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Abstract

New assay designs are needed to improve the predictive value of the Trypanosoma cruzi in
vitro tests used as part of the Chagas’ disease drug development pipeline. Here, we
employed a green fluorescent protein (eGFP)-expressing parasite line and live high-content
imaging to monitor the growth of T. cruziamastigotes in mouse embryonic fibroblasts. A
novel assay design allowed us to follow parasite numbers over 6 days, in four-hour intervals,
while occupying the microscope for only 24 hours per biological replicate. Dose-response
curves were calculated for each time point after addition of test compounds, revealing how
ECS50 values first decreased over the time of drug exposure, and then leveled off. However,
we observed that parasite numbers could vary, even in the untreated controls, and at differ-
ent sites in the same well, which caused variability in the EC50 values. To overcome this,
we established that fold change in parasite number per hour is a more robust and informa-
tive measure of drug activity. This was calculated based on an exponential growth model for
every biological sample. The net fold change per hour is the result of parasite replication, dif-
ferentiation, and death. The calculation of this fold change enabled us to determine the tip-
ping point of drug action, i.e. the time point when the death rate of the parasites exceeded
the growth rate and the fold change dropped below 1, depending on the drug concentration
and exposure time. This revealed specific pharmacodynamic profiles of the benchmark
drugs benznidazole and posaconazole.

Author summary

Chagas’ disease, caused by Trypanosoma cruzi, is a chronic debilitating infection occur-
ring mostly in Latin America. There is an urgent need for new, well tolerated drugs. How-
ever, the latest therapeutic candidates have yielded disappointing outcomes in clinical
trials, despite promising preclinical results. This demands new and more predictive in
vitro assays. To address this, we have developed an assay design that enables the growth of
T. cruzi intracellular forms to be monitored in real time, under drug pressure, for 6 days
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post-infection. This allowed us to establish the tipping point of drug action, when the
death rate of the parasites exceeded the growth rate. The resulting pharmacodynamics
profiles can provide robust and informative details on anti-chagasic candidates, as dem-
onstrated for the benchmark drugs benznidazole and posaconazole.

Introduction

About 8 million people globally are infected with Trypanosoma cruzi, the causative agent of
Chagas’ disease [1]. The progression of Chagas’ disease is divided into three phases: an acute, a
chronic indeterminate and, in about 30% of the infected people, a symptomatic chronic phase.
This last phase can begin decades after infection and is marked by severe cardiac or digestive
symptoms. There are only two drugs registered for Chagas’ disease, benznidazole and nifurti-
mox, and these suffer from severe side effects and variable efficacy [2]. Therefore, new treat-
ment options are needed urgently.

Azoles like posaconzale and E1224, a prodrug of ravuconazole, were the most advanced
drug candidates. However, in clinical trial, 80% of the posaconazole-treated patients relapsed
within the 20 month follow-up after treatment, in contrast to 6% of the benznidazole-treated
patients [2]. As a result, the research community was forced to rethink the pre-clinical drug
discovery pipeline for Chagas’ disease [3, 4]. In particular, the design of T. cruzi in vitro assays
had to be revisited to render them more predictive for the situation in vivo. A number of
parameters were proposed for optimization: the choice of strains [5, 6], the life-cycle stages [7],
the treatment regimens [8], and assay designs that assessed drug cidality. Tremendous prog-
ress has been made, especially in the area of high-content imaging technology for phenotypic
assays [6, 8—14]. New wash-out designs were also introduced to assess reversibility and cidality
of drug action [15, 16]. In combination with the development of more sensitive animal models
[17-19], this permitted a focus on pharmacokinetic (PK) and pharmacodynamic (PD) param-
eters. PK-PD modeling allows treatment regimens to be modified for optimal exposure of the
target organism to the drug candidate [20-22]. It also helps to define benchmark PK-PD
parameters of the target product profile for drug candidates.

While there has been progress in modeling drug candidate PK profiles [23], the PD profile
of a drug remains more difficult to determine. Two major aspects of PD need to be considered:
time-to-kill and the question of whether drug action is concentration-driven or time-driven.
Isothermal microcalorimetry has been used to determine time-to-kill for various pathogens,
including African trypanosomes and Plasmodium falciparum [24, 25]. However, isothermal
microcalorimetry cannot be used for intracellular amastigotes, the disease-relevant stage of T.
cruzi, as it is impossible to differentiate the heatflow of the parasite from that of the host cell.
Time-to-kill can also be determined by setting more than one temporal endpoint in an assay,
which can mean that one plate per time point has to be assessed [9, 16]. An efficient method to
determine pharmacodynamic parameters still needs to be found.

Here, we describe a new in vitro live-imaging assay design and novel analysis methodology,
which enables time-to-kill to be determined and identifies whether drug action is time- or con-
centration-driven.

Methods

Parasite and cell cultivation

Mouse embryonic fibroblasts (MEF) were cultivated in RPMI supplemented with 10% FCS at
37°C, 5% CO, and >95% humidity. MEF were sub-cultured once per week at a ratio of 1:10
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after 5 min treatment with trypsin. T. cruzi STIB980 clone 1 (DTU TcI) was obtained from A.
Osuna in 1983. Epimastigotes were maintained at 27°C in liver infusion tryptose (LIT)
medium [26] supplemented with 20 pg/ml hemin and 10% FCS. Cultures were diluted weekly
to maintain exponential growth. To stimulate metacyclogenesis, epimastiogte cultures were
kept in the same medium for 3-4 weeks. About 10” parasites from a predominantly metacyclic
culture were taken to infect MEF for 48 h, and the cycle of amastigotes and trypomastigotes
was maintained by infecting MEF weekly with an MOI of 1:1. eGFP-expressing parasites were
kept for maximum of 4 weeks in the mammalian cycle.

Transfection

Exponentially growing T. cruzi epimastigotes were synchronized for 24 h with 20 mM of
hydroxyurea (Sigma) [27]. Following hydroxyurea removal by washing twice with PBS, 10
epimastigotes were electroporated with 2.5 pg of pTRIX2-eGFP plasmid (Fig 1 A) linearized
with Ascl and Sacl (New England Biolabs). The plasmid had been derived from pTRIX-REh9
[28]. We used the Amaxa Nucleofector (programme X-014) with buffer Tb-BSF (Pacheco-
Lugo et al,, 2017), conditions we had found to be optimal for T. cruzi. 24 h after transfection,
the parasites were diluted 1:10 in medium containing 100 ug/ml G418 (Invivogen). Epimasti-
gotes were cloned by limiting dilution. Clones were selected according to their eGFP expres-
sion level, infectivity and growth profile. Transgenic epimastigote cultures were maintained in
the presence of 500 pg/ml G418.

Flow cytometry

10° epimastigotes in a small volume (approx. 100 ul) were fixed by the addition of the same vol-
ume of 10% formalin for 15 min at room temperature. After fixation, the volume was adjusted
to 1.5 ml with PBS. Then, the parasites were analyzed for the levels of green fluorescence (FL1;
excitation 488/10 nm and emission 530/30 nm) on a BD FACSCalibur (Becton Dickinson and
Company) gating approximately from 100 to 2000 on the FSC and the SSC channel.

Fluorescence microscopy

Epimastigote or trypomastigote parasites were deposited on a glass slide (Menzel Superfrost
Plus), allowed to settle for 15 min, then washed with PBS and fixed with 10% formalin. For
amastigotes, 10* MEF per well were seeded on 16-well LabTek chamber glass slides (LabTek).
After 24 h, 48 h, and 72 h, the MEF were infected with 10° trypomastigotes per well. The slides
were fixed with 10% formalin for 15 min. All samples were embedded in Vectashield with
DAPI (Vector Laboratories) and covered with a 1.5 AutomatStar coverslip (DURA group).
Samples were imaged using the Leica DM 5000B microscope with a Sola FISH 365 LED light
source. Images were taken with a 10x ocular, plus a 20x or 63x objective, with phase contrast
and DIC, respectively. Fluorescence images were taken by using the filter cubes A4 (excitation
377/50 nm, emission 447/60 nm) or L5 (excitation 470/40 nm, emission 525/50 nm).

Macrophage isolation

Peritoneal mouse macrophages were obtained from female CD1 mice (30-35 g body weight)
as follows: 2 ml of a 2% (wt/vol) starch solution in distilled water were injected i.p., and macro-
phages were harvested 24 h later by peritoneal lavage with RPMI medium containing 1% antic-
ontamination cocktail (100 pl in 10 ml, [29]). After centrifugation at 460 g at 4°C for 15 min,
the supernatant was removed, and the pellet was resuspended in RPMI medium containing
1% anticontamination cocktail, 10% heat-inactivated fetal calf serum (iFCS) and 15% RPMI

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008487  July 27, 2020 3/17


https://doi.org/10.1371/journal.pntd.0008487

Non-invasive monitoring of drug action on Trypansoma cruzi amastigotes

PLOS NEGLECTED TROPICAL DISEASES

3001
! I . .
V v P strain
eGFPmmmm NeoR f 7
tONA GAPDH GAPDH rDNA | i wt
promoter intergenic 3’ UTR spacer é\ 200 (s L i D G12
region w ; J !
= gt
@D ) ] : ' | i
T }l { replicate
1001 . 1 ﬂ | 1
I :5: % )
AmpR o+ \: .,i" ::EL
C' =) i & e s Mlﬂi‘“ \'m
1 10 100 1000 10000
FL1

Overla

with Ph -

Overla

F

Fig 1. Transgenic parasites transfected with pTRIX2-eGFP. (A) The plasmid pTRIX2-eGFP was constructed by inserting the enhanced green fluorescent
protein gene into the T. cruzi rDNA targeting plasmid pTRIX2-RE%h [28]. (B) Fluorescence levels of transfectant (G12) and wildtype (wt) epimastigotes were
measured with flow cytometry. Epifluorescent images of transfectants in epimastigotes (C), metacyclic trypomastigotes (D), amastigotes in MEF (E), and
trypomastigotes (F). Epimastigotes and metacyclic trypomastigotes were imaged with 630x magnification for 200 ms on DIC, 100 ms with the A4 filter cube
(Hoechst 33342), and 300 ms with the L5 filter cube (GFP). Amastigote-infected MEF and trypomastigotes were imaged with 400x magnification for 50 ms

with phase-contrast, 50 ms with the A4 filter cube (Hoechst 33342), and 815 ms with the L5 filter cube (GFP). Scale bars represent 10 um.

eGFP
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containing LADMAC (ATCC CRL2420) growth factors. The expanded peritoneal mouse mac-
rophages (ePMM) were kept in this medium at 37°C for 3-4 days and then detached with 5
min trypsin treatment and cell scrapers. The cells were counted with a Neubauer
hemocytometer.

High content microscopy

All assays were performed on an ImageXpress Micro XLS (Molecular Devices) high-content micro-
scope. Fluorescent imaging was done using the following filter cubes: GFP (300 ms exposure),
DAPI (50 ms exposure), and Cy5 (300 ms exposure). Phase-contrast images were taken on the
transmitted light channel (TL10, 10% illumination). All images were taken using a 20x Zeiss objec-
tive and a cooled CCD camera with (6.45 pm x 6.45 pum pixel size, 1392 x 1040 pixel resolution).

Live high content assay

For the live high content assay, 10* ePMM were seeded into the central wells of a black 96-well
plate in 100 pl of RPMI medium supplemented with 1% anticontamination cocktail [29], 10%
iFCS and 15% RPMI containing LADMAC growth factors. The border wells were filled with
100 pl water. Every 24 h a new set of wells was infected with 3x10*/well culture-derived trypo-
mastigotes leading to an MOI of 3 parasites to 1 host cell. This had previously been tested to
lead to an optimized detection of parasites per host cells with a geometric mean of 1.1 parasites
per host cells [95% confidence interval from 0.82 to 1.4]. 24 h post-infection (hpi), the remain-
ing extracellular trypomastigotes were washed off twice with 200 pl supplemented RPMI and
the infected host cells were further cultivated in 100 pl RPMI, with serial dilution of drugs. On
the sixth day of infection, the plate was covered with translucent PCR film (Eppendorf AG)
and placed into the ImageXpress Micro XLS microscope into an environmental chamber with
37°C, humidity, and no additional CO,. After 1 h acclimatization, the focus plane was deter-
mined. On 9 sites per well, images were taken every 4 h using the GFP filter set (300 ms expo-
sure) and transmitted light with 10% illumination (300 ms exposure).

After live imaging, all supernatant was removed and the cells were fixed with 10% formalin
for 15 min at room temperature and stained with 100 pg/ml Hoechst 33342 (Merck) for 30
min in the dark at room temperature. The plate was stored at 4°C until it was imaged with the
ImageXpress using transmitted light with 10% illumination (300 ms exposure), the GFP (300
ms exposure) and the DAPI (50 ms exposure) filter set on 9 sites per well.

Image analysis

Image analyses were performed on the MetaXpress 6 software. For live imaging, green fluores-
cent parasites were quantified from the GFP channel. The TopHat filter was applied with 10
pixel diameter. Round objects of size 1-10 um and a fluorescence difference of over 1000 were
designated as parasites (from the filtered image). For imaging of fixed cells, host nuclei and
parasite kinetoplasts were counted. Parasites’ mitochondrial DNA (kinetoplast DNA, kDNA)
is AT-rich and was therefore stained more strongly using minor-groove binding stains such as
Hoechst 33342 [30]. Round objects of size 5-30 um with a fluorescence difference of over 1000
were designated as host cell nuclei.

Parasite KDNA was detected by applying a TopHat filter with 10 pixels diameter as round
objects of 1-10 pm and a fluorescence difference of over 1000, which did not coincide with
host cell nuclei. Parasite KkDNA in an area where the green fluorescence difference was lower
than 1000 were defined as GFP-negative parasites. The remaining parasites were denoted
GFP-positive parasites.
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Statistical analyses

Statistical analyses were performed in R version 3.5.1 [31] using the packages “tidyverse” [32],
“readx]” [33], and “viridis” [34]. Scripts for different analysis steps are available under GitHub
(https://github.com/fesser-af/NiMDA). The dose-response relationship for each time point of
drug exposure was quantified by a four-parameter log-logistic model (Equation 1) using the
package “drc” [35] in R. When a dose-response model with an upper plateau (d) of 100% and
lower plateau of 0% could be determined, it was chosen preferentially.

rel.growth = ¢ +

Equation 1 Dose-response model. The four-parameters of this model to determine the
relative growth at a given concentration (x) were the upper plateau (d), the lower plateau (c),
the hill slope (b), and the inflection point (f). The inflection point (f) corresponds to the half
maximal effective concentration (EC50). The base of the exponential is e (Euler’s number).

Exponential models of change in parasite numbers (Equation 2) were determined for each
site in R. Exponential multiplication was assumed to dominate the replication period.

Equation 2 Exponential model for change in parasite numbers. P(f) is the number of
detected parasites at a certain time after infection (in h), P(0) is the hypothetical number of
parasites at this site assuming an exponential growth over the whole range of the time after
infection, e describes the fold change in parasite numbers per h, t is the time of infection of
interest (in h)

Resulits
Transfected T. cruzi expressing eGFP in the replicating life-cycle stages

To enable fluorescence-based live imaging, T. cruzi STIB980 epimastigotes were transfected
with a linearized plasmid containing the eGFP gene (enhanced green fluorescent protein)
under control of the rRNA promoter (Fig 1A), which was designed to integrate into the spacer
region within the genomic rRNA locus. Fluorescent metacyclic, amastigote, and trypomasti-
gote forms were derived from the transfected and cloned epimastigote transformants as
described (Methods). eGFP expression was detected in the replicating stages of the transfected
parasite line by flow cytometry and epifluorescence microscopy (Fig 1B-1F). As quantified by
flow cytometry, the green fluorescence levels (excitation 488 nm, emission 522 nm) in epimas-
tigote forms were about 100 times higher than the autofluorescence levels of non-transfected
cells (Fig 1B). Epifluorescence imaging showed an even distribution of eGFP throughout the
cytosol in epimastigotes and amastigotes, the two replicating stages (Fig 1C and 1E, respec-
tively). Green fluorescence could also be detected in the flagellum of epimastigotes and the
short flagellum of amastigotes. In contrast, in the non-replicating stages, the metacyclic trypo-
mastigotes and trypomastigotes (Fig 1D and 1F, respectively), green fluorescence was barely
distinguishable from the autofluorescence of the non-transfected parent. While the epimasti-
gote replication rate of the transgenic T. cruzi line was nearly unaltered (S1A Fig), the infectiv-
ity of the transgenic trypomastigotes was slightly lower than that of the wildtype
trypomastigotes (S1B Fig).
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When cultivated for approx. 4 months in the absence of antibiotic selection, the ratio of the
transgenic T. cruzi amastigotes still expressed eGFP at a detectable level was reduced to approx.
half of a recently introduced population (S1D Fig). When epimastigote forms of the transgenic
T. cruzi line were cultivated without antibiotics for six months, about 96% still expressed eGFP
(S1C Fig, S1 Table). For this reason, amastigote cultures were only maintained for 4 weeks
after they had been derived from epimastigotes.

A new assay design for live monitoring of drug action

We have devised a new plate design combined with a special imaging scheme that enables
observation of parasite development over 6 days, with only 24 h of user time on the high-con-
tent microscope (Fig 2). The mammalian cells were cultured in 96-well plates, but were not all
infected with T. cruzi at the same time (Fig 2B). Instead, every 24 h, a new row of 10 wells was
infected with an MOI of 3:1 (Fig 2). 24 h post infection (hpi), the wells were washed thoroughly
to remove extracellular parasites. Then, 7 wells were treated with a 3-fold serial dilution of test
compound, while the remaining wells were left untreated. Thus in every row on the plate, the
parasites had the same period of infection and the same period of drug exposure. In every col-
umn, the parasites were exposed to the same drug concentration. By day 6, when all the rows
were used up, the infection period covered 1 to 6 days and drug treatment from 0 to 5 days.
The plate was then placed into the microscope for automated live imaging over 24 h. Every 4
h, images were taken from 9 sites per well on the GFP channel for parasite quantification as
well as with transmitted light for quality control. After 24 h, the plate was fixed with 10% for-
malin and stained with Hoechst 33342. All 9 sites per well were imaged once again on the
DAPI channel, GFP channel, and with transmitted light. The DNA stain enabled the number
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Fig 2. Assay design. The timeline of the experimental set-up (A) and plate design (B). On a 96 well plate, a new set of
wells containing expanded peritoneal mouse macrophages (ePMM) was infected every 24 h. Extracellular parasites
were removed 24 h hpi and drugs were added in 3-fold serial dilution. On day 6, after addition of parasites and drugs
(either benznidazole or posaconazole), the plate was imaged on 9 sites per well over 24 h every 4 h (live imaging). After
24 h live imaging, the plate was fixed and stained with Hoechst 33342 and imaged again (fixed imaging). Green
fluorescent parasites per image were detected for all images (from live and fixed imaging) of the green fluorescent
channel. Kinetoplasts per image were detected on images of the DAPI channel (fixed imaging).

https://doi.org/10.1371/journal.pntd.0008487.g002
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of host cells to be determined by nuclei count (5-30 um round objects), with the number of
parasites inferred from counting their kinetoplasts (1-10 um round objects). The parasite
kinetoplast is brighter than the parasite nucleus, because the AT-rich kinetoplast DNA binds

Hoechst preferentially [30].

High content imaging reveals the high degree of variability in untreated

cultures

All assays were performed as biological triplicates, which resulted in a total of 27,540 fluores-
cent microscopy images per drug tested. On every image of the GFP channel, the number of
green fluorescent parasites was determined; on the DAPI channel images of fixed cells, the
numbers of host nuclei and parasites (on basis of KDNA) were also determined.
Parasite numbers per image were driven by the time post infection, drug concentration,
and the drug exposure time (Fig 3). There was a high degree of variability: between the days of
infection (rows on the plate), between replicate wells in the same row, and even between
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Fig 3. Parasite numbers over time after infection and drug exposure. The assay design was used to monitor the development of parasite numbers for posaconazole
and benznidazole treated parasites. Number of untreated parasites per image over time after infection are depicted from live (A) and fixed (B) imaging with detection as
green fluorescent parasites or as kinetoplasts, respectively. Mean number of treated parasites per image per well is depicted for benznidazole (C) and posaconazole (C) in
live imaging detected as green fluorescent parasites. Untreated controls are depicted in black (C, D).

https://doi.org/10.1371/journal.pntd.0008487.9g003
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different sites in the same well. Nevertheless, there were common trends in the dynamics of
infection (Fig 3A and 3B). In the untreated control cultures, the increase in parasite numbers
over the period of infection (6 days) could be separated into three phases. During the first 24 h,
the increase was usually the most pronounced, but also displayed the highest variance, consis-
tent with settling of parasites into the focal plane and the differentiation of trypomastigotes,
that barely expressed eGFP, to amastigotes that express eGFP. During days 2 to 4, parasite
numbers, as determined by green fluorescence, continued to increase, consistent with amasti-
gote replication, but began to level off towards day 4 (Fig 3A). On days 5 and 6, parasite num-
bers inferred from the green fluorescent channel increased only slightly, if at all (Fig 3A).
Around day 4, differentiation to trypomastigotes dominated the development in parasite num-
bers over amastigote replication. Fixation of cells allowed a direct comparison between the par-
asite numbers determined by green fluorescence and those determined from DNA-staining of
the kinetoplast (Fig 3A and 3B and S2 Fig). The latter method returned higher numbers. Para-
sites detected as KDNA on the DAPI channel, but not on the GFP channel, could be either try-
pomastigotes that did not express eGFP, dead parasites whose kinetoplast was still intact, or
revertants that no longer expressed the eGFP gene. During the middle phase (day 3 post infec-
tion), the proportion of parasites detected on the green fluorescent channel to parasites
detected on the DAPI channel was 0.95. This suggests that the plateauing of GFP-positive para-
sites at later time points was due to the transformation of intracellular amastigotes to trypo-
mastigotes and not to a loss of the eGFP gene.

In our experience, ePMM are the best suited for long-term, high-content experiment in
respect to their longevity and parasite detection rates on the DAPI channel [15]. But even with
ePMM, the host cell numbers (per image) were decreasing slightly, yet significantly, over the
course of the imaging period of a biological replicate batch (from the first plate of a batch
(benznidazole) to the last plate of a batch (posaconazole), a total of 5 days, S3A Fig). This led to
a slight increase of the parasite to host cell ratio in older host cells (S3B Fig). The host cells
were unevenly distributed over a well, which additionally could have influenced the variability
in parasite numbers. The host cells were relatively tolerant to benznidazole and posaconazole,
with EC50 values of >345 uM and >143 nM, respectively (54 Fig).

The decrease in EC50 values over time of drug exposure is a characteristic
feature of a drug

For each time point of drug exposure, the growth relative to the untreated control at the same
stage of infection depends on the drug concentration. A four-parameter log-logistic model was
used to determine this relationship and the half maximal effective concentration (EC50, Fig
4A and 4B). The predictions of the dose-response models in comparison to the counted para-
site numbers over time are shown in S5 Fig.

Over the time of drug exposure, the EC50 values decreased until they reached a stable mini-
mum (Fig 4C and 4D). How soon the final EC50 value was reached, was as characteristic for a
drug as the final EC50 value itself. For benznidazole, the EC50 value decreased from a median
value of 15 pM (with 95% confidence intervals ranging from 6.7 uM to 29 uM) after 24 h of
drug exposure to 1.7 uM (with 95% confidence intervals ranging from 0.66 (M to 2.7 uM)
after 52 h of drug exposure. Afterwards, the majority of the EC50 values remained in this
range. In contrast, for posaconazole, during the first 48 h, only 12 EC50 values could reliably
be determined with a median of 9.4 nM (95% confidence intervals ranging from 0.88 nM to 22
nM). 52 h after drug exposure, an EC50 value could be determined in all replicates for the first
time with a median value of 4.8 nM (95% confidence intervals ranging from 0.12 nM to 8.0
nM). Afterwards, the majority of the EC50 values remained in this range.
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Fig 4. Development of the concentration of half-maximal effect (EC50) over time of drug exposure. Dose-response curves were estimated for each time
point after drug exposure by modelling growth relative to the same-aged untreated control using the “drc” package in R for benznidazole-(A) and
posaconazole-treated (B) parasites. The resulting estimates of the EC50 are plotted over time of drug exposure (C, D). For several time points the 95%
confidence interval of the EC50 value did not meet the inclusion criteria, i.e. upper and lower limits less than tenfold higher or lower than the EC50 value.

https://doi.org/10.1371/journal.pntd.0008487.9004
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The EC50 values in these experiments were highly variable, even between biological repli-
cates. At some time points, the EC50 values could not be determined with a reasonable 95%
confidence interval. This is consistent with the fact that the parasite numbers have a high vari-
ability even in the untreated culture. Thus, classical end-point read-outs such as EC50 may not
be the most suitable method for quantifying drug action with live imaging. We therefore
aimed for a more robust read-out.

The change in parasite numbers at each site can be quantified in an
exponential model

At every imaged site, the same set of host cells was observed over the 24 h period of imaging.
Therefore, for each site, the change in parasite numbers between time points in this 24 h inter-
val (as exemplified in Fig 5A) only depended on the age of infection, the drug concentration,
and the time of drug exposure. We determined an exponential model for parasite numbers
over time at every imaged site (Methods, Equation 2).

This exponential model of change in parasite numbers has two parameters: the offset P(0)
and the slope ¢ (Equation 2). In the logarithmized version of the equation, the slope ¢ can be
negative, zero or positive, corresponding to declining, stagnating and growing parasite num-
bers, respectively. The slope c is a net result of replication rate, differentiation rate, and parasite
reduction rate. The offset (basal parasite number, P(0)) is an extrapolation of the number of
parasites in the monitored region at the time of infection.

Most of the observed variability in parasite numbers was captured by the variability in P(0),
which already differed between different sites of one well. This was to be expected since the
numbers of infected host cells are not evenly distributed over the whole well, and some
infected host cells would have been infected by more than one parasite.
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1.19
2
/// LA L
< ¢ % biological
() b’ 3 e % .
helie) " ] 3 > | replicate
? =3 =R i A A e TR 1
= 2 2
5} 3
0.9
24 72 96 120 144 1 2 3 4 5 6
time since infection [h] B time after infection [d]

Fig 5. Exponential model of the development of parasite numbers over time. Numbers of green fluorescent parasites from one plate are plotted over time
after infection (A). The parasite numbers obtained at the seven time points from the 9 sites in one well from this plate are highlighted in green as an example.
The exponential models (Methods) determined for every site of this well are plotted for illustration. The variable “fold change per h” of those exponential
models for every site of all plates changes between days after infection (B).

https://doi.org/10.1371/journal.pntd.0008487.g005
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While the extrapolated basal parasite number P(0) was very variable, the fold change in par-
asite numbers (i.e. the exponential of the slope, e°) was more robust, especially between days
2-4.In addition, the fold change is more informative as it directly reflects the difference
between replicating and dying amastigotes (at least in the early phase, when the amastigotes do
not differentiate to trypomastigotes; Fig 5B). For these reasons, we used the fold change of par-
asite numbers over time of drug exposure to characterize drug action. In particular, we focused
on the tipping point of drug action, i.e. the time point when the death rate of the parasites
exceeded the growth rate, and the fold change dropped below 1.

The tipping point of drug action is a sensitive and robust readout

The fold change in parasite numbers in drug-treated cultures was calculated based on the
exponential model of parasite replication. Initially, the parasites continue to replicate, although
often more slowly than in the untreated control. After some time of drug exposure, at certain
concentrations, parasite numbers start to decrease, i.e. parasites are dying. Once most parasites
are killed, the parasite numbers will not decrease further and the fold change will approximate
to 1. If the fold change exceeds 1 again, this might indicate that surviving parasites are replicat-
ing, or reflect an issue with drug stability. Certain drugs might be cytostatic at some concentra-
tions. In this case, the net fold change would be stable at approx. 1 over the whole period of
drug exposure.

The tipping point was defined as the time point immediately after the net fold change
dropped below 1. The tipping point of drug action is both time- and concentration-dependent.
Fig 6 shows the fold change in parasite numbers for each concentration and for every day post
drug exposure. For each replicate and each drug concentration, the tipping point, i.e. the day
when the fold change in parasite number has significantly dropped below 1 (95% confidence
interval excluding 1), is marked.

In the benznidazole-treated wells, parasite numbers started to decrease within the first
24 h of drug treatment at the highest concentrations. After 48 h, parasite numbers reached 0
for the highest concentration. In the posaconazole-treated wells, parasite numbers continued
to increase for at least 2 days. For benznidazole, there was a correlation between drug
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Fig 6. The fold change in parasite numbers of drug-treated parasites depends on drug concentration and time of drug exposure. The fold change in parasite
numbers was obtained by exponential models of change in parasite numbers for every site (Methods). The fold change in parasite numbers depended on the
concentration and time of exposure with benznidazole (A) and posaconazole (B). The first day of drug exposure, at which the fold change was significantly below 1, is
indicated for every replicate.

https://doi.org/10.1371/journal.pntd.0008487.g006
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concentration and the tipping point of drug action (Fig 6A). In contrast, in most cases, the
posaconazole-treated parasites only started dying during the third day of drug exposure, even
at the highest concentration (Fig 6B). In summary, calculating the tipping points allowed the
measurement of time- and concentration-dependence of drug action against intracellular T.
cruzi amastigotes, and illustrated potential shortcomings of posaconazole as compared to
benznidazole.

Discussion

The target candidate profile for Chagas disease is very demanding. A successful preclinical
candidate needs to demonstrate high activity against a broad range of T. cruzi strains from all
DTUs [5]. The activity needs to be selective (i.e. a high selectivity index) and trypanocidal, i.e.
leading to irreversible clearance of parasites. Preferably, this activity is achieved quickly. Due
to the diversity of aspects in activity, there is no single one assay design to test for all require-
ments. A hit from a predictive primary assay will have to pass through a panel of secondary
assays. The LacZ assay [12, 36] with its high throughput capacity is an attractive primary assay.
Several secondary assays have been established in the last few years, in particular wash-out
assay designs [15, 16, 37] and formats like the clonal outgrowth assay [38] to measure irrevers-
ible cidality. High-content microscopy has led to great innovation in kinetoplastid drug dis-
covery [6, 9-14, 39]. It combines the high throughput capacity of systems such as the LacZ
assay [12, 36] with detailed information on the numbers of parasites and host cells. Nuclear
staining as a read-out allows high-throughput in vitro assays to be undertaken with a broad
panel of strains [6]. Furthermore, high-content assays with nuclear staining allow for a direct
determination of selectivity indexes. However, the use of nuclear staining generally requires
fixation of the cells, precluding live imaging over several days to observe the time-course of
drug action. Live imaging can be more easily done with fluorescent T. cruzi reporter lines.

We established an eGFP expressing parasite line for use in live imaging assays. This parasite
line expresses eGPF in high levels from the ribosomal locus, but only in the replicating life-
cycle stages. This is in line with the observation that the reduction of transcription in the non-
replicating (metacyclic) trypomastigote stage is particularly pronounced for ribosomal loci
[40].

The new assay design presented here enables the monitoring of T. cruzi amastigote replica-
tion for 6 days post-infection, and drug action over 5 days of exposure, in four-hourly inter-
vals. Nine sites per well can be monitored separately. This not only creates a wealth of data-it
also reveals a high degree of variability in T. cruzi numbers, not only between different wells
and different days of infection, but also between different sites in the same well, infected on
the same day. This complicated the EC50 determination at each time point.

In contrast, the fold change per h in the number of parasites over the period of 24 h after
drug incubation is a sensitive and robust measure of pharmacodynamics. The fold change on a
specific day of infection was very reproducible within wells, between wells, and between days
of infection. The fold change is influenced by the drug concentration and the time of drug
exposure. For each drug concentration, we can determine the day of drug exposure at which
the net fold change per h drops significantly below one. At this tipping point, the death rate of
the parasites exceeds the growth rate. The graphical representation of the fold change per h of
parasite numbers in relation to drug concentration and exposure time clearly depicts the dif-
ferent pharmacodynamics of benznidazole and posaconazole. For benznidazole, the time-to-
kill decreased roughly exponentially with increasing drug concentration. In contrast, even at
the highest concentrations of posaconazole tested, the net killing only started after 3 days of
drug exposure.
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The concept of monitoring growth of intracellular T. cruzi via rates (i.e. fold change) and
determining the tipping point of drug action provides a novel pharmacodynamic parameter to
determine time-to-kill that can be applied to any assay design employing repetitive imaging of
the same site. The fold change in parasite numbers can readily be incorporated to PK-PD
modelling, as mathematical modelling requires rates. We propose to introduce the concentra-
tion-dependency of the tipping point of drug action as a novel measure to benchmark drug
candidates for Chagas’ disease in vitro.

Supporting information

S1 Fig. Epimastigote replication (A), trypomastigote infectivity (B), transgene expression
stability in epimastigotes (C) and amastigotes (D) of the transgenic parasite line. Epimasti-
gote density (A) was quantified daily after inoculum of 10* epimastigotes/ml using the Neu-
bauer chamber. Wt denotes the STIB980 wildtype, G12+ the eGFP-expressing STIB980 line
cultivated constantly in 500 pug/ml G418, and G12- the eGFP-expressing STIB980 line culti-
vated for 5 months without any antibiotic selection pressure. (B) Infectivity was measured
using high-content microscopy of Hoechst-stained ePMM infected with the MOI 5:1 for 48 h.
(C) Phenotypic transgene stability was measured in epimastigotes by flow cytometry in two
replicates. The geometric mean of the fluorescence level of the parasite population and the pro-
portion of green fluorescent parasites were determined (S1 Table). (D) In amastigotes, pheno-
typic transgene stability was measured by simultaneous comparison of ePMM infected for 5
days with a MOI 5:1 using trypomastigotes, which have either been passaged weekly 2 or 18
times in a Mef culture.

(TIF)

S2 Fig. Development of parasite numbers over time for all replicates separately. Parasite
numbers per image from untreated wells of all biological replicates from live imaging (green,
detected as GFP positive parasites) and fixed imaging (black, detected as kinetoplasts).

(TIF)

S3 Fig. Development of host cell numbers over time for all replicates. Host cell numbers per
image (A) and parasites per host cell numbers per image (B) from untreated wells of all biolog-
ical replicates from fixed imaging (black, parasites detected as kinetoplasts) in relation to time
passed between plating the host cells and fixing the plate. Linear models of the correlation and
their 95% interval are plotted in red.

(TTF)

S4 Fig. Development of host cell numbers over time and drug exposure. Host cell numbers
per image at the given drug concentrations (of benznidazole (A), and posaconazole (B)) and
the respective dose-response curves estimated using Equation 1 with the R package “drc” for
all time points, at which a dose-response curve could be estimated.

(TIF)

S5 Fig. Development of parasite numbers over time and drug exposure. Parasite numbers
per image (detected as green fluorescent parasites in the live imaging) at the given drug con-
centrations (of benznidazole (A), and posaconazole (B)) and the respective dose-response
curves estimated using Equation 1 with the R package “drc” for all imaged time points. The y-
axis in logarithmic scale to illustrate the parasite development over time.

(TIF)

S1 Table. Stability of transgene expression in T. cruzi epimastigotes. Phenotypic transgene
stability was measured in epimastigotes by flow cytometry in two replicates. The geometric
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mean of the fluorescence level of the parasite population and the proportion of green fluores-
cent parasites were determined. Wt denotes the T. cruzi STIB980 wildtype, G12+ the eGFP-
expressing STIB980 line cultivated constantly in 500 ug/ml G418, and G12- the eGFP-express-
ing STIB98O0 line cultivated for 5 months without any antibiotic selection pressure.
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