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Abstract

Two families of distributions are considered which cover many
distributions as specific cases. The problem of bounded risk point
estimation of the parameter and hazard rate function of the two
families of distribution is handled. Motivated by Mukhopadhyay
and Pepe (2006), Roughani and Mahmoudi (2015) and Mahmoudi
and Lalehzari (2017), two-stage procedures are developed based on
maximum likelihood estimator (MLE) as well as uniformly minimum
variance unbiased estimator (UMVUE). The estimation problem
based on minimum mean square estimator (MMSE) is also considered.
We establish that MMSE of the parameter and hazard rate provide a
smaller risk.

Keywords and Phrases: Bounded risk estimation; Exact
distributions; Moore and Bilikam family of distributions; Hazard rate;
Sequential estimation; Stopping variables; Two-stage sampling.

1 Introduction and the Fixed Sample Size

Results

Sequential estimation procedures are adopted in cases where the total sample
size is not a degenerate random variable. Instead, data is evaluated as
it is collected and further sampling is ceased in accordance with a pre-
defined stopping rule as soon as significant results are achieved. Sequential
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procedures are also adopted in cases where no estimation procedures
employing a non-random sample size can obtain the desired goals. For
instance, one cannot achieve a minimum risk of an estimator where the
sample size is fixed. Thus, in sequential analysis we may be able to arrive
at a decision at a much earlier stage and consequently lower financial and/or
human cost. Bounded risk estimation is a common sequential analysis
problem consisting of a pre-assigned accuracy. Populations with known
variance have a fixed sample size solution and no sequential methods need
to be adopted. Sequential procedures come in handy when nothing is known
about the population. Stein (1945) proposed a two-stage bounded risk
estimation procedure for the normal distribution. He utilised the standard
deviation of the initial sample to yield a terminal sample size. Later
exponential and gamma distributions were considered to yield modelling time
results because unlike normal distribution, modelling times are often skewed
to the right.

A lot of work has been done in the literature of sequential estimation of
the scale parameter of exponential distribution. Starr and Woodroofe (1972),
Mukhopadhyay (1980, 1994), Isogai and Uno (1994), Mukhopadhyay and
Datta (1995), Uno et al. (2004), Zacks and Mukhopadhyay (2006a,b), Zacks
(2009) are some of the authors to name a few. Woodroofe (1977) developed
sequential estimation of the scale parameter of gamma distribution.
Takada and Nagata (1992) and Zacks and Khan (2011) studied the
confidence intervals of the mean and scale parameter of gamma distribution.
Mukhopadhyay and Pepe (2006) estimated the scale parameter of exponential
distribution using its MLE/ UMVUE and two-stage procedures. Mahmoudi
and Roughani (2015) developed a two-stage sampling scheme for estimating
the scale parameter of gamma distribution by its MLE/ UMVUE assuming
the shape parameter is known such that the risk is uniformly bounded by
a pre-assigned number. They provided explicit formulas for the distribution
and expected value of the stopping variable. In continuation to this study,
Roughani and Mahmoudi (2015) provided explicit formulas for the expected
value and risk of the MLE of the scale parameter in a two-stage sampling
scheme. Later, Mahmoudi and Lalehzari (2017) considered a two-stage point
estimation of the hazard rate of exponential distribution. One may be
interested in the hazard function as they measure the conditional probability
of failure given the system is currently working.

The purpose of the present paper is many-fold. First we consider a family
of distributions by Chaturvedi and Alam (2010) which covers exponential
and gamma distributions as specific cases. We generalise some of the results
by Mukhopadhyay and Pepe (2006), Mahmoudi and Roughani (2015) and
Roughani and Mahmoudi (2015) and also compare these results on the
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basis of two estimators, i.e. MMSE and MLE/ UMVUE of the unknown
parameter. First we derive these estimators, i.e. MMSE, MLE and UMVUE
of the parameter. Under Stein’s two-stage sampling scheme, we derive explicit
expressions of the stopping variable such that the risk of the estimators
is uniformly bounded by a pre-assigned number. Next we derive the exact
risk of both the estimators of the parameter and establish that the risk is
smaller when we estimate the parameter by its MMSE. We now proceed by
considering a family of distributions by Moore and Bilikam (1978) which
covers exponential distribution as a specific case. We extend the results of
Mahmoudi and Lalehzari (2017) and compare these results on the basis of two
estimators, i.e. MMSE and MLE/ UMVUE of the hazard rate. First we derive
these estimators, i.e. MMSE, MLE and UMVUE of the hazard function.
Under Stein’s two-stage sampling scheme, we derive explicit expressions
of the stopping variable such that the risk of the estimators is uniformly
bounded by a pre-assigned number. Next we derive the exact risk of both
the estimators of the hazard rate and establish that the risk is smaller when
we estimate the hazard rate by its MMSE.

Let X be a random variable (rv) from a family of distributions F 1

proposed by Chaturvedi and Alam (2010) with probability density function
(pdf)

f (x; a, α, β,θ) =
gα−1 (x;θ) g′(x;θ)

βαΓ(α)
e−

g(x;θ)
β ; x > a ≥ 0, α > 0, β > 0.

(1.1)

Here, g(x;θ) is a function of x and may also depend on a vector valued
parameter θ which is assumed to be known. Moreover, g(x;θ) is a
monotonically increasing function in x with g(a;θ) = 0, g(∞;θ) = ∞
and g′(x;θ) denotes the derivative of g(x;θ) with respect to x, α is known
shape parameter while β is unknown parameter. We note that F 1 covers the
following distributions as specific cases:

I. For g(x;θ) = x, α = 1 and a = 0, we get the one-parameter exponential
distribution [Johnson and Kotz (1970, p.197)].

II. For g(x;θ) = x and a = 0, it gives gamma distribution. Further for
integral values of α, it gives Erlang distribution [Johnson and Kotz
(1970, p.166)].

III. For g(x;θ) = xp, θ = p, p > 0 and a = 0, it leads us to generalised
gamma distribution [Johnson and Kotz (1970, p.197)].

IV. For g(x;θ) = xp, θ = p, p > 0, α = 1 and a = 0, it turns out to be
Weibull distribution [Johnson and Kotz (1970, p.250)].
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V. For g(x;θ) = x2, α = 1
2

and a = 0, it is known as half-normal
distribution [Davis (1952)].

VI. For g(x;θ) = x2

2
, α = m

2
, m > 0 and a = 0, we get Chi distribution

[Patel et al. (1976, p.173)] and for m = 3 we get Maxwell distribution
[Tyagi and Bhattacharya (1989)].

VII. For g(x;θ) = x2, α = 1 and a = 0, it gives Rayleigh distribution [Sinha
(1986, p.200)].

VIII. For g(x;θ) = log(1 + xb), θ = b, b > 0, α = 1 and a = 0, it leads us to
Burr distribution [Burr (1942), Cislak and Burr (1968)].

IX. For g(x;θ) = log(x
a
), α = 1 and a > 0, it turns out to be Pareto

distribution [Johnson and Kotz (1970, p.233)].

X. For g(x;θ) = log
(
1 + x

ν

)
, θ = ν, ν > 0, α = 1 and a = 0, it is called

Lomax (1954) distribution.

XI. For g(x;θ) = log
(

1 + xb

ν

)
, θ = (ν, b), ν > 0, b > 0, α = 1 and a = 0, it

becomes Burr distribution with scale parameter ν [Tadikamalla (1980)].

XII. For g(x;θ) = log
(

1 + xb

δb

)
, θ = (δ, b), δ > 0, b > 0, α = 1 and a = 0,

it is called log-logistic distribution [Kleiber (2004)].

XIII. For g(x;θ) = x2, α = k + 1, k ≥ 0 and a = 0, we get generalized
Rayleigh distribution of Voda (1978).

XIV. For g(x;θ) = xγeνx, θ = (γ, ν), γ > 0, ν > 0, α = 1 and a = 0, it gives
the modified Weibull distribution of Lai et al. (2003).

XV. For α = 1 and a = 0, it leads us to the family of distributions considered
by Gurvich et al. (1997).

XVI. For g(x;θ) = γ exp
(
xν

γν
− 1
)

, θ = (γ, ν), γ > 0, ν > 0, α = 1 and

a = 0, it turns out to a modified form of Weibull distribution considered
by Xie et al. (2002). If we take γ = 1, it reduces to the lifetime
distribution considered by Chen (2000).

XVII. For g(x;θ) = (γx)ν+(µx)λ, θ = (γ, ν, µ, λ), γ > 0, ν > 0, µ > 0, λ > 0,
α = β = 1 and a = 0, it becomes the additive Weibull distribution of
Xie and Lai (1995) and Stoner et al. (1994).
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XVIII. For g(x;θ) = µx+ ν x
2

2
, θ = (ν, µ), ν > 0, µ > 0, α = β = 1 and a = 0,

it is called linear exponential distribution.

XIX. For g(x;θ) = (x−a)+ ν
γ

log
(
x+ν
a+γ

)
, θ = (ν, γ), ν > 0, γ > 0 and a = 0,

we get the generalized Pareto distribution of Ljubo (1965).

XX. For g(x;θ) = αx2, θ = α and a = 0, we get the Nakagami (1960)
distribution.

Let X1, X2, . . . , Xn be a random sample from the family of distributions
F 1. Then assuming a, α and θ are known, the likelihood function of β is
given by

L(β|x) =
n∏
i=1

f(xi; a, α, β,θ)

=
e−

Sn
β

βnα

n∏
i=1

gα−1(xi;θ)g′(xi;θ)

Γ(α)
, (1.2)

where Sn =
n∑
i=1

g(xi;θ). Thus by factorisation theorem [see Rohtagi and Saleh

(2012, p.361)], Sn is sufficient statistic for β and follows gamma distribution
with shape parameter nα and scale parameter β. Since the distribution of Sn
belongs to the exponential family, it is also complete [see Rohtagi and Saleh
(2012, p.367)]. For q > 0, consider

E(Sqn) =
Γ(nα + q)

Γ(nα)
βq.

Thus the UMVUE of βq is

β̃qU =
Γ(nα)

Γ(nα + q)
Sqn.

From (1.2), the MLE of βq is

β̃qML =

(
Sn
nα

)q
.

For q = 1, we see that the MLE is equal to the UMVUE of β and let us
denote them by

β̃n =
Sn
nα

, (1.3)
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based on sample size n. Now, for some number k > 0, the MMSE of β based
on sample size n can be obtained by minimising E((kSn − β)2) with respect
to k and we get

β̂n =
Sn

nα + 1
. (1.4)

Let us denote the loss function for estimating β by its estimator β̂n by

L(β̂n, β) = A(β̂n − β)
2
, (1.5)

where A is a known positive weight. The associated risk is

R(β̂n, β) = E(A(β̂n − β)
2
) =

Aβ2

nα + 1
. (1.6)

The loss of estimating β by β̃n is

L(β̃n, β) = A(β̃n − β)
2
, (1.7)

and the associated risk is

R(β̃n, β) = E(A(β̃n − β)
2
) =

Aβ2

nα
. (1.8)

The sample sizes required to achieve R(β̂n, β) ≤ ω and R(β̃n, β) ≤ ω are
n ≥ n∗ and n ≥ n∗∗ respectively, where

n∗ =
1

α

(
Aβ2

ω
− 1

)
(1.9)

and

n∗∗ =
Aβ2

αω
. (1.10)

We note thatR(β̂n, β) < R(β̃n, β). Thus, if we consider a two-stage procedure
motivated by MMSE, we expect a reduction in the risk. Since n∗ and n∗∗

are unknown, there does not exist any fixed sample size procedure for this
problem [see Takada (1986)].

Let X be a random variable (rv) from a family of distributions F 2

proposed by Moore and Bilikam (1978) with probability density function
(pdf)

f(x; ν, θ) =
θgθ−1(x)g′(x)

ν
e−

gθ(x)
ν ; x ≥ 0, θ > 0, ν > 0. (1.11)
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Here, g(x) is a real-valued, strictly increasing function of x with g(0+) = 0,
g(∞) =∞ and g′(x) denotes the derivative of g(x) with respect to x, θ is a
known parameter while ν is an unknown parameter. We note that F 2 covers
the following distributions as specific cases:

I. For g(x) = x and θ = 1, we get exponential distribution [Johnson and
Kotz (1970), p.166].

II. For g(x) = x, we obtain Weibull distribution [Johnson and Kotz (1970),
p.250].

III. For g(x) = log(1+xb), b > 0 and θ = 1, it gives Burr distribution [Burr
(1942); Cislak and Burr (1968)].

IV. For g(x) = log
(
x
a

)
, a > 0 and θ = 1, it leads us to Pareto distribution

[Johnson and Kotz (1970), p.233].

V. For g(x) = x and θ = 2, we obtain Rayleigh distribution ([Johnson and
Kotz (1970), p.200].

VI. For g(x) = log
(
1 + x

σ

)
, σ > 0 and θ = 1, it is called Lomax (1954)

distribution.

VII. For g(x) = log
(

1 + xb

σ

)
, b > 0, σ > 0 and θ = 1, it becomes Burr

distribution with scale parameter σ (Tadikamalla 1980).

VIII. For g(x) = xγeσx, γ > 0, σ > 0 and θ = 1, it gives modified Weibull
distribution of Lai et al. (2003).

IX. For g(x) = (x − a) + σ
λ

log
(
x+σ
a+λ

)
, σ > 0, λ > 0, a ≥ 0 and θ = 1, we

get generalised Pareto distribution of Ljubo (1965).

X. For g(x) = bx + λ
2
x2, λ > 0, b > 0 and θ = 1, we get the linear

exponential distribution [Mahmoud and Al-Nagar (2009)].

XI. For g(x) = (1 + xb)
λ−1, b > 0, λ > 0 and θ = 1, we get the generalised

power Weibull distribution [Nikulin and Haghighi (2006)].

XII. For g(x) = α
b
(ebx − 1), α > 0, b > 0 and θ = 1, we get the Gompertz

distribution [Khan and Zia (2009)].

XIII. For g(x) = (ex
b − 1), b > 0 and θ = 1, this gives Chen (2000)

distribution.
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XIV. For g(x) = (x − a), a ≥ 0 and θ = 1, we get the two-parameter
exponential distribution (Ahsanullah (1980)).

Let X1, X2, . . . , Xn′ be a random sample from the Moore and Bilikam
family of distributions F 2. Then assuming θ is known, the likelihood function
of ν is given by

L(ν|x) =
n′∏
i=1

f(xi; ν, θ)

=

(
θ

ν

)n′
e−

Sn′
ν

n′∏
i=1

gθ−1(xi)g
′(xi), (1.12)

where Sn′ =
n′∑
i=1

gθ(xi). Thus by factorisation theorem [see Rohtagi and Saleh

(2012, p. 361)], Sn′ is sufficient statistic for ν and follows gamma distribution
with shape parameter n and scale parameter ν. Since the distribution of Sn′
belongs to the exponential family, it is also complete [see Rohtagi and Saleh
(2012, p.367)]. For q > 0, consider

E(Sqn′) =
Γ(n′ + q)

Γ(n′)
νq.

Thus the UMVUE of νq is ν̃qU = Γ(n′)
Γ(n′+q)

Sqn′ .

From (1.12), the MLE of νq is

ν̃qML =

(
Sn′

n′

)q
.

For q = 1, we see that the MLE is equal to the UMVUE of ν and let us
denote them by

ν̃n′ =
Sn′

n′
, (1.13)

based on sample size n′. Now, for some number k > 0, the MMSE of ν based
on sample size n′ can be obtained by minimising E((kSn′ − ν)2) with respect
to k and we get

ν̂n′ =
Sn′

n′ + 1
. (1.14)

In similar fashion one can easily obtain the UMVUE, MLE and MMSE of 1
ν

as n′−1
Sn′

, n′

Sn′
and n′−2

Sn′
respectively.
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The hazard rate at time point t of the family of distributions F 2 is given
by

γ =
θgθ−1(t)g′(t)

ν
.

Thus, the MMSE of γ based on sample size n′ is

γ̂n′ =
θgθ−1 (t) g′(t)(n′ − 2)

Sn′
.

The UMVUE of γ based on sample size n′ is

γ̃n′−U =
θgθ−1(t)g′(t)(n′ − 1)

Sn′

and the MLE of γ based on sample size n′ is

γ̃n′−ML =
θgθ−1(t)g′(t)n′

Sn′
.

Let us denote the loss function for estimating γ by γ̂n′ by

L(γ̂n′ , γ) = A′(γ̂n′ − γ)2, (1.15)

where A′ is a known positive weight. The associated risk is

R (γ̂n′ , γ) =
A′
(
θgθ−1 (t) g′ (t)

)2

(n′ − 1)ν2
. (1.16)

The loss of estimating γ by γ̃n′−ML is

L (γ̃n′−ML, γ) = A′(γ̃n′−ML − γ)2 (1.17)

and the associated risk is

R (γ̃n′−ML, γ) = A′E
(
(γ̃n′−ML − γ)2) =

A′
(
θgθ−1 (t) g′ (t)

)2
(n′ + 2)

(n′ − 1) (n′ − 2)ν2
.

(1.18)

We see that the solution based on MLE of γ for the bounded risk point
estimation problem does not exist unless we apply Taylor’s series expansion
to get

R (γ̃n′−ML, γ) = A′E
(
(γ̃n′−ML − γ)2) ≈ A′

(
θgθ−1 (t) g′ (t)

)2

n′ν2
. (1.19)
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Now, the loss of estimating γ by γ̃n′−U is

L (γ̃n′−U , γ) = A′(γ̃n′−U − γ)2 (1.20)

and the associated risk is

R (γ̃n′−U , γ) = A′E
(
(γ̃n′−U − γ)2) =

A′
(
θgθ−1 (t) g′ (t)

)2

(n′ − 2)ν2
. (1.21)

Mahmoudi and Lalehzari (2017) have considered two-stage point estimation
of the hazard rate of exponential distribution based on the MLE of its
parameter and we have seen from (1.18) that the exact solution of risk of
MLE does not exist. We also observe that the risk corresponding to UMVUE
in (1.21) and MMSE in (1.16) are smaller than that of the MLE in (1.18).
Another advantage of using UMVUE and MMSE is that one does not require
Taylor’s series expansion to get fixed sample size solution. The sample sizes
required to achieve R (γ̂n′ , γ) ≤ ω′ and R (γ̃n′−U , γ) ≤ ω′ are n′ ≥ n′∗ and
n′ ≥ n′∗∗ respectively, where

n′
∗

=

(
A′
(
θgθ−1 (t) g′ (t)

)2

ω′ν2
+ 1

)
, (1.22)

and

n′
∗∗

=

(
A′
(
θgθ−1 (t) g′ (t)

)2

ω′ν2
+ 2

)
. (1.23)

We note that R (γ̂n′ , γ) < R (γ̃n′−U , γ). Thus, if we consider a two-stage
procedure motivated by MMSE, we expect a reduction in the risk. Since n′∗

and n′∗∗ are unknown, there does not exist any fixed sample size procedure
for this problem [see Takada (1986)].

The rest of the paper is organised as follows. In Section 2, we consider the
family of distribution F 1. Then under Stein’s two-stage sampling scheme,
we determine the stopping variable such that the risk in estimating the
parameter β by its MMSE is uniformly bounded by ω. Next we derive the
exact risk in estimating β by its MMSE. We also state the same results
while estimating β by its MLE/UMVUE and perform extensive numerical
computations to compare the risks of MMSE and MLE/UMVUE of β.
Finally in Section 3, we consider the family of distribution F 2 and under
Stein’s two-stage sampling scheme, we determine the stopping variable such
that the risk in estimating the hazard rate γ by its MMSE is uniformly
bounded by ω′. Next we derive the exact risk in estimating γ by its MMSE.
We also state the same results while estimating γ by its UMVUE and
perform extensive numerical computations to compare the risks of MMSE
and UMVUE of hazard rate γ.
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2 Estimation of Parameter of F1

2.1 Two-Stage Procedure based on Minimum Mean
Square Estimator

Let X1, X2, . . . , Xm be a pilot sample from the family of distributions F1.
Using Stein’s two-stage sampling scheme [see Stein (1945, 1949)], we propose
the following stopping rule:

Nm = N(m,B, ω) = max

{
m,

⌊
1

α

(
BS

2

m

ω
− 1

)⌋
+ 1

}
, (2.1)

where bzc denotes the greatest integer less than z. B is a positive coefficient

and is determined such that the risk R(β̂Nm , β) is bounded by a pre-assigned

number ω. Sm = Sm
mα+1

=

m∑
i=1

g(xi,θ)

mα+1
. We shall later prove that B is a function

of all the known quantities A, m and α. Now, if Nm = m, then the pilot
sample is large enough and we don’t require to draw more observations at
the second stage. But if Nm > m, then the pilot sample is not large enough
and hence we must draw Nm−m more observations at the second stage, say
Xm+1, Xm+2, . . . , XNm . Finally, based on all the observations from both the
stages, X1, X2, . . . , XNm , we estimate the parameter β by its MMSE, i.e.

β̂Nm =
SNm

Nmα + 1
=

Nm∑
i=1

g(xi,θ)

Nmα + 1
.

Thus the risk associated with this estimator is

R(β̂Nm , β) = E(A(β̂Nm − β)
2
).

Theorem 2.1. Consider the two-stage procedure in (2.1) and the loss

function in (1.5) for sample size Nm. If we estimate β by β̂Nm =
SNm

Nmα+1
,

then for all fixed α, β, m and A, we conclude that R(β̂Nm , β) ≤ ω provided
mα > 2 and

B = B(m,A, α) =
A(mα + 1)2(2mα + 3)

mα(mα− 1)(mα− 2)
.

The rv Nm in (2.1) is a discrete rv and can take values {m, m+ 1, . . . }.
We define

λj =

(
mα + 1

β

)√
ω

B
(jα + 1)
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and G(z; a, b) as the cumulative distribution function (cdf) of gamma
distribution at the point z with shape parameter a and scale parameter b.
Also let G(z; a, b) = 1−G(z; a, b).

To derive the explicit expressions for the expected value and risk of β̂Nm ,
let Fm = σ(X1, X2, . . . , Xm) be the σ-field generated by the random variables
at the first stage. Then we have

I. Sm = Sm
mα+1

is measurable in Fm.

II. Nm is measurable in Fm.

III. SNm−m is independent of Fm.

The following theorem provides the exact risk of MMSE of β̂Nm .

Theorem 2.2. The risk of β̂Nm is

R(β̂Nm , β) = Aβ2

[
1 +

mα

(mα + 1)
G(λm;mα + 2, 1)

+
∞∑

n=m+1

mα(mα + 1)

(nα + 1)2 {G(λn−1;mα + 2, 1)−G(λn;mα + 2, 1)}

+
∞∑

n=m+1

(n−m)α

(nα + 1)2{G(λn−1;mα, 1)−G(λn;mα, 1)}

+
∞∑

n=m+1

(
(n−m)α

nα + 1

)2

{G(λn−1;mα, 1)−G(λn;mα, 1)}

+
∞∑

n=m+1

2m(n−m)α2

(nα + 1)2 {G(λn−1;mα + 1, 1)−G(λn;mα + 1, 1)}

− 2
mα

mα + 1
G(λm;mα + 1, 1)

−
∞∑

n=m+1

2mα

nα + 1
{G(λn−1;mα + 1, 1)−G(λn;mα + 1, 1)}

−
∞∑

n=m+1

2(n−m)α

nα + 1
{G(λn−1;mα, 1)−G(λn;mα, 1)}

]
.

2.2 Two-Stage Procedure based on Maximum Likeli-
hood Estimator

Let X1, X2, . . . , Xm be a pilot sample from the family of distributions F 1.
Using Stein’s two-stage sampling scheme [see Stein (1945, 1949)], we propose
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the following stopping rule:

N ′m = N(m,B′, ω) = max

{
m,

⌊
B′S

2

m

αω

⌋
+ 1

}
, (2.2)

where B′ is a positive coefficient and is determined such that the risk

R(β̃N ′m , β) is bounded by a pre-assigned number ω. Sm = Sm
mα

=

m∑
i=1

g(xi,θ)

mα
.

Based on all the observations from both the stages, X1, X2, . . . , XN ′m , we
estimate the parameter β by its MLE/UMVUE, i.e.

β̃N ′m =
SN ′m
N ′mα

=

N ′m∑
i=1

g(xi,θ)

N ′mα
.

Thus the risk associated with this estimator is

R(β̃N ′m , β) = E(A(β̃N ′m − β)
2
).

Theorem 2.3. Consider the two-stage procedure in (2.2) and the loss

function in (1.7) for sample size N ′m. If we estimate β by β̃N ′m =
SN′m
N ′mα

,

then for all fixed α, β, m and A, we conclude that Rβ̃N ′m , β) ≤ ω provided
mα > 2 and

B′ = B′(m,A, α) =
2Amα(mα + 1)

(mα− 1)(mα− 2)
.

The rv N ′m in (2.2) is a discrete rv and can take values {m, m+ 1, . . . }.
We define

λ′j =

(
mα

β

)√
αω

B′
j.

To derive the explicit expressions for the expected value and risk of β̃N ′m ,
let Fm = σ(X1, X2, . . . , Xm) be the σ-field generated by the random variables
at the first stage. Then we have

I. Sm = Sm
mα

is measurable in Fm.

II. N ′m is measurable in Fm.

III. SN ′m−m is independent of Fm.

The following theorem gives the expression for exact risk of β̃N ′m .
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Theorem 2.4. The risk of β̃N ′m is

R(β̃N ′m , β) = Aβ2

[
1 +

(mα + 1)

mα
G(λ′m;mα + 2, 1)

+
∞∑

n=m+1

mα(mα + 1)

(nα)2 {G(λ′n−1;mα + 2, 1)−G(λ′n;mα + 2, 1)}

+
∞∑

n=m+1

(n−m)

n2α
{G(λ′n−1;mα, 1)−G(λ′n;mα, 1)}

+
∞∑

n=m+1

(
(n−m)

n

)2

{G(λ′n−1;mα, 1)−G(λ′n;mα, 1)}

+
∞∑

n=m+1

2m(n−m)

n2
{G(λ′n−1;mα + 1, 1)−G(λ′n;mα + 1, 1)} − 2G(λ′m;mα + 1, 1)

−
∞∑

n=m+1

2m

n
{G(λ′n−1;mα + 1, 1)−G(λ′n;mα + 1, 1)}

−
∞∑

n=m+1

2(n−m)

n
{G(λ′n−1;mα, 1)−G(λ′n;mα, 1)}

]
.

One may refer to the Appendix for the proofs of the theorems in this
section.

2.3 Comparison of the Risk of Estimators of β

In this section, we compare the risk of the MMSE of parameter β of
Gamma(α, β) distribution with the risk of the MLE/UMVUE of β. We
consider different pilot sample sizes at the first stage, i.e. m. Fixing the
weight of the risk function A and n∗, we calculate the upper bound of the
risk function ω, which is further used to obtain n∗∗. Using these values we
compute the expressions for the exact risk of β̂Nm and β̃N ′m . We also compare
the estimates of the exact risk of MMSE and MLE/UMVUE of β obtained
through simulations. For each m, we estimate the exact risk of MMSE of

β denoted by R(β̂Nm , β) and the exact risk of MLE/UMVUE of β denoted

by R(β̃N ′m , β) over 10,000 replications. We also obtain the standard error
of the exact true risk of MMSE and MLE/UMVUE of β. The following
tables summarise our numerical findings in case of Gamma distribution for
different values of the parameters. For different pilot sample sizes m, we

compute observed sample mean of the MMSE of β denoted by β̂m and its

14



standard error. Similarly we also compute the observed sample mean of

the MLE/UMVUE of β denoted by β̃m along with its standard error. In

the following tables, for each m, the values just below the values of β̂m,

R(β̂Nm , β), β̃m and R(β̃N ′m , β) are their respective standard errors.

Table 2.1: Comparison of exact risk of β̂Nm and β̃N ′m under the two-stage
procedures (2.1) and (2.2) respectively when α = 4, β = 3, A = 5, n∗ = 400,
n∗∗ = 400.25 and ω = 0.02810743.

m β̂Nm Nm B R(β̂Nm , β) R(β̂Nm , β) β̃N′
m

N ′m B′ R(β̃N′
m
, β) R(β̃N′

m
, β)

10 2.99769 924.74880 11.76813 0.01363 0.01384 2.99823 913.85810 11.06613 0.01376 0.01385

0.00053 2.93138 0.00022 0.00053 2.89613 0.00021

15 2.99715 880.18460 11.14560 0.01379 0.01353 2.99761 873.28100 10.69550 0.01387 0.01375

0.00052 2.26776 0.00020 0.00052 2.24938 0.00020

Table 2.2: Comparison of exact risk of β̂Nm and β̃N ′m under the two-stage
procedures (2.1) and (2.2) respectively when α = 4, β = 3, A = 5, n∗ = 500,
n∗∗ = 500.25 and ω = 0.02248876.

m β̂Nm Nm B R(β̂Nm , β) R(β̂Nm , β) β̃N′
m

N ′m B′ R(β̃N′
m
, β) R(β̃N′

m
, β)

10 2.99820 1155.80100 11.76813 0.01089 0.01070 2.99794 1142.12000 11.06613 0.01100 0.01075

0.00046 3.68300 0.00017 0.00046 3.63864 0.00016

15 2.99809 1097.47500 11.14560 0.01102 0.01125 2.99861 1088.79700 10.69550 0.01109 0.01131

0.00047 2.83406 0.00017 0.00048 2.81098 0.00017

Table 2.3: Comparison of exact risk of β̂Nm and β̃N ′m under the two-stage
procedures (2.1) and (2.2) respectively when α = 4, β = 3, A = 5, n∗ = 600,
n∗∗ = 600.25 and ω = 0.01874219.

m β̂Nm Nm B R(β̂Nm , β) R(β̂Nm , β) β̃N′
m

N ′m B′ R(β̃N′
m
, β) R(β̃N′

m
, β)

10 2.99815 1381.95700 11.76813 0.00907 0.00901 2.99815 1365.56400 11.06613 0.00916 0.00944

0.00042 4.38127 0.00014 0.00043 4.32844 0.00014

15 2.99766 1315.55600 11.14560 0.00918 0.00915 2.99998 1305.11900 10.69550 0.00924 0.00932

0.00043 3.42375 0.00014 0.00043 3.39587 0.00014

From the above tables we conclude that irrespective of the values of the
parameters α, β, A, n∗, n∗∗ and ω, the exact risk of the MMSE of β is always
lower than the exact risk of the MLE/ UMVUE of β. Thus, we are able to
establish that even though biased, the MMSE of β has a smaller risk and
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hence is a better choice over the MLE/ UMVUE of β. It is interesting to note
that the risk of two-stage procedure is too small as compared to the target
value ω. Thus the two-stage procedure itself reduces the risk drastically.

3 Estimation of Hazard Rate of F2

3.1 Two-Stage Procedure based on Minimum Mean
Square Estimator

Let X1, X2, . . . , Xm be a pilot sample from the family of distributions F 2.
Using Stein’s two-stage sampling scheme [see Stein (1945, 1949)], we propose
the following stopping rule:

Nm = N (m,K, ω′) = max

{
m,

⌊
K
(
θgθ−1 (t) g′ (t)

)2

ω′S
2

m

+ 1

⌋
+ 1

}
, (3.1)

where bzc denotes the greatest integer less than z. K is a positive coefficient
and is determined such that the risk R(γ̂Nm , γ) is bounded by a pre-assigned

number ω′. Sm = Sm
m−2

=

m∑
i=1

gθ(xi)

m−2
. We shall later prove that K is a function

of all the known quantities A′ and m. Now, if Nm = m, then the pilot
sample is large enough and we don’t require to draw more observations at
the second stage. But if Nm > m, then the pilot sample is not large enough
and hence we must draw Nm−m more observations at the second stage, say
Xm+1, Xm+2, . . . , XNm . Finally based on all the observations from both the
stages, X1, X2, . . . , XNm , we estimate the parameter γ by its MMSE, i.e.

γ̂Nm =
θgθ−1 (t) g′ (t)Nm∑

i=1
gθ(xi)

Nm−2

 .

Thus the risk associated with this estimator is

R(γ̂Nm , γ) = A′E((γ̂Nm − γ)2).

Theorem 3.1. Consider the two-stage procedure in (3.1) and the loss
function in (1.15) for sample size Nm. If we estimate γ by γ̂Nm, then for
all fixed ν, θ, t, m and A′, we conclude that R(γ̂Nm , γ) ≤ ω′ and

K =
A′(θgθ−1(t)g′(t))

2
(2m+ 7)

m+ 1
.
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The rv Nm in (3.1) is a discrete rv and can take values {m, m+ 1, . . . }.
We define

λj =

(
m+ 1

ν

)√
K(θgθ−1(t)g′(t))2

ω′(j + 1)

and G(z; a, b) as the cumulative distribution function (cdf) of gamma
distribution at the point z with shape parameter a and scale parameter b.
Also let G(z; a, b) = 1−G(z; a, b).

To derive the explicit expressions for the expected value of ν̂Nm , let
Fm = σ(X1, X2, . . . , Xm) be the σ-field generated by the random variables
at the first stage. Then we have

I. Sm = Sm
m−2

is measurable in Fm.

II. Nm is measurable in Fm.

III. SNm−m is independent of Fm.

The following theorem gives the expression for exact risk of γ̂Nm .

Theorem 3.2. The risk of γ̂Nm is

R(γ̂Nm , γ) =
A′(θgθ−1(t)g′(t))

2

ν2

[
1 +

m

(m+ 1)
G(λm;m+ 2, 1)

+
∞∑

n=m+1

m(m+ 1)

(n+ 1)2 {G(λn−1;m+ 2, 1)−G(λn;m+ 2, 1)}

+
∞∑

n=m+1

(n−m)

(n+ 1)2{G(λn−1;m, 1)−G(λn;m, 1)}

+
∞∑

n=m+1

(
n−m
n+ 1

)2

{G(λn−1;m, 1)−G(λn;m, 1)}

+
∞∑

n=m+1

2m(n−m)

(n+ 1)2 {G(λn−1;m+ 1, 1)−G(λn;m+ 1, 1)}

− 2
m

m+ 1
G(λm;m+ 1, 1)

−
∞∑

n=m+1

2m

n+ 1
{G(λn−1;m+ 1, 1)−G(λn;m+ 1, 1)}

−
∞∑

n=m+1

2(n−m)

n+ 1
{G(λn−1;m, 1)−G(λn;m, 1)}

]
.
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3.2 Two-Stage Procedure based on Uniformly Mini-
mum Variance Unbiased Estimator

Let X1, X2, . . . , Xm be a pilot sample from the family of distributions F 2.
Using Stein’s two-stage sampling scheme [see Stein (1945, 1949)], we propose
the following stopping rule:

N ′m = N (m,K ′, ω′) = max

{
m,

⌊
K ′
(
θgθ−1 (t) g′ (t)

)2

ω′S
2

m

+ 2

⌋
+ 1

}
, (3.2)

where K ′ is a positive coefficient and is determined such that the risk of
UMVUE of the hazard rate R

(
γ̃N ′m , γ

)
is bounded by a pre-assigned number

ω′. Sm = Sm
m−1

=
∑m
i=1 g

θ(xi)

m−1
. Based on all the observations from both the

stages, X1, X2, . . . , XN ′m , we estimate the parameter γ by its UMVUE, i.e.

γ̃N ′m =
θgθ−1 (t) g′ (t)(∑N′m

i=1 g
θ(xi)

N ′m−1

) .

Thus the risk associated with this estimator is

R(γ̃N ′m , γ) = A′E((γ̃N ′m − γ)2).

Theorem 3.3. Consider the two-stage procedure in (3.2) and the loss
function in (1.20) for sample size N ′m. If we estimate γ by γ̃N ′m, then for
all fixed ν, θ, t, m and A′, we conclude that R(γ̃N ′m , γ) ≤ ω′ and

K ′ =
2A′(θgθ−1(t)g′(t))

2
(m+ 1)(m+ 3)

m2
.

The rv N ′m in (3.2) is a discrete rv and can take values {m, m+ 1, . . . }.
We define

λ′j =
(m
ν

)√K ′ (θgθ−1 (t) g′ (t))2

ω′j
.

To derive the explicit expressions for the expected value of ν̃N ′m , let
Fm = σ(X1, X2, . . . , Xm) be the σ-field generated by the random variables
at the first stage. Then we have

I. Sm = Sm
m

is measurable in Fm.

II. N ′m is measurable in Fm.

III. SN ′m−m is independent of Fm.
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The following theorem gives the expression for exact risk of γ̃N ′m .

Theorem 3.4. The risk of γ̃N ′m is

R(γ̃N ′m , γ) =
A′(θgθ−1(t)g′(t))

2

ν2

[
1 +

(m+ 1)

m
G(λ′m;m+ 2, 1)

+
∞∑

n=m+1

m(m+ 1)

n2
{G(λ′n−1;m+ 2, 1)−G(λ′n;m+ 2, 1)}

+
∞∑

n=m+1

(n−m)

n2
{G(λ′n−1;m, 1)−G(λ′n;m, 1)}

+
∞∑

n=m+1

(
n−m
n

)2

{G(λ′n−1;m, 1)−G(λ′n;m, 1)}

+
∞∑

n=m+1

2m(n−m)

n2
{G(λ′n−1;m+ 1, 1)−G(λ′n;m+ 1, 1)} − 2G(λ′m;m+ 1, 1)

−
∞∑

n=m+1

2m

n
{G(λ′n−1;m+ 1, 1)−G(λ′n;m+ 1, 1)}

−
∞∑

n=m+1

2(n−m)

n
{G(λ′n−1;m, 1)−G(λ′n;m, 1)}

]
.

One may refer to the Appendix for the proofs of the theorems in this
section.

3.3 Comparison of the Risk of Estimators of Hazard
Rate

In this section, we compare the risk of the estimator of the hazard rate

function γ = θgθ−1(t)g′(t)
ν

of Weibull(θ, ν) distribution when it is estimated
by its MMSE with the risk of the estimator of γ when it is estimated by its
UMVUE. We consider different sample sizes at the first stage, i.e. m. Fixing
the weight of the risk function A′ and n

′∗ we calculate the upper bound of the
risk function ω′, which is further used to obtain n

′∗∗. Using these values we
compute the expressions for the exact risk of γ̂Nm and γ̃N ′m . We also compare
the estimates of the exact risk of MMSE and UMVUE of γ obtained through
simulations. For each m, we estimate the exact risk of MMSE of γ denoted
by R(γ̂Nm , γ) and the exact true risk of UMVUE of γ denoted by R(γ̃N ′m , γ)
over 10,000 replications. We also obtain the standard error of the exact risk
of MMSE and UMVUE of γ. The following tables summarise our numerical
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findings in case of Weibull distribution for different values of the parameters.
For different pilot sample sizes m, we compute observed sample mean of the
MMSE of γ denoted by γ̂m and its standard error. Similarly we also compute
the observed sample mean of the UMVUE of γ denoted by γ̃m along with
its standard error. In the following tables, for each m, the values just below

the values of γ̂m, R(γ̂Nm , γ), β̃m and R(γ̃N ′m , γ) are their respective standard
errors.

Table 3.1: Comparison of exact risk of γ̂Nm and γ̃N ′m under the two-stage
procedures (3.1) and (3.2) respectively when θ = 1, ν = 2, A′ = 10, n

′∗ = 10,
n
′∗∗ = 11, ω′ = 0.2777778 and when time is t = 20, γ = 0.5.

m γ̂Nm Nm K R(γ̂Nm , γ) R(γ̂Nm , γ) γ̃N′
m

N ′m K′ R(γ̃N′
m
, γ) R(γ̃N′

m
, γ)

10 0.42572 20.06100 24.54545 0.11540 0.10547 0.46835 31.69830 28.60000 0.16162 0.11000

0.00117 0.16350 0.00308 0.00100 0.24898 0.00158

15 0.44439 20.77710 23.12500 0.09468 0.09716 0.47129 27.56810 25.60000 0.12695 0.10309

0.00101 0.10359 0.00245 0.00097 0.14795 0.00130

Table 3.2: Comparison of exact risk of γ̂Nm and γ̃N ′m under the two-stage
procedures (3.1) and (3.2) respectively when θ = 1, ν = 2, A′ = 10, n

′∗ = 13,
n
′∗∗ = 14, ω′ = 0.2083333 and when time is t = 20, γ = 0.5.

m γ̂Nm Nm K R(γ̂Nm , γ) R(γ̂Nm , γ) γ̃N′
m

N ′m K′ R(γ̃N′
m
, γ) R(γ̃N′

m
, γ)

10 0.43574 26.24300 24.54545 0.09676 0.08192 0.47299 41.44950 28.60000 0.12804 0.09097

0.00112 0.21339 0.00218 0.00091 0.31862 0.00142

15 0.44775 26.21010 23.12500 0.08942 0.07905 0.47545 35.77010 25.60000 0.11652 0.08758

0.00099 0.14459 0.00196 0.00090 0.19474 0.00119

From the above tables we conclude that irrespective of the values of the
parameters, the exact risk of the MMSE of the hazard rate function γ is
always lower than the exact risk of the UMVUE of γ. Thus, we are able to
establish that even though biased, the MMSE of γ has a smaller risk and
hence is a better choice over the UMVUE of γ. Also, we may note that the
risk of two-stage procedure is too small as compared to the target value ω′.
Thus the two-stage procedure itself reduces the risk drastically.
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Table 3.3: Comparison of exact risk of γ̂Nm and γ̃N ′m under the two-stage
procedures (3.1) and (3.2) respectively when θ = 1, ν = 2, A′ = 10, n

′∗ = 15,
n
′∗∗ = 16, ω′ = 0.1785714 and when time is t = 20, γ = 0.5.

m γ̂Nm Nm K R(γ̂Nm , γ) R(γ̂Nm , γ) γ̃N′
m

N ′m K′ R(γ̃N′
m
, γ) R(γ̃N′

m
, γ)

10 0.440397 30.213800 24.545450 0.084764 0.073477 0.477359 47.528600 28.600000 0.109034 0.079129

0.001082 0.266649 0.001974 0.000860 0.395400 0.001244

15 0.450610 30.043100 23.125000 0.083130 0.070099 0.477028 41.097200 25.600000 0.105750 0.079533

0.000974 0.177012 0.001711 0.000862 0.233141 0.001145

Appendix

Proof of Theorem 2.1. Let Fm = σ(X1, X2, . . . , Xm) be the σ-field generated
by the sample X1, X2, . . . , Xm at the first stage, then Fm = Sm

mα
and Nm

measurable with respect to Fm and S̃Nm−m =

Nm∑
i=m+1

g(xi,θ)

(Nm−m)α
is independent of

Fm. Consider,

R(β̂Nm , β) = E(A(β̂Nm − β)2)

= AE

E
(mαS̃m + (Nm −m)αS̃Nm−m

Nmα + 1
− β

)2 ∣∣∣∣Fm


=
A

α2

[
E

(
m2α2(S̃m − β)

2(
Nm + 1

α

)2

)

+E

(
(Nm −m)2α2(
Nm + 1

α

)2 E((S̃Nm−m − β)
2|Fm)

)
+ E

(
β2(

Nm + 1
α

)2

)]
=

A

α2
[J1 + J2 + J3]. (A.1)

Now we consider the following inequalities:

m2(
Nm + 1

α

)2 ≤
m

Nm + 1
α

,
1

Nm + 1
α

≤ αω

BS
2

m

. (A.2)

We can now derive the bounds on J1, J2 and J3 in (A.1) by using the
inequalities in (A.2).

J1 = E

(
m2α2(S̃m − β)

2(
Nm + 1

α

)2

)
≤ E

mα2
(
S̃m − β

)2(
Nm + 1

α

)
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≤ E

(
mα3ω(S̃m − β)

2

BS
2

m

)

= E

(
mα3ω

B

((
mα + 1

mα

)2

+
β2

S
2

m

− 2β

Sm

(
mα + 1

mα

)))
.

Since
(
mα+1
β

)
Sm ∼ Gamma(mα, 1), thus

J1 ≤
mα3ω

B

[(
mα + 1

mα

)2

+
(mα + 1)2

(mα− 1) (mα− 2)
− 2

(mα + 1)2

mα (mα− 1)

]
. (A.3)

Now, since S̃Nm−m ∼ Gamma
(

(Nm −m)α, β
(Nm−m)α

)
,

J2 = αβ2E

(
Nm −m(
Nm + 1

α

)2

)
≤ αβ2E

(
Nm −m

m
(
Nm + 1

α

))

≤ αβ2E

((
Nm

m
− 1

)
1(

Nm + 1
α

)I (Nm > m)

)

≤ αβ2E

(
1(

Nm + 1
α

))

≤ α2ω

B

(mα + 1)2

(mα− 1) (mα− 2)
. (A.4)

Similarly we can obtain

J3 ≤
αω

Bm

(mα + 1)2

(mα− 1) (mα− 2)
. (A.5)

Substituting (A.3), (A.4) and (A.5) in (A.1) and using R(β̂Nm , β) ≤ ω, it is
sufficient that

B =
A(mα + 1)2 (2mα + 3)

mα (mα− 1) (mα− 2)
.

Proof of Theorem 2.2.

R(β̂Nm , β) = E(A(β̂Nm − β)2)

= A[E(β̂2
Nm) + β2 − 2βE(β̂Nm)],
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where we derive expressions for E(β̂Nm) and E(β̂2
Nm

) using the same
techniques as adopted by Mahmoudi and Roughani (2015) and Roughani
and Mahmoudi (2015). On similar lines we can also derive the results of
Theorems 2.3 and 2.4.

Proof of Theorem 3.1. Let Fm = σ(X1, X2, . . . , Xm) be the σ-field generated
by the sample X1, X2, . . . , Xm at the first stage, then S̃m = Sm

m
and Nm

measurable with respect to Fm and S̃Nm−m =

Nm∑
i=m+1

gθ(xi)

(Nm−m)
is independent of

Fm. Consider,
R(γ̂Nm , γ) = E(A′(γ̂Nm − γ)2),

which on applying Taylor’s series approximation gives

R(γ̂Nm , γ) =
A′(θgθ−1(t)g′(t))

2

ν4
E((ν̂Nm − ν)2)

=
A′(θgθ−1(t)g′(t))

2

ν4
E

E
(mS̃m + (Nm −m)S̃Nm−m

Nm + 1
− ν

)2∣∣∣∣Fm


=
A′(θgθ−1(t)g′(t))

2

ν4

[
E

(
m2(S̃m − ν)

2

(Nm + 1)2

)

+E

(
(Nm −m)2

(Nm + 1)2 E((S̃Nm−m − ν)
2|Fm)

)
+ E

(
ν2

(Nm + 1)2

)]

=
A′(θgθ−1(t)g′(t))

2

ν4
[J1 + J2 + J3] . (A.6)

Now we consider the following inequalities:

m2

(Nm + 1)2 ≤
m

Nm + 1
,

1

Nm + 1
≤ ω′S

2

m

K
. (A.7)

We can now derive the bounds on J1, J2 and J3 in (A.6) by using the
inequalities in (A.7).

J1 = E

(
m2(S̃m − ν)

2

(Nm + 1)2

)
≤ E

(
m(S̃m − ν)

2

(Nm + 1)

)

≤ E

(
mω′S

2

m(S̃m − ν)
2

K

)

= E

(
mω′S

2

m

K

((
m+ 1

m

)2

S
2

m + ν2 − 2ν

(
m+ 1

m

)
Sm

))
.
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Since
(
m+1
ν

)
Sm ∼ Gamma(m, 1), thus

J1 ≤
ν4ω′(m+ 6)

K(m+ 1)
. (A.8)

Now, since S̃Nm−m ∼ Gamma
(

(Nm −m) , ν
(Nm−m)

)
,

J2 = ν2E

(
Nm −m

(Nm + 1)2

)
≤ ν2E

(
Nm −m

m (Nm + 1)

)
≤ ν2E

((
Nm

m
− 1

)
1

(Nm + 1)
I (Nm > m)

)
≤ ν2E

(
1

(Nm + 1)

)
≤ ν4ω′m

K(m+ 1)
. (A.9)

Similarly we can obtain

J3 ≤
ν4ω′

K(m+ 1)
. (A.10)

Substituting (A.8), (A.9) and (A.10) in (A.6) and using R (γ̂Nm , γ) ≤ ω6′, it
is sufficient that

K =
A′
(
θgθ−1(t)g′(t)

)2
(2m+ 7)

m+ 1
.

Proof of Theorem 3.2.

R(γ̂Nm , γ) = A′E((γ̂Nm − γ)2)

≈ A′(θgθ−1(t)g′(t))
2

ν4
[E(ν̂2

Nm) + ν2 − 2νE(ν̂Nm)]

where we derive expressions for E(ν̂Nm) and E(ν̂2
Nm

) using the same
techniques as adopted by Mahmoudi and Roughani (2015), Roughani and
Mahmoudi (2015) and Mahmoudi and Lalehzari (2017). On similar lines we
can also derive the results of Theorems 3.3 and 3.4.
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