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Abstract: Streptococcus pneumoniae serotype 1 (ST1) was an important cause of invasive pneumococ-

cal disease (IPD) globally before the introduction of pneumococcal conjugate vaccines (PCVs) con-

taining ST1 antigen. The Pneumococcal Serotype Replacement and Distribution Estimation (PSERE-

NADE) project gathered ST1 IPD surveillance data from sites globally and aimed to estimate 

PCV10/13 impact on ST1 IPD incidence. We estimated ST1 IPD incidence rate ratios (IRRs) compar-

ing the pre-PCV10/13 period to each post-PCV10/13 year by site using a Bayesian multi-level, mixed-

effects Poisson regression and all-site IRRs using a linear mixed-effects regression (N = 45 sites). 

Following PCV10/13 introduction, the incidence rate (IR) of ST1 IPD declined among all ages. After 

six years of PCV10/13 use, the all-site IRR was 0.05 (95% credibility interval 0.04–0.06) for all ages, 

0.05 (0.04–0.05) for <5 years of age, 0.08 (0.06–0.09) for 5–17 years, 0.06 (0.05–0.08) for 18–49 years, 

0.06 (0.05–0.07) for 50–64 years, and 0.05 (0.04–0.06) for ≥65 years. PCV10/13 use in infant immun-

ization programs was followed by a 95% reduction in ST1 IPD in all ages after approximately 6 

years. Limited data availability from the highest ST1 disease burden countries using a 3+0 schedule 

constrains generalizability and data from these settings are needed. 

Keywords: invasive pneumococcal disease; pneumococcal conjugate vaccines; serotypes; vaccine 

impact 

 

1. Introduction 

Streptococcus pneumoniae is a major cause of pneumonia, meningitis, and pleural ef-

fusion in children and adults [1–4]. There are at least 100 known serotypes of pneumococci 

[5]. Before the introduction of pneumococcal conjugate vaccines (PCVs), serotype 1 (ST1) 

was one the most common causes of invasive pneumococcal disease (IPD), especially in 

Asia and Africa, and globally was responsible for approximately 9% of IPD among chil-

dren <5 years of age [6]. ST1 is distinct from other serotypes in that it has a high invasive-

ness potential, is not commonly carried in the nasopharynx [7,8], and in some settings 

occurs in a cyclical pattern, approximately every 3–9 years [9–11]. Additionally, ST1 can 

cause large pneumococcal outbreaks among all ages, including older children and young 

adults, in the African meningitis belt and other outbreak-prone settings with up to 10–30-

fold increases in ST1 cases compared to pre-outbreak baselines [12–15]. 

The first PCV licensed for use in infants, seven-valent PCV (Prevenar/Prevnar, 

Pfizer), did not include ST1 antigen. Since then, the introduction of PCVs containing ST1 

antigen (PCV10 [Synflorix, GlaxoSmithKline], PCV13 [Prevenar13/Prevnar13, Pfizer]) into 

many national infant immunization programs since 2009 has been shown to substantially 
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reduce ST1 IPD and end pneumococcal outbreaks caused by ST1. These effects have been 

demonstrated among directly immunized children and also unvaccinated older children 

and adults, through indirect effects, in both high and low IPD burden settings [9,10,12,16–

20]. However, in some PCV10/13 using settings ST1 outbreaks continued to occur or ST1 

IPD incidence rates did not substantially decline in the early years immediately following 

PCV10/13 introduction [21–24].  

Evaluating the impact of PCV10/13 vaccination on ST1 IPD is challenging in a single 

surveillance site. In many settings, annual ST1 incidence rates are unstable because case 

counts are small, particularly after vaccine introduction. Many sites are also limited by 

short pre- and post-vaccine introduction surveillance periods, further limiting inferences 

that can be drawn from a single site. Assessing vaccine impact is also confounded by the 

cyclic nature of ST1 in which it is common to observe multiple years of zero ST1 cases 

prior to vaccine use. Quantifying the impact of PCV10/13 on ST1, which has several 

unique characteristics compared to other vaccine-type serotypes included in currently li-

censed PCVs, is important for policymakers seeking to reduce the burden of ST1 IPD 

through immunization. The Pneumococcal Serotype Replacement and Distribution Esti-

mation (PSERENADE) project evaluated all available published and unpublished sero-

type-specific IPD data to estimate the impact of PCV10/PCV13 on ST1 IPD incidence at 

the global scale. 

2. Materials and Methods 

2.1. Data Collection and Eligibility Criteria 

IPD surveillance sites with eligible data contributed annual serotype-specific IPD 

case data and population denominators to the project. A systematic approach to identify 

eligible sites and request data is described in detail elsewhere [25]. ST1 IPD was defined 

as the isolation of Streptococcus pneumoniae from a normally sterile site or detection of 

pneumococcus in cerebrospinal fluid (CSF) or pleural fluid using lytA-based polymerase 

chain reaction (PCR), or antigen testing confirmed as ST1. Sites with ST1 IPD case counts 

and population denominators that met eligibility criteria were included in the analysis 

(Box 1, Table 1, Table S1). 

Box 1. Inclusion criteria. 

 

1. Site reports annual ST1 IPD incidence data: 

- ST1 case counts by age group, and 

- Population-based denominators by age group. 

2. At least 50% of isolates serotyped for included years by age group. 

3. At least one complete year of data post-PCV10/13 introduction, excluding 

the year of introduction. 

4. At least 50% uptake for primary PCV series at 12 months of age in at least 

one year post-PCV10/13 introduction. 

5. PCV10 or PCV13 is universally recommended for all infants in the national 

infant immunization schedule. 

6. No major changes or biases in surveillance that would affect estimates of 

ST1 incidence rates. 
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Table 1. Description of infant pneumococcal conjugate vaccine program and surveillance data for included sites. Ordered by vaccine product and schedule. 

      
Mean PCV10/13 Uptake 

(%) 

Included in ST1 

Analysis 
 

Surveillance Years Pre- 

and Post-PCV10/13 (n) 

Proportion ST1 IPD 

Cases from CSF (%) 
Site 

PCV10 

Period 

PCV13 

Period 

PCV10/13 

Schedule 

PCV7 

Use 

PCV10/13 

Catch-Up 

Primary 

Series * 

WUENIC 

PCV3 *** 

0–17 

Years 

≥18 

Years 

ST1 Cases Included 

in Analysis (n) 

Finland 2010– -- 2 + 1 N N 95 90 Y Y 46 
Pre: 6 

Post: 8 
4.3 

Iceland 2011– -- 2 + 1 N N 97 89 Y Y 22 
Pre: 16 

Post: 8 
0.0 

Latvia 2012– -- 2 + 1 Y N 91 83 N b Y; ≥50y 5 
Pre: 0 

Post: 7 
20.0 

Slovenia 2015–2019 2019– 2 + 1 N N 55 55 Y Y 259 
Pre: 6 

Post: 4 
0.0 

Netherlands 2011– -- 3 + 1/2 + 1 Y N 95 94 Y Y 642 
Pre: 7 

Post: 8 
2.2 

Asembo, Kenya 2011– -- 3 + 0 N Y 86 78 Y 
Y; 18–

49y 
43 

Pre: 1 

Post: 8 
NA 

Kilifi, Kenya 2011– -- 3 + 0 N Y 82 78 Y 
Y; 18–

64y 
204 

Pre: 11 

Post: 6 
19.6 

Japan -- 2013– 3 + 1 Y N 94 ** 98 Y Y; ≥65y 11 
Pre: 4 

Post: 5 
0.0 

ABCs, USA -- 2010– 3 + 1 Y Y 88 93 Y Y 664 
Pre: 12 

Post: 8 
0.6 

Alaska, USA -- 2010– 3 + 1 Y Y 83 93 Y Y 92 
Pre: 19 

Post: 8 
0.0 

Massachusetts, USA -- 2010– 3 + 1 Y Y 94 93 Y; <5y NA 1 
Pre: 8 

Post: 8 
0.0 

Southwest, USA (In-

digenous) 
-- 2010– 3 + 1 Y Y 82 93 Y Y 180 

Pre: 15 

Post: 9 
2.2 

Alberta, Canada -- 2010– 2 + 1 Y N 88 ** 77 Y; <5y Y 16 
Pre: 10 

Post: 8 
0.0 

Denmark -- 2010– 2 + 1 Y N 91 ** 93 Y Y 2089 
Pre: 10 

Post: 9 
2.2 

France -- 2010– 2 + 1 Y N 93 91 Y Y 1346 
Pre: 9 

Post: 9 
5.9 

Ireland -- 2010– 2 + 1 Y N 91 91 Y Y 58 
Pre: 3 

Post: 8 
0.0 

Israel -- 2010– 2 + 1 Y N 95 93 Y Y 677 
Pre: 8 

Post: 8 
3.4 

Italy -- 2010– 2 + 1 Y N 86 ** 87 Y Y 193 Pre: 0 6.7 
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Post: 9 

Norway -- 2011– 2 + 1 Y N 93 93 Y Y 637 
Pre: 7 

Post: 7 
1.4 

Singapore --
 

2011– 2 + 1 Y Y 84 74 N d Y; ≥50y 8 
Pre: 2 

Post: 8 
0.0 

South Africa -- 2011– 2 + 1 Y Y 77 ** 77 Y Y 3292 
Pre: 6 

Post: 8 
38.2 

Madrid, Spain -- 2010– 2 + 1 Y N 98 93 Y Y 479 
Pre: 3 

Post: 9 
0.8 

Switzerland -- 2010– 2 + 1 Y Y 79 ** 77 Y Y 436 
Pre: 8 

Post: 7 
0.5 

England, UK -- 2010– 2 + 1 Y N 94 92 Y Y 4214 
Pre: 10 

Post: 10 
1.5 

Scotland, UK -- 2010– 2 + 1 Y N 97 92 Y Y 578 
Pre: 10 

Post: 9 
NA 

Germany -- 2009– 3 + 1/2 + 1 Y N 85 93 Y Y 760 
Pre: 5 

Post: 9 
4.1 

Catalonia, Spain -- 

2010–2015 
a
 

2016– 

3 + 1/2 + 1 Y a N 70 93 Y Y 1111 
Pre: 4 

Post: 8 
1.5 

Navarra, Spain -- 

2010–2015 
a
 

2016– 

3 + 1/2 + 1 Y a N 71 93 Y Y 93 
Pre: 9 

Post: 9 
0.0 

Australia (Non-Indig-

enous) 
-- 2011– 3 + 0 Y Y 92 92 Y Y 371 

Pre: 9 

Post: 7 
0.8 

Basse, The Gambia -- 2011– 3 + 0 Y N 77 95 Y N b 71 
Pre: 2 

Post: 7 
1.4 

Blantyre District, Ma-

lawi 
-- 2011– 3 + 0 N Y 92 88 Y Y 229 

Pre: 5 

Post: 7 
55.5 

Northern Territory, 

Australia 
2009–2011 2011– 3 + 1 Y Y 88 92 Y Y 97 

Pre: 16 

Post: 8 
1.0 

Quebec-Nunavik, 

Canada 
2009–2010 2011– 3 + 1 Y N 97 75 Y; <5y N c 1 

Pre: 9 

Post: 10 
0.0 

Hong Kong 2010–2011 2011- 3 + 1 Y N 98 -- N d 
Y; 18–

49y 
1 

Pre: 0 

Post: 5 
0.0 

New Zealand 
2011–2014 

2017– 
2014–2017 3 + 1 Y N 93 93 Y Y 334 

Pre: 9 

Post: 8 
0.6 

Belgium 2015–2019 
2011–2015 

2019– 
2 + 1 Y N 95** 94 Y NA 872 

Pre: 5 

Post: 8 
1.3 

Poland 2017– 2017– e 2 + 1 N N 94 60 Y N b 69 
Pre: 9 

Post: 2 
4.3 

Quebec (excluding 

Nunavik), Canada 

2009–2010 

2018– 
2011–2018 2 + 1 Y N 97 75 Y Y 43 

Pre: 8 

Post: 10 
0.0 
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Metropolitan Region, 

Chile 
2011–2015 2016– 2 + 1 Y N 97 88 Y Y 437 

Pre: 9 

Post: 8 
2.7 

Non-Metropolitan 

Regions, Chile 
2011–2017 2017– 2 + 1 N N 97 89 Y Y 69 

Pre: 0 

Post: 7 
0.0 

Grand Casablanca, 

Morocco 
2012– 2010–2012 2 + 1 N N 91 90 Y 

Y; 18–

49y 
29 

Pre: 4 

Post: 7 
37.9 

Slovakia 2011– 2011– 2 + 1 Y Y 97 97 Y Y 20 
Pre: 0 

Post: 7 
5.0 

Sweden 2010– 2010–2019 2 + 1 Y N 97 ** 97 Y Y 84 
Pre: 1 

Post: 5 
NA 

Ontario, Canada 2009–2010 2010– 3 + 1/2 + 1 Y Y 72 ** 79 Nd Y 9 
Pre: 3 

Post: 9 
0.00 

Czech Republic 2010– 2010– 3 + 1/2 + 1 N N 74 ** -- Y Y 227 
Pre: 2 

Post: 8 
2.2 

PCV: Pneumococcal conjugate vaccines. ST1: Serotype 1. CSF: Cerebrospinal fluid. -- Not universally used. Y: Yes; N: No; NA: Not applicable. a Recommended for 

high-risk populations only but had substantial (≥50% annually) private market uptake among the general population. b Biases in surveillance system over time that 

could not be accounted for. c Low proportion of cases serotyped. d Zero ST1 cases in all years. e Private market uptake of approximately 30% annually. * Annual PCV 

uptake estimates provided by the surveillance site for the primary series of PCV by 12 months of age (if available, for some sites up to 15 months of age), excluding 

year of vaccine rollout. ** Annual PCV uptake estimates provided by the surveillance site for the primary series plus the booster dose by 23 months of age, excluding 

year of vaccine rollout. *** WHO and UNICEF Estimates of National Immunization Coverage (WUENIC) PCV3 uptake, excluding the year of vaccine rollout (PCV3 

represents the third dose whether given before 12 months or at or after 12 months, but in some cases uptake estimates may reflect the percentage of surviving infants 

who received two doses of PCV prior to the first birthday). 
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Two PSERENADE coordinators conducted a standard data quality review for each 

site to evaluate if surveillance system changes or other factors besides PCV introductions 

influenced incidence rates (IR) of IPD over available years of surveillance data [25]. After 

review and discussion with site investigators, certain site-year-age group data were ex-

cluded if determined to fall within periods of differential surveillance capture or if the 

impact of changes in surveillance protocols on IPD IRs could not be accounted for in the 

analysis. For all sites, we defined the year of PCV introduction as the year PCV10/13 was 

universally introduced if PCV was introduced in the first three quarters of the year, or as 

the following calendar year if otherwise. For data submitted in epidemiologic years rather 

than calendar years, the introduction year was defined accordingly. For all sites, the year 

of PCV10/13 introduction was defined as ‘year 0’ for the analyses. 

2.2. Data Analysis 

2.2.1. Adjustments for Missing Data 

Adjustments for missing serotype data assume that missing serotype data are miss-

ing completely at random, that is the serotype distribution of serotyped cases is not biased 

or different from the serotype distribution of cases that were not serotyped or not fully 

serotyped. Site-year-age group strata that violated this assumption or reported serotypes 

for less than 50% of cases were excluded from the ST1 analysis for that stratum. For cases 

that were reported as not serotyped (serotyping was not attempted for any reason), the 

population denominators were adjusted by the proportion of cases that were serotyped 

(i.e., annual denominator * percent of cases that were serotyped in that year) for each site 

by year and age group. Because the proportion of cases serotyped varies across sites, pop-

ulation denominators were adjusted rather than reapportioning serotypes to unknown 

serotype cases in order to give appropriate weight to sites in the model based on serotype 

data reported. If ST1 and a second serotype was reported for a case, it was included as an 

ST1 case. Cases reported as a serotype pool which includes ST1 (e.g., pool A) were ex-

cluded. For cases with unknown age, the population denominators were adjusted by the 

proportion of cases with known age (i.e., annual denominator * percent of cases with 

known age in that year) for each year and age group. Minor changes were made to the 

cut-offs for age groups when standard age categories used for analyses were not available 

from the site. 

2.2.2. Statistical Analysis 

Annual ST1 IPD incidence rate ratios (IRRs) comparing the pre-PCV10/13 period to 

each post-PCV10/13 year were estimated by age group and for all ages in a three-step 

process. First, ST1 IR curves were estimated over years of available data for each site using 

a Bayesian multi-level, mixed-effects Poisson regression using the MCMCglmm package 

in R [26]. The model included data from all sites (using either PCV10 or PCV13) with an 

offset for population denominator and random effects for all of the site-specific regression 

coefficients, which allows for heterogeneity among sites in the shapes of their incidence 

curves. Sites using PCV10 and PCV13 were modeled together to increase sample size and 

as no difference in impact on ST1 IPD was observed by product (Figure S3). The regression 

identified commonalities within and across sites in the direction of change over time and 

smoothed out observed annual variability. Data points from the same site were treated as 

repeated measures over time and sites with small case counts or few years of data had less 

influence than sites with larger case counts and many years of data. 
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ST1 outbreaks tended to occur in a cyclical pattern prior to the introduction of 

PCV10/13. The model did not account for outbreaks occurring in a cyclical pattern. There-

fore, in order to generate an expected baseline ST1 IPD IR in any given year, the regression 

modeled pre-PCV10/13 IRs as a single mean rate with a slope of zero to capture an ‘aver-

age’ pre-PCV10/13 ST1 IR. PCV7 years of use were included in the pre-PCV10/13 period 

as no consistent impact of PCV7 on ST1 IRs, either increases (i.e., serotype replacement) 

or decreases, were observed across sites, as expected given pre-PCV10/13 ST1 carriage 

patterns [7]. This increased the number of pre-PCV10/13 years included in the analysis 

and better captured the baseline ST1 IR. For each site, a non-linear break (allowing an 

abrupt hinge in the curve) was included in the model one year prior to PCV10/13 intro-

duction to capture the change from the pre-PCV10/13 period to the year of PCV10/13 in-

troduction and cubic splines knots (allowing a smooth change in the slope) were included 

for each site at years +1 and +3 (the second and fourth year of PCV10/13 use) to allow for 

flexibility in the IR of ST1 over time for each site following PCV10/13 introduction. Site-

specific modeled ST1 IR curves were visually inspected for model fit and approved by site 

investigators with expertise in IPD surveillance at each site. 

Second, the pre-PCV10/13 ST1 IR was used as a counterfactual ST1 IR (i.e., an ex-

pected ST1 IR in any given post-PCV10/13 year in the absence of PCV10/13 introduction) 

for sites with both pre- and post-PCV10/13 data. The site-specific modeled ST1 IR and 

counterfactual IR were used to estimate site-specific annual IRRs in each post-PCV10/13 

year (reported as the mean of the posterior distribution of rate ratios) for each site. Site-

specific IRRs were not generated for sites without pre-PCV10/13 years of data. Credibility 

intervals (CIs, Bayesian confidence interval analog) were estimated using the 2.5 and 97.5 

percentiles of the posterior distribution of the IRs (Figure S1). 

Finally, modeled site-specific IRRs were used to estimate all-site weighted average 

IRRs in each post-PCV10/13 year using a linear mixed-effects regression where site-spe-

cific IRRs were regressed on time since PCV10/13 introduction and weighted to give more 

influence to sites whose IRR standard errors were smaller. In sensitivity analyses, the all-

site weighted average IRRs were estimated restricting to sites with data in all age groups 

and after adjusting the counterfactual IR by all-serotype IPD pre-PCV trends. All analyses 

were conducted in R (R Core Team, 2019). 

3. Results 

3.1. Description of Sites and Included Data 

Of the 52 sites that met data collection eligibility criteria and contributed data to the 

PSERENADE project, 45 were included in the serotype 1 analysis (41 for children <5 years 

of age, 38 for 5–17 years of age, 37 for 18–49 years of age, 36 for 50–64 years of age, and 36 

for ≥65 years of age). Two sites were excluded due to their population-based surveillance 

being restricted to pneumococcal meningitis, four sites were excluded due to a combina-

tion of biases in the surveillance system over time, such as changed to surveillance proto-

cols, that could not be accounted for in the analysis and/or less than 50% of cases being 

serotyped, and one site was excluded due to zero ST1 cases being reported in all years of 

available data. Additionally, several age groups from included sites did not meet eligibil-

ity criteria and were excluded (Table S1). 
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Seven sites (16%) included in the analysis used PCV10, 24 (53%) used PCV13, and 14 

(31%) used a combination of PCV10 and PCV13 in the infant PCV program. Only 14 (31%) 

sites introduced PCV10 or PCV13 into the routine immunization schedule with a catch-

up campaign. The majority of sites used a PCV schedule including a booster dose (40, 89% 

used a 2 + 1 or 3 + 1 schedule and 5, 11% used a 3 + 0 schedule). Nearly half were from 

Europe (22 (49%)), 8 (18%) were from North America, 5 (11%) from Sub-Saharan Africa, 3 

(7%) from Oceania, 3 (7%) from Asia, 2 (4%) from Latin America and the Caribbean and 2 

(4%) from Northern Africa and Western Asia. The median PCV10/13 uptake for all years 

of available data after PCV10/13 introduction was 92% (range: 55–98%) (Table 1). 

Of included sites with available data on specimen type, the median proportion of all 

ST1 IPD cases from CSF was 1.4% (range: 0–55.5%). Annual site-specific ST1 IRRs were 

estimated for 40 (89%) sites with both pre- and post-PCV10/13 ST1 surveillance data. The 

median number of surveillance years included in the analysis was 7 (range: 0–19) prior to 

the introduction of PCV10/13 and 8 (range: 2–10) after the introduction of PCV10/13 (in-

cluding the year of PCV10/13 introduction). The median proportion of cases serotyped 

annually was 94% (range: 50–100%). The median number of ST1 cases included in the 

analysis per site was 29 (range: 1–499) for children <5 years of age, 46 (range: 2–768) for 5–

17 years of age, 51 (range: 1–1776) for 18–49 years of age, 25 (range: 1–753) for 50–64 years 

of age, and 26 (range: 1–748) for ≥65 years of age (Table 1, Figure 1). 
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Figure 1. Number of serotype 1 cases per site included in the analysis by region and age group. NA & WA–Northern Africa and Western Asia; LA & C–Latin 

America and the Caribbean. Not all age groups were included for all sites (Table S1). Analyses were done with minor changes to age groups for certain sites to align 

with availability of population denominators and age groups provided by sites in aggregate: the <5 years age group includes 0–5 years from Morocco; the 5–17 

years age group included 5–14 years from Japan and Kilifi, Kenya, 5–15 years from Germany, 6–14 years from Morocco, and 5–19 years from Australia and Malawi; 

and the 18–49 years age group includes 15–49 years from Japan and Kilifi, Kenya, 15–59 years from Morocco, 16–49 years from Germany, and 20–49 years from 

Australia and Malawi. 
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3.2. Impact of PCV10/13 on ST1 Incidence 

All-site weighted average ST1 IPD IRRs comparing the pre-PCV10/13 period to each 

post-PCV10/13 year are shown in Table 2 and Figure 2. The all-site weighted average IRRs 

in the year of PCV10/13 introduction by age group ranged from 0.82 to 1.09 and was 1.09 

(95% CI: 0.92–1.29) for children <5 years of age, 1.06 (0.88–1.28) for 5–17 years of age, 0.94 

(0.73–1.22) for 18–49 years of age, 0.85 (0.70–1.04) for 50–64 years of age, and 0.82 (0.68–

0.99) for ≥65 years of age. The ST1 IRR declined for every age group in each subsequent 

post-PCV10/13 year. By the sixth year of PCV10/13 use (year +5 post-PCV10/13 introduc-

tion), the all-site weighted average IRR compared to the pre-PCV10/13 period was 0.05 

(0.04–0.06) for all ages, or a 95% relative reduction in ST1 IPD compared to the pre-

PCV10/13 period. The reduction in ST1 IPD for each age group ranged from 92% to 95% 

in the sixth year of PCV10/13 use: IRR 0.05 (0.04–0.05) for children <5 years of age, 0.08 

(0.06–0.09) for 5–17 years of age, 0.06 (0.05–0.08) for 18–49 years of age, 0.06 (0.05–0.07) for 

50–64 years of age, and 0.05 (0.04–0.06) for ≥65 years of age. 

Table 2. Serotype 1 invasive pneumococcal disease all-site weighted average incidence rate ratios comparing the annual 

post-PCV10/13 incidence rate to the average pre-PCV10/13 incidence rate by age group. 

 Year Post-PCV10/13 Introduction 
 0 * 1 2 3 4 5 6 7 8 9 

Children <5 years           

Number of sites a 37 37 36 36 35 34 33 27 10 3 

IRR (95% CI) 
1.09 

(0.92–1.29) 

0.57 

(0.48–0.67) 

0.29 

(0.25–0.35) 

0.15 

(0.13–0.18) 

0.08 

(0.07–0.09) 

0.05 

(0.04–0.05) 

0.03 

(0.02–0.03) 

0.02 

(0.02–0.02) 

0.01 

(0.01–0.02) 

0.01 

(0.01–0.01) 

Children 5–17 years           

Number of sites a 34 34 33 33 32 31 30 24 9 2 

IRR (95% CI) 
1.06 

(0.88–1.28) 

0.67 

(0.55–0.80) 

0.41 

(0.34–0.49) 

0.24 

(0.20–0.29) 

0.14 

(0.11–0.16) 

0.08 

(0.06–0.09) 

0.04 

(0.04–0.05) 

0.03 

(0.02–0.03) 

0.01 

(0.01–0.02) 

0.01 

(0.01–0.01) 

Adults 18–49 years           

Number of sites a 29 29 29 29 28 28 27 22 9 2 

IRR (95% CI) 
0.94 

(0.73–1.22) 

0.57 

(0.44–0.74) 

0.34 

0.26–0.44) 

0.20 

(0.15–0.25) 

0.11 

(0.09–0.14) 

0.06 

(0.05–0.08) 

0.03 

(0.03–0.04) 

0.02 

(0.01–0.02) 

0.01 

(0.01–0.01) 

0.01 

(0.00–0.01) 

Adults 50–64 years           

Number of sites a 29 29 29 29 27 27 27 22 9 2 

IRR (95% CI) 
0.85 

(0.70–1.04) 

0.54 

(0.44–0.65) 

0.33 

(0.27–0.40) 

0.19 

(0.15–0.23) 

0.10 

(0.08–0.12) 

0.06 

(0.05–0.07) 

0.03 

(0.03–0.04) 

0.02 

(0.02–0.02) 

0.01 

(0.01–0.01) 

0.01 

(0.01–0.01) 

Adults ≥65 years           

Number of sites a 28 28 28 28 27 27 27 22 9 2 

IRR (95% CI) 
0.82 

(0.68–0.99) 

0.56 

(0.46–0.67) 

0.36 

(0.30–0.43) 

0.20 

(0.17–0.24) 

0.10 

(0.08–0.12) 

0.05 

(0.04–0.06) 

0.03 

(0.02–0.03) 

0.02 

(0.01–0.02) 

0.01 

(0.01–0.01) 

0.01 

(0.00–0.01) 

All ages           

Number of sites a 39 39 38 38 37 36 35 29 11 3 

IRR (95% CI) 
0.98 

(0.79–1.21) 

0.57 

(0.47–0.71) 

0.33 

(0.27–0.40) 

0.18 

(0.15–0.22) 

0.10 

(0.08–0.12) 

0.05 

(0.04–0.06) 

0.03 

(0.02–0.04) 

0.02 

(0.01–0.02) 

0.01 

(0.01–0.01) 

0.01 

(0.01–0.01) 

PCV: Pneumococcal conjugate vaccine. * Year of PCV10/13 introduction. a Number of sites with both pre- and post-

PCV10/13 data in each post-PCV10/13 year. All-site weighted average IRRs estimated by post-PCV10/13 year and age 

group using linear mixed-effects regression. 
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Figure 2. All-site weighted average incidence rate ratios for serotype 1 invasive pneumococcal disease for all ages and by age group. All ages’ analysis (in black) is 

not an average of each age-specific estimate in each year but rather a re-analysis of the total cases from all ages reporting at each site. 
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In the early years of PCV10/13 use, site-specific IRRs were heterogeneous. Some sites 

reported outbreaks or had elevated levels of ST1 IPD around the time of PCV10/13 intro-

duction, including two sites with very small sample sizes and large proportion increases 

in ST1 IRs. Other sites had little to no ST1 disease at the time of PCV10/13 introduction 

compared to the pre-PCV10/13 ST1 IRs. After five years of PCV10/13 use (year +4 post-

PCV10/13), the impact of PCV10/13 on ST1 IPD was homogeneous across all included sites 

and age groups. No ST1 outbreaks were observed after five or more years of PCV10/13 

use in any site (Figure 3). Results were similar when analyses were restricted to sites with 

data in all age groups (results not shown), when sites with very small sample size were 

excluded (results not shown), and after adjusting the counterfactual IR by all-serotype IPD 

pre-PCV trends (Figure S2). No differences in ST1 impact were observed by visual inspec-

tion among the included sites by PCV product, region, infant PCV schedule, or adult 

pneumococcal polysaccharide vaccine recommendation (Figures S3–S6). One site, which 

was excluded from the analytic model because the dataset was limited to meningitis cases, 

observed declines in ST1 pneumococcal meningitis IRs after PCV10 introduction that were 

consistent with declines seen in ST1 IPD in the other sites (Figure S7). 
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Figure 3. Site-specific modeled serotype 1 invasive pneumococcal disease incidence rate ratios comparing each post-

PCV10/13 year to pre-PCV10/13 average, by age group. 

4. Discussion 

Our analysis demonstrates that there have been large and sustained decreases in ST1 

IPD among both children targeted for immunization and among unvaccinated older chil-

dren and adults through indirect effects. We used a standardized approach to analyze 

data from 45 surveillance sites and analytic methods that strengthened predictions from 

sites with few years of data and small sample sizes by borrowing strength from the overall 

trends observed across all sites. This allowed sites with few years of data and small sample 
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sizes to still contribute proportionately to the analysis where data were available. As a 

result, this analysis is the most comprehensive assessment of changes in ST1 IPD after 

PCV10/13 introduction and demonstrates homogeneity in long-term impact of PCV10/13 

on ST1 IPD across sites. These results were used to inform global vaccine policy recom-

mendations around the use of pneumococcal vaccines in community outbreak settings 

[27]. 

The all-site weighted average IRRs are consistent with findings from individual sur-

veillance sites on the long-term impact of PCV10/13 on ST1 IPD [9,10,12,16–20]. In the first 

several years of PCV10/13 use, the observed impact of PCV10/13 on ST1 IPD was hetero-

geneous, in part, due to the cyclic and outbreak nature of ST1 IPD and likely reflects het-

erogeneity in pre-PCV10/13 temporal trends with respect to the timing of PCV10/13 intro-

duction. In some sites, ST1 IPD rates in the early years were greater than the pre-PCV10/13 

average (because cyclical increases or outbreaks occurred at the time of or immediately 

following PCV10/13 introduction or because of noise in small datasets) and in other sites 

ST1 IPD rates were lower than the pre-PCV10/13 average immediately following 

PCV10/13 introduction. However, further into the PCV10/13 period, every site had sus-

tained reductions in ST1 IPD below the pre-PCV10/13 rate. Prior to PCV10/13 introduction 

ST1 was known to cause severe disease to a greater degree in older children and younger 

adults compared to other serotypes [3,13,28] and importantly, we observed substantial 

reductions in ST1 IPD for all age groups. There was concern prior to the widespread in-

troduction of PCV10/13 regarding the immunogenicity of PCV10/13 when used without a 

booster dose against ST1 [29]. Although only five sites using a 3 + 0 schedule were in-

cluded in the analysis, the direct and indirect effects for ST1 IPD after several years of 

PCV10/13 use in these sites were consistent with patterns observed in sites using a booster 

dose schedule. 

Although not observed in all sites and CIs overlap, our results showed slightly 

smaller declines in ST1 IPD for children <18 years compared to adults ≥18 years in the year 

of PCV10/13 introduction, which is contradictory to expected patterns of indirect effects 

among non-immunized adults following introduction of an infant vaccine [30]. This may 

reflect secular trends unrelated to vaccine introduction or differences in the hospital and 

surveillance systems between adults and pediatrics and an increased focus on pediatric 

surveillance around the time of pediatric vaccine introduction leading to greater detection 

of pediatric cases compared to adults. Ninety-two percent of sites with adult ST1 data 

included in the analysis have an adult pneumococcal polysaccharide vaccine recommen-

dation. Although this may have reduced the burden of ST1 IPD among vaccinated adults 

prior to infant PCV10/13 programs, this does not explain observed patterns in the year of 

PCV10/13 introduction. The majority of adult polysaccharide vaccine programs began 

many years prior to the introduction of PCV10/13, recommendations vary by site for adult 

pneumococcal vaccine use, and data on vaccine uptake among adults was limited. We 

were not able to detect differences by adult pneumococcal vaccine program recommen-

dation. Despite this, we see substantial and sustained declines in ST1 IPD for all age 

groups in the following years of PCV10/13 use. 

To understand the impact of PCV10/13 introduction, data were restricted to sites with 

at least 50% uptake for the primary PCV series at 12 months of age in at least one-year 

post-PCV10/13 introduction and majority of included sites had high PCV uptake. This 

resulted in most data coming from high-income countries and limited inferences can be 

made to other regions or areas with lower vaccine uptake. Further, the majority of the data 

are from sites that used a booster dose. Among the five sites with a 3 + 0 schedule, four 

introduced PCV10/13 with a catch-up program. Therefore, any added effects of a booster 

dose and catch-up programs could not be assessed, and results may not be reflective of 

other settings. In particular, data were limited from areas prone to pneumococcal menin-

gitis outbreaks, such as the African meningitis belt. Only one site from the African men-

ingitis belt, The Gambia, was included in the analysis where a 3 + 0 schedule of PCV13 

was introduced without a catch-up program. Although there were few ST1 cases (n = 71), 

ST1 trends for children <18 years of age were consistent with other non-meningitis belt 
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countries in Africa and other regions. In the 4 other sites that used a 3 + 0 schedule (all of 

which introduced PCV10/13 with a catch-up campaign), ST1 trends were also similar to 

those observed in sites using a 2 + 1 or 3 + 1 schedule among both children and adults. 

Two meningitis belt countries with documented pneumococcal outbreaks after PCV13 in-

troduction with a 3 + 0 schedule, Ghana and Burkina Faso, did not contribute data to the 

PSERENADE project. As in The Gambia, the proportion of ST1 cases occurring among 

children <5 years of age decreased compared to the pre-PCV13 period in Ghana and 

Burkina Faso [22–24]. However, pneumococcal meningitis outbreaks in persons >5 years 

of age were documented four years after PCV13 introduction in the Brong-Ahafo region 

of Ghana (outside of the traditional meningitis belt) [22] and five years after introduction 

in the Upper West and Northern regions of Ghana (within the traditional meningitis belt) 

[23]. In both of these outbreaks a large proportion of cases were due to ST1 (between 62–

80%) [22,23]. PCV13 uptake in these specific communities was undocumented and na-

tional PCV13 uptake in the first two years of use was low in Ghana (41–68%)[22]. In 

Burkina Faso after 3 years of PCV13 use, ST1 meningitis rates declined by 59% for children 

<1 year of age, by 25% for children 1–4 years of age, and by 8–17% for individuals ≥5 years 

of age. Slightly larger declines were observed for all PCV13 serotype meningitis (76% de-

cline for children <1 year, 58% decline for children 1–4 years, and 14–20% decline for in-

dividuals ≥5 years of age) [24]. The remaining PCV13 serotype meningitis among individ-

uals ≥1 year of age indicates that indirect effects have not been fully achieved for all vac-

cine serotypes, including but not limited to ST1, and the 59% decline in ST1 disease among 

children <1 year of age suggests that after 3 years of use the PCV program has not yet 

sufficiently protected children targeted for immunization. Although the association be-

tween PCV uptake and indirect effects are not well understood, this may indicate low 

vaccine uptake. The persistence of ST1 IPD in unvaccinated persons in the first five years 

of PCV10/13 use is consistent with our results, as ST1 outbreaks were still observed in 

some sites during the first five years of PCV10/13 use and significant declines in ST1 IPD 

were not observed for some sites until after 5 years of PCV10/13 use (Figure 3). As recom-

mended by WHO, continuation of comprehensive, high-quality serotype-specific IPD sur-

veillance and vaccine uptake monitoring in the African meningitis belt sites still experi-

encing ST1 outbreaks in the post-PCV period and in countries with suboptimal PCV10/13 

uptake could improve understanding of ST1 in these settings with schedules lacking a 

booster dose or with low PCV10/13 uptake [31]. 

This analysis was also limited in its ability to model the counterfactual ST1 IR in the 

absence of PCV10/13. An ideal ST1 counterfactual IR would have modeled the cyclical 

pattern of ST1 IPD in the absence of PCV10/13 introduction as a baseline comparison for 

each post-PCV10/13 year, as has been done for single site analyses, but is challenging 

without monthly data [11]. Due to the number of available years of pre-PCV data and 

small ST1 sample size, this was not possible for the majority of sites and instead an aver-

age pre-PCV10/13 ST1 IR was used as the counterfactual ST1 IR. Using the average pre-

PCV10/13 ST1 IR would most likely lead to less valid effect estimates in the early years of 

PCV10/13 use and may contribute to unexplained differences in IRRs between age groups 

in the year of PCV10/13 introduction. However, this would have limited impact on the 

estimates in later post-PCV10/13 later years. Although a high proportion of the cases from 

included sites were fully serotyped, another limitation of this analysis, which cannot be 

tested, is the assumption that the prevalence of ST1 among cases that were serotyped is 

not biased from the prevalence of ST1 cases among cases that were not serotyped or not 

fully serotyped. Finally, the number of sites with post-PCV10/13 data declined over time 

and sites with longer follow-up periods tend to be from high-income countries that gen-

erally introduced PCV10/13 earlier than low- and middle-income countries. Eleven sites 

had data through the ninth year of PCV10/13 use and only three sites had data in the tenth 

year of PCV10/13 use. 

These results can provide important context for evaluating the impact of PCV10/13 

on other individual serotypes. ST1 is unique from other vaccine-serotypes in its invasive-
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ness potential, carriage patterns, ability to cause large outbreaks among all ages, and as-

sociation with meningitis [7,8,12–15]. Future analyses using the PSERENADE dataset will 

evaluate the impact of PCV10/13 on other individual vaccine and non-vaccine serotypes. 

5. Conclusions 

The introduction of PCV10/13 into infant immunization programs has been associ-

ated with the near elimination of ST1 IPD in all ages after approximately 6 years of use, 

including in settings without a booster dose schedule but with high PCV10/13 uptake, 

where data are available. Improved population-level serotype-specific IPD surveillance 

for all ages, including for meningitis, is needed from settings using a 3 + 0 schedule with 

a history of ongoing ST1 outbreaks in the post-PCV10/13 period, particularly the African 

meningitis belt, and in countries with suboptimal PCV10/13 uptake. This would allow for 

a more comprehensive evaluation of the indirect effects of PCV10/13 in older children and 

adults living in high burden settings using a 3 + 0 schedule or with low PCV10/13 uptake. 
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