 [14.8] 128 [90.1] ***

Other 17 1 [5.88] 14 [82.4] 4 [23.5] 9 [52.9] 8 [47.1] 5 [29.4] 1 [5.88] 15 [88.2]

p = χ2 test

*** p < 0.001

** p < 0.01
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Figure 3.5: Arbovirus seroprevalence in 2017 in Central Division, Fiji, by demographic and environmental factors. Points, estimated sero-

prevalence. Lines, 95% confidence intervals.
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We conducted a short questionnaire when sampling participants in 2017 and asked

about health seeking behaviour and recent ZIKV-like symptoms. Participants were

asked if they experienced a fever or a rash in the previous two years and whether they

visited a doctor because of the symptom. One aim of our study was to test whether

ZIKV-like symptoms and health seeking behaviour were related with ZIKV infection.

We had 202 samples in 2017 that were paired with a 2015 sample. 40 of these 202

sampled participants reported no fever in the previous two years but only 2 reported

a rash in the past two years. There were too few seroconversions between 2015 and

2017 – only 7 out of the 202 paired samples seroconverted from negative to positive

– to investigate the association between health-seeking behaviour and risk of ZIKV

infection.

I wanted to assess whether certain demographic variables increased the probability of

and individual being seropositive. I focused on the most prevalent virus in our study,

DENV-1. I fit univariable logistic regressions and rejected variables with p > 0.5 from

an F -test. I built the final model in a backwards step-wise approach and removed

variables with p < 0.1 from a likelihood ratio test with that variable removed. The

initial full variable set included age group, the number of DENV positive serotypes in

2013, rurality, garbage collection method, home material, ethnicity, primary occupation,

household size and sex. The final model is shown in Table 3.3 and shows strong evidence

in the adjusted model that seroprevalence increases in smaller households, more urban

areas and with age, fully adjusted for each other. Compared to participants younger

than 20, those aged between 20 and 40 had 3.9 times higher odds of seropositivity (95%

CI: 2-8) and those aged 40 and above had 12 times higher odds of seropositivity (95%

CI: 5.2-35). Age had the largest effect on the odds of DENV-1 seropositivity in 2017,

but even after adjusting for age there was strong evidence that those in rural areas

had lower odds of seropositivity. Compared to residents of urban and peri-urban areas,

those in rural areas had 78% lower odds of DENV-1 seropositivity (95% CI: 61-88%),

adjusted for age and households size. There was weak evidence that larger households

(4 or more household members) had 0.63 (95% CI: 0.34-1.1) times the odds of DENV-

1 seropositivity compared to smaller households, adjusted for age and rurality (Table

3.3).
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Table 3.3: Risk factors for DENV-1 seroprevalence in 2017. Odds ratios from a simple

logistic regression and fully adjusted model are shown

Variable Level OR (95% CI) Adjusted OR (95% CI) p

Age (0,20] Ref Ref NA

(20,40] 3.4 (1.9-6.5) 3.9 (2-8) ***

(40+) 6.6 (2.9-18) 12 (5.2-35) ***

Rurality Urban/peri-urban Ref Ref NA

Rural 0.28 (0.16-0.47) 0.22 (0.12-0.39) ***

Household (0-4] Ref Ref NA

(4+) 0.66 (0.39-1.1) 0.63 (0.34-1.1) 0.13

*** p < 0.0001

3.3.3 Sensitivity of cutoff values for arbovirus seroprevalence

in Fiji in 2017

The seroprevalence results presented so far are estimated by converting continuous

measurements of relative fluorescence units (RFU) into positive or negative values ac-

cording to a cutoff value. This value was calculated by laboratory colleagues using

an ROC analysis. To assess the sensitivity of our findings in relation to the choice of

cutoff I analysed the distribution of MIA values in the 2017 serosurvey and recalculated

seroprevalence according to various cutoff values.

Figure 3.6 shows the distribution of RFU values for each virus included in the MIA in

2017 separated by serostatus. Values above the vertical dashed line were classified as

positive and evidence of a previous infection. These data are also presented as ‘S’ shaped

curves by ranking the participants by their MIA value for each virus. A robust assay

would clearly define values as either positive or negative. Ideally, the histograms would

show a bimodal distribution and there would be few values close to the cutoff value. Our

assay was robust when classifying values as positive or negative for CHIKV as there is

very little data near the cutoff value. This is less true for DENV-2 and DENV-4 where

the cutoff value cuts the data in an area of high density on the histogram. This means
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Figure 3.6: Arbovirus MIA RFU values in 2017. Left-hand column shows histograms of

the MIA RFU values for each virus with the cutoff value for seropositivity. Red values were

classified as positive. The right-hand column shows the same data ranked by value. Cutoff

value is shown as a dotted vertical line and red values were classified as seropositive
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that changing the cutoff value slightly would reclassify a lot of observations as positive

or negative and change our estimated seroprevalence.
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Figure 3.7: Arbovirus seroprevalence (2017) by variable cutoff values. The centre dot and

solid line shows the estimate for 2017 seroprevalence and 95% CI. Crosses and dot-dash

vertical lines show seroprevalence estimates if the cutoff was ± 10%. Triangles and dash

lines show seroprevalence estimates if the cutoff was ± 25%.

To test the sensitivity of our estimates of seroprevalence to the choice of cutoff value

I recalculated seroprevalence if the cutoff in 2017 was ± 10% or ± 25%. As seen in

Figure 3.6 the assay is robust to movements in the cutoff for CHIKV as the estimated

seroprevalence ranges between 12.8% and 13.1% across a ± 25% change in cutoff value

(Figure 3.7). For CHIKV, if the cutoff value was 10% higher, the estimated seropreva-

lence would have been 13.1% and if it was 10% lower it would have been 12.8%, a

relative difference of 2.4%. This relative difference in seroprevalence estimates with a

± 10% change in cutoff value was also low for DENV-1 at 3.3% but was higher for

DENV-3, -4, and ZIKV at 11.5%, 12.8% and 9.5% respectively. However, the virus

which was most sensitive to the choice of cutoff was DENV-2 where a ± 10% change in

the cutoff value changed estimated seroprevalence from 22% to 29%, a relative differ-
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ence of 17.6%. This analysis shows that some viruses are more sensitive to the choice

of cutoff value than others.

3.3.4 Trends in seroprevalence for outbreaks in Fiji

I used the cross-sectional serological data from 2017 to investigate the relationship

between seroprevalence and the arbovirus outbreaks an individual might have been ex-

posed to in Fiji. I wanted to assess whether our serological data sensibly recaptures

past outbreaks. To model this non-linear relationship I fit a generalised additive model

(GAM) to seroprevalence data for CHIKV, DENV-1, -2, -3, -4 and ZIKV in 2017 with

an explanatory variable of year of birth with five smooth terms. Figure 3.8 shows

the serostatus of individuals in the 2017 study by year of birth and the probability of

seropositivity for each of the viruses from the GAM. The age-specific pattern of seropos-

itivity broadly reflects the pattern of observed DENV outbreaks and hence potential

exposure to the virus. The probability of DENV-1 seropositivity is lower for those born

after 2003, the last known outbreak of this virus in Fiji. Seropositivity for DENV-3

in 2013-14 and DENV-2 in 2017 – the two DENV viruses that caused the most recent

epidemics – are consistently high across all age groups.
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Figure 3.8: Arbovirus seroprevalence (as measured by MIA) by year of birth and known

outbreaks in Fiji, samples from 2017. Coloured dots, show serostatus by year of birth. Coloured

line and region, predicted serostatus from a GAM fitted to individual serostatus for each virus.

Vertical lines indicate timing of known outbreaks of that virus

This chapter has so far presented analysis of the 2017 data set as a cross-sectional

survey. However, a major strength of this study is that we collected longitudinal sera
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from the same individuals so can investigate changes in seroprevalence and antibody

response against arboviruses over time.

These longitudinal serological data are particularly valuable when combined with knowl-

edge from surveillance data of when certain viruses had confirmed transmission or out-

breaks between 2013 and 2017. There were four notable arbovirus outbreaks over the

study period. There was a large DENV-3 epidemic that began in late 2013 and ended

by July 2014 (Cao-Lormeau et al., 2014a; Kucharski et al., 2018). A DENV-2 out-

break began in January 2017 and spread until September 2017 (Ministry of Health

data). There was low level confirmed local transmission of ZIKV between 2015 and

2017 (Kama et al., 2019). Finally, there was an outbreak of CHIKV in 2016 (Aubry

et al., 2019b; Kama et al., 2019).

Figure 3.9 shows the confirmed and suspected cases from surveillance data for all DENV

viruses, CHIKV and ZIKV, as well as the seroprevalence at each serological survey in

2013, 2015 and 2017. The seroprevalence estimates connected by dotted lines uses all

available data at each survey. The seroprevalence estimates connected by solid lines are

from the subset of our study with observations at each time point (n = 189). DENV-2

and CHIKV show expected dynamics in the seroprevalence data with low pre-outbreak

seroprevalence that increases rapidly between 2015 and 2017. This is true also for

DENV-3 between 2013 and 2015 but estimated seroprevalence declined from 55% (95%

CI: 49.4-60.4%) to 45.3% (95% CI: 39.8-50.9%) after the outbreak. The ZIKV outbreak

shows the most unusual dynamics. Estimated ZIKV seroprevalence increased rapidly

from 7.7% (95% CI: 6-9.9%) to 22% (95% CI: 17.7-26.8%) between 2013 and 2015.

However, there were only 2 cases confirmed in surveillance data during this period.

ZIKV seroprevalence then declined sharply between 2015 and 2017. There were very

few reported cases of DENV-1 or DENV-4, however the seroprevalence estimates did

fluctuate over this period. DENV-1 increased from 68.4% (95% CI: 65-71.6%) in 2013

to 74.1% (95% CI: 68.8-78.7%) in 2017. DENV-4 increased significantly between 2015

and 2017 from 38.7% (95% CI: 33.5-44.2%) to 45% (95% CI: 39.5-50.6%).

In Section 3.3.3 I analysed the effect of changing the cutoff value on seroprevalence

estimates in 2017. This showed that seroprevalence estimates for some viruses were
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Figure 3.9: Seroprevalence for circulating arboviruses in Fiji between 2013 and 2017. Dots

and lines, estimated seroprevalence and 95% confidence interval. Dotted lines connect sero-

prevalence estimates using all available data at each time point. Solid lines connect seropreva-

lence from the same subset of the study with observations at every time point. Vertical lines in

the background show weekly cases of the corresponding virus (Confirmed and suspected cases

for DENV-3 and DENV-2. PCR confirmed cases for DENV-1, DENV-4, ZIKV and CHIKV)
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more sensitive to the cutoff value than others. Here I present those same estimates

alongside estimates from 2013 and 2015 to assess whether the choice of cutoff values

affects our interpretation of the trend in seroprevalence between 2013 and 2017. Figure

3.10 shows the variable 2017 estimates (± 10 or ± 25% change in cutoff value) alongside

the 2013 and 2015 estimates. While the 2017 estimates can range considerably if the

cutoff had been ± 25%, the effect on our conclusions about the trend in seroprevalence

would have been minimal. For example, ZIKV seroprevalence estimates ranged between

10-15% if the cutoff was shifted ± 25%. However, even this highest estimate still shows

a significant decrease from the 2015 estimate. One notable exception to this is DENV-3

where a 25% lower cutoff value would have shown very little change in seroprevalence

between 2015 and 2017.
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Figure 3.10: Sensitivity analysis of estimated seroprevalence in 2017. Dots, estimated sero-

prevalence. Vertical lines, 95% confidence interval. Triangles and dashed vertical lines, esti-

mated 2017 seroprevalence if cutoff was ± 25%. Crosses and dot-dash vertical lines, estimated

2017 seroprevalence if cutoff was ± 10%
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3.3.5 Change in raw MIA values between 2013 and 2017

The diverse range in seroprevalence dynamics is observable in the raw MIA values as

well as the summary seroprevalence estimates. As explained above, dividing the data

into positive and negative binary values according to a specific cutoff is sensitive to

cutoff value used. I analysed the changes in the raw continuous data between the three

serological surveys and found consistent trends in serological dynamics as in the binary

seroprevalence data.

Figure 3.11 shows the raw MIA relative fluorescence units (RFU) values for DENV-1,

-2, -3, -4, CHIKV and ZIKV in 2013, 2015 and 2017. To analyse whether changes

between surveys were significant I performed two separate paired t-tests to compare

the change in RFU between 2013 and 2015 (n = 312), then 2015 to 2017 (n = 189)

(Table 3.4).

The pattern in changes in raw MIA RFU is similar to that seen in the changes in

summary seroprevalence estimates between surveys. The mean RFU is highest for

DENV-1 in 2013 and very low for ZIKV, CHIKV, and DENV-2. There was very strong

evidence (p < 0.001) of an increase in mean RFU between 2013 and 2015 for DENV-1,

-3, -4 and ZIKV. There was very strong evidence (p < 0.001) of a continued increase

between 2015 and 2017 for DENV-1, -4 and an increase of CHIKV RFU. Meanwhile,

there was evidence (p < 0.01) of a decrease of ZIKV RFU between 2015 and 2017.

Another notable observation from this analysis is that, while the headline seroprevalence

estimate for DENV-3 appeared to decline between 2015 and 2017 from 55% 55% (95%

CI: 49.4-60.4%) to 45.3% (95% CI: 39.8-50.9%) (Figure 3.9), there was no evidence of

a change in mean DENV-3 RFU when analysing the raw MIA values over the same

time period (Table 3.4). This is consistent with an analysis of neutralising DENV-3

antibodies presented in Chapter 4.

Figure 3.12 shows the results from these paired t-tests alongside the summary seropreva-

lence estimates from all three surveys using the original cutoff values. This demonstrates

that the observed trend in estimated seroprevalence between all three surveys is broadly

consistent with the changes in raw MIA RFU values. With the exception of DENV-1,
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Figure 3.11: Arbovirus MIA RFU values between 2013 and 2017. Histograms of the MIA

RFU values for each virus with the cutoff value for seropositivity. Red values were classified

as positive. The right-hand column shows the same data ranked by value

which has the largest raw MIA RFU values (Figure 3.11), the changes in seropreva-

lence are matched by similar dynamics in the raw MIA RFU values. DENV-1 raw values

however, are so large that even a moderate increase in raw MIA RFU did not change

seroprevalence in 2017, and therefore infections in the raw values may have been missed.

Elsewhere, the decrease in ZIKV seroprevalence between 2015 and 2017 is consistent

with a negative change in raw MIA RFU. Large relative increases in seroprevalence

between 2015 and 2017 for CHIKV, DENV-2 and DENV-4 are also observed in the raw

MIA RFU changes.

3.4 Discussion

We successfully resampled 320 participants from a seroepidemiological survey conducted

in 2013 in Fiji and tested samples for evidence of previous infection with a range of
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Table 3.4: Arbovirus seroprevalence in Fiji between 2013 and 2017 as measured by RFU and

changes in RFU between surveys. The mean RFU value and standard deviation in 2013 is

shown alongside estimated change in RFU value between surveys (2013-2015 and 2015-2017).

Estimated change in value and 95% confidence intervals were calculated with a paired t-test

Virus
Mean MIA value

2013 [std. dev.]

Mean difference 2013-2015

(99% CI) [n=312]

Mean difference 2015-2017

(99% CI) [n=189]

DENV1 8839 [9840] 2268 (1382 – 3154)** 2580 (690 – 4471)**

DENV2 658 [1543] 126 (-1 – 252) 447 (46 – 848)*

DENV3 2574 [4348] 1227 (797 – 1657)** 93 (-748 – 933)

DENV4 2809 [4371] 650 (222 – 1078)** 2163 (833 – 3494)**

ZIKV -25 [973] 390 (189 – 592)** -287 (-537 – -37)*

CHIKV 170 [1285] -94 (-196 – 9) 2041 (1004 – 3078)**

* p < 0.01, ** p < 0.001
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Figure 3.12: Comparison of estimated seroprevalence and raw values from the MIA. For

each virus the left-hand y-axis shows the estimated seroprevalence in each survey (vertical

lines show 95% CI). The right-hand y-axis shows the estimated change in MIA RFU value

(as in Table 3.4). The shaded region connects the 95% CI of the estimated change in MIA

RFU value from a baseline of 0 in 2013 or 2015. Grey horizontal line indicates no change in

the MIA RFU value between surveys

arboviruses. This original study used population representative sampling and, by fol-

lowing a systematic recontacting approach in 2017, our sample still represented the
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population in terms of age distribution and had a similar breakdown to the sample in

2013 in terms of ethnicity, sex and household size, but not by rurality. This serological

survey in 2017 found evidence that approximately 90% (95% CI: 86.5-93.3%) of the

sample were seropositive (as measured by MIA) to at least one DENV serotype (Table

3.2). Seroprevalence was highest for DENV-1 (74.1%; 95% CI: 68.9-78.8%) and lowest

for CHIKV (12.5%; 95% CI: 9.4-17%) and ZIKV (12.5%; 95% CI: 9.1-16.6%) despite

reported recent outbreaks of these viruses (Kama et al., 2019). We found evidence that

arbovirus seroprevalence differed across age groups, by rurality where rural populations

had a lower seroprevalence for all viruses, by occupation, method of garbage collection

and home material. We modelled age-specific seroprevalence – as measured by MIA in

2017 – and found that our data reflected the sequence of observed outbreaks of ZIKV

and DENV in Fiji (Figure 3.8).

We combined data collected in 2017 with previous arbovirus seroprevalence estimates

from the same participants in 2013 (Lau et al., 2016; Watson et al., 2017) and 2015

(Kama et al., 2019; Kucharski et al., 2018). We compared serological dynamics before

and after known outbreaks of DENV-3 between 2013-14 (Cao-Lormeau et al., 2014a;

Kucharski et al., 2018), ZIKV between 2015-17 (Kama et al., 2019), CHIKV between

2015-17 (Aubry et al., 2019b; Kama et al., 2019) and DENV-2 in 2017 (Fijivillage,

2017). Seroprevalence, as measured by MIA, increased following confirmed outbreaks

of each of these viruses (Figure 3.9). However, serological dynamics were different

for these outbreaks and this is reflected in the seroprevalence estimates at each time

point. The largest outbreak was DENV-3 in 2013-14 when seroprevalence increased

from 38% (95% CI: 34.4-41.3%) to 55% (95% CI: 49.4-60.4%) between 2013 and 2015.

In contrast, CHIKV seroprevalence increased from 0.6% (95% CI: 0.2-1.5%) in 2015 to

12.5% (95% CI: 9.4-17%) in 2017. The longer-term serological dynamics following an

outbreak differed as well. Seroprevalence for DENV-3 remained high in 2017 at 45%

(95% CI: 40-50.9%), whereas ZIKV declined rapidly from 22% (95% CI: 17.7-26.8%)

in 2015 to 12.5% (95% CI: 9.1-16.6%) in 2017. This trend will be explored in greater

detail in Chapter 4.

This study was susceptible to selection bias because of our sampling design. Partic-
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ipants in the original 2013 study were never recruited to a longitudinal study and

subsequent sampling was performed opportunistically. As a result, we relied on last

known addresses and contact details to recruit participants to this study in 2017. Some

participants are more likely to be contacted under this framework. Recontacting and

sampling took place during typical business hours and some evening and weekend work

was required, which meant that those who worked at home were more likely to be found

and sampled. This method also meant that we sampled very few young children. The

youngest participant in the study in 2013 was 2 years old, so was 6 by the time samples

were collected in 2017. One limitation of this is that we could not look at serological

patterns in younger children, who can only have experienced certain outbreaks. School-

age children and teenagers are also more likely to be at home during our visits which

helps explain their over-representation in our sample (Figure 3.1). If these groups are

systemically more or less likely to have been exposed to arboviruses then this could

introduce non-random bias to our results. We aimed to mitigate this bias by collecting

a sample as similar to the 2013 baseline as possible. Across a range of demographic

and lifestyle factors we were able to achieve this (Figure 3.2). One notable exception

was rurality, the type of urban area that participants lived. Participants in rural loca-

tions constituted 35% of the 2013 sample, 34% of the 2015 sample but this increased

to 42% of the 2017 sample. We also found evidence that rurality was associated with

lower odds of ZIKV seroprevalence in 2017 (Table 3.3). To estimate the importance

of this change we can compare the unadjusted ZIKV seroprevalence in 2017 of 12.5%

(95% CI: 9.1-16.6%) with the adjusted seroprevalence, using the rurality distribution

from the 2013 sample as weights, which was 12.3% (95% CI: 8.8-16.8%). While this

change in rurality distribution is not ideal it does not appear to have greatly affected

results from 2017. As further evidence for this, we also found similar seroprevalence

dynamics for known outbreaks of arboviruses using a restricted data set – participants

with repeated measurements from 2013, 2015 and 2017 – as in the unrestricted samples

(Figure 3.9). It is therefore reasonable to assume that our sample is representative of

the population, as the 2013 sample was. With respect to sample size we did collect

fewer than our target of 350 participants in 2017. However, with our sample size of 320

and allowing for the observed 3.5% seroconversion we were able to detect a reduction
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in ZIKV seroprevalence from 21.7% to 12.5% with 85.9% power and 95% sensitivity.

This was the third study of the same participants and the challenge to recontact and

resample participants became more difficult with each follow-up survey. As a result,

methods that recruited the maximum number of people in an efficient manner were

preferred to ensure that the sample size was sufficient to make valid inferences. Rurality

is one such example. Rural communities required a more cautious recontacting method

to respect local customs. Contact was made with a village representative, gifts were

offered to thank the village for welcoming us and their previous contributions to our

research. If permission for resampling in the village was granted then the study team

would revisit the next day and a large proportion of that cluster from the 2013 study

would be gathered in a central location in the village to contribute to our 2017 study.

This meant that resampling of rural clusters was more successful than in urban and

peri-urban areas (Figure 3.3). This change in rurality distribution in 2017 is a potential

weakness in the study since we were analysing transmission of viruses mostly spread

by urban-based mosquito species such as Aedes aegypti. As discussed above however,

our findings were valid across the unrestricted and restricted data sets so this logistical

benefit for our study is unlikely to have introduced bias to our results. Repeating

analysis in the restricted population sampled at three time points can help validate

results, as we did here. More broadly, this study design of opportunistic follow-up

appears to have a limit on how many repeat visits are possible without introducing

non-random bias to results and design of future studies should be mindful of this.

We designed our study to be as non-invasive as possible which reduced the extensiveness

of our 2017 data set, but was necessary in light of ethical consideration. Participants

had consented to be contacted for future health research but were not recruited to a

longitudinal study with pre-specified repeat visits. We therefore designed our ques-

tionnaire to be as short as possible so our visit with participants could be as brief as

possible. As a result of this abbreviated questionnaire we did not recollect demographic

or lifestyle information that was collected in 2013. We therefore assumed throughout

this study that values collected in 2013 were still true and valid in 2017. Certain de-

mographic variables such as sex are unlikely to change frequently. Details about a
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participant’s home material or garbage would change if they moved home but this in

turn would mean they were less likely to be part of our 2017 study because they would

have been harder to locate and resample. Another data quality issue is missing data

on household details when participants were resampled in centralised locations in rural

villages. In these settings it was more difficult to ascertain whether the household had

air conditioning or mosquito breeding sites. We had aimed to analyse these data as

potential risk factors for arbovirus seroconversion but due to these data quality issues

we removed this analysis.

We used data from an MIA and defined a cutoff for seropositivity using positive and

negative control sera analysed by ROC curve. The sensitivity and specificity of the MIA

assay were respectively 100% and 100% for DENV-1, 89.5% and 97.1% for DENV-2,

100% and 100% for DENV-3, 96.9% and 100% for DENV-4, and 79.6% and 94.9% for

ZIKV (Henderson et al., 2020). The lower sensitivity for ZIKV in particular suggests

that some ZIKV seropositive participants could have been falsely defined as negative in

our MIA results. These sensitivity and specificity values were calculated using control

sera that were collected shortly after symptomatic arbovirus infections (Cao-Lormeau

et al., 2016; Henderson et al., 2020). These control sera are therefore more likely to have

a strong antibody response to infection than in the general population where arbovirus

infections may be asymptomatic (Haby et al., 2018; Moro et al., 2010). The sensitivity

and specificity of the assay using general population sera may therefore be lower than

the values quoted here. Observed increases in DENV-1 and DENV-4 seroprevalence

over the study period when these viruses were not widely detected could be evidence

of cross-reaction in the assay. The increase in DENV-4 seroprevalence between 2015

and 2017 in particular could be a result of cross-reaction since samples were collected

at the end of an outbreak of closely related DENV-2 (Katzelnick et al., 2015).

Separating the values from our MIA into positive and negative serostatus enabled us

to succinctly summarise the findings from this seroepidemiological survey. However,

separating serological data into dichotomous data has limitations, especially around the

value used to cut data into positive or negative values. In this chapter I have presented

sensitivity analyses of the distribution of the raw MIA values, the effect of changing the
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cutoff value, and an analysis of the change in raw MIA values between surveys. This

work demonstrated that the MIA performed more robustly and was less sensitive to the

choice of cutoff for CHIKV than for DENV and ZIKV. However, although seroprevalence

estimates varied when the cutoff was shifted by ± 25% for DENV and ZIKV, it did not

materially change the conclusions of the trend in seroprevalence between 2013 and 2017

(Figure 3.10). In addition, the trend in seroprevalence estimates matched the changes

in raw MIA RFU values between 2013 and 2017. The large increases in estimated

seroprevalence for ZIKV and DENV-3 between 2013 and 2015, and the decrease of

ZIKV seroprevalence 2015-17, were also found with a paired t-test comparing raw MIA

values. In summary, although dichotomising serological data has limitations, in this

study the dichotomous and continuous versions of the MIA data were complimentary,

and findings were broadly robust to the choice of cutoff value.

Longitudinal serological studies such as this study can help us better understand im-

munity dynamics over time but there are limitations to generalising these results to

protective immunity. We do not know the direct relationship between a specific titre

value or serostatus and susceptibility to further infection. In the case of DENV, it has

been shown that higher values of neutralising antibodies correlate with protection from

symptomatic infection (Katzelnick et al., 2016). Studies have also shown that infection

with one DENV serotype can lead to a cross-reactive immune response against other

serotypes (Calisher et al., 1989; Guzmán and Kouŕı, 2002; Mansfield et al., 2011; Scott

et al., 1983; Wahala and de Silva, 2011). It has also been shown that prior DENV

infection could provide a cross-protective effect against symptomatic ZIKV infection

(Barba-Spaeth et al., 2016; Gordon et al., 2019; Rodriguez-Barraquer et al., 2019). We

found evidence that 12.5% (95% CI: 9.1-16.6%) of our study population had a previous

ZIKV infection but there were only 16 reported cases of ZIKV, which suggests that

most infections in Fiji were asymptomatic, possibly because of the high seroprevalence

for other DENV serotypes. This also shows evidence against the idea that ZIKV im-

munopathogenesis is enhanced in the setting of high seroprevalence of DENV antibodies

(Andrade and Harris, 2018; Dejnirattisai et al., 2016; Paul et al., 2016).

We collected 320 samples in 2017 to complete a population representative, longitudinal

114



Mathematical Modelling of Arbovirus Outbreak Dynamics in Fiji and the Wider Pacific

survey with serological data from two complimentary assays. Population representative

sampling is preferable to convenience sampling from populations such as blood donors

(Netto et al., 2017) as it enables us to generalise conclusions from our sample to the

wider population. Our study now benefits from longitudinal sera at three time points

for 189 study participants. Data from joined sera observations before and after a variety

of arbovirus outbreaks are rare and facilitated a comparison of serological response to

different outbreaks. Our study demonstrates the value of maintaining a sustainable

biobank following cross-sectional seroepidemiological surveys. It was not foreseen in

2013 that those data would be valuable for studying the population immune response

to a ZIKV epidemic but because of the banking of samples and testing for multiple

viruses we were able to maximise the value of samples collected in 2013.

We were able to investigate ZIKV dynamics from a case study in the Pacific where

transmission occurred before a global ZIKV pandemic was declared in 2016 (World

Health Organisation, 2016). This study aimed to answer three public health questions

focused on ZIKV transmission. Firstly, what was the extent of ZIKV infection in Fiji

and association with other arboviruses? We identified a lack of ZIKV spreading, espe-

cially in comparison to other related arboviruses such as DENV-1 and DENV-3 (Table

3.2), and in comparison to international studies of ZIKV seroprevalence (Flamand et al.,

2019; Netto et al., 2017; Zambrana et al., 2018).

Secondly, what proportion of ZIKV infections were reported and were they related to

other health complications? We expected more seroconversions between 2015 and 2017

on the assumption that ZIKV and DENV share similar immune responses following an

outbreak, an assumption with precedent given the antigenic similarity of these viruses

(Priyamvada et al., 2016). However, we found very few seroconversions so we dropped

this analysis because of a lack of power. Other studies have also shown that ZIKV case

detection may have been poorly defined (Burger-Calderon et al., 2020) and case counts

underestimated the burden of the ZIKV pandemic (Moore et al., 2019).

Finally, what is the current level of immunity and what is the potential for ZIKV to tran-

sition to an endemic state? We estimated that a low proportion of Fiji is seropositive

for ZIKV and potentially susceptible to infection. These dynamics and the implications

115



Chapter 3. Seroepidemiological survey in Fiji

for ZIKV herd immunity are explored in more detail in Chapters 4 and 5.

The data introduced in this chapter are used throughout the thesis to facilitate analysis

of arbovirus outbreaks in Fiji. In Chapter 4 I use these serological data to characterise

the long-term antibody response to ZIKV following outbreaks in Fiji and French Poly-

nesia. In Chapter 5 I combined these serological data with surveillance and molecular

data to estimate unobserved transmission dynamics of ZIKV. Finally, in Chapter 6, I

use pre-outbreak serology to improve a real-time forecasting model of a DENV outbreak

and estimate the effect of vector control on transmission.

In this study we collected a large sample of sera in 2017 and combined with previously

collected data, have a longitudinal serological data set to investigate trends in arbovirus

transmission. In this chapter I have presented a summary of what we have found and

how we were able to benefit from our study design. There are limitations that have

stopped us from exploring trends further but this remains a valuable data set for the

study of arbovirus transmission. We were able to explore the burden of arbovirus

transmission in Fiji by extending beyond seroprevalence and investigating antibody

dynamics. However, as the rest of this thesis will demonstrate, the value of these

data are maximised when combined with other data sources from Fiji and the wider

Pacific. Combined with mathematical modelling, these data can be used to investigate

long-term immune responses to ZIKV, unobserved transmission of ZIKV and improve

real-time forecasting of DENV outbreaks.
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4.1 Bridging section

This study, published in January 2020, presents an analysis of data from eight serological

surveys conducted at different time points during Zika virus (ZIKV) outbreaks in French

Polynesia and Fiji.

Serological data are crucial in the study of flaviviruses in humans and in animals.

Infection with dengue virus (DENV) or ZIKV in humans can be asymptomatic and, as

a result, confirmation of flavivirus infections is mostly based on rapid serological tests

such as enzyme-linked immunosorbent assays (ELISAs) (Beck et al., 2015). Multiplex

immunoassays (MIAs) (Aubry et al., 2017; Beck et al., 2015) and plaque reduction

neutralisation assays (PRNTs) (Collins et al., 2017) can be used to test for antibodies

against specific flaviviruses to show evidence of previous infection and estimate the level

of immunity in a population. Serological data has a well-established role in improving

understanding of transmission dynamics of other diseases, such as influenza (Wu et al.,

2011), malaria (Helb et al., 2015), chikungunya virus (Salje et al., 2016) and DENV

(Katzelnick et al., 2017; Salje et al., 2018). The rapid emergence of ZIKV between

2013 and 2016 means that most early seroprevalence estimates were from convenience

sampling (Gake et al., 2017; Gallian et al., 2017; Lozier et al., 2018; Netto et al.,

2017). Convenience sampling is well documented to provide flawed estimates of the

burden of disease, in Human Immunodeficiency Virus for example (Boerma et al., 2003).

We compared seroprevalence estimates from population-representative cross-sectional

studies in French Polynesia and longitudinal seroepidemiological data in Fiji.

The collection of longitudinal serological data from the same individuals allows for more

detailed analysis of population level and within-individual immunological responses to

viruses. The previous chapter in this thesis outlined the study population in Fiji of a

longitudinal seroepidemiological study. Samples collected in this study are positioned

around known periods of ZIKV circulation in Fiji. Samples were initially collected in

November 2013 (Lau et al., 2016; Watson et al., 2017). Chapter 5 will show evidence

that ZIKV began circulating in late 2014 and the follow up serological sample was

collected in November 2015. Community transmission of ZIKV cases were confirmed in
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2015 and 2016 and our final serological sample was collected in June 2017. Analysing

these serological data enabled us to study long-term immunological responses to these

outbreaks which are poorly understood, especially in the case of ZIKV.

This chapter describes a study of serological data from Fiji and French Polynesia and

the level of ZIKV-specific immunity in the population. Samples collected were analysed

by collaborators at Institut Louis Malardé (ILM) in Tahiti, French Polynesia. This is

the only published paper in this thesis. I share first authorship with Dr. Maite Aubry

(ILM) who led the serological analysis. I led the statistical analysis, wrote the R code

to analyse data and wrote the initial draft manuscript that was submitted to journals

and published as a pre-print on BioRxiv in January 2019. The version presented in

here is the published version in eLife (Henderson et al., 2020). The first draft was

conditionally accepted by eLife in June 2019 while I was on a placement at Epicentre

in Paris. I was unable to work on the revisions so Dr. Adam Kucharski led on these.

In the appendix to this chapter I have described the statistical methods used in more

detail than presented with the original publication.
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Abstract

It has been commonly assumed that Zika virus (ZIKV) infection confers long-term pro-

tection against reinfection, preventing ZIKV from re-emerging in previously affected

areas for several years. However, the long-term immune response to ZIKV following

an outbreak remains poorly documented. We compared results from eight serological

surveys before and after known ZIKV outbreaks in French Polynesia and Fiji, including

cross-sectional and longitudinal studies. We found evidence of a decline in seropreva-

lence in both countries over a two-year period following first reported ZIKV transmis-

sion. This decline was concentrated in adults, while high seroprevalence persisted in

children. In the Fiji cohort, there was also a significant decline in neutralising antibody

titres against ZIKV, but not against dengue viruses that circulated during the same

period.
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4.2 Introduction

Zika virus (ZIKV), a flavivirus primarily transmitted to humans by Aedes mosquitoes,

was first reported in the Pacific region on Yap island (Federated States of Micronesia)

in 2007 (Duffy et al., 2009). Six years later, there was a large ZIKV outbreak in French

Polynesia (Cao-Lormeau et al., 2014b) where an estimated 11.5% of the population vis-

ited healthcare facilities with clinical symptoms suggestive of ZIKV infection (Kucharski

et al., 2016). Since then the virus has spread across the Pacific region (Musso et al.,

2014), including to Fiji where cases of ZIKV infection were first detected in July 2015

(World Health Organisation Western Pacific Region, 2017). The same year, cases of

ZIKV infection in Latin America were reported for the first time (Zammarchi et al.,

2015). From February 1 to November 18, 2016, due to its rapid spread and association

with birth defects, microcephaly in newborns and Guillain-Barré syndrome in adults

(Cao-Lormeau et al., 2016) the WHO declared ZIKV a Public Health Emergency of In-

ternational Concern (World Health Organisation, 2016). At the end of 2016, outbreaks

had declined in most of the countries recently affected (O’Reilly et al., 2018). However,

ZIKV was still circulating in 2018 in several countries, including Fiji and Tonga in the

Pacific region (World Health Organisation, 2018).

In countries with known ZIKV outbreaks, the few serological surveys that have been

published found a high level of ZIKV seroprevalence following the outbreak. In French

Polynesia, a population-representative cross-sectional serological survey at the end of

the outbreak in 2014 found a seroprevalence of 49% (Aubry et al., 2017). In Martinique,

a study of blood donors showed a post-outbreak seroprevalence of 42% in 2015 (Gallian

et al., 2017). In Salvador, Northeastern Brazil, a serosurvey in 2016 of prospectively

sampled individuals including microcephaly and non-microcephaly pregnancies, HIV-

infected patients, tuberculosis patients, and university staff, found a post-outbreak

seroprevalence of 63% (Netto et al., 2017). Another study in Salvador, conducted in a

long-term health cohort, also found a post-outbreak seroprevalence of 63% (Rodriguez-

Barraquer et al., 2019). Finally, in paediatric and household cohort studies in Managua,

Nicaragua, ZIKV seroprevalence was estimated to be 46% in households following the

outbreak in 2016 (Zambrana et al., 2018).
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It has been suggested that infection with ZIKV confers immunity that lasts several

years; if so, the high level of seroprevalence in affected countries may reflect sufficient

herd immunity for the current ZIKV epidemic to be over in many locations, with

the virus unable to re-emerge for decades to come (Ferguson et al., 2016; Kucharski

et al., 2016; Netto et al., 2017; O’Reilly et al., 2018). Recent evidence suggests that

neutralising antibodies can distinguish between ZIKV and dengue virus (DENV) – a

closely related flavivirus – and that the immune response following ZIKV infection

can persist over a year (Griffin et al., 2019; Montoya et al., 2018). It has also been

suggested that primary ZIKV infection may confer protective immunity (Osuna et al.,

2016). However, ZIKV serosurveys conducted at the end of the outbreak in French

Polynesia and 18 months later found a drop in seroprevalence in the Society Islands,

the archipelago where over 85% of the inhabitants of French Polynesia reside (Aubry

et al., 2017). Therefore, the long-term antibody response following a ZIKV outbreak

remains unclear.

Here, we explore short- and long-term seroprevalence against ZIKV as well as neutral-

ising responses against ZIKV following two ZIKV outbreaks in the Pacific region. We

compared results from five serological surveys in the Society Islands, French Polynesia,

over a seven-year period, and three serial serological surveys in the same cohort of in-

dividuals in Central Division, Fiji, over a four-year period. These surveys span the pre-

and post- outbreak period in each country, allowing us to examine temporal changes in

antibody responses following a ZIKV outbreak.

4.3 Materials & Methods

4.3.1 Study location and participants

French Polynesia

Four separate ZIKV serosurveys were previously conducted in the Society Islands (Table

4.2). As reported previously (Aubry et al., 2015a, 2017), a first serosurvey (n = 593)
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was conducted in adult blood donors recruited between July 2011 and October 2013,

before the ZIKV outbreak that occurred between October 2013 and April 2014 (Cao-

Lormeau et al., 2014b). Two population-representative serosurveys were conducted

among the general population, firstly between February and March 2014 (n = 196),

and then between September and November 2015 (n = 700). The two studies in the

general population both spanned a range of adult age groups (Table 4.1). An additional

serosurvey was conducted among schoolchildren between May and June 2014 (n = 476).

Finally, a fifth serosurvey was conducted among schoolchildren in the Society Islands

in June 2018 (n = 457) using the same protocol as in 2014 (Aubry et al., 2017).

Table 4.1: Age distribution of study population in French Polynesia. Overall population

distribution shown, along with total samples collected in each age group in 2014 and 2015

serosurveys

Age range
Population estimate

(2017)
Samples in 2014 study Samples in 2015 study

0–9 42,770 0 0

10–19 43,705 3 22

20–29 48,914 10 135

30–39 42,144 5 131

40–49 40,886 8 119

50–59 34,478 15 128

60–69 21,099 2 85

70–79 10,481 5 46

80–89 3,773 0 9

90+ 416 0 0

Fiji

Three serosurveys were conducted in Fiji (Table 4.2). Individuals were first recruited

into a population-representative community-based typhoid/leptospirosis seroprevalence

study between September and November 2013 (Watson et al., 2017) (n = 1, 787), be-

fore autochthonous transmission of ZIKV was first detected in July 2015 (World Health

Organisation Western Pacific Region, 2017). Briefly, nursing zones were randomly

selected, from which one individual from 25 households in a randomly selected com-
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munity was recruited. Participants who had consented to being contacted again for

health research were subsequently recruited in November 2015 in 23 communities in

Central Division through last known addresses, phone numbers and the assistance of

local nurses (n = 327) (Kama et al., 2019). A third follow-up serosurvey was conducted

in June 2017 using the same protocol as in 2015 (n = 321) (Kucharski et al., 2018a).

Follow-up surveys were only performed in Central Division, which was the focus of a

DENV-3 outbreak in 2013–14 (Kucharski et al., 2018a). Only blood samples serially

collected from the same participants (n = 189) in 2013, 2015 and 2017 were analysed

in the main results presented in this study.

4.3.2 Informed consent and ethics approvals

French Polynesia

The five serosurveys were approved by the Ethics Committee of French Polynesia (ref

61/CEPF 08/29/2013, 60/CEPF 06/27/2013, 74/CEPF 05/04/2018, and 75/CEPF

05/04/2018).

Fiji

The original 2013 study, and the 2015 and 2017 follow up studies were approved

by the Fiji National Research Ethics Review Committee (ref 2013–03, 2015.111.C.D,

2017.20.MC) and the London School of Hygiene and Tropical Medicine Observational

Research Ethics Committee (ref 6344, 10207, 12037).

4.3.3 Serological analysis

French Polynesia

Serum samples collected from blood donors between July 2011 and October 2013 and

samples collected from the general population and schoolchildren in 2014 were all tested
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for presence of IgG antibodies against ZIKV and each of the four DENV serotypes using

a recombinant antigen-based indirect ELISA as reported previously (Aubry et al., 2015a,

2017). Samples collected from the general population in 2015 and from schoolchildren

in 2018 were tested by microsphere immunoassay (MIA) using the same recombinant

antigens as for the ELISA (Aubry et al., 2017; Cao-Lormeau et al., 2016; Kama et al.,

2019). Recombinant antigens used in both assays comprised domain III of the enve-

lope glycoprotein of ZIKV, DENV-1, DENV-2, DENV-3, or DENV-4 strains (respective

GenBank accession no. KJ776791, AF226686.1, FM986654, FJ44740.1, FM986672.1)

and were produced using the Drosophila S2 expression system (Life Technologies, USA)

as previously detailed (Aubry et al., 2015b). Serostatus was defined by a cut-off deter-

mined using positive and negative control sera analysed by ROC curve. The sensitivity

and specificity of the MIA assay were respectively 100% and 100% for DENV-1, 89.5%

and 97.1% for DENV-2, 100% and 100% for DENV-3, 96.9% and 100% for DENV-4,

and 79.6% and 94.9% for ZIKV. The positive control sera for ZIKV was collected 13

months after RT-PCR confirmed infection. In the serosurvey conducted among the gen-

eral population of the 5 archipelagos in French Polynesia in 2014 (Aubry et al., 2017),

196 samples were tested using both ELISA and MIA: among the 97 serum samples

that tested positive for anti-ZIKV IgG by ELISA, 78 (80%) were also found positive

by MIA; and among the 99 serum samples that tested negative for anti-ZIKV IgG by

ELISA, 70 (71%) were also found negative by MIA. This produced a value of Cohen’s

κ = 0.51 (Aubry et al., 2017).

Fiji

All serum samples collected in Fiji were tested using MIA to detect IgG antibodies

against ZIKV and all four DENV serotypes as previously reported (Aubry et al., 2017;

Cao-Lormeau et al., 2016; Kucharski et al., 2018a). To follow the evolution of antibody

titres at the individual level, a subset of samples collected from the same individuals

in 2013, 2015 and 2017 were tested for the presence of neutralising antibodies against

ZIKV and each of the four DENV serotypes using a neutralisation assay as previously

described (Cao-Lormeau et al., 2016). ZIKV log titres followed a bimodal distribution,
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which supported the use of a log titre of ≥ 2 as a cutoff for seropositivity (Figure 4.1).
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Figure 4.1: Distribution of ZIKV neutralisation titres in the Fiji serosurveys. Results shown

for 45 participants who had samples available from 2013, 2015, and 2017. Dashed line shows

the threshold used to define seropositivity

Of the 9/45 participants who were seropositive to ZIKV by neutralisation assay in 2013,

all were seropositive to at least one DENV serotype (Figure 4.2). To assess the potential

for cross-reactive antibody responses, we examined the correlation between changes in

log titre to different viruses between 2013 and 2015. As well as the 45 participants who

had three samples from 2013, 2015, and 2017, we also had an additional 24 participants

from the same cohort for whom we had sufficient serum from 2013 and 2015 to test by

neutralisation assay (i.e. 69 paired samples in total). Among the 20/69 participants

that tested seronegative against all five viruses in 2013 and were re-tested in 2015, there

was no evidence of an association between changes in ZIKV titre and changes in titre

against any of the DENV serotypes, suggesting that the changes in ZIKV titre were

unlikely to be strongly influenced by DENV cross-reaction (Figure 4.3). However, the

49/69 participants who had a pre-2013 DENV exposure and a large rise against ZIKV

between 2013–15 tended to exhibit a smaller rise against DENV viruses (Figure 4.4).

A previous study, which tested serological samples from Fiji across three divisions

(Kama et al., 2019), found that of the samples reactive by MIA, 66/83 (79.5%) exhibited

neutralising activity for ZIKV (κ = 0.71) and 109/112 (97.3%) for DENV (κ = 0.80).

In this study, we tested what proportion of samples for the 45 participants in the full

data set (i.e. 135 samples in total) that were seropositive or seronegative by MIA had

the same result by the neutralisation assay. We found that 54/68 (79.4%) samples that
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were positive to ZIKV by MIA were also positive in the neutralisation assay, and 42/67

(62.7%) who were seronegative were also negative by neutralisation assay (κ = 0.42).

We also calculated the proportion positive by neutralisation assay that had the same

result by MIA. We found that 54/79 (68.4%) samples that were positive to ZIKV in the

neutralisation assay were also positive by MIA, and 42/56 (75%) who were seronegative

were also negative by MIA.

4.3.4 Statistical analysis

For data from Fiji, where serial samples were collected from the same individual, changes

in seroprevalence between studies were tested using McNemar’s test. In French Polyne-

sia, chi-squared tests were performed to test for evidence of a change in seroprevalence

between two cross-sectional surveys. Changes in mean log titre between groups were

analysed using a t-test. To analyse the potentially non-linear relationship between

DENV neutralisation titres and seroprevalence by MIA and neutralisation test (Fig-

ure 4.13), we used a generalized additive model via the mcgv package in R (Wood,

2019). The model was of the form g(E(y)) = b + f(x), where y was the binary out-

come variable, x was the predictor (i.e. titre), g was the link function, b was the

intercept, and f was a smooth function represented by a penalized regression spline.

Mean DENV titre was calculated as the mean of log titres against the four DENV

serotypes for each participant. All data and code used in the analysis are available at:

https://github.com/a-henderson91/zika-sero-pacific/.

4.4 Results

In French Polynesia, seroprevalence of IgG antibodies against domain III of the ZIKV

envelope glycoprotein in blood donors recruited before October 2013 was <1% (0.3%-

2%), which confirmed that the virus had not previously circulated in the population

(Table 4.2). Analysis of samples collected in the general population of the Society

Islands of French Polynesia after the emergence of ZIKV showed a decrease in ZIKV
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Figure 4.2: Individual-level neutralisation log titres against the four DENV serotypes and

ZIKV in Fiji. Points show assay results in the 2013, 2015 and 2017 sample collections for

each participant, coloured by virus (n=45)
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Figure 4.3: Correlation between rise in DENV and ZIKV neutralisation log titres between

2013-2015 for participants who were initially seronegative (i.e. log titre < 2) to all five viruses

in 2013 (n=20). There is significant correlation between DENV-1 and DENV-3 viruses (top

row, p=0.0012), suggesting likely cross-reactive responses. However, changes in ZIKV titres

were not associated with responses to any of DENV viruses (far right column), which strongly

indicates that the ZIKV results were genuine infections
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Figure 4.4: Correlation between change in DENV and ZIKV log titres between 2013-2015

for participants who were initially seropositive (i.e. log titre ≥ 2) to at least one DENV virus

in 2013 (n=49). There is significant correlation between ZIKV and other DENV viruses,

suggesting likely cross-reactive responses. However, there was limited circulation of viruses

such as DENV-1 and DENV-2 during 2013–15 (Figures 4.6, 4.7), suggesting that it was

infection with ZIKV that generated a cross-reactive response against these viruses, rather

than the other way around
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seroprevalence from 37% (26%-47%) to 22% (16%-28%) between February-March 2014

and September-November 2015 (chi-squared test, p = 0.03). In Fiji, analysis of the

serum samples serially collected from a cohort of participants in the Central Division

showed an increase in ZIKV seroprevalence from 6.3% (3.3%-11%) in October-November

2013 to 24% (18%-31%) in November 2015 (chi-squared test, p < 0.0001), and then

a decrease to 12% (7.9%-18%) by June 2017 (chi-squared test, p = 0.005). In this

cohort, based on IgG results tested by microsphere immunoassay (MIA), 6 of the 189

participants seroconverted (from negative to positive) and 28 seroreverted (from positive

to negative) to ZIKV between 2015 and 2017 (McNemar’s test, p = 0.0003).

Table 4.2: Seroprevalence of ZIKV among participants in five serological surveys in French

Polynesia and three serological surveys in Fiji, conducted between July 2011 and June 2018

Date Country
Population and

assay used

Age Range

(median)

Total no.

seropositive/total no.

tested

Seroprevalence

% [95% CI]

French Polynesia - General Population

Jul 2011-

Oct 2013

Society Islands,

French Polynesia

Blood donors,

ELISA
18-75 (36) 5/593 0.8 [0.3-2.0]

Nov 2013 First confirmed local transmission of ZIKV in French Polynesia

Feb-Mar

2014

Society Islands,

French Polynesia
General, ELISA 13-77 (47) 18/49 37 [26-46]*

Sep-Nov

2015

Society Islands,

French Polynesia
General, MIA 4-88 (43) 154/700 22 [16-28]*

French Polynesia - schoolchildren

May-Jun

2014

Society Islands,

French Polynesia

School children,

ELISA
6-16 (11) 312/476 66 [60-71]*

Jun 2018
Society Islands,

French Polynesia

School children,

MIA
6-16 (11) 291/457 64 [58-69]*

Fiji

Oct-Nov

2013
Central Division, Fiji General, MIA 2-78 (27) 12/189 6.3 [3.3-11]

Jul 2015 First confirmed local transmission of ZIKV in Fiji

Nov 2015 Central Division, Fiji General, MIA 4-80 (26) 45/189 24 [18-31]

Jun-2017 Central Division, Fiji General, MIA 6-82 (28) 23/189 12 [7.9-18]

* CIs were calculated taking into account the cluster sampling design (Aubry et al., 2017) and using Fisher exact test

MIA - microsphere immunnoassay

To investigate possible factors influencing the decline in seroprevalence, we compared

the seroprevalence profiles in children (defined as ≤16 years) and adults (>16 years)
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in both settings (Table 4.2 and Figure 4.5). In French Polynesia, although ZIKV sero-

prevalence declined in the general population from the Society Islands over 18 months,

there was no evidence of a significant decline in seroprevalence in two serosurveys con-

ducted four years apart in schoolchildren aged 6 to 16 years, with 66% (60%-71%)

positive in 2014 and 64% (58%-69%) in 2018 (chi-squared test, p = 0.6) (Table 4.2).

When stratifying the general population from the Society Islands by age (≤16 years and

>16 years), there was a decline in adults in the two consecutive cross-sectional studies

conducted in 2014 and 2015, from 35.4% (22.2%-50.5%) to 21.3% (18.2%-24.5%) (Fig-

ure 4.5). A decline in adults was still observed, albeit with larger uncertainty, when

the two data sets were standardised according to the age distribution of the popula-

tion, with age-adjusted seroprevalence decreasing from 32.0% (16.7%–62.1%) to 26.0%

(20.1%–33.9%) (Table 4.3).

Table 4.3: Age-adjusted seroprevalence by MIA in participants aged over 16 in the general

population of the Society Islands in French Polynesia, based on serosurveys conducted in 2014

(n = 48) and 2015 (n = 672)

Virus

2014

seroprevalence

(95% CI)

2014 age-adjusted

seroprevalence (95% CI)

2015

seroprevalence

(95% CI)

2015 age-adjusted

seroprevalence (95% CI)

DENV1 85 (72-94) 83 (55-100) 80 (77-83) 80 (71-91)

DENV2 48 (33-62) 50 (28-87) 19 (16-22) 21 (15-21)

DENV3 75 (60-86) 72 (47-100) 56 (52-60) 55 (48-64)

DENV4 63 (47-76) 65 (40-100) 42 (38-46) 45 (38-54)

ZIKV 35 (22-50) 32 (16-62) 21 (18-25) 26 (20-34)

* chi-squared test comparing 2014 bootstrap estimates with 2015 results

In Fiji, in the subset of individuals who were aged over 16 years (n = 122), there was a

decrease in seroprevalence by MIA from 24% (17%-33%) in 2015 to 7.3% (3.4%-13%)

2017 (Figure 4.5). There were two seroconversions in the collected samples over this

period but 23 seroreversions (McNemar’s test, p < 0.0001) (Table 4.4). In contrast sero-

prevalence in participants aged 16 and under (n = 67) remained relatively stable over

this period (Figure 4.5), with four seroconversions and five seroreversions (McNemar’s

test, p = 1) (Table 4.4).
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Figure 4.5: Dynamics of ZIKV seroprevalence following outbreaks in Fiji and French Poly-

nesia. A) Seroprevalence by MIA in Fiji. Red, seroprevalence and 95% confidence intervals

for children (aged ≤16 years). Orange, seroprevalence and 95% confidence intervals for adults

(aged >16 years). Solid lines, trends in data collected from the same individuals. Dotted line

indicates the first confirmed ZIKV case. (Continued on the following page)
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Figure 4.5: caption (continued): B) Epidemiological dynamics in Fiji between 2013 and

2018. Coloured bars show number of PCR-confirmed samples of different DENV serotypes

and ZIKV in Fiji; black lines show reported prolonged fever in Fiji from the Pacific Syn-

dromic Surveillance System (World Health Organisation, 2018). There was a major outbreak

of DENV-3 outbreak in 2013–14 (Kucharski et al., 2018a) with a smaller DENV-2 outbreak

in early 2017 (Aubry et al., 2019). C) Seroprevalence by MIA in French Polynesia. Dashed

lines, trends in seroprevalence between population representative cross-sectional surveys. Note

that the pre-outbreak samples were collected between July 2011 and October 2013; for brevity,

the latest possible collection date is used in the plot. D) Epidemiological dynamics in French

Polynesia between 2013 and 2018. Solid black line shows reported symptomatic dengue cases;

dashed lines showed reported symptomatic Zika cases. In French Polynesia, between the sam-

pling periods, there were no reported DENV outbreaks for serotypes 2,3,4, and there was

hyper-endemic DENV-1 circulation. In April 2019, a DENV-2 outbreak was declared, the

first since 1997 (Aubry et al., 2019)

In order to assess whether the decline in ZIKV seroprevalence was also observed for other

circulating flaviviruses, the MIA seroprevalence pattern against each of the four DENV

serotypes was analysed in both countries, by age group (Figures 4.6, 4.7, 4.8, 4.9).

In Fiji, seroprevalence for DENV-1, DENV-2 and DENV-4 increased in participants

in both age groups between 2013 and 2017. DENV-3 seroprevalence also increased in

both age groups between 2013 and 2015 following an outbreak in 2013–14 (Kucharski

et al., 2018a) and then declined in 2017 from 44% (32%-57%) to 40% (28%-52%) in

children (McNemar’s test, p = 0.6) and from 59% (50%-68%) to 49% (40%-58%) in

adults (McNemar’s test, p = 0.01) (Figure 4.8). In French Polynesia between 2014 and

2018, seroprevalence in children aged under 16 years showed no evidence of a change for

DENV-1 and DENV-2 (chi-squared test, p = 0.1917 and p = 1, respectively) (Figures

4.6, 4.7) and decreased for DENV-3 and DENV-4 (chi-squared test, p < 0.0001 and

p = 0.0085, respectively) (Figures 4.8, 4.9). In adult participants from the general

population, seroprevalence for all four DENV serotypes declined between 2014 and

2015.

The age-adjusted values for seroprevalence by MIA for the four DENV serotypes were

142



Mathematical Modelling of Arbovirus Outbreak Dynamics in Fiji and the Wider Pacific

2013 2014 2015 2016 2017 2018 2019

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fiji − DENV1

S
er

op
os

iti
ve

 b
y 

M
IA

●

●
●

●

● ●

A

age <=16

age >16

2013 2014 2015 2016 2017 2018 2019

0
2

4
6

8
10

12

P
C

R
 p

os
iti

ve
 s

am
pl

es

B
DENV−1
DENV−2
DENV−3
DENV−4
ZIKV

0
50

15
0

25
0

P
ro

lo
ng

ed
 fe

ve
r

2013 2014 2015 2016 2017 2018 2019

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

French Polynesia − DENV1

S
er

op
os

iti
ve

 b
y 

M
IA

●
●

●

●
●

C

age >16

2013 2014 2015 2016 2017 2018 2019

0
20

40
60

80
10

0

P
C

R
 p

os
iti

ve
 s

am
pl

es

D

DENV−1
DENV−2
DENV−3
DENV−4
ZIKV

0
20

0
40

0
60

0
80

0
D

en
gu

e/
Z

ik
a 

ca
se

s

Figure 4.6: Seroprevalence against DENV-1 in Fiji and French Polynesia, by age group.

Figure colour scheme and data characteristics are same as in Figure 4.5
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Figure 4.7: Seroprevalence against DENV-2 in Fiji and French Polynesia, by age group.

Figure colour scheme and data characteristics are same as in Figure 4.5
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Figure 4.8: Seroprevalence against DENV-3 in Fiji and French Polynesia, by age group.

Figure colour scheme and data characteristics are same as in Figure 4.5
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Figure 4.9: Seroprevalence against DENV-4 in Fiji and French Polynesia, by age group.

Figure colour scheme and data characteristics are same as in Figure 4.5
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Table 4.4: Detection of IgG by MIA against ZIKV in the paired samples from participants

aged under and over 16 years recruited during October-November 2015 and June 2017 in the

Central division in Fiji (n = 189). Age groups are defined using age of participants when

recruited to the study in 2013

2017

≥ 16 years >16 years Total participants

2015 ZIKV+ ZIKV- ZIKV+ ZIKV- ZIKV+ ZIKV-

≥16 years

ZIKV+ 10 5 – – – –

ZIKV- 4 48 – – – –

> 16 years

ZIKV+ – – 7 23 – –

ZIKV- – – 2 90 – –

Total

Participants

ZIKV+ – – – – 17 28

ZIKV- – – – – 6 138

similar to the raw values, suggesting that the decline in French Polynesia could not

be explained by differences in sampling by age. However, a higher proportion of the

samples in 2014 tested positive by MIA for all four DENV serotypes (Table 4.5), sug-

gesting that the sampling included a group at higher risk for arbovirus infection than

those sampled in 2015. To check that the estimated decline in ZIKV seroprevalence

was not an artefact of this sampling bias, we re-estimated seroprevalence for the four

DENV serotypes and ZIKV using a bootstrap sample of the 2014 responses, with re-

placement, weighted by the DENV exposure profile (excluding the virus of interest) in

the 2015 survey so that the bootstrap sample of the 2014 responses had a similar DENV

exposure profile as in the 2015 responses. For example, when generating bootstrap es-

timates for DENV-1 in 2014, we resampled participants based on the distribution of

number of exposures to DENV-2, DENV-3, and DENV-4 in the 2015 data (Table 4.6).

After adjusting for prior exposure, there was no significant decline in seroprevalence for

DENV-1, DENV-3, or DENV-4, which had all circulated in the five years preceding the

2014 data collection, whereas the decline in ZIKV was still present (chi-squared test,

p = 0.0047).
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Table 4.5: Age distribution and profile of DENV exposure history in two cross-sectional

surveys conducted in the general population from the Society Islands, French Polynesia, in

2014 and 2015. While the age distribution is similar in both studies, the sample in 2014 has

a higher proportion of individuals who have tested positive for infection from all four DENV

serotypes by MIA

Variable 2014 (n = 49) 2015 (n = 700)

Age distribution (median [IQR]) 47 [29-56] 43 [29-57]

Number of DENV serotypes positive at time of sample collection (n [%])

0 3 [0.061] 118 [0.17]

1 6 [0.12] 163 [0.23]

2 11 [0.22] 159 [0.23]

3 11 [0.22] 154 [0.22]

4 18 [0.37] 106 [0.15]

To explore dynamics of antibody waning at the individual level, we performed neutrali-

sation assays (NT) on a subset of 45 participants from Fiji for whom sufficient sera were

available to test against ZIKV from all three collection periods. We found that in the 31

individuals who were ZIKV seronegative (i.e. log titre < 2) in 2013 and had a rise in log

titre ≥ 2 against ZIKV between 2013 and 2015, anti-ZIKV antibody responses waned

significantly in 2017, with an average decline in log titre of -1.94 (t-test, p < 0.0001)

(Figure 4.10A and Table 4.7). In total, four participants seroreverted between 2015 and

2017; all had a log titre of 4 against ZIKV in 2015. We observed a similar effect when

we analysed all participants who had a rise in log titre of at least 2 between 2013–15,

regardless of serostatus in 2013 (Figure 4.11).

To test whether the dynamics of anti-ZIKV antibody waning were different from the

responses to DENV infection, we compared results for ZIKV to the neutralisation re-

sponse following a DENV-3 infection in the same cohort from Fiji. There was a large

DENV-3 epidemic during 2013–14 in Fiji (Osuna et al., 2016), which meant most sero-

conversions to DENV-3 occurred between the collection of samples in 2013 and 2015.

In those individuals that seroconverted to DENV-3 (n = 19) or ZIKV (n = 31) be-

tween 2013 and 2015, the initial rise in NT log titres against ZIKV was larger than for

DENV-3, with a mean change of 5.0 and 3.37 respectively (4.10B and Table 4.7). All
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Table 4.6: Bootstrap estimated seroprevalence for each of the four DENV serotypes and

ZIKV adjusted for sampling bias in two cross-sectional surveys conducted in the general pop-

ulation from the Society Islands, French Polynesia, in 2014 and 2015. Results from the

cross-sectional surveys in the Society Islands, French Polynesia, in 2014 and 2015 show a de-

cline in seroprevalence by MIA against all 4 DENV serotypes and ZIKV. However, the 2014

sample included more individuals that tested positive for >1 DENV serotype and are assumed

to be a higher risk group. We used a bootstrap method with 10,000 iterations which estimated

seroprevalence from a sample of the 2014 data set, taken with replacement, weighted by the ex-

posure distribution to other DENV viruses in the 2015 survey. After adjusting for the sample

bias, there was no evidence of a decline in seroprevalence for DENV-1, DENV-3, or DENV-4,

which had circulated in the years preceding the 2014 sample collection (World Health Organi-

sation, 2018), but there remained strong evidence that ZIKV seroprevalence declined between

2014-15

Virus
2014 seroprevalence

(95% CI) (n = 49)

2014 bootstrap

estimates of

seroprevalence (95%

CI)

2015 seroprevalence

(95% CI) (n = 700)
p-value*

DENV1 86 (73-94) 74 (61-86) 80 (77-83) 0.36

DENV2 47 (33-62) 38 (24-53) 18 (15-21) 0.0008

DENV3 76 (61-87) 64 (51-78) 55 (51-59) 0.21

DENV4 63 (48-77) 50 (37-65) 42 (38-46) 0.42

ZIKV 37 (23-52) 42 (29-55) 22 (19-25) 0.0047

* chi-squared test comparing 2014 bootstrap estimates with 2015 results
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individuals who had seroconverted to DENV-3 remained seropositive to the virus in

2017, while four individuals who had seroconverted to ZIKV were seronegative in 2017.

Although the NT log titres increased by a mean of 0.89 for DENV-3 between 2015 and

2017 (two-sided t-test, p = 0.04), log titres against ZIKV declined by a mean of 1.94

over the same period (two-sided t-test, p < 0.001) (Figure 4.10A and Table 4.7).
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Figure 4.10: Waning of neutralising antibody responses against ZIKV and DENV-3 in Fiji

for participants who were seronegative in 2013 and seroconverted in 2015. A) Histogram of

change in neutralisation assay log titre against DENV-3 (n =19) and ZIKV (n=31) between

2013–2015 for individuals who seroconverted to these respective viruses between 2013–2015

(i.e. log titre < 2 in 2013 and log titre ≥ 2 in 2015). B) Histogram of change in log titre

against DENV-3 and ZIKV between 2015-2017 for these individuals

In Fiji, there was a delay of around 18 months between the end of the 2013–14 DENV-

3 epidemic and collection of samples in 2015. As DENV titres can wane following

infection, particularly in individuals with a prior DENV exposure (Clapham et al.,
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Figure 4.11: Waning of neutralising antibody responses against ZIKV and DENV-3 in Fiji

for participants who had a four-fold rise between 2013 and 2015. Histogram of change in

neutralisation assay log titre against DENV-3 (n =25) and ZIKV (n =35) between 2013–2015

for individuals who had a rise in log titre of at least 2 to these respective viruses between

2013–2015. B) Histogram of change in log titre between 2015–2017 against DENV-3 and

ZIKV for individuals who had a rise of at least 2 during this period
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Change in neutralisation titre (2013−15)
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Figure 4.12: Waning of neutralising antibody responses against DENV-1 and DENV-2 in

Fiji for participants who were seronegative in 2013 and seroconverted in 2015. Histogram of

change in neutralisation assay log titre against DENV-1 (n=26) and ZIKV (n=18) between

2013–2015 for individuals who seroconverted between 2013–2015 (i.e. log titre < 2 in 2013

and log titre ≥ 2 in 2015). B) Histogram of change in log titre against DENV-1 and DENV-2

between 2015-2017 for these individuals
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Table 4.7: Change in neutralisation titre between 2013-2017 in a cohort of 45 study partic-

ipants in Fiji. ZIKV and DENV-3 both circulated between the collection of samples in 2013

and 2015 with ZIKV first reported in July 2015 and DENV-3 circulating between October 2013

and January 2015. neutralisation titre levels rose significantly over this period. Between 2015

and 2017, DENV-3 titre levels still increased with a mean change in tire of 0.89. By contrast,

the mean change in ZIKV titre over this period decreased (-1.9)

Virus
2013-2015 change, Mean

[95% CI]
p-value*

2015-2017 change, Mean

[95% CI]
p-value*

ZIKV (n = 31) 5 [4.5, 5.5]
<0.0001

-1.9 [-2.4, -1.5]
<0.0001

DENV3

(n = 19)
3.4 [2.9, 3.9] 0.89 [0.046, 1.7]

* t-test comparing change in neutralisation titre for ZIKV and DENV-3 between 2013-2015, and 2015-2017

2016), titres against DENV-3 in Fiji may therefore have had more time to wane and

reach a stable persistent level than titres against ZIKV, which may have circulated

later than DENV-3. We therefore analysed changes in titre for participants who were

initially seronegative to DENV-1 and DENV-2, which were circulating at low levels

in Fiji between the two serological surveys in 2013 and 2015 (Figure 4.5). As with

DENV-3, we found no evidence of a subsequent overall decline during 2015–17 for

those participants who seroconverted to DENV-1 or DENV-2 during 2013–15 (Figure

4.12).

Of the 45 participants tested by neutralisation assay, 9 were initially seropositive to

ZIKV by NT in 2013. Fitting a generalised additive model to these data, we found that

higher baseline mean NT log titres against DENV were associated with an increased

probability of seropositivity to ZIKV (Figure 4.13A). In contrast, higher baseline mean

DENV titres were not associated with increased seropositivity by MIA in 2013. There

was little difference between the assay results in the 2015 samples (Figure 4.13B), but

we did find evidence of a difference in the 2017 results, with 15/45 participants positive

by MIA and 31/45 positive by NT. This difference was associated with participants’

2013 DENV titres: those with intermediate DENV titres in 2013 had a significantly

lower probability of being seropositive in the MIA in 2017 compared to NT (Figure

4.13C).
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Figure 4.13: Relationship between mean DENV log neutralisation titre across the four

serotypes in 2013 and ZIKV seroprevalence using different assays. (A) Seroprevalence by

MIA, shown in grey, and neutralisation test (NT), shown in orange, for sera collected in

2013. Line shows prediction from GAM fitted to each data set, with shaded region show-

ing 95% CI, and points show raw data. (B) Seroprevalence for sera collected from the same

participants in 2015. (C) Seroprevalence for sera collected from the same participants in 2017

4.5 Discussion

Analysing data from serological surveys conducted in French Polynesia and Fiji at

different time points after the first reported autochthonous ZIKV transmission, we

found evidence of a decline in ZIKV seroprevalence. The high number of participants

from the Fijian cohort that seroreverted between 2015 and 2017 suggested that anti-

ZIKV antibody levels waned in these individuals to the point that they were no longer

detectable by MIA. Using a neutralisation assay to test longitudinal sera collected in

Fiji, we found that the mean change in neutralising antibody titres against ZIKV also

decreased significantly between 2015 and 2017, showing that individual-level antibody

titres against ZIKV as well as overall seroprevalence decreased over time. In contrast,

over the same period, neutralising antibody titres against DENV-3, a closely related

flavivirus which caused a large epidemic in Fiji in 2013-2014 (Kucharski et al., 2018a),

remained stable.

In both countries we found seroprevalence against ZIKV in individuals aged over 16

declined over the two-year period following an outbreak, while the overall level of sero-

154



Mathematical Modelling of Arbovirus Outbreak Dynamics in Fiji and the Wider Pacific

prevalence persisted in children. This pattern was unique to ZIKV compared to DENV

in both countries. It is possible that this is related to the DENV immunological pro-

file of individuals, given that the older population is likely to have experienced more

DENV infections over their lifetime. If an individual has experienced prior DENV in-

fections, high numbers of weakly neutralising cross-reactive B cells may outcompete

näıve B cells for ZIKV antigen (Midgley et al., 2011), leading to a short-term boost

in antibody response against ZIKV following ZIKV infection (Robbiani et al., 2017)

but not a persistent specific response; a similar phenomenon has been observed for

other antigenically variable viruses like influenza (Kucharski et al., 2018b). In the 2017

samples, more participants remained seropositive in the neutralisation assay – which

measures the overall ability of sera to neutralize ZIKV – than in the MIA, which tests

for IgG antibodies against domain III of the envelope glycoprotein. This difference was

greatest for participants who had intermediate baseline titres to DENV in 2013 (Figure

4.13C), which would support the hypothesis that prior DENV exposure may result in

a detectable short-term specific response against ZIKV following ZIKV infection (as

measured by MIA), but not a persistent specific response.

To our knowledge, the only other study to date that has investigated the long-term

persistence of neutralising antibodies against ZIKV was conducted in 62 residents of

Miami (Florida, USA), who had a confirmed ZIKV infection in 2016 (Griffin et al.,

2019). This cross-sectional study found that all participants had neutralising antibodies

against ZIKV 12–19 months after infection. This study also found that at least 37% of

the participants had no evidence of past DENV infection, which is consistent with the

hypothesis that anti-ZIKV immune responses may persist longer in populations that

have had less exposure to DENV. More data are therefore needed to test hypotheses

about the potential impact of pre-existing anti-DENV immune response on anti-ZIKV

antibody waning.

Although we found evidence of a decline in seroprevalence for antibodies against domain

III of the envelope glycoprotein, as well as waning neutralising antibody responses fol-

lowing two ZIKV outbreaks, the implications for susceptibility to future ZIKV infection

remain unclear. Given the antigenic similarity of DENV and ZIKV (Priyamvada et al.,
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2016), it is commonly assumed that the immune response to ZIKV infection will be sim-

ilar to that following DENV infection. High levels of neutralising antibodies to DENV

have been shown to correlate with protection from symptomatic infection (Katzelnick

et al., 2016). Moreover, infection with a single DENV serotype can confer lifelong im-

munity to the infecting serotype as well as a transient period of cross-neutralisation

against heterologous serotypes (Wahala and de Silva, 2011). However, it is unclear in

the context of ZIKV what the relationship is between a specific titre value and suscep-

tibility to further infection. A key aim for future work will be establish how waning

antibody levels as measured by MIA and neutralisation assays may impact protective

immunity, and hence susceptibility to reinfection in populations that have already ex-

perienced transmission of ZIKV.

There are some additional limitations to our analysis. First, we did not have reverse

transcription polymerase chain reaction (RT-PCR) confirmation of ZIKV infection in

individuals sampled in this study. We have presented analysis of representative serolog-

ical surveys in two locations with known, RT-PCR-confirmed ZIKV outbreaks (Mallet

Anne-Laure Musso, Didier and de veille Sanitaire, 2016). However, RT-PCR confir-

mation for ZIKV at the individual level remains difficult to obtain, in particular from

blood samples, and there have been relatively few confirmations globally compared to

the number of suspected cases (Ferguson et al., 2016), let alone analysis of long-term

antibody dynamics in RT-PCR confirmed patients. In French Polynesia, there were ap-

proximately 32,000 reported clinical cases of ZIKV infection, but only 297 documented

RT-PCR-confirmed cases (Mallet Anne-Laure Musso, Didier and de veille Sanitaire,

2016). As a result, antibody responses in RT-PCR-confirmed cases may not necessarily

be representative of immune responses against ZIKV in the wider population, partic-

ularly following asymptomatic infection. Although MIA seropositivity in our study

was defined using control sera collected over a year after RT-PCR-confirmed infection,

our results suggest that this threshold may not detect long-term waning responses in

individuals who had unreported, and likely less severe, infections.

Our analysis was also limited by study design. In French Polynesia, surveys were cross-

sectional, so we were unable to examine temporal antibody dynamics at the individual

156



Mathematical Modelling of Arbovirus Outbreak Dynamics in Fiji and the Wider Pacific

level. However, both cross-sectional studies of the general population were conducted

using population representative cluster sampling (Aubry et al., 2017) in the same remote

island locations with stable population composition, which enabled robust comparisons

of overall seroprevalence. We did identify one potential source of sampling bias with

different DENV exposure profiles in the two surveys, but our conclusions of declining

seroprevalence for ZIKV persisted once we adjusted for this bias. We also used a

different serological testing method between the studies in French Polynesia in 2014 and

2015. However, both used the same recombinant antigens and it has been shown that

there was good agreement between ELISA and MIA in the 2014 samples (see Materials

& Methods). In Fiji, a strength of our study was the collection of longitudinal samples

from the same individuals at three time points. However, our sample size was limited

given the logistical challenge of recontacting participants twice over a four-year period.

These data provided strong evidence that ZIKV seroprevalence declined over the two-

year period following first reports of circulation, but our sample size was insufficient

to fully explore the potential effect of anti-DENV pre-existing immunity on anti-ZIKV

antibody waning once we stratified individuals by previous DENV exposure. Although

the outbreaks of DENV-3 in Fiji and ZIKV in French Polynesia were well-documented

and occurred over a relatively brief period of time (Figure 4.5), it was harder to identify

the likely time of infection for other viruses – such as ZIKV in Fiji or DENV in French

Polynesia – in our study populations. Several participants in Fiji were seropositive to

ZIKV by neutralisation assay (NT) in 2013, but this result may be influenced by cross-

reaction; participants who had high pre-existing titres to DENV in 2013 were more

likely to be seropositive by NT (Figure 4.13A). In our main analysis of titre dynamics,

we therefore focused on the subset of participants who were seronegative by NT in 2013

(Figure 4.10). However, we obtained the same conclusion when participants who were

initially seropositive were also considered (Figure 4.11).

The global ZIKV epidemic began in the Pacific islands in 2013 before spreading in Cen-

tral and South America from 2015. Seroprevalence studies following ZIKV epidemics in

Latin America have been reported but data have either been non-representative (Netto

et al., 2017) or not enough time had elapsed since the outbreak to observe long-term

dynamics (Rodriguez-Barraquer et al., 2019; Zambrana et al., 2018). To our knowl-
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edge, these are the first studies of community seroprevalence over a long-term period

following a ZIKV outbreak. Therefore, patterns observed in Pacific islands may be an

early indication of what might happen to seroprevalence in Latin America where ZIKV

outbreaks began two to three years after the French Polynesia epidemic (Bogoch et al.,

2016; Cao-Lormeau et al., 2014a).

In the short-term, our findings have implications for the design of follow up studies

of ZIKV. Our results provide evidence that levels of seroprevalence one to two years

following ZIKV circulation may be lower than previously expected and study designs

may need to be adapted to reflect this, particularly in settings that exhibit long-term

low level circulation of ZIKV as opposed to large sporadic outbreaks (Ruchusatsawat

et al., 2019). For example, estimates of microcephaly risk may be inflated if derived

from long-term seroprevalence data that underestimate the true extent of infection

within the population, and results of clinical trials could also be biased if post-outbreak

seroprevalence is used an indicator of infection within a population (Cohen, 2018). In

the longer-term, our results demonstrate the value of longitudinal serological studies

of flaviviruses, and analysis using multiple serological tests, including neutralisation

assays (Clapham et al., 2016). Such studies will be essential to understand different

aspects of the short and long-term immune antibody response against ZIKV, and how

prior exposures to DENV may influence these responses.
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4.6 Technical Appendix

4.6.1 Baseline neutralisation titres

In this chapter I have presented an analysis of changes in neutralisation titre between

2013 and 2017. For completeness, the baseline neutralisation titre is presented here for

DENV-3 and ZIKV in those that seroconverted to these viruses between 2013 and 2015

(as in Figure 4.10), and for DENV-1 and DENV-2 in those that seroconverted between

2013 and 2015 (as in Figure 4.12).

4.6.2 Comparison tests

I used a Chi-squared test for association for comparison of cross-sectional seroprevalence

estimates in French Polynesia, and McNemar’s test for seroprevalence estimates from

longitudinal sera from Fiji. Details of both tests are presented in this section.

In the French Polynesia data I wanted to compare the proportion seropositive in 2014

and 2015. I used the χ2 goodness of fit test with the null hypothesis that the proportion

positive in 2014 π2014 and in 2015 π2015 are independent.

Table 4.8 shows an example 2x2 contingency table for the French Polynesia data.

Table 4.8: 2x2 contingency table with observed counts for serostatus in French Polynesia

2014 2015 Total

Seronegative O00 O10 O0.

Seropositive O01 O11 O.1

Total O.0 O.1 O..

Provided the entries in the contingency table are reasonably large the null hypothesis

of no association can be tested with a χ2 test, with test statistic (with continuity
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Figure 4.14: Neutralisation titres for ZIKV and DENV-3 between 2013 and 2017 in those

that were seronegative in 2013 and seroconverted in 2015 for DENV-3 (n=19) and ZIKV

(n=31)
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Figure 4.15: Neutralisation titres for DENV-1 and DENV-2 between 2013 and 2017 in those

that were seronegative in 2013 and seroconverted in 2015 for DENV-1 (n=26) and DENV-2

(n=18).
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correction):

χ2 =
∑
i

∑
j

(
(|Oij − Eij| − 0.5)2

Eij

)
where Eij =

Oi.O.j

O..

(4.1)

Under H0 : χ2 ∼ χ2
1 so p-values are calculated comparing the test statistic to a χ2

1

distribution using the chisq.test function in R.

The data for Fiji was matched by design so individuals could act as their own controls.

This affords us greater statistical power to detect differences between samples as some

unobserved variation is accounted for by samples being taken from the same individual.

Table 4.9 shows an example arrangement of data from a matched study for observed

serostatus in the Fijian data.

Table 4.9: Arrangement of data for McNemar’s test of serostatus in Fiji

2015

2017

Seronegative Seropositive

Seronegative q r q + r

Seropositive s t s+ t

q + s r + t n

In 2015, the proportion of seropositive individuals is p1 = q + s/n and in 2017 the pro-

portion seropositive is p1 = q + r/n. I want to test whether these two proportions differ.

Under H0 the two proportions are equal and the number of discordant pairs should

be balanced, i.e. the number of seroreversions and seroconversions should be equal, or

r = s in Table 4.9. Therefore, if H0 is true then:

r ∼ Binomial(r + s, 0.5) (4.2)

I can then test this using an exact binomial test with the function mcnemar.test in R.

162



Mathematical Modelling of Arbovirus Outbreak Dynamics in Fiji and the Wider Pacific

4.6.3 Age adjusted seroprevalence

We compared seroprevalence estimates in French Polynesia from two independent cross-

sectional surveys conducted in 2014 and 2015. To remove, as far as possible, the effect

of differences in age when comparing these two populations we calculated age-adjusted

seroprevalence Table 4.3.

We used weights for 10-year age bands calculated as the estimated proportion in each

age band in population data collected in 2017 (Table 4.1). We removed age bands with

no samples for that survey, and the proportion in each age-group made a set of weights

for each survey, which represented the age-specific standard population.

Using the ageadjust.direct function from the epitools package (Aragon, 2020) in

R, we calculated age-adjusted seroprevalence for each survey using the direct method.

The function calculates the age-specific seroprevalence rate pj in age-group j as the

number of events Xj divided by the population in that age-group Nj. The age-adjusted

seroprevalence is then the rate in age-group j multiplied by the weight for that age-

group ωj. Confidence intervals are calculated according to Fay and Feuer (1997) which

have been shown to be conservative even in cases where the two populations differ

non-proportionally.

4.6.4 Bootstrap adjustment

The two seroprevalence surveys conducted in French Polynesia in 2014 and 2015 had

different sample sizes. 49 samples were collected in 2014 and 672 in 2015. We wanted

to check for possible biases in the two samples that could have explained the decrease in

estimated ZIKV seroprevalence between the two surveys. One potential confounder was

age but the two age distributions were similar and age-adjusted seroprevalence (Table

4.3) also showed a decrease in ZIKV seroprevalence.

Further investigation showed that the samples in 2014 included a higher proportion of

individuals that had evidence of multiple past DENV infections (Table 4.5). To remove,
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as far as possible, the effect of differences in risk of arbovirus infection in the two samples

we adjusted the estimates of 2014 seroprevalence to match the DENV-exposure profile

of the 2015 survey.

I estimated DENV-exposure adjusted seroprevalence in 2014. For ZIKV, I obtained

the sampling frequency from the 2015 survey of individuals who were seropositive to

(0, 1, 2, 3, 4) DENV serotypes. For each of the DENV serotypes I excluded the serotype

being adjusted. A bootstrap sample was then selected from the 2014 survey with

probability equal to the sampling frequency weights, with replacement, and estimated

the seroprevalence using this bootstrap sample. This process was repeated for 1,000

bootstrap samples and the DENV-exposure adjusted seroprevalence for each virus was

calculated as the mean of these samples. These results are shown in Table 4.6.

I chose this method because I assumed that the 2015 sample was a better representation

of the underlying arbovirus exposure profile in French Polynesia. I therefore attempted

to match the 2014 results to the 2015 sample. This process could have been performed

in reverse, using the 2014 exposure distribution as the weights to take bootstrap samples

from the 2015 survey (Table 4.10). Using this alternative method produced consistent

findings as in the main analysis (Table 4.6) for DENV-1, DENV-3, and DENV-4 which

showed no evidence of a decline. All three of these viruses had circulated in the years

preceding 2014 sample collection (World Health Organisation, 2018). However, with

this alternative method there was a non-significant decline in ZIKV seroprevalence

from 37% (95% CI: 23-52%) to 28% (95% CI: 25-31%) (p=0.25) between 2014 and the

2015 bootstrap estimates.

This sensitivity analysis demonstrates that the evidence for declining ZIKV seropreva-

lence from the two cross-sectional surveys in French Polynesia is less robust than the

results from three longitudinal seroepidemiological surveys in Fiji. The high seropreva-

lence estimate for ZIKV in 2014 in French Polynesia could be a result of a higher

proportion of high infection risk individuals in the sample. The evidence from French

Polynesia alone would have been insufficient to conclude that ZIKV seroprevalence

wanes within two years of an outbreak. This is likely because of the small and non-

representative sampling in 2014. However, the findings from this study were consistent
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with seroprevalence estimates from Fiji over a similar time frame which also demon-

strated waning neutralising antibody dynamics.

Table 4.10: Sensitivity of selected distribution to generate bootstrap estimated seroprevalence

for each of the four DENV serotypes and ZIKV in two cross-sectional surveys. Result are as

in Table 4.6 except 2015 sample were bootstrap sampled, with replacement, weighted by the

exposure distribution to other arboviruses in the 2014 survey (i.e. in reverse to Table 4.6)

Virus

2014

seroprevalence

(95% CI) (n = 49)

2015 seroprevalence (95%

CI) (n = 700)

2015 bootstrap estimates

of seroprevalence (95%

CI)

p-value*

DENV1 0.86 (0.73-0.94) 0.8 (0.77-0.83) 0.92 (0.89-0.94) 0.26

DENV2 0.47 (0.33-0.62) 0.18 (0.15-0.21) 0.25 (0.22-0.28) <0.01

DENV3 0.76 (0.61-0.87) 0.55 (0.51-0.59) 0.7 (0.67-0.74) 0.55

DENV4 0.63 (0.48-0.77) 0.42 (0.38-0.46) 0.61 (0.57-0.64) 0.89

ZIKV 0.37 (0.23-0.52) 0.22 (0.19-0.25) 0.28 (0.25-0.31) 0.25

* chi-squared test comparing 2014 results with 2015 bootstrap estimates

4.6.5 GAM modelling

Generalised additive models (GAMs) have previously been introduced in chapter 3.

In this chapter we used GAMs to analyse the relationship between seroprevalence as

defined by MIA or PRNT and mean DENV log titre (from the PRNT) in 2013. I

wanted to analyse whether the observed decline in ZIKV seroprevalence in older age

groups was because of the history of DENV-exposure in adults compared to children.

The original published version of this analysis includes one such model (Figure 4.13)

(Henderson et al., 2020). In this appendix I compare this GAM with other possible

models to capture ‘previous DENV exposure’ and analyse the relationship with ZIKV

and DENV-3 seroprevalence in 2017.

I defined our explanatory variable X as either mean log titre in 2013, age in 2013,

or number of seropositive DENV serotypes in 2013 as measured by MIA. I defined

serostatus in the 2017 serological survey for each assay α, Yα. The model was as
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follows:

g (E (Yα)) = β + s1 (X) (4.3)

Where E(Y ) denotes the expected value, and g(Y ) denotes the link function, in this

case the logit function because of the binary outcome. The term s1(X) defines a non-

parametric function to model the non-linear relationship between X and Yα, and β

is the intercept. I have used GAMs to flexibly capture the relationship between the

explanatory variable and the binary outcome, instead of determining the parametric

form of this association a priori as in a generalised linear model. I used the mgcv

package in R so smooth functions were represented using penalised regression splines

(Wood, 2019).

Using GAMs to explore ZIKV seroprevalence in 2017

In the original publication we included a GAM comparing ZIKV seroprevalence from

both assays by previous DENV exposure, as measured by mean DENV PRNT titre in

2013 (Figure 4.13) (Henderson et al., 2020). From this analysis it appeared that those

with higher levels of DENV neutralising antibodies (NAbs) in 2013 were less likely

to have ZIKV specific antibodies (i.e. test positive by MIA) in 2017. However, the

probability of seropositivity as measured by PRNT was similar regardless of the level

of DENV NAbs in 2013.

Here I investigate this association further with supplementary GAMs. The model pre-

sented in the original publication used a subset of our study participants, those with

PRNT titre values at all three time points: 2013, 2015, and 2017. This left only 45

participants to be used in the analysis. The panel for 2017 ZIKV seroprevalence has

been recreated here for comparison (Figure 4.16A). If we change the variable used to

quantify the level of prior DENV exposure, then we can include more data. For exam-

ple, we can use age as a proxy for previous DENV exposure and include all of the MIA

data, since age and previous DENV exposure are positively correlated. In a second
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model I used age (in 2013) as the explanatory X variable for ZIKV seroprevalence in

2017 using different assays (Figure 4.16B). Similar to the original model, seroprevalence

by PRNT shows a slight positive association with age but seroprevalence by MIA does

not increase with age in this larger data set (n=320).

Age, however, is not directly related to prior DENV exposure so I used another variable

that would reflect DENV infection history but keep all 320 participants in the model.

I defined previous DENV exposure (the X variable in Equation 4.3) as the number of

positive DENV serotypes by MIA in 2013. This set five levels of prior DENV exposure:

0, 1, 2, 3, or 4. This does not measure strength of DENV immunity as well as the original

model, which used mean DENV PRNT log titre in 2013, but it is available for all 320

participants. In theory, more DENV infections prior to 2013 suggests that a participant

is particularly prone to arbovirus infections and we would expect them to be more likely

to have anti-ZIKV antibodies following the ZIKV outbreak. However, in Figure 4.16C

we see the opposite is true for seroprevalence by MIA. As with the restricted data set

in the original model (Figure 4.16A) people with more DENV exposure previously are

slightly more likely to be seropositive by PRNT but are less likely to be seropositive by

MIA (Figure 4.16C). The advantage of using all 320 participants in this model is clear

when comparing panels A and C, where confidence intervals are more precise in the new

model. The disadvantage of this explanatory variable is that it does not directly capture

the level of anti-DENV antibodies in a serum sample since it relies on binary cut-offs

for seroprevalence. However, despite differences in these two models, the conclusions

drawn from their output are similar.

There is evidence in DENV research that during a secondary DENV infection, the

presence of antibodies from a previous DENV infection are capable of responding more

rapidly during the secondary infection. This altered immune response is referred to as

‘original antigenic sin’ (Halstead et al., 1983; Rothman, 2011). Given the antigenic sim-

ilarity between DENV and ZIKV (Priyamvada et al., 2016) it is possible that previous

DENV infection could also affect the immune response to a subsequent ZIKV infection.

A schematic of this process is shown in Figure 4.17 comparing two hypothetical indi-

viduals, one born several decades ago and has had multiple DENV infections before
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Figure 4.16: Relationship between different exposures to DENV before 2013 and ZIKV or

DENV-3 seroprevalence in 2017 using different assays. (A) The original model (Figure 4.13C)

showing 2017 seroprevalence in a subset (n=45) of participants with PRNT measurements

from all 3 surveys. Seroprevalence by MIA, shown in grey, and neutralisation test (PRNT),

shown in orange, for sera collected in 2017. Line shows prediction from GAM fitted to each

data set, with shaded region showing 95% CI, and points show raw data. (B) Seroprevalence

for sera collected from all participants in 2017 (n =320) by age (in 2013). (C) Seroprevalence

for sera collected from all participants in 2017 (n =320) by the number of positive DENV

serotypes by MIA (in 2013)
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infection with ZIKV (A). The other individual is only infected with ZIKV without any

DENV infections (B). In individual A there is a short-term boost to the specific in

antibody response to ZIKV following ZIKV infection but it is lower than the immune

response to earlier DENV infections. Whereas for individual B the antibody response

to ZIKV is higher and persistent.
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Figure 4.17: Schematic of immune response against sequential arbovirus infections. A, an

older individual with two previous DENV infections before infection with ZIKV. B, a younger

individual who is näıve to DENV and ZIKV until a ZIKV infection at the same time as

individual A. In this simple illustration, individual A develops high levels of antigen-specific

long-term IgG antibodies to DENV-1, the first infection of their life. This infection generates a

cross-reactive response in related viruses. When infected with DENV-3 the virus population is

neutralised with DENV-3 specific antibodies and cross-neutralising antibodies from the previous

infection. The level of DENV-3 specific antibodies therefore does not reach the antigen-specific

response from the primary infection, which produces the ‘antigenic seniority’ effect. This effect

repeats when infected with ZIKV such that the ZIKV-specific response declines in individual

A. In individual B, the ZIKV-specific response is larger and persistent because it is their first

infection

Our results in Figure 4.16 show some evidence that previous DENV exposure alters the

immune response to ZIKV infection. I used three different variables as a proxy for pre-
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vious DENV exposure. In each model (Figure 4.16A-C) there was a trend that DENV

näıve individuals were more likely to be seropositive by MIA, i.e. have ZIKV specific

antibodies. This could have implications if people with previous DENV exposure do

not have a persistent specific response against ZIKV following infection. Cross-reactive

antibodies from previous infections can still be strong neutralisers, however they may

not have optimal avidity for the infecting virus (Midgley et al., 2011; Rothman, 2011).

The strength of these GAMs is the ability to flexibly model non-linear relationships

between explanatory and dependent variables without specifying the parametric form

of this association. From these models, we found some evidence that those with higher

levels of DENV exposure prior to the emergence of ZIKV in Fiji (pre-2013) were less

likely to be seropositive by MIA for ZIKV in 2017, but were equally or more likely to

be seropositive by PRNT. Our study results suggest that previous DENV exposure has

an effect on the long-term immune response to a subsequent ZIKV infection.
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Abstract

Since 2007, Zika virus (ZIKV) has caused several large, brief outbreaks in isolated pop-

ulations. However, recent evidence suggests ZIKV can also persist at low levels over

multiple years. The reasons for these diverse transmission dynamics remain poorly un-

derstood. In Fiji, which has experienced multiple large single-season dengue epidemics,

there was evidence of multi-year low level transmission of ZIKV between 2013 and 2017.

To identify factors that could explain these differences in dynamics between closely re-

lated mosquito-borne flaviviruses, we jointly fitted a transmission dynamic model to

surveillance, serological and molecular data collected during this period. We estimated

that the observed dynamics of ZIKV were the result of two key factors: strong seasonal

effects, which created an ecologically optimal time of year for outbreaks; and introduc-

tion of ZIKV after this optimal time, which allowed ZIKV transmission to persist over

multiple seasons before a combination of immunity and seasonal forcing ended trans-

mission in 2017. We found the basic reproduction number was slightly lower in Fiji

for ZIKV than for a concurrent dengue outbreak but that the main determinant of the

different outbreak dynamics was the timing and amplitude of the introduction of the

virus. With our model, we were also able to identify a period of high epidemic risk in

Fiji. The ability to jointly fitted to multiple data sources could help identify a similar

range of possible outbreak dynamics in other settings.
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5.1 Background

5.1.1 Flavivirus dynamics are poorly understood

Zika virus (ZIKV) and dengue virus (DENV) are two closely related flaviviruses that

share the same primary vector of transmission, the Aedes genus of mosquitoes (Musso

and Gubler, 2016). Due to these similarities, both viruses often create similar outbreak

dynamics in the same population with large, brief outbreaks, particularly in isolated

island populations (Craig et al., 2018; Duffy et al., 2009; Kucharski et al., 2016). How-

ever, alongside examples of clearly-defined outbreaks of ZIKV with a high attack rate

during 2014-16 (Cao-Lormeau et al., 2014; Rodŕıguez-Barraquer et al., 2016; Zambrana

et al., 2018), there is evidence of low-level, multi-year circulation (Ruchusatsawat et al.,

2019). ZIKV epidemics have occurred in humans since 2007 (Musso et al., 2019) and

understanding the factors that caused this plurality of outbreak dynamics during the

global ZIKV epidemic remains unclear.

Explanations of different outbreak dynamics are often attributed to local factors. The

climate, population, people movement and mosquito populations differ greatly between

locations and these all have an effect on arbovirus transmission. We do, however, expect

these two viruses to behave similarly in the same location. Funk et al. (2016), studied

DENV and ZIKV outbreaks in the islands of the Federated States of Micronesia and

found greater similarity between viruses on the same island than the same virus between

different islands. We might therefore expect similar outbreak dynamics from DENV

and ZIKV in the same location.

Studying flavivirus outbreaks is complicated by the difficulties in collecting data on in-

fections with these viruses. Primarily this is because of the large proportion of asymp-

tomatic infections. A systematic review of the prevalence of asymptomatic ZIKV infec-

tion estimated that these account for 61.8% (95% CI: 33-87.1%) of all ZIKV infections

(Haby et al., 2018). Collecting data during an emerging outbreak is challenging, even

for well-established surveillance systems and this is especially true in the case of a novel

virus like ZIKV which circulated in the Pacific before there was global attention once
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outbreaks began in the Americas (Musso et al., 2019). The challenges of collecting

data during an emerging outbreak mean that the reasons for these diverse flavivirus

dynamics are currently not well understood.

5.1.2 Recent DENV and ZIKV in Fiji

To investigate which factors shape the invasion dynamics of DENV and ZIKV outbreaks

we studied recent outbreaks in Fiji in the South Pacific. We combined surveillance,

serological and molecular data to analyse the emergence of ZIKV and re-emergence of

dengue virus serotype 3 (DENV-3) in the same population in Fiji, which resulted in

very different outbreak dynamics.

In 2013-14, a large number of DENV-3 cases were reported October 2013 and May 2014.

During this period, 12,413 suspected cases were reported in Central Division (Kucharski

et al., 2018). Of the 8,734 laboratory tested cases from Central Division that were noti-

fied to the Fiji National Centre for Communicable Disease Control, 3,633 (41.6%) were

reactive for DENV nonstructural protein 1 (NS1) and/or anti-DENV immunoglobulin

class M antibodies (IgM) (Kucharski et al., 2018). This was a large and short outbreak

that likely ended due to a combination of increased herd immunity, seasonal forcing

and an additional reduction in transmission possibly from interventions on the vector

population (Kucharski et al., 2018). This outbreak was similar in dynamics to typical

flavivirus outbreaks in Fiji (Kiedrzynski et al., 1996; Roth et al., 2014; Singh et al.,

2005).

In contrast, there is evidence that ZIKV was locally transmitted in Fiji but there were

only 16 PCR-confirmed cases between July 2015 and February 2017 in Central Division.

Kama et al. (2019), studied data from a longitudinal community serological survey and

found an increase from 7.8% seroprevalence to ZIKV in November 2013 to 21.9% in

November 2015, with evidence of low-level circulation over multiple seasons. This sug-

gests that ZIKV had been circulating during this period despite only 2 confirmed cases

being reported. This outbreak was very different to typical flavivirus outbreaks in Fiji.

Firstly, the serological data suggests that transmission mostly occurred unobserved, be-
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fore any ZIKV cases were detected. Secondly, there was confirmed transmission of ZIKV

over several years when typical DENV outbreaks occur over a single high temperature

season in Fiji (Kiedrzynski et al., 1996; Kucharski et al., 2018).

Further, the estimated time to most recent common ancestor (tMRCA) estimated in

phylogenetic analysis of available ZIKV gene sequences – including from 3 ZIKV cases

from Central Division, Fiji – suggested that ZIKV may have been introduced into

Fiji in late 2013 or 2014 (Kama et al., 2019) (Figure 5.1). This raises the possibility

that DENV-3 and ZIKV were circulating at the same time. This could be a potential

factor that determined unusual flavivirus dynamics since DENV outbreaks in Fiji have

typically been of a single serotype and co-circulation has not been common (Kiedrzynski

et al., 1996; Singh et al., 2005).

Studying the data on ZIKV transmission raises several questions about this outbreak.

What was the overall burden of infection? When did the virus emerge and start spread-

ing in Fiji? Where might it have arrived from? We wanted to analyse this ZIKV

outbreak to understand why it looked so different to the DENV-3 outbreak of 2013-14.

5.1.3 Available flavivirus data in Fiji

A unique aspect of this study is the combination of three different data sources with

a mathematical model of transmission. By working closely with partners and collab-

orators in Fiji and international researchers, we acquired surveillance, serological and

molecular data on flavivirus transmission between 2013 and 2017. A summary of avail-

able data is shown in Figure 5.1.

Surveillance data was provided by the Fijian Ministry of Health and includes informa-

tion on the timing and burden of confirmed cases of ZIKV and DENV-3. Cases of ZIKV

were confirmed using reverse transcription polymerase chain reaction (RT-PCR), cases

of DENV-3 were suspected DENV with a proportion reactive for DENV NS1 and/or

anti-DENV IgM in laboratory tests (Kucharski et al., 2018). There were 16 cases of

ZIKV confirmed in Central Division between 2015 and 2017 but only 2 of these were
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reported in 2015 and one in 2017. Between October 2013 and May 2014 there were

12,413 suspected cases of DENV-3 in Central Division (Kucharski et al., 2018).

Data are available from a longitudinal serological study in Fiji with data collected in

2013, 2015 and 2017. Colleagues at Institut Lois Malardé in French Polynesia tested

sera to test if they were reactive for immunoglobulin class G (IgG) antibodies for the four

DENV serotypes and for ZIKV (Henderson et al., 2020; Kama et al., 2019). DENV-3

seroprevalence increased from 33.1% (95% CI: 27.4-39.1%) in November 2013 to 53.2%

(95% CI: 47-59.4%) in November 2015, after the outbreak (Kucharski et al., 2018).

ZIKV seroprevalence in participants that were sampled three times in 2013, 2015 and

2017 was low in 2013 at 6.3% (95% CI: 3.3-11%) and increased to 24% (95% CI: 19-

31%) in November 2015 before decreasing to 12% (95% CI: 7.9-18%) in 2017 (Henderson

et al., 2020).

Finally, molecular data was collected by colleagues for a separate study on ZIKV trans-

mission in Fiji and they helpfully shared the raw data for this analysis. Envelope (E)

gene sequences were isolated from five ZIKV patients in Fiji and three of these were

from individuals in the Central Division. A previous phylogenetic analysis of these

sequences combined with other Pacific and global sequences estimated a tMRCA of

November 2013 (95% HPD: March 2013-July 2015) (Kama et al., 2019).

5.1.4 Modelling ZIKV transmission in Fiji

Both ZIKV and DENV can cause asymptomatic or subclinical infections (Haby et al.,

2018; Mitchell et al., 2019), which means many infections will not appear in routine

surveillance data. We therefore wanted to combine the information available in these

three separate data sources to estimate transmission dynamics of DENV-3 and ZIKV.

We chose a simple deterministic model structure for arbovirus transmission that was ap-

propriate for modelling DENV or ZIKV transmission. We used a Susceptible-Exposed-

Infectious-Recovered framework for the human population and a Susceptible-Exposed-

Infectious framework for the mosquito population. We jointly fitted our model to
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Figure 5.1: Available data on ZIKV transmission in Fiji. (A) Dated Bayesian phylogeny of

three sequences recovered from Central Division, Fiji, and other locations in the Pacific and

Americas. Nodes with a posterior probability of 1.00 are indicated. Branch lengths correspond

to time in calendar years. (inset B) Detailed phylogeny of the Central Division cluster. The

estimated time to most recent common ancestor (tMRCA) for the two closely related Central

Division sequences, selected based on previous analysis (Kama et al., 2019), is shown. (C)

Green region, density of estimated tMRCA from phylogenetic analysis. This distribution was

used as a prior for ZIKV introduction time in the main transmission model fitting. Pink line,

cases of DENV3. Blue bars, cases of ZIKV. Grey bars, serological samples collected in Central

Division.
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surveillance data, three longitudinal serological surveys and virus sequences to estimate

unobserved ZIKV infection dynamics in Fiji during 2013-18. We used this model to

identify factors that could explain why the dynamics of ZIKV and DENV-3 were so

different.

There are several possible explanations for differences in flavivirus dynamics in the same

population. We designed a mathematical model that would be flexible enough to com-

pare four possible explanations for the diverse outbreak dynamics. Firstly, that ZIKV

was less transmissible than DENV in Fiji: analysis of flavivirus outbreaks on other Pa-

cific islands found that ZIKV can have a slightly lower basic reproduction number, R0,

than DENV in the same location (Champagne et al., 2016; Funk et al., 2016). Another

factor is seasonality: because mosquito populations are influenced by environmental

factors like temperature and rainfall (Lourenço et al., 2017; Mordecai et al., 2017) there

is a strong temporal component to flavivirus transmission in Fiji (Kucharski et al.,

2018); the time of year the virus is introduced therefore could influence the dynamics

of the resulting outbreak. Additionally, flavivirus outbreak dynamics will depend on

prior immunity within the population, as well as immunity that accumulates during an

outbreak (Funk et al., 2016; Kucharski et al., 2018; Netto et al., 2017), or wanes follow-

ing infection (Henderson et al., 2020). Finally, the tMRCA of ZIKV in Fiji spans the

duration of a large DENV-3 outbreak (Figure 5.1C), so it is possible that infections dur-

ing the DENV-3 outbreak also conferred a degree of transient cross-protection against

other flaviviruses (Gordon et al., 2019; Montoya et al., 2018; Rodriguez-Barraquer et al.,

2019).
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5.2 Materials & Methods

5.2.1 Ethics statement

Each serosurvey had ethical approval from both the Fiji National Research Ethics Re-

view Committee (2013-03, 2015.111.C.D and 2017.20.MC) and the London School of

Hygiene & Tropical Medicine Observational Research Ethics Committee (6344, 10207

and 12037). All participants in follow-up studies in 2015 and 2017 had agreed to

be recontacted for further health research and an updated informed consent was ob-

tained. To respect local customs and ensure research activities were culturally accepted,

the head of the household or village was visited with local bilingual field teams. The

study was explained in English or iTaukei at the preference of the potential participant.

Parental/guardian consent was obtained for children under 18.

5.2.2 Data

Surveillance data

Between June 2015 and August 2017 there were 16 RT-PCR confirmed cases of ZIKV

through laboratory surveillance in Central Division, Fiji. The collection of surveillance

data in Fiji has been previously described (Chapter 1) (Kucharski et al., 2018). Over the

period 27th October 2013 to 31st August 2014, there were 12,413 DENV-3 suspected

cases reported in Central Division. This data set has been previously published by

Kucharski et al. (2018).

Serological data

I used serological data collected from a longitudinal seroepidemiological survey over

the period 2013-2017 with three visits to the same participants in Central Division,

Fiji. Samples were tested for detection of IgG antibodies against ZIKV using a re-

combinant antigen-based microsphere immunoassay (MIA). Full details of the data
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collection method and serological tests used has been previously described (Chapters 2,

4) (Aubry et al., 2017; Cao-Lormeau et al., 2016; Henderson et al., 2020; Kama et al.,

2019; Kucharski et al., 2018).

Molecular data

A previous study details the recovery of the envelope (E) gene of ZIKV strains from

Fiji and the original phylogenetic analysis that informed this study (Kama et al., 2019).

The sequences from Central Division were recovered from two saliva samples collected in

2015 and a serum sample collected in 2016. The retrieval of sequences from GenBank

has been detailed previously (Kama et al., 2019). In brief, sequences were retrieved

from GenBank and selected using nucleotide BLAST searches (Altschul et al., 1990). I

retained all sequences with a reported date of sampling and country of origin sharing

more than 99% genetic identity to the Fiji sequences. I removed duplicates as done in

the original study, but I retained all sequences including those from Europe and Africa.

In total, the ZIKV alignments contained 120 sequences including five from Fiji, three

of which were from Central Division.

Climate data

I collated daily maximum and minimum temperature from the Fiji Meteorological Ser-

vice which covered the study period up to June 2017. I calculated the daily average

temperature as the mean of the maximum and minimum temperature recorded on that

day. Data on diurnal variability were not available for this study. I was also limited

by a lack of rainfall data for the study period. However, previous work has found that

temperature, not rainfall, was the key determinant of seasonal fluctuations of ZIKV

transmission (Lourenço et al., 2017).
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5.2.3 Modelling

Data on ZIKV transmission in Fiji was sparse and apparently contradictory. Serologi-

cal data showed evidence that approximately 17% of the population developed ZIKV-

specific antibodies between November 2013 and November 2015, however only 2 cases

were confirmed in surveillance data over that period. To model the underlying transmis-

sion dynamics, I collected data from other sources that could inform ZIKV transmission

dynamics in Fiji between 2013 and 2017. A summary of available data and how it was

included in our final ZIKV transmission model is shown in Figure 5.2.

Each step in this analysis is outlined in detail later in this section but is briefly sum-

marised here. I initially estimated the dynamics of seasonal forcing on transmission

from temperature data in Fiji and used these values in a model of the 2013-14 DENV-3

epidemic. This DENV-3 model was fitted to DENV-3 surveillance and serology using

a model similar to a previous study in Fiji (Kucharski et al., 2018). Prior distributions

were specified for the full ZIKV transmission model for parameters determining the

seasonal forcing of transmission (βamp, βmid) and the effect of a mosquito clean-up cam-

paign in March 2014 on arbovirus transmission (βbase) by using a posteriori estimates

from this DENV-3 model.

At the same time, I performed a phylogenetic analysis of three ZIKV sequences from

Central Division, Fiji, aligned with 117 other global ZIKV (Asian lineage) sequences.

From this analysis I obtained an estimate of the distribution of the tMRCA for the

Central Division cluster and used this as a prior for the midpoint of the introduction

of ZIKV to Central Division (ψm).

Finally, these informative priors were used in the full ZIKV transmission model which

was fitted to both surveillance and serological data using a Markov Chain Monte Carlo

(MCMC) framework.
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ZIKV transmission model
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Figure 5.2: Schematic of modelling approach and available data. The final ZIKV transmis-

sion model (red rectangle) used direct data inputs on ZIKV surveillance and serology. Data

(orange circles) were used to fit models (blue rectangles) and estimate certain parameters.

Information from these model fitting processes was incorporated into this final transmission

model through specification of informative priors and fixed values (red arrows)
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Figure 5.3: A, daily temperature (°C) in Fiji. B, relationship between average daily tem-

perature and R0 in Suva, Central Division, Fiji. Black line, mean posterior estimate of the

relationship between temperature and relative R0 for arboviruses transmitted by Aedes aegypti

mosquitoes (Mordecai et al., 2017). Blue line and region, median and interquartile range of

average daily temperature in Fiji between November 2013 and June 2017

Modelling seasonal forcing using temperature data

I assumed a linear relationship between temperature in Fiji and the relative trans-

mission of ZIKV based on research from Mordecai et al. (2017). The authors of this

study integrated data from several laboratory experiments into a mathematical model of

temperature-dependent transmission. The study defined the relationship between tem-

perature and relative R0 of ZIKV transmitted by Aedes aegypti mosquitoes and found

maximal transmission occurring in a range from 26-29°C. Data from this study were

publicly available and are shown in Figure 5.3 along with the median and interquartile

range of the average daily temperature from Fiji over our study period. Although the

relationship between temperature and R0 is non-linear, it is mostly linear in the range

of temperatures observed in Fiji across our study period.
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Seasonal variation in temperature is known to affect the population and ability of the

primary vector of ZIKV, Aedes aegypti mosquitoes, to transmit viruses (Descloux et al.,

2012; Gubler, 1998; Mordecai et al., 2017). Annual temperature in Fiji follows a wave-

like pattern so to capture variation in transmission over time I defined a sine function

with parameters that determine the amplitude (βamp) and midpoint (βmid) of the sine

wave (Equation 5.1). I assumed that transmission of both DENV and ZIKV would

vary seasonally. Under the assumption of a linear relationship, the rate of transmission

from mosquitoes to humans (βZ) and humans to mosquitoes (βM) both vary with time

t. The transmission rate at time t is defined by the seasonality function:

seasonali(t) = 1 + βamp sin (2π (t+ βmid)) ; i = Z,M (5.1)

The sine function 5.1 was fitted to daily average temperature data (Fiji Meteorological

Service, 2017) using MCMC via a Metropolis-Hastings algorithm with weakly informa-

tive priors. I assumed that the temperature data at time t was normally distributed

with mean µ and standard deviation σ derived from the overall time series temperature

data. Let the parameter set Υ = (βamp, βmid), the corresponding estimated temperature

data from the sin function S = {st}Tt=1 and recorded temperature data Y = {yt}Tt=1.

The overall log-likelihood was then:

L (Υ|Y ) =
∑
t

logP (yt|st) (5.2)

I used bootstrap samples of the a posteriori estimates of βamp and βmid to obtain

samples of the sine wave defined in Equation 5.1. I defined the amplitude of seasonal

forcing as the range between peak and low temperature from the sine function rather

than the maximum and minimum temperature in the raw data which could have been

influenced by outliers. However, this method does exclude the delay between changes

in temperature and changes in transmission intensity (Lourenço et al., 2017). I then

used the previously defined relationship between temperature and relative R0 (Mordecai

et al., 2017) to convert this temperature range into a range of relative transmission

of ZIKV or DENV. This value for βamp and the median estimate for βmid was then
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fixed when modelling DENV-3 and ZIKV transmission subsequently. This reduced the

number of parameters to estimate in the main ZIKV transmission model while capturing

the effect of temperature fluctuations on arbovirus transmission in Fiji.

Modelling the 2013-14 DENV-3 epidemic and the effect of vector control

interventions in March 2014

There is evidence that a vector control campaign reduced transmission during the 2013-

14 DENV-3 outbreak (Kucharski et al., 2018). Given the overlapping geographic region

of this DENV-3 epidemic and the ZIKV transmission of this study, I assumed that the

effect of the clean-up campaign in March 2014 would have the same effect on ZIKV

transmission if ZIKV was circulating at this time.

I adapted the control function used by Kucharski et al. (2018) which was a flexible

sigmoid function. An example of the relative effect of this function on transmission is

shown in Figure 5.4 with parameter values set at initial conditions for the full ZIKV

model.
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Figure 5.4: Schematic of control function in ZIKV transmission model

This function is defined by four parameters. According to Equation 5.3, relative trans-
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mission at time t would reduce to level βbase with midpoint βcentre. In the original

analysis relative transmission remained at βbase permanently. In this analysis of ZIKV

the study period is much longer than that of the DENV-3 outbreak so I adapted the

function with a quadratic denominator and a scaling factor of 4. This function then

temporarily reduces transmission relative to a baseline level before returning to the

original baseline level (Figure 5.4).

controli(t) = 1− 4βbase
e (βcentre − t)/βwidth

(1 + e (βcentre − t)/βwidth)
2 (5.3)

I initially used this function when fitting the 2013-14 DENV-3 epidemic. For this

analysis I fixed βcentre so that the reduction centred around March 2014 when the vector

control campaign was implemented as demonstrated in Kucharski et al. (2018). From

fitting to DENV-3 surveillance and serological data I obtained a posteriori estimates

for βbase and βwidth.

I fitted our SEIR model to surveillance and serological data using MCMC and a negative

binomial likelihood over 25,000 iterations using the priors outlined in Table 5.1 below.

I then fixed the value of βwidth and used an informative prior for the parameter βbase to

reduce the number of parameters estimated in the final model.

Phylogenetic modelling of ZIKV sequences

I reproduced previous phylogenetic analysis by Bayesian MCMC inference (Kama et al.,

2019). I reconstructed phylogenies in nucleotide substitutions per sites and in unit of

time (‘dated’ phylogenies) by Bayesian MCMC inference, using the package BEAST

(v1.10.4) (Drummond et al., 2012). I had a data set of 120 aligned ZIKV sequences

and generated a taxon set for two of the Central Division sequences. There were three

sequences isolated in Central Division, however the phylogenetic analysis gave weak

branch support for a cluster of all three sequences (Kama et al., 2019). There was

very strong branch support for the relationship between two of the sequences – 18A,

recovered in 2015; and 1568, recovered in 2016 – so I formed a monophyletic taxon
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set and estimated the tMRCA for these two samples as the estimate for the tMRCA

for Central Division as a whole. The analysis was performed using the General Time

Reversible (GTR) model to allow flexibility in the nucleotide substitution rate matrix.

I used gamma-distributed rate heterogeneity with four gamma categories (Kama et al.,

2019; Lemey et al., 2009; Yang, 1995). I used a coalescent Bayesian skyline tree prior

with ten groups and a piecewise-constant skyline model (Drummond et al., 2005). The

analysis was run using a strict clock and an uncorrelated relaxed clock with a lognormal

distribution (Drummond et al., 2006). The joint distributions were compared and

showed improved performance from the uncorrelated relaxed clock model so this model

was used. A mean substitution rate prior of 4e−4 substitutions per site per year was

used. The MCMC chains were run with 20 million iterations. Convergence of the

estimates was considered satisfactory when the effective sample size (ESS) calculated

in Tracer v1.6.0 was >200.

Modelling ZIKV: Introduction function

The main ZIKV transmission model used a continuous flow of infectious individuals into

the infectious compartment to better represent real introduction dynamics rather than a

single introduction event at a single fixed point in time. This does not capture multiple

separate introduction waves across multiple years. The number of introductions varied

with three parameters, the peak (ψb), midpoint (ψm) and width (ψw) according to the

introduction function (for time t):

ψ(t) = 4ψb

(
e (ψm − t)/ψw

(1 + e (ψm − t)/ψw)
2

)
(5.4)

Where ψ(t) is the number of infectious introductions in time t. Equation 5.4 produces

a symmetric function centred around ψm as demonstrated in Figure 5.5. the integral

of Equation 5.4 between −∞ and ∞ gives the total number of ZIKV introductions

and is equal to 4ψbψw. ψm had an informative prior derived from the tMRCA from

a phylogenetic analysis. I took the posterior distribution of the tMRCA from the

BEAST analysis and used the fitdistr function from the R package MASS to estimate
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Figure 5.5: Schematic of introduction function in ZIKV transmission model

the empirical mean and standard deviation of this distribution. These parameters were

then used to define a Gaussian distributed informative prior for ψm.

Modelling ZIKV: Transmission model

I developed a model which had flexibility to consider four possible factors that could

identify the cause of diverse flavivirus dynamics: accumulation of herd immunity during

the outbreak, seasonal variation in climate and the impact of virus introduction time,

interaction between DENV and ZIKV resulting from cross-protection, and inherent

viral transmissibility.

I modelled ZIKV transmission using a deterministic compartmental model with transi-

tions following a susceptible-exposed-infectious-removed (SEIR) structure. The model

had ten compartments in total. Upon exposure to ZIKV, humans moved from ini-

tially susceptible (SZ) to a latent class (EZ), then an infectious class (IZ) and finally

a recovered class (RZ). During the 2013-14 DENV-3 outbreak, a proportion (χ) of

those infected with DENV-3 but susceptible to ZIKV were temporarily removed from

the SZ compartment while clearing the DENV-3 infection. For DENV-3, the human
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population similarly moved between susceptible (SD), latent (ED) and infectious com-

partments (ID) before returning to the susceptible-to-ZIKV compartment SZ over two

transitional compartments T1D and T2D. Two compartments were used so that the

duration to return to susceptible would follow an Erlang, not exponential, distribution

(Camacho et al., 2011; Wearing et al., 2005). Using an exponential distribution means

that there is nonzero density for the null duration in a compartment, so some people

can transition artificially rapidly. Using an Erlang distribution solves this problem and

is particularly valuable when the average duration of in a compartment is long as it is

between T2D and SZ .

The model included seasonal forcing on the transmission rate using a sinusoidal function

and a temporary reduction in transmission in March 2014 from a mosquito clean-up

campaign as previously characterised (Kucharski et al., 2018) and described in Equa-

tions 5.1 and 5.3. In this main transmission model, the parameters that determined the

force of infection for the simultaneous DENV-3 epidemic (SD, ED, ID, T1D, T2D) were

fixed such that R0 was 1.3 and a proportion (χ) of those infected with DENV-3 would

become temporally immune from ZIKV. The force of infection at time t for ZIKV

infection in humans λZ(t) was as follows:

λZ(t) = βZ (seasonalZ(t)× controlZ(t)) (5.5)

(5.6)

The full model was as follows. The compartment C is introduced to capture the cumu-

lative incidence of infections in the model.

dSZ/dt = η − SZ(λZ(t)IZ/N)− χ (SDβDID/N) + χ(2ωT2D)− µSZ (5.7)

dEZ/dt = SZ(λZ(t)IZ/N)− (µ+ αZ)EZ (5.8)

dIZ/dt = αZEZ − (µ+ γZ)IZ + ψ(t) (5.9)

dRZ/dt = γZIZ − (µ+ ρ)RZ (5.10)

dC/dt = αZEZ (5.11)
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(5.12)

dSD/dt = − (SDβDID/N) (5.13)

dED/dt = (SDβDID/N)− αDED (5.14)

dID/dt = αDED − γDID (5.15)

dT1D/dt = γDID − 2ωT1D (5.16)

dT2D/dt = 2ωT1D − 2ωT2D (5.17)

All parameters except the force of infection λi(t) and introduction of ZIKV infections

ψ(t) were fixed over time. I fixed values for the duration (in days) of the intrinsic

incubation period 1/αZ = 1/αD = 6.1 days (Fourie et al., 2018). Likewise, the duration

of the infectious period for ZIKV and DENV-3 in humans 1/γD = 1/γZ = 5 days (Duong

et al., 2015). I also fixed the duration of cross-protection from DENV-3 1/ω = 30 days

which was a conservative estimate as ZIKV neutralising antibodies in DENV infected

patients had been shown in vitro to not persist beyond 6 months previously (Collins

et al., 2017). In a sensitivity analysis I fitted the model assuming that cross-protection

persisted for 6 months. I also fixed the duration of detectable ZIKV antibodies ρ−1 =

400 days based on our serological studies in French Polynesia and Fiji which found

a decrease in ZIKV-specific antibodies 18 months after outbreaks in both locations

(Henderson et al., 2020). This study also showed no evidence that DENV-3 antibodies

did not wane over time so the parameter ρ was set to ∞ when running the model for

DENV-3.

I set the initial population size N to be 342,000 as per Fiji census data from 2007 (Fiji

Bureau of Statistics, 2018; Kucharski et al., 2018). I used a death rate (µ) of the inverse

of life expectancy in Fiji of 67 years (The World Bank, 2020a). Data from the World

Bank shows that the birth rate in Fiji is approximately 2.5 times higher than the death

rate (The World Bank, 2020b,c). I therefore set η = 2.5µ.

The DENV outbreak for this model was fixed and did not include seasonality for par-

simony. The parameters βD, αD and γD were set such that 20% of the population were

infected between October 2013 and April 2014, consistent with previous modelling

(Kucharski et al., 2018).
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As detailed above, the force of infection λZ(t) was time dependent according to seasonal

forcing and the effect of a clean-up campaign in March 2014. The force of infection was

relative to the baseline transmission rate βZ , which is used as a single term to incorpo-

rate number of female mosquitoes, biting rate, probability of contact and probability of

transmission. Without better entomological data from Fiji I used this simpler approach

with a single transmission rate.

The introductions of infected individuals ψ(t) was time dependent as defined above

in Equation 5.4. The introduction of DENV-3 to the model was fixed such that 160

individuals were introduced at the start of the outbreak in November 2013, consistent

with previous research (Kucharski et al., 2018).

The effective reproduction number, R, was defined as follows. The basic reproduction,

R0, was calculated by the same method, but assuming that both humans and vectors

were fully susceptible (Keeling and Rohani, 2011).

R =
SβZαZ

(µ+ γZ)(µ+ αZ)
(5.18)

Deterministic models can generate artificially cyclical epidemics. To better reflect re-

ality, I included two conditions explicitly in the model. Firstly, there had to be at

least one infectious individual for the virus to transmit to prohibit virus persistence at

implausibly low levels over the low-transmission season. Secondly, I set the number of

infectious introductions to zero if the effective reproduction number was below 1. This

prevents epidemic take-off at implausible points of the year.

Full transmission model fitting

This model was used to separately fit both the DENV-3 and ZIKV epidemics to serolog-

ical and surveillance data. I have described equations, compartments and parameters

as ZIKV or DENV because ZIKV is the primary focus of the study. However, the

same model was used to fit DENV-3 as the primary infection of interest, which was
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Figure 5.6: Model schematic of ZIKV transmission model. Dotted lines show demographic

transitions. People do not move from the Zika compartments to the Dengue compartments.

However, a proportion (χ) of those infected with dengue are temporarily removed from the

Zika compartments while they transition from SD to T2D and return to SZ at rate ω

done to obtain estimates for parameters controlling the seasonal forcing and reduced

transmission during the clean-up campaign. The parameter χ was set to zero for this

DENV-3 model run so that the SD, ..., T1D compartments did not affect the dynamics

in the primary infection compartments.

An informative prior was used for the introduction time for all ZIKV model runs. I

fitted an empirical distribution to the posterior distribution presented in our study

(Figure 5.1C) and used this as the prior for ψm. Since the posterior for tMRCA from

the phylogenetic analysis had an imprecise estimate, the prior information in the trans-

mission model fitting was weak. I fixed the value of ψw to 10 days because of mixing

problems from a larger parameter set. To keep the flow of infected individuals to the

model below a plausible value I used a uniform prior on the parameter ψb. This re-

stricted the total number of introductions for each simulation of the model to be >1

and <800 (Table 5.1).

The full ZIKV transmission model was jointly fitted to case and serological data using
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Table 5.1: Parameter set for arbovirus model fitting

Parameter DENV-3 model prior ZIKV model prior

βZ U(0, 1) U(0, 1)

Seasonal amplitude (βamp)
∗ Fixed Fixed

Seasonal midpoint (βmid)
∗ Fixed Fixed

Initial immune (R0) N(0.331, 0.2) Fixed to zero

Reporting proportion (r) U(0, 1) U(0, 1)

Test specificity (1− ε) Fixed N(0.07, 0.15)∗∗∗∗

Test sensitivity (ζ) Fixed N(0.8, 0.15)∗∗∗∗

Cross protection (χ) NA U(0, 1)

Waning ZIKV antibodies

(ρ)
NA U(0,∞)

Relative reduction during

clean-up campaign∗∗ (βbase)
N(0.57, 0.15)∗∗∗ N(µDENV 3, σDENV 3)

ZIKV introduction date

(ψm)
Fixed N(µBEAST , σBEAST )

ZIKV introductions peak

(ψb)
Fixed U(0.25, 25)

∗ Seasonal parameters are fixed from fitted values to temperature data

∗∗ Clean-up campaign in March 2014

∗∗∗ (Kucharski et al., 2018)

∗∗∗∗ (Henderson et al., 2020)
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adaptive MCMC with a Metropolis-Hastings algorithm. I assumed that cases were

distributed according to a negative binomial distribution with mean equal to the number

of incident infections reported in the model ct = r(Ct −Ct−1), where r is the reporting

proportion. The dispersion parameter φ adjusted for the inequality between mean and

variance in the case data and was fixed to improve the mixing and convergence of other

parameters.

I also fitted the model to the proportion seropositive at each time point of the corre-

sponding serosurvey in 2013, 2015 and 2017. I assumed the proportion seropositive at

each survey was binomially distributed with size equal to the population size at the

time of the corresponding survey and probability equal to:

Rjζ + (1−Rj)ε/Nj

Where Rj is the number of people in the recovered (R) compartment and Nj is the

population size at time j in our model. Therefore Rj/Nj is the total proportion of true

infections that could be detected by an assay. ζ is then the estimated sensitivity of the

assay, and ε is the estimated false positive rate of the assay. I assumed that sensitivity

and specificity were fixed over time which is unlikely to hold true in reality. However,

I did not attempt to estimate time varying assay sensitivity and specificity because of

the limited size of our data available.

Let the random variable Xj ∼ Bin(N, Rjζ + (1−Rj)ε/N). The overall log-likelihood for

the transmission model with surveillance data Y = {yt}Tt=1 and serological data Z =

{zj}j∈{2013,2015,2017} is:

L (θ|Y ) =
∑
t

logP (yt|ct) +
∑

j∈{2013,2015,2017}

logP (Xj = zj) (5.19)

The joint posterior distribution of the parameter set θ was obtained from 1,200,000

MCMC iterations with a burn in of 480,000. I used adaptive MCMC by adjusting the

covariance matrix to obtain a target acceptance rate of 0.234 (Roberts and Rosenthal,
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2009). All models were implemented in R version 4.0.2 (R Development Core Team,

2011; RStudio Team, 2012) using the mvtnorm (Genz et al., 2015) and deSolve packages

(Soetaert et al., 2010) and parallelised using the doMC library (Revolution Analytics,

2013). All data and code used in the analysis are available at: https://github.com/

a-henderson91/fiji-zikv-model.

Model comparison

This full transmission model was designed to be flexible enough to test multiple expla-

nations for the ZIKV outbreak dynamics. The model could capture reduced transmis-

sion from inherent differences in transmissibility, seasonal forcing, increased immunity

and temporary cross protection during the 2013-14 DENV-3 epidemic. As a sensitiv-

ity analysis of these assumptions I ran the model with certain parameters constrained

and jointly fit the transmission model using adaptive MCMC over 50,000 iterations to

compare the output.

The metric to compare model performance was the Deviance Information Criterion.

For a likelihood p (y|Θ), we define the deviance as:

D(Θ) = −2 log p (y|Θ) (5.20)

Where p (y|Θ) is the likelihood of the data given Θ. The DIC can be computed as:

DIC = D(Θ̄) + 2pD (5.21)

Where Θ̄ is the mean of Θ with respect to the posterior distribution, and pD is the

effective number of parameters, which is approximately equal to half of the variance of

the deviance with respect to the posterior distribution:

pD =
1

2
V̂ar(D(Θ)) (5.22)

A difference in DIC of >10 was considered as evidence that the model with the lower

DIC was better. A difference between 5 and 10 was considered borderline evidence and

any difference less than 5 was considered as no evidence that the models performed

differently (MRC Biostatistics Unit, 2020).
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5.3 Results

I fitted the full transmission model to serological and surveillance data and used prior

information from an analysis of molecular data. I constrained model parameters in sep-

arate runs to compare different explanations for the observed ZIKV outbreak dynamics

in Fiji and why there was not a single-year large epidemic. There were four explanations

that I wanted to explicitly test. Firstly, that the reproduction number was different

for ZIKV and DENV in Fiji. Secondly, that seasonal forcing impacted transmission

dynamics. Thirdly, that pre-existing immunity and the immune response were different

for DENV and ZIKV. Finally, that the viruses were introduced at a similar time and

DENV infection conferred cross-protection against ZIKV in early 2014.

5.3.1 ZIKV arrived later than DENV and persisted for mul-

tiple years

I found the best fitting explanation for the observed ZIKV outbreak dynamics was

through the following combination of factors: ZIKV was introduced into Central Divi-

sion, Fiji, after the ecologically optimal time of year and transmitted at a low level over

3 years until a combination of seasonal forcing and accumulation of ZIKV immunity

resulted in the end of transmission in 2017 (Figure 5.7A).

Although the first case of ZIKV was reported in July 2015, we found evidence that

transmission of ZIKV likely began in early 2015 in Central Division, Fiji. Infectious

individuals were introduced to our model using a continuous logistic function defined

by parameters for the peak, width and midpoint of the wave of introductions. The 95%

credible interval for the most likely midpoint ranges from October 2014 to February

2015 with a median of January 2015 (Figure 5.7B). By using a posterior estimate from

a previous phylogenetic analysis as a prior in our model, our joint inference produced a

more precise estimate than the original phylogenetic analysis alone,(Kama et al., 2019)

which had an inferred introduction date of May 2014 (95% HPD: Feb 2013 – Jul 2015).

200



Mathematical Modelling of Arbovirus Outbreak Dynamics in Fiji and the Wider Pacific

Date

2013 2014 2015 2016 2017

0
2

4
6

8

Z
ik

a 
ca

se
s

0
20

0
40

0
60

0
80

0
10

00

D
en

gu
e−

3 
ca

se
s

A

Date

0
1

2
3

4
5

Jan−13 Oct−13 Jul−14 Apr−15 Jan−16 Oct−16 Jul−17

In
tr

od
uc

tio
ns

0.
00

0.
10

0.
20

0.
30

P
ro

p.
 s

er
op

os
tiv

e

B

Date

Jan−13 Oct−13 Jul−14 Apr−15 Jan−16 Oct−16 Jul−17

0
10

00
00

20
00

00
30

00
00

N
um

be
r 

su
sc

ep
tib

le

1

10

100

1000

10000

N
um

be
r 

in
fe

ct
ed

C

2013 2014 2015 2016 2017 2018

Date

0.
0

0.
5

1.
0

1.
5

2.
0

B
as

ic
 r

ep
ro

du
ct

io
n 

nu
m

be
r

E
ffe

ct
iv

e 
re

pr
od

uc
tio

n 
nu

m
be

r
2013 2014 2015 2016 2017 2018

Date

22
24

26
28

30

A
ve

ra
ge

 te
m

pe
ra

tu
re

D

Figure 5.7: Estimated transmission of ZIKV in Fiji using a mathematical model and multiple

data sources. (A) Pink line, weekly cases of DENV-3. Blue bars, monthly cases of ZIKV.

Blue dashed line and region, model estimated cases of ZIKV and 95% CrI. (B) Seroprevalence

and introduction of ZIKV. Green line and region, estimated introduction of ZIKV infected

individuals and 95% CrI. Grey line and region, estimated proportion of the population that

had recovered from ZIKV infection (median and 95% CrI). Orange dashed line and region,

estimated observed seroprevalence and 95% CrI. Seroprevalence includes an estimated 6.3%

(95% CrI: 4.4–8.5%) false positive rate and 79% (95% CrI: 52–98%) assay sensitivity. Orange

dots and vertical lines, observed ZIKV seroprevalence from 3 serological surveys. (C) ZIKV

infection dynamics in Central Division. Yellow line and region, median and 95% CrI of the

number of people susceptible to ZIKV. Blue line and region, median and 95% CrI of the number

infected on the natural log scale. (D) Pink line and region, estimated basic reproduction number

for ZIKV. Green line and region, effective reproduction number. This included an estimated

decline in transmission coinciding with a 2014 vector clean-up campaign (Kucharski et al.,

2018). Grey line, monthly temperature data from Suva, Central Division
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Figure 5.8: Density of estimated introduction time of ZIKV to Central Division, Fiji. Esti-

mate from a phylogenetic analysis of sequence data (pink) (Kama et al., 2019) used as a prior

in this analysis. The estimated midpoint (ψm) from this transmission model (blue)

5.3.2 Seasonal variation in transmission defines a period of

substantially higher risk for ZIKV introduction

To estimate the role of seasonal variation in temperature on transmission, the model

included sinusoidal forcing in transmission with timing and amplitude estimated from

available daily temperature data (Fiji Meteorological Service, 2017). We then converted

this into a relative transmission rate using the published data on the mechanistic rela-

tionship between temperature and basic reproduction number for transmission driven

by Aedes aegypti mosquitoes (Mordecai et al., 2017).

In Fiji, we found a strong seasonal variation in transmission which peaked in February

(Figure 5.7C). The seasonality of transmission resulted in a period with an effective

reproduction number (R) below 1 (Figure 5.7D). However, we estimated that this was

insufficient for the epidemic to fade-out over the colder months between 2015–2016 and

2016–2017 as the prevalent number of infections was consistently above 100 (Figure
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5.7C).

The seasonal pattern of transmission also created a period of heightened epidemic risk

if a flavivirus was introduced during this period. Towards the end of the calendar year

as temperatures, and therefore the transmission rate, increased the required number of

initial cases to seed an outbreak was lower than during the colder months. We excluded

the possibility of an outbreak emerging from an implausibly small introduction during

the period when R was below 1.

To examine how introduction dynamics could shape subsequent ZIKV outbreaks, we

simulated model trajectories using the maximum a posteriori estimates, then varied

the midpoint of the introduction function. We found that the timing of introductions

had a large effect on ensuing outbreak dynamics (Figure 5.9A-D). For example, using

our model with an introduction event centred around January 2015 – slightly after

peak transmission – there were three waves of infections at a low level, as in our main

findings (Figure 5.9C). We found that shifting the introduction event 2 months earlier

to November 2014 – slightly before transmissibility had peaked – caused a larger single

season outbreak comparable to the 2013-14 DENV-3 epidemic (Figure 5.9B). An intro-

duction centred around February 2015, generated a smaller first wave in a shorter high

transmission season given the later introduction. However, this delayed the epidemic

and there was a larger second wave in 2016 (Figure 5.9C). In our model, varying the

timing of the introductions alone could create diverse outbreak dynamics from single

large outbreaks to seasonal annual persistence for multiple years.

5.3.3 Estimated R0 and reporting proportion for ZIKV was

lower than the DENV-3 outbreak

In the model, the basic reproduction number (R0) varied according to seasonal forcing;

over the course of a year, we estimated a median ZIKV R0 of 1.18 (95% CrI: 0.82–

1.54) (Figure 5.7C). Before fitting to ZIKV data we initially fitted the same model to

DENV-3 surveillance serological data from the 2013-14 epidemic (Figure 5.10). From

this analysis we estimated a higher but comparable median and 95% credible interval
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Figure 5.9: Transmission dynamics by varying introduction time. Simulated ZIKV outbreaks

using the maximum a posteriori parameter set and adjusting the midpoint of the introduction of

ZIKV infectious individuals. Changing the introduction time alone can vary resulting outbreak

dynamics between low level circulation over multiple years to large single-season epidemics.

The modelled DENV-3 infections during the 2013-14 epidemic is reproduced here for compar-

ison. Introduction time centred around October 2014 (A), November 2014 (B), January 2015

(C), February 2015 (D). Blue line, model simulation for the prevalence of ZIKV infections

(not cases). Green line, modelled DENV-3 2013-14 infections. Pink line, introduction of

infectious individuals. The date of the midpoint of the introduction function is displayed in

pink. The attack rate is equal to the sum of all ZIKV infections divided by the population size

at the start of the outbreak, 342,000 people.
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for R0 for the 2013-14 DENV-3 epidemic (1.84; 95% CrI: 1.3–2.4).

Other studies have found evidence that inherent DENV transmissibility is similar or

slightly higher than ZIKV in the same location (Bowman et al., 2016; Funk et al.,

2016; Ho et al., 2017; Nishiura et al., 2016). A more complex modelling analysis of

this 2013-14 DENV-3 epidemic estimated an R0 of 1.12 (95% CrI: 1.02–1.25), similar

to our estimate of ZIKV for the same region (Kucharski et al., 2018). Our results are

consistent with these findings, that ZIKV is similarly but slightly less transmissible in

the same population as DENV. This likely contributed, but was insufficient, to explain

the diverse outbreak dynamics between DENV-3 and ZIKV in Central Division.

I also estimated a very small reporting proportion for ZIKV from our model of 0.01%

(95% CrI: 0.006–0.02%). This implies that nearly all infections were not reported as

cases and were either asymptomatic, not severe enough to seek medical attention, not

referred for ZIKV tests by clinicians in Fiji or undetected ZIKV in tests. This low

reporting proportion is uncommon for arbovirus outbreaks in Fiji. We estimated a re-

porting proportion of 16% (95% CrI: 12–23%) for DENV-3 during the 2013-14 epidemic.

This discrepancy is the main cause of the diverse observed outbreaks in surveillance case

data. However, it is insufficient to explain why ZIKV infections transmitted at a low

level for multiple years.

I initially fitted our transmission model to DENV-3 surveillance and serological data

for the 2013-14 epidemic to estimate the parameter set Θ as in Table 5.1. Figure 5.10

shows the estimated transmission dynamics of DENV-3 using a mathematical model

fitted to multiple data sources. Parameter estimates from this model are shown in Table

5.2.

5.3.4 Posterior parameter estimates

The estimate for the relative effect of “cross-protection” on ZIKV infection during the

DENV-3 epidemic shows no evidence of an effect as the 95% credible interval extends

from 0.013 (no effect) to 0.98 (total protection). This is unsurprising since most model
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Figure 5.10: Estimated transmission of DENV-3 in Fiji using a mathematical model and

multiple data sources. (A) Blue line, weekly cases of DENV-3. Blue dashed line and re-

gion, model estimated cases of DENV-3 and 95% CrI. (B) Seroprevalence and introduction

of DENV-3. Green line, fixed introduction of DENV-3 infected individuals. Grey line and

region, estimated proportion of the population that had recovered from ZIKV infection (me-

dian and 95% CrI). Orange dashed line and region, estimated observed seroprevalence and

95% CrI. Seroprevalence includes an estimated 2.3% (0.35–8.2%) false positive rate and 73%

(95% CrI: 23–99%) assay sensitivity. Orange dots and vertical lines, estimated ZIKV sero-

prevalence from 3 serological surveys. (C) DENV-3 infection dynamics in Central Division.

Yellow line and region, median and 95% CrI of the number of people susceptible to DENV-3.

Blue line and region, median and 95% CrI of the number infected on the natural log scale.

(D) Pink line and region, estimated basic reproduction number for DENV-3. Green line and

region, effective reproduction number. This included an estimated decline in transmission co-

inciding with a 2014 vector clean-up campaign (Kucharski et al., 2018). Grey line, monthly

temperature data from Suva, Central Division
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Table 5.2: Parameter estimates from arbovirus transmission model fitted to the DENV-3

2013-14 epidemic, and ZIKV transmission between 2013 and 2017 (with effective sample size

(ESS))

Parameter
DENV-3 estimate (95%

CrI)

ZIKV estimate (95%

CrI)

ESS

(ZIKV)

Median R0 1.84 (1.27-2.39) 1.18 (0.82-1.54) -

Median R 1.08 (0.403-1.61) 0.942 (0.518-1.56) -

βZ 0.35 (0.33-0.38) 0.24 (0.23-0.25) 6880

Reporting proportion (%) 16 (12-23) 0.011 (0.0061-0.019) 725

Cross protection NA 0.51 (0.013-0.98) 158

(1 minus) Test specificity (%) 2.3 (0.35-8.2) 6.3 (4.4-8.5) 1900

Test sensitivity (%) 73 (23-99) 79 (52-98) 1920

ZIKV introduction date (mid) Oct 2014
Jan 2015 (Oct 2014-Feb

2015)
217

ZIKV introductions (n) 400 394.6 (56.51-963.7) 115

Relative reduction during

clean-up campaign (Mar 2014)
0.74 (0.71-0.77) 0.68 (0.64-0.73) 22600

Initial proportion immune 0.29 (0.23-0.35) 0 –

DIC 621.6 76.3 –

simulations had ZIKV outbreaks that started after the DENV-3 outbreak had ended,

so there would be no signal about cross-protection in these simulations. The effective

sample size – the number of effectively independent draws from the posterior distribu-

tion – for the estimated eight parameters are above 100 and six have an ESS greater

than 200. The full set of parameter estimates are shown in Table 5.2 and density plots

of the eight estimated parameters are shown in Figure 5.12. Density plots of the six

estimated parameters in the DENV-3 model fit are shown in Figure 5.12

5.3.5 Hypothetical ZIKV reported cases if ZIKV was reported

the same as DENV-3

Figure 5.13 shows the expected observed number of ZIKV cases from our modelled

outbreak if ZIKV cases were reported at the same rate as DENV-3 cases during the
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Figure 5.11: Density plot of estimated parameters in ZIKV transmission model. Grey bars,

posterior density. Red lines, prior density

2013-14 epidemic. This demonstrates that the underlying outbreak dynamics were

similar in magnitude but that the main difference in the size of outbreaks in surveillance

data was the discrepancy in reporting proportions.

5.3.6 MCMC diagnostics and convergence

The trace plots for the eight estimated parameters in the main ZIKV transmission

model are shown in Figure 5.14. Estimation of four of the eight parameters achieve

an appropriate level of mixing in all three chains used in the MCMC fitting process.

There is poor mixing for the parameter measuring cross-protection because if ZIKV

transmits after the DENV-3 outbreak then there is no additional information provided
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Figure 5.12: Density plot of estimated parameters in DENV-3 transmission model. Grey

bars, posterior density. Red lines, prior density

by this parameter. The two parameters for the introduction function mix less efficiently,

possibly because of their strong correlation (Figure 5.15).

The trace plots for the DENV-3 model fit are shown in Figure 5.16.

5.3.7 Sensitivity analysis of waning seroprevalence, cross-protection

duration and early ZIKV introduction

I designed a transmission model that was flexible enough to test multiple explanations

for the observed ZIKV transmission dynamics. There were four explanations that I

wanted to explicitly test and I found evidence that three of them affected transmission
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Figure 5.13: Hypothetical ZIKV case dynamics if the reporting mechanism was equivalent to

that of the DENV-3 epidemic. Pink line and region, estimated DENV-3 cases and 95% CrI.

These estimates include an estimated 16% (95% CrI: 12–23%) reporting proportion. Blue line

and region, hypothetical reported ZIKV cases if the reporting mechanism for ZIKV was the

same as DENV-3. These estimates use the modelled infections from the ZIKV model but the

reporting proportion from the DENV-3 model fit. The time scale for this plot is monthly not

weekly, so the observed DENV-3 cases from surveillance data are reproduced on a monthly

time scale as vertical lines.
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Figure 5.14: Trace plot of MCMC convergence for full ZIKV transmission model after burn-

in of 40%. The three colours represent three separate MCMC chains used in the fitting of the

model to surveillance and serological data.
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Figure 5.15: Correlation between estimated ZIKV model parameters. The histograms show

estimates of the parameter value. The scatter plot shows the relationship between estimated

values of these parameters.
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Figure 5.16: Trace plot of MCMC convergence for full DENV-3 transmission model after a

burn-in of 40%. The three colours represent three separate MCMC chains used in the fitting

of the model to surveillance and serological data.
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dynamics: the reproduction number was similar but slightly lower for ZIKV than DENV

in Fiji, seasonal forcing impacted transmission dynamics, and pre-existing immunity

and the immune response were different for DENV and ZIKV.

The fourth explanation I considered was that ZIKV and DENV-3 were introduced to

Fiji at a similar time and DENV infection conferred cross-protection against ZIKV in

early 2014. It seemed plausible that ZIKV could have arrived in Fiji in 2013 given

the circulation of ZIKV in the Pacific at that time (Cao-Lormeau et al., 2014; Musso

and Gubler, 2016; Roth et al., 2014) and this is consistent with a previous phylogenetic

analysis (Kama et al., 2019). I compared the model results with an alternative model

which constrained the introduction of ZIKV to Fiji to 2013. This forced DENV-3 and

ZIKV to transmit at the same time in my model and therefore tested the hypothesis

that DENV-3 infection provided cross-protection against ZIKV infection in early 2014.

I also tested some of the key assumptions I made when modelling ZIKV transmission.

Firstly, I relaxed the assumption that seropositivity wanes in the population. Secondly,

I extended the duration of the cross-protection for ZIKV following DENV infection.

Finally, I forced ZIKV to start spreading in Fiji before the DENV-3 epidemic. A

summary of the three models and the main ZIKV model used for this comparison are

presented in Table 5.3. All four models were fitted to the same data using MCMC over

20,000 iterations.

Table 5.3: Sensitivity analysis of key assumptions in the modelling of ZIKV transmission

dynamics in Fiji. Estimated deviance information criterion (DIC) and basic reproduction

number (R0) for each model are shown

Model DIC R0 (95% CrI)

A Main model 76.8 1.15 (0.8–1.5)

B No reduction in seropositivity 103.1 1.06 (0.7–1.4)

C Longer cross-protection duration 75.9 1.14 (0.8–1.5)

D ZIKV introduction in 2013 129.8 1.24 (0.9–1.6)
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Model A - full model

These are the results from the “best fitting model” but from a shorter fitting process

over 20,000 iterations. To reiterate, the key assumptions that have been made are that

detectable ZIKV-specific antibodies wane over time and that the model could accurately

identify the reporting proportion. The estimated DIC from this main model was 76.8.

Model B - no reduction in seropositivity

I wanted to test the assumption that ZIKV-specific antibodies wane over time below

a detectable threshold. There is good evidence for this assumption in serological data

from Fiji (Henderson et al., 2020). However this is a novel concept so I wanted to

compare it to a model where antibodies do not wane over time. The results from

this alternative model show that, if ZIKV seropositivity does not wane, the estimated

seroprevalence from the model fitting does not recapture the observed seroprevalence

data (Figure 5.17B). As a result the model fit is worse with a DIC of 103.1 compared

to 76.8 from the main model.

Model C - longer period of cross-protection following DENV infection

I chose a conservative estimate for the duration of cross-protection between DENV-3

and ZIKV of 30 days. This proved uninformative in our main model findings since I

estimated that ZIKV was introduced in late 2014, long after the DENV-3 epidemic. As

a sensitivity analysis I set the duration of cross-protection to 6 months (Collins et al.,

2017) to test whether this an early introduction and long suppression of ZIKV during

the DENV-3 epidemic could capture the observed ZIKV data. However the model still

converged on a late 2014 introduction date (December 2014; 95% CrI: Oct 2014–Feb

2015) similar to the main model results.
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Figure 5.17: Model B: estimated ZIKV transmission, as in Model A but seropositivity cannot

decrease. (Estimated DIC: 103.1). (A) Pink line, weekly cases of DENV-3. Blue bars, monthly

cases of ZIKV. Blue dashed line and region, model estimated cases of ZIKV and 95% CrI.

(B) Seroprevalence and introduction of ZIKV. Green line and region, estimated introduction

of ZIKV infected individuals and 95% CrI. Grey line and region, estimated proportion of the

population that had recovered from ZIKV infection (median and 95% CrI). Orange dashed

line and region, estimated observed seroprevalence and 95% CrI. Seroprevalence includes an

estimated false positive rate and assay sensitivity. Orange dots and vertical lines, estimated

ZIKV seroprevalence from 3 serological surveys. (C) ZIKV infection dynamics in Central

Division. Yellow line and region, median and 95% CrI of the number of people susceptible to

ZIKV. Blue line and region, median and 95% CrI of the number infected on the natural log

scale. (D) Pink line and region, estimated basic reproduction number for ZIKV. Green line

and region, effective reproduction number. This included an estimated decline in transmission

coinciding with a 2014 vector clean-up campaign (Kucharski et al., 2018). Grey line, monthly

temperature data from Suva, Central Division.
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Model D - Early ZIKV introduction and interaction with DENV was not

well supported by the data

It has been proposed that infection with DENV may result in transient cross-immunity

against ZIKV (Gordon et al., 2019; Montoya et al., 2018; Priyamvada et al., 2016;

Rodriguez-Barraquer et al., 2019; Zhao et al., 2016). I therefore examined whether

the large DENV-3 epidemic in 2013/14 could have induced temporary cross-immunity

against ZIKV that delayed the emergence of ZIKV until 2015. The model allowed a

proportion of those infected with DENV-3 during the 2013-14 to potentially be tem-

porarily protected from ZIKV infection. With introduction of ZIKV constrained to

2013, I found that a combination of DENV-3 cross-immunity and reduced transmission

from a vector control campaign in March 2014 could have suppressed ZIKV transmis-

sion in 2014 (Figure 5.18). However, the Deviance Information Criterion (DIC) from

this model was much higher than the best fitting model (Table 5.3), suggesting very

little support for this alternative explanation. The reason for poor model performance

is the short outbreak duration that resulted from this interaction: DENV did not just

influence ZIKV in 2014 in this model: by suppressing ZIKV transmission to a large

extent, subsequent multi-year outbreaks of ZIKV during 2015-2017 were not possible

in the model, in contrast with the observed reported cases during this period.
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Figure 5.18: Model D: Estimated transmission of ZIKV in Fiji in a model with ZIKV

introduction constrained to 2013 (Estimated DIC: 129.8). (A) Pink line, weekly cases of

DENV-3. Blue bars, monthly cases of ZIKV. Blue dashed line and region, model estimated

cases of ZIKV and 95% CrI. (B) Seroprevalence and introduction of ZIKV. Green line and

region, estimated introduction of ZIKV infected individuals and 95% CrI. Grey line and region,

estimated proportion of the population that had recovered from ZIKV infection (median and

95% CrI). Orange dashed line and region, estimated observed seroprevalence and 95% CrI.

Seroprevalence includes an estimated false positive rate and assay sensitivity. Orange dots and

vertical lines, estimated ZIKV seroprevalence from 3 serological surveys. (C) ZIKV infection

dynamics in Central Division. Yellow line and region, median and 95% CrI of the number of

people susceptible to ZIKV. Blue line and region, median and 95% CrI of the number infected

on the natural log scale. (D) Pink line and region, estimated basic reproduction number for

ZIKV. Green line and region, effective reproduction number. This included an estimated

decline in transmission coinciding with a 2014 vector clean-up campaign (Kucharski et al.,

2018). Grey line, monthly temperature data from Suva, Central Division

5.4 Discussion

We combined multiple data sources with a dynamic transmission model to reconstruct

unobserved transmission dynamics of ZIKV in Fiji between 2013 and 2017. We found

that transmission persisted over multiple years with three consecutive small annual

outbreaks between 2015 and 2017, with strong seasonal forcing in transmission resulting
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in a high risk period of the year for ZIKV introduction. This means there is potential

for large, brief flavivirus outbreaks, as well as a period of lower risk where low-level

transmission is more likely. We estimated a mean basic reproduction number of 1.18

(95% CrI: 0.82–1.54) for ZIKV, which combined with seasonality in transmission meant

there was insufficient infection – and hence acquired immunity – in 2015 or 2016 to

prevent re-emergence of the virus in the following year.

We found that ZIKV was slightly less transmissible than DENV in the same popula-

tion and that nearly all ZIKV infections were undetected, unlike the estimated reporting

proportion during the DENV-3 epidemic. We show that if the ZIKV reporting propor-

tion was equivalent to DENV-3 then the two epidemics would appear similar in overall

magnitude. However, this is insufficient to explain why ZIKV transmitted at a low level

over multiple years, unlike DENV-3 which caused a large single-season epidemic. We

have demonstrated that small changes to the introduction time can produce a diverse

range of outbreak dynamics because of the strong seasonal forcing in ZIKV transmission

in Fiji (Figure 5.9).

The estimated multi-season transmission dynamics of this ZIKV outbreak in Fiji are

different to flavivirus outbreaks observed elsewhere in the Pacific, and even within Fiji,

where large outbreaks typically last a single season (Kiedrzynski et al., 1996; Singh

et al., 2005). Our ability to infer unobserved dynamics benefited from being able

to simultaneously fit a transmission dynamic model to serological, surveillance and

viral sequence data. Each data source provided insights into different aspects of the

dynamics. The surveillance data provided information on the temporal distribution

of symptomatic infections, the serological surveys provided estimates of community-

level exposure at different points in time and the analysis of sequence data provided

informative prior information on the potential time of ZIKV introduction to Fiji. To

synthesise these complementary information sources, we used mathematical model that

could generate observations representing the serological and surveillance data, then we

jointly fitted the model to these data sets in a Bayesian framework, while the sequence

data formed an informative prior on the time of introduction. The data available for

Fiji presented a unique opportunity to compare and contrast the dynamics of ZIKV
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and DENV infection; without the combination of these three data sets it would have

been far more challenging to reliably infer the unobserved ZIKV outbreak dynamics.

In our study we allowed flexibility in the timing and size of the initial virus intro-

duction, but in all scenarios we assumed that there was a single introduction wave

with continuous transmission afterwards, rather than multiple separate introductions

in consecutive years. We also assumed in our model and all sensitivity analyses that

the virus persisted over colder months and could therefore be modelled in a determin-

istic framework. ZIKV outbreaks in other locations have however shown evidence of

multiple introductions (Griffin et al., 2019; Grubaugh et al., 2019), including in island

settings (Black et al., 2017). Although we cannot rule out multiple early introduc-

tions that did not result in widespread transmission, a previous phylogenetic analysis

of ZIKV sequences from the region identified two distinct clusters of Fiji sequences,

one of which included sequences recovered from Western Division and the other from

Central Division (Kama et al., 2019). The small sample size and weak branch support

for the Central Division cluster in both analyses means we cannot distinguish between

one or more introduction events. The fact that we estimated a cluster that included

all three Central Division sequences, with a close relationship between sequences from

2015 and 2016, suggests persistence rather than separate introductions. Although this

clustering could also be generated by separate introductions from a similar location, we

assumed a single introduction wave. Single ZIKV introduction events have also been

estimated for other Pacific Islands (Delatorre et al., 2018), and an introduction during

2014-15 in Fiji is further supported by context of ZIKV transmission across the Pacific.

The majority of large outbreaks in the Pacific occurred in 2014 and early 2015, rather

than 2016 onwards: the first large outbreak occurred in French Polynesia in late 2013;

during 2014 there were ZIKV outbreaks confirmed in New Caledonia, Easter Island

and the Cook Islands and in 2015 in Vanuatu and Solomon Islands (Delatorre et al.,

2018; Musso and Gubler, 2016). Moreover, the level of seroprevalence found in Fiji in

2015 suggests there was widespread transmission between 2013 and 2015, rather than

a series of isolated cases (Kama et al., 2019).

In our model we assumed that detectable anti-ZIKV antibodies could wane over time
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and therefore seroprevalence in the population could decline over time, as has been ob-

served in serological studies (Henderson et al., 2020; Moreira-Soto et al., 2020). How-

ever, as the precise relationship between a specific titre value and susceptibility to ZIKV

infection is unclear, we assumed that seroreversions did not lead to loss of protection.

This is consistent with other ZIKV modelling studies (Ferguson et al., 2016; O’Reilly

et al., 2018) and the fact that many participants in the Fiji survey who were seronega-

tive for ZIKV (as measured by MIA) still had evidence of neutralising titres (Henderson

et al., 2020).

In the Fiji serological survey, ZIKV seroprevalence was already 7.8% in November 2013.

Given the antigenic similarity of DENV and ZIKV, we assumed that this level of ZIKV

seroprevalence may be the result of cross-reactive antibody responses from prior fla-

vivirus infections. To reflect this, we included a parameter that measured the false

positive proportion (1 minus the specificity) of the assay, which was estimated as 6.3%

(95% CrI: 4.4–8.5%) in the model fitting. This may explain why there was some ev-

idence of seroprevalence before our model estimated ZIKV had arrived in Fiji. Simi-

larly, we estimated a sensitivity of 79% (95% CrI: 52–98%). Both are consistent with

the previously reported assay sensitivity and specificity for ZIKV of 79.6% and 94.9%

(Henderson et al., 2020). With these adjustments we found that the observed sero-

prevalence was broadly consistent with our expected seroprevalence from the model.

However, in 2015 the observed value was at the limit of our expected seroprevalence

(Figure 5.7B). It is possible the assay was more sensitive or less specific during this

serological analysis. It is unlikely that there were more true infections than our model

produced since this would require a higher transmission rate and therefore increase the

likelihood of a single season large epidemic, which is inconsistent with the surveillance

data.

The surveillance data collected during the 2013-14 DENV-3 epidemic was primarily

from syndromic surveillance and did not have laboratory confirmation (Kucharski et al.,

2018). However, all confirmed cases attributed to ZIKV in this study had reverse

transcription PCR confirmation in Fiji (Kama et al., 2019). There is significant overlap

in the definitions of dengue-like illness, Zika-like illness, influenza-like illness, and acute
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fever and rash, so it is a challenge for doctors and nurses to classify patients into these

categories and there are inherent uncertainties in the reported numbers. It is therefore

possible that some of the cases defined as DENV-3 in 2013-14 were actually caused by

ZIKV infection and ZIKV was introduced earlier to Fiji than we suggest here. However

the probability of ZIKV arriving in Fiji in 2013 unobserved and still circulating in

2017 was not well supported by our model (Table 5.3). To estimate the proportion

of reported DENV-3 cases that were actually ZIKV was not identifiable without more

information on the test positive rate during the DENV-3 epidemic, and complicated by

a change in reporting during the 2013-14 DENV-3 epidemic from laboratory testing to

suspected cases (Kucharski et al., 2018).

Despite these limitations, our results show that ZIKV does not necessarily cause large,

brief outbreaks in settings where other flaviviruses have done so, and can persist over

multiple seasons, mostly undetected, even in isolated locations. We found that these

dynamics most likely resulted from the timing and the magnitude of the introductions

of infections prior to the first reported cases. Given the strong seasonal forcing on

transmission of vector-borne infections in Fiji, the timing of the introduction had a

large impact on the resulting dynamics. This indicates a period of high epidemic risk

in Fiji – specifically as temperatures begin to increase – during which surveillance

should be particularly vigilant. It also suggests that a wide range of outbreak dynamics

are possible if infections are introduced outside this period, including repeated, low-

level outbreaks over varying numbers of years. By estimating this range of possible

transmission dynamics with such models, it should be possible to improve forecasts

about likely outbreak dynamics when new cases are identified. More broadly, with a

similar joint analysis of wider data sources for virus outbreaks, there is potential to

characterise the range of possible dynamics for other settings as well.
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Abstract

Dengue virus (DENV) outbreaks occur with increasing regularity in the Pacific islands

but designing rapid responses to emerging outbreaks is limited because outbreaks are

challenging to predict and there is limited evidence on the effectiveness of current in-

tervention strategies. We combined transmission models with surveillance, serological,

environmental and intervention data during an outbreak of DENV-2 in 2017 to fore-

cast the outbreak in real-time and determine what role control measures played in the

decline in transmission. We found that, by fitting models to emerging outbreak data

and a historic outbreak we were able to accurately forecast the outbreak in real-time

and capture the transmission dynamics before the peak of the epidemic had occurred.

Additionally, using complete data after the outbreak we found that herd immunity

and seasonal forcing of transmission were insufficient to recapture the transmission dy-

namics. We show that an additional reduction in transmission when vector control

interventions were implemented helps to explain the observed outbreak dynamics. This

study demonstrates the potential benefit of real-time modelling of emerging outbreaks

and adds to the limited evidence base on the effectiveness of DENV control interventions

in Fiji.
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6.1 Background

6.1.1 History of dengue virus in Fiji

Dengue virus (DENV) outbreaks in Fiji are typically large with tens of thousands of

cases reported in a country with a population of 884,887 (Fiji Bureau of Statistics,

2018b; Kucharski et al., 2018). DENV can transmit efficiently in Fiji because there

are between four and six species of Aedes that can transmit DENV, the most effective

of which is Aedes aegypti (Prakash et al., 2001). Since 1971 a pattern has emerged

where one DENV serotype is introduced to a mostly immunologically näıve popula-

tion resulting in a large outbreak. Since infection with one DENV serotype provides

lifelong immunity for that serotype and temporary heterogeneous immunity against all

serotypes (Sabin, 1952) there follows a gap of several years before a new serotype can

emerge in Fiji, and over ten years before the same serotype causes another outbreak.

This arbovirus outbreak pattern is common in island populations and as a result of this

they make for excellent study sites for outbreak dynamics. These locations are isolated

and therefore less likely to sustain endemic transmission and have a pattern of self-

contained epidemics with reintroduction after an interval period of several years (Black,

1966; Keeling and Grenfell, 1997; Teissier et al., 2020). It is possible to study an out-

break in these settings for observations about the dynamics of transmission (Kucharski

et al., 2018), to compare different disease dynamics (Funk et al., 2016), and analyse

risk factors for severe disease (Cao-Lormeau et al., 2016). If we are able to accurately

model a previous outbreak then we may also be able to accurately model an emerging

outbreak in real-time to predict outbreak dynamics.

This chapter will focus on a recent outbreak of DENV-2 in Fiji in 2017. Cases were first

recorded in January 2017. Between January and September 2017 there were 755 cases

recorded in Suva, Nasinu, and Nausori in Central Division, Fiji, and at the peak in May

2017 there were 61 cases recorded in one week. I studied this outbreak to analyse the

contribution of control efforts to stopping the outbreak, and to assess the performance

of a real-time forecast of the outbreak.

229



Chapter 6. Modelling a dengue outbreak in Fiji

6.1.2 Summary of public health interventions for DENV in

Fiji

Interventions are available in Fiji to attempt to reduce the burden of DENV cases,

mostly targeted at reducing the mosquito population. The primary method used in

Fiji for reducing the DENV vector population is to remove breeding sites. This is a

year-round routine activity that can be intensified if an outbreak is declared but is

also intended to reduce the likelihood of DENV epidemics emerging. An entomological

study from 1980 found Aedes mosquitoes in miscellaneous containers such as tin cans

and plastic food containers, as well as coconut shells, flower vases and old motor parts

(Goettel et al., 1980). Tyres and drums were found to be less common breeding sites

for Aedes larvae, however they were very productive breeding sites so are responsible

for the majority of adult Aedes produced (Prakash et al., 2001). As a result, tyres and

large receptacles are targeted in source reduction clean-up campaigns (Goettel et al.,

1980), including during the 2017 DENV-2 epidemic (Ministry of Health report).

In the case of an epidemic a more targeted response is used, which is chemical spraying

to kill adult mosquitoes in areas with a high burden of reported cases. The active

ingredient in the chemical spraying used is pyrethrins which is a widely used insecticide

(Ministry of Health report). Previously, Malathion ULV spraying has been used (Goettel

et al., 1980; Prakash et al., 2001). Spraying is performed with both truck ULV and hand-

held portable devices (Figure 6.1). The location of chemical spraying is determined by

the number of reported DENV case notification and preventative spraying in heavily

populated areas. Chemical spraying takes place in the early morning and evening when

Aedes mosquitoes are most active (Nelson et al., 1978). Residents in the area are

advised to open doors and windows prior to the spraying.

Intervening to reduce the DENV vector population is expensive and there is very little

evidence about the effectiveness of these interventions. A study from 1980 showed

evidence that environmental sanitation and, to a lesser degree, insecticide spraying

were effective in reducing the adult mosquito population over the study period (Goettel

et al., 1980). There is no evidence about the relationship between Ministry of Health

230



Mathematical Modelling of Arbovirus Outbreak Dynamics in Fiji and the Wider Pacific

(a)

(b)

Figure 6.1: (A) Insecticide spraying using handheld devices at Suva grammar school (Min-

istry of Health report). (B) Insecticide spraying from van mounted devices at Bureta Street,

Suva (Ministry of Health report)

interventions and the burden of DENV disease in Fiji. Globally, a recent review of

current vector control methods and their effectiveness on reducing DENV concluded

that “almost nothing is known about how well they prevent disease” (Achee et al.,

2015).

My objective with this analysis was to improve understanding of how vector control

interventions can reduce the burden of DENV during an outbreak in Fiji by developing

a mathematical model and estimating any additional reduction in transmission during

vector control campaigns.

6.1.3 Modelling of the 2013-14 DENV-3 outbreak

I developed a Ross-Macdonald model of vector-borne transmission for this DENV-2 epi-

demic. This class of models has previously been used in a study of the 2013-14 DENV-3

outbreak in Fiji (Kucharski et al., 2018). Between November 2013 and August 2014

a large DENV-3 epidemic emerged with over 25,000 suspected cases across all of Fiji,

and 12,413 suspected DENV cases in Central Division, where longitudinal serological

data were available. Pre- and post-outbreak sera were collected in Central Division

and tested for evidence of previous DENV infection using a multiplex microsphere im-
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munoassay (MIA) and found an increase in DENV-3 seroprevalence from 33.1% (95%

CI: 27.4–39.1%) in November 2013 to 53.2% (95% CI: 47–59.4%) in November 2015.

One major strength of this study was that the model combined surveillance data and

serological data in the likelihood when model fitting, which was an approach we carried

into this DENV-2 analysis.

The 2013-14 DENV-3 outbreak could have ceased for a variety of reasons, but three

likely explanations were built into the model. Firstly, the outbreak was self-limiting

driven by a decline in the susceptible population. The change in climate conditions

over the outbreak could have introduced seasonal forcing on transmission of DENV-3.

There was also a large clean-up campaign in March 2014, at the peak of the outbreak, to

remove mosquito breeding sites and this could have had a direct effect on transmission.

The inclusion of serological data allowed for the estimation of the relative effect of

these three factors, which was not possible using surveillance data alone. The outbreak

ceased because of a combination of increased immunity, seasonal forcing and control

measures.

This analysis of the 2013-14 epidemic found evidence that vector control had an ef-

fect on DENV transmission. However, the signal was too weak to analyse further and,

working with the Ministry of Health, it was clear that they wanted more detail on how

effective these interventions were and how to improve their effectiveness. Control mea-

sures are not implemented uniformly across the Division which presents an opportunity

to compare different levels of interventions in different areas. I wanted to analyse the

relationship between intervention and transmission reduction at a finer spatial scale.

This was the prior objective of this study, however, while I was working on data collec-

tion in Fiji the DENV-2 epidemic was ongoing so I was able to use this model to forecast

the outbreak in real-time. In this chapter I will firstly present work on forecasting the

DENV-2 epidemic, then examine control measures retrospectively.
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6.1.4 Real-time forecasting the 2017 DENV-2 outbreak

The use of mathematical modelling of infectious diseases to conduct real-time analy-

ses of outbreaks and consequently forecast the likely path of an emerging epidemic is

growing rapidly (Camacho et al., 2015; Finger et al., 2019; Kucharski et al., 2020). The

main advantage of this practice is that forecasting the burden of an outbreak can im-

prove preparedness and allow public health bodies to mobilise resources appropriately.

Additionally, a successful forecast can assess underlying factors that are affecting the

transmission dynamics. In the case of arboviruses such as DENV this may be changing

climate conditions or the role of direct interventions on the vector population. A case

study of a diphtheria outbreak in a crisis setting demonstrates the value of effective

real-time forecasting. Finger et al. (2019), fitted a compartmental transmission model

to incidence data in real-time. The model was able to produce reliable forecasts three

weeks before the outbreak ended which supported the operational response, such as

bed need, and advocacy for control measures. Similarly, during the 2014 West Africa

Ebola virus disease epidemic Camacho et al. (2015), used a stochastic mathematical

model to forecast the course of the Ebola virus epidemic in the worst affected country,

Sierra Leone. Their results suggested that the epidemic had already peaked in Sierra

Leone. A subsequent assessment of the model performance during this outbreak found

that the model was well calibrated – the ability of the model to correctly identify its

own uncertainty in making predictions – up to 2-3 weeks ahead (Funk et al., 2019).

Real-time forecasting has been proven to provide valuable information during an out-

break, however they have serious limitations. Most importantly is the quality of data

that is available during an outbreak. Fiji has an established and successful health

surveillance system (Sheel et al., 2019) which produces reports for the Pacific Public

Health Surveillance Network (PPHSN). However, during the DENV-2 epidemic, the

burden on the laboratory analysis meant that only a small proportion of test results

were available in real-time. In addition a mixture of diagnostic methods were used.

Reverse transcription polymerase chain reaction (RT-PCR) was used to identify the

circulating serotype (Aubry et al., 2012), the majority of laboratory diagnosis was ei-

ther through detection of the nonstructural protein 1 (NS1) or an assay testing for
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evidence of anti-DENV immunoglobulin class M (IgM) antibodies. Another issue is

the rapid evolution of outbreaks and the impact of changes in behaviour and direct

interventions may have on transmission dynamics during the outbreak (Bausch and

Edmunds, 2018). Finally, improving real-time modelling performance is a challenge

without an agreed characterisation of what constitutes a ‘good’ forecast. This is being

addressed in the literature (Funk et al., 2019) but will also depend on the priorities

during the outbreak. In the case of DENV-2 in Fiji in 2017 the priority was to learn

of the possible overall magnitude of the outbreak, and therefore potential benefits for

intervening and reducing the vector population. Real-time modelling remains just one

tool in a public health response during an outbreak, but in the case of DENV-2 we

were able to demonstrate its utility when working directly with the Ministry of Health

in Fiji.

In May 2017 I was in Fiji setting up the third in a longitudinal seroepidemiological

study (chapters 3 and 4). A DENV-2 outbreak had emerged with the first confirmed

case in January 2017 and by the time I arrived in Fiji there had been 223 suspected and

confirmed cases reported. We extended the model developed for analysis of the DENV-

3 2013-14 outbreak (Kucharski et al., 2018) to forecast the epidemic. Importantly, the

Ministry of Health was most concerned that this could become another large epidemic

with thousands of cases unless the mosquito density was reduced. After the outbreak, I

obtained the full surveillance data with final results from all laboratory tests performed

during the outbreak. I used these data to assess the performance of the forecast and

wanted to identify how early in the outbreak we would have been able to reliably predict

the epidemic dynamics.

6.1.5 Assessing the role of interventions in the end of the 2017

DENV-2 outbreak

I also performed a retrospective analysis of control measures that were introduced dur-

ing the outbreak. Previous work in Fiji found evidence that DENV-3 transmission

dynamics could be captured in a model with an additional reduction in transmission
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intensity at the same time as a government intervention removing mosquito breeding

sites (Kucharski et al., 2018). Evidence on the effectiveness of mosquito control pro-

grammes to reduce DENV transmission is weak (Bouzid et al., 2016; Bowman et al.,

2016; Heintze et al., 2007; Reiter, 2016). As a result, I wanted to use this island epidemic

of DENV-2 to analyse the impact of vector control interventions during the outbreak.

I was based at Mataika House in Suva, Fiji, between May and July 2017 and I worked

with the Ministry of Health and the entomological control department to obtain more

information on control measures and interventions used during the outbreak. Having

contributed to update and decision-making meetings during the outbreak it was clear

that the vector control response was heterogeneous across Suva, some areas were more

intensely targeted than others. I aimed to expand on published DENV analysis in

Fiji (Kucharski et al., 2018) and jointly fitted a model in different regions of Suva,

the capital city of Fiji. These regions within Suva had varying case incidence, pre-

outbreak population immunity and interventions during the DENV-2 outbreak. Using

this model, I aimed to estimate the effectiveness of different intervention strategies in

different areas.

Interventions used during the outbreak were mostly chemical spraying to reduce the

adult mosquito population. Information were available from detailed reports on when

and where these spraying activities were performed and the area they covered. In ad-

dition to this the entomological control department kept details on clean-up campaigns

to reduce mosquito breeding sites, including location, date and the amount of waste

disposed of. For serological data, because population representative sampling across

Fiji was used (Lau et al., 2016; Watson et al., 2017), the sample included a large num-

ber of participants from Suva. There were thirteen clusters in our DENV-2 study area

in Suva, each with twenty-five participants sampled either once in 2013 or followed up

in 2015 and/or 2017 as well. These sera were tested using a microsphere immunoassay

(MIA) so we had estimates of pre-outbreak DENV-2 seroprevalence which was collected

in November 2015. The third sample collection was during the tail end of the DENV-2

outbreak, collected in June 2017. Combining these data sources with complete surveil-

lance data I was able to fit a model to DENV-2 transmission at a more detailed spatial

level.
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The aim of this section of the study was to analyse the DENV-2 2017 outbreak to

identify any effect of control measures on transmission intensity at a Division level.

Following this, I aimed to estimate variation in effectiveness of interventions in differ-

ent areas by fitting the model to seroprevalence estimates and reported cases in each

region. Given the variety in vector control intervention efforts in these regions dur-

ing the outbreak, I expected that it would be possible to identify differences in the

effectiveness of different intervention strategies.

6.2 Materials & Methods

6.2.1 Ethics

Ethics approval was obtained from the London School of Hygiene & Tropical Medicine

(reference 12037) and the local research ethics committee in Fiji. In 2018 we submitted

an ethics amendment application for our project titled “Serosurvey to study Zika and

related arboviruses in Central Division, Fiji” (reference 2017.20.MC). Approval for the

amendment was granted on 23rd October 2018. Our original ethics application was

focused on researching Zika virus (ZIKV) but included an objective to understand the

“potential association with serological evidence of other arbovirus infections, such as

dengue”. We submitted an ethics amendment request for additional data to study the

effect of vector control interventions during the 2017 outbreak by combining surveillance

and serological data.

6.2.2 Data

Real-time modelling projections were made between May and June 2017 and were fitted

to weekly reported case data as they became available. Cases were defined as positive

if they met one of the following criteria: DENV RNA detected by RT-PCR, positive for

NS1 antigen, anti-DENV IgM antibodies detected by Enzyme-linked immunosorbent

assays (ELISAs). A dengue outbreak is declared in Fiji once the incidence rate exceeds a
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predefined threshold of more than two standard deviations above the average incidence

rate for the last five non-outbreak years (Ministry of Health and Medical Services, 2016).

In an outbreak setting dengue surveillance can move from laboratory confirmation to

clinical-based reporting, i.e. dengue-like illness. In the case of the DENV-2 epidemic,

all reporting was laboratory confirmed because the incidence rate never exceeded the

threshold for declaring an outbreak. This switch of reporting method was cited as

a limitation when analysing the 2013-14 DENV-3 epidemic (Kucharski et al., 2018).

Real-time data were unreliable as a result of the logistical constraints of laboratory

testing during the epidemic. The proportion of samples tested was variable week-to-

week and most test results were from rapid NS1 detection tests instead of ELISAs. As

a result, when performing retrospective analyses of forecast performance and analysing

intervention strategies I used post-outbreak confirmed case data. This data should be

more accurate as it includes ELISA data where available and will include cases that

may have been confirmed later in the outbreak. After the outbreak all samples collected

during the outbreak had been tested and we had NS1 or ELISA confirmation for cases

in the Suva-Nausori study region between January and September 2017. I obtained

seroprevalence estimates from serological surveys previously described in Chapter 2.

Study regions in Suva

The study area was divided into five regions based around a health centre that could

collect and record cases during the outbreak (Figure 6.2). Colonial War Memorial

hospital (CWM) is the largest health facility in Suva. The area around the hospital is

the central business district and tourism hub of the capital and includes the working

docks and most of the coastal region of Suva. North of CWM are two suburban districts

of Suva, on the east coast is Raiwaqa and to the north is Samabula, both of which are

predominantly residential areas. Moving further north the regions increase in altitude

as well from 57m above sea level at CWM hospital to 124m at Nuffield Health Centre.

The Nuffield region is a peri-urban area and forms the ‘corridor’ that connects Suva city

to Nausori town. Finally, the Nasinu/Nausori area has several health facilities across

the region but the largest is Makoi Health Centre in the north of the region, where
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elevation dips again down to 58m above sea level (Figure 6.2).
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Figure 6.2: Map of study area. Suva and Nausori in the southeast of Viti Levu, Fiji. Each

region is represented by a different shade of blue. White crosses indicate the largest health

care centre in each of the five regions

Our serological sampling included several clusters in Suva, Nasinu or Nausori because

this is where most of the Central Division population resides (Fiji Bureau of Statistics,

2018a). Figure 6.3 shows the centroid for a cluster of up to twenty-five participants

recruited in the original 2013 study (Lau et al., 2016; Watson et al., 2017). Participants

in the serological study were well distributed across our study with samples available

from all five regions so it was possible to capture regional differences in pre-outbreak

community immunity.

Finally, the entomological department at the Ministry of Health recorded 49 individ-

ual events of vector population reduction interventions. The vast majority, 42 (86%)
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Figure 6.3: Map of study area and location of collected serological samples. Red dots, centroid

of a cluster of up to twenty-five participants in the original 2013 serological survey. A subset

of participants at each of these cluster locations were sampled in 2015 and in 2017. White

crosses show the largest health care centre in each of the five regions as in Figure 6.2
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Figure 6.4: Timing of vector control interventions during the 2017 DENV-2 outbreak. One

intervention was defined as reported by the Fijian MOH during the outbreak and could corre-

spond to an area sprayed with insecticide or targeted source reduction in a specific area

of these were chemical spraying and the remaining 7 were removal of breeding sites.

The first round of spraying was in February as a preventative measure to reduce the

likelihood of a large outbreak and was followed by a second round of chemical spraying

throughout March and April as cases increased quickly (Figure 6.4).

The sites of these interventions were well distributed across the study region. Chemical

spraying is designed to target areas with a high case load so a lot of the activity is in

Nausori, especially in the north around the Davuilevu housing estate, and in the area

immediately surrounding CWM hospital (Figure 6.5).

6.2.3 Model structure

I used a compartmental deterministic model introduced in Chapter 2. The model de-

fined the human population as either Susceptible, Exposed (pre-infectious), Infectious,

or Recovered (SEIR). The mosquito population followed a similar process without a

Recovered compartment because I assumed that mosquitoes did not recover from in-

fection. The full model was as follows:
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Figure 6.5: Map of study area and location of vector control interventions during the 2017

DENV-2 outbreak. Green dots, a vector control intervention implemented, either insecticide

spraying or source reduction in this area. White crosses show the largest health care centre in

each of the five regions as in Figure 6.2
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dSH
dt

= −βH(t)iMSH (6.1)

dEH
dt

= βH(t)iM − αHEH (6.2)

dIH
dt

= αHEH − γIH (6.3)

dRH

dt
= γIH (6.4)

dCH
dt

= αEH (6.5)

dsM
dt

= δ − βM
IH
NH

sM − δsM (6.6)

deM
dt

= βM
IH
NH

sM − (δ + αM) eM (6.7)

diM
dt

= αMeM − δiM (6.8)

Data were available on the size of the human population but not the mosquito popula-

tion so the human compartments were specified in terms of numbers and the mosquito

compartments in terms of proportions. The birth and death rates of mosquitoes was

assumed to be equal so the population density remained constant throughout the out-

break but the proportion susceptible was variable. The human population was assumed

to be constant throughout the outbreak with no deaths or births in this model.

Humans are assumed Susceptible (SH) until exposed to infection with DENV-2 when

they transition to a latent class (EH), then an infectious class (IH), and finally a recov-

ered and immune class (RH). Mosquitoes followed a similar process from susceptible

(sM), through latency (eM) to infectious (iM) where they remained until they died at

rate δ. The model uses six parameters in total: the force of infection from mosquitoes

to mosquitoes (βH(t)) and mosquitoes to humans (βM), the intrinsic (αH) and extrin-

sic incubation period (αM), the recovery from infection period in humans (γ), and the

birth rate of mosquitoes (δ) which was equal to the death rate to keep mosquito density

constant. The force of infection to humans varied over time due to seasonal variation

in transmission (details below). All other parameters in the model were constant over

time. The full model was defined as follows:

The next generation matrix for humans and vectors was defined as follows (Kucharski
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et al., 2018; Manore et al., 2014):

RHH RHM

RMH RMM

 =

 0
Sh
N

βH(t)

δ

αM
δ + αM

sMβM
γ

0

 (6.9)

The effective reproduction number, R, was equal to the dominant eigenvalue of this

matrix. The basic reproduction, R0, was calculated by the same method, but assuming

that both humans and vectors were fully susceptible.

6.2.4 Climate and control effect on transmission

The effect of seasonal variation in temperature was introduced to the model directly

into the transmission rate as has previously been described in Chapters 2 and 5. The

transmission rate at time t was dependent on a baseline mosquito-to-human transmis-

sion rate βH and sinusoidal forcing defined by an amplitude (βamp) and a midpoint

(βmid) as given in Equation 6.10.

βH(t) = βH (1 + βamp sin (2π (t+ βmid))) (6.10)

Similarly, I modelled the ‘control effect’ – any additional reduction in transmission

during vector control intervention campaigns – as a direct effect on the transmission

rate. Unlike in Chapter 5 the transmission rate fixes at the reduced value for the

duration of this outbreak because the study period is short and a single season. As in

Chapter 5 the transmission rate could gradually reduce over time with the reduction

centred around time βcentre. The total reduction in transmission rate (βbase) was defined

as a proportion between 0 and 1. The steepness of the decline in transmission rate was

defined by the parameter βgrad. The ‘control effect’ on transmission was defined as

follows:
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βH(t) = βH

(
1− βbase

1 + exp
(
−βgrad

(
t−βcentre
365.25

))) (6.11)

6.2.5 Model fitting

The model fitting process I used has previously been described (Chapters 2 and 5)

(Kucharski et al., 2016, 2018). Briefly, the model was jointly fitted to case and serolog-

ical data using adaptive MCMC with a Metropolis-Hastings algorithm. I used adaptive

MCMC by adjusting the covariance matrix used to resample and obtain a target ac-

ceptance rate of 0.234 (Roberts and Rosenthal, 2009).

6.2.6 Assessing model forecasts performance

During the outbreak, I assessed model performance visually by comparing previous

forecasts with newly available data. When I performed a retrospective analysis of model

performance I used three metrics of forecast performance – calibration, sharpness and

bias (Funk et al., 2019). I judged our best performing forecast to be the one that

maximises the sharpness of predictive distributions subject to calibration (Gneiting,

2008). I therefore calculated the calibration of forecasts before assessing sharpness and

bias. I compared three types of prediction model to identify which component led to the

greatest improvement in forecast performance. I started with our null (‘näıve’) model

where I assumed that the entire population was susceptible to DENV-2 and fitted

to surveillance data only. I then fitted to our pre-outbreak DENV-2 seroprevalence

estimate as well as the surveillance data. Finally, I jointly fitted to both the 2017

DENV-2 epidemic and the 2013-14 DENV-3 epidemic.

Calibration

Calibration of forecasts is the ability of a forecast to correctly identify its own uncer-

tainty in making predictions. I used data up to a specific fixed point in the outbreak

244



Mathematical Modelling of Arbovirus Outbreak Dynamics in Fiji and the Wider Pacific

and then used these model fits to forecast at weekly horizons up to 12 weeks. For

each forecast horizon, at time t I took bootstrap samples of the estimated weekly inci-

dence from our a posteriori model fits and derived the empirical cumulative probability

distribution Pt. I then calculated the calibration at time t, ut, according to the formula:

ut = Pt(kt) + ν (Pt(kt)− Pt(kt − 1)) (6.12)

This estimates the density of the data point at time t from the empirical probability

distribution defined by simulations from the forecast. Where kt is the observed data

at time t, and ν is the standard uniform distribution. I took a random draw from

a uniform distribution between the probabilities at kt and kt − 1 to adjust for the

discretised cumulative probability distribution when handling count data. I calculated

ut for weekly forecast horizon from 1 to 12 weeks after the data used to fit the model.

I obtained a distribution of ut from a bootstrap sample from the posterior of model

forecasts. If a model is perfectly calibrated then the observed data at each time point

will look as if they came from Pt at that time point. Therefore, if Pt is the true

cumulative probability distribution, then ut is standard uniform (Czado et al., 2009). I

tested whether ut followed a standard uniform distribution using the Anderson-Darling

test of uniformities. I used the function ad.test from the package goftest to perform

the test. The p-value from this test was used as evidence of good or poor calibration. I

considered that there was no evidence to suggest a forecasting model was miscalibrated

if the p-value found was greater than a threshold of p ≥ 0.1, some evidence that it was

miscalibrated if 0.01 < p < 0.1, and good evidence that it was miscalibrated if p ≤ 0.01

(Funk et al., 2019).

Sharpness

After assessing the calibration of the models I wanted to find the model that maximised

sharpness and reduced bias. Sharpness is a data-independent measure and is the ability

of the model to generate predictions within a narrow range of possible outcomes. I eval-
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uated the sharpness at time t, by calculating the normalised median absolute deviation

about the median of y:

St(Pt) =
1

0.675
median(|y −median(y)|) (6.13)

where y is a variable with CDF Pt. The sharpest model would focus all forecasts on

one point and have S = 0, whereas a completely blurred forecast would have S −→∞.

Bias

I evaluated bias at time t as:

Bt(Pt, xt) = 1− (Pt(xt) + Pt(xt − 1)) (6.14)

Where xt is the observed data point at time t. The least biased model would have

Bt = 0, whereas a completely biased model would systematically over-predict (Bt = 1)

or under-predict (Bt = −1) the data.

6.3 Results

6.3.1 DENV-2 transmission was low and ended by August

2017 as forecast in real-time

There were 755 cases of DENV-2 confirmed by detection of RT-PCR, NS1 or IgM anti-

bodies in the medical subdivision of Suva and neighbouring Nausori between January

and September 2017 (Figure 6.6). The population of Suva, Nasinu and Nausori is esti-

mated as 243,795 (Fiji Bureau of Statistics, 2018a). The epidemic peaked in May with

61 confirmed cases in one week. 497 cases (65.8%) were positive for NS1 antigen and

258 (34.2%) were confirmed ELISA positive for anti-DENV IgM antibodies.
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Figure 6.6: Confirmed weekly DENV-2 cases during the 2017 epidemic

I arrived in Fiji on 1st May 2017, by which point data were available up to the end

of March. There were 223 confirmed cases (29.5% of the total outbreak) in the final

data set released after the outbreak. However, the real-time data used to forecast the

outbreak had a slightly higher incidence and more variable trajectory, a comparison of

the real-time and post-outbreak case data is shown in Figure 6.7. A combination of

testing capacity and repeated tests led to this discrepancy. Real-time data recorded

more suspected cases at that point of the outbreak with 299 suspected cases between

January and March 2017.

There was concern in early May 2017 that this outbreak could increase rapidly and

cause a similar disease burden as the DENV-3 outbreak in 2013-14. This concern was

valid especially when taking into account the serological data collected from Fiji. In

November 2015, sera collected from 390 participants estimated that DENV-2 seropreva-

lence was 15.3% (95% CI: 12.6–19%) so there was a large proportion of the population

susceptible to DENV-2. In November 2013, at the start of the DENV-3 outbreak, esti-

mated DENV-3 seroprevalence was 45.3% (95% CI: 40-51%), so population immunity
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Figure 6.7: Comparison of available DENV-2 data. Both lines show DENV-2 case data

during the 2017 epidemic. Red line and dots shows the epidemic case data that was available

in real-time. After the outbreak some data were revised and the final epidemic curve for

confirmed cases is shown with the black line

248



Mathematical Modelling of Arbovirus Outbreak Dynamics in Fiji and the Wider Pacific

Figure 6.8: DENV model predictions provided to Fiji MOH during the DENV-2 on 12th

May 2017. Left panel: black dots, DENV-3 2013-14 case data. Blue line and region, model

projections with median (blue line) 95% CrI (light region) and 50% CrI (dark region). Middle

panel: black dots, real time DENV-2 2017 case data up to 8th March 2017. Blue line and

region, model projection as in left panel with seasonal forcing and additional ‘control effect’.

Right panel: black dots, case data as in middle panel. Blue line and region, model projection

as in middle panel but without any ‘control effect’ (assumed to be 50% at time of analysis).

All model projections include seasonal forcing.

to DENV-2 in May 2017 was lower than DENV-3 immunity before a large outbreak in

November 2013.

Together with my supervisor, Dr. Adam Kucharski, who was in Fiji with me at the

time to set up the serological survey, we began modelling the outbreak by jointly fitting

the available data in 2017 and the whole 2013-14 DENV-3 outbreak. We assumed that

some of the drivers of transmission were constant across the two outbreaks, primarily

parameters controlling the effect of climate on DENV transmission. On 12th of May

2017 we presented projections of DENV forecasts to the Ministry of Health (Figure

6.8). We found good evidence that this outbreak was unlikely to grow rapidly, total

weekly cases were not likely to exceed 200, and that the outbreak would have ceased

by August. We found that, because of the decline in temperature in Fiji between April

and August (Figure 6.9) and the effect this had on DENV transmission in 2013-14,

continued circulation of DENV-2 beyond July was unlikely.

I also analysed the effect of control interventions in real-time on the assumption that in-

terventions in 2017 were similarly effective to those implemented in 2013-14. I assumed

that interventions reduced transmission by 50% and was able to show that the epidemic

would be shorter with a lower peak (Figure 6.8 middle panel) than if no interventions
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were applied (Figure 6.8 right panel). Even in the absence of interventions the 2017

outbreak was forecast to be smaller than the DENV-3 epidemic had been.
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Figure 6.9: Average daily temperature in Suva, Fiji. Green line, daily temperature between

November 2013 and October 2014. Grey lines, average daily temperature in 2012-13, 2011-12

and 2010-11

6.3.2 The forecast could have been accurate only using data

up to March 2017

After the 2017 outbreak I was able to assess the performance of our forecast. Visually

comparing our forecast to the final data there was good agreement between the model

projections and the final epidemic (Figure 6.10). The projection made in May 2017 was

broadly accurate in terms of the number and timing of peak cases and duration of the

outbreak. Incident DENV-2 cases slowed rapidly in June as predicted. The epidemic

did have a longer tail than expected with cases reported as late as September 2017.

I wanted to analyse which aspect of our modelling approach led to the success of the

forecast. Then, using the best fitting model structure, I wanted to analyse how early in

the epidemic we could have made an accurate forecast on the trajectory of the epidemic.

I compared three versions of the same model for forecasting the epidemic and used data
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Figure 6.10: Comparison of real-time model forecasts with final outbreak data. (Joint work

with Dr. Adam Kucharski and this forecast was presented to public health officials on 12th May

2017). Top row, 2013-14 DENV-3 epidemic. Bottom row, 2017 DENV-2 epidemic. Black

dots, weekly case data. Blue line, median model projected cases. Blue region, 95% CrI (light

region) and 50% CrI (dark region). Red region, estimated seasonal forcing of transmission. In

this model we estimated that DENV transmission intensity peaked before temperature peaked

in Fiji. Red dots and lines, estimated seroprevalence and 95% CI from serological surveys

conducted in November 2013, November 2015 and June 2017 included in model fitting. Green

dot and lines, estimated seroprevalence and 95% CI presented for reference but not included in

model fitting. Orange line, median estimated seroprevalence from the model. Orange region,

95% CrI for estimated seroprevalence from the model

up to 8th March 2017 for all three models to forecast the epidemic. Firstly, a null (or

‘näıve’) model, as described in the methods section but assuming that we have no

information on prior immunity and the whole population is susceptible. This first

model was fitted to surveillance case data only. Secondly, the same model but fitted

to both surveillance case data and the estimated pre-outbreak DENV-2 seroprevalence

in Fiji. This should improve the estimate of the proportion of the population that

were susceptible to DENV-2 at the start of the outbreak. Finally, I fitted the model

to both 2017 DENV-2 cases and serological data and also jointly fitted this with the

2013-14 DENV-3 epidemic. For this third model I included pre- and post-outbreak
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seroprevalence estimates for DENV-3 but only pre-outbreak DENV-2 seroprevalence

when model fitting.

The results from the null model show a forecast of a very large outbreak with post-

outbreak seroprevalence above 80% (Figure 6.11A). In the second model, even with

a pre-outbreak seroprevalence estimate we would still project a large outbreak if we

only included 2017 data (Figure 6.11B). In this second model a smaller proportion

of the population can get infected compared to the null model because an estimated

proportion are immune before the outbreak begins. The increase in suspected cases

up to March 8th 2017 therefore suggests that the virus is more easily transmitted than

in the null model assuming total susceptibility. This higher estimated transmission

in the early stages of the outbreak then leads to an overestimate of the peak cases

in April in the forecast. Neither of these first two forecasts are particularly accurate

from a visual comparison to the data. In the final model however, by incorporating

information from the 2013-14 DENV-3 epidemic the forecast would accurately project

a small outbreak and accurately predict the peak cases, peak timing and timing of the

end of the outbreak (Figure 6.11C). I used an MCMC sampler where the total likelihood

for each iteration was the sum of the likelihood from the 2013-14 DENV-3 epidemic and

2017 DENV-2 epidemic. In this joint fitted model, information from both outbreaks

was therefore used to estimate parameters that were constant across both outbreaks,

such as the seasonality and baseline transmission rate.

Even from a visual comparison it is clear that the third model provided a more accu-

rate forecast. However I also used three metrics to compare the forecast performance:

calibration, sharpness and bias. I compared these metrics for the three models using

forecast horizons up to 12 weeks. I found that the forecast which jointly fitted to both

DENV outbreaks preformed much better. The näıve model and joint fitted models

were both well calibrated – p-values greater than 0.1 – up to approximately a 2 month

forecast horizon (Figure 6.11D). However, the joint fitted model was sharper, which

measures the ability of the model to generate predictions within a narrow range of

possible outcomes, with values closer to 0 across all forecast horizons (Figure 6.11E).

Finally, the joint fitted was the least biased forecast with values closer to 0 whereas both
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Figure 6.11: Assessment of model forecast performance using three models. A, a null model

assuming the whole population is susceptible to DENV-2 infection. B, model fitted to pre-

outbreak seroprevalence as well as surveillance data. C, Model jointly fitted to the 2017 DENV-

2 and 2013-14 DENV-3 epidemics including fitting to seroprevalence estimates. Red dots,

DENV-2 case data used in model fitting. Black line, complete 2017 DENV-3 epidemic case

data. Blue line, median model projected cases. Light region, 95% CrI. Darker region, 50%

CrI. Gradient of blue regions shows weekly projections from the end of the available case data

in model fitting up to the 12 week forecast horizon used in assessing model performance. D,

calibration - p values from a test of uniformity of the calibration at increasing forecast horizons

from 8th March (1-12 weeks). Lower p-value shows more evidence against the null hypothesis

that the model is well calibrated. E, sharpness - the ability of the model to generate predictions

within a narrow range of possible outcomes. Lower values are preferable. F, bias - unbiased

model with have a value of 0. D, E, and F. Black lines, null model. Red line, model including

pre-outbreak seroprevalence. Blue line, model jointly-fitted with DENV-3 2013-14 epidemic

of the simpler models systematically over-predicted the case burden (Figure 6.11F)

Having found that the joint-fitting model had superior forecast performance I wanted

to analyse the performance of this model with varying lead times for data availability.

My objective was to evaluate how early in the outbreak we could have provided a

reliable forecast of the 2017 DENV-2 outbreak. The epidemic take-off was slow in 2017.
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Two months after the first confirmed case, at the end of February, there were only 68

confirmed cases of DENV-2 (Figure 6.6). This slow emergence of the epidemic meant

that using data available up to February, we would have predicted that there would

likely be no epidemic (Figure 6.12A). In March the epidemic started to increase and

our forecast improved. Using data available up to 1st March 2017 we overestimated

the total size of the epidemic but accurately predicted that cases would decline by

July with good confidence (Figure 6.12B). As more data became available from April

through June, the overall conclusions of the forecasts did not change substantially but

the credible intervals narrowed giving a more precise estimate. (Figure 6.12).
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Figure 6.12: Model forecast performance with increasing data used in model fitting. Model

forecasts used data up to 1st February 2017 (A) then 1st March (B), April (C), May (D),

June(E). Red line, DENV-2 case data used in model fitting. Black line, complete DENV-2

outbreak case data. Blue line, median model projection. Light region, 95% CrI. Dark region,

50% CrI

6.3.3 Summary of data available to assess interventions

When we were modelling the outbreak in real-time we provided two forecasts, one that

assumed no additional reduction in transmission due to interventions, and another that

assumed a 50% reduction (Figure 6.8). In the analysis of forecast performance I re-

moved any additional effect of interventions on transmission for simplicity. To better

analyse the role of public health interventions I collected detailed data on incidence,
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seroprevalence and entomological interventions during the DENV-2 outbreak from the

capital of Fiji, Suva, and neighbouring regions Nasinu and Nausori. I combined surveil-

lance and serological data with information on entomological interventions to model

outbreak dynamics in each of these five regions.

In follow-up serological studies conducted in November 2015 and June 2017 we were able

to recontact and recruit participants from all five regions for another sample collection.

In 2015 there were 153 samples collected from Suva, Nasinu and Nausori, and in 2017

we collected 123 samples. 82 participants were sampled in both years. Samples were

available at both time points from all regions. The sample size in Nasinu was the largest

in our study with 128 samples across both time-points, and it also saw a large estimated

increase in DENV-2 seroprevalence (as measured by MIA) between collection dates from

18% (95% CI: 11-29%) to 35% (95% CI: 22-49%). The seroprevalence pattern in CWM

is hard to estimate because only 6 samples were collected from this region in 2015 and

all were negative. Post-outbreak seroprevalence in CWM was comparable to the rest

of Suva. Estimates were also uncertain in Raiwaqa with the smallest sample size of 31

over both time periods (Table 6.1).

Table 6.1: Number of participants who were seropositive to DENV-2 as measured by MIA

in 2015 and 2017, divided by study area regions

2015 2017

Region Positive N % (95% CI) Positive N % (95% CI)

CWM 0 6 NA 4 17 24 (7.8–50)

Nasinu 14 76 18 (11–29) 18 52 35 (22–49)

Nuffield 3 28 11 (2.8–29) 4 15 27 (8.9–55)

Raiwaqa 4 15 27 (8.9–55) 4 16 25 (8.3–53)

Samabula 5 28 18 (6.8–38) 5 23 22 (8.3–44)

The location of cases in the data were defined according to the location of the health

centre/hospital where the case was reported. Unsurprisingly, most cases reported at the

largest hospital in Suva, CWM. The second largest case burden was in Nasinu/Nausori

and there were very few cases in Nuffield. In both Raiwaqa and Samabula, the more
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residential areas of Suva city, the case burden was small but the epidemic curve was

well defined in surveillance data. Overall, we had a detailed description of the outbreak

within each of the five study regions, allowing us to model the DENV-2 outbreak for

the area as a whole and in each of the five regions defined in this section (Figure 6.13).

6.3.4 Climate and herd immunity were not enough to recreate

epidemic dynamics

I modelled DENV transmission in Suva, Nasinu and Nausori by jointly fitting the

DENV transmission model to both 2017 DENV-2 surveillance and serological data,

and the 2013-14 DENV-3 outbreak. This model was able to reproduce the transmission

dynamics of DENV-2 in Suva, Nasinu and Nausori in 2017, and of DENV-3 in Central

Division in 2013-14 (Figure 6.14). For the 2017 DENV-2 outbreak the model captures

the dynamics of the outbreak well in terms of peak cases, peak timing and duration of

outbreak. The basic reproduction number (R0) was variable across the calendar year

because of the seasonal forcing in the model so I used the median R0 over one year

to compare values. Median R0 values were similar for both outbreaks, 1.4 (95% CrI:

0.93-1.78) for DENV-2 and 1.5 (95% CrI: 0.94-1.92) for DENV-3.

To capture any potential effect of vector control interventions the model included a

flexible function to capture any additional reduction in transmission separate from

immunity dynamics and seasonal forcing. The effect of interventions on transmission

was weaker in 2017 than it had been in 2013-2014 (Figure 6.14B and D). However, even

though our estimate for relative reduction in transmission was less precise in 2017 I still

found strong evidence of a non-zero effect. The estimated reduction in transmission

after interventions in 2017 was 36% (95% CrI: 31-42%). For the 2013-14 DENV-3

outbreak the estimated reduction in transmission from this model was 71% (95% CrI:

68-75%). The dynamics of the 2013-14 DENV-3 and 2017 DENV-2 epidemics were

different for several reasons. The DENV-3 epidemic was larger and peaked earlier

in the year and had a smaller susceptible population at the start off the outbreak.

This analysis suggests however that for both epidemics seasonal forcing in transmission
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Figure 6.13: Summary of all available data in each of the five study area regions. Black lines,

weekly reported cases of DENV-2 during the 2017 outbreak. Pink dots and lines, estimated

DENV-2 seroprevalence as measured by MIA in each region and 95% CI before the outbreak

(samples collected in November 2015) and at the tail end of the outbreak (June 2017). Green

lines indicate timing of vector control interventions in each region
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Figure 6.14: Impact of climate and control measures on DENV transmission during the

2017 DENV-2 outbreak (A, B) and 2013-14 DENV-3 outbreak (C, D), using a model that was

jointly fitted to both outbreaks. (A, C) Black lines, weekly reported DENV case totals. (A, C)

Blue line and region, median estimate from the jointly fitted model, 95% CrI (light region), and

50% CrI (dark region). (B, D) Green line and region, estimates of the effective reproduction

number (Rt). Pink line and region, estimated additional reduction in transmission potentially

as a result of vector control interventions which are shown with vertical pink lines
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intensity and increase in immunity during the outbreak were insufficient to fully explain

observed outbreak dynamics and an additional reduction in transmission better fits the

observed data.

I estimated the start of the reduction in transmission for the 2017 DENV-2 epidemic. I

put no constraints on this parameter because I wanted to analyse whether a reduction

in transmission coincided with the actual interventions over this period. I estimated

that the central point of the ‘control effect’ was 68 days (95% CrI: 56-87) after the

start of the outbreak. This means the estimated reduction in transmission in the model

is centred around early March 2017, which is between the two rounds of interventions

during the outbreak (Figure 6.14B). For the 2013-14 DENV-3 outbreak I limited the

start of any reduction in transmission to be after the clean-up campaign in March 2014

(Figure 6.14D).

I compared this model for Suva with another model without a ‘control effect’ using the

Deviance Information Criteria (DIC). A difference in DIC of >10 was considered as

evidence that the model with the lower DIC was better. A difference between 5 and

10 was considered borderline evidence and any difference less than 5 was considered

as no evidence that the models performed differently. The model without a ‘control

effect’ (Figure 6.15) had a higher DIC (1003) than the model with control (851). This

suggests that the inclusion of an additional reduction in transmission improved the

model fit. Without this additional ‘control effect’, the estimated peak of cases in Suva

in 2017 is later than the observed reported cases and the estimated seroprevalence

post-outbreak is greater than that observed in our study (Figure 6.15A). This model

comparison provides further evidence that, at a regional level, the additional reduction

in transmission on top of herd immunity and seasonal climate effects better captures

the observed transmission of the 2017 DENV-2 outbreak.

I estimated five parameters in the better performing model with a ‘control effect’ (Figure

6.14). I used multiple MCMC chains and all five parameter values converged such

that parameter estimates were normally distributed (Figure 6.16). From this model

I estimated that 14% (95% CrI: 9-19%) of Suva were DENV-2 immune at the start

of the outbreak, slightly lower than the estimate from serological data, 17% (95% CI:
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Figure 6.15: Estimated DENV transmission dynamics without any additional reduction in

transmission during the 2017 DENV-2 outbreak (A, B) and 2013-14 DENV-3 outbreak (C,

D), using a model that was jointly fitted to both outbreaks. (A, C) Black lines, weekly reported

DENV case totals. (A, C) Blue line and region, median estimate from the jointly fitted model,

95% CrI (light region), and 50% CrI (dark region). (B, D) Green line and region, estimates

of the effective reproduction number (Rt)

13-22%). I also estimated a lower reporting rate in 2017 of 1.8% (95% CrI: 1.2-2.5%)

compared to 2013-14 DENV-3, 24% (95% CrI: 17-40%).

6.3.5 There was no evidence that more interventions led to

different transmission dynamics between local regions

There was a lot of variability in the timing and intensity of vector control interventions

across the five regions of our study site. All regions were covered as part of the first

round of chemical spraying in February, but some were targeted more heavily than

others such as Raiwaqa which had 7 different spraying events before the end of February.
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Figure 6.16: Correlation between estimated parameters from full DENV transmission model.

The transmission rate was a global parameter (the same value for the 2017 DENV-2 and

2013-14 DENV-3 epidemic). All other parameters are from the 2017 DENV-2 model only.

Histograms show estimated parameter values
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By contrast, Nasinu saw more spraying in the second round in April compared to the

February interventions (Figure 6.4).

Due to these heterogeneous intervention strategies, I analysed whether different inter-

vention strategies were related to different transmission dynamics by running our model

in each of the five regions. Population data for each region were estimated from Fiji

census data collected in 2017. I fitted the model to outbreak data from the 2017 epi-

demic for each study region and the 2013-14 DENV-3 outbreak at the Division level

using an MCMC sampler. The likelihood for each step of the MCMC was the sum of

the likelihood for each study region and the DENV-3 outbreak.

I was able to recapture DENV transmission dynamics in all five regions in 2017 with

this model, as well as the 2013-14 DENV-3 epidemic (Figure 6.17). The model was

able to reproduce the observed temporal trend of cases and seroprevalence within each

of the five regions for the 2017 DENV-2 outbreak (Figure 6.17A-E), however estimates

were less precise than the previous model fitted to the region as a whole (Figure 6.14).

Results were more precise in locations with more data available such as CWM and

Nasinu. These results show that it was possible to recapture transmission dynamics in

smaller areas with our model which included seasonal forcing on DENV transmission

and a ‘control effect’ coinciding with interventions in each area.

The estimates for the effect of interventions on DENV transmission were imprecise.

Even with the combination of surveillance and serological data and jointly fitting the

2013-14 DENV-3 outbreak, there was not enough data to accurately characterise the

‘control effect’ in each region (Figure 6.18). There was a stronger signal for reduced

transmission in Nasinu (Figure 6.18B) and Raiwaqa (Figure 6.18D). In both these areas

I estimated a > 50% reduction in transmission when interventions were implemented.

There was no evidence of an additional reduction in transmission due to a ‘control

effect’ in CWM, the area with the most interventions and most cases. This could be

because CWM is the largest health centre in Suva and cases reported at this location

were from infections in other locations, so interventions in this area will have less of an

effect on reported cases in the area.
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Figure 6.17: Dynamics of DENV transmission in Central Division, Fiji. Transmission

dynamics in five regions of Suva during the 2017 DENV-2 epidemic (A-E), and the whole

region during the 2013-14 DENV-3 epidemic (F). Black lines, weekly reported DENV case

totals. Blue line and region, median estimate of reported cases from the model, 95% CrI (light

region), and 50% CrI (dark region). Red line and region, median and 95% CrI of estimated

of seroprevalence from the model. Red dots and vertical lines, estimated seroprevalence from

serological surveys conducted pre-outbreak and in June 2017
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Figure 6.18: Variable intervention strategies across the five regions which make up our

study area. Coloured regions and line show the 95% CrI and median estimate of the ‘control

effect’ (βbase in Equation 6.11). Transmission reduced relative to a baseline transmission

rate according to these functions in the model (a value of 0.5 is equivalent to a 50% lower

transmission rate at the corresponding time point). Vertical red lines show the number of

vector control interventions in each region

6.4 Discussion

In this study I analysed DENV outbreaks in 2013-14 and in 2017 by combining both

surveillance and serological data. The same model was used for two purposes; forecast-

ing outbreak dynamics in real-time and estimating the effect of interventions after the

outbreak. I found that we were able to accurately recreate outbreak dynamics in terms

of the number and timing of peak cases and the duration of the epidemic. As the 2017

outbreak emerged our model was able to accurately forecast the transmission dynamics

before the peak of the epidemic had occurred by jointly fitting to the early case data, an

estimate of pre-outbreak immunity and the full 2013-14 DENV-3 epidemic. This model

was able to help in outbreak response and could be used in the same way for future
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arbovirus outbreaks in Fiji. Additionally, using complete data after the DENV-2 out-

break I found that herd immunity and seasonal forcing of infection were not sufficient

to explain the size and timing of the outbreak for both of the 2013-14 or 2017 DENV

epidemics. I found evidence that an additional reduction in transmission was necessary

to accurately recapture the transmission dynamics of the outbreak. However, I was

unable to find conclusive results when analysing the relationship between interventions

and reductions in transmission across the Fijian capital city of Suva.

With a model that can characterise a DENV outbreak in Fiji I was able to predict

transmission dynamics accurately in real-time during the 2017 DENV-2 outbreak. The

DENV-2 outbreak started in January 2017 and the final cases were recorded in Septem-

ber with 755 confirmed cases in total. Our model was able to accurately predict the

scale and dynamics of the outbreak from as early as March 2017 when only 68 cases

had been reported. Our model results were used during the outbreak to inform the

response from the Ministry of Health to reduce uncertainty and fears that the outbreak

would grow to the scale of previous large DENV outbreaks in Fiji.

After the outbreak I found that the increase in herd immunity and the decrease in

transmission intensity as the temperature decreased in Fiji contributed to slowing the

spread of DENV-2. However, by including an additional reduction in transmission

in the model I was better able to recreate the 2017 DENV-2 transmission dynamics,

both in terms of the scale of the outbreak and the timing of the decline in confirmed

cases. These findings, combined with similar results from a modelling analysis of the

2013-14 DENV-3 outbreak, add to the very limited evidence base for the effectiveness of

public health interventions in Fiji during arbovirus outbreaks. For this study I collected

detailed data on incident cases, seroprevalence, and information on when and where

interventions on the adult vector population were implemented. Despite this amount of

data, I was unable to draw reliable conclusions when comparing transmission dynamics

in the different regions using our model. This study highlights how difficult it is to

accurately assess the effectiveness of interventions during an outbreak.

This study was heavily reliant on seroprevalence estimates in the Suva region, both

when assessing the performance of the real-time forecast and when evaluating the role
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of interventions in the outbreak. When looking at small regions within the Suva-Nausori

region sample sizes were small and as a result some of the estimates of seroprevalence

lack precision with wide confidence intervals. In addition, the timing of sera collection in

June 2017 is not ideal with an ongoing outbreak and our assay tested for the presence

of long term IgG antibodies against a variety of viruses. The potential for variable

antibody responses during an outbreak introducing uncertainty into our seroprevalence

estimates cannot be discounted. However, the model fitting should capture some of

this uncertainty since I included the seroprevalence estimates in our likelihood with a

binomial probability density. This means I was not reliant on a single point estimate

and more precise seroprevalence estimates – such as for the whole Suva-Nausori region

– will carry more weight in the model fitting than less precise estimates with wider

confidence intervals and less information.

Modelling during an outbreak is inherently limited by the rapid evolution of outbreaks.

People change their behaviours in response to an outbreak as they become aware of the

danger directly through public health campaigns or indirectly through news reports

(Bausch and Edmunds, 2018). This rapid evolution of outbreaks limits the conclusions

I could draw from this model of the 2017 DENV-2 outbreak. I concluded that the

outbreak was small – sera collected in June 2017 showed an estimated 28.9% (95% CI:

22-36.6%) of the population were seropositive – and that transmission slowed rapidly

in June 2017 (Figure 6.14). However, it is hard to separate the mechanisms by which

this was made possible. We know that herd immunity increased over the outbreak, that

transmission likely slowed as temperatures declined and that an additional reduction in

transmission best explains the observed dynamics. However, I was unable to separate

the effect of several simultaneous interventions such as chemical spraying, health seeking

behaviour in the community, people closing windows and wearing more insect repellent.

A key limitation is therefore that I am not inferring a causal relationship between

chemical spraying and a reduced burden of cases. Future research should be designed

proactively to assess the performance of different interventions before a DENV outbreak

in Fiji. This is especially important to get a baseline measure of effectiveness before

new interventions are introduced such as Wolbachia infected mosquitoes that cannot

transmit DENV when they bite a human (Lambrechts et al., 2015).
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In this study I chose a level of model simplicity that reflected the data we had avail-

able. I chose simple mechanisms to represent the effects of climate and interventions

in the transmission model. It is well established that there is a strong relationship be-

tween temperature and DENV transmission (Brady et al., 2014; Descloux et al., 2012).

In Suva, temperature typically fluctuates between a peak of 30°C and a low of 24°C

(Figure 6.9) and recent research showed that maximal DENV transmission from Aedes

aegypti occurs between 26-29°(Mordecai et al., 2017). As a result, I used a simple sine

wave to introduce seasonal forcing on DENV transmission. Similarly, because of the

lack of evidence on the effectiveness of interventions on DENV transmission in Fiji I

used a simple and flexible sigmoid function to capture any reduction in transmission

and did not specify which interventions these could be from. This function assumes

that any reduction occurs once, at a fixed rate to a diminished transmission rate from

which it does not recover during the outbreak. A more complex model which more

closely represents the reality of a mosquito-borne disease outbreak could deconstruct

the baseline transmission rate βH into component parts (Funk et al., 2016; Lourenço

et al., 2017; Pandey et al., 2013). However, I chose a more parsimonious approach

due to the lack of robust entomological data in Fiji which would have made estimating

more mosquito specific parameters a challenge. In both cases, these simpler mechanisms

seemed justified at the expense of realism. This was especially true since real-time fore-

cast results had to be communicated to an audience of decision makers mostly näıve to,

and occasionally sceptical of, the benefits of modelling disease outbreaks. In the case of

temperature and seasonal forcing, a more complex model incorporating daily changes

in temperature and humidity could have produced a more detailed mechanism but the

principle I wanted to capture was that transmission was not constant over the year

and this was achieved with the sine curve. Our work on the impact of interventions

demonstrates how hard the effectiveness of interventions is to measure at a population

level, let alone when trying to compare different strategies.

This study was unable to draw conclusions about differing levels of effectiveness from

heterogeneous intervention strategies in the Suva-Nausori region. The most likely lim-

itation in our data was the use of health care facility reporting as the location of a

case, not home address which was unavailable. As a result, the majority of cases (55%)
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were located in CWM however it seems unlikely that all cases reported at CWM were

infected in this region. This could potentially explain why I have a well-defined signal

for the additional reduction in transmission for the Suva-Nausori region as a whole but

not for individual regions within it. I was limited by ignoring the spatial component

of this outbreak and consequently our model assumed that the walls between the 5

defined regions were barriers that disease could not cross. While it seems likely that

infected mosquitoes would not travel far enough to blur these boundaries with a range

of 200m (Turell et al., 2005) it is likely that people – especially those seeking health

care – would travel out of their home region to report in a neighbouring region. This

highlights the need for more complete epidemiological data in routine surveillance, es-

pecially information on home residence and place of work or school so that it is possible

to more accurately infer the likely location of infection in future studies.

There are limitations in generalising the findings from this study and the approach

used. I clearly benefited from the availability of good quality representative serological

data. The study setting of Fiji, as an island state in the South Pacific with epidemic

outbreaks of arboviruses rather than ongoing endemic transmission, made characterising

population immunity simpler. The potential for cross-reaction in serological assays if

multiple virus were co-circulating at a high level would be greater in endemic regions.

This feature of distinct invasive outbreaks makes island states such as Fiji valuable for

research and hypothesis generation but limits the generalisability of conclusions from

such studies.

Assessing this study post-outbreak I identified an area of clear missed opportunity which

was to look at forecasting over a longer time period, even when the priority was the

short-term course of the 2017 outbreak. I had the model and the ability to test whether

re-emergence of DENV-2 was likely when temperatures increased. DENV transmission

did continue into 2018 (World Health Organisation, 2018), and our model could have

highlighted the risk of this happening which could have proved valuable. This highlights

the need to focus on the long-term, even when forecasting an outbreak and preoccupied

with the short-term predictions. As forecasting methods improve and the predictive

ability of modelling improves, we should answer more interesting questions in real-time.
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This study demonstrates the power of jointly fitting and combining data in model

fitting. In terms of real-time modelling, the forecasts produced if we fitted to 2017 real-

time data alone are much worse and estimate a larger outbreak. I included the 2013-14

outbreak in our model fitting and as a result borrowed information on certain common

parameters from these data. Even within a single outbreak, the value of including the

serological data is clear. An estimate of pre-outbreak population immunity sets realistic

initial conditions for the model. Estimating post-outbreak seroprevalence gives a strong

estimate of the size of the outbreak, which can improve parameter estimation in the

model. The joint fitting and combination of data in our model were essential in estab-

lishing an accurate and timely prediction of the outbreak and in untangling different

mechanisms that affected DENV transmission dynamics in post-outbreak analyses.

I collated a large amount of data for this study. I was able to estimate an additional

reduction in transmission when vector control interventions were implemented when

analysing Central Division. However, results on the effect of vector control interven-

tions at a finer spatial scale were inconclusive. There is very little evidence available

globally to demonstrate that current vector control tools such as fogging are effective

at reducing DENV incidence (Achee et al., 2015; Bowman et al., 2016; Heintze et al.,

2007). Guidelines are available to design a study to fill this evidence gap and suggest

that a cluster randomised control trial is an optimal study design (Wolbers et al., 2012).

These trials are expensive so I attempted to use modelling to analyse vector control

interventions in Fiji. This study demonstrates that even with good quality data from

multiple sources this is a very challenging application of modelling. The most notable

omission from my study was spatial data on home locations of reported cases. Recent

research has demonstrated that with fine scale spatial data on cases and interventions

it is possible to estimate the effect of interventions on local DENV transmission (Abdur

Rehman et al., 2020). Modelling will be a valuable tool in improving DENV control

(Ferguson, 2018) and it is important to test the effect of these interventions in real-

world settings. This study implies a baseline of data requirements to conduct such a

study. Data on seasonal factors, local immunity, infections, population size, and the

timing and location of interventions were insufficient to produce a reliable estimate of

the effect vector control. More accurate spatial data on the home location of cases is
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a necessity, information on work location and mobility for these individuals would be

beneficial. This is a large data burden but could still prove to be a more efficient route

to improving DENV control in Fiji compared to establishing a large trial.

Outbreak response can clearly benefit from having a good model prediction at the start

of the outbreak. In this study I demonstrated the value of embedding a modelling anal-

ysis in outbreak response to improve preparedness and most efficiently use resources.

Working closely with local health officials over the course of two DENV outbreaks in

2013-14 and 2017, we were able to collate good data and therefore predict the dynamics

of an emerging outbreak. The importance of evidence from a previous outbreak is clear

in this study so there are great benefits to be gained from making outbreak research

and previous forecasts accessible. Not only does this aid transparency but it has the

potential to improve future forecasting efforts.

Our study added to the very limited evidence base for the effectiveness of current

control measures in DENV. Especially in Fiji, there is a real question as to whether

these chemical spraying efforts provide value for money. Previous work had shown that

herd immunity and seasonal forcing alone could not recapture transmission dynamics in

the 2013-14 DENV-3 outbreak. Our results in this study corroborate the same finding

during the 2017 DENV-2 outbreak, adding to the evidence that interventions during

DENV outbreaks do help to reduce transmission. However, this remains indicative

and not proof of causality. Further, we do not know which intervention could reduce

transmission most effectively. In the short-term this supports current strategies for

outbreak control in Fiji. In the long-term, further study into current control strategies

should be conducted to differentiate the effects of different interventions on the vector

population and DENV transmission, especially as outbreaks become more frequent.

Through this study we have demonstrated the benefit of real-time modelling and the

effectiveness of combining data with a relatively simple model to predict outbreak dy-

namics. This study has also shown that vector control interventions are likely having

a negative effect on transmission in Fiji. In Fiji before this study there was extremely

limited information on the effectiveness of vector control and the trajectory of ongo-

ing outbreaks were not forecast. Through systematic incorporation of evidence from a
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previous outbreak and combination of multiple data sets, mathematical modelling can

help address both of these gaps.
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This research had two primary aims; the first was to improve the understanding of

population immune dynamics following arbovirus outbreaks. Secondly, to identify the

determinants of arbovirus transmission dynamics in island outbreaks. This aim led to

the following five objectives:

1. Conduct a serological survey in Fiji, resampling as many participants of previous

surveys in Central Division as possible

2. Analyse longitudinal serological data to determine the burden of ZIKV infection

in Fiji between 2013 and 2017

3. Evaluate the population level immune response to ZIKV from serological data

following outbreaks in Fiji and French Polynesia

4. Develop a mathematical model of arbovirus transmission and use it to explain

different transmission dynamics of recent arbovirus outbreaks in Fiji

5. Inform control strategies for DENV outbreaks in Fiji by estimating the effect of

vector control on DENV transmission

At the start of these studies Zika virus (ZIKV) was an emerging public health threat

and, in the absence of better information, the majority of mathematical models for

ZIKV transmission assumed that the virus acted similarly to dengue virus (DENV)

(Champagne et al., 2016; Ferguson et al., 2016; Funk et al., 2016; Kucharski et al.,

2016; Netto et al., 2017; O’Reilly et al., 2018). DENV and ZIKV share the same

primary vector (Musso and Gubler, 2016) and are antigenically similar (Priyamvada

et al., 2016). However, it was still unknown whether these viruses did result in simi-

lar immune dynamics in a population following an outbreak. Similarly, as arboviruses

including DENV, ZIKV and to a lesser degree chikungunya virus (CHIKV) began to

circulate more frequently in the Pacific over the past decade there was a pressing need

to understand the determinants of arbovirus outbreak dynamics. Outbreaks in the

region were often short, large, single-season epidemics (Cao-Lormeau et al., 2014b;

Dupont-Rouzeyrol et al., 2015; Lowe et al., 2018a; Roth et al., 2014), but there is in-

creasing evidence of persistent low level circulation over several years (Kama et al.,
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2019; Ruchusatsawat et al., 2019). The factors that determine these contrasting out-

break dynamics in Fiji and the wider Pacific are not well understood.

This doctoral project has demonstrated distinct differences in the immunological re-

sponse to outbreaks of both of these viruses in the Pacific. I found that ZIKV neutral-

ising responses waned in adults within two years of a ZIKV outbreak, whereas DENV

neutralising responses were maintained over the same time frame (Chapter 4). Overall,

I found a diverse range of outbreak dynamics across closely related arboviruses in the

same location which were revealed through a longitudinal seroepidemiological study

(Chapter 3).

The diverse range in dynamics on tropical islands were shown to be highly dependent

on the timing of the emergence of a virus. I developed a mathematical model that

showed that if ZIKV was introduced to Fiji earlier in the year then it could have caused

a large single season epidemic in Fiji, comparable to the 2013-14 DENV-3 epidemic

(Kucharski et al., 2018) or ZIKV outbreak in French Polynesia (Cao-Lormeau et al.,

2014b) (Chapter 5). Despite this range of outbreak dynamics, it was possible to reliably

and accurately forecast outbreaks in real-time by combining a mathematical model with

multiple data sources and knowledge from previous outbreaks (Chapter 6).

In Chapter 3 I presented an overview of a 2017 seroepidemiological data collection

study I led. My objective was to resample as many participants as possible from

previous serological surveys conducted in Fiji (Kama et al., 2019; Kucharski et al.,

2018; Lau et al., 2016; Watson et al., 2017). The study design was effective and we

successfully resampled 320 participants. Using these data I showed that seroprevalence

against DENV-1 was highest in Fiji, but that seroprevalence against ZIKV and CHIKV

remained low despite confirmed circulation of these viruses in 2016 (Kama et al., 2019).

By collating longitudinal samples between 2013 and 2017 from the same individuals

I was able to demonstrate the wide variety of serological dynamics in a population

against different circulating arboviruses during the study period. Seroprevalence by

MIA increased following outbreaks of CHIKV and DENV-2 between 2015 and 2017 but

seroprevalence declined for ZIKV despite recorded cases over the same period.
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This seroepidemiological study was designed to specifically focus on ZIKV seropreva-

lence in Fiji between 2013 and 2017 by analysing longitudinal serological data in Fiji to

determine the burden of ZIKV infections. Between 2013 and 2015 ZIKV seroprevalence

in Fiji had increased from 7% in 2013 to 22% in 2015 (Kama et al., 2019). In Chapter 3

I presented evidence that ZIKV seroprevalence as measured by MIA actually declined

in Fiji between 2015 and 2017 to 12.5%. The proportion of the Fijian population with

evidence of past ZIKV infection remained low, unlike other outbreaks of ZIKV in the

Pacific (Aubry et al., 2017a) and beyond (Flamand et al., 2019; Gallian et al., 2017;

Netto et al., 2017; Rodriguez-Barraquer et al., 2019; Zambrana et al., 2018). If the

three serological studies conducted in Fiji between 2013 and 2017 had been designed

as a cross-sectional studies then exploring the causes of this pattern of seroprevalence

would have been limited. Since both studies in 2015 and 2017 included the additional

complexity of re-contacting previous participants, I was able to analyse sera in the same

189 individuals in Fiji between 2013 and 2017.

Chapter 4 presented the results of an analysis of the three longitudinal serological

studies conducted in Fiji, combined with five cross-sectional serological surveys from

French Polynesia. The objective of this analysis was to evaluate the population level

immune response to ZIKV from serological data following outbreaks in both countries.

The main finding of this analysis was that seroprevalence declined in adults within

18 months of ZIKV transmission in each country. Seroprevalence in children in both

countries remained stable over the study period. A subset of samples collected in Fiji

were also tested for neutralising antibodies and we found that individual-level antibody

titres against ZIKV, as well as overall seroprevalence, decreased over time (Henderson

et al., 2020).

Chapter 5 presents the main mathematical model of arboviruses in this thesis. I used

the aforementioned serological data combined with surveillance and molecular data to

evaluate different transmission dynamics of recent arbovirus outbreaks in Fiji. In par-

ticular, I wanted to compare a large single-season epidemic of DENV-3 in 2013-14 with

the low level circulation of ZIKV between 2013 and 2017. I developed a mathematical

model that included information on seasonal variation in temperature, reduced trans-
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mission from a vector control campaign in March 2014 and estimated virus introduction

date from a phylogenetic analysis. I fitted this model to surveillance and serological

ZIKV data to evaluate the determinants of these diverse arbovirus outbreak dynamics.

I found that virus introduction date, combined with a strong seasonal forcing on trans-

mission, was sufficient to explain the diverse outbreak dynamics in Fiji. This analysis

can be used to define a period of high epidemic risk in Fiji.

In the final results chapter of this thesis, Chapter 6, I present results from a modelling

analysis of a DENV-2 outbreak in Fiji in 2017. The original objective of the study

presented in this chapter was to estimate the relative contribution of vector control in-

terventions during the outbreak on transmission. Previous research had found evidence

of reduced transmission intensity during a vector control campaign in Fiji in March

2014 (Kucharski et al., 2018). I aimed to take this research further by combining more

detailed information on the DENV-2 outbreak at a finer spatial resolution. I found ev-

idence that an additional reduction in transmission helped explain DENV-2 outbreak

dynamics in 2017 at a regional level but I found no evidence that stronger interventions

in local areas led to weaker transmission. This work added to the very limited evidence

base for vector control effectiveness in Fiji but more research is clearly needed to help

guide the most effective intervention strategy during arbovirus outbreaks.

While I was in Fiji during the 2017 seroepidemiological study the DENV-2 outbreak

was spreading and was a cause of concern for the Ministry of Health. I therefore used

this model of DENV transmission to provide real-time forecasts of the DENV outbreak

to help inform the public health intervention strategy used by the Ministry. After the

outbreak, I wanted to analyse how accurate this forecast was and how early in the

outbreak it would have provided a useful projection of the DENV outbreak dynamics.

The DENV-2 outbreak resulted in 755 confirmed cases between January and September

2017 in Suva, the capital of Fiji. In Chapter 6 I demonstrated that this model could

accurately predict the scale and dynamics of the DENV-2 outbreak from as early as

March 2017 when only 68 cases had been reported. I found that modelling could inform

and guide public policy during an outbreak, especially if the model is well calibrated

to a previous outbreak in the same setting.
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7.1 Strengths

A major strength of this project is the serological data collected in Fiji between 2013

and 2017 and the fact that these data were population representative and collected

from the same individuals over time. The original study in 2013 collected a population

representative sample of individuals from Fiji. Most other ZIKV seroprevalence studies

are a result of convenience sampling which are more susceptible to biased estimates

(Gake et al., 2017; Gallian et al., 2017; Lozier et al., 2018; Netto et al., 2017). Through

systematic recontacting of participants in 2015 and 2017 we were able to maintain

the distribution in our sample in terms of key demographics, particularly age. As a

result I collated a longitudinal data set of population representative sera from the same

individuals with up to three measurements. The serological data strongly influenced the

size of the modelled outbreaks and without these data the plausible parameter space

in the model fitting would have been less constrained. The ZIKV model for example

would have estimated a larger ZIKV outbreak in a majority susceptible population

(Kucharski et al., 2016) and the DENV-2 estimates would have been less precise without

a baseline estimate of the proportion of residents of Suva that were immune at the start

of the outbreak. These longitudinal sera data were also combined with cross-sectional

serosurveys from French Polynesia to describe the population immune response to ZIKV

outbreaks in both countries. The data collected from French Polynesia were cross-

sectional so provided weaker evidence for the waning of ZIKV neutralising antibodies

over time, whereas the longitudinal data from Fiji facilitated analysis of changes in

neutralising antibody titres over time.

This project has shown how mathematical models can be used with multiple data

sources to infer underlying epidemiological and immunological dynamics, even in situ-

ations with imperfect data. The analyses in this thesis, especially in Chapter 5 about

outbreak dynamics of ZIKV in Fiji, are reliant on combining multiple data sets with a

mathematical model. Without this approach the potential to answer questions about

the diverse outbreak dynamics of ZIKV and DENV in Fiji would have been limited. For

example, I took two steps to facilitate this analysis and mitigate the limited available

surveillance data with just 16 cases of ZIKV confirmed in Central Division. Firstly
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I combined multiple data sets. The surveillance data suggested minimal ZIKV trans-

mission but serological data showed evidence of widespread ZIKV transmission, albeit

lower than other ZIKV outbreaks in the Pacific (Cao-Lormeau et al., 2014b; Duffy et al.,

2009; Funk et al., 2016). Combining these multiple data sources told us that a ZIKV

epidemic was likely missed in Fiji. Secondly, I used these multiple data sets in a math-

ematical model that explicitly modelled the mechanisms that affect arbovirus outbreak

dynamics. The results from this model showed evidence of when ZIKV infections, both

detected and undetected, spread most and defined a period of high epidemic risk in

Fiji. A theoretical model without data would have been able to propose hypotheses for

the diverse range of arbovirus dynamics in Fiji. However, the conclusions in this thesis

are drawn from models that were validated with real-world data. This project demon-

strates that even if one data source provides limited information, including another

data sources with a mathematical model can compensate for this.

The models used in this thesis have been used to evaluate outbreak dynamics, but

have also been empirically tested in real-time outbreak response. The aim of this

doctoral project was to better explain arbovirus outbreak dynamics in Fiji and the

wider Pacific. The test of my ability to characterise outbreak dynamics in Fiji was to

use the data in real-time to forecast the course of an arbovirus epidemic, which is what I

did during a DENV-2 outbreak in 2017 (Chapter 6). This demonstrated that this model

could provide valuable input in real-time, as well as used in post-outbreak analysis to

evaluate dynamics of the epidemic. I used the model to demonstrate that joint fitting

of the ongoing outbreak with a previous DENV outbreak was the key contributor to

successfully forecasting the outbreak. This leads to a clear recommendation that having

a well calibrated model for a particular disease can help forecast emerging outbreaks in

Fiji and beyond.

Finally, I have aimed to work in a transparent and reproducible manner throughout

this doctoral project. An attainable minimum standard in epidemiological research is

‘reproducibility’, whereby data and software are available to verify findings (Peng et al.,

2006). The gold standard for this is to make the data and code publicly available and

able to run the analysis on open source software (Peng, 2011). Data should be publicly
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available alongside analyses, while respecting the anonymity of study participants. De-

identified data from Fiji – all demographic and location data removed, except age –

have been made public when published (Henderson et al., 2020). This is not only

appropriate for validation of the findings in my research but maximises the value of

the data collected. Study participants in Fiji contributed a lot to our data collection

and if the data drawn from these studies are publicly available then this maximises

the potential usefulness of these data. I have benefited from publicly available ZIKV

sequences and it is possible that others will similarly benefit from the availability of the

data I have collected. Data and code have been made available on GitHub and all code

uses open source software R (R Development Core Team, 2011).

7.2 Limitations

The conclusions drawn in this thesis rely heavily on the quality of the serological data

collected in Fiji. Cross-reactivity of antibodies is a problem for all seroprevalence stud-

ies, especially studies of flaviviruses (Andrade and Harris, 2018; Beck et al., 2019; Keasey

et al., 2017; Mansfield et al., 2011). Serological cross-reaction of viruses imply the shar-

ing of closely related antigenic sites or epitopes (Calisher et al., 1989). As a result

of these close relationships antibodies acquired from natural infection with one virus

may bind to a different but related antigen in a serological test. This cross-reaction

can provide a false positive result and we assume that there has been more infection

with a particular virus in a population than actually occurred. The specificity of the

microsphere immunoassay (MIA) is greater than tests using enzyme linked immunosor-

bent assays (ELISAs) however cross-reaction is still a cause for concern (Beck et al.,

2015). This doctoral project consistently assumes that ZIKV circulated in Fiji between

2013 and 2015 because of an increase in seroprevalence (from MIA testing) from 7% to

22% (Kama et al., 2019). It is possible that the increased seroprevalence in 2015 was

a result of cross-reaction. This would imply that ZIKV seroprevalence did not wane

between 2015 and 2017, but that the assay results were more specific in 2017. However,

there were limited increases in DENV seroprevalence between 2013 and 2015, with the
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exception of DENV-3 because of a large outbreak (Chapter 3). Analysis of correla-

tion between changes in neutralisation titre between 2013 and 2015 in those initially

seronegative to any ZIKV or DENV showed no association between change in ZIKV

titre and any of the four DENV serotypes (Chapter 4). It is however unavoidable that

serological cross-reaction is a limitation for the analyses in this project. To account

for the problem when mathematical modelling I explicitly estimated the sensitivity

and specificity of the seroprevalence estimates in Chapter 5. Instead of comparing

the proportion infected in the model to the reported seroprevalence I calculated the

expected seroprevalence given the underlying “true” number of infections. Observed

seroprevalence was therefore compared to a proportion of those infected in the model

(sensitivity) plus a proportion of those not infected in the model (1 minus specificity.

From this model I estimated a false positive percentage and sensitivity of 6.3% (95%

CrI: 4.4–8.6%) and 79% (52–98%) for ZIKV. These results adjust for the inevitable un-

certainty in seroprevalence estimates when modelling arbovirus transmission dynamics

and were also consistent with the previously reported assay specificity and sensitivity

for ZIKV of 94.9% and 79.6% (Henderson et al., 2020). To validate results I have

analysed complimentary assays and examined seroprevalence trends within the same

participants. Through this work I am confident that the observed pattern of increasing

then decreasing ZIKV seroprevalence in Fiji is a result of real immunological dynamics

and not merely a function of the assays used.

A second problem with interpreting serological data is the uncertain relationship be-

tween a participant’s antibody response and how this correlates with protective im-

munity against that virus. A particular cutoff for positivity does not necessarily mean

that all those that test positive are immune and those that test negative are susceptible.

Therefore, relating a seroprevalence level in a population with immunity against that

virus is complicated. I observed a trend of declining seroprevalence as measured by

MIA in adults between 2015 and 2017 in Fiji but cannot conclude from this alone that

the majority of the population is susceptible to ZIKV infection. Collaborators in Tahiti

tested all 2017 samples with a plaque reduction neutralisation test (PRNT) so that we

could more directly relate our serological data to protective immunity. These results

showed that for ZIKV, neutralising antibodies (NAbs) declined between 2015 and 2017
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but that a significant proportion of the population still had high levels of NAbs in 2017

(log titre ≥ 2). Work on DENV suggests that there is a relationship with NAbs and

immunity with DENV (Katzelnick et al., 2016). We found that ZIKV NAbs waned

in adults between 2015 and 2017 but were still able to neutralise ZIKV. I therefore

included waning detectable ZIKV antibodies (from the recovered compartment) in my

model of ZIKV transmission but did not allow for reinfection within the study period

(Chapter 5). It is important to acknowledge the uncertainty in the connection between

seroprevalence and immunity. I have been careful throughout this thesis not to imply

that the low ZIKV seroprevalence in Fiji in 2017 implies that the close to 90% of the

country are susceptible to ZIKV infection. However, this is more of a limitation in how

far results can be extrapolated, not in the finding itself.

An additional limitation to the findings of this thesis is that more advanced methods

exist to analyse serological data than have been used in this project. Data augmentation

can be used to obtain probabilistic assessments of changes in titre values and whether

they are caused by actual infection or assay variability. This has been done effectively

in DENV serology using a haemagglutination-inhibition (HI) assay on blood samples

from a school-based cohort of 3,451 participants (Salje et al., 2018). It has previously

been shown that there is good agreement between HI assay titre values and PRNT

(Venturi et al., 2006). The seroprevalence estimates from MIA in this study did not

allow for this extended analysis because titre values were not stable enough. The process

used in the MIA results in an immunofluorescent (IF) reading even if there is no sera

in the well during the test. This IF measure is referred to as the ‘background’ and a

participant’s MIA value is their IF reading for a particular minus this background value.

This control step is essential to ensure that the IF reading for a particular virus is the

result of actual antibody binding not inflated or deflated because of the plate being

tested. However, this does mean that values are not stable and can be negative, which

when log transformed can lead to a loss of data. This issue makes comparisons of values

between samples much harder than handling titre values that are discretised, such as

PRNT. Our PRNT data was however limited by a smaller sample size than the MIA

data. In 2015 a subset of samples were tested with PRNT, mostly those positive by

MIA, so the longitudinal PRNT sample was too small to be robust enough to estimate
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infection times. Another limitation in both MIA and PRNT assays is the batch effect

where non-biological factors affect the data from these assays. Our data were sampled

at two different time-points as samples from 2013 and 2015 were analysed together, then

2017 samples were analysed two years later. These separate analyses could also have

introduced random error into our results that were not associated with the outbreak

dynamics.

A final major limitation in the serological survey data is potential sampling bias through

loss to follow-up over the five-year study period. The original study in 2013 was well

designed to be population representative however successfully resampling an individual

in follow-up studies was not completely random. Some demographic groups and loca-

tions in Fiji were going to be more difficult to resample in the 2017 survey. It is possible

therefore that trends in seroprevalence were a result of changing samples rather than

underlying transmission dynamics. I was conscious of this potential problem through-

out and when collecting 2017 samples I tracked the spatial and age distribution as data

were collected to try and collect as balanced a sample as possible. Even after this, it

is possible to calculate adjusted seroprevalence if a particular variable is of concern.

For example the unadjusted estimated ZIKV seroprevalence in 2017 was 12.5% (95%

CI: 9.1-16.6%) and, using weights from the 2013 survey, the estimated age-adjusted

seroprevalence was 12.1% (95% CI: 8.7-16.7%). We can repeat this process for rural-

ity, of particular interest in this study given the urban mosquito vector for ZIKV and

DENV. Estimated ZIKV seroprevalence in 2017 adjusted for rurality (using the distri-

bution from the 2013 sample) was 12.3% (95% CI: 8.8-16.8%). Doubtless the follow-up

surveys were not as representative of the population as the 2013 survey, but there was

no evidence that this bias was significant enough to change the findings of this study.

Where possible, as an additional step to mitigate this bias, I used a constant sample

over time of those participants sampled at each survey.

In addition to the limitations with the data in this thesis, there were limitations in

the modelling in this project. The major modelling analysis in this thesis analysed the

dynamics of unobserved ZIKV transmission in Fiji before cases were recorded in July

2015. This analysis rested on the assumption that there was one single introduction
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event. From this modelling I concluded that ZIKV was likely introduced in late 2014

and conclusions about waning ZIKV seroprevalence in Chapter 4 are affected by this

conclusion. There is evidence elsewhere that there were multiple introductions of ZIKV

(Griffin et al., 2019; Grubaugh et al., 2017, 2019), including in island settings (Black

et al., 2017). In Fiji, the three ZIKV sequences isolated in Central Division did not

form a distinct cluster in phylogenetic analysis (Kama et al., 2019). It is therefore

possible that there were multiple introduction events; an earlier one that failed to seed

a large outbreak, and a later one that led to the observed cases between 2015 and 2017.

However, there is clear evidence of a close relationship between two sequences isolated

in 2015 and 2016 in Central Division, consistent with persistence of the virus in the

same location. Separate introduction of the virus from the same location could also

explain this clustering. However there was further evidence that ZIKV spread at a low

level for multiple years in seroprevalence data between 2013 and 2015 which suggests

there was widespread transmission. To capture some of the uncertainty about the intro-

duction dynamics, I modelled ZIKV introductions as a flexible and continuous process

rather than relying on a single instantaneous introduction of infected individuals. This

function could capture the flow of infections to the model over several months, but

not several years. I concluded that there was sufficient evidence in the molecular and

serological data that ZIKV circulated at a low level after a single introduction event

and this is further supported by my modelling analysis, which fits the data well (Chap-

ter 5). All conclusions in this project about ZIKV transmission dynamics in Fiji rely

on the explicit assumption that there was one introduction event that seeded ZIKV

transmission in Fiji.

In the introduction to this thesis I outlined the trade-off at the heart of any modelling

strategy between transparency and detail. The models used in Chapters 5 and 6 were

designed to find a balance in this trade-off, but as a result they could also be criticised

for being both too complex or too simple. The finding with greatest direct impact from

these models was likely the ability to predict the course of an epidemic in real time in

2017, which could have been possible with a simpler model. There is a lot of research

into predicting DENV outbreaks from historic DENV incidence and climate data using

statistical models (Descloux et al., 2012; Hii et al., 2012; Johansson et al., 2016, 2019;
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Lowe et al., 2018b). These have proven very effective at predicting the burden and

timing of DENV outbreaks. It is fair to ask if the additional complexity I included

– building a compartmental model – was justified? While statistical models can be

very accurate for predicting case burden one of the aims of this research project was to

evaluate the determinants of different transmission dynamics. This meant that these

different drivers needed to be explicitly modelled. A key strength of this project was the

ability to actually estimate the contribution of different mechanisms, not just provide

approximate scenario analyses. For example, to estimate the relative contribution of a

targeted vector control campaign I needed to model this mechanism. I was also not able

to rely fully on one reliable source of data. I needed to combine multiple data sources

to model these outbreaks. Both the model design and model fitting process had to be

flexible enough to accommodate this, which is why I opted for a more complex model

structure.

The models used in this thesis were therefore complex enough to capture the mecha-

nisms of transmission but were still simple compartmental models. The simplicity in

the models did rely on several assumptions about outbreak dynamics, especially con-

cerning the mosquito population. I assumed that the mosquito population and biting

rate were constant and that mosquitoes and humans mixed homogeneously. More ex-

plicit modelling of the mosquito population, and interaction with humans, could have

improved model realism (Hladish et al., 2016). Modelling human behaviour is crucial

when modelling other diseases, especially respiratory infections (Danon et al., 2009;

Mossong et al., 2008; Munday et al., 2018; Read et al., 2014) and human movement

has an impact on arbovirus transmission as well, even at fine geographic scales (Adams

and Kapan, 2009; Salje et al., 2012). At larger spatial scales, movement of people glob-

ally could impact transmission dynamics (Brockmann and Helbing, 2013; Colizza et al.,

2006; Semenza et al., 2014; Tian et al., 2017). It is the omission of these spatial com-

ponents that likely limited the conclusions drawn from the modelling of vector control

effects on DENV-2 transmission in 2017 (Chapter 6). I could also have directly mod-

elled the impact of secondary DENV infections on the severity of infection and therefore

the probability of being recorded as a case of ZIKV or DENV (Andrade et al., 2019;

Cummings et al., 2005; Esteva and Vargas, 2003; Recker et al., 2009; Wikramaratna
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et al., 2010). However, I judged this to be an inefficient complication of the models

given the limited amount of available surveillance case data for DENV-2 in 2017 and

ZIKV between 2013 and 2017.

As explained above, designing the models used in this project inherently involved a

trade-off between detail and transparency. I believe these models present the best

balance to meet the objectives set out at the start of the project. The complexity was

needed to evaluate determinants of transmission dynamics. The simplicity of models

was mostly a result of data availability. This simplicity also helped when communicating

results with Ministry of Health officials in Fiji. It was important to be able to explain

why DENV-2 transmission was likely to be low in 2017 compared to DENV-3 in 2013-

14. By directly modelling the effect of seasonal forcing on transmission I could provide

projections and the rationale behind them.

A final limitation is how generalisable these findings are. One of the principal findings

of this work is that outbreak dynamics are heavily dependent on setting, population

immunity and the timing of the outbreak. Island outbreaks are an ideal study site

for modelling arbovirus transmission dynamics because of their unique isolation, small

population size and well characterised outbreak history. My work is not the first to

demonstrate the importance of setting on outbreak dynamics of DENV and ZIKV

(Funk et al., 2016). This project aimed to better understand island outbreak dynamics.

Further work is needed to extend these methods to other settings where the immunolog-

ical profile of the population is more complex, viruses transmit endemically or multiple

viruses transmit simultaneously.

7.3 Implications and future work

Long term immune dynamics for ZIKV

The first aim of this doctoral project was to improve understanding of population

immune dynamics following arbovirus outbreaks. The data I collected in Fiji provided
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early evidence that ZIKV-specific antibodies and ZIKV neutralising antibodies wane

in adults after a ZIKV epidemic. A recent study in Salvador, northeastern Brazil,

similarly found a rapid decline in ZIKV NS1 antigen-specific antibodies (Moreira-Soto

et al., 2020). This is important because this trend could continue to be observed in

other locations, particularly in the Americas where there were large ZIKV outbreaks

several years later than in Fiji and the wider Pacific. However, my results show that

seroprevalence estimates collected shortly after a ZIKV outbreak may underestimate

the true burden of ZIKV infection. If researchers then fit models to post-outbreak

seroprevalence data then this could lead to false conclusions about ZIKV dynamics.

These findings should also help dispel the notion that ZIKV “could be considered as a

fifth member of the DENV serocomplex” (Dejnirattisai et al., 2016). Despite similarities

between the two viruses ZIKV immunity following infection does not necessarily act in

the same way as DENV.

This doctoral project has demonstrated the advantage of collecting longitudinal sero-

logical data but more studies are needed to fully understand the immune response to

ZIKV, especially in the presence of co-circulating flaviviruses. I presented an indication

that waning ZIKV NAbs could be related to prior DENV exposure in Chapters 3 and

4. However, these results were inconclusive and further research is needed into this

area. Do those with more prior flavivirus infections lose ZIKV neutralising antibodies

faster? Does the reduction in quantity of NAbs affect immunity, or are the remaining

antibodies sufficient to protect from infection and disease? These were not questions I

was able to answer with the data collected in this study but carry large implications

on the likelihood and dynamic of future arbovirus outbreaks.

Efficiently combining data sources with mathematical modelling

Another novel aspect of this research is the framework I developed to include multiple

data sets and models into a model of ZIKV transmission dynamics in Fiji. Combining

multiple data sets in a model is not new (Birrell et al., 2011; Goubar et al., 2008;

Presanis et al., 2014; Sweeting et al., 2008; Welton and Ades, 2005) nor is the ability to

model outbreak dynamics from molecular data (Faria et al., 2016; Grenfell et al., 2004;
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Grubaugh et al., 2019; Jombart et al., 2014; Koelle et al., 2006, 2010; Ratmann et al.,

2012). However, conclusions on outbreak dynamics drawn from phylogenetic analysis

can have a wide range of uncertainty. For example, in the analysis of molecular data

in Chapter 5 the estimated time of ZIKV introduction to Fiji spanned a wide period.

Therefore, I developed a framework that could incorporate the uncertainty from the

phylogenetic analysis in an outbreak dynamic mathematical model as prior information.

Without this phylogenetic analysis, it was more difficult to differentiate between an early

ZIKV introduction with longer circulation at a lower level, or a later shorter epidemic.

By providing more information on the introduction time I was able to demonstrate clear

support for a later introduction of ZIKV to Fiji and demonstrate the marked effect that

virus introduction timing could have on transmission dynamics. This also demonstrated

the flexibility of mathematical models and the ability to combine multiple data sets.

Combining data was essential to this project but there is a lot of methodological work

that could be done into ensuring this process is efficient. Throughout this project I have

combined the log likelihood of surveillance and serological data when fitting models to

data. However, the contribution to the likelihood from seroprevalence data is much less

than the contribution from a time series of surveillance case data. A potential area of

future study would be whether this method is creating unbalanced contributions from

each of the data sets and whether a more efficient method is available. It would also

be interesting to investigate how best to fit a model to surveillance data when the start

time is of particular interest and is estimated in the model. We know that transmission

spreads before cases are reported, especially for novel infections. However, a model with

an earlier introduction date will be penalised more heavily than a later introduction,

since the model will estimate infections when no cases were reported. A method that

can test the effect of this potential bias and adjust for it could be valuable. Combining

data with mathematical models clearly has great potential but there are elements of

the process that would benefit through validation with simulation studies.
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Real-time modelling of arbovirus outbreaks

The importance of modelling in public health is growing, especially in outbreak response

(Bausch and Edmunds, 2018). In this project I have demonstrated how a relatively

simple model was able to make an important contribution to outbreak response to a

DENV-2 epidemic in Fiji. The fear at the onset of the epidemic was that the peak

would be as large as the 2013-14 DENV-3 epidemic. Using a simple model I was able to

provide evidence that transmission of the DENV-2 outbreak would likely be lower due

to seasonal forcing of DENV transmission in Fiji. This was a model simple enough for

me to run in the first year of my PhD and was able to support the government response

to an outbreak. The most important factor in the accuracy of the model predictions,

as demonstrated in Chapter 6, was the joint fitting with a previous DENV epidemic. I

think it is clear that if outbreak dynamics can be well characterised with a simple model

this can greatly improve real-time modelling accuracy if a new, comparable outbreak

emerges.

The biggest potential improvement to real-time modelling in Fiji and the wider Pacific

would be to better categorise the cycling of viruses in the region. I have said many times

throughout this thesis that arbovirus outbreaks in Fiji are becoming more common.

I have presented details of four outbreaks in Fiji between 2013 and 2017. Previous

perceived wisdom suggested for DENV there was a 4-5 year gap between outbreaks,

then a 12 year period before re-emergence of the same serotype (Cao-Lormeau et al.,

2014a). The question remains, is this pattern changing in the region? This is hard to say

but local data availability is improving which could help investigate this. Work has been

done in French Polynesia to characterise historic DENV infections since 1970 (Teissier

et al., 2020). The ability of collaborators at Institut Louis Malardé to diagnose viruses

from blood stored on filter paper from the region means there is an increasing data base

for circulating viruses in the Pacific (Aubry et al., 2012). This is already being used to

identify potential future outbreaks such as DENV-2 in French Polynesia, a prediction

in 2017 (Aubry et al., 2017b) that came to fruition in 2019 (Aubry et al., 2019). This

doctoral project has demonstrated the potential for combining multiple data sets with

mathematical modelling. It may be possible to learn how these arboviruses spread and
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interact with each other if novel data sets can be included in models for a variety of

locations across the Pacific.

7.4 Concluding remarks

I aimed to improve understanding of underlying serological dynamics and explain ar-

bovirus outbreak dynamics in Fiji and the wider Pacific using mathematical modelling.

There is much more to discover in this field, especially about how flavivirus infections

interact and affect the long-term immune response. It is clear from this analysis of sero-

logical data collected in Fiji and the wider Pacific that these interactions are complex

and that ZIKV does not necessarily cause the same long-term immune response in a

population following an outbreak as DENV. It is also evident from modelling transmis-

sion of these viruses that we can characterise outbreaks well enough to predict their

future dynamics in real-time, but that they are sensitive to a variety of factors that can

shape outbreak dynamics. A change as simple as the month of virus introduction could

have had a dramatic effect on the ensuing ZIKV outbreak dynamics in Fiji. Given

the uncertainty surrounding DENV and ZIKV transmission globally, island outbreaks

– combined with mathematical models – present a unique opportunity to gain insights

into these diseases.
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Dengue	fever	in	Fiji	–	study	of	signs	in	the	immune	system	

Information	for	people	who	may	like	to	volunteer	
	
We	are	doing	research	to	prevent	infectious	diseases	in	Fiji.	Many	thanks	for	giving	a	blood	
sample	before	to	help	this	research.	Your	blood	sample	is	helping	Ministry	of	Health	see	
who	is	at	risk	of	infection	with	dengue	fever,	typhoid	and	leptospirosis.	

We	are	now	also	investigating	Zika,	a	disease	mostly	spread	by	mosquitoes.	In	particular,	
we	want	to	find	out	if	people	were	infected	with	Zika	in	2016.	We	think	many	people	may	
have	been	infected	without	becoming	ill.	Understanding	this	will	help	the	Ministry	of	Health	
to	prepare	for	future	epidemics.	

You	are	being	invited	to	take	part	because	you	are	a	member	of	the	general	public,	and	
helped	with	a	previous	research	project.	We	would	like	to	take	a	blood	sample	to	compare	it	
with	the	blood	sample	you	gave	in	2013,	and	possibly	in	2015	as	well.		We	are	not	testing	
to	see	if	you	are	currently	infected,	but	will	be	able	to	see	if	your	immune	system	fought	off	
Zika	during	the	epidemic,	or	if	you	ever	had	Zika	before.	At	the	same	time,	we	will	be	able	to	
test	for	other	diseases	that	may	have	been	spread,	such	as	dengue.	This	helps	the	
government	decide	how	best	to	stop	Zika	in	the	future,	as	well	as	related	diseases.	

	

If	you	have	any	questions,	please	ask	the	research	team.	We	are	very	grateful	for	your	
assistance.		

Vinaka	vaka	levu.	
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Questions	and	answers	

What	is	Zika?	

Zika	is	a	disease	caused	by	infection	with	the	Zika	virus.	It	happens	after	being	bitten	by	a	
mosquito.	Not	all	mosquitoes	carry	the	virus,	but	they	can	spread	it	if	they	bite	an	infected	
person	and	then	bite	somebody	else.	

The	first	major	outbreak	of	Zika	was	recorded	in	Micronesia	in	2007.		Since	then	it	spread	to	
other	Pacific	Islands,	South	America	and	South	East	Asia.	There	have	also	been	Zika	cases	
reported	in	Fiji	during	2016.		

Often	Zika	is	mild.	However,	the	infection	is	a	risk	for	pregnant	women	because	Zika	can	
sometimes	cause	birth	defects.	Once	your	body	fights	off	Zika,	you	are	likely	to	be	immune	
to	that	strain.	

	

What	is	dengue	fever?	

Dengue	fever	is	a	disease	caused	by	infection	with	the	dengue	virus.	It	happens	after	being	
bitten	by	a	mosquito.	Not	all	mosquitoes	carry	the	virus,	but	they	can	spread	it	if	they	bite	
an	infected	person	and	then	bite	somebody	else.	There	are	usually	around	a	hundred	cases	
a	year	in	Fiji,	but	during	the	2014	epidemic,	there	were	more	than	20,000	cases.	This	
happened	when	a	new	strain	of	dengue	came	to	Fiji,	that	very	few	people	had	immunity	to.	

Often	dengue	fever	is	mild.	Symptoms	can	include	fever	for	3	to	7	days,	rash,	headache,	
tiredness	and	sore	muscles,	back,	eyes	or	joints.	Sometimes	dengue	symptoms	can	be	
severe,	and	it	can	be	life-threatening.	Severe	dengue	can	cause	bleeding,	and	stop	organs	
working.	If	dengue	fever	is	severe,	patients	need	treated	in	hospital.	Dengue	can	be	
particularly	dangerous	for	children.		

Once	your	body	fights	off	dengue,	you	are	immune	to	that	strain,	but	can	be	infected	by	one	
of	the	other	strains	of	dengue.	There	are	four	main	strains	of	dengue.	

	

How	can	I	protect	myself	and	my	family	from	Zika	and	dengueNOT	the	night	ones		

Black	and	white	striped	(tiger/zebra)	mosquitoes		

You	can	take	steps	to	reduce	the	number	of	mosquitoes	near	where	you	live,	and	take	steps	
to	avoid	getting	bitten,	particularly	during	outbreaks.	

Mosquitoes	lay	their	eggs	in	warm,	still	water.	Two	of	the	main	sources	are	old	car	tires	and	
open	water	containers,	such	as	oil	drums	or	plastic	tubs	and	buckets,	but	they	can	also	grow	
in	puddles,	plant	pots,	rubbish,	old	coconut	shells	and	natural	hollows.	You	and	your	
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neighbours	should	get	rid	of	any	old	tires	and	containers	that	are	not	needed.	Those	that	
you	need	should	be	covered	by	a	lid	or	kept	under	shelter.	Crush	tins	and	other	rubbish.	
Keep	house	gutters	clean	and	seal	rainwater	tanks.	Clear	blockages	in	ditches,	and	fill	in	
puddles.	Water	in	plant	pots	should	be	changed	every	week.	If	there	is	water	than	can’t	be	
drained,	a	little	vegetable	oil	or	insecticide	can	stop	mosquito	eggs	hatching.	

To	help	avoid	being	bitten,	you	can	burn	mosquito	coils	in	the	evening	and	!.	Wear	insect	
repellant	on	exposed	skin.	Repair	mosquito	screens	on	doors	and	windows,	and	use	them.	
Kill	mosquitoes	in	your	home	with	insecticide.		

	

What	do	I	have	to	do	for	this	research?	

We	would	like	to	take	a	small	sample	of	blood	from	your	arm.	The	sample	is	taken	by	a	
trained	health	professional	who	will	put	a	small	needle	into	a	vein	and	collect	one	small	
tube	of	blood	(about	a	teaspoonful).	It	will	take	about	a	minute	and	the	needle	may	sting	a	
little	as	it	goes	in.	

We	will	also	ask	you	some	questions	about	whether	you	could	have	had	Zika	or	dengue.	
This	will	take	about	5	minutes.	

	

Are	there	risks?	

Taking	a	blood	sample	has	a	small	risk	of	bruising,	and	a	rare	risk	of	infection	or	nerve	
injury.	In	the	unlikely	event	that	you	experience	any	of	these,	please	let	the	study	team	
know	and	we	can	give	further	advice.	You	can	also	ring	the	study	team	after	they	have	gone	
on	the	number	below.	Or	you	can	seek	advice	from	your	medical	doctor.	

	

Are	there	benefits?	

There	is	no	direct	benefit	to	you,	though	we	hope	the	research	will	benefit	everyone	in	Fiji	
by	helping	prevent	Zika	and	dengue	outbreaks.		

	

Can	I	say	“No”?	

You	can.	You	do	not	have	to	donate	a	blood	sample	for	this	study,	and	you	do	not	have	to	
answer	any	questions	you	do	not	want	to	answer.			

	

What	will	happen	to	the	information	about	me,	and	the	blood	sample?	
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This	information	will	be	kept	confidential	and	only	accessed	by	the	study	team	and	the	
Ministry	of	Health.	The	samples	will	be	analysed	in	specialist	laboratories	by	Fijian	
scientists	and	their	collaborators	at	Institut	Louis	Malard.	The	samples	will	be	kept	at	
these	laboratories	and/or	the	Ministry	of	Health	for	at	least	10	years	as	a	public	health	
research	resource.	

The	samples	and	information	may	be	used	for	other	health	research	as	determined	by	the	
Ministry	of	Health,	who	may	get	back	in	touch	with	you	about	further	research.	Your	name	
will	be	removed	from	the	data	before	it	is	used	for	research.	You	will	not	be	identifiable	in	
any	research	reports,	and	all	data	will	be	presented	at	a	grouped	level.		The	overall	results	
of	the	study	will	be	given	to	the	Ministry	of	Health	and	shared	with	public	health	scientists	
through	medical	journals.	

	

What	will	the	results	of	the	test	mean	for	me?	

We	are	not	looking	for	current	dengue	infection	and	will	not	be	in	touch	with	results	of	the	
blood	test.	We	are	looking	for	signs	that	your	immune	system	has	fought	off	dengue.	This	is	
to	help	the	Ministry	of	Health	decide	strategies	for	controlling	dengue.	If	you	are	concerned	
about	dengue	fever,	the	advice	about	protecting	yourself	from	mosquitoes	may	help.	

	

Are	there	any	costs	or	payments?	

No.	

	

Who	is	organising	the	research?	

The	research	is	organised	by	a	joint	team	from	the	Ministry	of	Health,	Institut	Louis	
Malardé,	and	the	London	School	of	Hygiene	&	Tropical	Medicine.	

	

Who	has	reviewed	the	study?	

The	study	has	been	approved	by	the	ethics	committees	of	the	Fiji	Ministry	of	Health	and	the	
London	School	of	Hygiene	and	Tropical	Medicine.	

	

Many	thanks	for	offering	to	take	part	in	this	research.	Vinaka	vaka	levu.	

	

If	you	have	any	concerns	about	this	research	you	can	contact	the	investigator,		
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Dr	Adam	Kucharski	on	telephone	912-5567	or	email	adam.kucharski@lshtm.ac.uk	

Or	the	Ministry	of	Health	Research	Unit,	Elina	Veitamana	

Telephone:	+679	3215770	ext	340170	 Email:	elina.veitamana@govnet.gov.fj	
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Dengue	fever	in	Fiji	-	signs	in	the	immune	system	

	
Research	Consent	form	for	adult	and	child	participants	
Participant	ID	Number:	FJD CT££££	
I/we	have	read	and	understood	the	information	sheet.	I/we	understand	that	participation	is	
voluntary	and	I/we	can	withdraw	assent/consent	at	any	point	without	giving	a	reason.	

I	consent	to	the	following:		(please	tick	yes	or	no	to	each	question)	 Yes	 No	

1.	 A	sample	of	my/my	child’s	blood	may	be	taken	and	used	for	Zika	and	dengue	
research.	

	 	

2.	 The	answers	I/we	give	to	questions	can	be	used	for	public	health	research,	
including	Zika	and	dengue.	

	 	

3.	 The	Ministry	of	Health,	or	researchers	working	with	the	Ministry,	can	contact	
me/us	again	about	Zika	and	dengue	research.	

	 	

4.	 My/my	child's	blood	sample	can	be	used	for	other	health	research.	 	 	

5.	
The	Ministry	of	Health,	or	researchers	working	with	the	Ministry,	can	contact	
me/us	about	other	health	research.	

	 	

	

	
If	the	participant/parent/carer	does	not	speak	English:	
Witnessed	by:		
(please	print	name)	
Signed	by	witness:	
	

Date	(dd/mm/yyyy)	

Name	of	participant:(please	print)	 Age	in	years:	

	
Signed	by	participant	if	age	12+:	 Date	(dd/mm/yyyy)	

Name	of	PARENT	or	CARER	for	child	participants	(age	17	or	less):	(please	print)	

Signed	by	parent/carer:	 Date	(dd/mm/yyyy)	

Consent	taken	by	research	staff	member:	(please	print	name)	
	
Signed	by	research	staff	member:	
	

Date	(dd/mm/yyyy)	

           site             person 
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Data	collection	form	

Part	A:	Participant	information	
(Selecting individuals both agreeing further sample testing and further contact)  

Participant ID FJD CT££££  
 

First name:______________________ Family Name : ________________________________ Age: __________ 
 

Part	B:	Visit	record	sheet	
Date today:  __ __ / __ __ / 20__ __ (dd/mm/yyyy) 
Interviewer: __________________________________	

Bula	vinaka!	Thank	you	for	agreeing	to	take	part	in	this	research.	We	would	like	to	ask	you	a	
few	questions	to	help	us	understand	zika	and	dengue	fever	in	Fiji.	Please	stop	me	and	ask	
questions	whenever	you	would	like.	

Have	you	had	a	fever	in	the	last	2	years?		
Circle:	1=yes 0=no, -1=don’t know, -2=refused 
 

Have	you	visited	a	doctor	with	a	fever	in	the	last	2	years?	
Circle:	1=yes 0=no, -1=don’t know, -2=refused 
 

Have	you	had	a	rash	in	the	last	2	years?		
Circle:	1=yes 0=no, -1=don’t know, -2=refused 
 

Have	you	visited	a	doctor	with	a	rash	in	the	last	2	years?	
Circle:	1=yes 0=no, -1=don’t know, -2=refused 
 

If	YES	to	visited	doctor	 Fever/rash	
episode	(or	1st	
episode	if	more	
than	one)	

2nd	episode	
(if	more	than	
one)	

3rd	episode	(if	
more	than	
two)	

When? Year	(-1=don’t know)	 	 	 	
Month,	if	known	(-1=don’t know)	 	 	 	
Did	the	doctor	suspect	it	was	zika?		
1=yes,   0=no,   -1=don’t know,   -2=refused	

	 	 	

Did	the	doctor	suspect	it	was	dengue	
fever?	1=yes,   0=no,   -1=don’t know,   -2=refused	

	 	 	

Did	the	doctor	do	a	blood	test	for	zika?	 	 	 	
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1=yes,   0=no,   -1=don’t know,   -2=refused	
Did	the	doctor	do	a	blood	test	for	dengue	
fever?	1=yes,   0=no,   -1=don’t know,   -2=refused	

	 	 	

Was	the	blood	test	positive	for	zika?				
1=yes 0=no, -1=don’t know, -2=refused	

	 	 	

Was	the	blood	test	positive	for	dengue	
fever?			1=yes 0=no, -1=don’t know, -2=refused	

	 	 	

Were	you	hospitalised?						1=yes 0=no	 	 	 	
	

Have	any	household	members	visited	a	doctor	with	a	fever	and	rash	in	the	last	2	years?	
Circle:	1=yes 0=no, -1=don’t know, -2=refused 

	
If	YES,	give	details	of	most	recent	episode	(for	up	to	3	household	members)	
	 Member	1	 Member	2	 Member	3	
That	person’s	age	now	 	 	 	
When? Year	(-1=don’t know) 	 	 	
Month,	if	known	(-1=don’t know)	 	 	 	
Did	the	doctor	suspect	it	was	zika?		
1=yes,   0=no,   -1=don’t know,   -2=refused	

	 	 	

Did	the	doctor	suspect	it	was	dengue	
fever?		
1=yes,   0=no,   -1=don’t know,   -2=refused	

	 	 	

Did	the	doctor	do	a	blood	test	for	zika?	
1=yes,   0=no,   -1=don’t know,   -2=refused	

	 	 	

Did	the	doctor	do	a	blood	test	for	
dengue	fever?	
1=yes,   0=no,   -1=don’t know,   -2=refused	

	 	 	

Was	the	blood	test	positive	for	zika?				
1=yes 0=no, -1=don’t know, -2=refused	

	 	 	

Was	the	blood	test	positive	for	dengue	
fever?			1=yes 0=no, -1=don’t know, -
2=refused	

	 	 	

Were	you	hospitalised?							
1=yes 0=no	

	 	 	

Presence	or	absence	at	the	house	of:	

Item	 Yes	 No	 Could	not	find	
out	

Mosquitoes	 	 	 	
Used	car	tires	 	 	 	
Open	water	containers	(e.g.	vase,	bucket,	basin,	oil	 	 	 	
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Check	new	telephone	number	if	not	previously	recorded.	Add	new	address	GPS,	if	moved	
house.	Check:	is	date	of	move	recorded?		

GPS coordinates of 1= front door of house,   2= community centroid, 

 South 0££°££.£££’ (circle) East £££°££.£££’   
 
Any	other	comments?	

	

	

	

Vinaka vaka levu. 

drum)	
Long	lasting	puddles	of	water	(i.e.	do	not	dry	up	
within	a	day	after	rain	stops)	

	 	 	

Other	mosquito	breeding	grounds	
If	yes,	specify______________________________________	
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