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Abstract  16 

 17 

Introduction 18 

Chagas disease, the most important parasitic infection in Latin America, is caused by the intracellular 19 

protozoan Trypanosoma cruzi. To treat this disease, only two nitroheterocyclic compounds with toxic 20 

side effects exist and frequent treatment failures are reported. Hence there is an urgent need to develop 21 

new drugs. Recently, metabolomics has become an efficient and cost-effective strategy for dissecting 22 

drug mode of action, which has been applied to bacteria as well as parasites, such as different 23 

Trypanosome species and forms. 24 

Objectives 25 

We assessed if the metabolomics approach can be applied to study drug action of the intracellular 26 

amastigote form of T. cruzi in a parasite-host cell system.  27 

Methods  28 

We applied a metabolic fingerprinting approach (DI-MS & NMR) to evaluate metabolic changes induced 29 

by 6 different (candidate) drugs in a parasite-host cell system. In a second part of our study, we studied 30 

the impact of two drugs on polar metabolites, lipid and proteins to evaluate if affected pathways can be 31 

identified. 32 

Results  33 

The metabolic signatures obtained by the fingerprinting approach clustered according already described, 34 

similar mode of drug actions and that were different from three candidate drugs. Significant changes 35 

induced by drug action were observed in all the three metabolic fractions (polar metabolites, lipids and 36 

proteins). We identified a general impact on the TCA cycle, but no specific pathways could be attributed 37 

to drug action, which might be caused by a high percentage of common metabolome between a 38 

eukaryotic host cell and a eukaryotic parasite. Additionally, ion suppression effects due to differences in 39 

abundance between host cells and parasites may have occurred. 40 

Conclusion  41 

We validated the metabolic fingerprinting approach to a complex host-cell parasite system. This 42 

technique can potentially be applied in the early stage of drug discovery and could help to prioritize early 43 

leads or reconfirmed hits for further development.  44 

 45 

 46 

  47 
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1 Introduction  48 

Chagas disease, the most important parasitic infection in Latin America, is caused by the intracellular 49 

protozoan Trypanosoma cruzi. The nitroheterocyclic compounds benznidazole and nifurtimox are the 50 

only drugs available to treat T. cruzi infections. They have been in use for decades, despite a requirement 51 

for long administration periods (60-90 days), frequent reports of treatment failure and toxic side-effects 52 

(Gaspar et al., 2015; Molina et al., 2014; Morillo et al., 2015; Morillo et al., 2017; Wilkinson and Kelly, 53 

2009). Both compounds are pro-drugs and are activated within the parasite by the mitochondrial 54 

nitroreductase, TcNTR-1 (Mejia et al., 2012; Wilkinson et al., 2008), giving rise to reactive metabolites 55 

that have trypanocidal activity. In the case of benznidazole, these metabolites are highly mutagenic and 56 

can cause widespread damage to genomic DNA (Campos et al., 2017).  57 

The urgent need to develop new drugs against Chagas disease is being tackled at an international level 58 

by large multidisciplinary teams (Chatelain, 2017; Katsuno et al., 2015) , with expertise from both the 59 

academic and commercial sectors. The main approach involves high-throughput phenotypic screening of 60 

large compound libraries, followed by downstream lead optimization studies including target 61 

deconvolution and identification of potential resistance mechanisms. Recently, metabolomics has 62 

become an efficient and cost-effective strategy for dissecting drug mode of action (MoA) (Zampieri et al., 63 

2018). Metabolic perturbations induced by drug activity can be detected as a change in the metabolome, 64 

since small molecules are downstream products of biological changes. Even if the drug target is not 65 

directly metabolic, specific changes in the metabolome can be observed (Zampieri et al., 2018). NMR 66 

spectroscopy and mass spectrometry (MS) have been applied to predict drug mode of action (MoA) of 67 

antibiotics (Halouska et al., 2012; Zampieri et al., 2018). Based on the same technology we developed an 68 

automated screening method for bacteria, Met-SAMoA® (Metabolic screening of antimicrobial mode of 69 

actions). The approach is based on the comparison of the metabolic signatures induced by drugs with 70 

known MoA and to new drug candidates. Antibiotics are available covering different MoA, but also 71 

different drugs with the same MoA, which allows the construction of a robust database. Studying 72 

metabolic changes induced by drugs has also been applied to parasites and more specifically to 73 

trypanosomes. The effect of nifurtimox and pentamidine on T. brucei (Creek et al., 2013; Vincent et al., 74 

2012) and of benznidazole on T. cruzi (Trochine et al., 2014) has been investigated. In comparison to 75 

bacteria, studying trypanosomes adds an extra difficulty because the parasite exists in different forms 76 

between insect vector and host. Metabolomic studies have been performed on the isolated bloodstream 77 

typomastigotes for T. brucei and on epimastigotes, the insect vector form of the parasites, for T.cruzi. 78 

The amastigote form of T. cruzi, however, has not been investigated with a metabolomics approach. 79 

Studies of antimalarial drugs against Plasmodium falciparum in red blood cells, however, have been 80 

performed (Allman et al., 2016; Cobbold et al.,2016). 81 

Since we were interested in drugs that are effective against the intracellular amastigote form of T. cruzi, 82 

we studied a complex system, host cells infected with parasites. We employed a metabolic fingerprinting 83 

approach (direct injection (DI)–HRMS and NMR) to analyse this system treated under different anti-84 

parasitic drug treatment conditions. Since only two drugs, with overlapping MoAs, are in use for 85 

treatment against Chagas disease, the number of compounds with known MoA is limited and hence a 86 

robust database construction for a screening approach is not yet possible. The objective of this study was 87 
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to test if we can obtain metabolic signatures of drugs in a complex host cell – parasite-system, relative to 88 

their MoA. We tested the reference drugs and experimental drugs, which might have different MoA. In 89 

the second part of our study, we applied a more comprehensive metabolomics, lipidomics and 90 

proteomics approach to evaluate if metabolic changes induced by drug action can be attributed to a 91 

specific metabolic fraction or if they can be correlated to a particular pathway. We show here that the 92 

fingerprinting approach  can be successfully applied to study different drugs in a complex host cell-93 

parasite system. Furthermore, we demonstrate  that comprehensive metabolomics and proteomics 94 

reveal metabolic differences relative to drug action, but interpretation towards affected pathways 95 

remains challenging due to the common metabolome of a eukaryotic parasite in a eukaryotic host cell.  96 

2 Materials and methods  97 

An overview of the applied experimental strategies is presented the supplementary materials Error! 98 

Reference source not found., as well as a detailed description of the cell culture preparation, sample 99 

preparation, NMR and LC-HRMS experiments.  100 

2.1 Cell culture and sample collection 101 

2.2 The L6 rat myoblast cell line (L6.G8.C5 (ECACC 92121114)) and T. cruzi clone CL Brener 102 

(DTU VI) were used as the infection model. L6 cells were grown to 70 % of confluence 103 

and infected with trypomastigotes at a ratio of 10 parasites per myoblast cell for 16 104 

hours. After removal of extracellular parasites, rat myoblasts were incubated for 48 105 

hours to establish infection. Subsequently, cultures were treated with 6 different drugs 106 

(benznidazole, nifurtimox, posaconazole, S205, S448 and S1000) at their respective 107 

IC50 concentrations and infected and uninfected treated cultures were kept in parallel 108 

as controls. The DMSO concentration was adjusted to 0.125% in all the conditions. 109 

Since a direct cell count is not possible for each well, we estimate the typical infected 110 

untreated samples to have had ~4.8 x 105 L6 cells, ~10% of them infected and the 111 

average number of amastigotes per infected cell would have been approximately 8 and 112 

16 for the 24 hr and 48 hr time points respectively.For the fingerprinting experiments, 113 

five replicates after 24 h and 48h of treatment were prepared. For the profiling 114 

experiments were performed with ten replicates after 24 h of treatment with two 115 

drugs. At the end of incubation time, medium and cells were separated, cells were 116 

washed, quenched and detached with cold methanol/ water (50/50, v/v) and snap 117 

frozen in liquid nitrogen and stored at -80°C until further processing. Methanol/ water 118 

(50/50) was described by Sapcariu et al. (2014) as suitable solvent to detach adherent 119 

cells. Furthermore, own tests showed that it was well suited and allowed to process a 120 

high quantity of samples in a short time. Sample preparation  121 

For the metabolic fingerprinting experiments, culture supernatants were prepared for NMR analysis to 122 

obtain the extracellular metabolome and the cellular lysate in methanol/ water (50/50, v/v) were used 123 

for DI-MS analysis to obtain the intracellular metabolome.  124 
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For the metabolic profiling experiments the supernatant samples were prepared for NMR analysis. 125 

Myoblast cells were extracted with a modified Folch method (Folch et al., 1957) to obtain three fractions 126 

of the intracellular metabolome: proteins, polar metabolites and lipids. Protein analysis was performed 127 

using a bottom-up approach, by proteolytic digestion of proteins with trypsin prior to LC-MS/MS 128 

analysis.  129 

2.3 NMR and mass spectrometry data acquisition 130 

The extracellular metabolite spectra for the fingerprinting, the extracellular and the intracellular polar 131 

fraction for the metabolomics approach  were acquired by NMR. A one dimensional proton spectrum 132 

was acquired at 298K using a 600 MHz Avance III HD NMR from Bruker, equipped with quadruple 133 

cryogenic inverse probe for 1H/13C/15N/31P detection. For the fingerprinting approach, intracellular 134 

metabolite spectra were obtained by direct infusion high resolution mass spectrometry (DI-HRMS) on a 135 

Q-Exactive mass spectrometer (Thermo Scientific) coupled to a Dionex Ultimate 3000 liquid 136 

chromatography chain (Thermo Scientific). The mass spectrometer was operated in positive mode at 137 

3.5kV, at a resolution of 140 000.  138 

For the profiling approach the intracellular lipids and proteins were analyzed by LC-HRMS. Lipids were 139 

separated on an Xselect CSH C18 column (1 x 150 mm, 3.5µm i.D.) using water/acetonitrile (80/20, v/v) 140 

as solvent A, isopropanol/acetonitrile/water (88/10/2) as solvent B. Two separate injections were 141 

performed to acquire spectra in positive and negative ionization modes. Data were acquired in full scan 142 

alternating with data dependent acquisition (top 5) to obtain MS/MS spectra. For the proteomics 143 

analysis, capillary LC-MS/MS analysis was performed using an ultimate 3000 RS system (Themo Scientific) 144 

coupled to a Q-TOF Maxis HD mass spectrometer (Bruker Daltonics) operating in positive mode. Samples 145 

were pre-concentrated on a C18 µ-precolumn (300 µm i.d. x 5 mm Acclaim PepMap) and subsequently 146 

separated on a C18 capillary column (300 µm inner diameter x 15 cm, acclaim PepMap RSLC, Thermo 147 

Scientific) with H2O/ACN 98/2 (v/v) as solvent A and ACN as solvent B, both containing 0.1% formic 148 

acid.The Maxis HD mass spectrometer was operated using the Instant Expertise data acquisition mode 149 

(self-optimizing MSMS acquisition) selecting up to sixteen of the most intense multiply charged ions (2+, 150 

3+ and 4+) for MS/MS analysis. For both, lipid and proteins, quality control samples were used to 151 

monitor the analytical variability along the runs.  152 

2.4 Data processing  153 

NMR and DI-MS data were preprocessed with an in-house workflow developed in Matlab to extract 154 

metabolic features. Quantification of relevant metabolites detected by NMR was performed using the 155 

Chenomx NMR suite 8.31 (Alberta, Canada). The Chenomx database was completed with new 156 

metabolites for those which were missing from original one using the compound builder module. 157 

Extraction and alignment of LC-MS spectra issued from lipid and protein analysis were performed using 158 

OpenMS (v. 2.1.0) software and in-house solutions developed with Matlab. QC samples were used to 159 

correct analytical drifts within and between batches. Features that were not present in 80% in the 160 

defined groups (QCs and the different tested conditions) were considered as unstable and were 161 

removed. Additionally, lipids features with a CV greater than 20% in QC samples were removed and 162 

correlated and co-eluting features from positive and negative mode were grouped to form putative 163 
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compounds. No normalization of the biomass was applied, because the biomass of the parasites was 164 

estimated to be 400-times lower compared to the myoblasts and hence a protein determination would 165 

not detect differences. The average volume of a T.cruzi amastigote was estimated to 14.5 fL (Rohloff et 166 

al., 2003) and we estimated the volume of myoblasts to 6.5 pL, based on the average size of 23 µm of 167 

spherical detached myboblasts. Since the infection rate of the myoblasts is about 10% with 8 and 16 168 

parasites per myoblast after 24h and 48h respectively, we estimate the volume ratio parasites to 169 

myoblasts to 1: 450 after 24h and 1:420 after 48h and hence this difference in biomass negligible. The 170 

sum of all the signal intensities showed no difference in NMR and for the lipids 15% difference between 171 

infected and uninfected condition, but no differences between with and without treatment. After 172 

statistical analysis, relevant putative compounds were identified using the LipidMatch software (Koelmel 173 

et al., 2017). Identification levels are reported according to the Metabolomics standard initative (Sumner 174 

et al., 2007). Proteins were identified prior to statistical analysis via the Mascot server using the curated 175 

Uniprot databases Rattus norvegicus (8,036 sequences) and Trypanosoma cruzi (126 sequences). 176 

Identifications were validated when two peptides with a minimum length of 5 amino acids were 177 

detected and a false discovery rate of 5% was applied.  178 

2.5 Statistical analysis  179 

Discriminant analyses were performed using supervised multivariate analyses with the partial least 180 

square (PLS) algorithm (Barker and Rayens, 2003; Wold et al., 2001). Subsequently, the coefficient of 181 

correspondence R2 and the cross-validation coefficient of correspondence Q2 were computed to 182 

evaluate the model performance. For the fingerprinting approach, the elastic net algorithm was used to 183 

select the most discriminant variables (Clemmensen et al., 2011) to compare the signatures between 184 

different drugs via Venn Diagrams. In the profiling experiments, for the lipids and proteins, the 100 most 185 

important variables were selected and subsequently univariate differential analysis was performed to 186 

identify relevant metabolites (p < 0.05). For the polar metabolites, identification and quantification was 187 

performed prior to univariate differential analysis. Furthermore, z-scores were calculated to regulation 188 

direction. Positive and negative z-scores mean up- and down-regulations, respectively. 189 

3 Results & discussion  190 

3.1 Metabolic fingerprinting approach  191 

The aim of the fingerprinting approach was to test if rat myoblasts infected with T. cruzi, and treated 192 

with different drugs, can be discriminated by their metabolic signatures. Infected rat myoblasts were 193 

incubated with six different drugs at their respective IC50 for either 24 or 48 hours. The selected agents 194 

included two reference drugs (benznidazole and nifurtimox), the candidate compound posaconazole, 195 

and three experimental drugs (S205, S448 and S1000). Extracellular metabolic signatures were obtained 196 

by NMR spectroscopy and intracellular signatures by DI-HRMS. The data were subjected to PLS analysis 197 

to test if metabolic signatures specific to each drug treatment could be identified (Error! Reference 198 

source not found.). For the intracellular metabolome, three different clusters were observed after 24 199 

and 48 hours drug treatment, whereas the extracellular metabolome showed the same clusters only 200 

after 48 hours treatment. The signatures of benznidazole and nifurtimox form one group, the three 201 
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experimental drugs (S205, S448, S1000) form another, and Posaconazole is separated from the other two 202 

groups. Of the six drugs tested, the MoA for three of them has been described. Benznidazole and 203 

nifurtimox are pro-drugs that are activated by the parasite nitroreductase TcNTR-1, to generate nitro-204 

species that react with the nucleic acids, causing significant DNA damage (Hall et al., 2011; Hall and 205 

Wilkinson, 2012). Posaconazole is an ergosterol biosynthesis inhibitor that blocks growth since ergosterol 206 

is required for parasite membranes (Lepesheva et al., 2010). The results of the PLS analysis reflected the 207 

differences and similarities between the three drugs, with separation of poscaconazole from the 208 

benznidazole-nifurtimox-cluster. Our results also suggest that the three experimental drugs have a MoAs 209 

distinct from the three reference drugs and that their MoAs may be similar, relatively to benznidazole, 210 

nifurtimox and posaconazole.  211 

To test if specific signals for each drug treatment could be obtained, PLS analysis of the infected 212 

myoblasts and the infected, treated myoblasts were performed for each drug separately. The results are 213 

presented in figures Error! Reference source not found. and Error! Reference source not found.. Despite 214 

visual separation was obtained, the obtained Q2 –values, which represent the predictive power of a 215 

model obtained by cross-validation, are not satisfactory for the majority of the tested conditions (< 0.75). 216 

A variable selection using the elastic net algorithm was performed to remove features not relevant for 217 

the model. The selection was performed with 1, 5, 10, 20, 50, 100, 150, 300, 400 and 600 variables. Of all 218 

the models, the best Q2-values were obtained between 50 and 100 variables and model performance 219 

was decreasing with increased number of variables (Table Error! Reference source not found.). Both, 220 

intra- and extracellular metabolome allowed discrimination of each drug treatment from the control 221 

after both 24 and 48 hours treatment (Q2 >0.85). Since both treatment time points enabled metabolic 222 

signatures to be obtained, we choose 24h of treatment for the subsequent profiling experiments 223 

because after 48 h of treatment the myoblasts are close to cell death and we want to avoid unspecific 224 

death signatures. Furthermore, the drugs benznidazole and S205 are separated after 24 h in the 225 

extracelluar medium and this are the drugs which are further investigated.  226 

3.2 Profiling approach  227 

3.2.1 Global, supervised statistical analysis  228 

The aim of this comprehensive profiling approach, covering polar metabolites, lipids and proteins, was to 229 

test if metabolic changes induced by the drug treatment can be attributed to a specific fraction of the 230 

metabolome and if pathways affected by the drugs can be identified. Next to the treatment of the 231 

infected myoblasts with the drugs, we also treated the uninfected myoblasts to test if we can detect an 232 

impact of the drug on the host cell. We focused on benznidazole as reference drug and the S205 as 233 

experimental drug. In total six conditions were prepared: 1) infected myoblasts (cInf), 2) infected 234 

myoblasts treated with benznidazole (cInfBz), 3) infected myoblasts treated with S205 (cInfS2), 4) 235 

uninfected myoblasts, (cUnInf) 5) uninfected myoblasts treated with benznidazole (cUnInfBz) and 6) 236 

uninfected myoblasts treated with S205 (cUnifS2). Twenty-four hours after the initiation of treatment, 237 

culture medium and cells were separated. From the cell culture medium (extracellular metabolome), 238 

only polar metabolites were studied. Cells were processed to obtain three different intracellular 239 

fractions: polar metabolites, lipids and proteins. Polar metabolites were analyzed by NMR, lipids and 240 

proteins by LC-HRMS. Supervised statistical analysis (PLS) was performed with the extracted features and 241 
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the results are shown in Error! Reference source not found.. The strongest separation was observed 242 

between the infected and uninfected conditions for all metabolic fractions, which might be caused by 243 

the metabolome of the parasite and related changes of the myoblast metabolism. Unlike lipids and 244 

proteins, extracellular polar metabolites also clustered according to all the tested conditions (Error! 245 

Reference source not found.A). The cUnInfS2 condition clusters closely with cUnInf, indicating that the 246 

impact on the polar metabolome of S205 is limited, whereas cUnInfBz forms a separate group, indicating 247 

a higher impact on the host cell metabolome. For the intracellular, polar metabolome (Error! Reference 248 

source not found.B), the clusters are less pronounced, probably due to the lower signal intensity, close 249 

to the limit of detection compared to the extracellular metabolome (Figure Error! Reference source not 250 

found.). In PLS analysis of intracellular lipids (Error! Reference source not found.C) cInfS2 showed a 251 

separate group, whereas cInfBz shows some overlap with cInf. No separation subgroups could be 252 

observed for the uninfected conditions, indicating that the impact of the two drugs on the host lipidome 253 

is limited. Also the impact of the two drugs on the proteome of the host cell seems limited; no clusters 254 

were observed for the uninfected conditions (Error! Reference source not found.D). Interestingly, in the 255 

PLS analysis of the proteome (Error! Reference source not found.D), cInfS2 is clustered together with 256 

the non-infected conditions which shows that the proteome becomes similar to cUninf. 257 

The impact of the drugs on the uninfected host cells was limited, except for the polar metabolome after 258 

benznidazole treatment, which is coherent with the unspecific radical mechanism described for this drug 259 

(Hall et al., 2011; Hall and Wilkinson, 2012). According to internal data S205 had low cytotoxic effects on 260 

cell lines, which is in line with our results showing a low impact on the metabolome. In order to 261 

investigate more precisely the changes induced during the treatment of infected myoblasts with the 262 

drugs, we performed statistical analysis and identification of the underlying features for each of the 263 

three fractions separately. Due to low signal intensities of the intracellular polar metabolome by NMR 264 

analysis, the data were not considered for further analysis. 265 

3.2.2 Extracellular polar metabolite markers  266 

To determine pathways that are affected by the drug treatment, PLS models were calculated by 267 

comparing the infected condition with the infected treated condition for the two drugs separately. 268 

Metabolite concertations were quantified with the help of Chenomx NMR suite 8.31 software using 269 

internal standard reference DSS. Then, univariate analysis was performed for the different treatments to 270 

determine most relevant metabolites. Table Error! Reference source not found. shows the metabolites 271 

that are were significant in at least one of the conditions. For the treatment with S205, glucose and the 272 

metabolites of the TCA cycle pyruvate, citrate, succinate and acetate are clearly affected. For 273 

benznidazole only lactate levels are altered. The concentrations of glucose, TCA cycle metabolites and 274 

threonine are plotted in Error! Reference source not found. in order to understand if the drug acts on 275 

the host, amastigotes or both of them. Glucose consumption tends to be higher in the infected cInf, 276 

cInfBz and cInfS2 compared to the uninfected cUnInf, cUnInfBz and cUnInfS2 conditions, but high 277 

variations are observed. Only cInfS2 compared to cInf myoblasts has significantly lower glucose 278 

consumption and it seems to be similar to cUnInfS2 cells. The glycolysis metabolite pyruvate excreted in 279 

culture media in infected cInf and cInfBz conditions is lower compared to uninfected cUnInf and cUnInfBz 280 

counterparts, which could be explained by integration of this metabolite in parasite pathway. The 281 
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pyruvate level in cUnInf and cUnInfS2 is the same, while in cUnInfBz it is lower. This suggests that, unlike 282 

S205, benznidazole affects the host metabolism contrary, which is in agreement with the global PLS 283 

analysis. As for S205, the pyruvate level in the cInfS2 condition is significantly higher compared to cInf, 284 

similar to the uninfected conditions, and it looks like the metabolization of pyruvate by parasite is lower. 285 

Similar finding could be observed for other TCA related metabolites lactate and citrate. Indeed, in cInfS2 286 

condition these metabolites levels are normalized and closer to the uninfected conditions than cInf. 287 

Similarly, S205 tends to decrease acetate level compared to infected conditions cInf or cInfS2, but the 288 

effect is more limited and far from normalization.  289 

Surprisingly, we can observe a completely opposite effect of S205 in the TCA cycle on succinate. Its level 290 

in cInfS2 compared to cInf is approximately 2-fold higher, when in the uninfected condition this excreted 291 

succinate is absent. The production of succinate during infection could be a host response as well as a 292 

metabolic activity of the parasite. Indeed, it is known that heart cells under hypoxic stress can produce 293 

high amounts of succinate (Chouchani et al., 2014) Trypanosomatids themselves may produce about 294 

60% of all excreted succinate within glycosomes by NADH-dependent fumarate reductase (Besteiro et 295 

al., 2002). Interestingly, accumulation of succinate was also observed in vivo for T. cruzi infected mice in 296 

heart tissue (Girones et al., 2014). However, for the increased accumulation of succinate in the cInfS2 297 

condition, compared to the infected untreated condition,  we cannot distinguish if this is due to drug 298 

action on the parasite or if it is an indirect effect of the parasite or host cell. Only the use of labelled 299 

glucose could help understand the underlying mechanisms, as labeling of the resulting succinate would 300 

be differnt depending on its glycosomal or mitochondrial origin (Besteiro et al., 2002; van Weelden et al., 301 

2003). Finally, looking at amino acids that have been observed as discriminant, the amount of threonine  302 

in all infected conditions was completely depleted (Error! Reference source not found.). Similar data 303 

were found for Trypanosoma brucei (Millerioux et al., 2013) and actually, threonine is known to be the 304 

fastest amino acid to be metabolized by parasite for lipid biosynthesis. Glycine follows a different 305 

pattern, with a slight but significant increase during infection. However, even if global PLS models have 306 

identified these metabolites as significant in response to treatment, quantitative univariate results are 307 

less clear on the impact of the drugs. It enlightens the differences between global models and targeted 308 

approaches. Indeed, it shows that global models are able to identify subtle impact on some metabolic 309 

pathways that are not easily observed with targeted methods. While we observed variability due to 310 

biological batch effect between fingerprinting experiment and profiling one, for example threonine 311 

degrades slower than in the first compared to the second experiment. Generally acetate, glycine, 312 

pyruvate, lactate show the same trends in both experiments (data not shown) proving the 313 

repeatability and the consistency of experimental data.  314 

3.2.3 Lipid markers  315 

The most pronounced separations in the global PLS model were investigated in more detail to determine 316 

pathways affected by infection and drug treatment. The selection of the 100 most important variables s 317 

was performed for the following models: A) cInf vs cUnif, B) cInf vs cInfBz, C) cInf vs cInS205 and D) 318 

cInfBz vs cInfS2. Subsequently, the variables which represent putative compounds were identified using 319 

the LipidMatch workflow (Koelmel et al., 2017) and all non-identified compounds were removed. The 320 

main lipid classes that were identified are: phosphatidylethanolamines (PE), phosphatidylcholins (PC), 321 
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oxidized PC and PE, Lyso-PE (LPE) and lyso-PC (LPC), the plasmalogens with PE- and PC-head groups and 322 

the sphingolipids (SL) ceramides and sphingomyelin. Identified lipids showing significant differences (p 323 

<0.05) between the peak areas in the different models are presented in Table Error! Reference source 324 

not found.. Furthermore, z-scores indicate the up- and down regulation in each of the conditions.  The 325 

highest number of significantly different lipids was found for the model cInf vs cUnif. Twelve LPE and LPC 326 

differentiate infected from uninfected myoblasts as they are more abundant in the infected condition. 327 

This effect of the infection is in accordance with results of Gazos-Lopes et al. (2014), who identified LPC 328 

C18:1 as a platelet aggregation factor that is observed in myocarditis, whereas LPC with different chain 329 

length  did not show this effect. Furthermore, 15 glycerophospholipids, mainly PCs, discriminated the 330 

infected from uninfected myoblasts which were all less abundant in the infected compared to the 331 

uninfected condition. Oxidated PCs and PEs also contribute to the separation of the conditions, but no 332 

clear up- or down regulation could be observed. Additionally, identifications are based on exact mass 333 

only and are hence not very precise due to high overlap of exact masses. Plasmalogens are positively and 334 

negatively correlated with infection and no coherence among head groups, fatty acid chains, alkyl- or 335 

alkenyl- linkage could be identified. Plasmalogens are abundant lipids in heart tissue (Braverman and 336 

Moser, 2012) and changes in this abundant lipid class might be related to remodeling of some lipid 337 

chains by T.cruzi. It was shown that T.cruzi incorporates host-glycerophospholipids by changing specific 338 

fatty acid chains (Gazos-Lopes et al., 2017). The only two lipids that are only significant in the drug 339 

treatment condition (models B, C and D) and not in the control (model A) belong to the class of SL, more 340 

specifically a SM and a ceramide. Identification levels are not precise for this two lipids, hence no further 341 

conclusions can be drawn. Lipids are considered as targets for novel drug therapies against 342 

trypanosomatids since they exhibit critical functions, from building blocks of biological membranes to 343 

signal transduction, energy storage and virulence. In order to target the parasite the identification of 344 

unique lipid species or metabolic pathways is required (Biagiotti et al., 2017). Guan and Maser (2017) 345 

characterized the sphingolipidome of different trypanosome species and identified 346 

aminoethylphosphonate ceramide and Inositolphosphoryl ceramide. The SL ceramides and SM we 347 

identified that discriminated between both treatments are, however, not specific to the parasite, but 348 

ceramides are precursors of parasite specific SL (Guan and Maser, 2017). SL have been described as 349 

being affected by drug treatment of trypanosomatids: Stoessel et al. (2016) identified an accumulation 350 

of ceramides in the bloodstream form of T. brucei after treatment with OXPA (3-(oxazolo[4,5-b]pyridine-351 

2-yl)-anilide).  352 

 353 

3.2.4 Protein markers 354 

In order to investigate the proteins that explain the separations observed in the global PLS analysis 355 

(figure 2) more in detail, we performed univariate analysis on the following models: cInf vs cUnInf, cInf vs 356 

cInfBz, cInf vs cInfBz and cInfBz vs cInfS2. Only proteins that have a p-value less than 0.05 were kept for 357 

data mining and are listed in Table Error! Reference source not found.Error! Reference source not 358 

found.. The highest number of significantly different proteins was found for the model cInf vs cUnInf, in 359 

agreement with the lipidomics data. In cInf, host cell proteins (rattus norvegicus) that are involved in the 360 

glycolysis pathway (e.g. G6PI, KPYM) and de novo lipid synthesis (e.g. ACLY) are more abundant than in 361 
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the UnInf condition. This is in agreement with the polar metabolites results showing that infected cells 362 

consume more glucose than uninfected cells, and with data published by Shah-Simpson et al. (2017). The 363 

authors showed that T. cruzi amastigotes capitalize on the increase in glucose uptake by the infected 364 

cells to fuel their own metabolism and replication in the host cytosol. Interestingly, in S2-treated cells 365 

(model Inf-InfS205, table S8) the amount of G6PI enzyme go back down to the regular cell level as the Z 366 

score is similar to the uninfected cells (model Inf-Uninf, table S8 with Z scores at 2.8 and 2.7, 367 

respectively).From the protein list generated, and independently of the models, the first observations 368 

that we made was that only five proteins from T. cruzi were identified, two cytoskeleton proteins (TBB 369 

and TBA), the glycosomal D-glyceraldehyde-3-phosphate dehydrogenase (G3PG), the Ubiquitin-60S 370 

ribosomal protein L40 (RL40) and the mitochondrial Chaperonin HSP60 (CH60). There are two reasons to 371 

explain this observation; first we used the T. cruzi curated Swissprot database which contains 60 times 372 

less proteins than the Rattus norvegicus curated Swissprot database, and second, there is a high dynamic 373 

range between proteins of the host and those of the parasite. Myoblast proteins constitute the majority 374 

of abundant proteins that suppress identification of potential co-eluting peptides of T. cruzi during the 375 

LC-MS/MS runs. Amounts of these five proteins of T. cruzi in each condition tested, are shown in Error! 376 

Reference source not found.4. To confirm that peptides used for protein label-free quantitation are not 377 

shared between both eukaryotic organisms, myoblasts and parasites, we also performed the 378 

quantitation of the T. cruzi proteins for the uninfected conditions. As expected, no significant amount of 379 

T. cruzi proteins were observed for all the uninfected conditions tested. Therefore, we indeed used only 380 

unique peptides to specifically quantified proteins of T. cruzi. We observed significant differences for all 381 

of the five T. cruzi proteins only between infected cells (cInf) and infected cells treated with the S205 382 

drug. Unlike the S205 drug, when infected cells are treated with Benznidazole, only two of the five T. 383 

cruzi proteins are significantly different (TBB and G3PG) compare to the infected cells. Altogether, these 384 

results might suggest that the S205 drug is more efficient than benznidazole to clear the parasites out of 385 

the infected cells, in agreement with the global PLS shown in Error! Reference source not found.. It has 386 

to be noted that for both TBB and CH60 proteins the difference between cInf and cS2inf is highly 387 

significant (p-value < 0.001). Unlike the CH60 protein, the TBB protein also show significant difference 388 

between cInf and cBzinf. We may propose two hypothesis, either these observations reflect parasite 389 

killing as we don’t know the number of live parasites after the course of S205 treatment compare to 390 

untreated cells, or  it might suggest that the S205 drug affects pathways that are involved in the stress 391 

response of the parasites. Like CH60, but to a lower extent, the ubiquitin-60S ribosomal protein L40 also 392 

shows significant difference only in infected cells treated with the S205 drug, but not with benznidazole. 393 

Again, that might suggest that treatment with S205 affects pathways involved in the regulation of 394 

protein translation or it might reflect parasites killing, as previously noted. 395 

4 Overall discussion and conclusions  396 

The objective of this study was to test if we can obtain metabolic signatures of drugs in a complex host 397 

cell – parasite-system. We showed in our first approach, the fingerprinting, that screening for metabolic 398 

differences after drug treatment is possible in a complex system of two eukaryotes. The two reference 399 

drugs with known MoA showed signatures that were different from a candidate drug and three 400 

experimental compounds in development. Both intra- and extracellular metabolome are suitable to 401 
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obtain these signatures. Hence, we validated the approach already applied to bacterial cultures and 402 

parasite cultures in isolation to a complex system of two eukaryotes. Today, the number of drugs 403 

available to treat Chagas disease is limited, hence a construction of a robust database and a prediction of 404 

MoA, is not yet possible. However, the construction of such a database during the development of new 405 

drugs would be relevant. It could accelerate drug research in Chagas disease, since compounds with 406 

potentially new MoA could be identified in an early stage based on differences of metabolic signatures. 407 

This technique can potentially be applied in the early stage of drug discover and could help to prioritize 408 

early leads or reconfirmed hits for further development.  409 

In the second part of our study, we applied a more comprehensive metabolomics, lipidomics and 410 

proteomics approach to evaluate if metabolic changes induced by drugs can be attributed to a specific 411 

metabolic fraction or to common pathways. As for the fingerprinting, multivariate statistical analysis 412 

allowed the separation of the different conditions in all three fractions. Subsequent identification of the 413 

metabolites, lipids and proteins that are underlying these separations showed a strong impact of the 414 

infection. The majority of the metabolites and lipids that explain differences between infection and 415 

treatment are also discriminant for the infection only. The few metabolites and lipids that were only 416 

discriminant in the treated condition are metabolites that are in common between the host cell and the 417 

parasite, hence it is difficult to form hypothesis about pathways affected since we can’t distinguish 418 

between host cell and parasite. The fact that we studied a eukaryotic parasite in a eukaryotic host cell is 419 

likely to be responsible for this high overlap. However, we are able to identify that S205 has an impact 420 

on, or close to, the TCA cycle from the parasite and/or the host and that it has a more focused action on 421 

the metabolism compared to benznidazole. Lipids that were described as specific for T. cruzi in the 422 

isolated and extracellular form of the parasite were not detected in our study. In the proteomics 423 

approach, the number of proteins attributed to the rat myoblasts was 60-times higher than the number 424 

of proteins attributed to T. cruzi. The databases used for identification also contain 60 times more rat 425 

than parasite proteins, which explains these differences. Furthermore, rat myoblasts were more 426 

abundant in the extracted samples compared to T. cruzi, hence parasite specific lipids and proteins might 427 

be masked by ion suppression in mass spectrometry. The isolation of the intracellular form of the 428 

parasite from the host cell after cultivation, as it was performed by Gazos-Lopes et al. (2017), would be a 429 

possibility to overcome this ion suppression problem and allows to lower the limits of detection, but it is 430 

much more laborious than our approach. Separation of the two species, would also allow to attribute 431 

changes in metabolites that are common between the host cell and the parasite to one of the two and 432 

allow more mechanistic insights of the drug action. As a screening approach, however it is not suitable. 433 

The magnetic purification of Plasmodium falciparum parasites from red blood cells was chosen by Allman 434 

et al. (2016) to study the mode of action of antimalarial drugs using a targeted metabolomics approach. 435 

The authors detected much higher fold-changes after purification of parasites compared to bulk 436 

extraction of infected and uninfected red blood cells. This approach allows a higher throughput than a 437 

manual isolation. Our results and the two studies show that separation of the two species seems 438 

necessary to obtain pathway information.   439 

Author contributions 440 



13 
 

KH, JAB, AB, XM, MDL, ADO, JMK, SB, GC,EC, and FB designed, planned and interpreted the study. MDL 441 

prepared the cell cultures, collected the samples  and supported the experimental setup. . EB extracted 442 

the samples and prepared them for LC-HRMS and NMR analysis. AB carried out the NMR, XM the 443 

proteomics and KH the fingerprinting and lipidomic analysis. JAB processed the data and performed with 444 

ADO the statistical analysis of the data. KH lead and all authors contributed to the writing of the 445 

manuscript.  446 

Funding 447 

We kindly acknowledge funding from the French Government through the Investissement d’Avenir 448 

program (Grant NO. ANR-10-AIRT-03) and from the Drugs for Neglected Disease initiative (DNDi) for this 449 

project. DNDi received financial support from the following donors: UK Aid, UK, and Reconstruction 450 

Credit Institution-Federal Ministry of Education and Research (KfW-BMBF), Germany. The donors had no 451 

role in the study design, data collection and analysis, decision to publish, or preparation of the 452 

manuscript.  453 

Compliance with ethical standards 454 

This article does not contain any studies with human and/or animal participants performed by any of the 455 

authors.  456 

Conflict of interest: All authors who have contributed to this research have declared no conflict of 457 

interests with respect to this article. 458 

 459 

5 References  460 

Barker, M. and Rayens, W. (2003) Partial least squares for discrimination. Journal of Chemometrics 17, 461 
166-173. 462 

 463 
Besteiro, S., Biran, M., Biteau, N., Coustou, V., Baltz, T., Canioni, P. and Bringaud, F. (2002) Succinate 464 
secreted by Trypanosoma brucei is produced by a novel and unique glycosomal enzyme, NADH-465 
dependent fumarate reductase. J Biol Chem 277, 38001-12. 466 

 467 
Biagiotti, M., Dominguez, S., Yamout, N. and Zufferey, R. (2017) Lipidomics and anti-trypanosomatid 468 
chemotherapy. Clin Transl Med 6, 27. 469 

 470 
Braverman, N.E. and Moser, A.B. (2012) Functions of plasmalogen lipids in health and disease. Biochim 471 
Biophys Acta 1822, 1442-52. 472 

 473 



14 
 

Campos, M.C., Phelan, J., Francisco, A.F., Taylor, M.C., Lewis, M.D., Pain, A., Clark, T.G. and Kelly, J.M. 474 
(2017) Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the 475 
front-line drug benznidazole. Sci Rep 7, 14407. 476 

 477 
Chatelain, E. (2017) Chagas disease research and development: Is there light at the end of the tunnel? 478 
Comput Struct Biotechnol J 15, 98-103. 479 

 480 
Chouchani, E.T., Pell, V.R., Gaude, E., Aksentijevic, D., Sundier, S.Y., Robb, E.L., Logan, A., Nadtochiy, S.M., 481 
Ord, E.N.J., Smith, A.C., Eyassu, F., Shirley, R., Hu, C.H., Dare, A.J., James, A.M., Rogatti, S., Hartley, R.C., 482 
Eaton, S., Costa, A.S.H., Brookes, P.S., Davidson, S.M., Duchen, M.R., Saeb-Parsy, K., Shattock, M.J., 483 
Robinson, A.J., Work, L.M., Frezza, C., Krieg, T. and Murphy, M.P. (2014) Ischaemic accumulation of 484 
succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431-435. 485 

 486 
Clemmensen, L., Hastie, T., Witten, D. and Ersbøll, B. (2011) Sparse Discriminant Analysis. Technometrics 487 
53, 406-413. 488 

 489 
Creek, D.J., Nijagal, B., Kim, D.H., Rojas, F., Matthews, K.R. and Barrett, M.P. (2013) Metabolomics guides 490 
rational development of a simplified cell culture medium for drug screening against Trypanosoma brucei. 491 
Antimicrob Agents Chemother 57, 2768-79. 492 

 493 
Folch, J., Lees, M. and Stanley, G.H.S. (1957) A SIMPLE METHOD FOR THE ISOLATION AND PURIFICATION 494 
OF TOTAL LIPIDES FROM ANIMAL TISSUES. Journal of Biological Chemistry 226, 497-509. 495 

 496 
Gaspar, L., Moraes, C.B., Freitas-Junior, L.H., Ferrari, S., Costantino, L., Costi, M.P., Coron, R.P., Smith, 497 
T.K., Siqueira-Neto, J.L., McKerrow, J.H. and Cordeiro-da-Silva, A. (2015) Current and Future 498 
Chemotherapy for Chagas Disease. Curr Med Chem 22, 4293-312. 499 

 500 
Gazos-Lopes, F., Martin, J.L., Dumoulin, P.C. and Burleigh, B.A. (2017) Host triacylglycerols shape the 501 
lipidome of intracellular trypanosomes and modulate their growth. PLoS Pathog 13, e1006800. 502 

 503 
Gazos-Lopes, F., Oliveira, M.M., Hoelz, L.V., Vieira, D.P., Marques, A.F., Nakayasu, E.S., Gomes, M.T., 504 
Salloum, N.G., Pascutti, P.G., Souto-Padron, T., Monteiro, R.Q., Lopes, A.H. and Almeida, I.C. (2014) 505 
Structural and functional analysis of a platelet-activating lysophosphatidylcholine of Trypanosoma cruzi. 506 
PLoS Negl Trop Dis 8, e3077. 507 

 508 
Girones, N., Carbajosa, S., Guerrero, N.A., Poveda, C., Chillon-Marinas, C. and Fresno, M. (2014) Global 509 
metabolomic profiling of acute myocarditis caused by Trypanosoma cruzi infection. PLoS Negl Trop Dis 8, 510 
e3337. 511 

 512 



15 
 

Guan, X.L. and Maser, P. (2017) Comparative sphingolipidomics of disease-causing trypanosomatids 513 
reveal unique lifecycle- and taxonomy-specific lipid chemistries. Sci Rep 7, 13617. 514 

 515 
Hall, B.S., Bot, C. and Wilkinson, S.R. (2011) Nifurtimox activation by trypanosomal type I nitroreductases 516 
generates cytotoxic nitrile metabolites. J Biol Chem 286, 13088-95. 517 

 518 
Hall, B.S. and Wilkinson, S.R. (2012) Activation of benznidazole by trypanosomal type I nitroreductases 519 
results in glyoxal formation. Antimicrob Agents Chemother 56, 115-23. 520 

 521 
Halouska, S., Fenton, R.J., Barletta, R.G. and Powers, R. (2012) Predicting the in Vivo Mechanism of 522 
Action for Drug Leads Using NMR Metabolomics. ACS Chemical Biology 7, 166-171. 523 

 524 
Katsuno, K., Burrows, J.N., Duncan, K., Hooft van Huijsduijnen, R., Kaneko, T., Kita, K., Mowbray, C.E., 525 
Schmatz, D., Warner, P. and Slingsby, B.T. (2015) Hit and lead criteria in drug discovery for infectious 526 
diseases of the developing world. Nat Rev Drug Discov 14, 751-8. 527 

 528 
Koelmel, J.P., Kroeger, N.M., Ulmer, C.Z., Bowden, J.A., Patterson, R.E., Cochran, J.A., Beecher, C.W.W., 529 
Garrett, T.J. and Yost, R.A. (2017) LipidMatch: an automated workflow for rule-based lipid identification 530 
using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics 18, 331. 531 

 532 
Lepesheva, G.I., Hargrove, T.Y., Anderson, S., Kleshchenko, Y., Furtak, V., Wawrzak, Z., Villalta, F. and 533 
Waterman, M.R. (2010) Structural insights into inhibition of sterol 14alpha-demethylase in the human 534 
pathogen Trypanosoma cruzi. J Biol Chem 285, 25582-90. 535 

 536 
Mejia, A.M., Hall, B.S., Taylor, M.C., Gomez-Palacio, A., Wilkinson, S.R., Triana-Chavez, O. and Kelly, J.M. 537 
(2012) Benznidazole-resistance in Trypanosoma cruzi is a readily acquired trait that can arise 538 
independently in a single population. J Infect Dis 206, 220-8. 539 

 540 
Millerioux, Y., Ebikeme, C., Biran, M., Morand, P., Bouyssou, G., Vincent, I.M., Mazet, M., Riviere, L., 541 
Franconi, J.M., Burchmore, R.J., Moreau, P., Barrett, M.P. and Bringaud, F. (2013) The threonine 542 
degradation pathway of the Trypanosoma brucei procyclic form: the main carbon source for lipid 543 
biosynthesis is under metabolic control. Mol Microbiol 90, 114-29. 544 

 545 
Molina, I., Gomez i Prat, J., Salvador, F., Trevino, B., Sulleiro, E., Serre, N., Pou, D., Roure, S., Cabezos, J., 546 
Valerio, L., Blanco-Grau, A., Sanchez-Montalva, A., Vidal, X. and Pahissa, A. (2014) Randomized trial of 547 
posaconazole and benznidazole for chronic Chagas' disease. N Engl J Med 370, 1899-908. 548 

 549 
Morillo, C.A., Marin-Neto, J.A., Avezum, A., Sosa-Estani, S., Rassi, A., Jr., Rosas, F., Villena, E., Quiroz, R., 550 
Bonilla, R., Britto, C., Guhl, F., Velazquez, E., Bonilla, L., Meeks, B., Rao-Melacini, P., Pogue, J., Mattos, A., 551 



16 
 

Lazdins, J., Rassi, A., Connolly, S.J. and Yusuf, S. (2015) Randomized Trial of Benznidazole for Chronic 552 
Chagas' Cardiomyopathy. N Engl J Med 373, 1295-306. 553 

 554 
Morillo, C.A., Waskin, H., Sosa-Estani, S., Del Carmen Bangher, M., Cuneo, C., Milesi, R., Mallagray, M., 555 
Apt, W., Beloscar, J., Gascon, J., Molina, I., Echeverria, L.E., Colombo, H., Perez-Molina, J.A., Wyss, F., 556 
Meeks, B., Bonilla, L.R., Gao, P., Wei, B., McCarthy, M. and Yusuf, S. (2017) Benznidazole and 557 
Posaconazole in Eliminating Parasites in Asymptomatic T. Cruzi Carriers: The STOP-CHAGAS Trial. J Am 558 
Coll Cardiol 69, 939-947. 559 

Sapcariu, S.C., Kanashova, T., Weindl, D., Ghelfi J., Dittmar G., Hiller K. (2014)  Simultaneous extraction of 560 
proteins and metabolites from cells in culture : Methods X 1, 74-80 561 
 562 
Shah-Simpson, S., Lentini, G., Dumoulin, P.C. and Burleigh, B.A. (2017) Modulation of host central carbon 563 
metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes. PLoS Pathog 13, 564 
e1006747. 565 

 566 
Stoessel, D., Nowell, C.J., Jones, A.J., Ferrins, L., Ellis, K.M., Riley, J.S., Rahmani, R., Read, K.D., McConville, 567 
M.J., Avery, V.M., Baell, J.B. and Creek, D.J. (2016) Metabolomics and lipidomics reveal perturbation of 568 
sphingolipid metabolism by a novel anti-trypanosomal 3-(oxazolo[4,5-b]pyridine-2-yl)anilide. 569 
Metabolomics 12, 1-14. 570 

 571 
Sumner, L.W., Amberg, A., Barrett, D., Beale, M.H., Beger, R., Daykin, C.A., Fan, T.W., Fiehn, O., 572 
Goodacre, R., Griffin, J.L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A.N., Lindon, 573 
J.C., Marriott, P., Nicholls, A.W., Reily, M.D., Thaden, J.J. and Viant, M.R. (2007) Proposed minimum 574 
reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics 575 
Standards Initiative (MSI). Metabolomics 3, 211-221. 576 

 577 
Trochine, A., Creek, D.J., Faral-Tello, P., Barrett, M.P. and Robello, C. (2014) Benznidazole 578 
biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLoS Negl Trop 579 
Dis 8, e2844. 580 

 581 
van Weelden, S.W., Fast, B., Vogt, A., van der Meer, P., Saas, J., van Hellemond, J.J., Tielens, A.G. and 582 
Boshart, M. (2003) Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation. J 583 
Biol Chem 278, 12854-63. 584 

 585 
Vincent, I.M., Creek, D.J., Burgess, K., Woods, D.J., Burchmore, R.J. and Barrett, M.P. (2012) Untargeted 586 
metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma 587 
brucei. PLoS Negl Trop Dis 6, e1618. 588 

 589 
Wilkinson, S.R. and Kelly, J.M. (2009) Trypanocidal drugs: mechanisms, resistance and new targets. 590 
Expert Rev Mol Med 11, e31. 591 

 592 



17 
 

Wilkinson, S.R., Taylor, M.C., Horn, D., Kelly, J.M. and Cheeseman, I. (2008) A mechanism for cross-593 
resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci U S A 105, 5022-7. 594 

 595 
Wold, S., Sjöström, M. and Eriksson, L. (2001) PLS-regression: a basic tool of chemometrics. 596 
Chemometrics and Intelligent Laboratory Systems 58, 109-130. 597 

 598 
Zampieri, M., Szappanos, B., Buchieri, M.V., Trauner, A., Piazza, I., Picotti, P., Gagneux, S., Borrell, S., 599 
Gicquel, B., Lelievre, J., Papp, B. and Sauer, U. (2018) High-throughput metabolomic analysis predicts 600 
mode of action of uncharacterized antimicrobial compounds. Sci Transl Med 10. 601 

 602 

 603 

  604 



18 
 

 605 


