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Abstract: Some improved estimators and confidence interval of the parametric functions are 

proposed based on records from three parameters Burr XII distribution. We propose 

preliminary test estimators (PTES) of the powers of the parameter and reliability functions 

based on uniformly minimum variance unbiased estimator (UMVUE), maximum likelihood 

estimator (MLE), best invariant estimator (MRE) and empirical Bayes estimator (EBE). We 

compare the performance of the proposed PTES with the usual estimators by studying their 

relative efficiencies based on Monte Carlo simulations. We also construct preliminary test 

confidence interval (PTCI) for the parameter and study its coverage probability and expected 

length. The results show that the proposed PTES dominate the usual estimators in a wide 

range of the parametric space. Also it is seen that the proposed PTCI have higher coverage 

probability while keeping the shorter width in some domain of parametric space. The paper 

ends up by analysing a real data set. 
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1. Introduction 

 In statistical inference, we often come across problems where some prior information 

on the parameters is available. Naturally, the validity of this information is questionable and 

hence it is required to perform a preliminary test on this constraint which gives rise to 

restricted models. Due to past knowledge or experience, the experimenter may be in a 

position to make an initial guess on some of the parameters of interest. In such cases, we can 

provide an improved estimator by incorporating this prior information on the parameters. The 



usage of this prior information on some or all of the parameters of a statistical distribution 

usually leads to an improved inferential study. The efficiency and validity of restricted 

models analysis is higher over a restricted parametric space induced by the constraints, while 

the same holds for unrestricted model analysis over the entire parametric space. Thus, an 

analysis resulting from restricted or unrestricted models may be subject to a loss in efficiency 

against the validity of constraints while choosing between two inferential techniques. Hence 

it is wise to adopt restricted estimation procedures when we have sufficient confidence in the 

prior information. Bancroft (1944) introduced the use of PTES and eventually further 

advancements were proposed by Saleh and Sen (1978), Saleh and Kibria (1993) and Belaghi 

et al. (2014, 2015).  

 The reliability function 𝑅(𝑡) is defined as the probability of failure-free operation 

until time 𝑡. Thus, if the random variable (𝑟𝑣) 𝑋 denotes the lifetime of an item or a system, 

then 𝑅(𝑡) =  𝑃(𝑋 > 𝑡). Another measure of reliability under stress-strength setup is the 

probability 𝑃 = 𝑃(𝑋 > 𝑌), which represents the reliability of an item or a system of random 

strength 𝑋 subject to random stress 𝑌. A lot of work has been done in the literature for the 

point estimation and testing of 𝑅(𝑡) and 𝑃 based on record values. For a brief review, one 

may refer to Chaturvedi and Malhotra (2016, 2017). In the present paper, we develop PTES 

for the reliability functions based on MLE and UMVUE and prove them to be more efficient 

estimators than their usual MLE and UMVUE.  

 Chandler (1952) introduced the concept of record values. Based on records, 

inferential procedures for the parameters of different distributions have been developed by 

Glick (1978), Nagaraja (1988a,1988b), Balakrishan, Ahsanullah and Chan (1995), Arnold, 

Balakrishan and Nagaraja (1992), Habibi Rad, Arghami and Ahmadi (2006), Arashi and 

Emadi (2008), Razmkhah and Ahmadi (2011), Belaghi et al. (2015) and others.  

 Many authors have studied the estimation of Burr type XII parameters. The two 

parameters Burr type XII distribution was first introduced by Burr (1942). A random variable 

X is said to have a Burr type XII distribution with the shape parameters 𝑐 and 𝑘, if its 

cumulative distribution function (𝑐𝑑𝑓) and probability density function (𝑝𝑑𝑓) are of the 

following forms respectively: 

𝐹(𝑥; 𝑘, 𝑐) = 1 − (1 + 𝑥𝑐)−𝑘 ;  𝑥 > 0, 𝑐, 𝑘 > 0 

and 

𝑓(𝑥; 𝑘, 𝑐) = 𝑘𝑐𝑥𝑐−1(1 + 𝑥𝑐)−(𝑘+1);  𝑥 > 0, 𝑐, 𝑘 > 0 



Some recent work on Burr XII model can be found in Belaghi and Noori (2016) and Belaghi 

et al. (2017). Belaghi et al. (2014, 2015) constructed PTES and PTCI based on record values 

for the Burr XII Model.  

 Shao (2004) expanded an extended the Burr type XII distribution  to three parameters 

and used it for flood frequency analysis. Hogg and Klugman (1984) discussed a three 

parameters Burr XII distribution by introducing a scale parameter 𝛼 to the Burr type XII 

distribution. This distribution has 𝑝𝑑𝑓 and 𝑐𝑑𝑓 of the following form respectively: 

𝑓(𝑥; 𝑘, 𝑐, 𝛼) =
𝑘𝑐𝑥𝑐−1

𝛼
(1 +

𝑥𝑐

𝛼
)
−(𝑘+1)

;  𝑥 > 0, 𝑘, 𝑐, 𝛼 > 0                                                      (1.1) 

and  

𝐹(𝑥; 𝑘, 𝑐, 𝛼) = 1 − (1 +
𝑥𝑐

𝛼
)
−𝑘

 ;  𝑥 > 0, 𝑘, 𝑐, 𝛼 > 0                                                                  (1.2) 

 Let 𝑋1, 𝑋2, … be an infinite sequence of independent and identically distributed 

(𝑖𝑖𝑑) 𝑟𝑣𝑠 from (1.1). An observation 𝑋𝑗 will be called an upper record value (or simply a 

record) if its value exceeds all the previous observations. Thus 𝑋𝑗 is a record if 𝑋𝑗 > 𝑋𝑖 for 

every 𝑖 < 𝑗. The record time sequence {𝑇𝑛 , 𝑛 ≥ 0} is defined as 

{
𝑇0  = 1           ; 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1

𝑇𝑛 = 𝑚𝑖𝑛{𝑗 ∶ 𝑋𝑗 > 𝑋𝑇𝑛−1} ; 𝑛 ≥ 1
 

and the record value sequence {𝑅𝑛} is then defined as 

𝑅𝑛 = 𝑋𝑇𝑛  ; 𝑛 = 0,1,2, … 

Following Chaturvedi and Malhotra (2017), the likelihood function of the first 𝑛 + 1 upper 

record values 𝑅0, 𝑅1, 𝑅2, … , 𝑅𝑛 is 

𝐿(𝑘|𝑅0, 𝑅1, 𝑅2, … , 𝑅𝑛) = (
𝑘𝑐

𝛼
)
𝑛+1

𝑒𝑥𝑝 (−𝑘𝑙𝑜𝑔 (1 +
𝑅𝑛
𝑐

𝛼
))∏

𝑅𝑖
𝑐−1

(1 +
𝑅𝑖
𝑐

𝛼
)

𝑛

𝑖=0

                          (1.3) 

For simplicity, we define 

𝑈(𝑥) = 𝑙𝑜𝑔 (1 +
𝑥𝑐

𝛼
) 

 The rest of the paper is as follows. In Section 2, on the basis of records, we construct 

PTES based on MLE, UMVUE, MRE and EBE for the powers of the unknown parameter 𝑘 

assuming the remaining parameters 𝑐 and 𝛼 are known. We propose PTES based on MLE 

and UMVUE of the reliability functions 𝑅(𝑡) and 𝑃 for record values from (1.1). Then, bias 

and mean square error (MSE) of the proposed estimators are obtained. Relative efficiencies 

of the PTES are studied based on simulated data. PTCI of the unknown parameter 𝑘 are 



constructed based on UMVUE, MLE and MRE. Their coverage probability and expected 

length are derived for comparison with the equal tail confidence intervals (ETCI). In Section 

3, we consider the case when all the parameters 𝑘, 𝑐 and 𝛼 of the distribution in (1.1) are 

unknown and obtain the MLES of parameters and reliability functions. Following which we 

obtain asymptotic distributional bias (ADB) and asymptotic distributional mean square error 

(ADMSE) of the proposed estimators. Section 4 contains an illustrative example and finally 

in Section 5 we conclude our study. 

 

2. Estimation of Parametric Functions when 𝒄 and 𝜶 are known 

For 𝑝 ∈ (−∞,∞), 𝑝 ≠ 0 the MLE of  𝑘𝑝 is 

�̂�𝑀𝐿
𝑝 = (

𝑛 + 1

𝑈(𝑅𝑛)
)
𝑝

                                                                                                                                (2.1) 

where 𝑈(𝑅𝑛) has gamma distribution with parameters (𝑛 + 1, 𝑘) [see Chaturvedi and 

Malhotra (2017)]. Further, the UMVUE of 𝑘𝑝 is 

�̂�𝑈
𝑝 = {

𝛤(𝑛 + 1)

𝛤(𝑛 − 𝑝 + 1)
(𝑈(𝑅𝑛))

−𝑝; 𝑝 < 𝑛 + 1

                                            0 ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                            (2.2) 

For some constant 𝜔, minimising (𝜔�̂�𝑈 − 𝑘)
2
 with respect to 𝜔 helps us to determine the 

MRE of 𝑘 denoted by �̂�𝑀𝑅 and is obtained as follows: 

�̂�𝑀𝑅 =
𝑛 − 1

𝑛
�̂�𝑈                                                                                                                                   (2.3) 

Now, if we consider conjugate prior distribution of 𝑘 to be Gamma distribution with 

parameters (𝜇, 𝜈) and 𝑝𝑑𝑓 

𝜋(𝑘) =
𝜇𝜈𝑘𝜈−1

𝛤(𝜈)
𝑒−𝜇𝑘 ;  𝜇, 𝑘 > 0 and 𝜈 is a positive integer                                                  (2.4) 

Then the posterior distribution of 𝑘 given 𝑅0, 𝑅1, 𝑅2, … , 𝑅𝑛 is 

𝜋(𝑘|𝑅0, 𝑅1, 𝑅2, … , 𝑅𝑛) =
(𝑈(𝑅𝑛)+𝜇)

𝑛+𝜈+1𝑘𝑛+𝜈

𝛤(𝑛+𝜈+1)
𝑒−𝑘(𝑈(𝑅𝑛)+𝜇)                                                        (2.5)   

Under squared error loss function, the Bayes estimator of 𝑘𝑝  is 

�̂�𝐵
𝑝 =

𝛤(𝑛 + 𝜈 + 𝑝 + 1)

𝛤(𝑛 + 𝜈 + 1)
(𝑈(𝑅𝑛) + 𝜇)

−𝑝                                                                                       (2.6) 

Also, the marginal distribution of 𝑅0, 𝑅1, 𝑅2, … , 𝑅𝑛 given 𝜇 and 𝜈 is 

𝑚(𝑅0, 𝑅1, 𝑅2, … , 𝑅𝑛|𝜇, 𝜈) = ∫ 𝜋(𝑘)

∞

0

𝐿(𝑘|𝑅0, 𝑅1, 𝑅2, … , 𝑅𝑛) 𝑑𝑘 



                                                                           =
𝜇𝜈𝛤(𝑛+𝜈+1)

(𝑈(𝑅𝑛)+𝜇)𝑛+𝜈+1𝛤(𝜈)
(
𝑐

𝛼
)
𝑛+1 

∏
𝑅𝑖
𝑐−1

(1+
𝑅𝑖
𝑐

𝛼
)

𝑛
𝑖=0  

Taking the natural logarithm 𝑙 of the above marginal distribution, the MLE of 𝜇 and 𝜈 can 

be obtained from the solution of the following system of equations: 

𝜕𝑙

𝜕𝜇
=
𝜈

𝜇
−
𝑛 + 𝜈 + 1

𝑈(𝑅𝑛) + 𝜇
= 0 

and 

𝜕𝑙

𝜕𝜈
= 𝑙𝑜𝑔(𝜇) +

𝜕

𝜕𝜈
[𝑙𝑜𝑔 (

𝛤(𝑛 + 𝜈 + 1)

𝛤(𝜈)
)] − 𝑙𝑜𝑔(𝑈(𝑅𝑛) + 𝜇) = 0 

Denoting the MLE of 𝜇 and  𝜈 by �̂�𝑀𝐿 and �̂�𝑀𝐿 respectively, then there exists a relation 

between them given by 

�̂�𝑀𝐿 =
𝑈(𝑅𝑛)�̂�𝑀𝐿
𝑛 + 1

 

Therefore, from (2.5), the EBE of 𝑘𝑝 is 

�̂�𝐸𝐵
𝑝 =

𝛤(𝑛 + �̂�𝑀𝐿 + 𝑝 + 1)

𝛤(𝑛 + �̂�𝑀𝐿 + 1)
(𝑈(𝑅𝑛) + �̂�𝑀𝐿)

𝑝                                                                              (2.7) 

 In the sequel we define four different PTES based on MLE, UMVUE, MRE and EBE 

of 𝑘𝑝 when it is suspected that 𝑘 may be equal to 𝑘𝑜. Often the information on the value of 

𝑘 is available from the past knowledge or experiments. This non-sample prior information 

can be expressed in the form of the following group of hypotheses: 

𝐻𝑜: 𝑘 = 𝑘𝑜 

𝐻1: 𝑘 ≠ 𝑘𝑜 

Then based on classical hypothesis testing, the critical region is given by 

{0 < 𝑈(𝑅𝑛) < 𝑙ₒ} ∪ {𝑙ₒ
′ < 𝑈(𝑅𝑛) < ∞} 

 where 𝑙𝑜  and 𝑙𝑜
′  are obtained such that 𝑙𝑜 =

𝜒2(𝑛+1)
2 (

𝜀

2
)

2𝑘𝑜
,  𝑙ₒ′ =

𝜒2(𝑛+1)
2 (1−

𝜀

2
)

2𝑘𝑜
 and 𝜀 is the level of 

significance. Or, equivalently we reject 𝐻𝑜 if 

2𝑘𝑜𝑈(𝑅𝑛) < 𝐶2  or 2𝑘𝑜𝑈(𝑅𝑛) > 𝐶1                                                                                          (2.8)  

where 𝐶1 = 𝜒2(𝑛+1)
2 (1 −

𝜀

2
) and  𝐶2 = 𝜒2(𝑛+1)

2 (
𝜀

2
). 

Thus we define four different PTES for 𝑘𝑝 based on MLE, UMVUE, MRE and EBE 

respectively as 

�̂�𝑀𝐿
𝑝 𝑃𝑇

= �̂�𝑀𝐿
𝑝 − (�̂�𝑀𝐿

𝑝 − 𝑘𝑜
𝑝)𝐼(𝐴)                                                                                                    (2.9) 

�̂�𝑈
𝑝𝑃𝑇 = �̂�𝑈

𝑝 − (�̂�𝑈
𝑝 − 𝑘𝑜

𝑝)𝐼(𝐴)                                                                                                        (2.10) 



�̂�𝑀𝑅
𝑃𝑇 = �̂�𝑀𝑅 − (�̂�𝑀𝑅 − 𝑘𝑜)𝐼(𝐴)                                                                                                     (2.11) 

�̂�𝐸𝐵
𝑝 𝑃𝑇

= �̂�𝐸𝐵
𝑝 − (�̂�𝐸𝐵

𝑝 − 𝑘𝑜
𝑝)𝐼(𝐴)                                                                                                  (2.12) 

where 𝐼(𝐴) is the indicator function of the set 

𝐴 = {𝜒2(𝑛+1)
2 ∶ 𝐶2 ≤ 𝜒2(𝑛+1)

2 ≤ 𝐶1} 

 From Chaturvedi and Malhotra (2017), the MLE and UMVUE of 𝑅(𝑡) are 

respectively given by 

�̂�(𝑡) = 𝑒𝑥𝑝 {
−(𝑛+1)𝑈(𝑡)

𝑈(𝑅𝑛)
}                                                                                                                 (2.13)  

and 

�̃�(𝑡) = {
[1 −

𝑈(𝑡)

𝑈(𝑅𝑛)
]
𝑛

;  𝑈(𝑡) < 𝑈(𝑅𝑛)

               0 ;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                   (2.14) 

Thus, we define two different PTES of 𝑅(𝑡) based on MLE and UMVUE as follows: 

�̂�(𝑡)𝑃𝑇 = �̂�(𝑡) − (�̂�(𝑡) − 𝑅𝑜(𝑡)) 𝐼(𝐴)                                                                                       (2.15) 

�̃�(𝑡)𝑃𝑇 = �̃�(𝑡) − (�̃�(𝑡) − 𝑅𝑜(𝑡)) 𝐼(𝐴)                                                                                      (2.16) 

where 𝑅𝑜(𝑡) = 𝑒
−𝑘𝑜𝑈(𝑡). 

 Let 𝑋 and 𝑌 be two independent 𝑟𝑣𝑠 from the three parameters Burr XII distribution 

with parameters (𝑘1, 𝑐, 𝛼) and (𝑘2, 𝑐, 𝛼) respectively. Let 𝑅0, 𝑅1, … , 𝑅𝑛 be 𝑛 + 1 record 

values from distribution of 𝑋 and 𝑅0
∗, 𝑅1

∗, … , 𝑅𝑚
∗  be 𝑚 + 1 records from distribution of 𝑌. 

Then, 𝑃 =
𝑘2

𝑘1+𝑘2
. Suppose we want to test 

𝐻ₒ: 𝑃 = 𝑃ₒ 

𝐻1: 𝑃 ≠ 𝑃ₒ. 

Note that 𝐻ₒ is equivalent to 𝑘2 = 𝜃𝑘1 where 𝜃 =
𝑃ₒ

1−𝑃ₒ
. Thus, 𝐻ₒ: 𝑘2 = 𝜃𝑘1 and 𝐻1: 𝑘2 ≠

𝜃𝑘1. It can be shown that, under 𝐻ₒ, 

�̂�1 = 
𝑛 + 𝑚 + 2

𝑈(𝑅𝑛) + 𝜃𝑈(𝑅𝑚∗ )
 

and 

�̂�2 = 
𝜃(𝑛 + 𝑚 + 2)

𝑈(𝑅𝑛) + 𝜃𝑈(𝑅𝑚∗ )
 

For a generic constant 𝐶, the likelihood function of 𝑘1 and 𝑘2 is 

𝐿(𝑘1, 𝑘2|𝑅0, 𝑅1, … , 𝑅𝑛, 𝑅0
∗, 𝑅1

∗, … , 𝑅𝑚
∗ ) = 𝐶𝑘1

𝑛+1𝑘2
𝑚+1𝑒𝑥𝑝{−(𝑘1𝑈(𝑅𝑛) + 𝑘2𝑈(𝑅𝑚

∗ ))} 

and thus, 



𝑠𝑢𝑝
𝛩ₒ
𝐿(𝑘1, 𝑘2|𝑅0, 𝑅1, … , 𝑅𝑛, 𝑅0

∗, 𝑅1
∗, … , 𝑅𝑚

∗ ) 

=
𝐶

{𝑈(𝑅𝑛) + 𝜃𝑈(𝑅𝑚∗ )}𝑛+𝑚+2
𝑒𝑥𝑝{−(𝑛 + 𝑚 + 2)}; 𝛩0 = {𝑘1, 𝑘2: 𝑘2 = 𝜃𝑘1}                        

and  

𝑠𝑢𝑝
𝛩
𝐿(𝑘1, 𝑘2|𝑅0, 𝑅1, … , 𝑅𝑛, 𝑅0

∗, 𝑅1
∗, … , 𝑅𝑚

∗ ) 

=
𝐶

{𝑈(𝑅𝑛)}
𝑛+1{𝑈(𝑅𝑚

∗ )}𝑚+1
𝑒𝑥𝑝{−(𝑛 +𝑚 + 2)};𝛩 = {𝑘1, 𝑘2: 𝑘1 > 0,  𝑘2 > 0}         

Therefore, the Likelihood Ratio is 

∅(𝑅0, 𝑅1, … , 𝑅𝑛, 𝑅0
∗, 𝑅1

∗, … , 𝑅𝑚
∗ ) =

𝐶 {
𝑈(𝑅𝑚

∗ )
𝑈(𝑅𝑛)

}
𝑚+1

{1 +
𝜃𝑈(𝑅𝑚∗ )
𝑈(𝑅𝑛)

}
𝑛+𝑚+2 

Denoting by 𝐹𝑎,𝑏(∙), the 𝐹 − Statistic with (𝑎, 𝑏) degrees of freedom and using the fact that 

𝑈(𝑅𝑛)

𝑈(𝑅𝑚
∗ )
~
(𝑛+1)𝑘2

(𝑚+1)𝑘1
𝐹2(𝑛+1),2(𝑚+1), the critical region is given by  

{
𝑈(𝑅𝑛)

𝑈(𝑅𝑚∗ )
< 𝑙1} ∪ {

𝑈(𝑅𝑛)

𝑈(𝑅𝑚∗ )
> 𝑙1

′} 

where 𝑙1 =
𝜃(𝑛+1)

(𝑚+1)
𝐹2(𝑛+1),2(𝑚+1) (

𝜀

2
) and 𝑙1

′ =
𝜃(𝑛+1)

(𝑚+1)
𝐹2(𝑛+1),2(𝑚+1) (1 −

𝜀

2
). Thus, we define 

two PTES of 𝑃 based on MLE and UMVUE of 𝑃 as follows: 

�̂�𝑃𝑇 = �̂� − (�̂� − 𝑃𝑜)𝐼(𝐵)                                                                                                               (2.17) 

�̃�𝑃𝑇 = �̃� − (�̃� − 𝑃𝑜)𝐼(𝐵)                                                                                                               (2.18) 

where 𝐼(𝐵) is the indicator function of the set 

𝐵 = {𝐹2(𝑛+1),2(𝑚+1): 𝐶4 < 𝐹2(𝑛+1),2(𝑚+1) < 𝐶3} 

Here, 𝐶3 = 𝐹2(𝑛+1),2(𝑚+1) (1 −
𝜀

2
) , 𝐶4 = 𝐹2(𝑛+1),2(𝑚+1) (

𝜀

2
) and �̂� and �̃� are the MLE and 

UMVUE of 𝑃 respectively as defined in Chaturvedi and Malhotra (2017) and are respectively 

given as 

�̂� =
(𝑚 + 1)𝑈(𝑅𝑛)

(𝑚 + 1)𝑈(𝑅𝑛) + (𝑛 + 1)𝑈(𝑅𝑚∗ )
                                                                                        (2.19) 

�̃� =

{
 
 

 
 𝑚∑(−1)𝑖

𝑚!𝑛!

(𝑚 − 1 − 𝑖)! (𝑛 + 1 + 𝑖)!
{
𝑈(𝑅𝑛)

𝑈(𝑅𝑚∗ )
}

𝑖+1

; 𝑅𝑛 < 𝑅𝑚
∗

𝑚−1

𝑖=0

𝑚∑(−1)𝑖
𝑚! 𝑛!

(𝑚 + 𝑖)! (𝑛 − 𝑖)!
{
𝑈(𝑅𝑚

∗ )

𝑈(𝑅𝑛)
}

𝑖

                    ;

𝑛

𝑖=0

𝑅𝑛 ≥ 𝑅𝑚
∗

                              (2.20) 

 



2.1 Bias and Mean Square Error 

 In this sub-section, we derive the bias and mean square error (MSE) expressions for 

PTES based on UMVUE, MLE, MRE and EBE of 𝑘𝑝. For =
𝑘

𝑘𝑜
 , we have 

𝐵𝑖𝑎𝑠 (�̂�𝑈
𝑝𝑃𝑇
) = 𝐸[�̂�𝑈

𝑝
− (�̂�𝑈

𝑝
− 𝑘𝑜

𝑝
)𝐼(𝐴) − 𝑘𝑝] 

                        = 𝑘𝑜
𝑝
[{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)} − 𝜆

𝑝{𝐻2(𝑛−𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛−𝑝+1)(𝜆𝐶2)}]                                                                             (2.21) 

where 𝐻𝛾(. ) stands for the 𝑐𝑑𝑓  of 𝜒2 distribution with 𝛾 degrees of freedom. 

Also,  𝑀𝑆𝐸 (�̂�𝑈
𝑝𝑃𝑇
) = 𝑉𝑎𝑟 (𝑘𝑈

𝑝𝑃𝑇
) + [𝐵𝑖𝑎𝑠 (�̂�𝑈

𝑝𝑃𝑇
)]
2

 

 Since  

𝑉𝑎𝑟 (𝑘𝑈
𝑝𝑃𝑇
) = 𝑉𝑎𝑟(�̂�𝑈

𝑝
) + 𝑉𝑎𝑟 ((�̂�𝑈

𝑝
− 𝑘𝑜

𝑝
)𝐼(𝐴)) − 2𝐶𝑜𝑣 (�̂�𝑈

𝑝
, (�̂�𝑈

𝑝
− 𝑘𝑜

𝑝
)𝐼(𝐴)) 

                       = (𝜆𝑘𝑜)
2𝑝 [
𝛤(𝑛 − 2𝑝 + 1)𝛤(𝑛 + 1)

𝛤2(𝑛 − 𝑝 + 1)
− 1] + (𝜆𝑘𝑜)

2𝑝
𝛤(𝑛 − 2𝑝 + 1)𝛤(𝑛 + 1)

𝛤2(𝑛 − 𝑝 + 1)
{𝐻2(𝑛−2𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛−2𝑝+1)(𝜆𝐶2)} 

− (𝜆𝑘𝑜)
2𝑝{𝐻2(𝑛−𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛−𝑝+1)(𝜆𝐶2)}

2

+ 𝑘𝑜
2𝑝{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}[1 − {𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}]

−  2𝑘𝑜
2𝑝
𝜆𝑝{𝐻2(𝑛−𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛−𝑝+1)(𝜆𝐶2)}[1 − {𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}]

− 2(𝜆𝑘𝑜)
2𝑝
𝛤(𝑛 − 2𝑝 + 1)𝛤(𝑛 + 1)

𝛤2(𝑛 − 𝑝 + 1)
{𝐻2(𝑛−2𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛−2𝑝+1)(𝜆𝐶2)}

+ 2𝑘𝑜
2𝑝
𝜆𝑝{𝐻2(𝑛−𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛−𝑝+1)(𝜆𝐶2)} + 2(𝜆𝑘𝑜)

2𝑝{𝐻2(𝑛−𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛−𝑝+1)(𝜆𝐶2)}

− 2𝜆𝑝𝑘𝑜
2𝑝{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)} 

Thus the MSE can be simplified to be 

𝑀𝑆𝐸 (�̂�𝑈
𝑝𝑃𝑇
) = (𝜆𝑘𝑜)

2𝑝 [
𝛤(𝑛 − 2𝑝 + 1)𝛤(𝑛 + 1)

𝛤2(𝑛 − 𝑝 + 1)
− 1] − (𝜆𝑘𝑜)

2𝑝
𝛤(𝑛 − 2𝑝 + 1)𝛤(𝑛 + 1)

𝛤2(𝑛 − 𝑝 + 1)
{𝐻2(𝑛−2𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛−2𝑝+1)(𝜆𝐶2)}

+ (1 − 2𝜆𝑝)𝑘𝑜
2𝑝{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}           

+ 2(𝜆𝑘𝑜)
2𝑝{𝐻2(𝑛−𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛−𝑝+1)(𝜆𝐶2)}                                                                                                             (2.22) 

Next, the bias and MSE of PTE of 𝑘𝑝 based on MLE are 

𝐵𝑖𝑎𝑠 (�̂�𝑀𝐿
𝑝 𝑃𝑇

) = (𝜆𝑘𝑜(𝑛 + 1))
𝑝
𝛤(𝑛 − 𝑝 + 1)

𝛤(𝑛 + 1)
[1 − {𝐻2(𝑛−𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛−𝑝+1)(𝜆𝐶2)}] + 𝑘𝑜

𝑝{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}

− (𝜆𝑘𝑜)
𝑝                                                                                                                                                                                    (2.23) 

and 

𝑀𝑆𝐸 (�̂�𝑀𝐿
𝑝 𝑃𝑇

) = {(𝜆𝑘𝑜(𝑛 + 1))
𝑝
𝛤(𝑛 − 𝑝 + 1)

𝛤(𝑛 + 1)
}
2

[
𝛤(𝑛 − 2𝑝 + 1)𝛤(𝑛 + 1)

𝛤2(𝑛 − 𝑝 + 1)
− 1]

− (𝜆𝑘𝑜(𝑛 + 1)
2𝑝
𝛤(𝑛 − 2𝑝 + 1)

𝛤(𝑛 + 1)
{𝐻2(𝑛−2𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛+2𝑝+1)(𝜆𝐶2)}

− {(𝜆𝑘𝑜(𝑛 + 1))
𝑝
𝛤(𝑛 − 𝑝 + 1)

𝛤(𝑛 + 1)
}
2

{𝐻2(𝑛−𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛−𝑝+1)(𝜆𝐶2)}
2

+ 𝑘𝑜
2𝑝{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}[1 − {𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}]

+ 2 {(𝜆𝑘𝑜(𝑛 + 1))
𝑝
𝛤(𝑛 − 𝑝 + 1)

𝛤(𝑛 + 1)
}
2

{𝐻2(𝑛−𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛−𝑝+1)(𝜆𝐶2)}

+ 2𝑘𝑜
2𝑝 (𝜆(𝑛 + 1))𝑝

𝛤(𝑛 − 𝑝 + 1)

𝛤(𝑛 + 1)
{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}[{𝐻2(𝑛−𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛−𝑝+1)(𝜆𝐶2)} − 1]

+ [(𝜆𝑘𝑜(𝑛 + 1))
𝑝
𝛤(𝑛 − 𝑝 + 1)

𝛤(𝑛 + 1)
[1 − {𝐻2(𝑛−𝑝+1)(𝜆𝐶1) − 𝐻2(𝑛−𝑝+1)(𝜆𝐶2)}] + 𝑘𝑜

𝑝{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}

− (𝜆𝑘𝑜)
𝑝]
2

                                                                                                                                                                              (2.24) 



Before deriving bias and MSE for PTE based on EBE, for the sake of simplicity we define 

the following: 

𝜑1 = ∫ (𝑦 + �̂�𝑀𝐿)
−𝑝𝑦𝑛𝑒−𝑘𝑦𝑑𝑦 

∞

0
, 𝜑2 = ∫ (𝑦 + �̂�𝑀𝐿)

−2𝑝𝑦𝑛𝑒−𝑘𝑦𝑑𝑦  
∞

0
, 𝜑3 = ∫ (𝑦 + �̂�𝑀𝐿)

−𝑝𝑦𝑛𝑒−𝑘𝑦𝑑𝑦    

𝐶1
2𝑘𝑜
𝐶2
2𝑘𝑜

and  

𝜑4 = ∫ (𝑦 + �̂�𝑀𝐿)
−2𝑝𝑦𝑛𝑒−𝑘𝑦𝑑𝑦    

𝐶1
2𝑘𝑜

𝐶2
2𝑘𝑜

 

Therefore, we have the bias and MSE of PTE of 𝑘𝑝 based on EBE as 

𝐵𝑖𝑎𝑠 (�̂�𝐸𝐵
𝑝 𝑃𝑇

) =
𝛤(𝑛 + �̂�𝑀𝐿 + 𝑝 + 1)(𝜆𝑘𝑜)

𝑛+1

𝛤(𝑛 + �̂�𝑀𝐿 + 1)𝛤(𝑛 + 1)
(𝜑1 −𝜑3) + 𝑘𝑜

𝑝{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)} − (𝜆𝑘𝑜)
𝑝                                                        (2.25) 

and 

𝑀𝑆𝐸 (�̂�𝐸𝐵
𝑝 𝑃𝑇

) = {
𝛤(𝑛 + �̂�𝑀𝐿 + 𝑝 + 1)

𝛤(𝑛 + �̂�𝑀𝐿 + 1)
}

2
(𝜆𝑘𝑜)

𝑛+1(𝜑2 − 𝜑4)

𝛤(𝑛 + 1)
− [
𝛤(𝑛 + �̂�𝑀𝐿 + 𝑝 + 1)(𝜆𝑘𝑜)

𝑛+1

𝛤(𝑛 + �̂�𝑀𝐿 + 1)𝛤(𝑛 + 1)
]

2

(𝜑1 − 𝜑3)
2

+ 𝑘𝑜
2𝑝{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}[1 − {𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}]

+ 2𝑘𝑜
𝑝
 
𝛤(𝑛 + �̂�𝑀𝐿 + 𝑝 + 1)(𝜆𝑘𝑜)

𝑛+1

𝛤(𝑛 + �̂�𝑀𝐿 + 1)𝛤(𝑛 + 1)
(𝜑3 −𝜑1){𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}

+ [
𝛤(𝑛 + �̂�𝑀𝐿 + 𝑝 + 1)(𝜆𝑘𝑜)

𝑛+1

𝛤(𝑛 + �̂�𝑀𝐿 + 1)𝛤(𝑛 + 1)
(𝜑1 −𝜑3) + 𝑘𝑜

𝑝{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}

− (𝜆𝑘𝑜)
𝑝]

2

                                                                                                                                                                                (2.26) 

Next, the bias and MSE of PTE of 𝑘𝑝 based on MRE are 

𝐵𝑖𝑎𝑠(�̂�𝑀𝑅
𝑃𝑇 ) =

(𝑛 − 1)𝜆𝑘𝑜
𝑛

[1 − {𝐻2𝑛(𝜆𝐶1) − 𝐻2𝑛(𝜆𝐶2)}] + 𝑘𝑜{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}

− 𝜆𝑘𝑜                                                                                                                                                                                              (2.27) 

and 

𝑀𝑆𝐸(�̂�𝑀𝑅
𝑃𝑇 ) =

(𝜆𝑘𝑜)
2(𝑛 − 1)

𝑛2
−
(𝜆𝑘𝑜)

2(𝑛 − 1)

𝑛
{𝐻2𝑛−2(𝜆𝐶1) − 𝐻2𝑛−2(𝜆𝐶2)}

+ 𝑘𝑜
2{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}[1 − {𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}] −

(𝜆𝑘𝑜)
2(𝑛 − 1)2

𝑛2
{𝐻2𝑛(𝜆𝐶1) − 𝐻2𝑛(𝜆𝐶2)}

2

+
2𝜆𝑘𝑜

2(𝑛 − 1)

𝑛
{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}[1 + {𝐻2𝑛(𝜆𝐶1) − 𝐻2𝑛(𝜆𝐶2)}]

−
2(𝜆𝑘𝑜)

2(𝑛 − 1)2

𝑛2
{𝐻2𝑛(𝜆𝐶1) − 𝐻2𝑛(𝜆𝐶2)}

+ [
(𝑛 − 1)𝜆𝑘𝑜

𝑛
[1 − {𝐻2𝑛(𝜆𝐶1) − 𝐻2𝑛(𝜆𝐶2)}] + 𝑘𝑜{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}

− 𝜆𝑘𝑜]

2

                                                                                                                                                                                     (2.28) 

Now, we derive bias and MSE expressions of PTES of 𝑅(𝑡) based on MLE and UMVUE. 

For sake of simplicity, we define the following: 

𝜑5 = ∫
𝑧𝑛

𝑛!
𝑒𝑥𝑝 (− (𝑧 +

𝑘(𝑛+1)𝑈(𝑡)

𝑧
))

𝐶1
2⁄

𝐶2
2⁄

𝑑𝑧 and 𝜑6 = ∫
𝑧𝑛

𝑛!
𝑒𝑥𝑝 (− (𝑧 +

2𝑘(𝑛+1)𝑈(𝑡)

𝑧
))

𝐶1
2⁄

𝐶2
2⁄

𝑑𝑧 

Then the bias of PTE of 𝑅(𝑡) based on MLE can be derived as follows. We have 

𝐵𝑖𝑎𝑠(�̂�(𝑡)𝑃𝑇) =
1

𝛤(𝑛 + 1)
∫ 𝑒𝑥𝑝 [− {𝑦 +

𝑘(𝑛 + 1)𝑈(𝑡)

𝑦
}] 𝑦𝑛𝑑𝑦 − 𝜑5 + 𝑅𝑜(𝑡){𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)} − 𝑅(𝑡)     

∞

0

 



Applying a result of Watson (1952) given by  ∫ 𝑢−𝑚
∞

0
𝑒𝑥𝑝 {− (𝑎𝑢 +

𝑏

𝑢
)} 𝑑𝑢 = 2 (

𝑎

𝑏
)

𝑚−1

2
𝐾𝑚−1(2√𝑎𝑏) 

[it is to be noted that 𝐾−𝑚(∙) = 𝐾𝑚(∙) for 𝑚 = 0,1,2, … ], we get 

𝐵𝑖𝑎𝑠(�̂�(𝑡)𝑃𝑇) =
2

𝑛!
{𝑘(𝑛 + 1)𝑈(𝑡)}

𝑛+1
2 𝐾𝑛+1 (2√𝑘(𝑛 + 1)𝑈(𝑡)) − 𝜑5 + 𝑅𝑜(𝑡){𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}

− 𝑅(𝑡)                                                                                                                                                                                             (2.29) 

Following which the MSE of PTE of 𝑅(𝑡) based on MLE is obtained as 

𝑀𝑆𝐸(�̂�(𝑡)𝑃𝑇) =
2

𝑛!
{2𝑘(𝑛 + 1)𝑈(𝑡)}

𝑛+1
2 𝐾𝑛+1 (2√2𝑘(𝑛 + 1)𝑈(𝑡)) − [

2

𝑛!
{𝑘(𝑛 + 1)𝑈(𝑡)}

𝑛+1
2 𝐾𝑛+1 (2√𝑘(𝑛 + 1)𝑈(𝑡))]

2

−𝜑6 − 𝜑5
2

+ (𝑅𝑜(𝑡))
2
{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}{1 − {𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}}

+
4

𝑛!
{𝑘(𝑛 + 1)𝑈(𝑡)}

𝑛+1
2 𝐾𝑛+1 (2√𝑘(𝑛 + 1)𝑈(𝑡))𝜑5

+ 2𝑅𝑜(𝑡){𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)} (𝜑5 −
2

𝑛!
{𝑘(𝑛 + 1)𝑈(𝑡)}

𝑛+1
2 𝐾𝑛+1 (2√𝑘(𝑛 + 1)𝑈(𝑡)))

+ [
2

𝑛!
{𝑘(𝑛 + 1)𝑈(𝑡)}

𝑛+1
2 𝐾𝑛+1 (2√𝑘(𝑛 + 1)𝑈(𝑡)) − 𝜑5 + 𝑅𝑜(𝑡){𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}

− 𝑅(𝑡)]
2

                                                                                                                                                                                         (2.30) 

Denoting by 

𝜑7 = ∫ (1 −
2𝑘𝑈(𝑡)

𝑢
)
𝑛 𝑢𝑛𝑒

−𝑢
2

2𝑛+1𝑛!
𝑑𝑢       

𝐶1
𝐶2

and  𝜑8 = ∫ (1 −
2𝑘𝑈(𝑡)

𝑢
)
2𝑛 𝑢𝑛𝑒

−𝑢
2

2𝑛+1𝑛!
𝑑𝑢       

𝐶1
𝐶2

 

The bias of 𝑅(𝑡) based on UMVUE can be obtained as follows. We have 

𝐵𝑖𝑎𝑠(�̃�(𝑡)𝑃𝑇) = 𝑅𝑜(𝑡){𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)} − 𝜑7                                                                                                                                          (2.31) 

From Chaturvedi and Malhotra (2017), 

𝑉𝑎𝑟{�̃�(𝑡)} =
1

𝑛!
{𝑘𝑈(𝑡)}(𝑛+1)𝑒𝑥𝑝{−𝑘𝑈(𝑡)} [

 𝑎𝑛
𝑘𝑈(𝑡)

− 𝑎𝑛−1𝑒𝑥𝑝{𝑘𝑈(𝑡)}𝐸𝑖(−𝑘𝑈(𝑡))

+∑𝑎𝑖 { ∑
(𝑚 − 1)!

(𝑛 − 𝑖 − 1)!

𝑛−𝑖−1

𝑚=1

(−𝑘𝑈(𝑡))𝑛−𝑖−𝑚−1 −
1

(𝑛 − 𝑖 − 1)!
(−𝑘𝑈(𝑡))𝑛−𝑖−1𝑒𝑥𝑝(𝑘𝑈(𝑡))𝐸𝑖(−𝑘𝑈(𝑡))}

𝑛−2

𝑖=0

+ ∑ 𝑎𝑖(𝑖 − 𝑛)! (
1

𝑘𝑈(𝑡)
)

2𝑛

𝑖=𝑛+1

𝑖−𝑛+1

∑
1

𝑟!

𝑖−𝑛

𝑟=0

(𝑘𝑈(𝑡))𝑟] − 𝑒𝑥𝑝{−2𝑘𝑈(𝑡)} 

where 𝑎𝑖 = (−1)𝑖(2𝑛𝑖 ) and −𝐸𝑖(−𝑥) = ∫
𝑒−𝑢

𝑢

∞

𝑥
𝑑𝑢. 

Thus the MSE of 𝑅(𝑡) based on UMVUE is 

𝑀𝑆𝐸(�̃�(𝑡)𝑃𝑇) =
1

𝑛!
{𝑘𝑈(𝑡)}(𝑛+1)𝑒𝑥𝑝{−𝑘𝑈(𝑡)} [

 𝑎𝑛
𝑘𝑈(𝑡)

− 𝑎𝑛−1𝑒𝑥𝑝{𝑘𝑈(𝑡)}𝐸𝑖(−𝑘𝑈(𝑡))

+∑𝑎𝑖 { ∑
(𝑚 − 1)!

(𝑛 − 𝑖 − 1)!

𝑛−𝑖−1

𝑚=1

(−𝑘𝑈(𝑡))𝑛−𝑖−𝑚−1 −
1

(𝑛 − 𝑖 − 1)!
(−𝑘𝑈(𝑡))𝑛−𝑖−1𝑒𝑥𝑝(𝑘𝑈(𝑡))𝐸𝑖(−𝑘𝑈(𝑡))}

𝑛−2

𝑖=0

+ ∑ 𝑎𝑖(𝑖 − 𝑛)! (
1

𝑘𝑈(𝑡)
)

2𝑛

𝑖=𝑛+1

𝑖−𝑛+1

∑
1

𝑟!

𝑖−𝑛

𝑟=0

(𝑘𝑈(𝑡))𝑟] − 𝑒𝑥𝑝{−2𝑘𝑈(𝑡)} − 𝜑8 + (𝑅𝑜(𝑡))
2
{𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}

+ 2𝜑7𝑅(𝑡) − 2𝑅(𝑡)𝑅𝑜(𝑡){𝐻2𝑛+2(𝜆𝐶1) − 𝐻2𝑛+2(𝜆𝐶2)}                                                                                                   (2.32) 

Now, we derive bias and MSE expressions of PTES of 𝑃 based on MLE. We have  

𝐵𝑖𝑎𝑠(�̂�𝑃𝑇) = 𝐸(�̂�) − 𝐸(�̂�𝐼(𝐵)) + 𝑃𝑜𝐸(𝐼(𝐵)) − 𝑃 



where 𝐸(𝐼(𝐵)) = 𝑃(𝐵) = 𝑃(𝐶4 < 𝐹2(𝑛+1),2(𝑚+1) < 𝐶3) and 𝐸(�̂�) = 𝐸 (
𝑘2̂

𝑘1̂+𝑘2̂
) = 𝐸(�̂�), (say). Following 

the approach by Constantine et al. (1986), we obtain the 𝑝𝑑𝑓 of �̂� by transformation into two 

new independent 𝑟𝑣𝑠 𝑟 > 0 and 𝛽 ∈ (0,
𝜋

2
) where 𝑘1̂ = 𝑘1𝑟 (𝑛 + 1)𝑐𝑜𝑠

2𝛽 and 𝑘2̂ = 𝑘2𝑟 (𝑚 +

1)𝑠𝑖𝑛2𝛽. Putting 𝜑 = 𝑐𝑜𝑠2𝛽, the 𝑝𝑑𝑓of �̂� = [1 + 𝜌 (
𝑛+1

𝑚+1
) (

𝜑

1−𝜑
)]
−1

 is 

𝑔(𝑞) =
1

𝛽(𝑛 + 1,𝑚 + 1)
(𝜌 (

𝑛 + 1

𝑚 + 1
))

𝑛+1
𝑞𝑛(1 − 𝑞)𝑚

(1 + 𝜀𝑞)𝑛+𝑚+2
; 0 < 𝑞 < 1, 𝜀 = 𝜌 (

𝑛 + 1

𝑚 + 1
) − 1                                                                             (2.33) 

When 𝜀 = 0, (2.33) gives 

𝐸(�̂�𝑙) =
𝛽(𝑛 + 𝑙 + 1,𝑚 + 1)

𝛽(𝑛 + 1,𝑚 + 1)
                                                                                                                                                                                         (2.34) 

When 𝜀 ≠ 0, (2.33) yields on substituting  1 + 𝜀𝑞 = 𝑡, 

𝐸(�̂�𝑙) =
1

𝛽(𝑛 + 1,𝑚 + 1)
(𝜌 (

𝑛 + 1

𝑚 + 1
))

𝑛+1
1

𝜀𝑛+𝑚+𝑙−1
∫ (𝑡 − 1)𝑛+𝑙(1 + 𝜀 − 𝑡)𝑚
1+𝜀

1

𝑡−(𝑛+𝑚+2)𝑑𝑡                                                                      (2.35) 

 

Thus, for 𝜑10 =
1

𝛽(𝑛+1,𝑚+1)
(𝜌 (

𝑛+1

𝑚+1
))
𝑛+1

1

𝜀𝑛+𝑚
∫ (𝑡 − 1)𝑛+1(1 + 𝜀 − 𝑡)𝑚
1+𝜀

1
𝑡−(𝑛+𝑚+2)𝑑𝑡   

𝐸(�̂�) = {
  
𝑛 + 1

𝑛 + 𝑚 + 2
;  𝜀 = 0

       𝜑10 ; 𝜀 ≠ 0
 

Also, 𝐸(�̂�𝐼(𝐵)) = ∫ (
1

1+
𝑘1
𝑘2𝐹

)𝛷1(𝐹)𝑑𝐹
𝐶3
𝐶4

= 𝜑9 where 𝛷1(∙) is the 𝑝𝑑𝑓 of 𝐹 − distribution with 

(2(𝑛 + 1), 2(𝑚 + 1)) degrees of freedom. Then the bias and MSE of PTE of 𝑃 based on 

MLE are obtained as 

𝐵𝑖𝑎𝑠(�̂�𝑃𝑇) = {
                      𝑃𝑜𝑃(𝐵) − 𝜑9;  𝜀 = 0
𝜑10 − 𝜑9 + 𝑃𝑜𝑃(𝐵) − 𝑃; 𝜀 ≠ 0

 

and 

𝑀𝑆𝐸(�̂�𝑃𝑇) =

{
 
 

 
 
(
𝑛 + 1

𝑛 +𝑚 + 2
)
2

[(
𝑛 + 2

𝑛 + 1
) (
𝑛 +𝑚 + 2

𝑛 +𝑚 + 3
) − 1] − 𝜑11 + 2(

𝑛 + 1

𝑛 +𝑚 + 2
) (𝜑9 − 𝑃𝑜𝑃(𝐵)) + 𝑃𝑜

2𝑃(𝐵); 𝜀 = 0

 𝜑12 −𝜑11 + 𝑃𝑜
2𝑃(𝐵) + (

𝑛 + 1

𝑛 +𝑚 + 2
)
2

+ 2(
𝑛 + 1

𝑛 +𝑚 + 2
) (𝜑9 − 𝜑10) − 2 (

𝑛 + 1

𝑛 +𝑚 + 2
)𝑃𝑜𝑃(𝐵); 𝜀 ≠ 0

 

where 𝜑11 = ∫ (
1

1+
𝑘1
𝑘2𝐹

)

2

𝛷1(𝐹)𝑑𝐹
𝐶3
𝐶4

 and  𝜑12 =
1

𝛽(𝑛+1,𝑚+1)
(𝜌 (

𝑛+1

𝑚+1
))
𝑛+1

1

𝜀𝑛+𝑚+1
∫ (𝑡 − 1)𝑛+2(1 + 𝜀 −
1+𝜀

1

𝑡)𝑚 𝑡−(𝑛+𝑚+2)𝑑𝑡 

Finally, we obtain the bias of PTE of 𝑃 based on UMVUE as 

𝐵𝑖𝑎𝑠(�̃�𝑃𝑇) = {
𝑃𝑜𝑃(𝐵) − 𝜑13; 𝑣 ≤ 1

𝑃𝑜𝑃(𝐵) − 𝜑14; 𝑣 > 1
  

where 𝑣 =
𝑈(𝑅𝑛)

𝑈(𝑅𝑚
∗ )

, 𝜑13 = ∑
(−1)𝑖𝑚!𝑛!

(𝑚−𝑖−1)!(𝑛+𝑖+1)!𝛽(𝑛+1,𝑚+1)
(
𝑘2

𝑘1
)
𝑖+1

∫
𝑧𝑛+𝑖+1

(1+𝑧)𝑛+𝑚+2
𝑑𝑧

𝐶3
′

𝐶4
′

𝑚−1
𝑖=0  and  

𝜑14 = ∑
(−1)𝑖𝑛!𝑚!

(𝑛−𝑖)!(𝑚+𝑖)!𝛽(𝑛+1,𝑚+1)

𝑛
𝑖=0 (

𝑘1

𝑘2
)
𝑖

∫
𝑧𝑛−𝑖

(1+𝑧)𝑛+𝑚+2
𝑑𝑧

𝐶3
′

𝐶4
′ , 𝐶3

′ = (
𝑛+1

𝑚+1
)𝐶3 and 𝐶4

′ = (
𝑛+1

𝑚+1
)𝐶4. 

To obtain the MSE of PTE of 𝑃 based on UMVUE, consider 

𝐸(�̃�2) = 𝐸 (∑ ∑ 𝑎𝑖𝑎𝑗(𝑣)
𝑖+𝑗+2

𝑚−1

𝑗=0

𝑚−1

𝑖=0

| 𝑣 ≤ 1)𝑃(𝑣 ≤ 1) + 𝐸(∑∑𝑏𝑖𝑏𝑗(𝑣)
−(𝑖+𝑗)

𝑛

𝑗=0

𝑛

𝑖=0

| 𝑣 > 1)𝑃(𝑣 > 1) 



where, 𝑎𝑖 =
(−1)𝑖𝑚!𝑛!

(𝑚−𝑖−1)!(𝑛+𝑖+1)!
, 𝑏𝑖 =

(−1)𝑖𝑛!𝑚!

(𝑛−𝑖)!(𝑚+𝑖)!
. An explicit expression of 𝑉𝑎𝑟(�̃�) depends on the 

evaluation of 𝐸(𝑣𝑙|𝑣 ≤ 1)𝑃(𝑣 ≤ 1) and 𝐸(𝑣−𝑙|𝑣 > 1)𝑃(𝑣 > 1) for 𝑙 ≥ 0. To evaluate them we first 

obtain the 𝑝𝑑𝑓 of  𝑣. We have, 𝑣 =
𝑈(𝑅𝑛)

𝑈(𝑅𝑚
∗ )

  which implies, 
(𝑚+1)𝑘1

(𝑛+1)𝑘2
𝑣 = 𝜌

(𝑚+1)

(𝑛+1)
𝑣~𝐹2(𝑛+1),2(𝑚+1). Thus 

we obtain the 𝑝𝑑𝑓of 𝑣 as 

ℎ(𝑣) =
𝜌𝑛+1

𝛽(𝑛 + 1,𝑚 + 1)
𝑣𝑛(1 + 𝜌𝑣)−𝑛−𝑚−2;  𝑣 > 0 

For 𝑙 > 0,  

𝐸(𝑣𝑙|𝑣 ≤ 1)𝑃(𝑣 ≤ 1) = ∫
𝜌𝑛+1

𝛽(𝑛 + 1,𝑚 + 1)
𝑣𝑛+𝑙(1 + 𝜌𝑣)−𝑛−𝑚−2

1

0

𝑑𝑣. 

Substituting 𝑟 = (1 + 𝜌𝑣)−1,  the binomial expansion of the integrand yields, 

𝐸(𝑣𝑙|𝑣 ≤ 1)𝑃(𝑣 ≤ 1) =
𝜌−𝑙

𝛽(𝑛 + 1,𝑚 + 1)
∑(−1)𝑖 (

𝑛 + 𝑙

𝑖
) ∫𝑟𝑚−𝑙+𝑖𝑑𝑟

1

𝜌′

𝑛+𝑙

𝑖=0

 

where ∫ 𝑟𝑚−𝑙+𝑖𝑑𝑟
1

𝜌′
= {

1−(𝜌′)
𝑚−𝑙+𝑖+1

𝑚−𝑙+𝑘+1
; 𝑖 ≠ 𝑙 − 𝑚 − 1

   −𝑙𝑜𝑔(𝜌′); 𝑖 = 𝑙 − 𝑚 − 1
 and 𝜌′ =

1

1+𝜌
. Similarly we can obtain, 

𝐸(𝑣−𝑙|𝑣 > 1)𝑃(𝑣 > 1) =
𝜌𝑙

𝛽(𝑛 + 1,𝑚 + 1)
∑(−1)𝑖 (

𝑚 + 𝑙

𝑖
) ∫ 𝑟𝑛−𝑙+𝑖𝑑𝑟

1

1−𝜌′

𝑚+𝑙

𝑖=0

 

where ∫ 𝑟𝑛−𝑙+𝑖𝑑𝑟
1

1−𝜌′
= {

1−(1−𝜌′)𝑛−𝑙+𝑖+1

𝑛−𝑙+𝑘+1
; 𝑖 ≠ 𝑙 − 𝑛 − 1

   −𝑙𝑜𝑔(1 − 𝜌′); 𝑖 = 𝑙 − 𝑛 − 1
. Thus, 𝑉𝑎𝑟(�̃�) = 𝜑15 − 𝑃

2, where 

𝜑15 = ∑ ∑
𝑎𝑖𝑎𝑗𝜌

−(𝑖+𝑗+2)

𝛽(𝑛 + 1,𝑚 + 1)
∑ (−1)𝑝 (

𝑛 + 𝑖 + 𝑗 + 2

𝑝
)

𝑛+𝑖+𝑗+2

𝑝=0

𝑚−1

𝑗=0

𝑚−1

𝑖=0

∫𝑟𝑚+𝑝−𝑖−𝑗−2𝑑𝑟 

1

𝜌′

 

+∑∑
𝑏𝑖𝑏𝑗𝜌

𝑖+𝑗

𝛽(𝑛 + 1,𝑚 + 1)
∑ (−1)𝑝 (

𝑚 + 𝑖 + 𝑗

𝑝
)

𝑚+𝑖+𝑗

𝑝=0

𝑛

𝑗=0

𝑛

𝑖=0

∫ 𝑟𝑛+𝑝−𝑖−𝑗𝑑𝑟

1

1−𝜌′

 

and 𝑉𝑎𝑟(�̃�𝐼(𝐵)) = {
𝜑16 − 𝜑13

2 ; 𝑣 ≤ 1

𝜑17 − 𝜑14
2 ; 𝑣 > 1

, where 𝜑16 = ∑ ∑ 𝑎𝑖𝑎𝑗 ∫ 𝜈𝑖+𝑗+2𝛷1(𝐹)𝑑𝐹
𝐶3
𝐶4

𝑚−1
𝑗=0

𝑚−1
𝑖=0  and 𝜑17 =

∑ ∑ 𝑏𝑖𝑏𝑗 (
𝜃2(𝑚+1)

𝜃1(𝑛+1)
)
𝑖+𝑗

∫ 𝜈𝑖+𝑗𝛷1(𝐹)𝑑𝐹
𝐶3
𝐶4

𝑛
𝑗=0

𝑛
𝑖=0 . Thus the MSE of PTE of 𝑃 based on UMVUE is 

obtained as 

𝑀𝑆𝐸(�̃�𝑃𝑇) = {
𝜑15 − 𝑃

2 −𝜑16 + 2𝑃(𝜑13 − 𝑃𝑜𝑃(𝐵)) + 𝑃𝑜
2𝑃(𝐵); 𝑣 ≤ 1

𝜑15 − 𝑃
2 −𝜑17 + 2𝑃(𝜑14 − 𝑃𝑜𝑃(𝐵)) + 𝑃𝑜

2𝑃(𝐵); 𝑣 > 1
 

 Comparing the performance of the proposed PTES analytically is a complicated task 

because of their formulations. Therefore several figures as well as some numerical results are 

presented to discuss their performance. The relative efficiency of PTE of some parameter 𝜏  

denoted by �̂�𝛿
𝑃𝑇 over its regular estimator �̂�𝛿 is defined as follows: 

𝑒(�̂�𝛿
𝑃𝑇 , �̂�𝛿) =

𝑀𝑆𝐸( �̂�𝛿)

𝑀𝑆𝐸(�̂�𝛿
𝑃𝑇)

 

where 𝛿 ∈ {𝑈,𝑀𝐿,𝑀𝑅, 𝐸𝐵}. 

 



2.2 Proposed PTCI for parameter 𝒌 

 In this section, we construct preliminary test confidence interval (PTCI) of the 

parameter 𝑘. Suppose for known value of the other parameters 𝑐 and 𝛼, we are interested in 

testing the hypothesis 

𝐻𝑜: 𝑘 = 𝑘𝑜 

𝐻1: 𝑘 ≠ 𝑘𝑜 

Since 𝑈(𝑅𝑛) follows gamma distribution with parameters (𝑛 + 1, 𝑘), it is easy to obtain the 

100(1 − 𝜀)% equal tail confidence interval (ETCI) of 𝑘 as 

𝐼𝐸𝑇𝐶𝐼 = [
𝜒2(𝑛+1)
2 (

𝜀
2)

2𝑈(𝑅𝑛)
,
𝜒2(𝑛+1)
2 (1 −

𝜀
2)

2𝑈(𝑅𝑛)
] 

From equation (2.3), we obtain the MRE of 𝑘 as �̂�𝑀𝑅 =
(𝑛−1)

𝑈(𝑅𝑛)
. Then we can re-write 𝐼𝐸𝑇𝐶𝐼  

based on MRE of 𝑘 as 

𝐼𝑀𝑅
𝐸𝑇𝐶𝐼 = [𝐶5�̂�𝑀𝑅 , 𝐶6�̂�𝑀𝑅] 

where 𝐶5 =
𝜒2(𝑛+1)
2 (

𝜀

2
)

2(𝑛−1)
 and 𝐶6 =

𝜒2(𝑛+1)
2 (1−

𝜀

2
)

2(𝑛−1)
. 

Accordingly, we can define PTCI of 𝑘 based MRE of 𝑘 as 

𝐼𝑀𝑅
𝑃𝑇𝐶𝐼 = [𝐶5�̂�𝑀𝑅

𝑃𝑇 , 𝐶6�̂�𝑀𝑅
𝑃𝑇 ] 

If we let 𝜆 =
𝑘

𝑘𝑜
 and 𝑇 = 2𝑘𝑈(𝑅𝑛), then the coverage probability (CP) of PTCI  of 𝑘 based 

on MRE of 𝑘 is defined as 

𝑃(𝑘 ∈ 𝐼𝑀𝑅
𝑃𝑇𝐶𝐼) = 𝑃 (𝑘 ∈ (𝑐5𝑘𝑜, 𝑐6𝑘𝑜): 𝜒2(𝑛+1)

2 (
𝜀

2
) < 2𝑘𝑈(𝑅𝑛) < 𝜒2(𝑛+1)

2 (1 −
𝜀

2
)) +  𝑃 (𝑘 ∈ (𝑐5�̂�𝑀𝑅, 𝑐6�̂�𝑀𝑅): 2𝑘𝑈(𝑅𝑛) < 𝜒2(𝑛+1)

2 (
𝜀

2
))

+  𝑃 (𝑘 ∈ (𝑐5�̂�𝑀𝑅, 𝑐6�̂�𝑀𝑅): 2𝑘𝑈(𝑅𝑛) > 𝜒2(𝑛+1)
2 (1 −

𝜀

2
)) 

                       = 𝑃 ((𝑐5 < 𝜆 < 𝑐6): 𝜆𝜒2(𝑛+1)
2 (

𝜀

2
) < 𝑇 < 𝜆𝜒2(𝑛+1)

2 (1 −
𝜀

2
)) +  𝑃 (𝜒2(𝑛+1)

2 (
𝜀

2
) < 𝑇 < 𝜒2(𝑛+1)

2 (1 −
𝜀

2
) , 𝑇 < 𝜆𝜒2(𝑛+1)

2 (
𝜀

2
)) 

+ 𝑃 (𝜒2(𝑛+1)
2 (

𝜀

2
) < 𝑇 < 𝜒2(𝑛+1)

2 (1 −
𝜀

2
) , 𝑇 > 𝜆𝜒2(𝑛+1)

2 (1 −
𝜀

2
)) 

                = 𝑃 (𝜆𝜒2(𝑛+1)
2 (

𝜀

2
) < 𝑇 < 𝜆𝜒2(𝑛+1)

2 (1 −
𝜀

2
)) 𝐼(𝑐5,𝑐6)(𝜆) +  𝑃 (𝜒2(𝑛+1)

2 (
𝜀

2
) < 𝑇 < 𝑚𝑖𝑛 {𝜒2(𝑛+1)

2 (1 −
𝜀

2
) , 𝜆𝜒2(𝑛+1)

2 (
𝜀

2
)})

+  𝑃 (𝑚𝑎𝑥 {𝜒2(𝑛+1)
2 (

𝜀

2
) , 𝜆𝜒2(𝑛+1)

2 (1 −
𝜀

2
)} < 𝑇 < 𝜒2(𝑛+1)

2 (1 −
𝜀

2
)) 

Denoting the first term of the above equation by 𝐶, then we obtain the CP of  PTCI based on 

MRE of 𝑘 as 



𝑃(𝑘 ∈ 𝐼𝑀𝑅
𝑃𝑇𝐶𝐼) =

{
 
 
 
 

 
 
 
 

𝐶 + 1 − 𝜀 ; 0 < 𝜆 ≤
𝜒2(𝑛+1)
2 (

𝜀
2
)

𝜒2(𝑛+1)
2 (1 −

𝜀
2
)
 𝑜𝑟 𝜆 >

𝜒2(𝑛+1)
2 (1 −

𝜀
2
)

𝜒2(𝑛+1)
2 (

𝜀
2
)

𝐶 + 𝑃 (𝜆𝜒2(𝑛+1)
2 (1 −

𝜀

2
) < 𝑇 < 𝜒2(𝑛+1)

2 (1 −
𝜀

2
)) ; 

𝜒2(𝑛+1)
2 (

𝜀
2
)

𝜒2(𝑛+1)
2 (1 −

𝜀
2
)
< 𝜆 ≤ 1

𝐶 +  𝑃 (𝜒2(𝑛+1)
2 (

𝜀

2
) < 𝑇 < 𝜆𝜒2(𝑛+1)

2 (
𝜀

2
)) ; 1 < 𝜆 ≤

𝜒2(𝑛+1)
2 (1 −

𝜀
2
)

𝜒2(𝑛+1)
2 (

𝜀
2
)

 

In order to find the expected length of PTCI of 𝑘, we first obtain the length of PTCI based on 

MRE of 𝑘 which is given by the following 𝑟𝑣: 

𝐿𝑀𝑅
𝑃𝑇𝐶𝐼 = {

𝑘𝑜(𝑐6 − 𝑐5) ; 𝜒2(𝑛+1)
2 (

𝜀

2
) < 2𝑘𝑜𝑈(𝑅𝑛) < 𝜒2(𝑛+1)

2 (1 −
𝜀

2
) 

�̂�𝑀𝑅(𝑐6 − 𝑐5) ;  2𝑘𝑜𝑈(𝑅𝑛) < 𝜒2(𝑛+1)
2 (

𝜀

2
)  𝑜𝑟 2𝑘𝑜𝑈(𝑅𝑛) > 𝜒2(𝑛+1)

2 (1 −
𝜀

2
)
 

Then the expected length (EL) of the PTCI of 𝑘 based on MRE of 𝑘 is given by 

𝐸(𝐿𝑀𝑅
𝑃𝑇𝐶𝐼) = 𝐸 (𝐿𝑀𝑅

𝑃𝑇𝐶𝐼|𝜒2(𝑛+1)
2 (

𝜀

2
) < 2𝑘𝑜𝑈(𝑅𝑛) < 𝜒2(𝑛+1)

2 (1 −
𝜀

2
))𝑃 (𝜒2(𝑛+1)

2 (
𝜀

2
) < 2𝑘𝑜𝑈(𝑅𝑛) < 𝜒2(𝑛+1)

2 (1 −
𝜀

2
)) 

             +𝐸 (𝐿𝑀𝑅
𝑃𝑇𝐶𝐼|2𝑘𝑜𝑈(𝑅𝑛) < 𝜒2(𝑛+1)

2 (
𝜀

2
)  𝑜𝑟 2𝑘𝑜𝑈(𝑅𝑛) > 𝜒2(𝑛+1)

2 (1 −
𝜀

2
))𝑃 (2𝑘𝑜𝑈(𝑅𝑛) < 𝜒2(𝑛+1)

2 (
𝜀

2
)  𝑜𝑟 2𝑘𝑜𝑈(𝑅𝑛)

> 𝜒2(𝑛+1)
2 (1 −

𝜀

2
)) 

               = 𝑘𝑜(𝑐6 − 𝑐5) [𝐻2𝑛+2 (𝜆𝜒2(𝑛+1)
2 (1 −

𝜀

2
)) − 𝐻2𝑛+2 (𝜆𝜒2(𝑛+1)

2 (
𝜀

2
)) + 𝜆 {𝐻2𝑛−2 (𝜆𝜒2(𝑛+1)

2 (
𝜀

2
)) + 1 − 𝐻2𝑛−2 (𝜆𝜒2(𝑛+1)

2 (1 −
𝜀

2
))}] 

On similar lines, we can obtain the CP of PTCI of 𝑘 based on UMVUE as 

𝑃(𝑘 ∈ 𝐼𝑈
𝑃𝑇𝐶𝐼) =

{
 
 
 
 

 
 
 
 

𝐷 + 1− 𝜀 ; 0 < 𝜆 ≤
𝜒2(𝑛+1)
2 (

𝜀
2
)

𝜒2(𝑛+1)
2 (1 −

𝜀
2
)
 𝑜𝑟 𝜆 >

𝜒2(𝑛+1)
2 (1 −

𝜀
2
)

𝜒2(𝑛+1)
2 (

𝜀
2
)

𝐷 + 𝑃 (𝜆𝜒2(𝑛+1)
2 (1 −

𝜀

2
) < 𝑇 < 𝜒2(𝑛+1)

2 (1 −
𝜀

2
)) ; 

𝜒2(𝑛+1)
2 (

𝜀
2
)

𝜒2(𝑛+1)
2 (1 −

𝜀
2
)
< 𝜆 ≤ 1

𝐷 +  𝑃 (𝜒2(𝑛+1)
2 (

𝜀

2
) < 𝑇 < 𝜆𝜒2(𝑛+1)

2 (
𝜀

2
)) ; 1 < 𝜆 ≤

𝜒2(𝑛+1)
2 (1 −

𝜀
2
)

𝜒2(𝑛+1)
2 (

𝜀
2
)

 

where 𝐷 = 𝑃 (𝜆𝜒2(𝑛+1)
2 (

𝜀

2
) < 𝑇 < 𝜆𝜒2(𝑛+1)

2 (1 −
𝜀

2
)) 𝐼(𝑐5,𝑐6)(𝜆) and the EL of the PTCI of 𝑘 based on 

UMVUE of 𝑘 as 

𝐸(𝐿𝑈
𝑃𝑇𝐶𝐼) = 𝑘𝑜(𝑐6 − 𝑐5) [𝐻2𝑛+2 (𝜆𝜒2(𝑛+1)

2 (1 −
𝜀

2
)) − 𝐻2𝑛+2 (𝜆𝜒2(𝑛+1)

2 (
𝜀

2
))

+
𝜆𝑛

𝑛 − 1
{𝐻2𝑛−2 (𝜆𝜒2(𝑛+1)

2 (
𝜀

2
)) + 1 − 𝐻2𝑛−2 (𝜆𝜒2(𝑛+1)

2 (1 −
𝜀

2
))}] 

Finally, we obtain the CP of PTCI  of 𝑘 based on MLE of 𝑘 is defined as 

𝑃(𝑘 ∈ 𝐼𝑀𝐿
𝑃𝑇𝐶𝐼) =

{
 
 
 
 

 
 
 
 

𝐸 + 1 − 𝜀 ; 0 < 𝜆 ≤
𝜒2(𝑛+1)
2 (

𝜀
2
)

𝜒2(𝑛+1)
2 (1 −

𝜀
2
)
 𝑜𝑟 𝜆 >

𝜒2(𝑛+1)
2 (1 −

𝜀
2
)

𝜒2(𝑛+1)
2 (

𝜀
2
)

𝐸 + 𝑃 (𝜆𝜒2(𝑛+1)
2 (1 −

𝜀

2
) < 𝑇 < 𝜒2(𝑛+1)

2 (1 −
𝜀

2
)) ; 

𝜒2(𝑛+1)
2 (

𝜀
2
)

𝜒2(𝑛+1)
2 (1 −

𝜀
2
)
< 𝜆 ≤ 1

𝐸 +  𝑃 (𝜒2(𝑛+1)
2 (

𝜀

2
) < 𝑇 < 𝜆𝜒2(𝑛+1)

2 (
𝜀

2
)) ; 1 < 𝜆 ≤

𝜒2(𝑛+1)
2 (1 −

𝜀
2
)

𝜒2(𝑛+1)
2 (

𝜀
2
)

 

where 𝐸 = 𝑃 (𝜆𝜒2(𝑛+1)2 (
𝜀

2
) < 𝑇 < 𝜆𝜒2(𝑛+1)

2 (1 −
𝜀

2
)) 𝐼(𝑐5,𝑐6)(𝜆) and the EL of the PTCI of 𝑘 based on MLE of 𝑘 as 



𝐸(𝐿𝑀𝐿
𝑃𝑇𝐶𝐼) = 𝑘𝑜(𝑐6 − 𝑐5) [𝐻2𝑛+2 (𝜆𝜒2(𝑛+1)

2 (1 −
𝜀

2
)) − 𝐻2𝑛+2 (𝜆𝜒2(𝑛+1)

2 (
𝜀

2
))

+
𝜆(𝑛 + 1)

𝑛 − 1
{𝐻2𝑛−2 (𝜆𝜒2(𝑛+1)

2 (
𝜀

2
)) + 1 − 𝐻2𝑛−2 (𝜆𝜒2(𝑛+1)

2 (1 −
𝜀

2
))}] 

 

2.3 Numerical Findings 

 From the previous section, it is easy to obtain the relative efficiency of PTE over the 

usual estimator of 𝑘 based on UMVUE, MLE and MRE denoted by 𝑒(�̂�𝑈
𝑃𝑇 , �̂�𝑈), 𝑒(�̂�𝑀𝐿

𝑃𝑇 , �̂�𝑀𝐿) 

and 𝑒(�̂�𝑀𝑅
𝑃𝑇 , �̂�𝑀𝑅) respectively, which depend on the sample size (𝑛 + 1) and level of 

significance 𝜀. Figure 1  shows the relative efficiency of �̂�𝑀𝐿
𝑃𝑇  over �̂�𝑀𝐿 and we observe that 

there exists an interval of 𝜆 for which this efficiency is greater than 1. Similarly, Figure 2 and 

Figure 3 show the relative efficiency of �̂�𝑈
𝑃𝑇 over �̂�𝑈 and �̂�𝑀𝑅

𝑃𝑇  over �̂�𝑀𝑅 respectively. Since 

𝑒(�̂�𝐸𝐵
𝑃𝑇 , �̂�𝐸𝐵) does not have a closed form and thus we use Monte Carlo simulation technique 

to compute this efficiency based on the following algorithm: 

i. For given values of 𝜇 and 𝜈, generate one sample from Gamma(𝜇, 𝜈) and denote it as 

𝑘∗. 

ii. For a specified value of 𝑛, generate 𝑚 random samples from gamma(𝑛 + 1, 𝑘∗) to 

obtain 𝑌𝑗  ; 𝑗 = 1,2, … ,𝑚. 

iii. Compute, �̂�𝐸𝐵
𝑝 (𝑗) =

𝛤(𝑛+𝜈+𝑝+1)

𝛤(𝑛+𝜈+1)
(𝑌𝑗 + 𝜇)

𝑝
 ;  𝑗 = 1,2, … ,𝑚.  

iv. For a specified value of 𝑘𝑜 , test the hypothesis 𝐻𝑜: 𝑘 =  𝑘𝑜, using the test statistic in 

equation (2.8) to get �̂�𝐸𝐵
𝑝 𝑃𝑇

(𝑗) = �̂�𝐸𝐵
𝑝 (𝑗) − (�̂�𝐸𝐵

𝑝 (𝑗) − 𝑘𝑜
𝑝)𝐼(𝐴) ; 𝑗 = 1,2, … ,𝑚 . 

v. Compute  MSE =
1

 𝑚
∑ (𝛿(𝑗) − 𝑘∗𝑝)2𝑚
𝑗=1  , where 𝛿(𝑗) ∈ {�̂�𝐸𝐵

𝑝 (𝑗), �̂�𝐸𝐵
𝑝 𝑃𝑇

(𝑗)} ,     𝑗 =

1,2, … ,𝑚. For 𝜇 = 2, 𝜈 = 4 and  𝑚 = 1000, the result is shown in Figure 4.  



 

Figure 1: Relative Efficiency of PTE of 𝑘 based on MLE with respect to 𝜆 =
𝑘

𝑘𝑜
 

 

Figure 2: Relative Efficiency of PTE of 𝑘 based on UMVUE with respect to 𝜆 =
𝑘

𝑘𝑜
 



 

Figure 3: Relative Efficiency of PTE of 𝑘 based on best invariant estimator with respect to 

𝜆 =
𝑘

𝑘𝑜
 

 

Figure 4: Relative Efficiency of PTE of 𝑘 based on EBE with respect to 𝜆 =
𝑘

𝑘𝑜
 

 From Figures 1, 2, 3 and 4 we observe that as sample size increases, the relative 

efficiency of PTES of 𝑘 with respect to 𝜆 increases in the interval of 𝜆 for which this 

efficiency is greater than 1.  

 In Figure 5, we compare the performance of the two PTES of 𝑘 based on UMVUE 

and MRE of 𝑘. Even though the MRE of 𝑘 is biased for 𝑘, its corresponding PTE is more 

efficient that the PTE of 𝑘 based on UMVUE for higher values of 𝜆. However, in the 

neighbourhood of the null hypothesis 𝐻𝑜: 𝑘 = 𝑘𝑜, the PTE of 𝑘 based on UMVUE continues 

to be a better estimator. 



 

Figure 5: MSE and Relative Efficiency of PTE of 𝑘 based on UMVUE and EBE with respect 

to 𝜆 =
𝑘

𝑘𝑜
 

 For a fixed sample size 𝑛 = 5, Figure 6 compares the relative efficiency of  �̂�(𝑡)𝑃𝑇 

over �̂�(𝑡) and �̃�(𝑡)𝑃𝑇 over �̃�(𝑡) respectively with respect to 𝜃 =
𝑅(𝑡)

𝑅𝑜(𝑡)
 for any fixed time 

point  and level of significance 0.05. From this figure, it is clear that PTES of 𝑅(𝑡) based on 

MLE and UMVUE outperform the usual estimators of 𝑅(𝑡) in a particular interval of 𝜃.  

 

Figure 6: Relative Efficiency of PTE of 𝑅(𝑡) based on MLE and UMVUE with respect to 

𝜃 =
𝑅(𝑡)

𝑅𝑜(𝑡)
 

 

 Now we study the relative efficiency of PTES of 𝑃 based on MLE and UMVUE over 

the usual estimators of 𝑃. Suppose for different values of 𝑘1 and 𝑘2 we want to test the 



hypothesis 𝐻𝑜: 𝑃 = 𝑃𝑜 against 𝐻1: 𝑃 ≠ 𝑃𝑜 for fixed sample sizes 𝑛 = 5 and 𝑚 = 2. Then in 

Figure 7, the relative efficiency of PTES of 𝑃 based on MLE and UMVUE over the usual 

estimators of  𝑃 has been demonstrated. From this figure, it is clear that PTES of 𝑃 based on 

MLE and UMVUE outperform the usual estimators of 𝑃 in an interval of 𝜃 =
𝑃

𝑃𝑜
.  

 

 

Figure 7: Relative Efficiency of PTE of 𝑃 based on MLE and UMVUE with respect to 𝜃 =

𝑃

𝑃𝑜
 

 In Figure 8, we show the CP of PTCI of 𝑘 based on MRE with respect to 𝜆 =
𝑘

𝑘𝑜
 for a 

fixed sample size and level of significance 𝜀. From the figure and the derived expression of 

the CP of PTCI, we observe that as the value of 𝜆 tends to 0 or ∞, the CP of PTCI tends to 

1 − 𝜀 and for an interval of 𝜆 around 1, the CP of PTCI is greater than 1 − 𝜀. This 

domination interval is larger for smaller sample sizes. Thus, we can conclude that the CP of 

PTCI of 𝑘 is greater than the CP of ETCI for some values of 𝜆 in a specific interval around 1. 

Similar result has been observed for the CP of PTES of 𝑘 based on UMVUE and MLE in 

Figure 9 and Figure 10 respectively. 



 

Figure 8: Coverage Probability of PTCI of 𝑘 based on MRE 

 

Figure 9: Coverage Probability of PTCI of 𝑘 based on UMVUE 

 

Figure 10: Coverage Probability of PTCI of 𝑘 based on MLE 

 



 In Figure 11, we compare the scaled EL of PTCI of 𝑘 based on MRE with the ETCI 

with respect to 𝜆. We observe from this figure that there exists an interval of 𝜆 for which the 

EL of PTCI is lower than that of ETCI. This interval of 𝜆 for which EL of PTCI is lower 

decreases with an increase in sample size. We also note that as 𝜆 tends to 0 or ∞, the EL of 

PTCI tend to be close to the EL of ETCI. Similar results are observed for EL of PTCI of 𝑘 

based on UMVUE and MLE in Figure 12 and Figure 13 respectively. 

 

Figure 11: Expected Length of PTCI of 𝑘 based on MRE 

 

Figure 12: Expected Length of PTCI of 𝑘 based on UMVUE 



 

Figure 13: Expected Length of PTCI of 𝑘 based on MLE 

 

3. Proposed PTES when all the parameters are unknown 

 In this section, we consider the case when all the parameters 𝑘, 𝑐 and 𝛼 are unknown. 

Chaturvedi and Malhotra (2017) discussed numerical techniques to obtain the MLES of the 

parameters 𝑘, 𝑐 and 𝛼 as �̂�, �̂� and �̂� respectively. They also derived the elements of the 

observed Fisher information matrix. Since the exact distribution of the test statistics cannot be 

achieved, so we follow an approach by Gulati and Padgett (1991, 1994, 1995). Suppose we 

have 𝑚 independent samples of size 𝑛 + 1 from upper record values like 

𝑅𝑗0, 𝑅𝑗1, … , 𝑅𝑗𝑛 ; 𝑗 = 1,2, … ,𝑚. Then the MLE of the parameter 𝑘𝑝 is given by 

�̂�𝑅 
𝑝 =

(

 
 𝑚(𝑛 + 1)

∑ 𝑙𝑜𝑔 (1 +
𝑅𝑗𝑛
𝑐̂

�̂�
)𝑚

𝑗=1
)

 
 

𝑝

                                                                                                      (3.1) 

 Further, if there exists some prior information on the parameter in the form of 𝑘 = 𝑘𝑜 

and we are interested to estimate 𝑘 incorporating such information. So we consider the 

following simple hypothesis to check the validity of this information: 

𝐻𝑜: 𝑘 = 𝑘𝑜 

𝐻1: 𝑘 ≠ 𝑘𝑜 

Under 𝐻𝑜 ,   
√𝑚(�̂�𝑅−𝑘)

√𝑉𝑎𝑟(�̂�𝑅)
 
𝑎𝑠𝑦𝑚𝑝
→    𝑁(0,1) and the test statistic is defined as 

𝐿𝑚−𝑘 =

(

 √
𝑚(�̂�𝑅 − 𝑘𝑜)

√𝑉𝑎𝑟(�̂�𝑅) )

 

2

                                                                                                             (3.2) 



Under 𝐻𝑜 , 𝐿𝑚−𝑘 converges to central 𝜒2 distribution with 1 degree of freedom as 𝑚 →

∞ while under the local alternative of the form 

𝐻𝑚: 𝑘 = 𝑘𝑜 +
𝛿𝑘

√𝑚
                                                                                                                            (3.3) 

 

𝐿𝑚 − 𝑘 converges to non-central 𝜒2 distribution with non-centrality parameter  

∆𝑘
2 = (

√𝑚(𝑘 − 𝑘𝑜)

√𝑉𝑎𝑟(𝑘𝑅)
)

2

 

Based on the asymptotic distribution of 𝐿𝑚−𝑘, the critical region is given by 𝐿𝑚−𝑘 > 𝜒1
2(𝜀) 

where 𝜀 is the level of significance. Thus, we define PTE of 𝑘 as 

�̂�𝑅
𝑝𝑃𝑇 = �̂�𝑅 

𝑝 − (�̂�𝑅 
𝑝 − 𝑘𝑜

𝑝)𝐼(𝐿𝑚−𝑘 < 𝜒1
2(𝜀))                                                                                  (3.4) 

Note that PTE of the other parameters 𝑐 and 𝛼 can also be defined in similar fashion.  

 Next, by invariance property of MLE, the MLE of the reliability function 𝑅(𝑡) under 

this approach is given by 

�̂�(𝑡)𝑅 = 𝑒𝑥𝑝(−�̂�𝑅𝑙𝑜𝑔 (1 +
𝑡𝑐̂

𝛼 ̂
))                                                                                               (3.5) 

Further if we suspect that 𝑅(𝑡) = 𝑅𝑜 and consider the following simple hypothesis to check 

the validity of this information: 

𝐻𝑜: 𝑅(𝑡) = 𝑅𝑜 

𝐻1: 𝑅(𝑡) ≠ 𝑅𝑜 

Under 𝐻𝑜 ,   
√𝑚(�̂�(𝑡)𝑅−𝑅𝑜)

√𝑉𝑎𝑟(�̂�(𝑡)𝑅)
 
𝑎𝑠𝑦𝑚𝑝
→    𝑁(0,1) and the test statistic is defined as 

𝐿𝑚−𝑅(𝑡) = (
√𝑚(�̂�(𝑡)𝑅 − 𝑅𝑜)

√𝑉𝑎𝑟(�̂�(𝑡)𝑅)
)

2

                                                                                                  (3.6) 

Under 𝐻𝑜 , 𝐿𝑚−𝑅(𝑡) converges to central 𝜒2 distribution with 1 degree of freedom as 𝑚 →

∞ while under the local alternative of the form 

𝐻𝑚: 𝑅(𝑡) = 𝑅𝑜 +
𝛿𝑅(𝑡)

√𝑚
                                                                                                                   (3.7) 

𝐿𝑚−𝑅(𝑡) converges to non-central 𝜒2 distribution with non-centrality parameter  

∆𝑅(𝑡)
2
=

(

 √
𝑚(𝑅(𝑡) − 𝑅𝑜)

√𝑉𝑎𝑟(�̂�(𝑡)𝑅) )

 

2

 



Based on the asymptotic distribution of 𝐿𝑚−𝑅(𝑡), the critical region is given by 𝐿𝑚−𝑅(𝑡) >

𝜒1
2(𝜀) where 𝜀 is the level of significance. Thus, we define PTE of 𝑅(𝑡) as 

�̂�(𝑡)𝑅
𝑃𝑇 = �̂�(𝑡)𝑅 − (�̂�(𝑡)𝑅 − 𝑅𝑜)𝐼(𝐿𝑚−𝑅(𝑡) < 𝜒1

2(𝜀))                                                              (3.8) 

 Finally, by invariance property of MLE, the MLE of the reliability function 𝑃 under 

this approach is given by 

�̂�𝑅 =
𝑘2̂𝑅

𝑘1̂𝑅 + 𝑘2̂𝑅
                                                                                                                                 (3.9) 

where 𝑘1̂𝑅 =
𝑚(𝑛+1)

∑ 𝑙𝑜𝑔(1+
𝑅𝑗𝑛
�̂�

�̂�
)𝑚

𝑗=1

 and 𝑘2̂𝑅 =
𝑚(𝑛+1)

∑ 𝑙𝑜𝑔(1+
𝑅𝑗𝑟
∗ �̂�

�̂�
)𝑚

𝑗=1

 such that we have 𝑚 independent 

samples of 𝑟 + 1 upper record values 𝑅𝑗0
∗ , … , 𝑅𝑗𝑟

∗ ; 𝑗 = 1,2, … ,𝑚 from three parameter Burr 

XII distribution. Further suppose the suspected value of 𝑃  is 𝑃𝑜 and thus we consider the 

following simple hypothesis to check the validity of this information: 

𝐻𝑜: 𝑃 = 𝑃𝑜 

𝐻1: 𝑃 ≠ 𝑃𝑜 

Under 𝐻𝑜 ,   
√𝑚(�̂�𝑅−𝑃𝑜)

√𝑉𝑎𝑟(�̂�𝑅)
 
𝑎𝑠𝑦𝑚𝑝
→    𝑁(0,1) and the test statistic is defined as 

𝐿𝑚−𝑃 = (
√𝑚(�̂�𝑅 − 𝑅𝑜)

√𝑉𝑎𝑟(�̂�𝑅)
)

2

                                                                                                          (3.10) 

Under 𝐻𝑜 , 𝐿𝑚−𝑃 converges to central 𝜒2 distribution with 1 degree of freedom as 𝑚 →

∞ while under the local alternative of the form 

𝐻𝑚: 𝑃 = 𝑃𝑜 +
𝛿𝑃

√𝑚
                                                                                                                         (3.11) 

𝐿𝑚−𝑃 converges to non-central 𝜒2 distribution with non-centrality parameter  

∆𝑃
2 =

(

 √
𝑚(𝑃 − 𝑃𝑜)

√𝑉𝑎𝑟(�̂�𝑅) )

 

2

 

Based on the asymptotic distribution of 𝐿𝑚−𝑃, the critical region is given by 𝐿𝑚−𝑃 > 𝜒1
2(𝜀). 

Thus, we define PTE of 𝑃 as 

�̂�𝑅
𝑃𝑇 = �̂�𝑅 − (�̂�𝑅 − 𝑃𝑜)𝐼(𝐿𝑚−𝑃 < 𝜒1

2(𝜀))                                                                                    (3.12) 

 

3.1 Asymptotic Bias and MSE 



 We now derive the asymptotical distributional bias (ADB) and asymptotical 

distributional mean square error (ADMSE) of the proposed estimators in (3.1) and (3.4) 

under the local alternative given by (3.3). Following Saleh (2006), for any estimator 𝜃 of  𝜃 

we consider the following definitions of ADB (B) and ADMSE (M): 

𝐵(𝜃) = lim
𝑚→∞

𝐸[√𝑚(�̂� − 𝜃)]                                                                                                         (3.13) 

𝑀(𝜃) = lim
𝑚→∞

𝐸 [(√𝑚(�̂� − 𝜃))
2

]                                                                                                 (3.14) 

 

Lemma 3.1 (Saleh , 2006): If  𝑍~𝑁(∆,1) and 𝜑(. ) is a Borel measurable function, then 

1. E[Z.φ(Z2)] = ∆E[φ(χ3
2(∆2))] 

2. E[Z2. φ(Z2)] = E[φ(χ3
2(∆2))] + ∆2 E[φ(χ5

2(∆2))] 

where 𝜒𝑑
2(∆2) is the non-central 𝜒2 𝑟𝑣 with 𝑑 degrees of freedom and non centrality 

parameter ∆2. 

 From (3.13), the ADB of �̂�𝑅 and �̂�𝑅
𝑃𝑇 are obtained as follows: 

𝐵1(�̂�𝑅) = 0 

𝐵2(�̂�𝑅
𝑃𝑇) = lim

𝑚→∞
𝐸[√𝑚(�̂�𝑅

𝑃𝑇 − 𝑘)] 

                 = lim
𝑚→∞

𝐸[√𝑚(�̂�𝑅 − (�̂�𝑅 − 𝑘𝑜)𝐼(𝐿𝑚 < 𝜒1
2(𝜀)) − 𝑘)]  

                 = lim
𝑚→∞

[−𝐸{√𝑚(�̂�𝑅 − 𝑘𝑜)𝐼(𝐿𝑚 < 𝜒1
2(𝜀))}] 

                  

                    = −√𝑉𝑎𝑟(�̂�𝑅) lim
𝑚→∞

𝐸

[
 
 
 
 
√𝑚(�̂�𝑅 − 𝑘𝑜)

√𝑉𝑎𝑟(�̂�𝑅)

𝐼

(

 
 

(

 √
𝑚(�̂�𝑅 − 𝑘𝑜)

√𝑉𝑎𝑟(�̂�𝑅) )

 

2

< 𝜒1
2(𝜀)

)

 
 

]
 
 
 
 

  

Since (
√𝑚(�̂�𝑅−𝑘𝑜)

√𝑉𝑎𝑟(𝑘𝑅)
)  
𝑎𝑠𝑦𝑚𝑝
→    𝑁(∆𝑘 , 1), then by applying Lemma 3.1, taking 𝜑(. ) to be an indicator 

function, we have 

𝐵2(�̂�𝑅
𝑃𝑇) = −𝛿𝑘𝐻3(𝜒1

2(𝜀), ∆𝑘
2) 

where  𝐻𝑑(. , ∆
2) is the 𝑐𝑑𝑓of non-central 𝜒2 distribution with 𝑑 degrees of freedom and non-

centrality parameter ∆2. 

Also, for ADMSE of �̂�𝑅 and �̂�𝑅
𝑃𝑇 we get 

𝑀1(�̂�𝑅 ) = lim
𝑚→∞

𝐸 [(√𝑚(�̂�𝑅 − 𝑘))
2

] =  𝑉𝑎𝑟(�̂�𝑅)        

and  

𝑀2(�̂�𝑅
𝑃𝑇 ) = lim

𝑚→∞
𝐸 [(√𝑚(�̂�𝑅

𝑃𝑇 − 𝑘))
2

]   



                       =  𝑉𝑎𝑟(�̂�𝑅)

+  𝑉𝑎𝑟(�̂�𝑅) lim
𝑚→∞

𝐸

[
 
 
 
 

(

 √
𝑚(�̂�𝑅 − 𝑘𝑜)

√𝑉𝑎𝑟(�̂�𝑅) )

 

2

𝐼

(

 
 

(

 √
𝑚(�̂�𝑅 − 𝑘𝑜)

√𝑉𝑎𝑟(�̂�𝑅) )

 

2

< 𝜒1
2(𝜀)

)

 
 

]
 
 
 
 

 

−  2 lim
𝑚→∞

𝐸 [√𝑚(�̂�𝑅 − 𝑘) {√𝑚((�̂�𝑅 − 𝑘𝑜)𝐼(𝐿𝑚−𝑘 < 𝜒1
2(𝜀)))}]  

                       =  𝑉𝑎𝑟(�̂�𝑅)

+  𝑉𝑎𝑟(�̂�𝑅) lim
𝑚→∞

𝐸

[
 
 
 
 

(

 √
𝑚(�̂�𝑅 − 𝑘𝑜)

√𝑉𝑎𝑟(�̂�𝑅) )

 

2

𝐼

(

 
 

(

 √
𝑚(�̂�𝑅 − 𝑘𝑜)

√𝑉𝑎𝑟(�̂�𝑅) )

 

2

< 𝜒1
2(𝜀)

)

 
 

]
 
 
 
 

+  2𝑉𝑎𝑟(�̂�𝑅) 𝑙𝑖𝑚
𝑚→∞

(

 √
𝑚(𝑘 − 𝑘𝑜)

√𝑉𝑎𝑟(�̂�𝑅) )

 𝐸

[
 
 
 

(

 √
𝑚(�̂�𝑅 − 𝑘)

√𝑉𝑎𝑟(�̂�𝑅) )

 𝐼(𝐿𝑚−𝑘 < 𝜒1
2(𝜀))

]
 
 
 

 

− 2𝑉𝑎𝑟(�̂�𝑅) 𝑙𝑖𝑚
𝑚→∞

𝐸

[
 
 
 

(

 √
𝑚(�̂�𝑅 − 𝑘)

√𝑉𝑎𝑟(�̂�𝑅) )

 

2

𝐼(𝐿𝑚−𝑘 < 𝜒1
2(𝜀))

]
 
 
 

 

From Lemma 3.1 we get: 

𝑀2(�̂�𝑅
𝑃𝑇  ) = 𝑉𝑎𝑟(�̂�𝑅)[1 − 𝐻3(𝜒1

2(𝜀), ∆𝑘
2) + ∆𝑘

2{2𝐻3(𝜒1
2(𝜀), ∆𝑘

2) − 𝐻5(𝜒1
2(𝜀), ∆𝑘

2)}] 

On similar lines we obtain from (3.13), the ADB of �̂�(𝑡)𝑅 and �̂�(𝑡)𝑅
𝑃𝑇 as follows: 

𝐵1(�̂�(𝑡)𝑅) = 0 

𝐵2(�̂�(𝑡)𝑅
𝑃𝑇) = lim

𝑚→∞
𝐸[√𝑚(�̂�(𝑡)𝑃𝑇−𝑅 − 𝑅(𝑡)] 

                       = −𝛿𝑅(𝑡)𝐻3(𝜒1
2(𝜀), ∆𝑅(𝑡)

2
) 

Also, for ADMSE of �̂�(𝑡)𝑅 and �̂�(𝑡)𝑅
𝑃𝑇 we get 

𝑀1(�̂�(𝑡)𝑅  ) = lim
𝑚→∞

𝐸 [(√𝑚(�̂�(𝑡)𝑅 − 𝑅(𝑡)))
2

] =  𝑉𝑎𝑟(�̂�(𝑡)𝑅)                                            

and from Lemma 3.1 

  𝑀2(�̂�(𝑡)𝑅
𝑃𝑇 ) = lim

𝑚→∞
𝐸 [(√𝑚(�̂�(𝑡)𝑃𝑇−𝑅 − 𝑅(𝑡)))

2

]   

                          = 𝑉𝑎𝑟(�̂�(𝑡)𝑅)[1 − 𝐻3(𝜒1
2(𝜀), ∆𝑅(𝑡)

2
) + ∆𝑅(𝑡)

2
{2𝐻3(𝜒1

2(𝜀), ∆𝑅(𝑡)
2
) − 𝐻5(𝜒1

2(𝜀), ∆𝑅(𝑡)
2
)}] 

Finally, the ADB of �̂�𝑅 and �̂�𝑅
𝑃𝑇 are obtained as follows: 

𝐵1(�̂�𝑅) = 0 

𝐵2(�̂�𝑅
𝑃𝑇) = lim

𝑚→∞
𝐸[√𝑚(�̂�𝑃𝑇−𝑅 − 𝑃)] 

                 = −𝛿𝑃𝐻3(𝜒1
2(𝜀), ∆𝑃

2
) 

Also, for ADMSE of �̂�𝑅 and �̂�𝑅
𝑃𝑇 we get 

𝑀1(�̂�𝑅 ) = lim
𝑚→∞

𝐸 [(√𝑚(�̂�𝑅 − 𝑃))
2

] =  𝑉𝑎𝑟(�̂�𝑅)                                            

and from Lemma 3.1 

  𝑀2(�̂�𝑅
𝑃𝑇 ) = lim

𝑚→∞
𝐸 [(√𝑚(�̂�𝑃𝑇−𝑅 − 𝑃))

2

]   

                     = 𝑉𝑎𝑟(�̂�𝑅)[1 − 𝐻3(𝜒1
2(𝜀), ∆𝑃

2
) + ∆𝑃

2{2𝐻3(𝜒1
2(𝜀), ∆𝑃

2
) − 𝐻5(𝜒1

2(𝜀), ∆𝑃
2
)}] 

3.2 Comparison 



 In this section, we analyze the ADMSE of the proposed estimators to study their 

relative performance. From (3.4),  we see that if 𝐿𝑚 → 0 then  �̂�𝑅
𝑃𝑇 → 𝑘𝑜 while  �̂�𝑅

𝑃𝑇 → �̂�𝑅 as 𝐿𝑚 →

∞. The asymptotic relative efficiency (ARE) of �̂�𝑅
𝑃𝑇 over �̂�𝑅 is defined as: 

𝐴𝑅𝐸(�̂�𝑅
𝑃𝑇 , �̂�𝑅) =

𝑀1(�̂�𝑅)

𝑀2(�̂�𝑅
𝑃𝑇)

 

                            = [1 − 𝐻3(𝜒1
2(𝜀), ∆𝑘

2) + ∆𝑘
2{2𝐻3(𝜒1

2(𝜀), ∆𝑘
2) − 𝐻5(𝜒1

2(𝜀), ∆𝑘
2)}]

−1
 

 

Figure 14: Asymptotic Relative Efficiency of �̂�𝑅
𝑃𝑇 over �̂�𝑅 

 Figure 14 shows the asymptotic relative efficiency of  �̂�𝑅
𝑃𝑇 for different values of 𝜀 

verses ∆𝑘
2
.  We observe that the relative efficiencies have a peak at point zero, then it 

decreases and gets a minimum at some values of  ∆𝑘
2
. Then the relative efficiencies increase 

to line 1.    Also, it is seen that the proposed PTE have the highest relative efficiency for the 

smallest values of 𝜀. Further, as it increases the maximum relative efficiencies decrease while 

the minimum relative efficiencies increase. Finally, we can conclude that �̂�𝑅
𝑃𝑇 is a better 

estimator of 𝑘 than �̂�𝑅 whenever: 

0 ≤  ∆𝑘
2 ≤

𝐻3(𝜒1
2(𝜀), ∆𝑘

2)

2𝐻3(𝜒1
2(𝜀), ∆𝑘

2
) − 𝐻5(𝜒1

2(𝜀), ∆𝑘
2
)
 

By the asymptotic normality of MLE for the parameters 𝑐 and 𝛼, one may obtain similar 

results. On similar lines, the ARE of �̂�(𝑡)𝑅
𝑃𝑇 over �̂�(𝑡)𝑅 is defined as 

𝐴𝑅𝐸(�̂�(𝑡)𝑅
𝑃𝑇 , �̂�(𝑡)𝑅) = [1 − 𝐻3(𝜒1

2(𝜀), ∆𝑅(𝑡)
2
) + ∆𝑅(𝑡)

2
{2𝐻3(𝜒1

2(𝜀), ∆𝑅(𝑡)
2
) − 𝐻5(𝜒1

2(𝜀), ∆𝑅(𝑡)
2
)}]

−1

 



and we can conclude that �̂�(𝑡)𝑅
𝑃𝑇 is a better estimator of 𝑅(𝑡) than �̂�(𝑡)𝑅 whenever 

0 ≤ ∆𝑅(𝑡)
2
≤

𝐻3(𝜒1
2(𝜀), ∆𝑅(𝑡)

2
)

2𝐻3(𝜒1
2(𝜀), ∆𝑅(𝑡)

2
) − 𝐻5(𝜒1

2(𝜀), ∆𝑅(𝑡)
2
)
 

Similarly, �̂�𝑅
𝑃𝑇 is a better estimator of 𝑃 than �̂�𝑅 whenever 

0 ≤ ∆𝑃
2
≤

𝐻3(𝜒1
2(𝜀), ∆𝑃

2)

2𝐻3(𝜒1
2(𝜀), ∆𝑃

2
) − 𝐻5(𝜒1

2(𝜀), ∆𝑃
2
)
 

 

5. An Example on Real Data 

 To illustrate the estimation methods proposed in the preceding sections, we consider 

data on maximum flood level (in millions of cubic feet per second) for the Susquehanna 

River of Harrisburg over 20 four-year periods. This data was considered by Dumonceaux and 

Antle 1973 and is as follows:  

0.654 0.613 0.315 0.449 0.297 0.402 0.379 0.423 0.379 0.3235 0.269 0.740 0.418 0.412 

0.494 0.416 0.338 0.392 0.484 0.265  

 Kolmogorov Smirnov test generated the test statistic 𝐷 = 0.14 and a 𝑝-value of 

0.8996 which indicates that the data fits the three parameter Burr distribution. Using an 

iterative algorithm, we obtained the MLES of the parameters as �̂� = 0.5829, �̂� = 8.3113, 

�̂� = 0.0002. Thus, the reliability function 𝑅(𝑡) = 0.8899 at 𝑡 = 0.3. The following are the 

upper record values obtained from the sample.  

0.6540 0.7400 

Based on these record values, we obtain the preliminary test estimators of  𝑘 and 𝑅(𝑡) for 

various test values of 𝑘𝑜 and 𝑅𝑜(𝑡) respectively. The results are shown in Tables 1 and 2 

respectively. 

 

Table 1: Preliminary test estimators of 𝑘 

𝑘𝑜 �̂�𝑀𝐿
𝑃𝑇  �̂�𝑈

𝑃𝑇 �̂�𝑀𝑅
𝑃𝑇  

0.10 0.1000 0.1000 0.1000 

0.20 0.2000 0.2000 0.2000 

0.30 0.3000 0.3000 0.3000 

0.40 0.4000 0.4000 0.4000 

0.50 0.5000 0.5000 0.5000 

0.60 0.6000 0.6000 0.6000 

0.70 0.7000 0.7000 0.7000 

0.80 0.8000 0.8000 0.8000 

0.90 0.9000 0.9000 0.9000 

1.00 0.3334 0.1667 0.0000 

 



Table 2: Preliminary test estimators of 𝑅(𝑡) 

𝑅𝑜(𝑡) �̂�(𝑡)𝑃𝑇 �̃�(𝑡)𝑃𝑇 

0.10 0.9355 0.9667 

0.30 0.9355 0.9667 

0.50 0.9355 0.9667 

0.70 0.9355 0.9667 

0.80 0.9355 0.9667 

0.90 0.9000 0.9000 

0.93 0.9300 0.9300 

0.95 0.9500 0.9500 

0.97 0.9700 0.9700 

1.00 0.9355 0.9667 

 

6. Conclusion 

 We have proposed various preliminary test estimators for estimation of the powers of 

the parameter 𝑘 and reliability functions of three parameters Burr XII distribution under the 

assumption of known values of parameters 𝑐 and 𝛼. The exact bias and MSE expressions 

have been derived. We have also discussed a case when all the parameters of the distribution 

are unknown. It can be concluded that all of the proposed PTES dominate their corresponding 

usual estimators such as UMVUE, MLE, MR and EBE in the neighbourhood of null 

hypothesis 𝐻𝑜: 𝑘 = 𝑘𝑜. The relative efficiency of PTES of the powers of the parameter 𝑘 is 

higher when 𝑘 is close to its hypothesized value 𝑘𝑜. Similarly, PTES of 𝑅(𝑡) and 𝑃(𝑋 >

𝑌) perform better than their usual estimators whenever the true value of the parameter is 

close to its hypothetical value.  

 Next, we have also developed improved preliminary test confidence intervals of the 

parameter 𝑘 and have shown them to have a greater coverage probability and a smaller 

expected length compared to the usual equal tail confidence intervals whenever 𝑘 is 

sufficiently close to 𝑘𝑜. Thus, we were able to establish improved estimators and confidence 

intervals of the parametric functions of the three parameters Burr XII distribution. 
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