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Abstract: Some improved estimators and confidence interval of the parametric functions are
proposed based on records from three parameters Burr XII distribution. We propose
preliminary test estimators (PTES) of the powers of the parameter and reliability functions
based on uniformly minimum variance unbiased estimator (UMVUE), maximum likelihood
estimator (MLE), best invariant estimator (MRE) and empirical Bayes estimator (EBE). We
compare the performance of the proposed PTES with the usual estimators by studying their
relative efficiencies based on Monte Carlo simulations. We also construct preliminary test
confidence interval (PTCI) for the parameter and study its coverage probability and expected
length. The results show that the proposed PTES dominate the usual estimators in a wide
range of the parametric space. Also it is seen that the proposed PTCI have higher coverage
probability while keeping the shorter width in some domain of parametric space. The paper

ends up by analysing a real data set.
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1. Introduction

In statistical inference, we often come across problems where some prior information
on the parameters is available. Naturally, the validity of this information is questionable and
hence it is required to perform a preliminary test on this constraint which gives rise to
restricted models. Due to past knowledge or experience, the experimenter may be in a
position to make an initial guess on some of the parameters of interest. In such cases, we can

provide an improved estimator by incorporating this prior information on the parameters. The



usage of this prior information on some or all of the parameters of a statistical distribution
usually leads to an improved inferential study. The efficiency and validity of restricted
models analysis is higher over a restricted parametric space induced by the constraints, while
the same holds for unrestricted model analysis over the entire parametric space. Thus, an
analysis resulting from restricted or unrestricted models may be subject to a loss in efficiency
against the validity of constraints while choosing between two inferential techniques. Hence
it is wise to adopt restricted estimation procedures when we have sufficient confidence in the
prior information. Bancroft (1944) introduced the use of PTES and eventually further
advancements were proposed by Saleh and Sen (1978), Saleh and Kibria (1993) and Belaghi
etal. (2014, 2015).

The reliability function R(t) is defined as the probability of failure-free operation
until time t. Thus, if the random variable (rv) X denotes the lifetime of an item or a system,
then R(t) = P(X >t). Another measure of reliability under stress-strength setup is the
probability P = P(X > Y), which represents the reliability of an item or a system of random
strength X subject to random stress Y. A lot of work has been done in the literature for the
point estimation and testing of R(t) and P based on record values. For a brief review, one
may refer to Chaturvedi and Malhotra (2016, 2017). In the present paper, we develop PTES
for the reliability functions based on MLE and UMVUE and prove them to be more efficient
estimators than their usual MLE and UMVUE.

Chandler (1952) introduced the concept of record values. Based on records,
inferential procedures for the parameters of different distributions have been developed by
Glick (1978), Nagaraja (1988a,1988b), Balakrishan, Ahsanullah and Chan (1995), Arnold,
Balakrishan and Nagaraja (1992), Habibi Rad, Arghami and Ahmadi (2006), Arashi and
Emadi (2008), Razmkhah and Ahmadi (2011), Belaghi et al. (2015) and others.

Many authors have studied the estimation of Burr type XII parameters. The two
parameters Burr type XII distribution was first introduced by Burr (1942). A random variable
X is said to have a Burr type XII distribution with the shape parameters ¢ and k, if its
cumulative distribution function (cdf) and probability density function (pdf) are of the
following forms respectively:

Fix;k,e)=1—(1+x)7%; x>0,c,k >0
and

flxk,c) = kex® 1 (14 x€)~0+D; x > 0,¢,k > 0



Some recent work on Burr XII model can be found in Belaghi and Noori (2016) and Belaghi
et al. (2017). Belaghi et al. (2014, 2015) constructed PTES and PTCI based on record values
for the Burr XII Model.

Shao (2004) expanded an extended the Burr type XII distribution to three parameters
and used it for flood frequency analysis. Hogg and Klugman (1984) discussed a three
parameters Burr XII distribution by introducing a scale parameter a to the Burr type XII

distribution. This distribution has pdf and cdf of the following form respectively:

c-1 c\ —(k+1)

kc X
flk,c,a) = " (1+;) ;x>0k,c,a>0 (1.1
and
X6\ 7K
F(x;k,c,a)zl—(1+;) x>0k c,a>0 (1.2)

Let X;,X,,... be an infinite sequence of independent and identically distributed
(iid) rvs from (1.1). An observation X; will be called an upper record value (or simply a
record) if its value exceeds all the previous observations. Thus X; is a record if X; > X; for
every i < j. The record time sequence {T,, ,n = 0} is defined as
T, =1 ; With probability 1
{Tn =min{j: X; > X _ }in>1
and the record value sequence {R,,} is then defined as
R, =X, ;n=012,..
Following Chaturvedi and Malhotra (2017), the likelihood function of the first n + 1 upper

record values Ry, R, Ry, ..., R, IS

ket RON\TT RE!
L(k|Ro, Ry, Ryy ) Ry) = (—) exp | —klog (1 + —”) Hl—c (1.3)
a a (1 + Ri>

i=0 —
(04

For simplicity, we define

x€
U(x) = log (1 +;)

The rest of the paper is as follows. In Section 2, on the basis of records, we construct

PTES based on MLE, UMVUE, MRE and EBE for the powers of the unknown parameter k
assuming the remaining parameters ¢ and a are known. We propose PTES based on MLE
and UMVUE of the reliability functions R(t) and P for record values from (1.1). Then, bias
and mean square error (MSE) of the proposed estimators are obtained. Relative efficiencies

of the PTES are studied based on simulated data. PTCI of the unknown parameter k are



constructed based on UMVUE, MLE and MRE. Their coverage probability and expected
length are derived for comparison with the equal tail confidence intervals (ETCI). In Section
3, we consider the case when all the parameters k,c and « of the distribution in (1.1) are
unknown and obtain the MLES of parameters and reliability functions. Following which we
obtain asymptotic distributional bias (ADB) and asymptotic distributional mean square error
(ADMSE) of the proposed estimators. Section 4 contains an illustrative example and finally

in Section 5 we conclude our study.

2. Estimation of Parametric Functions when ¢ and a are known
For p € (—o,),p # 0 the MLE of kP is

R —(n“)p 2.1)
M \U(Rp) '
where U(R,) has gamma distribution with parameters (n+ 1,k) [see Chaturvedi and

Malhotra (2017)]. Further, the UMVUE of k? is

'n+1)
ki ={T(n—-p+1)

WUR))Pp<n+1 (2.2)

0; otherwise

For some constant w, minimising (wch — k)2 with respect to w helps us to determine the

MRE of k denoted by k,,z and is obtained as follows:

n—1.

EMR= n ky (2.3)

Now, if we consider conjugate prior distribution of k to be Gamma distribution with

parameters (i, v) and pdf

‘uvkv—l
(k) = o) e ™ u,k > 0andv is a positive integer (2.4)
Then the posterior distribution of k given Ry, R, R,, ..., R, 1S
_ (U(Rn)+#)n+v+1kn+v —k(U(Rn)'I-'U_)
n(k|Ry,Ry, Ry, ..., Ry) = prw——y e (2.5)

Under squared error loss function, the Bayes estimator of kP is

~ r 1
B =D R 47 (26)

Also, the marginal distribution of Ry, R{, R,, ..., R,, given pand v is

co

m(Ro, Rl’ Rz, ...,RnI‘Ll, V) = J T[(k) L(klRo, Rl' Rz, ""RTl) dk
0



_ W (n+v+1) (g)n"'l ?:()L_lc
(W R+W™YV I () \a <1+§f>
Taking the natural logarithm [ of the above marginal distribution, the MLE of © and v can
be obtained from the solution of the following system of equations:
a v n+v+1
ou p UR)+u
and
'n+v+1)
rw)

Denoting the MLE of pwand v by fi,,, and v, respectively, then there exists a relation

2 = logu) + 5-[0g ( )| - tog @R + 1) =0

between them given by

. UR)Im
HmL T T+l
Therefore, from (2.5), the EBE of k? is
~ I'n+7Vy,+p+1) .
Py = = (U(Ry) + Amp)? (2.7)

BB T'(n+vy,+1)
In the sequel we define four different PTES based on MLE, UMVUE, MRE and EBE
of kP when it is suspected that k may be equal to k,. Often the information on the value of
k is available from the past knowledge or experiments. This non-sample prior information
can be expressed in the form of the following group of hypotheses:
H, k =k,
Hi:k # k,
Then based on classical hypothesis testing, the critical region is given by

{0 <UR, <Ll}U{l, <U(R,) < o}

: X;(n+1)(£) X;(n+1)(1_£)
where [, and [, are obtained such that [, = ———%, [,/ = ———*%

and ¢ is the level of
2k, 2k,

significance. Or, equivalently we reject H,, if

2k,U(R,) < C, or 2k, U(R,) > C; (2.8)
where C; = xZns1) (1 — Z) and C; = X3ne1) (2)

Thus we define four different PTES for kP based on MLE, UMVUE, MRE and EBE
respectively as

~ PT ~ ~

ki = ki, — (ki — k5)1(A) (2.9)

RPN = kP — (RE - kP)I(A) (2.10)



kifk = kg — (]EMR - ko)I(A) (2.11)
~n PT ~ ~
kgB = kgB - (kgB - kg)I(A) (2.12)
where I1(A) is the indicator function of the set
A= {Xg(n+1) 10 < Xg(n+1) <y}
From Chaturvedi and Malhotra (2017), the MLE and UMVUE of R(t) are

respectively given by

R(t) = exp {%}L)’(t)} (2.13)
and
um 1"
R() = [ - U(Rn)] P U < URn) (2.14)
0; otherwise

Thus, we define two different PTES of R(t) based on MLE and UMVUE as follows:

R(®)"T = R(t) - (ﬁ(t) - Ro(t)) 1(A) (2.15)
R(PT = R(t) — (ﬁ(t) - Ro(t)) 1(A) (2.16)

where R, (t) = e *oU®,
Let X and Y be two independent rvs from the three parameters Burr XII distribution
with parameters (kqi,c,a) and (k,,c,a) respectively. Let Ry, Ry, ... ,R, be n+ 1record

values from distribution of X and Rg, Ry, ... , R, be m + 1 records from distribution of Y.

Then, P = —2— Suppose we want to test
kqi+ky
Ho:P =P,
Hy:P # P,

Note that H, is equivalent to k, = 8k, where 6 = &. Thus, Hy:k, = 0k, and Hy: k, #+

6k, . It can be shown that, under H,,

Po= n+m+2
Y7 U, + OU(Ry)
and
R, = O(n+m+2)

U(Ry) + 60U (Ry)
For a generic constant C, the likelihood function of k; and k, is

L(ky,k3|Ro, Ry, ooy Ry RS, RS, oo, Riy) = CKTP kT L exp{—(k U(R,) + k,U(R:))}
and thus,



sup L(kq, k2|Rg, Ry, .., Rn, R, RS, ., Ryy)
0,

_ C

~ {U(Ry) + BU(Ry))n+m+2

and

sup L(kq, k3|Ro, Ry, .., Ry, R, RY, o, Riy)
[C]

exp{—(n+m+2)}; 0, = {ky, ky: k, = 0k}

C
T URIHUR)Y™
Therefore, the Likelihood Ratio is

exp{—-(n+m+2)};0 ={ky, ky:ky >0, k, > 0}

duin il

x \Zntm+2
{1 L OUR;, }
U(Ry)

Denoting by F, , (), the F — Statistic with (a, b) degrees of freedom and using the fact that

O(Ry, Ry, ..., Ry, R, RY, ..., Ry) =

UR) _ (n+Dk,
URp)  (m+Dk,

Fy(m+1),2(m+1), the critical region is given by

U(R U(R
{ ( f) <ll}u{ ( f) >l;}
U(Ry) U(Ry)
0(n+1) , 8(n+1) )
where [, = (,:—H)Fz(nﬂ),z(mﬂ) G) and I} = (1:_+1)F2("+1)'2(m+1) (1 — g) Thus, we define

two PTES of P based on MLE and UMVUE of P as follows:

PPT =P —(P—-PR,)I(B) (2.17)
PPT=p —(P-PR,)I(B) (2.18)
where I(B) is the indicator function of the set

B = {Fz(n+1),2(m+1): Cy < Bytna)20me) < 63}

Here, C3 = Fytmi1)2(me1) (1 —2),64 = Fyni1)20ms1) (2) and P and P are the MLE and

UMVUE of P respectively as defined in Chaturvedi and Malhotra (2017) and are respectively

given as

~ (m+ 1DU(R,)

P T DUGR) + (n+ DURS) (219)
- ; m!n! U(R,) i+1_ .

i mz(_l) (m—1—i)!(n+1+i)!{U(R;n)} R < R

P (2.20)

= i=0 .
C ; m!n! U(R;,) L | *
m;(—l) (m-l-i)!(n—i)!{U(Rn)} ;R = Ry,



2.1 Bias and Mean Square Error

In this sub-section, we derive the bias and mean square error (MSE) expressions for

PTES based on UMVUE, MLE, MRE and EBE of kP. For = kﬁ , we have
Bias (k™) = B[k} — (kb — k2)1(4) - k7]
= kg [{H2n+2 ()‘Cl) - H2n+2 (ACZ)} - AP{HZ(n—p+1)(AC1) - Hz(n—p+1) (/162)}] (2-21)

where H,, (.) stands for the cdf of y? distribution with y degrees of freedom.
Also, mMsE (k5™) =var (ki) + [Bias (125”)]2
Since

var (k™) = var (k) + Var (&} — k2)1(4)) — 2Cov (Y, (kb — k2)1(4))

rn—=2p+1Drn+1)
r’n—-p+1)

rn=2p+1Drn+1)
rn—-p+1)

= (Ak,)?P [ - 1] + (Ak,)? {HZ(n—2p+1)(AC1) - HZ(n—2p+1)(AC2)}

- ()Lku)ZP{Hz(n—pH) ()IC1) - HZ(n—p+1) ()ICZ)}Z
+ P (Hons2 (AC)) = Hany2 ACYL = (Hans2(AC) = Hane2 (AC,))]
- Zkgplp{HZ(n—p+1)(AC1) - HZ(n—p+1)(AC2)}[1 - {H2n+2 (AC1) - H2n+2(AC2)}]

n—2p+1Drn+1)
rn-p+1)

+ Zkiplp{HZ(n—PH)(ACl) - HZ("—PH) (ACZ)} + Z(AkO)ZP{HZ(n—pH) (A¢y) - H2(n—p+1) (ACZ)}
= 2075 {Hania (ACy) — Hapaa (AC,)}
Thus the MSE can be simplified to be

— 2(Ak,)?P K¢

{HZ(n—2p+1) ()IC1) - HZ(n—2p+1) (ACZ)}

r'n=2p+1Drn+1)
rn-p+1) -

n—2p+1Drn+1)
rn-p+1)

r(
1] - ()Ika)ZP {Hz(n—2p+1)(lcl) - HZ(n—2p+1)(AC2)}

MSE (k5™) = (k) [
+ (1= 2A°)k )P {4, (AC1) = Hai2(AC,)}
+ Z(Ako)zp{HZ(n—p+1)(AC1) - H2(n—p+1) (ACZ)} (222)

Next, the bias and MSE of PTE of kP based on MLE are

- r'(n— 1
Bias (B,) = o+ 0P S0P [1 = (000D = Hiuy )] + K2 (i sa ) = Hion2C)
— (ko)? (2.23)
and
p PT\ I'm—p+ 1) [I(n—2p+1)I(n+1)
MSE (k}'j,L ) = {(Ako(n + )P o+ 1) } Phn-p+1)
'n—2p+1)

= Aky(n+ 1% {HZ(n—2p+1)(Acl) - HZ(n+2p+1)(ACZ)}

rm+1)

I'h—p+1)

2
2
F(n + 1) } {Hz(n—p+1)(AC1) - Hz(n—p+1)(lcz)}

- {(Aka(n +1))P

+ k2P {Hyns2(AC)) = Hanyz (AC)Y1 = {Hans2(AC)) — Hapy2 (AC,)}]
rm—-p+1)

+2{ g+ 1) e LT (Hatue s (0D = Haguepany ()

rn-— 1
+ Zkgp A+ 1) %{Hzmz “c) - H2n+2(ACZ)}[{H2(n—p+1) “ac) - HZ(n—p+1)(AC2)} - 1]
rn— 1
+ [(ﬂko(n + 1))’7% [1- {Hz(n—p+1) (ACY) — Hyn—ps1) ()]'CZ)}] + kD {Hyp12(ACy) — Hypy 2 (AC,)}

2
_ (lkg)”] (2.24)



Before deriving bias and MSE for PTE based on EBE, for the sake of simplicity we define

the following:
&
Q1= fo O+ ) Py"e™dy , @, = fo O+ aum) Pyre™dy |, @3 = f(zr_’;o(y + ) Py"e ®dy and
2ko
o
2ko
P4 = f O + )" Py"e ™V dy
o
2kg

Therefore, we have the bias and MSE of PTE of k? based on EBE as

. ep pTy _ T+ Dy +p + 1) (Ak,)™?
Bias (kEB ) = -
I'n+ vy, +Drn+1)

and

(p1—@a) + kg{H2n+2 (ACy) = Hypuo (1)} — (Ak,)P (2.25)

(@1 — 93)*

wse (12, = {r(lr}(+ I+ P+ 1)}2 (k)" (92 = @a) _[[(t Dy +p + D)™ :
n+ Py, +1) rn+1) IF(n+7y, +Drn+1)

+ k2P {Hans2 (AC)) = Hapay (AC)HA = {Hansr (AC,) — Hopy2 (AC,)}]
r'(n+ vy, +p+ 1D(Ak,)™?
r'n+ vy, +Drn+1)
[F(n + 7y, +p + DAk,
I'n+ vy, + Drn+1)

+ Zkup (@3 — @) {Hpp42(ACy) — Hppy 2 (AC,)}

(@1 = 93) + kD {Hzn42(AC,) — Hypy 2 (AC,)}

- (lku)p] (2.26)

Next, the bias and MSE of PTE of k? based on MRE are

Bias(kl{z}) = (Tl_nﬂ [1 = {H;,(ACy) — Hyy (AC)} + ko {H 242 (AC,) — Hppy 2 (AC,)}
— Ak, (2.27)
and
msi(igy) = Ll 0D GO ) ) - taic)

K312 06) ~ Hap A1 ~ (a2 (06D ~ Hann O ~ S O™y, ) — a6

20D (A0~ s QED1 + (A — Hiy(C)]

_ w{ym(lcl) — H,(AC5)}
n

(n—1)Ak,
n

+ 2[1 = {Hy(AC,) — Hyn(AC)I] + ko {Hon42(AC,) — Hany2 (AC)}

—Ako]z (2.28)
Now, we derive bias and MSE expressions of PTES of R(t) based on MLE and UMVUE.

For sake of simplicity, we define the following:
Cy n C1 n
Qs = fcz//zzi—!exp (— (z + —k(nt)u(t))) dz and ¢, = fcz//zzi—!exp (— (Z + —2k(n+zl)u(t))) dz

Then the bias of PTE of R(t) based on MLE can be derived as follows. We have

k
W}] y"dy — @s + Ro(t){H2n+2 (ﬂCl) - HZTH_Z(ACZ)} _ R(t)

_ 1
Bias(RO) = s [ e [‘ {y *
0



Applying a result of Watson (1952) given by [”u™™ exp {- (au +2)} du = 2 (%)T_ Kp_1(2Vab)

[it is to be noted that K_,,,(*) = K,,,(-) form = 0,1,2, ...], we get

Bias(ﬁ(t)PT) = %{k(n + 1)U(t)}"THKn+1 (2 k(n+ 1)U(t)) — @5 + Ry (1) {Hans2(AC;) — Hypy2(AC,)}
—R() (2.29)
Following which the MSE of PTE of R(t) based on MLE is obtained as

nt et 2
MSE(R(t)’T) = %{Zk(n FDUOFT Knsr (226G + DUD) - [% UeCn+ DUOF? Ko (2K 1)U(t))] — 06— @?
+ (Ro (t))Z{HZTHZ(/lCl) - H2n+2 (ACZ)}{l - {H2n+2 (’161) - H2n+z (ACZ)}}

4 1
+— k(4 DUD) 7 Koo (/K DUD) 05
2 n+
+ 2Ry (D{Hzns2(AC) = Han 12 (AC,)} (qos — 2 {k(n+ DUOFF Ky (2K 1)U(t))>
2 n+1
+ [ (kG DUOYT Ky (20K + DUD) = 95 + Ry (045 (0) = Honsz (AC))
- R(t)r (2.30)

Denoting by

n i 2 n —u
0, = fC1 (1 _ Zklli(t))nu ez du and 0 = fC1 (1 _ ZkZ(t)) nyne2 du

C2 2n+1n) 2n+1n)

The bias of R(t) based on UMVUE can be obtained as follows. We have
Bias(ﬁ(t)PT) = Ry (t){Hzn12(AC;) — Hpni2(AC2)} — 0 (2.31)

From Chaturvedi and Malhotra (2017),

Var{R(t)} = —{kU(t)}("“)exp{ kU@®)} — ap_1exp{kUD}E;(—kU(D))

kU(t)

n—i—1

1 .
+Zal[2 KUY — et (KU exp (RUE)E(KU(D)

i-n+1;_p

+ Z a;(i—n)! (kU(t)) %(kU(t))r]—exp{—ZkU(t)}

i=n+1 r=0

where a, = -1'(7) and —£,(—x) = [ - du.

Thus the MSE of R(t) based on UMVUE is

MSE(R(t)™T) = —{kua>}<"+1>exp{ KU()} — Gy explkU(O}E (~KU (L)

kU(t)

m— 1 :
+Zal{z IO ™ — s (KU erp (RUO)E(KU (D)

i-n+1 j_pn 1
+ Z ai=m! () Dy (U | = exp(-2kU) = g + (Ro(®) THinyalGE) ~ Honsa G}
i=n+1 r=0
+ 20,R(t) — 2R()R, () {Hzn42(AC1) — Hany2(AC2)} (2.32)

Now, we derive bias and MSE expressions of PTES of P based on MLE. We have
Bias(P™™) = E(P) — E(PI(B)) + P,E(I(B)) — P



where E(I(B)) = P(B) = P(Cy < Fatns1y2tmsn < Cs) and E(P) = E( ) E(Q). (say). Following

the approach by Constantine et al. (1986), we obtain the pdf of @ by transformation into two

i

new independent rvs r>o0 and ge(0,%) where k; = kyr (n+ Dcos?f and k; = kyr (m +

1)sin?B. Putting ¢ = cos?g, the pdfof § = [1 + (nH) (L)]_l IS

m+1 1-¢
_ 1 n+ 1\ gra o™ _ (n+1
9(a) T Bm+1m+1) (p (m+1)> (1 + gq)n+m+2’ 0<q<le= p(m+1)_1 (233)
When ¢ = 0, (2.33) gives
_ﬁ(n+l+1,m+1)
@) =perimsD (2:34)

When € # 0, (2.33) yields on substituting 1+ eq = ¢,

1 A+ 1
H) = parimrD (” (s 1)) e (235)
1

1 nr )\ 1 ke n+1 m —(m+m+2)
Thus, for P10 = m(ﬂ (m_+1)) e fl t-1) 1+e-0t)mt dt
n+1 —0
E(P)={ ntm+2 o
P10 € *0

Also, E(PI(B)) = f ( )¢1(F)dF @ Where &, () is the pdf of F — distribution with

(2(n+1),2(m + 1)) degrees of freedom. Then the bias and MSE of PTE of P based on

MLE are obtained as

PN P,P(B) —¢q; €=0
PTY — o 9
Bias(P )_{(p10—<p9+PoP(B)—P;£ %0

and

( n+1 )2[(n+2)(n+m+2> 1] +2( n+1 )( B.P(BY) + P2P(B):€ = 0
n+m+2/ l\n+1/\n+m+3 P nimy2) P RPENHE =

MSE(P'T) = n+1 \2 n+1 n+1
— @1 + P2P(B ( ) z( ) —z(
@12 — @1+ PFP(B) + nEmt2 + ntmt2 (99 — 910) nEm2

)P,,P(B);s #0

2 n+1
C; 1 1 +1 1 1+
where ¢,; = [ <1+ k1> @, (F)dF and ¢, = m(p ("_)) e M (Vs G
koF !

m+1
t)m t_(n+m+2)dt

Finally, we obtain the bias of PTE of P based on UMVUE as

P,P(B) — 155 <1

: DPTY _—
Bias(P*") = {P P(B) = pryiv > 1

U(Rn) m—1 (-1)imin! (Q)Hl ¢l gntin
where v Rn)’ P13 = Zi=o (m—i-D!(n+i+D)!B(n+1,m+1) \kq fCi (1+z)n+m+2 dzand
Cotm et = (2 (nt
#14 = Dizo (n=Di(m+)!B(n+1,m+1) (kz) fC4 (14z)n+m+2 dz, (3 = )C3 and Cy = +1) Cy.

To obtain the MSE of PTE of P based on UMVUE, consider

v< 1)P(v <SD+E (ZZ b;b;(v)~(+D

i=0 j=0

§

—1m-1

E(P?) = E< a;a;(v)™**?

i

v> 1>P(v> 1)

Il
<]

Jj=0



where, q; = D - _CURML AR explicit expression of var(P) depends on the

(m—=i-D!n+i+1)!" "t (n=i)!m+i)!

evaluation of E(@!lv < 1)P(v < 1) and E(v~!|v > 1)P(v > 1) for 1 > 0. To evaluate them we first

(m+ l)kl (m+1)
(n+1)k2 =P (n+1)

obtain the pdf of ». We have, v = 2% which implies,

U(Rm) v~ FZ(n+1)2(m+1) Thus

we obtain the pdfof v as

n+1

p

M) = g r Lm D

(1 +pv) ™™ v >0

Fori>o,

+1

E@lv<s1DPv<l) = J-m

n+l(1 + pv)—n—m—z dv.

Substituting r = (1 + pv)~1, the binomial expansion of the integrand yields,

- & m [ :
E(vllv < 1)P(U < 1) = mz(—l)l (T’- i ) frm‘”‘dr
’ i=0 o
1 . ()" i#Ezl-m—1

where Ly tdr =3 oo and p’ = — Slmllarly we can obtain,

—log(p');i=1l—-m-—1

s m +l :
E(U_llv > 1)P(17 > 1) mz( 1) Tn_l+idT
1 -p'

1_(1_pl)n—l+i+1 . _ _

where ff_p,r“-l”dr ={ ik iFLon 1.Thus, Var(P) = ¢,5 — P?, Where
—log(1—p")i=l—n—-1
= a;a;p~ i+ T n +i +] + 2 ‘ s
= _— —1)P m+p—i—j—
15 Bn+1m+1) Z ( 1) fr dr
i=0 j=0 p=0 o'
m+i+j . m +i +] I
+ZZﬂ(n+1m+1)Z( ) f "
1-p'
~ — ;s v<1
and Var(PI(B)) = {‘piﬁ “’;3 V=" where g = YT Y 4 v+ (F)dF and g, =
Y17 =PV >1

P oY bib; (92("‘“’) fc3 i+ig, (F)dF. Thus the MSE of PTE of P based on UMVUE is

6, (n+1) Cy

obtained as

MSE(PPT) = {@15 — P2 =@, +2P(¢3 — P,P(B)) + P?P(B);v < 1
@15 — P? — @17+ 2P(@14 — P,P(B)) + PZP(B);v > 1

Comparing the performance of the proposed PTES analytically is a complicated task
because of their formulations. Therefore several figures as well as some numerical results are
presented to discuss their performance. The relative efficiency of PTE of some parameter ©
denoted by £5 over its regular estimator £ is defined as follows:

MSE(1s)

(APT
MSE(fT)

25) =

where § € {U, ML, MR, EB}.



2.2  Proposed PTCI for parameter k
In this section, we construct preliminary test confidence interval (PTCI) of the

parameter k. Suppose for known value of the other parameters ¢ and a, we are interested in
testing the hypothesis

H,:k =k,

Hi:k +k,
Since U(R,,) follows gamma distribution with parameters (n + 1, k), it is easy to obtain the
100(1 — €)% equal tail confidence interval (ETCI) of k as

)(z(n+1) (2) XZ(n+1) (1 Z)
lere = |\ 50wy 20RY

n-1
U(Rn)’

From equation (2.3), we obtain the MRE of k as ky = Then we can re-write Iz

based on MRE of k as
IETCI [CSkMRr CGkMR]

Xz(n+1)( ) and C, = XZ(n+1)( s)

where Cs = 21 D)

Accordingly, we can define PTCI of k based MRE of k as
Iig™ = [Cskifk, Cokir
If we let 1 = :—O and T = 2kU(R,,), then the coverage probability (CP) of PTCI of k based
on MRE of k is defined as
P(k € IZTCT) = (k € (csky, cok,): Xz(,m)( ) < 2kU(Ry) < Koy (1= 2)) + P(k € (cskup cokur): ZKU(R,) < i) (%))
1 (€ (o ubun) 20D > s (1)
=p <(c5 <A< A (g) <T < gy (1 - %)) +P (Xzz(n-n) (%) <T < Koy (1- ;)T < Awan) (%))
2 ( (5) < T <t (1-5). 7> e (1))
(m(nm( ) <T < ey (1= ))1@5 0@+ P (e (5) < T < min {eurs) (1~ 5) e ()

+ P (max {Xz(n+1) ( ) Mamen) (1 2)} <T < X3nsn) (1 - ;))
Denoting the first term of the above equation by C, then we obtain the CP of PTCI based on
MRE of k as



Xzz(n+1) (%) or > X%(n+1) (1 - %)

Xrmen) (1 - %) X3 (%)
Xzz(n+1) (%) <l1<1

C+1—-¢;0<1<

P(keIZIy ={C+P (A)(§<n+1) (1- ;) <T < Ky (1- ;)) ; m
2+ \ - T 2

Xa(ns1) (1 - %)
Xzz(n+1) (%)

In order to find the expected length of PTCI of k, we first obtain the length of PTCI based on

cC+ P <X22(n+1) (;) <T< l){zz(n+1) (%)). 1<1<

MRE of k which is given by the following rv:
Koo = €5) s Ketnen (5) < 20U (Rn) < Hdurny (1-3)
LFI\’/;FRCI = ~ & &
(€6 = €5) 3 2koU(Rn) < Xnen (5) 07 2k UR) > Xinen (1 3)

Then the expected length (EL) of the PTCI of k based on MRE of k is given by

&

& & &
E(LETC = E (LIXIRCIlez(n+1) (E) < 2k, U(Ry) < Xhtmin) (1 - 5)) P <X§(n+1> (E) < 2k, U(Ry) < Xitmin) (1 - E)>

& & &
+E (L';g'nkoumn) < Linen (3) 07 2koU(RY) > Xy (1 - 5)) P <2kaU(Rn) <L (3) o7 2koU(RY)

> X;(n+1) (1 - g))

= k,(cs — cs) [H2n+2 ()LXZZ(nH) (1 - %)) — Hapy (/U(zz(n+1> (;)) + A{Hzn—z (lxg(nm (;)) +1-Hyy </1X§(n+1) (1 - ;))}]
On similar lines, we can obtain the CP of PTCI of k based on UMVUE as

Xa(ns) (%) Xame1) (1 B %)

pl
xzz(nm(l—%) T Xf(nm(%)
€

Hanlz) @ <ig1

D+1—-¢;0<21<

Pk e 15TCI) =4qD+P (AXZZ(nH) (1 - %) <T< X;(n+1) (1 - ;)) ; )(2 (1 g)
2(n+1) -2

X;(n+1) (1 - %)

X;(n+1) (%)

where D =p (szz(nm (5) <T < Mdany (1 - g))l(cs,%)(A) and the EL of the PTCI of k based on

D+ (i (3) <T <Atk (§)) 11 <25

UMVUE of k as

€ €
E(LY) = ko(cs — c5) [Hzmz (b(%(nﬂ) (1 - E)) — Hanysz (A)(;(n-f»l) (E))

+ nATnl{HZn—z (AXZZ(THl) (g)) +1-Hyp <AX§(TL+1) (1 - %))}]
Finally, we obtain the CP of PTCI of k based on MLE of k is defined as

X;(n+1) (%) orl> X;(n+1) (1 — %)

Kimen) (1 - 7) Xime) (%)
g)> . X;(nﬂ) (%)

£
PkelfiY=<SE+P (AXZZ(THD (1 - E) <T < Xyuan) (1 “2/) g
X2(m+1) (1 - 7)

: e Ko (1-3)
E+ P <X§(n+1) (E) <T< AX%(nH) (E)) ;1< < — T
X2(n+1) (7)

where £=p (axg(nﬂ) () <T < 2 (1 —g))z(cs_%)@) and the EL of the PTCI of k based on MLE of k as

E4+1—6;0<1<

<ig1




€ €
E(LYE) = ko(cs — c5) [Hzmz <2X§(n+1) (1 - E)) — Haniz (AXg(n+1) (E))

2.3

An+1) £ £
+ n—1 {HZn—Z (A)(%(nﬂ) (E)) +1—-Hpno (2'){;(7&1) (1 - E))}]

Numerical Findings

From the previous section, it is easy to obtain the relative efficiency of PTE over the

usual estimator of k based on UMVUE, MLE and MRE denoted by e(k§7, ky), e(kif, kuy)

and e(kifk, kur) respectively, which depend on the sample size (n+ 1) and level of

significance e. Figure 1 shows the relative efficiency of kT over k,,; and we observe that

there exists an interval of A for which this efficiency is greater than 1. Similarly, Figure 2 and

Figure 3 show the relative efficiency of kT over k; and k5T over k. respectively. Since

e(kEL, kgp) does not have a closed form and thus we use Monte Carlo simulation technique

to compute this efficiency based on the following algorithm:

For given values of u and v, generate one sample from Gamma(y, v) and denote it as
k*.

For a specified value of n, generate m random samples from gamma(n + 1,k*) to
obtainY;;j =12,..,m.

r(n+v+p+1)

P .
r(n+v+1) (YJ + ,u) ;7 =12,...,m.

Compute, k5, (j) =
For a specified value of k,, test the hypothesis H,: k = k,, using the test statistic in
equation (2.8) to get I?EBPT(]') = kb, () — (kB (D —KD)I(A) ;) = 1,2, ..., m.

P PT

Compute  MSE = 37, (6(/) — k™")?, where 6()) € {kB, (). k2;" (D}, j=

1,2,...,m.Foru = 2,v =4and m = 1000, the result is shown in Figure 4.
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Figure 2: Relative Efficiency of PTE of k based on UMVUE with respect to 1 = ki
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Figure 4: Relative Efficiency of PTE of k based on EBE with respect to A = ki

From Figures 1, 2, 3 and 4 we observe that as sample size increases, the relative
efficiency of PTES of k with respect to A increases in the interval of A for which this
efficiency is greater than 1.

In Figure 5, we compare the performance of the two PTES of k based on UMVUE
and MRE of k. Even though the MRE of k is biased for k, its corresponding PTE is more
efficient that the PTE of k based on UMVUE for higher values of A. However, in the
neighbourhood of the null hypothesis H,: k = k,, the PTE of k based on UMVUE continues

to be a better estimator.
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For a fixed sample size n = 5, Figure 6 compares the relative efficiency of R(t)"T

over R(t) and R(t)"T over R(t) respectively with respect to 6 = % for any fixed time

point and level of significance 0.05. From this figure, it is clear that PTES of R(t) based on

MLE and UMVUE outperform the usual estimators of R(t) in a particular interval of 6.
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Figure 6: Relative Efficiency of PTE of R(t) based on MLE and UMVUE with respect to
_ R®
 Ro(t)

Now we study the relative efficiency of PTES of P based on MLE and UMVUE over

the usual estimators of P. Suppose for different values of k; and k, we want to test the



hypothesis H,: P = P, against H,: P # P, for fixed sample sizes n =5 and m = 2. Then in
Figure 7, the relative efficiency of PTES of P based on MLE and UMVUE over the usual

estimators of P has been demonstrated. From this figure, it is clear that PTES of P based on

MLE and UMVUE outperform the usual estimators of P in an interval of 6 = Pi.
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Figure 7: Relative Efficiency of PTE of P based on MLE and UMVUE with respect to 8 =

P
Po

In Figure 8, we show the CP of PTCI of k based on MRE with respect to 4 = ki for a

fixed sample size and level of significance €. From the figure and the derived expression of
the CP of PTCI, we observe that as the value of A tends to 0 or oo, the CP of PTCI tends to
1 —¢ and for an interval of A around 1, the CP of PTCI is greater than 1 —&. This
domination interval is larger for smaller sample sizes. Thus, we can conclude that the CP of
PTCI of k is greater than the CP of ETCI for some values of A in a specific interval around 1.
Similar result has been observed for the CP of PTES of k based on UMVUE and MLE in
Figure 9 and Figure 10 respectively.
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Figure 10: Coverage Probability of PTCI of k based on MLE



In Figure 11, we compare the scaled EL of PTCI of k based on MRE with the ETCI
with respect to 1. We observe from this figure that there exists an interval of A for which the
EL of PTCI is lower than that of ETCI. This interval of A for which EL of PTCI is lower
decreases with an increase in sample size. We also note that as A tends to 0 or oo, the EL of
PTCI tend to be close to the EL of ETCI. Similar results are observed for EL of PTCI of k
based on UMVUE and MLE in Figure 12 and Figure 13 respectively.
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Figure 12: Expected Length of PTCI of k based on UMVUE
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3. Proposed PTES when all the parameters are unknown

In this section, we consider the case when all the parameters k, c and a are unknown.
Chaturvedi and Malhotra (2017) discussed numerical techniques to obtain the MLES of the
parameters k,cand «a as k,éand & respectively. They also derived the elements of the
observed Fisher information matrix. Since the exact distribution of the test statistics cannot be
achieved, so we follow an approach by Gulati and Padgett (1991, 1994, 1995). Suppose we
have m independent samples of size n+1 from upper record values like
Rjo, Rj1, ., Rjn ;j = 1,2, ..., m. Then the MLE of the parameter k? is given by

p

A +1
kP = mnt1) 3.1)
R Re
jslog (1+72)

Further, if there exists some prior information on the parameter in the form of k = k,

and we are interested to estimate k incorporating such information. So we consider the

following simple hypothesis to check the validity of this information:

H,:k =k,
Hi:k +k,
Under H,, \/\/EV(LE;? o N (0,1) and the test statistic is defined as
ar

vm(kg — k,) )

Ly = (3.2)
/Var(kR)



Under H,, L,,_, converges to central y? distribution with 1 degree of freedom as m —
oo while under the local alternative of the form

Ok

Hm:k=k0+\/a

(3.3)

L., — k converges to non-central y? distribution with non-centrality parameter

A2 <m<k - ko>>2
JVar(kg)
Based on the asymptotic distribution of L,,_, the critical region is given by L,,_, > x2(&)
where ¢ is the level of significance. Thus, we define PTE of k as
BB = B2 — (R = K2V Lk < X2(£)) (3.4)
Note that PTE of the other parameters ¢ and « can also be defined in similar fashion.

Next, by invariance property of MLE, the MLE of the reliability function R(t) under

this approach is given by
- - t¢
R(t)g = exp| —kglog (1 + 5) (3.5)

Further if we suspect that R(t) = R, and consider the following simple hypothesis to check
the validity of this information:

H,:R(t) =R,

Hy:R(t) # R,

V(R(DR=Re) SYMD

L <M(ﬁ(t>R - R0)>2
O\ Var@®0R)

Under H,, Ly_g(t) converges to central y* distribution with 1 degree of freedom as m —

Under H,, N(0,1) and the test statistic is defined as

(3.6)

oo while under the local alternative of the form

Or(e)
vm

Lym—g(t) CONVerges to non-central x? distribution with non-centrality parameter

Hp,:R(t) =R, +

(3.7)

2

Vm(R(t) = R,)

/Var(ﬁ(t)R)




Based on the asymptotic distribution of L,,_g(), the critical region is given by L,_g) >

x%(¢) where ¢ is the level of significance. Thus, we define PTE of R(t) as

R®R" = R®r — (R®)r — Ro)I(Lin-re) < X1 (£)) (3.8)
Finally, by invariance property of MLE, the MLE of the reliability function P under

this approach is given by

S ks

P, R__ (3.9

ER + k2R

m(r(l) e) such that we have m independent
R*

samples of r + 1 upper record values R}, ..., Rj;j = 1,2,...,m from three parameter Burr

m(n+1)

where k,, = and ky, =

m Rin
Lj=log| 1+ R,

XI1 distribution. Further suppose the suspected value of P is P, and thus we consider the
following simple hypothesis to check the validity of this information:

H,:P =P,

H:P # P,

vm(Pgr—-P,) asymp

JVar(PR)

_ (Vm(Pg - ))
Lm_P—( et (3.10)

Under H,, L,,_p converges to central y? distribution with 1 degree of freedom as m —

Under H,, N(0,1) and the test statistic is defined as

oo While under the local alternative of the form
Op
Hy:P =F, + N (3.11)

L.,_p converges to non-central y? distribution with non-centrality parameter
2

\/E(P - Po)

/ Var(Pg)

Based on the asymptotic distribution of L,,_p, the critical region is given by L,,_p > x%(¢).
Thus, we define PTE of P as
13£T = pR - (ﬁR - PO)I(Lm—P < xi () (3.12)

APZ ==

3.1  Asymptotic Bias and MSE



We now derive the asymptotical distributional bias (ADB) and asymptotical
distributional mean square error (ADMSE) of the proposed estimators in (3.1) and (3.4)
under the local alternative given by (3.3). Following Saleh (2006), for any estimator 8 of
we consider the following definitions of ADB (B) and ADMSE (M):

B(9) = lim E[vm(0 - 0)] (3.13)
M(8) = tim £|(vm(s - ) | (3.14)

Lemma 3.1 (Saleh,2006): If Z~N(A,1) and ¢(.) is a Borel measurable function, then
1. E[Z.@(Z®)] = AE[e(}3(a))]
2. E[Z%.¢(Z%)] = E[e(3(8H)] + 2% E[¢(xE(2D))]
where yZ(A?) is the non-central y2 rv with d degrees of freedom and non centrality
parameter AZ.

From (3.13), the ADB of k5 and k2" are obtained as follows:
By(kg) =0
By (ki") = lim E[Vm(kg" — k)]

= lim E[vm(fg — (kr — ko) I(Lm < x2(2)) — k)]

= lim [-E{vm(kg — k)I(Lm < x3()}]

=— /Var(ER) JlifclmE Vim(ke — ko)l Vin(ke — k) < xi(e)
. Var(l;R) . Var(ER)

Since (%) 2 N(A,, 1), then by applying Lemma 3.1, taking ¢(.) to be an indicator

function, we have

By(RET) = =8, Hy(x?(e), %)
where H,(.,A?) is the cdfof non-central y? distribution with d degrees of freedom and non-
centrality parameter A2.
Also, for ADMSE of kg and kBT we get
My (k) = lim B[ (vm(ke — )| = var(io)
and

my(kE") = lim B[ (vm(R7 = 1)) |



= Var(l:tR)

. [M(ER—ka)z/r(kR ) \]
e G2 () o)

= 21im £ [Vm (kg — k) {vim ((ke = ko)1 (Lm-ic < 22()) )]
= Var(kR)

. [\/E(ER—ka) 2 / Vm(kg — k,) \I
+ Var(kR)%lﬂEll(\/m) 1\( W ) <)(1(e))

0o i
+ 2Var(Rke) lim (ﬁ(k — k")> Ell<\%(kR — k)> I(Lin-k < x3(£))

Var(ER) Var(ER)

[ - ’ 1
—2Var(kg) limEI M Ly < Xlz(e))l
e l ,Var(ER) J

From Lemma 3.1 we get:
My(RET ) = Var(kg)[1 — Hs(x2(e), Ax®) + D *{2H5 (2 (e), A”) — Hs (x2(e), k) }]
On similar lines we obtain from (3.13), the ADB of R(t) and R(¢t)%" as follows:
B,(R(Hr) =0
By(R(OF") = lim E[Vm(R(t)pr_r — R(t)]
= —8p(eyHs (X2 (8), Arco”)

Also, for ADMSE of R(t) and R(t)5" we get

My (R(©)r) = lim E[(Vm(R@) - R®)) | = Var® ()
and from Lemma 3.1

M,(ROFT) = lim E[( (ROpr-s —R(t))) ]
=Var(R(Ox)[1 ~ H; (k1 (€), 8rew”) + Ao {2H; (17 (©), Brery”) = Hs (17 (€), Aoy )]
Finally, the ADB of P, and P;T are obtained as follows:
By(Py) = 0
By(P{T) = lim E[m(Ppr_g — P)]
= —8pHs(x2 (), 8p%)
Also, for ADMSE of P, and P;T we get

M, (Pg) = r}li_r)rgoE[(\/ﬁ(PR —P))Z] = Var(Py)
and from Lemma 3.1
M(PFT) = lim E (\/ﬁ(ﬁPT_R - P))z]

=Var(Pp)[1 - Hs(x2(e), 85%) + A *{2H; (2 (e), Ap%) — Hs (2 (), 85°)}]

3.2 Comparison



In this section, we analyze the ADMSE of the proposed estimators to study their
relative performance. From (3.4), we see that if L,, » 0then k%" — k, while ki" - kpas L,, -
. The asymptotic relative efficiency (ARE) of k2T over kj is defined as:

M, (ke
M, (kRT)

ARE (kET kg) =

= [1 - H3(X12(8)'Ak2) + Ak2{2H3(X12(8)'Ak2) - HS(Xlz(S)'Akz)}]_l

‘(E ]
— ¢=0.01
o ---- ¢=0.05
-------- =01
°*T v - £=0.25
'5.'% © — €=0.5
<
<t
N p—
© T I i i i
0 2 4 6 8

Figure 14: Asymptotic Relative Efficiency of k&7 over kg

Figure 14 shows the asymptotic relative efficiency of kLT for different values of &
verses A,®.  We observe that the relative efficiencies have a peak at point zero, then it
decreases and gets a minimum at some values of A,2. Then the relative efficiencies increase
to line 1.  Also, it is seen that the proposed PTE have the highest relative efficiency for the
smallest values of €. Further, as it increases the maximum relative efficiencies decrease while
the minimum relative efficiencies increase. Finally, we can conclude that k2T is a better
estimator of k than k whenever:

2 o H3(X12(5):Ak2)
© 720, (2 (), M) — Hs (2 (e), M)

By the asymptotic normality of MLE for the parameters ¢ and «, one may obtain similar

0< A

results. On similar lines, the ARE of R(t)ET over R(t)y is defined as

ARE(R(OFT,R(6)z) = [1 = Hs(x}(2), Brv”) + ooy {2H3 (43 (e), Bre?) - Hs(%f(f),AR(t)z)}]_l



and we can conclude that R(¢)" is a better estimator of R(t) than R(t) whenever
Hs (x2 (), Arc”)

2H; (22 (), Areey”) — Hs (X2 (), Arey”)

Similarly, PET is a better estimator of P than P, whenever

2 2
0< A< Hs (3 (e), 8p7)

"~ 2H;(x2(e), Ap%) — Hs (2 (e), Ap7)

0 <Arey’ <

5. An Example on Real Data

To illustrate the estimation methods proposed in the preceding sections, we consider
data on maximum flood level (in millions of cubic feet per second) for the Susquehanna
River of Harrisburg over 20 four-year periods. This data was considered by Dumonceaux and
Antle 1973 and is as follows:
0.654 0.613 0.315 0.449 0.297 0.402 0.379 0.423 0.379 0.3235 0.269 0.740 0.418 0.412
0.494 0.416 0.338 0.392 0.484 0.265

Kolmogorov Smirnov test generated the test statistic D = 0.14 and a p-value of
0.8996 which indicates that the data fits the three parameter Burr distribution. Using an
iterative algorithm, we obtained the MLES of the parameters as k = 0.5829, ¢ = 8.3113,
@ = 0.0002. Thus, the reliability function R(t) = 0.8899 at t = 0.3. The following are the
upper record values obtained from the sample.
0.6540 0.7400
Based on these record values, we obtain the preliminary test estimators of kand R(t) for
various test values of k, and R,(t) respectively. The results are shown in Tables 1 and 2

respectively.

Table 1: Preliminary test estimators of k

ko ket i ik
0.10 0.1000 0.1000 0.1000
0.20 0.2000 0.2000 0.2000
0.30 0.3000 0.3000 0.3000
0.40 0.4000 0.4000 0.4000
0.50 0.5000 0.5000 0.5000
0.60 0.6000 0.6000 0.6000
0.70 0.7000 0.7000 0.7000
0.80 0.8000 0.8000 0.8000
0.90 0.9000 0.9000 0.9000
1.00 0.3334 0.1667 0.0000




Table 2: Preliminary test estimators of R(t)

R,() RM®T  RM®O™
0.10 0.9355 0.9667
0.30 0.9355 0.9667
0.50 0.9355 0.9667
0.70 0.9355 0.9667
0.80 0.9355 0.9667
0.90 0.9000 0.9000
0.93 0.9300 0.9300
0.95 0.9500 0.9500
0.97 0.9700 0.9700
1.00 0.9355 0.9667

6. Conclusion

We have proposed various preliminary test estimators for estimation of the powers of
the parameter k and reliability functions of three parameters Burr XII distribution under the
assumption of known values of parameters ¢ and a. The exact bias and MSE expressions
have been derived. We have also discussed a case when all the parameters of the distribution
are unknown. It can be concluded that all of the proposed PTES dominate their corresponding
usual estimators such as UMVUE, MLE, MR and EBE in the neighbourhood of null
hypothesis H,: k = k,. The relative efficiency of PTES of the powers of the parameter k is
higher when k is close to its hypothesized value k,. Similarly, PTES of R(t) and P(X >
Y) perform better than their usual estimators whenever the true value of the parameter is
close to its hypothetical value.

Next, we have also developed improved preliminary test confidence intervals of the
parameter k and have shown them to have a greater coverage probability and a smaller
expected length compared to the usual equal tail confidence intervals whenever k is
sufficiently close to k,. Thus, we were able to establish improved estimators and confidence

intervals of the parametric functions of the three parameters Burr XI1 distribution.
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