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Abstract 

Background: After standard effective antimalarial treatment with artemisinin-based 

combination therapy (ACT), a proportion of individuals remain infectious to mosquitoes, 

enabling onward transmission. This is due to persisting gametocytes, the sexual stage of the 

malaria parasite. Primaquine, an 8-aminoquinoline drug, sterilizes and clears gametocytes. 

The World Health Organization recommends that, in areas where malaria elimination is 

targeted, a single dose of primaquine should be given in addition to standard antimalarial 

treatment. Despite its recommendation in WHO guidelines since the 1970s, the optimal dose 

of primaquine for this purpose had not been determined. Primaquine is associated with 

haemolytic toxicity in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, 

a condition that is prevalent in malaria-endemic regions. This thesis presents the first dose 

ranging trial to assess the safety and efficacy of reducing doses of primaquine in combination 

with ACT to treat children with uncomplicated falciparum malaria infection. 

Methods: A literature review was conducted to inform a novel, evidence-based trial design. 

Based in Jinja, Uganda, this randomised, double-blind, and placebo-controlled trial had four 

parallel treatment groups of reducing doses of primaquine plus ACT.  

Results: For trial participants, a single dose of 0.4mg/kg primaquine base had non-inferior 

efficacy (measured by gametocyte clearance) to the WHO-recommended dose of 0.75mg/kg, 

whereas a dose of 0.1mg/kg was not non-inferior. There was no significant haemolysis in any 

of the treatment arms and the fall in haemoglobin was not associated with the dose of 

primaquine. However, a sub-analysis showed a dose-dependent reduction in haemoglobin in 

participants who were G6PD deficient (heterozygous or hemi-/homozygous genotype). 

Subsequently, the WHO reduced the recommended dose to 0.25mg/kg primaquine base. 
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Additional trial analyses that were not included in the published manuscript are presented in 

the thesis, together with descriptions of the trial’s impact and data sharing.  

Conclusion: The findings of this trial have contributed to changes in malaria elimination policy 

and to the prioritisation of primaquine evaluation in research agendas. This thesis puts the 

trial in the context of the body of evidence that has amassed since the trial results were 

published and highlights priorities for further research. 
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1 Introduction 

 Malaria, elimination, and the need for additional interventions 

Malaria kills an estimated 435 000 people per year (1). The majority of these deaths are in 

African children, due to infection with Plasmodium falciparum. Considerable global morbidity 

is attributable to the complications of infection, including anaemia(2) , poor pregnancy 

outcomes (3), and, following severe cerebral malaria, cognitive and neurological impairment 

(4, 5). In any given epidemiological setting, infection is most prevalent in the poorest 

populations due to conditions that increase contact with the Anopheles mosquito vector, such 

as exposure-prone housing and working conditions, and due to compromised access to 

preventative healthcare and treatment (6). Endemic countries experience adverse financial 

and development consequences due to the burden of infection on the population (7, 8). 

The last century saw the first collaborative effort to achieve global eradication of malaria. The 

World Health Organization (WHO) Malaria Eradication Programme in 1955-1969 co-ordinated 

multilateral control activities focussed primarily on vector control and widespread distribution 

of the anti-malarial drug chloroquine. The extent of global malaria endemicity was reduced 

significantly in regions with low, unstable transmission, but countries with the highest levels 

of malaria transmission and with the poorest health infrastructure, particularly in sub-Saharan 

Africa, received no deployment of interventions (9). In the ensuing two decades, these regions 

saw a rise in malaria-attributable deaths and global malaria interventions shifted focus to the 

control rather than the eradication of malaria and had relatively little impact (10). Important 

contributors were the widespread emergence of insecticide-resistant mosquitoes, and of 

chloroquine-resistant malaria parasites. In the last decade, strong and productive 

collaboration between committed funders, researchers and international organisations 

launched a new drive to tackle malaria as a public health problem. A bold renewed ambition 

of malaria eradication was declared by Bill and Melinda Gates in October 2007 (11) . This was 
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endorsed by the WHO in 2008 with a new Global Malaria Action Plan, calling for the 

elimination of malaria as a public health problem (12, 13)  . Focussed distribution of 

insecticide treated bed nets, indoor residual spraying of households with insecticide, prompt 

and effective anti-malarial treatment, and intermittent preventive treatment of malaria 

during pregnancy (IPTp) has been accompanied by a significant fall in malaria deaths in all 

regions, particularly in African children (14). Several countries have reached “pre-elimination” 

and “elimination” status (1). Even in countries with the highest levels of transmission, there 

have been some significant and sustained gains following targeted malaria interventions (15, 

16).   

Malaria elimination requires that the number of infectious mosquito bites per person per year 

is reduced to zero in a defined geographic area (17). To achieve this, local transmission must 

be interrupted and maintained as such, and the importation of malaria into the area must be 

monitored and managed actively (18). 

In the last five years, the estimated number of deaths from malaria globally has fallen by 

17.8% (28% in children aged under 5 years) (1). A powerful analysis of field surveys and 

intervention coverage found that between 2000 and 2015, the prevalence of Plasmodium 

falciparum infection halved in endemic African countries (19). These massive gains imply the 

success of existing strategies; significant attribution has been given to the increased 

distribution of insecticide-treated bednets (19).  

The WHO proposed a technical strategy for tackling malaria between 2016 and 2030 defining 

the target of eliminating malaria in 10 out of the 91 malaria-endemic countries by 2020 and in 

a further 25 countries by 2030 (13) . Whilst elimination is on track in some settings, the 

majority of endemic countries fall short of the indicator of reducing malaria case incidence 

and mortality by 40% by 2020 (1, 20). The falling trend in the annual global number of malaria 

deaths stalled between 2015-2016 and there was an increase in the annual number of malaria 
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cases, 90% of which were in the African region (21). In 10 sub-Saharan African countries and in 

India, the number of malaria cases increased in 2016, and again in 2017 (1). 

Drug resistance in mosquitoes and in malaria parasites represents a major threat to the 

effectiveness of existing elimination efforts (13). Originating in Southeast Asia, resistance to 

the most powerful and effective antimalarials, artemisinin-based combination therapies 

(ACTs), is now well-documented (22). The magnitude of the role that antimalarial drug 

resistance, as opposed to insecticide resistance, plays in the number of malaria deaths needs 

to be understood. There is substantial evidence that counterfeit and substandard antimalarial 

drugs are responsible for malaria deaths (23, 24). Mathematical models predict that 

innovative implementation strategies are needed to bring transmission to elimination levels 

(25, 26).  

Whilst vector control and case-based treatment have demonstrable impact (27-29), the 

reduction of transmission to zero requires that parasites are cleared from all reservoirs of 

infection. Case-based treatment targets symptomatic infections, but evidence points to a 

significant contribution of asymptomatic infection to ongoing transmission (30, 31). Prior to 

this thesis, relatively limited emphasis had been placed on targeting the transmission stages 

of the parasite and the role such a strategy might have in decreasing the time to elimination. 

The focus of this work is on blocking transmission of Plasmodium falciparum malaria infection 

from humans to mosquitoes, with an intervention that has not hitherto been adopted widely, 

namely, drug therapy targeted against the gametocyte, the sexual stage of the parasite. 
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 Literature review 

 A focus on gametocytes and gametocytocidal therapy 

 Role of the gametocyte in malaria transmission 

Theoretically, effective clearance of gametocytes from the human population would interrupt 

the malaria transmission cycle definitively. Targeting the gametocyte, or the interruption of 

gametocytogenesis, promises to be an important element of malaria elimination programmes 

(32, 33). 

The mortality and morbidity associated with Plasmodium falciparum infection is due to the 

effects of the asexual stage of the parasites on the human red blood cell, reviewed in (34). As 

the parasite multiplies and proliferates within red blood cells, conformational changes in the 

red cell membrane render it rigid and sticky (35) resulting ultimately in cell rupture. Infected 

red cells bind to the vascular endothelium and to the placenta (in pregnant women). This 

adhesion results in further harmful effects on the host, such as cytokine release and 

microvascular pathology. Uninfected red cells are also reduced by removal in the spleen. 

Anaemia, inflammatory cell recruitment and organ damage result, proving fatal if untreated 

and unchecked by the host immune system (36).  
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Figure 1-1 The lifecycle of Plasmodium falciparum: the role of the gametocyte.  

A relatively small number of erythrocytic merozoites differentiate into the sexual forms of the parasite, 

the male and female gametocytes, rather than undergoing asexual reproduction in the human host. 

Gametocytes develop through five morphological stages within the haematopoietic system until they 

reach maturity (stage 5 gametocytes) and re-enter the peripheral circulation, where they are infectious 

to biting female anopheline mosquitoes. In the mosquito midgut, the parasites undergo sexual 

reproduction, forming an oocyst. Upon maturity, the oocyst ruptures and releases sporozoites which 

migrate to the mosquito salivary glands, enabling onward transmission to humans. From Bousema 

Drakeley Clinical Microbiology Reviews 2011 (37). 

Early on in the course of human infection a small number of parasites differentiate sexually 

into male and female gametocytes (reviewed in Sinden 1983 (38)), (Figure 1-1). Gametocytes 

are inert and harmless to the human host. They sequester in the spleen and haematopoietic 

system where they mature through five stages of development and the mature stage 5 
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gametocytes are released in the peripheral blood (reviewed in Nixon 2016 (39)). Gametocytes 

outlive the harmful asexual stages, going on to circulate in the human host for days and even 

months after cure from clinical infection (40, 41)  .  

Theoretically, only two gametocytes (one of each sex) must be ingested per blood meal to 
effect successful transmission. Concentrations as low as 1 gametocyte per 5000 leucocytes 
have had documented infectivity to mosquitoes (42). The likelihood of human to mosquito 
transmission has been found to correlate with the density of gametocytaemia (43, 44). 
However, there is much observed non-linearity in this relationship (41, 45, 46). This has been 
explained by many factors, including the influence of antimalarial drugs (47, 48); human host-
derived inhibitory mechanisms such as acquired transmission-blocking antibody responses to 
antigens on the gametocyte surface (49, 50) (leading the way to the development of malaria 
transmission-blocking vaccines (51)); the immune defence of the mosquito (52, 53); and 
factors intrinsic to the gametocyte itself, such as the ratio of male to female gametocytes and 
their longevity. To summarise, even gametocyte densities at, and below, the lower limit of 
detection are able to infect mosquitoes (46, 54) so interventions designed to clear them must 
be designed with this in mind. Although some countries, such as Sri Lanka (55), have seen 
success in malaria elimination principally by targeting a reduction in symptomatic cases 
interventions that only target infections of high enough density to produce symptomatic 
infections might not sufficiently interrupt human to mosquito transmission in countries with a 
large proportion of low density infections (56). In settings where low density infections are 
highly prevalent, case-based treatment, rather than broader campaigns to treat people with 
asymptomatic infections, may have reduced impact. 
 

 

 Persistence of gametocytes post standard antimalarial drug interventions 

Many antimalarial drugs have activity against the sequestered early stage 1-4 gametocytes, 

reducing the number of parasites that will go on to become infectious after treatment (32, 

47). Indeed, the introduction of ACTs saw reductions in transmission due in part to their rapid 

and highly-effective schizontocidal activity and also to their effect on early stage gametocytes 

(57). However, at the time of treatment, the majority of patients will have been infected for 

long enough to have developed a significant gametocytaemia (37) and it is these already-

circulating mature stage 5 gametocytes that are responsible for transmission to the mosquito 

vector. Numerous studies have documented the persistence of mature gametocytes after 
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antimalarial treatment, including non-ACTs (58-61) and ACTs(62-65), enabling successful 

transmission to mosquitoes (37, 66).  

Currently, the only drug class with in vivo activity against mature stage 5 gametocytes is the 8-

aminoquinolines, and primaquine is the only drug in this class that is available and licensed 

widely (reviewed in White 2013 (67)). 

 

 Primaquine’s transmission-blocking activity 

1.2.1.3.1 Primaquine’s gametocytocidal action 

The 8-aminoquinolines were first developed in 1931 having primary action as antimalarials 

and antiseptics (68). The drug class was derived from the first synthetic antimalarial, 

methylene blue. Primaquine, 8-(4-amino-1-methyl-butylamino)-6-methoxyquinoline, was 

developed by the US Army and scientists at Columbia University in the 1940s for the purpose 

of radical cure and prevention of relapse of Plasmodium vivax infection (i.e., as a terminal 

prophylactic) in troops deployed in Southeast Asia and to prevent the importation of malaria 

when they returned home (69-71). It succeeded its parent compound, pamaquine (also known 

as plasmochin, plasmocide); the use of pamaquine was discontinued due to unacceptable 

levels of haemolysis and gastrointestinal toxicity (72, 73). Primaquine has sporozoiticidal 

activity and is recommended as an effective primary prophylactic agent for all species of 

malaria (74). There is some evidence that the drug may render hepatocytes non-receptive to 

sporozoites (75). Its effect against the asexual stages in the blood is unacceptably weak for 

use as a schizontocide for treatment (76).  It was the demonstration that a single dose was 

effectively gametocytocidal (77-79) that led to recognition that primaquine has important 

public health potential to reduce transmission of Plasmodium falciparum parasites, regardless 

of their sensitivity to schizontocidal drugs (80). Evaluation of this potential is of particular 
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importance today, in the face of emerging parasite resistance to artemisinin derivatives in 

Southeast Asia, threatening the effectiveness of the most potent antimalarial drugs we have 

available.  

Historical studies, conducted shortly after primaquine’s development, measured primaquine’s 

transmission-blocking efficacy at the level of the individual, at the level of the mosquito and at 

the level of the population. Primaquine administered to individuals reduced the gametocyte 

count after treatment (77, 78, 81). To assess the effect of primaquine at the level of the 

mosquito, blood samples taken from malaria-infected individuals were fed to laboratory-

reared mosquitoes to assess mosquito infectivity. The likelihood of the development of 

oocysts in the mosquito midgut, i.e., successful transmission and sporogony, was reduced 

when the individual was treated with primaquine (77, 78, 81, 82). Only one historical study 

assessed the effect of primaquine administration on population level malaria transmission, 

but there was no control arm. Clyde conducted a mass administration of a primaquine-

amodiaquine drug combination in sequential weekly, fortnightly and monthly rounds over a 

duration of ten months to three distinct populations of over 5000 individuals in eastern 

Tanzania (83). In addition to gametocyte prevalence, two additional measures were assessed 

to indicate ongoing transmission of the parasite beyond the treated individual: the mosquito 

sporozoite rate and the population asexual parasite rate. High population coverage was 

achieved (over 93%) and both sporozoite rates and population parasite rates reduced 

significantly with weekly and fortnightly treatment.  However, monthly treatment intervals 

were much less effective, seeing a resurgence of parasitaemia prior to sequential doses. The 

author noted that population coverage was an important limiting factor to transmission 

interruption, as has been borne out by more recent modelling studies (84).  
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 Role of gametocytocidal drugs in malaria elimination prior to this work 

1.2.1.4.1 WHO guidelines prior to this work 

In recognition of the documented efficacy of primaquine as a gametocytocidal drug, decades 

of WHO malaria treatment guidelines have incorporated recommendations for primaquine 

use to block malaria transmission. In 1973, WHO guidelines advocated the use of single dose 

primaquine at 0.75mg/kg (45mg adult dose) to block transmission, asserting that this dose 

was well-tolerated and there was no need to screen for G6PD deficiency prior to its use (80) . 

However, the setting for its use and the method of deployment was not stipulated. In 2001, 

the WHO Roll Back Malaria report advised the administration of 0.75mg/kg of primaquine to 

block malaria in areas of low to moderate transmission (85). The advice was to administer the 

drug after the patient had stabilized and again, that the dose was well-tolerated and that prior 

testing for G6PD deficiency was not recommended. In 2008, the WHO’s Malaria Control and 

Elimination guidelines stated that the effect of ACTs on gametocytes was incomplete, so they 

should be combined with primaquine to block transmission more effectively (12). Again, there 

was no detail as to the timing or optimal setting for this treatment. After this thesis started, in 

2010, WHO Malaria Treatment Guidelines advised primaquine as an addition to ACT as a 

component of a pre-elimination or elimination programme (86). Despite these repeated 

recommendations for primaquine as a malaria control tool, relatively few programmes 

incorporated its use, none of which were in Africa. This was largely due to the perceived risks 

associated with its use (reviewed in Ashley 2014 (87)). 

 Risks of primaquine 

 Gastrointestinal symptoms 

At therapeutic doses, primaquine causes gastrointestinal side effects (abdominal pain, 

cramps, mild diarrhoea) when taken on an empty stomach. Taking primaquine with food, 

however, significantly reduces this effect, as well as increasing its bioavailability (88). 
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 Methaemoglobinaemia 

Methaemoglobin is produced by the oxidation of oxyhaemoglobin when iron is oxidised from 

Fe2+ to Fe3+. This is a continuous process and it is regulated by the reducing nicotine adenine 

dinucleotide (NADH) system. Under oxidant stress, excessive methaemoglobin is formed. 

Primaquine is an oxidant that causes a predictable drug-induced methaemoglobinaemia. 

During a 14-day course of daily primaquine (15mg) for radical cure of Plasmodium vivax 

infection, typically less than 5% of total haemoglobin is methaemoglobin, and rarely greater 

than 12% (89). Symptoms are rare below levels of 15-20% (90) . In individuals with G6PD 

deficiency and NADH methaemoglobin reductase deficiency, excessive methaemoglobinaemia 

can occur (91). This can eventually reduce oxygen delivery to the tissues causing cyanosis, and 

at high levels, fatigue, dyspnoea, nausea and tachycardia.  

 

 G6PD deficiency-related haemolysis 

Soon after the drug was developed, it became clear that certain individuals were ‘primaquine 

sensitive’; they experienced haemolysis after exposure to primaquine (92, 93). The suspicion 

that an enzyme deficiency was the underlying cause (94) led to the elucidation of the 

underlying biochemistry, haematology and, subsequently, genetics of G6PD deficiency (95-97) 

. 

In G6PD deficient individuals, the risk of haemolysis is well-documented following a 14 day 

course of primaquine for radical cure of Plasmodium vivax malaria (98, 99) . There are also 

case reports of severe haemolysis after administration of single dose primaquine. For 

example, cases of severe haemolysis and black urine have been reported in Vanuatu following 

a single dose of 45mg of primaquine (100) . In Tanzania, where the prevalent A- variant of 

G6PD deficiency is typically associated with mild deficiency, a child was found to have severe 

haemolysis after a single dose of primaquine (101) .  
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Primaquine is distributed to the tissues rapidly and undergoes hepatic metabolism. The 

toxicity of primaquine is due to one or more of its metabolites; the responsible compound has 

not yet been identified (102). The functional biochemistry of primaquine metabolites, 

reviewed by Vale in 2009, is poorly understood (103). The carboxyprimaquine and 5-

hydroxyprimaquine metabolites have been proposed as candidate haematotoxic molecules 

(104, 105). Chemical instability hampers the investigation of the full range of metabolites. 

Primaquine is chiral and is usually produced in a racemic form (both L- and D- isomers 

present). Studies on stereo-selectivity indicate that the different enantiomers have different 

safety profiles and further work may produce products with reduced toxicity (106). 

Haematological toxicity has limited the widespread use of primaquine. This has led, in recent 

years, to a proliferation of searches for safer new drugs with gametocytocidal activity (107, 

108), with ensuing concepts and programmes for drug development (109). However, 

alternatives to primaquine are currently not readily available for deployment.  The indication 

from two small studies from the 1960s that primaquine-induced haemolysis is dose-

dependent (110, 111) led to the hypothesis for this thesis.  

Now that low-dose primaquine is recommended by the WHO as an adjunct to standard 

antimalarial therapy in malaria elimination and containment programmes (in addition to the 

well-established recommendation for radical cure of Plasmodium vivax malaria), it is set to be 

deployed more widely in malaria endemic regions (112). The risk of primaquine-induced 

haemolysis has demanded further and urgent exploration. The distribution of malaria 

endemicity roughly mirrors the prevalence of G6PD deficiency (Section 1.2.3.4). There is some 

speculation as to whether this is driven by vivax or falciparum malaria infection. It is crucial, 

therefore, that we understand the risk of drug-induced haemolysis both at the individual level 

and at the population level for primaquine administered at an efficacious dose for 

transmission-blocking.  
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The following section reviews the background pathophysiology, epidemiology and available 

diagnostics for G6PD deficiency that have implications for risk and safety in primaquine 

deployment. 

 G6PD deficiency 

 What does the G6PD enzyme do? 

G6PD is expressed in almost all human cells, including red blood cells, and is essential to their 

functioning (113). It catalyses the first step in the pentose phosphate pathway of 

carbohydrate metabolism, a series of reactions that ultimately results in the production of the 

reducing molecule NADPH. This confers cells with protection from potential oxidative damage. 

The enzyme is encoded by an X-linked gene which is highly polymorphic. More than 186 

mutations have been described to date (114, 115), leading to phenotypes, varying in 

biochemistry and clinical manifestation (116-119). Despite this extensive polymorphism, the 

vast majority of mutations are single point substitutions and all are in the coding region of the 

gene, supporting the assertion that a baseline level of G6PD expression is necessary for 

survival (120). 

 Ethical reflections on early work on G6PD deficiency 

A significant part of the work that led to the first definitions of G6PD deficiency, and that has 

been used subsequently to inform contemporary primaquine use, was based on by 

experiments conducted on inmates of the US Stateville Penitentiary, Joliet, Illinois (121-124). 

This was through a collaboration of the US Army Malaria Research Programme and the 

University of Chicago in the 1940s (93). These experiments were exhibited during the 1947 

Doctor’s Trial that led to the development of the Nuremburg Code of ethics of human subjects 

research, now superseded by the Declaration of Helsinki (125). Endorsed at the time of the 

trial, their ethical basis has been criticised subsequently (121, 126). 
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 What are the physiological effects of G6PD deficiency? 

1.2.3.3.1 Haematological effects of G6PD deficiency 

G6PD deficient individuals exhibit varying degrees of fragility of the enzyme product, 

depending on the specific mutation they carry (127). The extent of enzyme fragility translates 

to a risk of haemolysis (97, 119). Red blood cells are particularly affected by G6PD deficiency 

because, having lost their nucleus and key organelles during development (a crucial step that 

facilitates their unique role in transporting oxygen), they are unable to produce enough 

functioning G6PD enzyme as they age. Furthermore, G6PD enzyme activity decreases as they 

age (94). They are unable to compensate because they lack mitochondria to produce NADPH 

from alternative pathways. Low levels of functional G6PD enzyme renders red blood cells 

vulnerable to haemolysis under oxidative stress, which triggers a reticulocytosis to buffer 

against the oxidative challenge (110). 

The oxidative products of foods (archetypally, fava beans (128)), infections (129), and drugs 

(92, 110, 116, 130) such as primaquine, can trigger haemolysis, reviewed in (118, 131). The 

risk of haemolysis is governed by factors that determine the exposure to the drug, or other 

trigger factor, such as drug dose (92, 110), drug metabolism and drug-drug interaction (88, 

132) or inter-current infections (133, 134). Additional, extrinsic factors affecting the 

pharmacokinetics of primaquine are summarised in Table 1-1.   

Rare mutations producing the most severe deficiency cause a chronic haemolysis with no 

exogenous trigger, known as congenital non-spherocytic haemolytic anaemia, more analogous 

to severe thalassaemia (129, 135). These mutations are considered to be sporadic and 

independent in their origin, compared to the inherited, conserved milder variants that cluster 

in malaria-endemic regions (136, 137).  
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The WHO classification of G6PD deficiency according to phenotype is presented in table 5-1. 

Whilst male hemizygotes (their sole X chromosome carries the deficient gene) and female 

homozygotes have a fairly predictable phenotype, female heterozygotes can exhibit a range of 

phenotypes. This is attributed to lyonisation, whereby one of the two X chromosomes is 

randomly inactivated in each cell (138). The implications of this for the diagnosis of G6PD 

deficiency and for primaquine deployment are discussed later in this chapter (Sections 

1.2.3.6). 
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Table 1-1 WHO classification of G6PD deficiency. Adapted from WHO  (116) and Capellini et. 

al., 2008 (118) 

Category Description Residual G6PD 

enzyme function 

Common Variants 

Class I Severely deficient and associated 

with chronic non-spherocytic 

haemolytic anaemia 

Minimal (Very rare) 

Zacatecas (139), 

Hamburg (140), 

Veracruz (139), 

Yucatan (139) 

Class II Severely deficient and associated 

with acute haemolytic anaemia 

1-10% Mediterranean (141), 

Santamaria (142), 

Viangchan (143), 

Jammu (144), Seattle 

(145) 

Class III Moderate to mild deficiency 10-50% A- (146), Mahidol 

(147) 

Class IV Normal activity 60-150% A, B (146) 

Class V Increased activity >150%  

1.2.3.3.2 Clinical effects of G6PD deficiency 

The clinical presentation ranges from self-limiting haemolysis (110) to life threatening effects 

on the kidneys resulting in haemoglobinuria and acute renal failure (99, 148). Neonatal 

jaundice may be self-limiting or, in severe cases, result in kernicterus (149).  Severe 

haemolysis is characterised by symptoms of fatigue and back pain, and signs of anaemia, 
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jaundice and haematuria (dark, blood-stained urine) (reviewed in (118, 129). The resultant 

anaemia is accompanied by an unconjugated bilirubinaemia, raised lactose dehydrogenase, 

and reticulocytosis (150). Management of haemolysis depends on the severity and a key 

intervention is avoiding or removing the trigger. Mild to moderate drug-induced haemolysis is 

typically transient and recovery ensues several days after stopping the drug. Severe 

haemolysis may require blood transfusion. In neonates, if ongoing haemolysis results in levels 

of unconjugated bilirubin above age thresholds (151), then phototherapy is given to prevent 

neurological damage. If levels are life-threatening, then exchange transfusion may be 

indicated. 

 G6PD epidemiology/geodistribution 

An estimated 400 million people are affected by G6PD deficiency globally (118). It is the most 

common enzyme deficiency worldwide and it is particularly conserved in malaria-endemic 

areas. In keeping with the hypothesis of Haldane in 1949 (152), that resistance to infectious 

disease drives natural selection in humans, there is solid evidence to suggest that G6PD 

deficiency affords protection against severe falciparum malaria (153, 154) In vitro, the growth 

of falciparum malaria parasites appears to be impaired in red blood cells with reduced G6PD 

function (155, 156), and they are more readily phagocytosed (157). At population level, the 

risk of severe falciparum malaria was significantly reduced in male hemizygotes in a hospital-

based case-control study in Mali (158) and in both male hemizygotes and female 

heterozygotes in hospital- and community-based case-control studies in Kenya and The 

Gambia (159, 160). A large prospective cohort study in Uganda found a significantly reduced 

incidence of malaria episodes in phenotypically G6PD deficient females but not males (161, 

162), reflecting risk in a more representative community-based sample than hospital-based 

surveys of people with malaria. Individuals with malaria are haemolysing and therefore, have 

a higher mean G6PD enzyme level in the surviving red blood cells. Using G6PD genotyping to 

estimate the level of enzyme activity, a large multi-centre case-control study found that the 
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type of clinical manifestation of severe malaria was associated with the extent of G6PD 

enzyme deficiency. Decreasing levels of enzyme activity (more severe deficiency) were 

associated with a higher risk of severe malarial anaemia but a lower risk of cerebral malaria 

(163). G6PD deficiency was associated with significantly reduced risk of Plasmodium vivax 

malaria infection in an Afghan population (164) and with reduced Plasmodium vivax parasite 

density in Thailand (165). 

Global prevalence estimates indicate that the highest population frequencies of G6PD 

deficiency are in sub-Saharan Africa with hotspots also in the Mediterranean, the Arabian 

Peninsula and in parts of South and Southeast Asia and the central and southern Pacific 

islands (116, 166). Moderate levels are found in the Americas (167, 168). In regions where the 

G6PD map does not correspond to malaria prevalence, this has been attributed to relatively 

recent migration from malaria-endemic areas or successful regional malaria eradication (118).  

Recently, a novel approach to mapping the global distribution of G6PD deficiency was applied 

by Howes and colleagues (167). Data from 1734 surveys of phenotypic enzyme function was 

screened for quality and sub-national geotatistical mapping methods were used to generate 

global- and national-level maps of the allele frequency of G6PD deficiency. The investigators 

incorporated both estimates of the certainty of the data and population-weighting. The 

highest prevalences of enzyme deficiency were found in sub-Saharan Africa (with relative 

sparing of the Horn of Africa and parts of southern Africa). Whilst the prevalence was lower in 

Asia, when it was weighted by population density, the highest burdens were found in this 

region, particularly in India and China. Howes overlaid prevalence data with scores of the 

severity of G6PD deficiency from data on the variants found in geographical surveys to 

produce a map that highlights the overall risk from G6PD deficiency, and the implied risk of 

haemolysis (Figure 1-2). The highest risk regions were in west Asia and the Arabian Peninsula 

and it was high across the whole of Asia. This distinction, between risk and prevalence, must 
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be taken into consideration in primaquine deployment programmes. In summary, whilst the 

A- variant is highly prevalent in sub-Saharan Africa, the mild severity of the enzyme deficiency 

(10-20% residual enzyme function) could be expected to present a lower risk of haemolysis in 

the context of treatment with primaquine compared to more severe variants. 

 

Figure 1-2 Severity risk from G6PD deficiency. From Howes et. al. (167) 

A: G6PD variant severity score per country (ratio of class II to class III variants). B: G6PD deficiency risk 

index (severity of variants, from A, and prevalence of G6PD deficiency). C: Scoring matrix for maps A and 

B. D: uncertainty level of data analysis for severity score and risk index per country. E: matrix for 

uncertainty index for severity and prevalence (detailed in Howes et. al. (167))  
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 G6PD deficiency in Uganda  

There is marked geospatial heterogeneity in the prevalence of G6PD deficiency within Uganda 

and this appears to vary with the regional risk of malaria (169). Prevalences vary depending on 

the method of analysis (162) (see section 5.5). A recent cross sectional survey in South 

western Uganda screened 631 asymptomatic children aged between 6 and 59 months of age 

for G6PD deficiency and found low but varying prevalence depending on the assay used (170). 

Applying a <60% threshold of activity, a quantitative enzyme activity assay (Trinity Biotech ® 

G6PDH test, Ireland) found 6.8% of children with mild or moderate deficiency (none with 

severe deficiency), whilst a qualitative rapid diagnostic test (CareStartTM) identified 8.6% of 

children as deficient. In Tororo district, in the East, enzymatic testing of children in a 

community cohort study found 19.7% of children had mild or moderate G6PD deficiency (60% 

activity cut-off) (171). Gold standard genotyping found the prevalence of the G202A mutation 

to be 6.8% in this population. A household level survey conducted in 1344 individuals 

distributed across three districts with varying malaria endemicity found prevalences of G6PD 

A- variant (G202A mutation) ranging from 8% in the low endemic setting (Kanungu district) to 

29% in the high endemic setting (Tororo) (169). In Walukuba, Jinja, the study site for this 

thesis, this household survey found a genotypic prevalence of 18%. A longitudinal cohort 

study of children in the neighbouring district of Iganga, the prevalence was comparable, 22.7% 

in a 1-year cohort study (172) and 20.4% in a birth cohort (173).  

 The challenge of testing for G6PD deficiency 

The exact mechanism for primaquine-induced haemolysis is still unknown. Tests for an 

individual’s risk of haemolysis are based on the proxy measure of the level of residual G6PD 

enzyme function (phenotypic tests) or on their genotype (genotypic tests).  

To accurately predict the risk of exposure to a drug like primaquine, we need to answer a key 

question: how does a given level of G6PD enzyme activity correlate with the risk and severity 
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of haemolysis after primaquine administration both at individual level, and at population 

level? This remains to be clearly delineated, leaving, on one hand, the risk of causing harm to 

individuals with a low threshold for primaquine-induced haemolysis and on the other hand, 

the risk of reducing the maximal impact of primaquine on interrupting transmission by 

omitting individuals from the intervention (174, 175).  

1.2.3.6.1 Available tests for G6PD deficiency 

1.2.3.6.1.1 Phenotypic tests of enzyme function: Qualitative Quantitative 

Quantitative assessment of G6PD enzyme activity enables classification of the degree of 

enzyme deficiency, and this can be interpreted using the WHO classification of severity (Table 

1-1). A shortcoming of the application of this classification for clinical use is that, although the 

severity categories relate to a specific range of enzyme function, they are not calibrated to the 

risk of haemolysis induced by primaquine or any another precipitant. 

The gold standard method for quantitative phenotypic assessment is laboratory-based 

ultraviolet spectrophotometry. Accurate results depend on preservation of functioning 

enzyme levels from the point of blood sampling through to the point of running the assay. 

This applies to both the test samples and to the biological controls (171). G6PD enzyme 

degrades at room temperature and is preserved for two weeks at 4-8 degrees (176). Freezing 

allows longer-term storage, but the enzyme degrades on thawing (171). The haemolytic status 

of the test recipient can affect assay results. During acute haemolysis old erythrocytes are 

removed selectively. The remaining young reticulocytes have less-fragile G6PD enzyme, so 

higher functioning activity levels (177). This can lead, potentially, to false normal classification. 

To avoid misclassification, the WHO recommends an adjustment calculation depending on 

haematological status (178). Typically, a normalisation adjustment is made for haemoglobin 

level, but when anaemia is caused by a haemoglobinopathy, red cell count normalisation is 

recommended instead, to avoid over-estimation of G6PD enzyme activity (179). Sampling 
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from venous versus finger-prick capillary blood does not appear to affect measured G6PD 

activity, despite the slight difference in haemoglobin concentration and red cell count 

anticipated by the two methods (180). Females may be under-diagnosed with phenotypic 

tests. The linkage of the G6PD gene to the X chromosome was established in 1961 (181). In 

females, each cell expresses only one copy of the X chromosome and this process, lyonisation, 

occurs at random (182), the classic example being the mosaicked colouring of the coat of the 

tortoiseshell cat. Hence, homozygous females have a predictable G6PD phenotype, but female 

heterozygotes have a highly variable extent of gene expression  (129, 183) and they may be 

under-diagnosed when using conventional enzymatic tests rather than molecular diagnostics 

(97, 131). 

A range of field-based methods have been developed to quantify enzyme activity in resource-

limited settings and increasingly, recommendations are being designed to minimise potential 

challenges and to standardise test evaluation (184). 

Point-of-care tests are becoming available, designed to simplify requirements for laboratory 

training and facilities (185, 186) and there is indication that they may be cost-effective (187). 

These tests are largely qualitative; with cut off values that vary widely, from 10-60% of 

residual enzyme function (137, 174, 185). The WHO recently published prequalification 

criteria for qualitative tests (188). These require that tests determine G6PD status as a 

percentage of the adjusted male median enzyme activity for a population: the “normal” cut 

off is defined as >30% in males and >80% in females (189). 

1.2.3.6.1.2 Genotypic tests 

A given G6PD genetic variant is loosely associated with a clinical phenotype, as illustrated in 

Table 1-1 (Section 1.2.3.3.1) for the most prevalent variants. However, there are documented 

cases where this is not consistent. For example, whilst G6PD A- variant is usually associated 

with mild haemolysis, Shekalaghe et al. describe the case of a child who received single dose 
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primaquine during a mass drug administration resulting in severe haemolysis (101). In a 

household cohort study, Johnson et al found that 29% of males with reduced enzyme function 

had wild type genotype for A- variant (162). A possible explanation is that these children have 

a genotype not yet characterised and not detected by the single nucleotide polymorphism 

(SNP) markers used for A- genotyping. Exploratory sequencing and screening for an extended 

range of SNPs and alternative genetic markers may reveal alternative genotypes prevalent in 

Africa that are associated with G6PD deficiency (163, 190). More than 400 biochemical 

variants have been defined, which far exceeds the number of molecular variants, 

approximately 187, that have been characterised (115). Furthermore, particular genotypes are 

found to be associated with a range of clinical presentations (119). A range of phenotypic 

severities have been documented in well-studied variants such as Mahidol (191), and A- 

variants (192). The risk of haemolysis for any given variant may have multiple determining 

factors. There is variability according to physiological status; immediately after an episode of 

haemolytic anaemia, a resistant period is documented in some genotypes, during which 

further oxidative insult does not produce any worsening in haemolysis, such as is seen in A- 

variant but not in Mediterranean (97). To summarise, genotyping alone does not give a 

reliable indication of an individual’s capacity for haemolysis at a given instance. 

Molecular tests are typically unsuited to field settings because of the high requirement for 

resources, including technical equipment and consumables stored at constant temperature 

conditions, with reliable electricity, and highly-trained operating personnel. 

The thesis presented an opportunity to provide samples for the development of a novel high-

throughput bioluminescence-based assay that enables the detection of multiple SNPs (20-50) 

without the use of gel electrophoresis. This assay still requires the resources for polymerase 

chain reaction, but it is an example of a methodology that might ultimately be transferable to 

the field (193).  
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 Evidence-based study design 

Prior to development of the protocol for this thesis, the evidence base was reviewed to inform 

the formulation of the research question (section 1.3 to 1.5) and the trial design (chapter 2). A 

large body of evidence for the use of single dose primaquine is now available. A series of 

Cochrane reviews (194-197) and the Worldwide Antimalarial Resistance Network (WWARN) 

(198) have kept track of the rapidly evolving research questions and data pool. However, this 

was not the case at the time this trial was conceived. Primaquine was recommended in 

guidelines, but the evidence base needed strengthening in order to empower policy makers to 

make informed decisions about its use. 

This necessitated a process of thought as to what evidence gaps needed testing in a clinical 

trial and how such a trial should be structured. Superimposed was the need to produce a 

meaningful trial result in a timescale that that could enable its translation into policy rapidly, 

as, in several settings, primaquine use as a transmission-blocking agent was already in 

consideration (199).  

It became apparent that a novel approach was needed to design a drug efficacy trial to assess 

transmission-blocking efficacy rather than asexual parasite clearance as per standard 

antimalarial drug efficacy trials. Although previous authors had studied the effect of 

primaquine on gametocytes, there was paucity of reference material for trial components 

such as optimal endpoints, sample size determinations, safety considerations, and the 

structure of follow-up procedures. Importantly, an emerging body of evidence was indicating 

that infections with very low sexual parasite densities (below the microscopic detection 

threshold) were infective to mosquitoes (54), so submicroscopic molecular detection methods 

needed consideration in trial design. 

The process of informing study design is presented as a series of answers to questions in 

Chapter 2. Section 2.1.3 summarises the conclusions of this process, using the evidence that 
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was available at the time the trial objectives were formulated. In the discussion chapter 

(Section 5.2), the trial is put back into the context of the subsequent, contemporary evidence 

base. 

 Overall aim 

To design, conduct and report a clinical trial to evaluate the efficacy and safety of lower doses 

of primaquine for the clearance of gametocytes in uncomplicated falciparum malaria in sub-

Saharan Africa, compared to the reference WHO-recommended dose of 0.75mg/kg 

primaquine base. 

 Hypothesis 

The trial hypothesis was that lower doses of primaquine given with ACT have a higher risk of 

adverse effects compared to ACT alone, and that they are not as efficacious as the WHO-

recommended 0.75mg/kg dose for gametocyte clearance. 

 

This hypothesis was tested with a four-arm clinical trial with a non-inferiority design to 

evaluate the efficacy, and with a superiority design to evaluate the safety, of the WHO dose 

(0.75mg/kg) and lower doses of primaquine for clearance of Plasmodium falciparum 

gametocytes in children in Uganda. The study was designed to include a novel 

pharmacokinetic analysis. The inclusion of an ACT-alone arm enabled testing of the hypothesis 

that primaquine adds no benefit for clearance of gametocytes compared to ACT alone and 

that primaquine is less safe than ACT alone. 
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 Objectives 

 General objective 

To evaluate the efficacy and safety of different doses of primaquine administered with 

standard antimalarial treatment, artemether lumefantrine (AL), to children in Uganda with 

uncomplicated malaria and with normal G6PD enzyme function, for the purpose of reducing 

Plasmodium falciparum gametocytes in the infected human host to prevent transmission of 

falciparum malaria to the Anopheles mosquito vector. 

 

 Specific objectives 

1) To evaluate the efficacy of different doses of primaquine when administered with AL 

as measured by gametocyte prevalence and density 

 

2) To evaluate the safety of different doses of primaquine when administered with AL as 

measured by change in mean haemoglobin, prevalence of severe anaemia (Hb 

<5g/dL), and evidence of black urine (haemoglobinuria; dipstick positive) or 

requirement for blood transfusion 

 

3) To assess the safety of different doses of primaquine when administered with AL as 

measured by prevalence/ incidence of adverse events and tolerability 

 

4) To obtain basic pharmacokinetic parameters for primaquine in the study population 

 

5) To evaluate primaquine safety according to G6PD genotype and enzyme function for 

children who are misclassified by phenotypic G6PD testing 
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 Objectives for the thesis 

1.2.7.3.1 Design and implement a clinical trial 

Funded as a clinician’s research training fellowship, through the Wellcome Bloomsbury Clinical 

PhD Programme in International Health, the objective of the PhD was to design a clinical trial 

compliant with good clinical practice and regulatory body obligations, to attract an advisory 

panel of suitable expertise, to select an appropriate location and local collaborators for the 

trial and to implement it, manage it, control the budget and close the trial in a responsible 

manner.  

1.2.7.3.2 Timely and accessible presentation of trial findings 

Given the public health importance of baseline data on primaquine as a transmission-blocker, 

the reporting aim was to produce reports of the trial results in peer-reviewed journals. 

Prospective publication of the trial protocol was planned in order to uphold transparency and 

concept-sharing within the scientific community. This was important as, following the 

establishment of the Single Low-Dose Primaquine Working Group (Section 3.3.4.1), a range of 

future trials were planned in different settings (199). 

2 Methods 

 

 RESEARCH PAPER 1: Publication of the trial methods 

The trial methodology was published prospectively in a peer reviewed journal, BMJ Open 

2012 (200). Sections 2.2 onwards describe the process of protocol development.  
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ABSTRACT  
Objectives: For the purpose of blocking transmission of 
Plasmodium falciparum malaria from humans to 
mosquitoes, a single dose of primaquine is recommended 
by the WHO as an addition to artemisinin combination 
therapy. Primaquine clears gametocytes but causes dose-
dependent haemolysis in individuals with glucose-6-
phosphate dehydrogenase (G6PD) deficiency. Evidence is 
needed to inform the optimal dosing of primaquine for 
malaria elimination programmes and for the purpose of 
interrupting the spread of artemisinin-resistant malaria. 
This study investigates the efficacy and safety of reducing 
doses of primaquine for clearance of gametocytes in 
participants with normal G6PD status. Methods and 
analysis: In this prospective, four-armed randomised 
placebo-controlled double-blinded trial, children aged 1–10 
years, weighing over 10 kg, with haemoglobin ≥8 g/dl and 
uncomplicated P falciparum malaria are treated with 
artemether lumefantrine and randomised to receive a dose 
of primaquine (0.1, 0.4 or 0.75 mg base/kg) or placebo on 
the third day of treatment. Participants are followed up for 
28 days. Gametocytaemia is measured by quantitative 
nucleic acid sequence-based analysis on days 0, 2, 3, 7, 
10 and 14 with a primary endpoint of the number of days to 
gametocyte clearance in each treatment arm and 
secondarily the area under the curve of gametocyte density 
over time. Analysis is for non-inferiority of efficacy 
compared to the reference dose, 0.75 mg base/kg. Safety 
is assessed by pair-wise comparisons of the arithmetic 
mean (±SD) change in haemoglobin concentration per 
treatment arm and analysed for superiority to placebo and 
incidence of adverse events. Ethics and dissemination 
Approval was obtained from the ethical committees of 
Makerere University School of Medicine, the Ugandan 
National Council of Science and Technology and the 
London School of Hygiene and Tropical Medicine. 
 
 
Results: These will be disseminated to inform 
malaria elimination policy, through peer-reviewed 
publication and academic presentations.  

 
 

ARTICLE SUMMARY   
Article focus  
▪ Single-dose primaquine, administered 

together with artemisinin combination therapy, 
blocks transmission of Plasmodium 
falciparum malaria by clearing gametocytes. 

▪ Primaquine, an 8-aminoquinoline, causes dose-
dependent haemolysis in individuals with 
glucose-6-phosphate dehydrogenase (G6PD) 
deficiency. Evidence is lacking on the safety and 
efficacy of lower doses of primaquine. 

▪ This is the protocol of a dose-finding trial 
being conducted in eastern Uganda. 

 
Key messages  
▪ Dose-finding is a priority for the use of prima-

quine in malaria elimination programmes and to 
block the spread of artemisinin-resistant malaria. 

▪ This trial is designed to investigate the 
efficacy and safety of reducing doses of 
primaquine for gametocytocidal action. 

▪ This paper highlights the unique trial design 
issues that are relevant for investigating the effi-
cacy and safety of antimalarials targeted against 
the sexual stages of malaria for blocking trans-
mission rather than clinical cure. 

 
Strengths and limitations of this study  
▪ For ethical reasons, in this trial, dose-finding is 

conducted in children with normal G6PD status, but, 
ultimately, information is needed on the safety of 
lower doses in people with G6PD deficiency.  

▪ This trial measures primaquine’s transmission-
blocking potential by assessing gametocyte 
clearance. Endpoints of mosquito transmission 
at multiple time points could be usefully 
assessed but on smaller numbers of individuals. 

 
BACKGROUND  
Sustained deployment of vector control mea-
sures and accessible, effective drug therapy has 
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reduced the transmission of Plasmodium falciparum in many 
endemic countries. However, further scaling-up of cur-rently 
available malaria control measures is unlikely to achieve 
malaria elimination in most settings.1 Moreover, the 
emergence of resistance to artemisinin in Southeast Asia,2 3 
and the development of insecticide resistance and adaptive 
behaviour in the mosquito vector4–6 present sig-nificant 
threats to the current trend of declining malaria burden. 
Malaria elimination initiatives and artemisinin-resistance 
containment strategies both require additional tools that are 
specifically aimed at reducing the transmis-sion of malarial 
parasites.7 8 
 

Antimalarial drugs are designed primarily to target the 
asexual stages of the parasite that cause morbidity and 
mortality. The effect of antimalarial drugs on game-tocytes, 
the transmission stages, has for decades been seen as 
ancillary. P falciparum gametocytes undergo complex 
development that is characterised by five mor-phologically 
distinct stages of maturation.9 The imma-ture gametocyte 
stages (I–IV) are sequestered in the reticuloendothelial 
system and bone marrow.10–12 Mature stage V gametocytes 
typically appear approxi-mately 12 days after the onset of 
patent asexual blood-stream infection, and are the only 
gametocyte stage that circulates in the peripheral blood and 
is infective to biting female Anopheles mosquitoes.13 14 The 
majority of antimalarial drugs, including artemisinins, 
lumefantrine and piperaquine, have some efficacy against 
immature gametocytes.15 16 These drugs have the potential 
to reduce transmission at a population level because asexual 
parasites are cleared, preventing de novo devel-opment of 
gametocytes, and fewer of the immature gametocytes that are 
present upon initiation of treat-ment survive to maturity. 
However, the vast majority of symptomatic cases have 
measurable and transmissible levels of mature gametocytes 
at presentation.17 18 These persist after treatment with all 
antimalarials that are cur-rently implemented as first-line 
treatment, including artemisinin combination therapy (ACT). 
Gametocytes that persist after ACT have repeatedly been 
shown to be infectious to mosquitoes.17 19 20 This post-
treatment gametocyte carriage frequently occurs at low 
densities, commonly below the microscopic threshold for 
detec-tion,21 22 but is sufficiently high for efficient mosquito 
infection.17 23 

 
The only class of drugs that are effective against mature P 

falciparum gametocytes is the 8-aminoquinolines. 
Primaquine is the most widely available drug in this class. 
The exact mechanism for this gametocytocidal activity is 
unknown, but it is probably dependent on oxidative damage 
to the intraerythrocytic parasite by primaquine metabolites.24 
Primaquine as a single dose of 0.75 mg base/kg added to 
standard ACT has superior gametocyto-cidal activity to ACT 
alone.25–27 All doses of primaquine described hereafter refer 
to the dose of primaquine base per unit weight. There are 
indications that doses of primaquine lower than 0.75 mg/kg 
may be equally effica-cious. A Thai study showed that both 
0.5 and 0.25 mg/kg 

 
of primaquine administered with ACT to adults infected with 
malaria effectively and indistinguishably reduced the 
proportion of mosquitoes that became infected after a blood 
meal.28 In small numbers of adults, total doses of 30 mg and 
15 mg have shown comparable efficacy to a 45 mg dose in 
reducing mosquito infection rates.29 30 
 

The efficacy of primaquine when given as a single low 
dose is important in the light of concerns over the 
haematological safety of primaquine. There is conclusive 
evidence for primaquine-induced haemolysis in glucose-6-
phosphate dehydrogenase (G6PD) deficient individuals.31 32 
G6PD deficient individuals are vulner-able to oxidative stress 
because their erythrocytes do not have alternative pathways 
for G6PD-dependent nicotina-mide adenine dinucleotide 
phosphate production, which is essential to maintain 
antioxidant defences. There is conflicting evidence on the 
risk of haemolysis after a single dose of primaquine. A single 
dose of 45 mg primaquine administered to a Vanuatan adult 
caused life-threatening haemolysis.33 In G6PD-deficient 
Tanzanian children, the mean fall in haemoglobin after a 
single dose of 0.75 mg/kg primaquine was 2.5 g/dl (95% CI 
1.2 to 3.8 g/dl), though no associated severe adverse events 
were recorded and haemolysis was transient.34 On the other 
hand, primaquine was reported to be well tolerated when 
0.75 mg/kg was given without prior G6PD testing in large 
studies in Myanmar, Sudan, Russia, Cambodia and China.27 

31 35 36 
 

Because primaquine-induced haemolysis is dose-
dependent,29 and because gametocytocidal efficacy may be 
retained with primaquine doses lower than 0.75 mg/kg, the 
WHO-recommended dose in its 2010 Guidelines for the 
Treatment of Malaria, dose-finding studies are needed 
urgently. This trial tests the hypoth-esis that lower doses of 
primaquine have a substantially lower risk of, or an absence 
of, adverse effects but that their gametocytocidal efficacy is 
retained. 
 
 
METHODS AND ANALYSIS  
Study design  
The study is a prospective, randomised, parallel arm, 
placebo-controlled, double-blinded clinical trial of redu-cing 
doses of primaquine administered with artemether 
lumefantrine (AL) for the treatment of uncomplicated 
clinical P falciparum malaria infection in children aged 1–10 
years of age. The study uses a non-inferiority design to 
evaluate the efficacy and a superiority design to evaluate the 
safety of 0.1 and 0.4 mg/kg primaquine compared with 0.75 
mg/kg when added to AL. 
 
Study objectives  
1. To evaluate the efficacy of 0.1, 0.4 and 0.75 mg/kg 

primaquine when administered together with the fifth 
dose of AL as measured by gametocyte preva-lence and 
density.  

2. To evaluate the safety of 0.1, 0.4 and 0.75 mg/kg 
primaquine when administered together with the 
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fifth dose of AL as measured by change in mean 
haemoglobin, prevalence of severe anaemia 
(haemoglobin <5 g/dl) and evidence of black urine 
(haemoglobinuria). 

3. To assess the safety of different doses of 0.1, 0.4 and 
0.75 mg/kg primaquine when administered together with 
the fifth dose of AL as measured by preva-
lence/incidence of adverse events and tolerability. 

 
Participants and enrolment  
The study is conducted at Walukuba Health Centre IV in 
Walukuba subcounty, Jinja district, in eastern Uganda. In 
this area, malaria transmission is year-round with two 
seasonal peaks. The entomological inoculation rate (EIR) 
was estimated at 7 infectious bites per person per year in 
Walukuba.37 Study participants are recruited from children 
attending the Health Centre IV with sus-pected malaria 
(figure 1). Inclusion criteria are age 1–10 years, weight over 
10 kg, fever (tympanic tempera-ture >38°C) or history of 
fever in the last 24 h, P falcip-arum mono-infection with a 
parasite density <5 00 000/ µl and normal G6PD enzyme 
function. Exclusion cri-teria are evidence of severe 
illness/danger signs, known allergy to study medications, 
haemoglobin <8 g/dl, started menstruation, pregnancy or 
breastfeeding, anti-malarials taken within the last 2 days, 
primaquine taken within the last 4 weeks and blood 
transfusion within the last 90 days. 
 

The fluorescent spot test38 is used for G6PD screen-ing. 
This test has a cut-off of approximately 20% enzyme 
function, below that, there is no fluorescence. The WHO 
classification defines severe G6PD deficiency as 10% enzyme 
function.39 

 
 
Figure 1 Enrolment and 
selection procedures. 

 
Randomisation, blinding and intervention  
After enrolment (day 0), participants are randomised to  
a treatment arm stratified by gender (figure 2). The study 
pharmacist selects sequential opaque envelopes (from either 
the male or the female pile). Each enve-lope contains a 
predetermined treatment assignment code. The study 
pharmacist is the only member of the clinic team not blinded 
to the treatment arm and is not involved in assessing patients 
or assigning outcomes. All study site staff who administer 
drugs, assess patients and process laboratory samples do not 
have access to the ran-domisation code breaker. 
 

All participants receive a 3 day course of artemether 
lumefantrine according to Ugandan national treatment 
guidelines for uncomplicated malaria. Participants are ran-
domised to receive a placebo or a dose of 0.1, 0.4 or 0.75 
mg/kg primaquine in addition to the AL treatment. The dose 
of primaquine/placebo is given at the same time as the fifth 
dose of AL, in the morning of day 2. To pre-serve the 
accuracy of lower weight-based doses, all prima-quine doses 
are administered in aqueous solution and measured using a 
sterile syringe. The placebo is aqueous solution alone. All 
doses including placebo are mixed with glucose-based syrup 
that masks the colour and taste of primaquine. All treatments 
are directly observed. A snack with approximately 5 g of fat 
is administered prior to both AL and primaquine 
administration to optimise absorption of AL and minimise 
gastrointestinal side effects with primaquine. Participants are 
observed for 30 minutes; treatment is readministered in any 
case of vomiting within this period. Repeated vomiting (>3 
times) leads to exclu-sion from the study and treatment as 
complicated malaria according to national guidelines.  
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Figure 2 Participant flow 
diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Follow-up measurements  
Study participants are reviewed on days 0, 1, 2, 3, 7, 10, 14, 
21 and 28 after enrolment or on any day of illness. On each 
of the scheduled visit days they are assessed clinically with 
standardised adverse event recording and blood samples are 
taken for microscopical detection of asexual parasites and 
gametocytes, molecular detection of gameto-cytes and 
haemoglobin measurements (table 1).  

Blood smears from all visits are Giemsa-stained and 100 
microscopic fields are screened for asexual parasites on days 
0, 1, 2, 3, 7, 10, 14, 21 and 28. Asexual parasites are counted 
against 200 white blood cells (WBC) or, if fewer than 10 
parasites are observed per 200 WBC, against 500 WBC. 
Gametocytes are recorded if observed during this screening 
process. On day 0, 100 microscopic fields are reread for 
gametocytes specifically. If gametocytes are observed, they 
are quantified against 500 WBC. All micros-copy readings 
are performed by two independent micro-scopists, if they 
disagree on prevalence or if density results differ by more 
than 25%, a third reading is requested.  

Gametocytes are quantified on days 0, 2, 3, 7, 10 and 14 
using quantitative real-time nucleic acid sequence-based 
analysis (QT-NASBA), detecting and quantifying Pfs25 
mRNA. One hundred microlitres of finger prick blood is 
mixed with 900 µl L6 guanidine buffer (Severn Biotech, 
UK) and stored at −80°C until automatic nucleic acid 
extraction by MagNAPure (Roche) using commercial high-
yield kits. The Pfs25 QT-NASBA is spe-cific for mature 
gametocytes with a sensitivity of 0.01–0.1 gametocytes/µl of 
blood when 50 µl blood samples are used for RNA 
extraction.40 
 

Haemoglobin is measured on days 0, 1, 2, 3, 7, 10, 14, 21 
and 28 using HemoCue 201+ photometers (HemoCue; 
Angelholm, Sweden). At each follow-up visit, study staff 
assess participants in an objective manner according to a 
clinical record form and assessment for 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adverse events is conducted in a prospective, systematic 
fashion during all visits, including the enrolment visit (eg, 
vomiting post-AL). All data are double-entered in real time. 
 
 
Safety considerations  
A protocol was developed in order to standardise the 
detection, investigation and management of severe haem-
olysis in this trial (figures 3 and 4). A Data Safety Monitoring 
Board (DSMB) has been installed; clinically relevant 
haemolytic events, hospital admissions, blood transfusions 
and deaths are reported within 72 h to this DSMB. 
 
 
Ethical considerations  
The study protocol and informed consent forms were 
approved by the Makerere University School of Medicine 
Research Ethics Committee ( protocol 2011– 210), the 
Uganda National Council of Science and Technology ( 
protocol HS1056) and the London School of Hygiene and 
Tropical Medicine research ethics com-mittee ( protocol 
5987). The Ugandan National Drug Authority approved the 
protocol and importation of primaquine for the purposes of 
the study. The DSMB and Trial Advisory Committee for the 
study agreed to meet at predetermined stages of the study. 
Before the study began, local community stakeholders 
(including village health team and local council members) in 
Walukuba were consulted and a community advisory board 
meeting was held. 
 
 
Sample size  
For efficacy, the sample size calculation is based on non-
inferiority of each of the two test dose arms to the 
comparator arm, the WHO-recommended dose of 
primaquine, 0.75 mg/kg. The primary outcome 
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Table 1 Summary of outcome measures   
 Outcome measure Description 
   

Efficacy   
Primary Mean number of days to gametocyte clearance Mean number of days per treatment arm for 

 (GCT) gametocytes to become undetectable using 
  submicroscopic molecular testing methods (QT-NASBA). 
  Reappearance of gametocytes after day 14 will be 
  considered as re-infection and excluded 

Secondary Mean (±SD) area under the curve of gametocyte Total number of gametocytes (measured by QT-NASBA) 
 density per day during 14 days of follow-up seen over follow-up, averaged per day of follow-up (days 
  0–14) 
 Density of gametocytes on days 7, 10 and 14 Mean number of gametocytes (measured by 
  QT-NASBA) per treatment arm on days 7, 10 and 14 
 Proportion (%) of participants with gametocytes on For each treatment arm, percentage of participants with 
 each day of follow-up gametocytes (measured by QT-NASBA) on each day of 
  follow-up from days 0–14 
Safety   

Primary Mean (± SD) maximal fall (±) in Hb (haemoglobin, Mean maximal greatest negative difference in Hb 
 g/dl) from enrolment to day 28 of follow-up (measured by HemoCue) from enrolment value per 
  treatment arm over 28 days follow-up 

Secondary Follow-up day of Hb nadir Mean day of follow-up (day 0–28) per treatment arm of 
  lowest Hb measurement (by HemoCue) 
 Maximal percentage fall in Hb level compared to Size of maximal Hb drop (by HemoCue) during follow-up 
 enrolment value (day 0–28) from enrolment value, divided by enrolment 
  value, *100 
 Percentage of participants with Hb<5 g/dl during Percentage (number) per treatment arm during days 
 follow-up 0–28 
 Requirement for blood transfusion Percentage (number) of children receiving blood 
  transfusion per treatment arm during days 0–28 
 Evidence of black urine Percentage (number) of children with documented black/ 
  dark urine with urine dipstick positive for Hb per 
  treatment arm during days 0–28 
 Incidence of serious adverse events by sign, Percentage (number) per treatment arm during days 
 symptom, laboratory parameter and relationship to 0–28 
 taking study drug  
 Incidence of gastrointestinal symptoms after taking Percentage (number) per treatment arm during days 2–7 
 study drug   
GCT, gametocyte clearance time; Hb, haemoglobin; QT-NASBA, quantitative real-time nucleic acid sequence-based analysis. 

 
 
 
measure is number of days to gametocyte clearance. The 
addition of primaquine (0.75 mg/kg) to ACT in Tanzania 
reduced the time to gametocyte clearance from 28.6 to 6.3 
days (SD 6 days).41 Allowing for a 10% loss to follow-up, a 
sample size of 120/arm will provide over 80% power at the 
0.05 significance level to detect non-inferiority to the 
standard arm with a non-inferiority margin of 2.5 days, 
which was considered to be a clinically relevant reduction in 
gametocyte clear-ance time. This sample size also allows for 
an analysis of superiority of the efficacy of the two test dose 
arms to placebo. 
 

For safety, the sample size calculation is based on 
superiority of each of the two test dose arms to the com-
parator arm (0.75 mg/kg). For this comparator arm, 
Shekalaghe et al34 found an overall mean absolute drop in 
haemoglobin by day 7 after treatment of 0.6 g/dl (SD 1.5). 
Therefore, with 80% power and at the 0.05 signifi-cance 
level, a sample size of 99 would be required to 

 
 
 
detect a difference in mean maximal drop in haemoglo-bin 
between treatment groups of 0.6 g/dl. 
 
 
Data analysis  
Data will be double entered in Microsoft Access and 
imported into Stata V.12.0 (Statacorp Ltd, Texas, USA). All 
efficacy analyses will be based on gametocyte detec-tion by 
Pfs25 QT-NASBA. Gametocyte density on days 7, 10 and 14 
will be compared with the comparator arm (0.75 mg 
primaquine/kg) by χ2 test. The mean duration of gametocyte 
carriage and 95% CI will be estimated in each treatment arm 
and compared with the comparator arm using a previously 
validated mathematical model.42 The area under the curve of 
gametocyte density over time will be calculated using the 
method described by Mendez et al43 For individuals who are 
gametocyte posi-tive at enrolment, Kaplan-Meier survival 
analysis will be used to compare the decline in gametocyte 
prevalence. 
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Figure 3 Procedure for 
investigation of suspected 
haemolysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The primary safety outcome, mean maximal fall in 
haemoglobin concentration during 28 days of follow-up will 
be assessed for each treatment arm. Pair-wise com-parisons 
will be made between each of the treatment arms and 
compared with the comparator arm using unpaired t tests. 
 
 
 
DISCUSSION  
In the 2010 edition of the Guidelines for the Treatment of 
Malaria, the WHO recommends that a single dose of 0.75 
mg/kg primaquine is added to ACT in malaria elimination 
programmes and for epidemic control, provided the risks of 
haemolysis in 
 
 
Figure 4 Procedure for 
management of haemolysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
G6PD-deficient patients are considered. This guidance was 
recently updated to recommend a lower dose of 0.25 mg/kg 
primaquine without G6PD testing for new malaria 
elimination programmes and to prevent the spread of 
artemisinin resistance.31 The revision was based largely on 
grey literature and historical data rather than on recent 
clinical trials and few of the data are in the public domain.44 
There have been no formal dose-finding studies using 
contemporary tools and stan-dards for the measurement of 
drug efficacy and safety for the combination of ACTs and 
primaquine. In the current study, we aim to provide these 
urgently needed efficacy data and provide safety data for 
individuals with normal G6PD enzyme function.  
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Relatively few trials have been designed specifically to test 
gametocytocidal drugs in vivo. Standardised proto-cols and 
trial designs for assessing the efficacy of drugs targeted 
against asexual parasites45 46 are not suitable to assess 
gametocytocidal drugs, where the main outcome is 
transmission-blocking activity rather than clinical or 
parasitological cure. There is no agreement on the best tools 
to quantify gametocyte carriage. Many trials have used 
microscopy to measure gametocytes26–28 47 48 while it has 
been known for decades that microscopy is notori-ously 
insensitive for detecting gametocytes.49 Gametocytes 
typically circulate at densities that are ≤1% of asexual 
parasite densities.16 50 Nevertheless, gameto-cytes are often 
simply recorded while screening for asexual parasites. If 
slides are specifically read for game-tocytes, the number of 
microscopic fields that is screened is mostly the same as that 
for asexual para-sites.51 As a consequence, gametocytes 
measured micro-scopically by routine underestimate the total 
gametocyte prevalence by up to 10-fold.16 17 21 22 In the 
current study, gametocytes are quantified with the most 
widely used quantitative molecular gametocyte detection 
method, QT-NASBA that has an estimated sensitivity of 
0.01–0.1 gametocytes/µl blood in the blood sample taken.40 
The use of this sensitive molecular method will increase the 
power of our efficacy estimates since up to 90% of 
symptomatic malaria patients may harbour (sub-
microscopic) gametocyte densities prior to the initiation of 
treatment.16 
 

Gametocyte density is associated with the likelihood of 
mosquito infection and some of the lowest gametocyte 
densities may therefore be unlikely to result in mosquito 
infections. In general, there are limitations to which 
gametocyte prevalence or density can be used to predict 
mosquito infection rates. The fitness or infectivity of 
gametocytes is variable, especially after treatment.19 52 53 
Very early studies demonstrated that primaquine may render 
gametocytes non-infectious several days before they are 
cleared from the circulation.30 54 55 The only approach to 
directly measure transmission-blocking potential involves 
assessing the infectiousness of the par-ticipant’s blood to 
mosquitoes using the membrane feeding assay or direct skin 
feeding assays,56 the latter being described by early 
malariologists.57 58 However, the capacity for mosquito 
feeding assays is not widely available and repeated 
assessments of infectiousness on the same patients have 
never been performed as part of clinical trials. This is partly 
because of ethical concerns related to repeated venous 
bleeding in young children, and partly because of the 
complexity of mosquito hus-bandry when large numbers of 
mosquitoes are required for robust transmission estimates.59 
In the absence of biomarkers, using the prevalence and 
density of gameto-cytes after treatment is the most pragmatic 
approach to assess the transmission-blocking efficacy of 
drugs across a variety of malaria endemic settings. 
 

To assess the safety of the 8-aminoquinoline drugs, there 
must be a clear definition of the risk of haemolysis 

 
and how it should be measured.31 60 The safety profile may 
best be defined by the incidence of endpoints that could 
compromise health, such as signs of severe haem-olysis, and 
the need for interventions such as haematinic drug 
administration, hospitalisation or blood transfu-sion. These 
events, however, are rare and changes in haemoglobin 
concentration may be a more sensitive primary safety 
outcome for standard clinical trials. In a recent Cochrane 
review of randomised controlled trials of primaquine’s 
efficacy, only one trial25 was found to have measured the 
haemoglobin concentration to assess safety.61 In this current 
study, clinically relevant safety endpoints have been selected 
and a standardised pro-cedure is in place for the investigation 
and management of severe haemolysis. A shortcoming of the 
current study is that safety data are most urgently needed in 
the most vulnerable group, G6PD-deficient individuals. For 
ethical reasons this group was excluded. The authors 
consider that the priority is first to determine the minimal 
effective dose in a G6PD normal population before G6PD-
deficient individuals are exposed to this low dose of 
primaquine to assess safety. 
 

The ultimate evidence for a beneficial role of prima-quine 
in reducing malaria transmission would come from trials 
assessing the effect of the drug on measures of community-
level transmission. Once a safe and effica-cious dose of 
primaquine in combination with ACTs is established, the 
next step involves designing these com-munity trials. 
Treatment of symptomatic cases could play an important role 
in reducing the spread of (resistant) malaria strains from 
symptomatic patients.62 However, because of the large pool 
of asymptomatic parasite car-riers in all endemic settings63 
and their importance in defining transmission potential, any 
effect of prima-quine on community-wide transmission will 
be limited if administration is restricted to symptomatic 
cases. Other strategies such as pro-active screening and 
treatment and (focal) mass drug administration may have a 
larger impact in some settings.64 This trial forms the starting 
point for defining the optimal dose of primaquine for use in 
transmission-blocking interventions. 
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 Protocol development 

The proposed trial objectives relate to gametocyte clearance to block transmission of 

infection to the mosquito rather than cure of the malaria-infected individual. Standard 

antimalarial drug efficacy trial guidelines (201) focus on clearance of asexual parasites and 

clinical outcomes. An innovative part of this work was to design a method for assessing 

transmission-blocking efficacy and safety that might be transferrable to future trials of 

transmission-blocking drugs. Although there were a small number of instances where 

transmission-blocking had been evaluated already, a Cochrane review in 2012 highlights the 

heterogeneity of methods that had been employed in such assessments prior to this trial 

(197).  

Unique ethical issues are raised when trialling a drug whose action is primarily for the benefit 

of the community rather than the individual participant (199, 202). The individual treated with 

single dose primaquine benefits only indirectly from the community effect, rather than 

directly from the drug effect. Standard passive detection of adverse events was considered 

inadequate; safety outcomes were designed to reflect the specific haematological risk of the 

drug. Community engagement and community stakeholder partnership were integral parts of 

trial implementation and there was an emphasis on exploring the ethical issues around 

primaquine use during engagement events. 

This chapter presents the process of enquiry that led to protocol development. The trial 

protocol can be found in Appendix A. 
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 Investigating the efficacy of primaquine: what questions to ask? 

 What is the optimal dose of primaquine for transmission-blocking? 

The WHO recommended dose at the time this trial was designed was 0.75mg primaquine 

base/kg to a maximum of 45mg in adults (86). 

 

The earliest studies on 8-aminoquinolines observed that single doses cleared gametocytes 

within a few days (77, 203). The doses used were the same as the daily causal prophylactic 

dose and the gametocytocidal effect was an incidental advantage. Most studies, therefore are 

based on this standard dose. Very few studies have assessed the efficacy of different doses to 

the standard 0.75mg/kg. 

 

Gunders (in 1961) (204) used a dose of 1-2mg/kg in a cohort of 22, largely children, in Liberia 

and reported few adverse effects. Bunnag (in 1980) (205) compared the effect of 15mg daily 

for 5 days, 30mg single dose and 45mg single dose in Thai adults and found no significant 

difference in gametocyte clearance between doses. Pukrittayakamee (in 2004) (206) 

compared 0.25mg/kg and 0.5mg/kg primaquine in adults and found both to have shorter 

gametocyte clearance times (GCT) than artesunate containing regimens with no significant 

difference between the two doses. 

This suggests that low doses may be as effective as higher doses. A very low dose of 

pamaquine (Plasmoquine), 0.02mg/kg was reported as gametocytocidal (207). This translates 

to a molar equivalent of 0.0164mg/kg of primaquine base. 

 On this basis, it is possible that the WHO dose is excessive for gametocytocidal efficacy and 

the lowest dose for efficacy and safety ought to be established. 
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 Is a standard superiority design optimal for the evaluation of lower-than-standard 

doses? 

Rather than the superiority design of antimalarial drug efficacy trials (201), for dose-finding, 

the emphasis is on assessing the efficacy of lower doses than the recommended dose. An 

analysis based on non-inferiority to the existing 0.75mg/kg WHO-recommended dose may be 

a more appropriate approach (208). This requires a larger number of participants than a dose-

escalation study (209). 

Possible outcomes of a non-inferiority trial arm are “non-inferior”, “not non-inferior”, or 

“inferior” to the comparator arm (210) (Table 2-1). Table X presents some possible inferences 

drawn from these outcomes with relation to the fictional trial arms. There may be difficulty 

interpreting the inference if a study arm has “not non-inferior” but not “inferior” outcome 

(210). For this reason, the non-inferiority margin was constructed with some thought to its 

biological relevance. Guidelines were consulted on the procedures for choice of the non-

inferiority margin (211).  
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Table 2-1 Possible inferences from non-inferiority efficacy analysis outcomes from a fictional 

dose-finding study 

Reference 

arm 

Comparator arm Non-inferiority 

analysis outcome 

Inference 

A B “Non-inferior” Dose B dose is not less 

efficacious than dose A  

A C “Not non-inferior” The efficacy of dose C is not 

inferior to dose A but the study 

cannot determine whether it is 

equivalent to dose A 

A D “Inferior” Dose D is less efficacious than 

dose A 

 

The non-inferiority margin represented the maximum additional number of days for which we 

speculated an individual might remain gametocyte positive, such that the primaquine dose 

administered would still be considered as efficacious as a comparator dose. Available data 

suggested that submicroscopically detected gametocytes (the study outcome measure) were 

cleared most rapidly within 11 days after 0.75mg/kg primaquine administration, although a 

small number of individuals still carried gametocytes beyond day 28 (63, 212). A margin of 2.5 

days was selected to distinguish between doses, so, for example, clearance within 12.5 days 

would be seen as non-inferior to clearance within 10 days. Figure 3-1 (in Chapter 3, Results) 

shows graphically how trial results were interpreted using non-inferiority analysis. 
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 What is the optimal timing of primaquine dosing with concomitant schizontocidal 

treatment? 

If primaquine is to be given in clinical case treatment or mass treatment initiatives, it is 

logistically simpler, much cheaper and more reliable to give it at the same day as the partner 

asexual treatment. However, often it is given after the start of treatment to avoid 

exacerbating the nadir in haemoglobin associated with clinical malaria. Based on a 

gametocyte half-life of 4-6 days, some authors suggest giving primaquine on day 7 or 8 to 

capture maturing gametocytes which develop in the first few days of treatment (213). Few 

studies have examined the efficacy associated with the timing of primaquine treatment. 

Lederman (214) found a shorter GCT when primaquine was given on day 2 rather than day 0, 

but this was not significant. The range of regimens of primaquine administration in the 

literature are illustrated in Table 2-2. 
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Table 2-2 The range of timings of primaquine treatment in published studies 

Day of primaquine 
administration (after 
asexual treatment 
on day 0) 

Country Comment Author, year 

0-6 (7 days) Thailand No detailed safety 
data. No adverse 
events reported 

Pukrittayakamee, 
2004 (206) 

3 India No significant 
adverse 
haematological or 
other events 

Gogtay, 2006 (215) 

0 vs 2 Indonesia Day 2 group had 
faster GCT, but 
difference was not 
significant. Not 
powered to detect 
difference. 

No safety reporting 

Lederman, 2006 (214) 

2 Tanzania Haemoglobin nadir 
on day 7. Worse in 
G6PD deficient.  No 
symptomatic 
anaemia  

Shekalaghe, 2007 (63) 

2 Sudan Asymptomatic cases 
(mass drug 
administration). No 
difference in packed 
cell volume on day 7. 

El-Sayed, 2007 (216) 

0 Colombia No safety reporting Alvarez, 2010 (217) 

0 Myanmar Haemoglobin 
increase by day 63 
was reduced by 
0.295g/dL in 
PRIMAQUINE-treated 
group. No black 
water or severe 
anaemia 

Smithuis, 2010 (218) 
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 What pharmacokinetic properties of primaquine influence study design? 

Primaquine is extensively metabolized; less than 2% of the parent compound is excreted in 

the urine within 24hrs of dosing (219). Several metabolites have been identified, but it is 

unclear which are responsible for the action against hypnozoites and gametocytes and which 

for the toxic effects. The mechanism of action of primaquine remains unclear. 

Carboxyprimaquine is the main metabolite (104) and its formation is cytochrome CYP450-

dependent (220). The 5-hydroxylated metabolite has been linked to both therapeutic efficacy 

and toxicity (221). New evidence suggests that that a range of hydroxylated metabolites are 

responsible for primaquine’s efficacy in clearing liver stage and sexual stage parasites, and 

that this action is dependent on human liver microsome activity (222). Hydrogen peroxide 

(H2O2) generated from primaquine metabolism is hypothesized to cause parasite killing 

through oxidative stress. Hence, the very mechanism for primaquine’s efficacy may be linked 

to the drug’s toxicity to humans, which is also induced by oxidative stress. Other metabolites 

have been identified, but their function remains undetermined (89).  

A prerequisite of reliable pharmacokinetic data is a robust assay for drug detection. A high 

performance liquid chromatography (HPLC) method devised in 1984 (104) to detect 

primaquine with a sensitivity of 1ng/ml has been updated by Cuong (88). Primaquine exhibits 

extensive tissue distribution (102, 223). Peak plasma concentration is within 1-4 hours (133, 

219, 223) and  the terminal half-life is 4-6 hours (133, 219).  

Table 2-3 categorises studies that provide pharmacokinetic data which could affect the design 

of a primaquine efficacy and safety trial. The ethnicity, age, sex and symptomatology of 

participants may influence outcomes as well as the methodology of the study, such as dosing 

schedule, combination drugs used and method of administration. 

 



60 
 

  



61 
 

Table 2-3 Summary of pharmacokinetic data that affect study design 

Variable Numbers 
studied 

Detail Reference 

Ethnicity 5-11 Thais +/- G6PD, Caucasians. Basic 
PK no significant difference 45mg 
stat 

Fletcher 1981 (219) 

 18 Australians in this study had 
much higher clearance (lower 
AUC and Cmax) compared to Thais 
from Singhasivanon 1991, even 
considering weight difference 

Elmes 2006 (223) 

 20 Vietnamese (30mg) values similar 
to Mihaly (45mg) in having 
substantially lower Cmax and AUC 
than Thai study (15mg)  

Cuong 2006 (88) 

Age & sex 7-9 Adult males  Edwards 1993 (133) 

 5 Adult males Mihaly 1984 (104) 

 5 Adult males Mihaly 1985 (102) 

 6-30 Adult males Fletcher 1981 (219) 

  Thai Females higher AUC and Cmax 
than males (15mg dose) 

Singhasivanon 1991 
(224) 

 18 9 male, 9 female (Australian) 
healthy, single dose (30mg) 
weight-adjusted results: no 
difference in AUC, Cmax, CL/f or 
t1/2 

Elmes 2006 (223) 

 20 No significant difference between 
10 men and 10 women 
(geographic mean ratio of Cmax 
0.89 and AUC 0.80, both non-
significant). No change in dose 
required. 

Cuong 2006 (88) 

Drug interaction 30 Chloroquine: increases 
production of methaemogobin 
(time scale compatible with 
primaquine metabolite) 

Fletcher 1981 (219), 
Cowan 1964 (225) 

 9 Mefloquine: no significant effect Edwards 1993 (133) 

 7 Quinine: reduction of carboxy-
metabolite AUC 

Edwards 1993 (133) 

  Artesunate:  

 20 Grapefruit juice increased mean 
Cmax (23%) and AUC (19%). Highly 

Cuong 2006 (88) 
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variable between individuals—
avoid co-administration 

Malaria interaction 9 Clinical malaria reduced oral 
clearance of primaquine, and 
reduced tmax 

Edwards 1993 (133) 

Repeated dosing 5 Accumulation of carboxy-
primaquine at 14 days with higher 
Cmax and AUC.  

Ward 1985(226) 

Administration with 
food 

5-9 All starved overnight Mihaly 1984, 1985 
(102, 104), Ward 1985 
(226), Edwards 1993 
(133) 

 18 All given with food min 30% fat Elmes 2006 (223) 

 20 Food (bread and butter-28g fat 5 
mins before dose) increased the 
Cmax by 26% and the AUC by 14%. 
All also given 300ml water). All 
given a meal 4 hours after dose. 
Comment that increased 
bioavailability with food is too 
modest to worsen adverse events 
also reduces GI side effects and 
could be useful given resistance 

Cuong 2006 (88) 

Dose assessed in study  15mg, 30mg, 45mg Mihaly 1985 (102) 

  45mg for carboxyprimaquine data Mihaly 1984 (104) 

  15mg Thai male female difference 
and higher Cmax and AUC than 
other studies 

Singhasivanon 1991 
(224) 

  30mg Australian male vs female Elmes 2006 (223) 

  30mg Vietnamese male, female 
food, grapefruit juice 

Cuong 2006 (88) 

Abbreviations: PK = pharmacokinetic; AUC = area under the plasma concentration-time curve; Cmax = the 

maximum concentration of a drug in the blood after the drug has been administered and before the 

administration of a second dose, i.e., the maximum peak plasma concentration; CL/f = total clearance of 

a drug from the plasma after oral administration, i.e., the mean oral clearance; t1/2 = elimination half 

life 

We can conclude that from existing data that the same dose can be given in males and 

females and it should be given with food. Data is lacking on the effect of artesunate 
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derivatives on primaquine pharmacokinetics and most data available is in adults. More data is 

required specifically in African children. 

Pharmacokinetic studies require frequent blood sampling and particularly in children, this 

must stand up to ethical scrutiny. Using population pharmacokinetic models, an optimal 

sampling schedule can be defined to maximize the information gained from the smallest 

possible number of blood samples (227). 

 What is the ideal transmission setting for trials of primaquine for transmission-

blocking? 

A main determinant of drug efficacy in clearing gametocytes is the pre-treatment 

gametocytaemia (228) and this varies with age (229) and the entomological inoculation rate 

(EIR) (230). Therefore, the effect of primaquine in interrupting transmission may vary between 

transmission settings. Given the heterogeneity of transmission intensity over time and place 

and the complexity of the determinants of transmission efficiency, data on primaquine’s 

gametocytocidal efficacy in a range of settings will be of value to inform further modelling and 

eventually to inform policy decisions. We do not have convincing epidemiological data on the 

effect of primaquine in reducing malaria transmission at community level. Would primaquine 

have any significant effect in a high transmission setting where asexual parasite rates are high 

and fuel ongoing gametocyte production? Clyde’s work in the 1960s demonstrated high 

impact of a primaquine-including regimen on transmission reduction in a high endemic region 

of Tanzania (83) . However, the relative contribution of primaquine cannot be ascertained due 

to lack of a control arm (Section 1.2.1.3.1). 

Table 2-4 summarizes the transmission settings for the range of primaquine trials at the start 

of this thesis. 
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Table 2-4 The transmission setting for trials of primaquine as a gametocytocidal agent 

Transmission setting (EIR* if 

available from reference) 

Country Author, year 

Low Thailand Bunnag, 1980  (205) 

Chomcharn, 1980 (231) 

Low Indonesia Kaneko, 1989 (232) 

Moderate India Gogtay, 1999 (233) 

Low Thailand Suputtamongkol, 2003  (234) 

Low Thailand Pukrittayakamee, 2004 (206) 

Moderate India Gogtay, 2006  (215) 

Low-moderate Indonesia Lederman, 2006(214) 

High (91) Tanzania Shekalaghe, 2007 (63) 

High, seasonal Sudan El-Sayed, 2007 (216) 

Low Colombia Alvarez, 2010 (217) 

Low-moderate Myanmar Smithuis, 2010 (218) 

*EIR = entomological inoculation rate (the number of infective mosquito bites per person, per year) 

Definition of transmission settings: Low transmission, Plasmodium falciparum parasite rate (PfPR) 1-

10%; moderate transmission, PfPR 10-35%; high transmission, PfPR ≥ 35%; seasonal transmission, 

malaria transmission occurs only during some months of the year (235, 236) 
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The majority of these studies have been conducted outside sub-Saharan Africa. At the time of 

thesis design, no African countries had been defined as in pre-elimination of elimination 

phase. African data is now clearly relevant, as malaria elimination is now firmly on the agenda 

for an increasing number of states (1).  

For dose-finding studies, high transmission settings may be advantageous. Potentially, the 

higher gametocytaemias encountered would provide more data, and faster recruitment, for a 

comparison of efficacy between different doses of primaquine. This difference may not be as 

readily discernible in low-transmission settings.  Translation into policy needs consideration. 

There may be isolated moderate transmission settings where primaquine will be used (such as 

on islands, or for outbreak control (194) , but most recommendations have been for 

primaquine use in elimination or pre-elimination settings of low malaria transmission (Section 

1.2.1.4.1). 

 Is the schizontocidal drug combination important? 

Schizontocidal drug failure results in prolonged clearance time or recrudescence of the 

asexual parasitaemia. Hence, the effect of a gametocytocidal drug is offset by newly forming 

gametocytes. Interpretations of the efficacy of primaquine from studies have been conducted 

with a failing regimen against asexual parasites (215, 234) should be drawn with caution. 

Drugs with short duration of action can result in higher incidence of re-infections, and a new 

source of gametocytes compared with drugs with prolonged effect against asexual parasites. 

Hence, artemisinin combinations containing lumefantrine or piperaquine may show lower 

total gametocyte prevalence during follow up than shorter acting combinations. 

For efficacy trials, highly effective asexual stage treatment should be used and the half-life of 

the schizontocidal drug should be considered when assessing the gametocyte prevalence 

during follow up. 
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 What is the ideal outcome measure for efficacy? 

Gametocytocidal efficacy can be measured as the prevalence or density of gametocytes 

during follow up by microscopy. Gametocyte density can vary considerably from day to day as 

seen in experimental infections (81, 237) . Therefore, point density and prevalence 

comparisons are less informative than cumulative measurements.  

Mendez (238) defined the log10 of the mean area under the curve of gametocyte density over 

time per day as an indicator of the total infectious potential of an individual treatment group. 

This has been used subsequently in primaquine trials (63).  

Gametocyte density can be measured using molecular detection methods such as QT-NASBA, 

a real time quantitative nucleic acid sequence based amplification detects gametocytes at 

densities down to 20-100 per ml (237). This is a factor of 10 below the theoretical limit for 

infectiousness to mosquitoes, given assumptions around the relationship between 

gametocytaemia and the mosquito blood meal. This higher level of detection is useful to 

highlight significant differences between treatment arms as shown in Figure 2-1. 
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Figure 2-1 Differences between treatment arms with microscopic and submicroscopic 

detection methods, from Shekalaghe et al, PLosOne, 2007 (63) 

Gametocyte prevalence by microscopy (A) and Pfs 25 QT-NACBA (B). Gametocyte prevalence for SP+AS 

(closed diamonds, solid line) and SP+AS+PQ (open triangles, broken lines) treated children. Bars indicate 

the 95% confidence intervals around the proportions. *indicates a statistically significant difference 

between the two treatment arms. (From original manuscript (63))  

To measure the true transmission potential following primaquine treatment, ideally, 

transmission experiments should be performed, with sporogony as an outcome, namely 
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oocyst numbers in the mosquito midgut or presence of sporozoites in the mosquito mouth 

parts. Table 2-5 illustrates the outcome measures used in published studies of primaquine as a 

transmission-blocking agent. The measures represent how primaquine impact can be 

measured on gametocytes and through the process of sporogony to sporozoite production 

and community parasite rate. 

Table 2-5 Outcome measures for primaquine as a transmission-blocking agent 

Outcome measure Numbers studied Author, year 

Microscopic gametocytes 
only 

315 Bunnag, 1980 (205) 

 176 Pukrittayakamee, 2004 (206) 

 90 Gogtay, 2006 (215) 

 117 Lederman, 2006 (214) 

 468 Alvarez, 2010 (217) 

 808 Smithuis, 2010 (218) 

Submicroscopic 
gametocytaemia 

104 El-Sayed, 2007 (216) 

 108 Shekalaghe, 2007 (63) 

   

Oocysts in mosquito midgut 10 Jeffery, 1956 (82)  

 10 Gunders, 1961 (204) 

 n/a (in vitro) Chotivanich 2006 (239) 

Sporozoite prevalence 12 Burgess, 1961 (77) 

 3 Rieckmann, 1968 (78) 

Community parasite rate >15 000 Clyde, 1962 (83) 
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Clearly, to demonstrate the consequence of gametocytocidal therapy on infectiousness to 

mosquitoes, a measurement of gametocyte density or prevalence is only a proxy measure. 

Furthermore, simply quantifying gametocytes after treatment might not provide a full 

representation of drug effect. Detection by microscopy does not distinguish between 

gametocytes that may be viable and infectious, or that may be sterilized or dead due to the 

drug effect. Where sporogony has been measured, in previous studies, gametocytes are still 

detectable long after sporogony is inhibited (within 3 days of primaquine) (77, 78). This 

suggests that gametocyte density/prevalence might be a conservative estimate of 

transmission potential following primaquine treatment. As long as this is considered, since it is 

a logistically simple measurement to conduct, the use of gametocyte quantification might be 

justifiable as an outcome measure in primaquine efficacy trials. 

 What should be the defined duration of follow-up? 

Early studies predating the onset of widespread anti-malarial drug resistance show complete 

gametocyte clearance within 3-14 days of primaquine treatment (77, 78, 204) and total 

inhibition of sporogony within 3 days of primaquine (77, 204). In subsequent years, 

microscopic gametocyte clearance has been noted by 14-28 days with regimens varying in 

efficacy against asexual parasites (205, 206, 217, 218). Submicroscopic gametocyte clearance 

with primaquine is detectable in 3.9% to 6.4% on day 14 (206, 216). Following that, there is a 

detectable increase which may be due to re-infection or recrudescence of asexual 

parasitaemia (Figure 6). 28 days might, therefore, be a reasonable duration of follow up for a 

dose-finding study. 

 In what clinical context should primaquine efficacy be assessed?  

The optimal clinical setting for the implementation of primaquine-based intervention is 

undetermined (199) . For malaria elimination/eradication, primaquine may be used in mass 

treatment of asymptomatic individuals in the community or in case-based treatment. Is it 
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ethical, then, to test its efficacy only in trials of clinical cases? Are results from trials on 

patients with uncomplicated clinical malaria translatable to effects on asymptomatic 

parasitaemic individuals? Clinical (symptomatic) malaria itself may have an effect on the 

pharmacokinetics of primaquine (133) and on gametocyte immunity (230) impacting the 

magnitude and rate of post-treatment gametocytaemia reduction compared to in 

asymptomatic infection. Symptomatic malaria also impacts the haemoglobin so extrapolation 

of safety data from trials in symptomatic cases should be done with caution. Notably, WHO 

guidelines for primaquine as a gametocytocide are for the treatment of clinical cases (Section 

1.2.1.4.1). This is how primaquine has been used in South American countries for decades, 

where the endemicity of falciparum malaria has been reducing progressively (1). 

Given that the prevalence of gametocytaemia in asymptomatic infection is low, although 

highly variable (37), initial dose-finding studies in the context of clinical symptomatic malaria 

will have more signal to compare different doses, i.e., there will be more individuals with 

measurable endpoints. Primaquine use in symptomatic cases is a consideration in epidemics. 

Furthermore, especially if primaquine is to be used in mass treatment initiatives, it is 

important that safety analysis is available in the context of controlled trial settings.  

 What important confounding factors should be controlled for in a trial of primaquine 

efficacy? 

Individuals with G6PD deficiency are at risk of haemolysis with primaquine. Given that G6PD 

gene polymorphisms are conserved in malaria endemic regions (96, 162), and it is considered 

that screening for G6PD deficiency for gametocytocidal primaquine treatment may not be 

necessary or practical, it is important that information on safety in G6PD deficiency is 

available. Therefore, this should not be controlled for, but can be part of a sub-analysis. G6PD 

deficiency inheritance is sex-linked, so ideally, gender should be stratified for in enrolment. Of 
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note G6PD deficiency is not the only predisposing condition for haemolysis with primaquine 

(63). 

Pre-treatment gametocytaemia increases the probability of prevalence of gametocytes 

following treatment (228). This should be stratified for in analysis. 

Age may affect baseline gametocytaemia and anti-gametocyte immunity (230) so age-

stratification is important in both enrolment and analysis. A cut off of age 5 may be 

reasonable because in a similar transmission setting, 5-7 was the upper age group where 

immune responses appear to impact infection (240). 

 Investigating the safety of primaquine as a gametocytocidal agent. What questions to 

ask? 

 What are the ethical issues when giving a treatment which does not contribute directly 

to the health of the individual? 

Primaquine use has been advised by the WHO for transmission-blocking. This is an off-label 

use of the drug. This recommendation does not constitute evidence that it is ethical to give a 

medication to individuals for the sake of reducing malaria transmission in the community. 

Since those individuals do not benefit directly from the treatment, the ethical concern is 

related to whether there is any risk to those individuals. There is, however, a lack of data to 

inform at what dose and in which settings primaquine could be used with safety and efficacy. 

Therefore, this clinical equipoise is the proposed justification for conducting research on this 

intervention. It is crucial that proposed trials undergo ethical review that considers this lack of 

direct benefit to the individual, both in their clinical settings and sponsor institutions. 

 What is an acceptable level of haemolysis post primaquine treatment? 

Arguably, no degree of haemolysis should be accepted following a treatment that is not of 

benefit to the individual. The haemolysis following primaquine is transient, as shown by 
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Shekalaghe et al (2007, Figure 3) (63) . Data are lacking to define the expected size of 

haemoglobin nadir post treatment, whether this differs with a range of starting haemoglobin 

values and crucially, the risk of adverse outcomes from primaquine-associated haemolysis. In 

Tanzania, the nadir in haemoglobin following primaquine treatment (0.75mg/kg primaquine 

base) was on day 7, when it was 5.2% lower than on enrolment (63). 

Review of the current literature indicated that none of the trials using single dose primaquine 

45mg reported any severe adverse events associated with primaquine use, including no 

transfusion requirement and no documentations of black urine secondary to haemolysis. 

There was, however, significant heterogeneity in the safety metrics that were collected. Few 

studies measured haemoglobin concentration or haemolysis specifically; non-specific adverse 

event reporting was common. There was one case of severe anaemia (Hb <5g/dL) without 

clinical compromise in a Tanzanian study (101) where the mean fall in haemoglobin following 

treatment was 2.5g/dL.  

Data regarding the primaquine dose-related reduction in haemoglobin are required if its use 

may become more widespread in populations with G6PD deficiency.  

 How will G6PD deficient individuals be identified? 

2.2.2.3.1 Fluorescent spot test 

An inclusion criterion for trial participation was normal G6PD enzyme activity. This was 

defined as normal fluorescence with the fluorescent spot test (241). If fluorescence was 

reduced, this was interpreted as G6PD deficiency and the participant was excluded. The assay 

kit used (N Dimopoulos SA, Greece, formerly R & D diagnostics) shows fluorescence if G6PD 

enzyme activity is greater than approximately 20% of normal reference enzyme activity 

(Figure 4-1, Section 4.3.1.1). This cut off is particularly low, with reference to the WHO 

classification of severity (Table 1-1), and falls in the range of moderate to mild deficiency.  
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2.2.2.3.2 G6PD genotype 

DNA was extracted from blood spots on Whatman filter papers, then amplified using the 

polymerase chain reaction and detected using primers that characterise the G6PD A- allele 

(202G-> A and 376A->G). Figure 4-2 (Section 4.3.1.2) shows the amplified products run on an 

electrophoresis gel after digestion with restriction enzymes. 376A->G characterises the 

change from G6PD B (wild type) to A, and 202G-> A characterises the change to A- variant. 

The presence of both mutations is required for designation as A- variant. 

 What safety outcomes are important? 

Haemolysis can be measured by the fall in haemoglobin and the presence of haematological 

indicators, such as reticulocytosis, haematocrit and lactose dehydrogenase levels. 

Intravascular haemolysis may be evident on a blood film, exhibiting schistocytes.  

The outcomes of haemolysis can range from acute or chronic asymptomatic anaemia, 

symptomatic anaemia requiring transfusion, transient black urine (haemoglobinuria), or black 

urine with renal failure. 

For operational purposes, it is most useful to measure the level of the haemoglobin along with 

any evidence of adverse outcome of haemolysis, rather than haematological indicators which 

could be affected by factors other than the drug treatment itself. 

Monitoring and reporting of any adverse events during the trial, which may or may not be 

related to drug treatment should form an integral part of the trial. 

 Safety in pregnancy and breastfeeding 

Primaquine is contra-indicated in pregnancy because of the risk of haemolysis leading to 

adverse outcomes for both the mother and the unborn child (74). Given that it is secreted into 

breast milk, it is contra-indicated in breast feeding despite a lack of data (242). The 
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implications for widespread community interventions are that a significant proportion of 

female community members might be excluded from treatment. 

 What is the optimal sampling framework for both safety and efficacy? 

The frequency of blood sampling was designed to capture the expected day of the nadir in 

both haemoglobin and gametocyte prevalence/density. Sampling on day 2 was important as a 

baseline, being the day primaquine/ placebo was administered and it appeared that a nadir in 

haemoglobin might be expected around day 7 (63). In a Tanzanian population, gametocyte 

prevalence declined until day 14, after which, an increased prevalence was attributed to re-

infections (63). An additional data point on day 10 was proposed, to capture changes prior to 

day 14, then weekly samples were taken until day 28. If children were still anaemic on day 28, 

it was proposed that they would have further weekly sampling until resolution. 

 What additional trial eligibility criteria need consideration? 

At the time of trial design, the lower age limit for primaquine use on the drug label was 1 year 

and this was reflected in WHO guidelines (243), so this was the lowest age for trial 

recruitment. To exclude the risk of administering primaquine in pregnancy, discussion was 

held with Ugandan public health clinicians and community representatives and 10 years was 

the selected upper age limit. The cut-off haemoglobin level for enrolment was 8g/dL, to 

exclude children with severe anaemia and significant haematological co-morbidity, and to 

minimise risk from potential primaquine-induced haemolysis. 
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 Conclusions that can be drawn to inform study design 

In summary, the following conclusions were reached regarding study design: 

Table 2-6 Conclusions from evidence-based study design 

Trial Criterion Conclusion 

Trial design Parallel-arm randomized controlled trial 

with double blinding 

Analysis approach Non-inferiority 

Stratified by age and sex and gametocyte 

prevalence at enrolment 

Primaquine reference and comparator dose 0.75mg/kg versus lower doses: 0.4mg/kg, 

0.1mg/kg, and placebo 

Timing of primaquine dose Day 2 

Schizontocidal drug combination ACT recommended by local Ministry of 

Health (artemether-lumefantrine) 

Efficacy outcome measure Gametocyte prevalence over time, 

gametocyte clearance time 

Safety outcome measure Primary: mean fall in haemoglobin after 

treatment 

Secondary: requirement for transfusion, 

haemoglobin <5, presence of black urine 

Duration of follow up 14 days for efficacy, 28 days for safety 

Transmission setting Moderate (EIR* 1-10) 

Clinical context Symptomatic uncomplicated Plasmodium 

falciparum malaria 

*EIR = entomological inoculation rate (number of infective mosquito bites per person, per year) 
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 Development of a Primaquine working group  

Following the development of this thesis, a clear gap in the malaria elimination research 

agenda was identified. A working group was established to focus on the research agenda and 

operational priorities for the use of single low-dose primaquine as a transmission-blocking 

intervention (described in Section 3.3.4.1). The group’s remit was defined principally with 

questions around primaquine use in Africa, but outputs became transferable to other regions 

where Plasmodium falciparum elimination is being targeted.  

 RESEARCH PAPER 2: Publication of the rationale for using primaquine to interrupt 

malaria transmission in Africa 

The report from the first primaquine working group meeting was peer reviewed and 

published in the Malaria Journal(199). 
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Rationale for short course primaquine in 
Africa to interrupt malaria transmission 
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 Abstract 
 

Following the recent successes of malaria control in sub-Saharan Africa, the gametocytocidal drug primaquine needs 
evaluation as a tool to further reduce the transmission of Plasmodium falciparum malaria. The drug has scarcely been 
used in Africa because of concerns about its safety in people with glucose-6-phosphate dehydrogenase (G6PD) 
deficiency. The evidence base for the use of primaquine as a transmission blocker is limited by a lack of comparable 
clinical and parasitological endpoints between trials. In March 2012, a group of experts met in London to discuss the 
existing evidence on the ability of primaquine to block malaria transmission, to define the roadblocks to the use of 
primaquine in Africa and to develop a roadmap to enable its rapid, safe and effective deployment. The output of this 
meeting is a strategic plan to optimize trial design to reach desired goals efficiently. The roadmap includes 
suggestions for a series of phase 1, 2, 3 and 4 studies to address specific hurdles to primaquine’s deployment. These 
include ex-vivo studies on efficacy, primaquine pharmacokinetics and pharmacodynamics and dose escalation 
studies for safety in high-risk groups. Phase 3 community trials are proposed, along with Phase 4 studies to evaluate 
safety, particularly in pregnancy, through pharmacovigilance in areas where primaquine is already deployed. In 
parallel, efforts need to be made to address issues in drug supply and regulation, to map G6PD deficiency and to 
support the evaluation of alternative gametocytocidal compounds.  
Keywords: Plasmodium falciparum, Malaria, Primaquine, 8-aminoquinoline, Transmission, 
Gametocyte, Glucose-6-phosphate dehydrogenase deficiency, G6PD, Africa 

 
Background  
Current World Health Organization (WHO) guidelines 
recommend the “addition of a single dose of primaquine 
(PQ) (0.75 mg/kg) to artemisinin-based combination 
therapy (ACT) for uncomplicated falciparum malaria as an 
anti-gametocyte medicine, particularly as a component of 
a pre-elimination or an elimination programme” [1]. 
However, unlike recommendations for other anti-malarial 
treatments this does not come with the supporting state-
ment “Strong recommendation, high quality evidence”. 
This is because there are limited data to suggest that 
primaquine is safe and efficacious for this use, especially 
to support regulation and licensure. This is striking given 
that primaquine has been in the anti-malarial drug arsenal 
since the 1950s and historical studies strongly  
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Keppel St, London WC1E 7HT, UK  
Full list of author information is available at the end of the article  

 
 
suggest that primaquine is highly effective at blocking 
transmission. Worldwide, 20 countries include prima-
quine as first-line treatment for Plasmodium falciparum in 
their national policy. None of these countries are in Africa 
[2].  

There are an increasing number of reports of declining 
transmission intensity in many parts of sub-Saharan Africa, 
bringing malaria transmission to pre-elimination levels in 
some countries. There is also increasing recog-nition that 
additional strategies aimed specifically at the transmission 
stages of P. falciparum are required both to further reduce 
transmission and to sustain the gains made by current 
control efforts. The previously high levels of malaria 
transmission may be one of the main reasons why 
primaquine has not been used widely in Africa, with only 
very frequent delivery of the drug being likely to have any 
impact on transmission [3]. However, the most likely 
reasons for the limited use of primaquine in Africa are 
concerns over safety, given the conservation 
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of the glucose-6-phosphate dehydrogenase (G6PD) defi-
ciency polymorphism in the population.  

Using an anti-malarial drug with the goal of inter-rupting 
malaria transmission rather than clinical cure necessitates 
a clearly-defined assessment of safety and efficacy with 
benefits at the individual level and at the community level 
being considered. For primaquine, the optimal dose to 
achieve such endpoints remains undeter-mined. The 
recommended 0.75 mg/kg dose is associated with 
significant haemolysis in some susceptible indivi-duals [4-
6], but this dose may well be excessive for the 
transmission-blocking activity [7]. For the purpose of 
comparison, doses in this report that are expressed as a 
milligram per kilogram (mg/kg) equivalent assume an 
average adult weight of 60 kilograms.  

The limited safety data available on single dose primaquine 
has lead to the requirement of prior testing for G6PD 
deficiency and pregnancy to avert risk. The necessity for this 
additional testing has a significant impact on the feasibility, 
cost effectiveness and the achiev-able population coverage of 
large scale primaquine-based interventions. More information 
on the consequences of single-dose primaquine administration 
on individuals/ populations with a relevant range of G6PD 
enzyme ac-tivity levels is required urgently if 8-
aminoquinolines are to be deployed to interrupt transmission. 
 
Meeting objectives  
With these issues in mind, a meeting of experts was 
convened to review and discuss existing data on the use of 
primaquine in Africa for transmission-blocking and to 
examine the road-blocks that could be overcome to enable 
and inform its safe use.  

Specific objectives of the meeting were to: 
 

1. Identify key road-blocks to deployment of short 
course primaquine or similar drugs in Africa to 
reduce transmission of falciparum malaria.  

2. Reach consensus on study endpoints so as to 
maximize comparability between 
transmission prevention studies.  

3. Generate a list of deliverables that will move forward 
deployment of primaquine in Africa. 

 
Meeting sessions  
Country program perspectives and potential use for 
primaquine 
Chris Drakeley and Roly Gosling introduced the meeting 
by providing the current context for the use of prima-quine 
and highlighting the fact that the reductions in malaria 
transmission that have been described in many sub-
Saharan African settings may well be linked to in-creasing 
spatial, temporal and even demographic hetero-geneity in 
infections. Spatial targeting of control efforts 

 
 
 
 
 
is likely to make interventions, such as mass drug 
administration (MDA) more feasible [8]. National malaria 
control programmes that have seen success in malaria 
control in the last decade are looking to implement new 
tools to sustain existing reductions and to further reduce 
transmission. The question is whether primaquine is one of 
these tools?  

Salhiya Ali described current malaria transmission in 
Zanzibar, which is characterized by perennial and 
declining transmission. The sporozoite rate decreased from 
4.3 in 2005 to 0% in 2009 and the most recent para-site 
prevalence was 0.067%. Recent Zanzibar Malaria Control 
Programme reports suggest that transmission has become 
highly heterogenous with cases restricted to relatively few 
weeks per year and to a few localities. Primaquine is not 
used, but its use could be considered to facilitate further 
reductions by targeting hot spots, or in treating confirmed 
clinical cases. The local distri-bution of gametocytaemia 
and G6PD deficiency is not known. 
 

In Ethiopia, both P. falciparum and Plasmodium vivax 
are endemic and Ashenafi Assefa indicated that the mal-
aria strategy for 2011–2015 includes a plan for elimination 
by 2020. Primaquine was used in Ethiopia for 25 years up 
until 1990. Chloroquine (CQ) plus primaquine was first-
line treatment for both species. There is no documenta-tion 
of adverse effects due to primaquine in this period. When 
sulphadoxine-pyrimethamine (SP) was introduced, it was 
considered not feasible to administer three drugs, therefore, 
primaquine was dropped. At present, prima-quine is used 
for radical cure of P. vivax, but not for P. falciparum. The 
barriers to using primaquine in Ethiopia include: 1) a lack 
of documentation of the distri-bution and clustering of 
G6PD deficiency (small studies suggest that prevalence is 
between 1.4 and 6.7% among some minority groups) [9], 
and 2) uncertainty about the efficacy of primaquine for 
interrupting transmission of P. falciparum in Ethiopia.  

Karen Barnes gave a historical perspective of malaria 
control in South Africa. Previously, the country had high 
levels of malaria transmission. In 1938, there were 22,000 
deaths due to malaria in Kwazulu-Natal. Subsequently, an 
aggressive approach to malaria control including mapping, 
malaria surveys, and vector control has reduced the burden 
considerably but case incidence has remained at a steady 
state since 2001. The Ministry of Health has now set a goal 
for elimination by 2018. The biggest chal-lenges include 
imported malaria, and the perception that malaria is not a 
public health problem, leading to central budget cuts. 
Given the already aggressive measures in place, the 
addition of a transmission-blocking drug such as 
primaquine could be required to achieve elimination. One 
challenge is that primaquine is only available on an 
individual patient basis for radical cure of P. vivax. In 
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South Africa, the very high rate of tuberculosis and HIV 
infection means that the potential for drug interactions with 
other anti-infective therapies must be considered if 
primaquine is to be used at a population level. The risk of 
primaquine-associated haemolysis in people living with 
HIV infection may differ from that in uninfected people. 
 

In contrast to the aforementioned countries, Diadier 
Diallo reported that malaria transmission in Burkina Faso 
is still high. The use of a combination of inter-ventions, 
such as long-lasting insecticidal nets (LLINs), indoor 
residual spraying (IRS), and effective artemisinin 
combination therapy (ACT) with a long half-life part-ner 
drug such as dihydroartemisinin-piperaquine is a proposed 
strategy. Co-administration of ACT with prima-quine (or 
alternatives such as methylene blue) for con-firmed 
malaria episodes and mass drug administration (MDA) 
may help to further reduce transmission. This strategy may 
be particularly appropriate in the Sahel area where 
transmission is highly seasonal and relatively low, making 
it a potential target for elimination activities. Challenges 
include the high mobility of human and vec-tor populations 
particularly from Mali and Niger. 
 
Historical studies on single dose or short course 
primaquine for blocking transmission of P. falciparum 
Chi Eziefula highlighted that the current recommenda-
tions for primaquine are based on studies with very small 
numbers of participants. The parent 8-aminoquinoline, 
pamaquine (or plasmoquine), developed in the 1920s, was 
shown to have activity against P. vivax and Plasmodium 
ovale relapses, and against both sporozoites and gameto-
cytes of all species [10,11]. A derivative of pamaquine, 
primaquine was developed in the 1940s by the United 
States army to prevent relapse of P. vivax in soldiers 
returning from Korea and to prevent the import of malaria 
into the country [12].  

In 1973, the WHO recommended a single dose of 
primaquine (0.75 mg/kg ) for malaria transmission-
blocking and considered prior screening for G6PD defi-
ciency unnecessary [13]. It was not until 2010 that the 
WHO Malaria Treatment Guidelines (Second Edition) 
changed to indicate that the risks of haemolysis in G6PD 
deficient patients should be given consideration prior to 
primaquine-based interventions.  

The currently recommended single dose of primaquine is 
based on limited efficacy data. In 1961, in Liberia, Burgess 
and Bray found that a single dose of 0.75-1.5 mg/kg 
primaquine administered to12 children cleared circulating 
gametocytes by day 9 [7]. In 1961, also in Liberia, Gunders 
administered 0.45-1.1 mg/kg of prima-quine in 
combination with pyrimethamine to 22 children and adults. 
Gametocytes were cleared after a mean of 5 days post 
treatment, and no mosquito infections 

 
 
 
 
 
occurred in feeding assays [14]. Primaquine was paired 
with amodiaquine (AQ) in a large scale MDA conducted 
by Clyde in 1962 in a hyperendemic area of Tanzania. 
More than 15,000 subjects were studied in three clusters: 
weekly administration, fortnightly administration, and 
monthly administration. Outcome measures included 
asexual parasite, gametocyte and sporozoite rates. After six 
months there was a ten-fold reduction in parasite 
prevalence with weekly and fortnightly administration but 
not with monthly administration [3]. Except for the work 
by Clyde, there are no substantial field data that indicate 
that single dose primaquine decreases trans-mission of P. 
falciparum.  

Safety data for primaquine use in Africa or African 
Americans are equally limited despite the fact that they 
inform contemporary guidelines. Burgess and Bray com-
ment that primaquine was “well-tolerated”[7]. Clyde 
reported no safety data and it is unclear who was excluded 
from treatment [3]. In a series of studies in G6PD deficient 
African-American volunteers, Alving and colleagues 
showed that, in three individuals, haemolysis occurred with 
daily administration of 30mg (approxi-mately 0.5 mg/kg) 
of primaquine. But, after three weeks, the haematocrit 
recovered and lower doses resulted in less haemolysis. 
Eight weekly doses of 60 mg and 45 mg were not 
associated with haemolysis [15,16]. Daily administration 
of 30mg of primaquine to African Americans resulted in 
significant haemolysis in 1%, com-pared to no severe 
haemolysis when 15 mg was adminis-tered [17]. Tolerance 
in a pregnant woman (28 weeks gestation) has only been 
reported by Burgess and Bray, but there was no 
documentation of birth outcomes [7]. In a more recent 
study, Kenyan school children were randomized to receive 
15mg primaquine daily or three times a week as a malaria 
prophylactic. It is not clear whether G6PD deficient 
individuals were included and haemoglobin levels are not 
reported but again the authors note simply that “primaquine 
was remarkably well tolerated in our studies” [18].  

Kevin Baird remarked that any discussion about 
primaquine efficacy is necessarily also a discussion about 
toxicity as there are inherent risks of the drug in situa-tions 
when the individual patient may not benefit. He 
highlighted the importance of employing the ethical 
principles of autonomy, justice and beneficence to game-
tocytocidal therapy [19]. The 45 mg dose of primaquine is 
based on data obtained in very few, healthy indivi-duals. 
This dose was proposed in an era where the goal of the US 
military was not to find the lowest efficacious dose, but 
rather to show that the drug worked. The first dose-finding 
study by Alving in 1960 included one single patient [16]. 
It was subsequently observed that daily but not weekly 
administration of 0.25 mg/lb of body weight (~0.55 mg/kg) 
to G6PD deficient-children resulted in 
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haemolysis [20]. Rieckmann and Burgess both showed 
declines in gametocytes, oocysts and sporozoites follow-
ing a dose of 45 mg of primaquine but a similar efficacy 
was seen with lower doses of 30 mg and 15 mg [7,21,22]. 
Importantly, these evaluations were conducted without co-
administration of a blood schizontocidal drug.  

In 1944, the US government abandoned pamaquine as a 
means of preventing relapses of P. vivax due to its 
haemolytic toxicity and drug interactions. Primaquine was 
introduced as a gametocytocidal agent at the 45mg dose 
based on Alving’s work, a dose which was readily available 
and in use for chemoprophylaxis in American soldiers in 
Southeast Asia at the time. Some significant haemolysis 
was seen, mostly in African Americans; there were no 
deaths but there were several cases of renal fail-ure with 
daily dosing for 14 days[17]. Summarily, the 
recommended 45 mg dose may be too dangerous for use in 
mass drug administration, especially given the limited data 
on transmission reduction with this strategy. 
 
Recent studies on the use of primaquine in Africa  
Data from two Tanzanian studies which employed single 
dose primaquine were reviewed by Teun Bousema. In the 
first study, treatment with sulphadoxine-pyrimethamine 
(SP) and artesunate (As) was given to children aged 3 to 15 
years with uncomplicated falciparum malaria. They were 
randomized to receive placebo or a single dose of 0.75 
mg/kg of primaquine on the third day of treatment (day 2). 
Compared to the control arm, primaquine ad-ministration 
on day 2 decreased the area under the curve of gametocyte 
density over time and the duration of gametocyte carriage. 
The effect was apparent for two weeks; using quantitative 
real time nucleic acid sequence-based amplification (QT 
NASBA), 3.9% had gametocytes on day 14 in the 
primaquine arm, and the density was extremely low, 
compared to a prevalence of 62.7% in the control arm [23]. 
Haemoglobin fell in both arms but the drop was more 
pronounced in the primaquine arm. However, this effect 
was transient and there was no symptomatic anemia. A 
haemolytic effect was seen even in some individuals 
without genotypic (A- variant) G6PD deficiency [23].  

In a subsequent cluster randomized study, using MDA in 
lower Moshi [24], single dose primaquine was given with 
SP plus As treatment to 1110 individuals older than 1 year 
with primaquine dosages based on weight (approximately 
0.75 mg/kg). It was not possible to assess post-intervention 
incidence or prevalence because P. falciparum 
transmission had dropped to very low levels. However, 
safety outcomes, based on haemolysis, were available. 
Moderate haemolysis occurred follow-ing primaquine 
treatment in 40% of G6PD deficient (A- genotype) 
individuals but in only 4.5% of non-deficient individuals. 
There was no clinical compromise 

 
 
 
 
 
due to anemia in any of the children, except in one child in 
the primaquine arm, whose haemoglobin dropped from 8.3 
g/dL to 4.8 g/dL. It was noted that in all cases haemolysis 
was transient, recovering by day 14 after treatment.  

As a former colleague of Professor Li Guoqiao, Keith 
Arnold represented him and presented data from an MDA 
campaign in Moheli Island, Comoros. Dr. Arnold began by 
reviewing Professor Li’s work on primaquine in South East 
Asia, which served as the basis for the drug regimen used 
in Comoros. In the late 1990s, Professor Li developed CV8 
(320 mg piperaquine phosphate, 32 mg dihydroartemisinin, 
5 mg primaquine phosphate, 90 mg trimethoprim). An 
estimated 1.3 million doses of this drug were administered 
across Vietnam as part of the National Malaria Control 
Programme in 2000. There were no documented reports of 
haemolysis. Data were pre-sented from subsequent dose-
finding studies. Artequick (dihydroartemisinin piperaquine 
given at 0 and 24 hours) was administered in clinical cases 
followed as inpatients for 30 days followed by 
administration of 6 mg (7 patients), 7.5 mg (3 patients) or 
8 mg (32 patients) of primaquine. A 7.5 mg dose of 
primaquine rendered gametocytes non infectious at 24 
hours. Following 8 mg of primaquine, there were oocysts 
but no sporozoites in membrane-fed mosquitoes. He 
decided on the use of Artequick + 9 mg primaquine for 
MDA after performing safety studies using 8 mg and 10 
mg doses in small numbers of indivi-duals with G6PD 
deficiency in South East Asia. An MDA campaign in 2003 
in Cambodia using this regimen resulted in a large 
reduction in population parasite car-riage over three years 
[25].  

In Moheli Island, Comoros the baseline P. falciparum 
parasite prevalence in children ranged from 10-95% in 25 
villages. Given a mosquito life expectancy of 30 days, the 
strategy was to give Artequick for three days plus 9 mg of 
primaquine on day 1 (Round 1) and day 35 (Round 2). 
Also, beginning on day 21, 9 mg primaquine alone was 
given every 10 days, 12 times. Patients less than six months 
of age were excluded. Treatment cover-age for both rounds 
was reported as >90% and data from monitoring between 
2007 and 2009 suggested a reduc-tion of parasite 
prevalence to <5%. The exception was an area on the south 
of the island where parasite rates decreased from 94% to 
19% with frequent migration from a nearby island 
suggested as the reason for the persist-ence of parasites. 
There were no reports of haemolysis, although it was not 
measured objectively. The baseline prevalence of G6PD 
deficiency was estimated to be 15%. 
 
G6PD deficiency prevalence testing and safety issues  
G6PD is an essential erythrocytic enzyme. G6PD defi-
ciency is one of world’s most common genetic poly-
morphisms. Dennis Shanks described the current array 
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of diagnostic tests available to test for G6PD deficiency. 
Testing of the enzymatic activity of G6PD on freshly-
collected blood samples is the most widely used method. 
The NADPH fluorescent spot test is most commonly used 
and is currently recommended by the International 
Committee for Standardization in Haematology, but it 
requires a UV lamp and is difficult to do on high volumes 
of samples. Other diagnostic tests include cytochemical 
assays, DNA sequence analysis of the G6PD gene, and 
some rapid diagnostic test formats not yet validated for 
public health application. In theory, testing for G6PD de-
ficiency is not difficult, but most tests have limitations for 
large-scale field application, such as expense, require-ment 
for electricity, duration of test procedure, and sen-sitivity 
of reagents to light and heat, low detection threshold, and 
relatively low throughput capacity.  

Rosalind Howes described G6PD deficiency as being 
widespread in tropical regions of sub-Saharan Africa, 
commonly affecting over 15% of the male population, and 
in some isolated areas of West and Central Africa reaching 
up to 30% of the male population. It is consid-ered that 
severe G6PD deficiency is likely to exist in Africa but its 
prevalence is unknown. Shanks noted that country-wide 
MDA with primaquine has been used in China and 
Nicaragua, both areas with a low prevalence of G6PD 
deficiency and that in both programmes there were some 
cases of severe haemolysis. The three primary safety/ 
tolerability issues with primaquine are gastro-intestinal 
upset, methaemoglobinaemia, and haemolytic anemia in 
those who are G6PD deficient. G6PD enzyme activity is at 
best a partial biomarker of clinical effect and the clinical 
effect is likely dependent on other factors including red 
blood cell count, gender, and other gen-etic factors. 
 
 
Testing for G6PD deficiency  
Gonzalo Domingo observed that genotyping for G6PD 
deficiency is most commonly carried out for known 
prevalent mutations at the risk of misclassifying study 
participants with unknown G6PD deficiency traits as 
normals. Phenotyping, either quantitative or qualitative, 
determines G6PD activity in red blood cells and can be 
defined as a relative deficiency in activity compared to a 
predefined “normal” activity or in absolute terms in units 
per gram of haemoglobin. Most studies in Africa have used 
a semi-quantitative/qualitative fluorescent spot test and 
observed a high degree of discordance be-tween 
phenotyping and genotyping not limited to just 
heterozygous women. Other phenotypic tests e.g. cyto-
chemistry can identify heterozygous females. Spectro-
photometry is the gold standard and fluorescent spot tests 
are useful for screening. The ideal specification for a G6PD 
deficiency test is difficult to achieve as there is 

 
 
 
 
 
no defined acceptable cut-off of G6PD activity. The chal-
lenges are that the measurement of enzyme activity is 
extremely sensitive to temperature, specimen volume, and 
possibly specimen type. Of the available tests that run on 
point-of-care platforms, BinaxNOW is limited by its 
operating temperature and Access Bio by its small sample 
volume, which may be a source for perform-ance 
variability. The BinaxNOW test detects a cut-off of 30-
40% enzyme activity and was designed to detect 
hemizygous males. Detecting heterozygous females re-
quire platforms that can detect and enumerate intra-
erythrocytic G6PD activity. The next steps include an 
evaluation of currently available tests for G6PD defi-
ciency under ideal laboratory conditions, field evaluation 
under controlled conditions, and engaging with the 
diagnostic sector to define a value proposition for point-of-
care G6PD deficiency tests. Ongoing efficacy studies for 
primaquine represent an opportunity to obtain G6PD 
deficiency cut-off levels. 
 
 
Examples of possible study designs— clinical and 
field-based 
Lorenz von Seidlein and Teun Bousema considered the 
sequence of studies required to establish the role of 
primaquine in the response to artemisinin resistance as well 
as for the elimination of falciparum malaria. Before 
population-level interventions are considered, three main 
questions will need to be addressed: 1) What drug con-
centration is needed to inhibit gametocytes, 2) which 
primaquine regimen is required to achieve these gameto-
cyte inhibitory concentrations and 3) can this dose be 
safely administered to both sexes and all age groups? 
Excluding young children and women of reproductive age 
from MDA will seriously reduce coverage and is likely to 
render any intervention meaningless. Since a prospective 
study of giving single dose primaquine dur-ing pregnancy 
is not likely to be approved, retrospective approaches e.g. 
pharmacovigilance during large field trials should be 
explored as a way of gaining informa-tion about the safety 
of primaquine in pregnancy.  

One option for field evaluation is the cluster rando-mized 
trial. A double-blinded community-randomized, placebo-
controlled trial in The Gambia evaluated MDA with 
sulphadoxine- pyrimethamine (SP) plus single dose artesunate 
(AS1) in 18 villages and achieved 89% coverage  
[26]. There was an initial decrease in malaria incidence but 
the effect quickly disappeared. Possible reasons for a 
failure to reduce transmission intensity might be that the 
baseline transmission intensity was too high, that there was 
migration of infected individuals or mosqui-toes, or that 
the drug regimen was not ideal. A double-blinded 
community-randomized, placebo-controlled trial was 
conducted in Tanzania in a setting of very low and 
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seasonal malaria transmission (entomological inoculation rate 
of approximately 2) using MDA with SP on day 1 plus 
artesunate for 3 days and primaquine on day 3 [27]. Coverage 
of 93% was achieved, but the study failed to show a reduction 
in transmission intensity due to the small number of outcome 
events (P. falciparum infections) in both the intervention and 
control groups. These studies raise two important questions: 
1) Are sub-microscopic parasite densities sufficient to sustain 
transmission and  
2) what is the ideal transmission intensity at which to conduct 
MDA? It was considered that studies designed to detect the 
community benefit of ACT versus ACT plus primaquine 
would potentially necessitate very large sample sizes and 
alternative strategies to evaluate MDA should also be 
considered. The community effect of insecticide-treated bed 
nets extends beyond the households that use nets and has been 
estimated by measuring the distance between control and 
intervention villages and com-pounds where protection is 
seen. Such an effect may exist for primaquine- based 
interventions such that targeted coverage has a high impact. 
Less ambitious trial designs could encompass treatment of 
clinical malaria cases, focal screen–and-treat campaigns, or 
primaquine could be incorporated into active case detection 
activities using standardized outcome measures such as 
entomological parameters, gametocyte prevalence by 
molecular methods, parasite prevalence/ molecular force of 
infection, and malaria incidence during follow-up. 
 

The design of trials of MDA with primaquine should help 
inform a potential strategy for interventions. What is the 
threshold endemicity level at which MDA with primaquine 
should be considered? How many rounds of MDA are 
required and at what interval to give a given effect? Even 
if efficacy and safety can be established, the issue of 
willingness to participate in MDA must be con-sidered. In 
settings of very low transmission and minimal risk, e.g. 
Swaziland, the community might not be as accepting of 
MDA as compared to a country with higher endemicity as 
the perceived benefit is lower. 
 
Potential study endpoints-clinical and field studies  
Heiner Grueninger emphasized that study endpoints should 
be designed to facilitate both effective treatment and 
increased knowledge of the study drug. In the con-text of 
using primaquine for a new indication of trans-mission-
blocking, the study design should address the requirements 
set by authorities for obtaining regulatory approval to use 
the drug. Consequently, endpoints should be considered 
with input from both industry and policy makers in order 
to expedite drug deployment in endemic settings.  

Chris Drakeley discussed biomedical efficacy end-
points. Abrogation of infection in mosquito infectivity 
studies is a compelling functional bioassay yet only one 

 
 
 
 
 
existing study involving primaquine satisfied Cochrane 
review criteria (Graves and Gelband, in press). In this 
study, mefloquine and SP plus primaquine stopped 
infection over 14 days post treatment [28]. The mosquito 
feeding assay methods for assessing post treatment 
infectivity of subjects offer different options for evalu-
ation, but are not standardized. Direct skin feeding of 
mosquitoes on treated individuals is most representative of 
natural infection dynamics but presents logistical and 
ethical concerns. Using venous blood allows both direct 
membrane feeding but also serum replacement with un-
treated or treated serum to examine the effect of dif-ferent 
serum compositions, such as drug metabolites. 
Reproducibility of results is an important issue with no 
clear guidelines on how to feed mosquitoes, how many 
mosquitoes should be fed per assay, because the robust-
ness of the estimate of prevalence of infection depends on 
the number fed [29], and on which day post-treatment 
participants should be tested for infectivity. For example, 
primaquine has a short half-life so infectivity could be 
measured after 24 hours, whereas, for the purpose of MDA, 
it is probably pertinent to know for how long the subject 
has reduced infectivity and testing for infectivity up to 28 
days may be relevant. This latter point could be addressed 
by staggering sampling time points between participants to 
reduce the number of bleeds per individ-ual. Further 
studies may be required to confirm the effect on 
infectiousness to wild mosquito populations as natural 
infections have been shown to be successful at very low 
gametocyte densities suggesting high vector susceptibility  
[30]. Such feeding experiments may not be warranted or 
practical for larger field evaluations and a surrogate mar-
ker for transmission would be preferable.  

Although, there is no standardized, validated marker of 
infectiousness of the human host, the most widely used 
marker to compare drugs is the prevalence of gameto-cytes 
7 days post treatment [31]. Gametocyte density is less 
relevant at low gametocyte counts found in chronic and 
asymptomatic infections as the correlation between 
infectivity and low gametocyte density is poor. The 
measurement of gametocyte prevalence and density 
depends on the method of detection with 5- to 10- fold 
differences seen with molecular methods compared to 
microscopy[32]. Gametocyte densities can be integrated 
using area under the curve (AUC) to provide an estimate of 
gametocyte carriage [33,34]. In natural infections this is 
likely to vary by age with young children with clinical 
disease having short, intense gametocytaemia (abrogated 
by drugs or gametocyte death) and older semi-immune 
individuals, who can have asymptomatic infections for up 
to a year [35] and maybe longer, with a more pro-longed 
AUC.  

The issue of how to tailor the design of studies using 
primaquine to include endpoints that are meaningful to 
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regulatory authorities was tackled by Justin Green. The key 
question is what level of evidence do we require in order to 
use primaquine as a transmission-blocking agent? He 
referred to ongoing studies using tafenoquine to high-light 
how bespoke endpoints are being used to achieve licensure. 
Tafenoquine is an 8-aminoquinoline developed by the US 
army and the Walter Reed Army Institute of Research 
(WRAIR) with GlaxoSmithKline (GSK). It has a long half-
life (14–17 days), which may confer advan-tages as an 
anti-parasitic agent, but also risks, given that the duration 
of haemolysis in individuals with G6PD deficiency is also 
prolonged [36]. The drug is slowly metabolized and the 
parent compound is respon-sible for the anti-malarial effect 
[37]. Tafenoquine is being developed as a radical cure of 
P. vivax infection. Green described a dose-ranging study in 
individuals over 16 years with P. vivax infection evaluating 
chloro-quine alone compared with standard dose 
chloroquine plus primaquine 15mg (for 14 days) and 
different single  

 
 
 
 
 
doses of tafenoquine (50mg, 100mg, 300mg, and 600mg) 
given on day 1 or day 2 (NCT01376167). The primary 
endpoint is relapse at 6 months with secondary end-points 
of relapse at 4 months, time to relapse, parasite clearance 
time, fever clearance time, gametocyte clear-ance time (by 
microscopy), safety and pharmacokinetics/ 
pharmacodynamics.  

These pivotal endpoints are designed with regulatory 
requirements in mind so that wording related to end-points 
can be incorporated into a label claim. From the 
perspective of industry, this can determine the potential 
volume of sales (the percentage of the primaquine market 
obtainable). For trials with primaquine, or other 
transmission-blocking candidates, it is necessary to decide 
how important it is that the study endpoint is on the label 
and whether stakeholders demand a “label claim” or an 
indication for approval. For transmission markers to stand 
as endpoints for a regulatory level trial, one would need 
validation that the marker, e.g., a 
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Figure 1 Preliminary modeling of administration of primaquine together with ACTs in a range of transmission settings. A simulation of adding 
primaquine to ACT first line treatment versus ACTs only in a seasonal setting. In this simulation 80% of clinical cases are treated with ACT 
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permission of Lucy Okell, Jamie Griffin & Azra Ghani. For further details, see reference [40]. 
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molecular method such as detection of pfs25 with QT 
NASBA [38] or microscopic gametocytaemia, correlates 
with transmission.  

Typically, the pharmaceutical industry focuses on the 
risk-benefit of a particular drug in the individual. For 
primaquine, the drug may be of more benefit to some-one 
other than the recipient, raising the ethical question of 
whether it is acceptable to give a drug for community 
benefit. This issue is also pertinent to transmission-
blocking vaccines [39]. Justin Green considered that it is 
crucial that primaquine trials include individuals with 
G6PD deficiency (including heterozygote females) and 
describe the risk of haemolysis in these patients. There is 
no consensus on whether there is any acceptable degree of 
haemolysis following a drug intervention for malaria in 
clinical cases or in asymptomatic individuals. 
 
Modeling the potential use of primaquine  
Teun Bousema discussed how to extrapolate the effect of 
primaquine in the individual to community-level 
transmission, acknowledging that the infectious reservoir 
of malaria may vary with transmission setting. A recent 
model by Lucy Okell and colleagues [33] suggests that 
infectiousness post ACT alone is 13 days and post ACT 
plus primaquine is 3 days. Using this model that incorpo-
rates population age structure, immunity, heterogeneous 
exposure and as well multiple interventions as covariates, 
the addition of primaquine to ACT as first-line treatment 
significantly reduces transmission in low endemic set-tings 
but not in higher transmission settings (Figure 1). The 
proportion of people who received primaquine in addition 
to ACT is a key parameter suggesting prima-quine needs 
to be given with all courses of ACT to have an effect. The 
models were further extended to investi-gate the effect of 
primaquine as part of an MDA [40] in a non-seasonal 
setting with 9% prevalence of P. falciparum. Giving MDA 
every four months caused an 80% reduction in 
transmission, but not elimination. With MDA every six 
weeks one could plausibly reach elimination. Prelim-inary 
models suggest that MDA may be more successful in areas 
of seasonal transmission (Figure 2). The dur-ation of drug 
action is important and a long acting ACT plus a long 
acting 8-aminoquinoline could be an optimal combination.  

An approach targeting malaria transmission hotspots 
may be appropriate for all endemic settings [8]. The 
hypothesis is that hot spots catalyse transmission and 
targeting them would reduce transmission both within and 
outside the hotspot. Modeling hotspot interventions with 
no drug treatment but with insecticide-treated bed nets 
scaled up to 80% coverage and targeted IRS had a 
significant effect on transmission. The effect of adding 
primaquine should be investigated. Models of transmis-
sion assume a long time-course and there was discussion 
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Figure 2 The effect of annual MDA with primaquine in addition to 
primaquine and ACT treatment of clinical cases in a low transmission 
setting. In a seasonal, low transmission setting, giving ACT+ 
primaquine to clinical cases plus an annual MDA with ACT plus 
primaquine could reduce malaria levels close to elimination if repeated 
for a number of years; however the model does not allow for 
immigration of malaria cases. With the kind permission 
of Lucy Okell, Jamie Griffin & Azra Ghani. For further 
details, see reference [40]. 

 
 
as to the stability of hot spots and how this would affect the 
efficacy of an intervention. 
 

 
Meeting outputs  
Possible approaches for the use of primaquine to 
interrupt malaria transmission  
Having reviewed the existing data, the second aim of the 
meeting was to identify the roadblocks to deployment of 
primaquine in Africa (Figure 3), decide on common study 
endpoints and to determine the next steps. As a starting 
point the group determined the intended indica-tions of 
primaquine (Figure 4), a target product profile (Figure 5) 
and common endpoints for infectivity, efficacy and safety 
studies (Figure 6). 
 
 
Key roadblocks to the deployment of primaquine  
Safety and efficacy of primaquine  
The paucity of evidence for primaquine’s safety and 
efficacy for transmission-blocking were seen as major 
issues, particularly, the lack of data supporting the safest 
and most efficacious dose. If primaquine is going to be 
used to maximal benefit then it must be safe to deploy in 
G6PD deficient individuals and women of childbearing age 
and it must be safe to co-administer with HIV and 
tuberculosis treatments without adverse drug interactions. 
Most crucially, evidence is lacking for any transmission-
reducing effect in the community from the addition of 
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Figure 3 Summary of key discussion points—roadblocks to the deployment of primaquine. 
 
 
 
primaquine to routine anti-malarial treatment of symp-
tomatic individuals. 
 
Suitable endemicity for use of primaquine  
It was agreed that use of primaquine is most likely to have 
an impact on transmission intensity in areas char-acterized 
by low endemicity prior to the intervention, i.e. P. 
falciparum parasite rate (PfPR) by microscopy of less than 
5%, or an EIR (entomological inoculation rate) less 

 
 

 
than 1. In such settings, there is a low frequency of 
symptomatic parasitaemia so the greatest benefit is likely 
to result from treating asymptomatic infections as well, 
through MDA or screen-and-treat initiatives. The optimal 
strategy for delivering primaquine-based MDA in terms of 
who to treat, at what threshold endemicity, with what 
regimen and how often is unknown.  

Mathematical modelling indicates a limited effect at 
higher transmission intensities (PfPR> 10%). However, 



88 
 

Eziefula et al. Malaria Journal 2012, 11:360 Page 10 of 15 http://www.malariajournal.com/content/11/1/360  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Endpoints for standardisation and regulatory compliance. 
 

 
further iterations are needed to assess the additional effect 
of primaquine interventions together with other control 
tools at a range of transmission intensities. As was the 
situation in Aneityum, Vanuatu [41], there may be other 
higher transmission settings where interruption of 
transmission could occur using MDA with primaquine 
because of limited human migration. 
 
Partner drug for primaquine  
For community campaigns with primaquine, the partner 
ACT should probably differ from the recommended first-
line anti-malarial treatment. An alternative ACT may be 
required for community-wide MDA or in circumstances 
where repeated rounds of MDA are envisaged. However, 
in smaller hotspots of high transmission intensity where 
fewer rounds of treatment with ACT-primaquine are 
needed, the standard first-line ACT could be considered as 
the partner to primaquine. The relative gametocytocidal 
activity of the partner ACT, its half-life for killing asexual 
parasites and the potential for drug interactions or for 
synergy with primaquine will need to be considered. 

 
 
 
Drug supply and regulation  
The manufacture and supply of the appropriate dose and 
formulation of primaquine was seen as a major obstacle for 
primaquine deployment. Currently, there are primaquine 
shortages globally and in Africa, the procurement of 
supplies to treat P. vivax where it is endemic is a challenge.  

Further information on the current challenges for the 
manufacture and supply of single- or low-dose prima-quine 
is required. A review of the current situation of primaquine 
manufacture and supply should be carried out with the aim 
of identifying the steps needed to ensure an adequate 
supply of primaquine formulated in the correct dose should 
low dose primaquine be found to be efficacious. It is likely 
that primaquine for the clear-ance of P. falciparum 
gametocytes will remain off label. In order to ensure the 
smooth process from manufacture to implementation, it 
was recommended that stake-holders from industry and 
governments, including regu-latory authorities be brought 
together to discuss these challenges. 
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Figure 5 A Target Product Profile for primaquine. 
 
 
Alternatives to primaquine  
The meeting agreed that seeking alternative gametocytoci-dal 
drugs to primaquine was paramount due to the safety concerns 
with 8-aminoquinolines. The 8-aminoquinoline tafenoquine 
appears to have a similar safety profile to primaquine 
(haemolysis in people with G6PD deficiency), but being long-
acting, may potentially inhibit gametocyte infectivity for 
longer. Should a safe, low dose be found, tafenoquine could 
be a useful tool in the elimination of P. falciparum. There is 
increasing evidence for methy-lene blue having a better safety 
profile [42,43], but more work needs to be done on regimen, 
dose-finding and acceptability [44,45]. The group supported 
the further development of these drugs and considers it a 
priority to develop more compounds active against 
transmission stages for all species of malaria. 
 
 
The roadmap  
Three themes were identified that need to be addressed 
simultaneously. Firstly, there are evidence gaps for 
primaquine itself, secondly, the manufacture and supply of 
primaquine needs mapping and thirdly, efforts to search for 
a safe and effective alternative to primaquine need to be 
supported. A schematic of the roadmap is shown in Figure 
7. 

 
 
 
Providing evidence of the efficacy and safety of 
primaquine 
A range of studies from phase 1–4 were proposed that 
would inform decisions on the efficacy and safety of 
primaquine. These are outlined below. 
 
Phase 1: Identification of the lowest dose for efficacy  
Ex vivo gametocytocidal/ infectivity assays: because the 
active metabolites of primaquine are currently unknown, 
the interpretation of in vitro assays with primaquine is 
complicated. A possible approach would be to use healthy 
volunteers treated with different doses of primaquine. The 
plasma (containing primaquine metabolites) of these 
individuals could be used in membrane feeding experi-
ments with cultured parasites to demonstrate lack of 
infectivity in mosquitoes of different doses of primaquine 
and in combination with ACT.  

There is no proven relationship between mosquito 
infectivity and gametocytocidal effects so this may need to 
be repeated with a variety of parasite lines and volun-teers 
of different ethnic backgrounds.  

It was noted that much needed pharmacokinetic studies 
could be performed during the same experiments as could 
studies evaluating the different partner ACT, other 
gametocytocidal drugs and drugs in common use 
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Figure 6 Intended indications for the use of primaquine to interrupt malaria transmission. 
 
 
 
that may interact with primaquine (e.g. antiretrovirals and 
drugs for tuberculosis). 
 
Phase 2: Establish the safety and efficacy of the 
optimal dose of primaquine in relevant sub-groups 
 

Efficacy of low dose primaquine to assess post-
treatment infectivity using common endpoints (see 
below) in G6PD normal individuals. A dose-
finding study is currently under way in Uganda 
(NCT01365598).  
Studies to confirm safety of low dose primaquine in 
G6PD deficient. 

 
– hemizygous males with lowest doses (dose 

escalation studies)  
– heterozygous females (dose escalation studies) 

 
 
 
 
– individuals of a given phenotypic G6PD enzyme 

function level, to establish a relationship 
between G6PD enzyme function level and 
safety, a proposed threshold enzyme function 
being in the range 20-30%. 

 
Confirm safety and efficacy in infected population 
of unselected G6PD status (timeline 3–4 years).  
If safety with G6PD deficiency remains a problem, 
field usable and reliable point of care tests to detect 
G6PD deficiency will be needed and the effect of not 
treating a proportion of the population on 
transmission reduction modeled.  
Programmes to map the geographical distribution of 
G6PD deficiency in countries targeted for primaquine 
deployment. This should include assessment of the 
range of enzyme function levels in the population. 
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wedge’ design may be used with a focus on the indirect Primaquine may be a useful malaria control tool in low-  
and community effects. Both prospective and retrospect- endemic settings in Africa when used in combination  
ive pharmacovigilance studies will be needed and preg- with a blood schizontocide. For maximal effect it will  
nancy registers will be an important component. need to be given to asymptomatic parasite carriers and  

therefore a safe and efficacious dose needs to be found  
Phase 4: Studies to review the safety in pregnancy that can be used in populations with G6PD deficiency.  
Currently there is no evidence on safety of primaquine Studies designed to find this dose should contain com-  
in pregnancy. Post-marketing surveillance is possible as mon endpoints including infectiousness to mosquitoes  
several countries have adopted primaquine as policy, seven days after treatment and gametocyte prevalence  
such as India, China and Sri Lanka. In these countries, pre-treatment and seven days post-treatment to allow 

http://www.malariajournal.com/content/11/1/360 

Figure 7 A projected roadmap for primaquine studies. 

Phase 3: Studies to establish utility at community level pharmacovigilance could be supported to do a retro-These may 
measure transmission reduction but may not spective study following up women of reproductive age necessarily need to be in 
the form of randomized con- who have been treated with any dose of primaquine. trolled trials. Much can be learnt from the 
transmission- 

Conclusion blocking vaccine field where designs such as a ‘stepped 

Eziefula et al. Malaria Journal 2012, 11:360 
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maximal comparability between trials. Safety endpoints 
need to be defined, particularly with regard to G6PD 
pheno- and genotype and pregnancy. Methylene blue and 
tafenoquine are alternative drugs but need further testing 
and establishing standard protocols could facili-tate this 
process. Community trials should identify the added 
benefit of using primaquine in addition to a long-acting 
ACT with the endpoint of community transmis-sion 
reduction. 
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 Trialling an off-label drug 

An important challenge in setting up this trial was the fact that primaquine was not on the 

registered drugs list in Uganda (244) and was not part of the treatment policy for the Ugandan 

National Malaria Programme. Therefore, it was not manufactured in the country and needed 

to be imported for use in the trial. This raised several issues surrounding the off label use of 

the drug. 

 What is on primaquine’s label and why does it matter? 

A drug’s label defines the indications for which the drug has been found in clinical trials to be 

safe and effective (245). Primaquine appears on the WHO Essential Medicines list for the 

indication of radical cure of Plasmodium vivax infection at doses of 7.5mg or 15mg (246) and 

this is a reflection of the label it is approved for across different drug authorities (247). The 

use of single, low-dose primaquine to block transmission of Plasmodium falciparum infection 

is an off-label use of the drug.  

There are numerous examples where off-label drug use has come into common practice and is 

even recognised as the first-line treatment option (248). It is legal for clinicians to prescribe 

off-label drugs once they are on the market, as long as it is “done in good faith, in the best 

interest of the patient and without fraudulent intent” (249).  

 Licence to trial an off-label drug 

Primaquine had not been used in Uganda for the transmission-blocking indication previously 

and there were no other African countries implementing it as a gametocytocide for malaria 

control or elimination at the time of this trial.  Approval from the Ugandan National Drug 

Authority for the importation of the drug and its use in a trial use necessitated the application 

for a clinical trial licence. This involved documentation of the chemistry of the product, the 

proposed non-Ugandan manufacturer and evidence of their quality control processes, and 

summaries of non-clinical and clinical studies conducted on the pharmacokinetics, safety and 
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efficacy of the drug, and post-marketing experience. The full clinical trial licence application 

for the national drug authority is available in Appendix B. Table 2-7 summarises its key 

contents: 

Table 2-7 Ugandan National Drug Authority clinical trial licence application checklist 

Requirements for NDA Clinical Trial Licence application 

� Proof of payment of fees 

� Materials transfer: Applications for import and/or export of materials 

� Clinical Trial Application Form 

� Trial Protocol 

� Investigators Brochure 

� Participant Information Leaflet and Informed Consent 

� Certificate of GMP manufacture of the trial medicine or other evidence 

of manufacture quality, safety and consistency 

� Package Insert/s for other trial medicines. 

� Certificate of GMP manufacture of the placebo - if appropriate. 

� Evidence of accreditation of the designated Laboratories or other 

evidence of GLP and assay validation. 

� Insurance Certificate specific for the trial in consultation with NDA 

� Signed and completed Declarations by all Investigators 

� Approval of Ethics Committees for the Protocol 

� Full, legible copies of key, peer-reviewed published articles supporting 

the application. 

� Sample of the label for the imported products 
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 The challenge of ensuring accurate paediatric dosing of primaquine 

Primaquine is available in tablets containing 15mg and 7.5mg primaquine phosphate base. For 

the purpose of this dose-finding trial in children, doses as small as 1mg, increasing in 

increments of 0.5 mg, were required. It was necessary to develop a robust method for 

incremental dosing that would ensure the correct amount of active drug in each dose 

administered. 

The stability of primaquine phosphate tablets in solution with water was established by HPLC 

analysis in the laboratory of Dr Harparkash Kaur at the London School of Hygiene and Tropical 

Medicine. The analysis demonstrated that primaquine tablets, including the batch procured 

for the study were stable in solution at room temperature (20 degrees C) for 7 days. This 

meant that doses could be titrated accurately by syringe for the purpose of the clinical trial. 

Each tablet of 15mg primaquine phosphate was crushed and fully dissolved in 15ml of 

drinking water. This 1mg/ml solution was used to give draw up doses to the nearest 0.5mg 

using 5ml and 10ml syringes.  

This methodology was subsequently ratified in 2014 (two years after this trial completed), 

when Sanofi Aventis produced instructions for the extemporaneous preparation of 

primaquine phosphate tablets 26.3mg (15mg equivalent base) for clinical trial use. These 

instructions were shared at the low dose primaquine working group meeting and published in 

the meeting report (250). 

 

 Ethical clearance and regulation 

 Ethical committee assessment 

The trial was submitted to ethical committees at the London School of Hygiene and Tropical 

Medicine in the UK, to the Faculty of Medicine Research Ethics Committee (FOMREC) at 
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Makerere University College of Health Sciences, Uganda and to the Ugandan National Council 

of Science and Technology (UNCST).  

 Ethical recommendations from Faculty of Medicine Research Ethics Committee 

(FOMREC) at Makerere University College of Health Sciences, Uganda 

The ethical committee did not express concern with the ethics of the principle of using 

primaquine as a transmission-blockier and assessing the dose-response relationship. There 

was recognition that its use was recommended in the WHO guidelines. Given the contra-

indication in pregnancy, concerns were raised regarding the method of exclusion of 

pregnancy. The committee agreed that limiting the eligible age limit to 10 years, and excluding 

those who have started menstruating, was sufficient, but at their request, a supply of 

pregnancy tests was provided at the study clinic, to be used at the discretion of the study 

clinicians and with parental consent.  

FOMREC requested simplification of the language in the consent forms. This prompted 

consultation with local researchers and community members with experience in constructing 

and using consent forms in the study village location, where many participants had a limited 

extent of formal education.  

Detail of quality assurance systems was provided on request, particularly on how malaria 

slides would be read and how results would be validated. This had been detailed in the study 

protocol (Appendix A) (200).  There was a call for specification with regard to future use of 

biological specimens, as it was thought to be too broad in the initial protocol version. 

Accordingly, this was narrowed to cover only research related to malaria.  

The appropriateness of cost re-imbursements for participants was questioned, and 

justification was given detailing the expected costs incurred by participants for food and 

transport in missing a day of work.  
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The committee was interested to learn what was the intended system for clinical 

management of illnesses other than malaria, and it was confirmed that all diseases would be 

managed within the capacity of local facilities and expertise and any requirement for specialist 

medical input would be met by consultation with dedicated senior clinicians at the regional 

paediatric hospital (which was 30 minutes’ drive away).  

There was concern with regard to the optimisation of opportunities for capacity building by 

processing study samples within Uganda as far as possible. Unfortunately, potential for this 

was limited, as at the time of study development and with the available resources, the 

technology for molecular gametocyte detection and pharmacokinetic analysis specifically for 

primaquine were not available in Uganda. Initially, polymerase chain reaction detection of 

G6PD alleles was planned in country, but unfortunately, the infrastructure was not available in 

a timely manner and these samples were instead exported, under appropriate transport 

conditions, for analysis in the UK. Malaria microscopy, haemoglobin measurement, G6PD 

phenotypic assessment (fluorescent spot test) and G6PD enzyme level assays were all 

conducted in Uganda. 

 Ethical recommendations from London School of Hygiene and Tropical Medicine 

(LSHTM) 

The first proposal submitted to LSHTM (and all ethical committees) involved a trial population 

that was un-screened for G6PD deficiency. This was in line with the lack of requirement for 

G6PD screening in the WHO recommendations for single dose primaquine. The proposal was 

rejected outright by the LSHTM ethical committee, with the following comment:  

“We are of the opinion that the benefit to the individual participants from the primaquine is 

small if not negligible and the risk relatively high. We therefore do not feel able to approve 

the proposal as submitted. There are clearly possibilities for staging this work - with a dose 
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ranging study in those screened to ensure they are not G6PD deficient followed by a study of 

the safety of this dose in the general population.” 

This feedback was considered extremely helpful in highlighting the expected ethical concerns 

and the trial design was altered to exclude G6PD deficient children at enrolment. Plans were 

put in place to develop a protocol for a daughter trial in G6PD deficient individuals informed 

by the dosing data in this trial (251). 

The new trial population demanded a re-calculation of the appropriate sample size. Initially, 

sample size was calculated to include adequate numbers to assess safety in the predicted 

proportion of individuals who would be G6PD deficient. Upon revision, the optimal sample 

size for safety was reduced, as there was no longer any requirement to include a population 

that would be expected to represent all G6PD genotypes. As no prior representative data was 

available on the expected fall in haemoglobin in a G6PD-screened African population, data 

was taken from a recent trial of primaquine in an un-screened population in Tanzania (63) . 

The revised sample size calculation takes into account the size required for non-inferiority 

analysis of the efficacy outcome measure in the test dose arms compared to the reference 

dose (WHO-dose) arms and the size required to assess the superiority of safety outcome 

measures in the test dose arms compared to the reference dose (WHO-dose) arm. 

 

The process of screening for G6PD deficiency was not specified by the committee. Specific 

issues with the selection of the method for G6PD screening are covered in Section 1.2.3.6. 

 Ethical recommendations from the Uganda National Council of Science and Technology 

(UNCST) 

No concerns were raised at the stage of protocol approval by the UNCST, but, following their 

site visit to inspect the acceptability of the trial site prior to recruitment, recommendations 

were made regarding the storage facilities for study drugs and the appropriateness of snacks 
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and provision of meals for study participants and their relatives whilst attending for follow up 

visits. 

 

 Clinical trial registration, sponsorship and monitoring 

The trial was registered on www.clnicaltrials.gov. The trial was sponsored by LSHTM, and 

LSHTM conducted the clinical trial monitoring. All monitoring site visits were conducted by the 

Ugandan National Council of Science and Technology (UNCST). 

A Data Safety and Monitoring Board (DSMB) was set up for the trial. All members accepted 

the terms of a DSMB charter. The board agreed what data and parameters should be 

presented and at what frequency. Data collated per study arm was coded as A, B, C and D to 

preserve blindness. A sample DSMB reporting sheet is available in Appendix C, (part 1).  

 Site set up 

 Collaboration with the Infectious Diseases Research Collaboration, Uganda 

The collaborator in Uganda was the Infectious Diseases Research Collaboration (IDRC), a non-

profit research organisation that was established in May 2008 by scientists at Makerere 

University College of Health Sciences and the University of California, San Francisco and the 

Ugandan Ministry of Health.  

The IDRC evolved from the Uganda Malaria Surveillance Project established in 2001 to 

evaluate the impact of malaria control interventions on key malaria indicators. This focussed 

on sentinel sites based at six health centres across the country. The organisation’s role 

expanded rapidly to incorporate the production of high quality data from multiple 

geographical sites and research programmes targeted to inform policy makers and widened 

research activities in the fields of HIV, tuberculosis and community health as well as malaria. 
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Key components of collaboration with the IDRC were support for Ugandan trial regulatory 

affairs, including communication with the ethical committees, and provision of training for 

staff to ensure compliance with Good Clinical Practice requirements; support with data 

management, including provision of a secure server to deposit trial data; quality control of 

malaria slide readings at the Kampala-based Molecular Research laboratory (MOLAB); support 

with procurement, budget administration, staff employment and financial reporting; and, 

assistance with sample transport and storage facilities 

This work saw the involvement of the London School of Hygiene and Tropical Medicine as a 

new collaborator with IDRC, necessitating the set-up of a Memorandum of Understanding 

between the two organisations, to facilitate exchange of contracts and funds and transfer of 

materials for the purpose of this study and future work. 

 

 Blood transfusion access 

Access to safe blood transfusion was vital for this study in the event of any severe drug-

related haemolysis. An agreement was made with the Regional Paediatric Referral Hospital in 

Jinja to provide blood (form the national bank in Kampala) to our study participants.  The 

regional paediatric intensive care unit clinicians agreed to support our study participants if 

they required blood transfusion.  

 

 Medical care infrastructures 

At the study site, the resident governmental health workers were not medically qualified. Two 

qualified physicians were employed for the trial as study co-ordinators and doctors.  The lead 

paediatrician at the Regional Paediatric Referral Hospital in Jinja provided senior support to 
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the trial physicians when requested. Details of the senior consultations requested by trial staff 

are provided in the results section (Section 3.3.3). 

 Staff recruitment and training  

Study staff were recruited and employed through IDRC-hosted structures.  Group and role-

specific training sessions were designed to cover all trial processes. All staff were trained and 

certified in Good Clinical Practice (GCP) and materials for Good Clinical and Laboratory 

Practice (GCLP) were supported by the IDRC and a series of group discussion sessions were 

held in the laboratory to further explore the training manual. The data team had input into 

the design of a self-cleaning study database. Briefly, the database was designed so that each 

value had to fit appropriate criteria in order to be entered. This reduced some level of human 

data entry error. Manual data cleaning was still required, hence all data was double entered 

and checked for inconsistency and corrected against source data before being entered into 

the master database. The laboratory team had input into the design of some of the laboratory 

standard operating procedures (SOPs). The clinicians, nurses and fieldworkers also inputted 

into SOP design after training sessions to provide guidance. This helped ensure that staff 

members had ownership of the targets and processes of the clinical trial. 

Training for each staff discipline was given by the principle investigator at employment and 

trial-specific training manuals were designed and provided. Materials on the ethics of research 

involving human subjects developed by the collaborating partner, IDRC, were used for 

additional group training in this area. These covered a history of research ethics, recognition 

of vulnerable populations, key elements of the informed consent process and guidelines on 

correct documentation of informed consent. All staff had permanent access to these materials 

for continued reference during the recruitment process. 
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Once trial recruitment was underway, there were regular appraisal sessions and feedback 

opportunities for staff to assess performance, to improve practice where necessary and to 

give feedback to the principle investigator and employer. 

 Overcoming hurdles 

 Delays in obtaining permissions 

The initial submission of the study protocol to the School of Medicine Research Ethics 

Committee at Makerere University, Kampala, was not reviewed because the committee 

announced that it was undergoing a change in staffing and a change in processes. During this 

time, the submitted protocol was reported to have been lost from the committee offices. This 

was discovered only after some months of waiting for approval, adding to delays. The 

protocol was re-submitted and then reviewed, after which, revisions were called for as 

detailed above (Section 2.5.1) and the submitted alterations were approved. At the point of 

protocol alteration, core trial staff were appointed and trained, in order to minimise further 

delays in the onset of recruitment, whilst balancing the cost of staff employment prior to 

approval.  

 Delays during recruitment—widened catchment area 

The incidence of clinical malaria at the study site had been recorded by the Uganda Malaria 

Surveillance Project showed an expected blood slide positivity rate of approximately 50% 

(252). This had been used to predict the rate of recruitment and to plan the study landmarks 

and budget. The rate of recruitment to the trial underwent significant decline after the first 

two months. Data were obtained on the seasonal rainfall in the region and this was not lower 

than expected (253).  Estimates of the entomological inoculation rate (number of infective 

bites per person per year) from epidemiological surveillance projects at the study site 

revealed significant reduction from 7 (254) to 3.8 (255) over the preceding 7 years. 
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Given the budgetary consequences of a reduced recruitment rate, the decision was taken to 

widen the catchment area for the study. This decision was taken in consultation with ethical 

advisers from the collaborating partner, IDRC. Participants were screened at health centres 

and hospitals within the widened catchment area and were then transported by study staff 

(always less than 20 minutes’ travel) to the study clinic, where screening processes were 

repeated and eligible individuals were invited to enter the enrolment process. They then 

completed the final steps of screening at the study clinic and were consented if entry criteria 

were satisfied. All of their subsequent follow up visits were conducted at the study clinic. 
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3 Results: Primaquine safety and efficacy dose-finding trial 

This chapter covers the results of the trial, the main findings of which were published in the 

peer-reviewed Lancet Infectious Diseases journal (256).  Additional data analysis 

considerations and unpublished data are presented in sections 3.2 to 3.3. Immediately 

following the trial, the methodology and results were shared in international meetings to 

develop and progress the research agenda and to engage with policy makers. These data 

sharing processes are described here in Section 3.3.4. 

 RESEARCH PAPER 3: Publication of trial results 

The trial results were peer reviewed and published in the Lancet Infectious Diseases 

Journal. See Appendix E for the accepted plain text version of the manuscript.
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Summary  
Background Primaquine is the only available drug that clears mature Plasmodium falciparum gametocytes in 
infected human hosts, thereby preventing transmission of malaria to mosquitoes. However, concerns about dose-
dependent haemolysis in people with glucose-6-phosphate dehydrogenase (G6PD) deficiencies have limited its use. 
We assessed the dose-response association of single-dose primaquine for gametocyte clearance and for safety in P 
falciparum malaria. 
 
Methods We undertook this randomised, double-blind, placebo-controlled trial with four parallel groups in Jinja 
district, eastern Uganda. We randomly allocated Ugandan children aged 1–10 years with uncomplicated falciparum 
malaria and normal G6PD enzyme function to receive artemether–lumefantrine, combined with either placebo or 
with 0∙1 mg/kg, 0∙4 mg/kg, or 0∙75 mg/kg (WHO reference dose) primaquine base. Randomisation was done with 
computer-generated four-digit treatment assignment codes allocated to random dose groups in block sizes of 16. 
Study staff who provided care or assessed outcomes and the participants remained masked to the intervention group 
after assignment. The primary efficacy endpoint was the non-inferiority of the mean duration of gametocyte carriage 
in the test doses compared with the reference group of 0∙75 mg primaquine per kg, with a non-inferiority margin of 
2·5 days. The primary safety endpoint was the superiority of the arithmetic mean maximum decrease in 
haemoglobin concentration from enrolment to day 28 of follow-up in the primaquine treatment groups compared 
with placebo, with use of significance testing of pairwise comparisons with a cutoff of p=0·05. The trial is registered 
with ClinicalTrials.gov, number NCT01365598. 
 
Findings We randomly allocated 468 participants to receive artemether–lumefantrine combined with placebo (119 
children) or with 0∙1 mg/kg (116), 0∙4 mg/kg (116), or 0∙75 mg/kg (117) primaquine base. The mean duration of 
gametocyte carriage was 6∙6 days (95% CI 5∙3–7∙8) in the 0∙75 mg/kg reference group, 6·3 days (5·1–7·5) in the 0∙4 
mg/kg primaquine group (p=0∙74), 8·0 days (6∙6–9∙4) in the 0∙1 mg/kg primaquine group (p=0∙14), and 12∙4 days 
(9∙9–15∙0) in the placebo group (p<0∙0001). No children showed evidence of treatment-related haemolysis, and the 
mean maximum decrease in haemoglobin concentration was not associated with the dose of primaquine received—
it did not differ significantly compared with placebo (10·7 g/L, SD 11·1) in the 0∙1 mg/kg (11·4 g/L, 9·4; p=0∙61), 0∙4 
mg/kg (11·3 g/L, 10·0; p=0∙67), or 0∙75 mg/kg (12·7 g/L, 8·2; p=0∙11) primaquine groups. 
 
Interpretation We conclude that 0∙4 mg/kg primaquine has similar gametocytocidal efficacy to the reference 0∙75 
mg/kg primaquine dose, but a dose of 0∙1 mg/kg was inconclusive for non-inferiority. Our findings call for the 
prioritisation of further trials into the efficacy and safety of doses of primaquine between 0∙1 mg/kg and 0∙4 mg/kg 
(including the dose of 0∙25 mg/kg recently recommended by WHO), in view of the potential for widespread use of 
the drug to block malaria transmission. 
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Introduction  
Effective drug therapy is a key component of malaria 
control and elimination strategies to reduce both morbidity 
from the disease and onward transmission to mosquitoes.1 
Artemisinin combination therapy (ACT), the first-line 
treatment in sub-Saharan Africa, achieves excellent cure 
rates for Plasmodium falciparum through rapid clearance of 
the asexual stages of the parasite. As a consequence, ACT 
reduces the production of malaria 

 
transmission stages—gametocytes—and thereby restricts 
transmission potential.2 However, onward malaria trans-
mission is not completely prevented because of the 
inadequate effect of artemisinins and their partner drugs 
against mature gametocytes. If mature gametocytes are 
present before treatment, they persist after ACT, often at 
concentrations below the threshold for detection by 
conventional microscopy,3 and can allow onward malaria 
transmission for up to 14 days after treatment.3–6 
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Primaquine, an 8-aminoquinoline, is the only available 
drug with established activity against mature gametocytes. 
It clears circulating gametocytes that persist after ACT, 
thereby reducing the duration of gametocyte carriage,7–12 and 
renders most patients free of gametocytes by day 14 after 
initiation of ACT–primaquine treat-ment.7–9,12 Primaquine 
reduces the transmission of malaria to mosquitoes—an 
effect that might precede the clearance of gametocytes.13,14 
The transmission-blocking properties of primaquine have 
been reviewed in detail.15 WHO has recommended one dose 
of primaquine in addition to ACTs for use in two scenarios: 
for malaria elimination programmes, and to stop the spread 
of emerging artemisinin resistance.16 Primaquine is 
recommended for use in first-line antimalarial treatment in 
many countries.17 
 

Despite these recommendations, primaquine is often not 
used because of concerns about its haemolytic effect in 
people with glucose-6-phosphate dehydrogenase (G6PD) 
deficiency. Primaquine-induced haemolysis can occur after 
one dose of the drug18 and is dose dependent.19 Because 
doses of primaquine lower than the WHO-recommended 
dose can be equally efficacious at clearance of P falciparum 
gametocytes,15 dose optimisation for ACT–primaquine is 
needed.  

No formal randomised controlled trials have been done to 
characterise the dose-response relation of primaquine for P 
falciparum gametocyte clearance. We aimed to assess the 
efficacy of reduced doses of primaquine for non-inferiority 
to the WHO reference dose of 0∙75 mg primaquine base per 
kg that has proven efficacy,7,20 and to assess for superiority 
of the safety of reduced doses compared with placebo, in 
people with normal G6PD enzyme function. 
 
Methods  
Study design and participants  
The study was a randomised, double-blind, placebo-
controlled trial with four parallel groups. The study protocol 
has been described in detail elsewhere.21 Briefly, we 
undertook the study at Walukuba Health Centre IV in Jinja 
district, eastern Uganda, between December, 2011, and 
March, 2013. In this region, malaria transmission is 
perennial with seasonal peaks in intensity. An 
entomological inoculation rate of seven infectious bites per 
person per year was estimated in 2001.22  

Eligible participants were children aged 1–10 years 
attending the health centre with fever or history of fever in 
the past 24 h, P falciparum monoinfection with a parasite 
density lower than 500 000 per μL, and normal G6PD 
enzyme function based on a fluorescence spot test (R&D 
Diagnostics, Aghia Paraskevi, Greece). Exclusion criteria 
were evidence of severe illness or danger signs, 
haemoglobin concentration less than 80 g/L, known allergy 
to the study drugs, antimalarials taken within the past 2 
days, primaquine taken within the past 4 weeks, and blood 
transfusion within the past 90 days. Written 

 
 
 
 
 
 
 

 
informed consent was provided by parents or guardians and, 
in addition, assent was provided by children older than 8 
years of age. 

Ethics approval for the trial protocol and informed 
consent forms were provided by the Makerere University 
School of Medicine research ethics committee (protocol 
2011-210), the Uganda National Council of Science and 
Technology (protocol HS1056), and the London School of 
Hygiene and Tropical Medicine research ethics committee 
(protocol 5987). The Ugandan National Drug Authority 
approved importation of the study drug. The trial data safety 
monitoring board and trial advisory committee were 
convened before the start of the trial and met at 
predetermined stages of the study. Consultations with local 
community stakeholders in Walukuba were held before, 
during, and after trial completion. 
 
Randomisation and masking  
We randomly assigned eligible participants to one of four 
dose groups. In each group, we gave participants 
artemether–lumefantrine twice daily on days 0–2 and, with 
the fifth dose of the drug, one dose of either placebo or 
primaquine (0∙1 mg/kg, 0∙4 mg/kg, or 0∙75 mg/kg). A 
statistician at the London School of Hygiene and Tropical 
Medicine (ELW) computer-generated four-digit treatment 
assignment codes and allocated these to random dose groups 
in block sizes of 16. To achieve treatment concealment, we 
added masking syrup to all treatment groups, which 
disguised the colour and taste of the study drug. Because 
G6PD deficiency is an X chromosome-linked disorder, we 
stratified randomisation by sex. Sequential sealed envelopes 
containing a randomisation code were selected by the study 
pharmacist from either the male or female pile. The 
pharmacist was not involved in patient outcome assessment. 
All other study staff providing care or assessing outcomes, 
and the participants themselves, remained masked to the 
intervention group after assignment. 
 
Procedures  
We crushed 15 mg base primaquine phosphate tablets and 
dissolved them in 15 mL of drinking water to produce a 
stable 1 mg/mL solution. We drew up the assigned dose to 
the nearest 0∙5 mL through a sterile syringe and immediately 
gave it to each participant in a plastic cup or spoon. We 
administered all treatments after the children had eaten a 
fatty snack (biscuits) and then directly observed the patients. 
If a child vomited within 30 min, treatment was re-
administered. Those who vomited more than three times 
were excluded from the study and were treated for 
complicated malaria. 

Enrolled participants were reviewed on days 0, 1, 2, 3, 7, 
10, 14, 21, and 28, or on additional days if they presented at 
the clinic. We did systematic and prospective assess-ments 
for adverse events. We graded new or worsening symptoms, 
examination findings, or laboratory ab - normalities 
according to a severity scale (adapted from 
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the WHO toxicity grading scale for determining the severity 
of adverse events and from the National Institutes of Health, 
Division of Microbiology and Infectious Diseases 
paediatric toxicity tables published in January, 2003)23 and 
assessed causal associations with the study drug. We 
implemented a standardised protocol to detect episodes of 
haemolytic anaemia, which we have published elsewhere.21 
On scheduled visits, we collected roughly 500 μL of venous 
blood for laboratory assess-ments. On all visits, we did 
asexual malaria parasite counts, in which we enumerated 
parasites per 200 white blood cells; we read 100 microscopy 
fields in the Giemsa-stained thick blood film before we 
judged a slide to be parasite negative. At enrolment, we read 
slides twice specifically for gametocytes, following the 
same procedure as that for asexual parasites. We measured 
haemoglobin concentration on days 0, 1, 2, 3, 7, 10, 14, 21, 
and 28 with self-calibrating HemoCue 201+ photometers 
(HemoCue; Angelholm, Sweden). We assessed gameto-
cytaemia by quantitative real-time nucleic acid sequence-
based analysis (QT-NASBA) with Pfs25 mRNA24 on days 
0, 2, 3, 7, 10, and 14. The timing of gametocytaemia 
measurements was based on findings from previous studies 
that suggested the gametocyte-clearing effect of primaquine 
is restricted to the first 2 weeks after treatment.7,25 We 
extracted nucleic acids from 50 μL blood samples in L6 
buffer (Severn Biotech Limited, Kidderminster, UK) with 
Total Nucleic Acid Isolation Kits–High Performance 
(Roche Applied Science, Mannheim, Germany) and a 
MagNA Pure LC automated extractor (Roche Applied 
Science). The sensitivity of this assay is related to the 
volume of blood sampled and is in the range of 0∙02–0∙1 
gametocytes per μL for the samples collected.24 

 
The primary endpoint for efficacy was the non-inferiority 

of the mean duration of gametocyte carriage in the test doses 
compared with the reference group of 0∙75 mg primaquine 
base per kg. Secondary endpoints were the point prevalence 
of gametocytes on days 7, 10, and 14 after treatment, 
gametocyte circulation time, and the area under the curve 
(AUC) of gametocyte density over time after primaquine 
administration. For treatment outcomes in each group, 
definitions of adequate clinical and parasitological 
response, early treatment failure, and late treatment failure 
were according to WHO Methods for Surveillance of 
Antimalarial Drug Efficacy.26 The primary safety endpoint 
was the superiority of the arithmetic mean maximum 
decrease in haemoglobin concentration from enrolment to 
day 28 of follow-up in the primaquine treatment groups 
compared with the placebo group. Secondary safety 
endpoints were the superiority assessment of the day of 
haemoglobin nadir, the maximum percentage decrease in 
haemoglobin, the percentage of participants with 
haemoglobin concentration lower than 50 g/L, requirement 
for blood transfusion, evidence of black urine, and the 
frequency of severe adverse events. 

 
 
 
 
 
 
 

 
Statistical analysis  
In our sample size calculation, we took into consideration 
the primary endpoints for both efficacy and safety. To guide 
the efficacy calculation, we used the QT-NASBA-measured 
duration of gametocyte carriage in a Tanzanian study, which 
was reduced from a mean of 28∙6 to 6∙3 days (SD 6) when 
primaquine (0∙75 mg/kg) was added to ACT alone.25 
Efficacy analyses were done on an intention-to-treat basis. 
To assess non-inferiority of the test groups to the reference 
group with 80% power at the two-tailed 5% significance 
level, with allowance for 10% loss to follow-up and with use 
of a proposed clinically relevant non-inferiority margin of 
2∙5 days, the target sample size for efficacy was 120 
participants per group. However, during the course of 
review by the trial data safety monitoring board, the target 
sample size was reduced to 460 participants (ie, 115 per 
group instead of 120) because of a lower than expected loss 
to follow-up. For the safety component of our analysis, the 
sample size calculation was based on the mean decrease in 
Hemocue-measured haemoglobin concentration on day 7 
after treatment with primaquine of 6 g/L (SD 15) in a 
previous Tanzanian study.18 A sample size of 99 participants 
per group would provide 80% power to detect a difference 
in mean maximum decrease in haemoglobin between 
treatment groups of 6 g/L at a significance level of 5%.  

Data were double entered and transferred into Stata 
(version 12.0) for analysis. We estimated duration of 
gametocyte carriage and gametocyte circulation time in 
children with gametocytaemia on day 2 (the day of 
primaquine dosing) with a straightforward deterministic 
compartmental mathematical model25 that allows for the 
release of gametocytes from sequestration and incorporates 
baseline gametocyte densities into model estimates. The 
model allows the duration of gametocyte carriage to be 
estimated as a continuous outcome. As the spacing between 
sampling times increases, some uncertainty is expected, but 
this was judged to be acceptable for estimates during the 
first 14 days after initiation of treatment. We compared 
treatment groups for non-inferiority to the reference group 
with two-sided 95% CIs. Because the distribution of 
gametocyte densities was expected to be skewed, all density 
analyses involved log10-transformed data and we used 
geometric means as summary statistics. We assessed the 
AUC of gametocyte density per participant with the linear 
trapezoid method27 and log10-transformed the data. We used 
ANOVA to compare log AUC with the reference treatment 
group. We compared gametocyte point prevalence estimates 
per treatment group with the reference group with use of the 
prevalence ratio with 95% CIs. We adjusted all efficacy 
analyses for gametocyte density at enrolment, and tested the 
potential effect of sex by adding this variable to multivariate 
models and by doing a stratified analysis.  

The primary safety outcome, maximum decrease in 
haemoglobin (g/L) during follow-up compared with the 
measurement at enrolment, is expressed as an arithmetic 
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mean per treatment group and pairwise comparisons made 
between placebo and each of the primaquine groups, with 
unpaired t tests. We used a cutoff for significance tests of 
p=0·05 for the superiority analysis. We compared the 
occurrence of adverse events between groups; the 
significance level was adjusted for several comparisons by 
Bonferroni correction. This trial is registered with 
ClinicalTrials.gov, number NCT01365598. 
 
Role of the funding source  
The sponsors of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to all 
the data in the study. All authors reviewed the report and 
agreed to submit for publication. 
 
Results  
We screened 1215 children with a history of fever and a 
positive blood smear at Walukuba Health Centre for 
eligibility to enrol in the study. The most frequent reason for 
exclusion was having taken antimalarial drugs in the  

 
 
 
 
 
 
 

 
previous 48 h (figure 1). Between December, 2011, and 
December, 2012, we enrolled and randomly allocated 468 
children, 461 of whom completed treatment and contributed 
data for the assessment of safety and efficacy (figure 1). 36 
of these 461 children (8%) did not complete 28 day follow-
up. The proportion lost to follow-up did not differ 
significantly between treatment groups, but was highest in 
the placebo group (figure 1). Baseline characteristics were 
similar in all treatment groups (table 1). 199 of 461 (43%) 
children were anaemic at baseline (haemoglobin 
concentration <110 g/L). Treatment failure, assessed 
clinically and microscopically, was rare (table 2) and did not 
differ significantly between groups (p=0∙68).  

Gametocyte prevalence at enrolment was 22∙6% 
(104/461) by microscopy and 81∙8% (365/446) by QT-
NASBA (table 1), and did not differ between treatment 
groups (p=0∙91 for microscopy and p=0∙42 for QT-
NASBA). Gametocyte density at enrolment was 
numerically higher in the 0∙75 mg/kg reference group (table 
1) but did not differ significantly from any of the other 
groups (p≥0∙31). Gametocyte prevalence decreased  
  

Initial screening 1215 patients assessed for eligibility  
   

    
    
  

Randomisation 468 randomly assigned  
    

     

 
 
747 excluded  

463 exclusion criteria  
5 serious chronic illness  

83 intented to leave study area  
154 took antimalarials 2 days earlier  

91 underweight  
7 severe malaria or danger signs  

31 low haemoglobin  
32 G6PD deficiency  
6 mixed infection  

17 hyperparasitaemia  
37 other (<5 per group)  
96 declined to participate  

188 unaccompanied minors (ineligible) 

 
 

Treatment 
allocation 

 
 
 
 

Study drug 

  
 

119 allocated to AL plus placebo  116 allocated to AL plus    116 allocated to AL plus    117 allocated to AL plus   
 

     PQ 0·1 mg/kg    PQ 0·4 mg/kg    PQ 0·75 mg/kg   
 

                       
 

                         
 

   2 excluded before day 3    1 excluded before day 3    3 excluded before day 3    1 excluded before day 3  

         

                         
 

                       
 

                     
 

117 received AL plus placebo  115 received AL plus PQ 0·1 mg/kg   113 received AL plus PQ 0·4 mg/kg   116 received AL plus PQ 0·75 mg/kg  
 

(ITT population)  (ITT population)    (ITT population)    (ITT population)   
 

                         

                         
 

   11 lost to follow-up    7 lost to follow-up     6 lost to follow-up     5 lost to follow-up 
 

   0 withdrew consent    0 withdrew consent    0 withdrew consent    0 withdrew consent 
 

                          

                         
   

14 day follow-up 106 completed efficacy follow-up   108 completed efficacy follow-up   107 completed efficacy follow-up   111 completed efficacy follow-up  
 

for efficacy        
 

                            

                            
 

    4 lost to follow-up     0 lost to follow-up      1 lost to follow-up     0 lost to follow-up 
 

28 day follow-up 

   0 withdrew consent    0 withdrew consent     0 withdrew consent     0 withdrew consent 
 

                           
 

                           
 

                           
 

102 completed safety follow-up   108 completed safety follow-up    106 completed safety follow-up   111 completed safety follow-up   

for safety         
 

                             
 
Figure 1: Trial profile  
AL was given as six doses over 3 days (days 0, 1, and 2); PQ or placebo was given together with the fifth dose of AL on the morning of day 2. The two post-treatment exclusions in the 0·4 mg/kg treament group 

(because of delayed confirmation of parasitaemia) were followed up for safety. G6PD=glucose-6-phosphate dehydrogenase. AL=artemether–lumefantrine. PQ=primaquine. ITT=intention to treat. 
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 Placebo (n=117) Primaquine 0·1 mg/kg Primaquine 0·4 mg/kg Primaquine 0·75 mg/kg 
  (n=115) (n=113) (n=116) 
     

Boys 48·7% (57/117) 49·6% (57/115) 49·6% (56/113) 49·1% (57/116) 
Age (years) 5·0 (3·0–7·5) 5·0 (3·3–7·0) 5·3 (3·2–7·0) 4·1 (3·0–7·0) 
Bodyweight (kg) 16·0 (13·0–20·5) 16·0 (13·0–22·0) 17·0 (14·0–23·0) 15·0 (13·0–19·0) 
Body temperature (°C) 38·0 (1·0) 38·3 (1·1) 38·0 (1·2) 38·2 (1·1) 
Haemoglobin concentration (g/L) 113 (15) 109 (15) 112 (15) 112 (14) 
Geometric mean sexual parasite density, 17 661 (5260–65 130) 18 420 (4440–92 780) 16 457 (3260–81 240) 32 497 (10 880–151 180) 
parasites/mL (IQR)     
Gametocyte prevalence by microscopy 23·1% (27/117) 24·3% (28/115) 20·4% (23/113) 22·4% (26/116) 
Gametocyte prevalence by QT-NASBA 79·8% (91/114) 86·7% (98/113) 78·7% (85/108) 82·0% (91/111) 
Geometric mean gametocyte density 15·2 (8·4–27·8) 14·5 (8·9–23·5) 19·4 (11·3–33·1) 24·6 (14·9–40·5) 
(gametocytes/μL) by QT-NASBA (IQR)     

 
Data are % (n/N), median (IQR), or mean (SD), unless otherwise indicated. QT-NASBA=quantitative real-time nucleic acid sequence-based analysis. 

 
Table 1: Baseline characteristics  

 
 Placebo Primaquine p value* Primaquine p value* Primaquine p value* 
  0·1 mg/kg  0·4 mg/kg  0·75 mg/kg  
        

Number evaluated 117 115 ·· 113 ·· 116 ·· 
Excluded from ITT analysis        

Withdrawal unrelated to study drug 0 0 ·· 2/113 (1·8%) 0·245 0 ·· 
or malaria        
Lost to follow-up 15/117 (12·8%) 7/115 (6·1%) 0·080 7/113 (6·2%) 0·088 5/116 (4·3%) 0·033 

ACPR on day 28 98/102 (96·1%) 101/108 (93·5%) 0·41 106/106 (100%) 0·12 106/111 (95·5%) 0·83 
Treatment failures        

Early (day 3) 0 0 ·· 0 ·· 0 ·· 
Late (day 28) 4/102 (3·9%) 7/108 (6·5%) 0·41 0 0·12 5/111 (4·5%) 0·83 

 
Data are n/N (%), unless otherwise indicated. ITT=intention to treat. ACPR=adequate clinical and parasitological response. Defi nitions of ACPR, 
early treatment failure, and late treatment failure are according to WHO Methods for Surveillance of Antimalarial Drug Efficacy 2009.26 *p values are 
for comparison with placebo, with χ² or Fisher’s exact tests. Outcomes are unadjusted by PCR. 

 
Table 2: Treatment outcomes for the different regimens on day 28 after start of treatment  

 
 Placebo p value* Primaquine p value* Primaquine p value* Primaquine 
   0·1 mg/kg  0·4 mg/kg  0·75 mg/kg 
        

Duration of gametocyte carriage (days)† 12·4 (9·9–15·0) <0·0001 8·0 (6·6–9·4) 0·14 6·3 (5·1–7·5) 0·74 6·6 (5·3–7·8) 
Circulation time per gametocyte (days) 1·97 (1·64–2·31) <0·0001 1·47 (1·22–1·73) 0·0012 0·95 (0·77–1·13) 0·80 0·98 (0·78–1·18) 
Gametocyte prevalence on day 7 40/115 (34·8%) 0·001 25/108 (23·1%) 0·044 11/104 (10·6%) 0·47 15/104 (14·4%) 
Gametocyte prevalence on day 10 23/112 (20·5%) 0·008 18/107 (16·8%) 0·020 10/107 (9·3%) 0·46 8/108 (7·4%) 
Gametocyte prevalence on day 14 16/105 (15·2%) 0·017 6/103 (5·8%) 0·72 3/103 (2·9%) 0·51 6/106 (5·7%) 

 
Data are mean (95% CI) or n/N (%). Except for the duration of gametocyte carriage, all estimates were adjusted for gametocyte density at enrolment. *p values are for 

comparison with reference 0·75 mg/kg treatment group. †Calculated for all children who had gametocytes on the day of primaquine or placebo administration. 
 

Table 3: Gametocyte carriage during follow-up for the different treatment regimens 
 

after enrolment, although 170 of 345 (49∙3%) participants 
who were gametocyte positive at enrolment remained so on 
day 2 before receiving primaquine or placebo. After day 2, 
the rate of gametocyte clearance was dependent on 
treatment group. The mean duration of gametocyte carriage 
was 6∙6 days (95% CI 5∙3–7∙8) in the 0∙75 mg/kg reference 
group, 6∙3 days (5∙1–7∙5) in the 0∙4 mg/kg group, 8∙0 days 
(6∙6–9∙4) in the 0∙1 mg/kg group, and 12∙4 days (9∙9–15∙0) 
in the placebo group (table 3). The duration of gametocyte 
carriage for children who were 

 
 
gametocyte positive at primaquine administration was the 
primary outcome and was tested for non-inferiority to the 
0·75 mg/kg reference group. With the proposed non-
inferiority margin of 2∙5 days, the 0∙4 mg/kg group showed 
non-inferiority to the reference 0∙75 mg/kg group, but the 
0∙1 mg/kg group was inconclusive for non-inferiority and 
placebo was inferior (figure 2). 

The mean circulation time of gametocytes indicated a 
longer circulation time of gametocytes in the 0∙1 mg/kg 
group (p=0∙0012) and the placebo group (p<0∙0001) than 
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threshold for non-inferiority compared with the 0·75 mg/kg reference group           
 

(non-inferiority margin of 2·5 days). AL=artemether–lumefantrine.    0        
 

in the reference 0∙75 mg/kg group (table 3). Gametocyte 
 B        

 

 4·0        
 

circulation time did not differ significantly between the          
 

0∙4 mg/kg group and the reference 0∙75 mg/kg group          
 

(p=0∙80). Compared with the reference 0∙75 mg/kg  
3·0  
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higher in the placebo group on days 7, 10, and 14 (table 3). 
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We recorded no difference in prevalence between the 

 

       
 

        
 

         
 

0∙4 mg/kg group and the reference group throughout O d d  

        
 

follow-up (table 3, figure 3). The overall geometric mean         
 

         
 

gametocyte density was 17∙9 gametocytes per μL (95% CI  1·0        
 

13∙8–23∙3)  at  enrolment,  15∙7  gametocytes  per  μL          
 

(11∙0–22∙2) on day 2 before primaquine treatment,          
 

11∙6 gametocytes per μL (7∙2–18∙8) on day 3,  0        
 

5∙3 gametocytes per μL (3∙0–9∙3) on day 7,  

0 2 3 
 

7 10 14 
 

   
 

5∙2 gametocytes per μL (2∙6–10∙5) on day 10, and      Days since start of treatment   
 

2∙1 gametocytes per μL (0∙7–5∙7) on day 14. This decrease 
Figure 3: Gametocyte prevalence and prevalence ratio for each treatment regimen during 14 day follow-up  

in the density of gametocytes in gametocyte-positive  

(A) Gametocyte prevalence during follow-up, as measured by Pfs25 quantitative real-time nucleic acid 
 

people  during  follow-up  was  statistically  significant sequence-based analysis. Error bars indicate the upper limit of the 95% CI. (B) Odds ratio of gametocyte prevalence 
 

(p<0∙0001) but densities in these patients did not differ on each of the days of follow-up compared with the reference 0·75 mg/kg group after adjustment for baseline 
 

significantly between treatment groups on discrete gametocyte density. Error bars indicate the upper and lower limits of the 95% CI. *Indicates a statistically 
 

significant difference compared with the reference 0·75 mg/kg group.   
 

follow-up days (data not shown).       
 

             
 

The AUC of gametocyte density over time, a measure          
 

that incorporates both prevalence and density of QT- 0∙75 mg/kg (12·7 g/L, 8·2; p=0∙11) groups. The size of  
 

NASBA estimates, was 3∙8 (95% CI 1∙7–8∙2) gametocytes the fall in  haemoglobin  concentration  was  not  
 

per μL per day in the placebo group, 3∙8 (1∙8–7∙8) in the significantly associated with primaquine dose (p=0∙46).  
 

0∙1 mg/kg group, 2∙1 (1∙0–4∙5) in the 0∙4 mg/kg group, The timing of the nadir in haemoglobin was independent  
 

and 2∙0 (0∙9–4∙3) in the 0∙75 mg/kg group. After of treatment group, and the greatest contribution to the  
 

adjustment for gametocyte density at enrolment, the total decrease in haemoglobin occurred before day 2  
 

AUC compared with the reference group did not differ when the study drug was administered. By day 28, in all  
 

significantly for the 0∙4 mg/kg group (p=0∙79) or the treatment  groups,  haemoglobin  concentrations  had  
 

placebo group (p=0·16), but was significantly higher in recovered and exceeded baseline concentrations  
 

the 0∙1 mg/kg group (p=0∙043; data not shown). None of (figure 4). We recorded no cases of black water fever; red,  
 

the efficacy estimates were affected by the sex of the black, or tea-coloured urine; or severe haemolysis; and  
 

participants (data not shown).      no child needed a blood transfusion. Sex had no effect on  
 

The  mean  maximum  decrease  in  haemoglobin safety outcomes (data not shown).    
 

concentration did not differ significantly compared with The proportion of participants having adverse events  
 

placebo (10·7 g/L, SD 11·1) in the 0∙1 mg/kg (11·4 g/L, did not differ between treatment groups after adjustment  
 

9·4; p=0∙61), 0∙4 mg/kg (11·3 g/L, 10·0; p=0∙67), or of significance levels for multiple comparisons (data not  
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Figure 4: Mean change in haemoglobin measurements by treatment regimen during 28 day follow-up  
Haemoglobin concentrations (g/L) during follow-up are expressed relative to that at 
enrolment for each treatment group. 
 

shown). In the sex-stratified analysis, the maximum 
reduction in haemoglobin concentration seemed to be larger 
in the 0·75 mg/kg group compared with the placebo group 
in girls (p=0·023), but this difference was not statistically 
significant after correction for multiple comparisons 
(Bonferroni threshold level for significance p=0·0083). One 
child, aged 1·5 years, had a haemoglobin concentration of 
less than 50 g/L, which was the only severe adverse event. 
This boy, who received 0∙4 mg/kg primaquine, had a 
baseline haemoglobin concentration of 99 g/L. On day 9 of 
follow-up, he underwent an elective surgical procedure in a 
mobile clinic. The mother reported no attempt at 
haemostasis postoperatively and the child had bled severely. 
By day 14, his haemoglobin concentration had fallen to 49 
g/L without clinical compromise. After wound care and 
treatment with iron and folate, his haemoglobin 
concentration recovered to 106 g/L on day 28. This event 
was judged to be unrelated to the study drug. 

 
Discussion  
This study is the first formal dose-finding trial to assess P 
falciparum gametocyte clearance after treatment with 
single-dose primaquine when given in combination with an 
ACT (panel). We showed that the duration of gametocyte 
carriage was roughly halved when 0∙75 mg primaquine per 
kg was given in addition to ACTs. A reduced dose of 0∙4 
mg/kg had a non-inferior gametocytocidal effect compared 
with the WHO reference dose, whereas the duration of 
gametocyte carriage was inconclusive for non-inferiority in 
the 0∙1 mg/kg group and gametocyte prevalence was higher 
during follow-up than at baseline. Safety outcomes did not 
differ significantly between the treatment groups. 

 
 
 
 
 
 
 

 
In this population of children with uncomplicated clinical 

malaria, gametocytes were detected at baseline in a quarter 
of children by microscopy compared with four-fifths by 
molecular methods, which is consistent with previous 
findings and emphasises the inadequate sensitivity of 
microscopy in identification of potentially infectious 
people.31 Gametocyte prevalence decreased during follow-
up; roughly half of the patients with gametocytes at 
enrolment cleared their gametocytes during the first 2 days 
of treatment, before primaquine was given. These dynamics 
differ from those reported in children in a previous ACT–
primaquine trial that showed a more gradual reduction in 
gametocyte prevalence after ACT,7 but are similar to those 
recorded in symptomatic Kenyan children of the same age 
group.3 Although primaquine shortened the duration of 
gametocyte carriage, we noted that even the highest single 
dose of the drug did not render all participants gametocyte 
negative. In previous studies in Burma and Indonesia, 
microscopic gametocytes persisted in a few individuals 21 
days after primaquine treatment.8,9 In our study, six of 106 
(5·7%) children were gametocyte positive by molecular 
methods on day 14 after initiation of treatment, even with 
the highest dose of primaquine. However, the density of 
these persistent gametocytes was much lower than that at 
enrolment. We used gametocyte density estimates for 
secondary outcome measures because no clear lower 
threshold gametocyte density that is needed for successful 
mosquito infection has been established.32–34 The gametocyte 
circulation time, which was calculated on the basis of the 
rate of decrease of gametocyte densities after treatment, was 
significantly longer in the placebo and 0∙1 mg/kg groups 
than in the reference group, but did not differ significantly 
between the 0∙4 mg/kg group and the reference 0∙75 mg/kg 
group. The AUC of gametocyte density over time, a 
summary measure for malaria transmission potential,7,27,35 
was numerically higher in the placebo group and 0∙1 mg/kg 
dose group than in the 0∙75 mg/kg dose group, but this 
difference was statistically significant only for the 0∙1 mg/kg 
dose group. There was no siginficant difference in the AUC 
between the 0∙4 mg/kg and the 0∙75 mg/kg dose groups. 
Baseline differences in asexual parasites between treatment 
groups did not result in differences in baseline gametocyte 
prevalence or density or differences in treatment outcome, 
and did not confound the comparison of gametocyte 
dynamics between groups. 
 

Although we used sensitive molecular gametocyte 
detection methods in our trial and therefore provide detail 
that is absent from most other primaquine trials, a relevant 
shortcoming of this and other studies is that gametocyte 
infectiousness to mosquitoes was not established. A 
proportion of the gametocytes that are observed by 
microscopy shortly after primaquine treatment might be 
non-infectious.15 Whether or not Pfs25 mRNA can be 
detected from non-viable gametocytes is unknown, and a 
proportion of the gametocytes that we detected could have 
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been non-infectious. We might, therefore, have under-
estimated the transmission-blocking effect of primaquine. 
None of the available gametocyte detection devices allow 
inferences to be made about the infectiousness of 
gametocytes to mosquitoes, and only mosquito feeding 
assays can provide definitive evidence for the trans-
missibility of gametocytes. However, limitations do exist in 
the extent to which labour-intensive mosquito feeding 
assays can be used in clinical trials.36 Although gametocyte 
measurements can be done repeatedly from the same 
patient, the few clinical trials that have used mosquito 
feeding assays typically do feeding experiments at one 
timepoint per participant3,37,38 and thereby ignore the 
dynamics of gametocyte infectivity.38 Future studies that 
investigate the gametocytocidal effects of low-dose 
primaquine should therefore preferentially include 
mosquito feeding assays at intervals during follow-up.  

A further limitation of this study was the absence of 
available paediatric dose formulations for primaquine, 
which necessitated titration of crushed primaquine in 
solution for accurate dosing. Although crushed tablets have 
been used previously for the 0∙75 mg/kg dose,7,8 this 
approach might have affected efficacy, especially of the 
lowest dose (0∙1 mg/kg). More data for the relative 
bioavailability of different formulations of primaquine are 
needed. Hence, a prerequisite to the scaling up of 
primaquine deployment will be the availability of reliable 
paediatric formulations for low doses of the drug. 
 

This study aimed to establish the efficacy and safety of 
low-dose primaquine in people with normal G6PD enzyme 
function. G6PD-deficient children were excluded from this 
study based on the fluorescent spot test, the most widely 
used enzyme function test13 that detects enzyme function to 
a cutoff of about 20–30% of normal activity.39 We decided 
to exclude G6PD-deficient children so that we could first 
establish the lowest efficacious dose before vulnerable 
patients are exposed to a potentially haemolytic drug. 
Although haemolysis has been reported in people without 
common mutations in the G6PD enzyme,29 the exclusion of 
those with abnormal enzyme function does clearly limit the 
generalisability of the safety outcomes of this study and this 
issue needs to be addressed in future studies. Given this 
caveat, haemoglobin concentrations fell most rapidly in the 
first 2 days after enrolment in all study groups, which 
implies that the greatest effect on haemoglobin was caused 
by clinical malaria rather than a drug effect. Thereafter, 
haemoglobin recovered to premorbid concentrations. A 
similar trend has been recorded in children in Tanzania,7 and 
in populations in Burma30 and Indonesia.9 We recorded no 
children with objective measures of clinically significant 
haemolysis or black urine, or who needed hospital 
admission or blood transfusion. The only severe adverse 
event was in a child who underwent an elective surgical 
procedure unrelated to the clinical malaria episode on day 9 
and 

 
 
 
 
 
 
 
 
 

Panel: Research in context   
Systematic review  
We searched PubMed on May 25, 2013, without date or language restrictions, with the 
terms “primaquine” and “malaria, falciparum” and “gametocyte” or “primaquine” and 
“malaria, falciparum” and “transmission”. We identified no randomised controlled trials 
assessing the dose-response relation of primaquine for gametocytocidal activity.  
A Cochrane review of the transmission-reducing efficacy of primaquine published in 
September, 2012, identified five trials assessing a primaquine–artemisinin combination 
therapy combination that satisfied the criteria for inclusion and none of these analysed 
a range of doses.28 Three studies have assessed the haematological safety of 
primaquine with artemisinin combination therapies,7,29,30 but our trial is unique in that it 
was specifically powered to assess safety outcomes. A search of clinical trial 
registration sites for primaquine dose-finding trials for transmission blocking showed 
one trial that is underway in The Gambia (NCT01838902) to assess the efficacy of 
artemisinin combination therapy alone, and with 0·2 mg/kg, 0·4 mg/kg, or 0·75 mg/kg 
primaquine base in asymptomatic patients. This trial is scheduled for completion in 
2015. Another study (NCT01743820), which is in development, will assess primaquine 
dose escalation from 0·125 mg/kg in 50 participants randomly allocated to different 
dosing groups. Several other registered studies with primaquine for Plasmodium 
falciparum do not involve dose-finding but will address relevant questions for the future 
wide-scale deployment of primaquine. These studies include a trial of the optimum 
timing of primaquine administration (NCT01906788, recruiting), primaquine 
pharmacokinetics (NCT01552330 and NCT01525511, both completed August, 2013), 
and a trial with mosquito feeding as an endpoint that will compare artemisinin 
combination therapy alone with 0·75 mg/kg primaquine (NCT01849640, not yet 
recruiting, with a scheduled 3-year timeline). 

 
Interpretation  
This study is, to our knowledge, the first randomised, placebo-controlled trial to assess the 
dose-response relation of one dose of primaquine for gametocyte clearance and for safety in 
falciparum malaria. This trial was undertaken in African children with clinical malaria and 
normal glucose-6-phosphate dehydrogenase enzyme function. A dose reduction to  
0·4 mg/kg primaquine base had demonstrable non-inferiority to the reference 0·75 
mg/kg dose, whereas a dose of 0·1 mg/kg was inconclusive for non-inferiority. This 
trial was designed and started before a revision of the WHO guidelines recommending 
0·25 mg/kg primaquine for transmission blocking, in light of which this new dose must 
now be assessed. In this population, all doses of primaquine had similar safety profiles 
to placebo. An study of low-dose primaquine in people with glucose-6-phosphate 
dehydrogenase deficiency is warranted. 

 
 
therefore after the expected duration of primaquine-
associated haemolysis. 

In this dose-finding trial, primaquine administration was 
delayed until day 2 after initiation of schizonticidal therapy. 
This timepoint is when, in the context of uncomplicated 
malaria, the rate of malaria-attributable haemolysis is 
expected to be falling, and comparisons of haematological 
effects between dose groups are expected to be less affected 
by the consequences of acute malaria infection. In 
operational terms, administration of primaquine on the first 
day of schizonticidal treatment is probably advantageous, 
and comparisons of the efficacy of day 0 versus day 2 
administration will be important. 

For more than 40 years, WHO has recommended a single 
dose of 0∙75 mg primaquine base per kg in 
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combination with schizonticidal drugs to reduce trans-
mission of malaria.40 However, no dose-finding trials 
underpinned this recommendation. The small evidence base 
for primaquine use has prompted uncertainty as to the 
benefit of an intervention that carries a documented risk of 
haemolysis in malaria-endemic populations.28,41 The real 
threat of spreading artemisinin resistance42 has led to 
urgency in addressing this problem. In September, 2012, 
while our study was ongoing, an evidence review group 
commissioned by WHO revised its recommended dose to 
0∙25 mg primaquine base per kg to be added to ACT to treat 
parasitologically confirmed falciparum malaria infection in 
new programmes for malaria elimination and to stop the 
spread of artemisinin resistance.43 This dose revision was 
based on underpowered historical studies, and the need for 
contemporary data was emphasised.44 The 0∙25 mg/kg dose 
was not assessed in our study, which is a limitation and 
leaves important questions to be addressed in future dose-
finding trials. However, we have shown that 
gametocytocidal efficacy is retained when the primaquine 
dose is reduced from 0∙75 mg/kg to 0∙4 mg/kg and that a 
dose-response relation exists for lower doses. The finding 
of reduced gametocytocidal efficacy at doses lower than 0∙4 
mg/kg seems to contradict suggestions of uniform efficacy 
in the range of 0∙065–0∙75 mg primaquine per kg.16 This new 
information provides a valuable starting point for 
identification of the most efficacious and safest low dose of 
primaquine for transmission blocking. Subsequent 
investigations of primaquine should include assess ments of 
the efficacy of doses lower than 0∙4 mg/kg (including the 
newly recommended 0∙25 mg/kg dose), with use of 
mosquito transmission endpoints to allow for differences in 
infectiousness of gametocytes persisting after treatment; the 
optimum timing of primaquine in combination with ACT; 
the pharmacokinetics of low-dose primaquine; and the 
safety of low-dose primaquine in people with G6PD enzyme 
deficiency, which is of high priority. Because of differences 
in gametocyte dynamics between African and Asian 
settings45 and differences in the severity of G6PD deficiency 
across regions,46 studies in a range of malaria-endemic 
settings are needed. 
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 Reporting for non-inferiority analysis 

The results were interpreted according to guidance from the Consolidated Standards of 

Reporting Trials (CONSORT) group guidelines for reporting non-inferiority trials (210). The 

0.1mg/kg primaquine base dose outcome was analogous to scenario F in figure 4-1, below.  

 

Figure 3-1 Possible scenarios of observed treatment differences for outcomes in non-

inferiority trials, from Piaggio, 2012, with original figure legend (210) 

Error bars indicate 2-sided 95% confidence intervals (CIs). The blue dashed line at x=∆ indicates the non-

inferiority margin; the blue tinted region to the left of x=∆ indicates the zone of inferiority. A, If the CI 

lies wholly to the left of zero, the new treatment is superior. B and C, If the CI lies to the left of∆ and 

includes zero, the new treatment is non-inferior but not shown to be superior. D, If the CI lies wholly to 

the left of ∆ and wholly to the right of zero, the new treatment is non-inferior in the sense already 

defined but also inferior in the sense that a null treatment difference is excluded. This puzzling 

circumstance is rare, because it requires a very large sample size. It also can result from a non-inferiority 

margin that is too wide. E and F, If the CI includes ∆ and zero, the difference is non-significant but the 

result regarding non-inferiority is inconclusive. G, If the CI includes ∆ and is wholly to the right of zero, 
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the difference is statistically significant but the result is inconclusive regarding possible inferiority of 

magnitude ∆ or worse. H, If the CI is wholly above ∆, the new treatment is inferior. 

 

 Additional results and considerations not included in peer reviewed 

publication 

 Interpolation to incorporate a 0.25mg/kg dose arm 

Upon study completion, the WHO revised recommendations for single dose primaquine, 

proposing a lower single dose of 0.25mg/kg primaquine base for malaria transmission-

blocking (257). Since this dose was not included in the trial arms, a short exercise was 

undertaken to use visual interpolation to predict the outcome a notional 0.25mg/kg dose arm 

for this trial (Figure 3-2) and to present the thesis trial results in the context of two studies 

that used an identical method to assess primaquine efficacy as used in this thesis, one of 

which incorporated the new WHO 0.25mg/kg dose as a trial arm (Figure 3-3).  
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Figure 3-2 Non-inferiority analysis of the number of days to gametocyte clearance for each 

primaquine dose arm. Interpolation to predict the outcome of a notional 0.25mg/kg 

primaquine dose arm for the trial 

Visual interpolation was used to predict the range of values for the upper 95% confidence limit of a 

notional 0.25mg/kg primaquine dose arm for the thesis trial. The red line denotes the primaquine dose 

of 0.25mg/kg. The green line highlights the range of values predicted for the upper 95% confidence limit 

for the 0.25mg/kg dose arm. The black dotted line represents the non-inferiority margin used for the 

thesis trial. Given that the upper 95% confidence limit for the interpolated 0.25mg/kg dose outcome 

does not cross the non-inferiority margin, it would be interpreted as having non-inferior efficacy to the 

WHO reference dose of 0.75mg/kg primaquine base. 

The limited number of dose arms (n=4) in the thesis trial reduced the statistical validity of 

inferring the outcome of postulated intermediate dose arms. With this in mind, a simple 

interpolation was undertaken to predict where a 0.25mg/kg dose arm (the revised WHO-

recommended single dose of primaquine) would fall with respect to the non-inferiority margin 

used for this trial. Figure 3-3 represents a prediction of the upper 95% confidence limit for an 

interpolated 0.25mg/kg dose arm. It was based on an assumption of linearity that this value 
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would fall between the upper 95% confidence limit of the 0.1mg/kg dose arm and either of 

the two higher dose arms. This highly simplistic interpolation suggests that the upper 95% 

confidence limit for the 025mg/kg primaquine dose arm would be expected to fall on the 

favourable side of the non-inferiority margin, conferring non-inferior efficacy to the reference 

0.75mg/kg dose arm. It does, however, lie close to the non-inferiority margin, pointing to the 

importance of well-designed studies incorporating the 0.25mg/kg primaquine dose arm in 

order to determine its efficacy. 

Data from a Tanzanian trial of ACT alone and ACT with 0.75mg/kg primaquine (258) and from 

the first sister study to this trial that included the 0.25mg/kg dose arm, (conducted in Burkina 

Faso) (259) were incorporated into the trial results presentation Figure 3-3. The non-

inferiority margin was consistent with that used in this trial (256). Doses of 0.25mg/kg and 

above were non-inferior to the 0.75mg/kg dose for gametocyte clearance. 
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Figure 3-3 Mean duration of gametocyte carriage, in days, by treatment given for three trials 

of artemisinin combination therapy (ACT) with and without primaquine for gametocyte 

clearance, in Tanzania (TZ), Burkina Faso (BF) and Uganda (UG). 
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The data from clinical trials in Tanzania (258) and Burkina Faso (259), that used identical methods to 

assess primaquine’s gametocyte clearance efficacy in children with uncomplicated malaria, are 

presented alongside data from this trial in Uganda (256). Dose arms from each study are plotted 

separately. Each colour represents a specific dose. The non-inferiority margin of 2.5 days from the 

Ugandan reference dose arm is marked (dotted line). Non-inferiority to the 0.75mg/kg dose is found for 

doses of 0.25mg/kg and above. 

 

 The effect of symptomatic malaria infection on mean maximal fall in haemoglobin during 

follow up 
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Figure 3-4 Comparison of the mean maximal fall in haemoglobin over 28 days of follow up 

with and without the inclusion of day 0 and day 1 haemoglobin measurement 

Bars represent the mean maximal fall in haemoglobin per primaquine dose treatment group from 

enrolment to the end of follow up (day 0-28: red bars), and from administration of primaquine to the 
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end of follow up (day 2-28; blue bars). The greatest fall in haemoglobin occurs in the period from day 0 

to day 2 for these children, i.e., prior to primaquine treatment and during artemether-lumefantrine 

treatment for symptomatic malaria infection. 

 

Primaquine was administered on day 2, after blood had been drawn for day 2 analysis. The 

largest fall in haemoglobin happened between day 0 and day 2; for all treatment arms, the fall 

in haemoglobin that occurred between days 0 to 2 was more than twice the size of the fall 

between day 2 and the end of follow up on day 28 (Figure 3-4). Hence, the greatest 

haemoglobin fall is during the period of acute clinical malaria infection, where haemolysis 

might be attributed to either malaria or, possibly artemether-lumefantrine treatment, but not 

to primaquine treatment.  

 Safety events: Consultations with regional lead paediatrician 

Two study participants had medical conditions during the trial that prompted the need for 

review by a consultant paediatrician at the Regional Paediatric Referral Hospital in Jinja. 

Details of both cases were presented to the DSMB for review. The two cases are outlined 

below. 

Case 1: 

A 2-year-old boy developed fixed rotation of his neck, resembling a torticollis, on day 11 of 

participation. Passive movement of his head did not appear painful and he was otherwise 

well, afebrile and continued to play with toys with his siblings. The consultant paediatrician 

held the opinion that this was musculoskeletal in origin. Simple analgesia was provided and 

the child’s neuromuscular signs resolved after three days. The DSMB was consulted and they 

decided that this did not represent a severe adverse event, nor should it be reported as 

related to the study drug. It was recorded as an adverse event. 
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Case 2: 

A 5-year-old boy was found to have a significant fall in haemoglobin count on day 14 of 

recruitment. From a baseline of 9.9 g/dL at enrolment, his haemoglobin fell to 6.8 g/dL on day 

10 and to 4.9 g/dL on day 14. On questioning, his mother revealed that she had taken her son 

to a private clinic where he was circumcised on day 9 after enrolment into the study. No 

attempt had been made to maintain haemostasis following the circumcision procedure and he 

had bled significantly. At review on day 10, the child was in pain and mildly tachycardic. Study 

staff gave wound care and administered analgesia. The child was brought to the regional 

paediatric referral hospital for consultation, where it was confirmed that haemostasis had 

been achieved, he was clinically stable and no further surgical input was required. There was 

no systemic compromise, so it was advised that blood transfusion was not indicated, but 

haematinic medications were prescribed. He was monitored closely and his haemoglobin 

recovered to 10.6 g/dL on day 28 of recruitment. This event was reported to the DSMB 

contemporaneously and it was considered to be a severe adverse event but there was 

agreement that it was unrelated to the study drug. After un-blinding, he was found to be in 

the 0.4mg/kg study arm. This may explain the anomalously higher fall in haemoglobin in the 

0.4mg/kg study arm after day 2 (Figure 3-4, Section 3.3.2). 

  

 Trial outcomes for policy development  

 Development of a Single Low-dose Primaquine Working Group 

After this trial was ethically approved and had started recruiting, the first in a series of 

scientific meetings was held on 5th to 6th March 2012 in London, with the support of the Bill 

and Melinda Gates Foundation, co-hosted by the Malaria Centre at the London School of 

Hygiene and Tropical Medicine and the Global Health Group at the University of California, 
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San Francisco. This meeting led to the development of a Single Low-Dose Primaquine Working 

Group. The objectives of the group were “to review and discuss existing data on the use of 

primaquine in Africa for transmission-blocking with the aim of identifying the road blocks to 

its use and the necessary studies to overcome these road blocks for a wider deployment of 

primaquine and other transmission-blocking drugs” (250). The first meeting provided an 

opportunity to present the trial design for this study and to participate actively in the 

delineation of international research priorities to provide an evidence base for the 

deployment of primaquine to block malaria transmission. This trial would, therefore, become 

the first of a cohort of new trials addressing the identified deficiency of data to inform policy 

makers and the programmatic use of low-dose primaquine (260). The voice of policy makers 

was prominent within the contributors to the group. In addition to research investigators, in 

attendance were national malaria control programme directors, industry representatives and 

non-governmental organisation representatives. Subsequently, this group met annually to 

biannually, until 2016, promoting data sharing, collaboration and development of a new body 

of research designed prospectively to address pertinent questions. The focus of the group 

evolved over four years from asking efficacy and safety-based research questions in 2012 to 

asking drug- and intervention delivery questions in 2016. The proceedings of the first meeting 

were accepted for publication in a peer-reviewed journal (Section 2.3.1) (199). 

 

 Data sharing to inform policy and further research agenda 

During the course of this research, the potential importance of primaquine as a transmission-

blocker was recognised by the WHO Malaria Policy Advisory Group, prompting an Evidence 

Review Group to assess the safety and effectiveness of single dose primaquine as a 

Plasmodium falciparum gametocytocide in August 2012 (257). It was agreed with the trial 
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advisory group that the provisional trial report should be released to the WHO Evidence 

Review Group as pre-meeting material (Appendix C, part 2). 

In the same year, PATH (an international non-profit global health organisation) commissioned 

an advisory workshop “to identify key technical, operational and regulatory bottlenecks for 

the adoption of current and emerging G6PD deficiency diagnostic tests in support of 

treatment of malaria and malaria elimination efforts with 8-aminoquinoline drugs such as 

primaquine and tafenoquine.” This trial was presented at the meeting in an advisory capacity 

(185).  

In 2014, the Single Low-Dose Primaquine Efficacy and Safety study groups were established by 

the Worldwide Antimalarial Resistance Network (WWARN), providing a platform for data 

data-sharing from this study to enable a pooled analysis (198). Results of the pooled analysis 

have been presented at the European Congress on Tropical Medicine and International Health 

(261) and are in preparation for publication. 

The trial data was also requested by and shared with the Quantitative Sciences group at the 

Bill and Melinda Gates Foundation in 2014, to further transparency, mathematical modelling 

and hypothesis building for malaria elimination. 
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4 Results: G6PD data analysis 

 RESEARCH PAPER 4: Publication of trial G6PD analysis 

The analysis of G6PD data from this thesis was published in the Archives of Antimicrobial 

Chemotherapy (262). In this first trial of single-dose primaquine for transmission-blocking in 

Uganda, this paper assesses the safety of reducing doses of primaquine according to the range 

of G6PD genotypes in the children who were enrolled.  
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Glucose-6-Phosphate Dehydrogenase Status and Risk of Hemolysis 
in Plasmodium falciparum-Infected African Children Receiving 
Single-Dose Primaquine 

 
Alice C. Eziefula,a Helmi Pett,b Lynn Grignard,a Salome Opus,c Moses Kiggundu,c Moses R. Kamya,c,d 
Shunmay Yeung,a Sarah G. Staedke,a Teun Bousema,a,b Chris Drakeleya  
Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdoma; Department of Medical 
Microbiology, Radboud University Medical Center, Nijmegen, The Netherlandsb; Infectious Diseases Research Collaboration, Kampala, Ugandac; 
Department of Medicine, Makerere University College of Health Sciences, Kampala, Ugandad 
 
Glucose-6-phosphate dehydrogenase (G6PD) enzyme function and genotype were determined in Ugandan children with 
uncom-plicated falciparum malaria enrolled in a primaquine trial after exclusion of severe G6PD deficiency by fluorescent 
spot test. G6PD A heterozygotes and hemizygotes/homozygotes experienced dose-dependent lower hemoglobin 
concentrations after treatment. No severe anemia was observed. 
 

eclines in malaria due to Plasmodium falciparum have been G6PD enzyme function based on a fluorescent spot test (FST; 
 Ddocumented in a number of settings where malaria is en- R&D Diagnostics, Agia Paraskevi, Greece) were enrolled and ran- 
 

demic. It is debated whether scaling-up of conventional malaria domized to treatment with artemether lumefantrine (AL) alone or 
 

control will sustain these declines or achieve elimination unless with a single dose of primaquine at 0.1, 0.4, or 0.75 mg/kg of body 
 

augmented by tools that specifically reduce transmission. Pri- weight on the last day of AL treatment (7, 8). Genotyping of G6PD 
 

maquine is the only currently available drug that actively clears 202A and G6PD 376G was performed (9, 10). Hb was measured 
 

mature P. falciparum gametocytes and prevents malaria transmis- on days 0, 1, 2, 3, 7, 10, 14, 21, and 28 after enrollment by 
 

sion to mosquitoes (1). The wide-scale use of primaquine is ham- HemoCue 201   (Angelholm, Sweden) and expressed as absolute 
 

pered by its hemolytic effect in people with glucose-6-phosphate and relative change compared to baseline values. These values  

dehydrogenase (G6PD) deficiency. The mutation deficiency alters  

were normally distributed, presented using mean values and stan-  

G6PD enzyme function (2), exposing red blood cells to oxidative  

dard deviations, and analyzed using linear regression models. Be-  

stress and resultant hemolysis in the presence of a stressor, such as  

cause the age distribution of the red blood cell population influ-  

primaquine (3, 4). Primaquine-induced hemolysis is dose related  

ences the severity of drug-induced hemolysis (11), we adjusted all  

(1, 5, 6). While testing for G6PD deficiency is widely recom-  

    
 

mended prior to the radical treatment of Plasmodium vivax with     
 

    
 

14 days of primaquine, P. falciparum transmission may be consid-  Received 27 March 2014  Returned for modification 30 April 2014   

erably reduced by a single, low dose of primaquine (1, 7) and may 
  

 

 Accepted 3 June 2014   
 

avoid the necessity to screen for G6PD deficiency. We determined  Published ahead of print 9 June 2014  
 

G6PD enzyme function and the presence of the most common  Address correspondence to Teun Bousema. teun.bousema@lshtm.ac.uk. 
 

African G6PD mutation (G6PD A  ; 202A/376G) in a cohort of  Supplemental material for this article may be found at http://dx.doi.org/10.1128 
 

Ugandan children treated with low-dose primaquine for clearing  /AAC.02889-14.   
 

P.  falciparum  gametocytes. This was a randomized, double-  Copyright © 2014, Eziefula et al. This is an open-access article distributed under 
 

blinded placebo controlled trial with four parallel arms. Ugandan  the terms of the Creative Commons Attribution 3.0 Unported license. 
 

children 1 to 10 years old with uncomplicated P. falciparum ma-  doi:10.1128/AAC.02889-14   
 

laria, hemoglobin concentration (Hb) of $8 g/dl, and normal     
 

TABLE 1 Baseline characteristics       
 

      

 Value by G6PD 202 A   genotype    
 

        

    P value for  P value for 
 

    difference from  difference from 
 

Characteristic Wild type Heterozygous wild type Homozygous/hemizygous wild type 
 

        

No. of participants (% study population) 373 (80.9) 61 (13.2)   27 (5.9)  
 

% female (no. of females/total no. of 46.7 (174/373) 100.0 (61/61) 0.001 3.7 (1/27) 0.001 
 

participants)       
 

Mean (SD) age in yrs 5.0 (2.6) 4.8 (2.3)  0.61 4.9 (2.4) 0.86 
 

Mean (SD) baseline Hb concn in g/dl 11.2 (1.5) 11.4 (1.4)  0.20 10.9 (1.4) 0.38 
 

% 376G genotype (no. of participants       
 

with genotype/total no.)       
 

Heterozygous 18.6 (69/371) 78.7 (48/61)   0.0 (0/27)  
 

Homozygous 12.9 (48/371) 21.3 (13/61)  0.001 100.0 (27/27) 0.001 
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TABLE 2 G6PD 202 A genotype and hemoglobin levelsa   
 Value by treatment arm    
     

Characteristic 0.75 mg/kg primaquine 0.4 mg/kg primaquine 0.1 mg/kg primaquine Placebo 
     

No. of study participants     
G6PD normal 98 90 93 92 
G6PD heterozygous 14 13 16 18 
G6PD hemizygous/homozygous 4 10 6 7 

Mean absolute change (SD) in Hb on day 7     
G6PD normal, in g/dl 0.41 (0.95) 0.25 (1.22) 0.30 (1.07) 0.11 (1.33) 
G6PD heterozygous, in g/dl 1.08 (1.14) 0.99 (1.48) 0.07 (0.98) 0.49 (1.40) 
P value 0.048 0.054 0.35 0.28 
G6PD hemizygous/homozygous, in g/liter 1.10 (1.34) 0.48 (0.76) 0.07 (1.21) 1.02 (0.81) 
P value 0.21 0.043 0.91 0.22 

% relative change (SD) in Hb on day 7, in g/dl     
G6PD normal 3.25 (8.60) 1.28 (11.24) 2.16 (9.71) 0.23 (11.34) 
G6PD heterozygous 9.38 (10.4) 7.79 (12.57) 0.01 (8.56) 3.26 (12.26) 
P value 0.044 0.073 0.34 0.33 
G6PD hemizygous/homozygous 7.97 (12.40) 4.29 (7.70) 0.05 (11.45) 8.59 (7.28) 
P value 0.36 0.028 0.93 0.16   

a On day 7 after initiation of treatment with artemether-lumefantrine (AL) plus placebo or AL plus different doses of primaquine. All primaquine or placebo treatment was 
administered together with six doses of AL; primaquine/placebo was given on day 2 of treatment, together with dose 5 of AL. P values are compared to G6PD-normal 
individuals, adjusted for baseline Hb concentration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

  
comparisons for baseline Hb concentration. All trial participants (n 
468) were G6PD normal by FST. DNA was available for 461 
individuals of whom 27 (5.9%) were homozygous/hemizygous, 61 
were heterozygous (13.2%), and 373 (80.9%) were normal for the 
G6PD variant A (wild type [WT]). All individuals with the 202A 
mutation also had the 376G mutation, and individuals were classified 
based on the 202A mutation (Table 1). G6PD 202 A heterozygous 
individuals experienced a mean reduction in Hb concentration on day 
7 after treatment of 1.08 g/dl (standard de-viation [SD], 1.14; P 
0.048) in the 0.75-mg/kg treatment arm and 0.99 g/dl (SD, 1.48; P 
0.054) in the 0.4-mg/kg treatment arm (Table 2). 
Homozygous/hemizygous individuals in the 0.75-mg/kg and 0.4-
mg/kg arms also experienced a reduction in abso-lute Hb 
concentration on day 7, although this was statistically significant in 
the 0.4-mg/kg arm only (P 0.043). When changes in Hb 
concentration on day 7 were expressed as a proportion of baseline Hb 
concentration, the same trend was observed with sta-tistically 
significant decreases in the 0.75-mg/kg arm for heterozy-gous 
individuals and in the 0.4-mg/kg arm for homozygous/hem-izygous 
individuals. No statistically significant changes in absolute or 
relative Hb concentrations were observed for heterozygous or 
homozygous/hemizygous individuals in the 0.1-mg/kg arm or 
placebo arm (Table 2). We found no explanation for the numer-ically 
large, but statistically nonsignificant, reduction in Hb con-centration 
in homozygous/hemizygous individuals on day 7 after receiving AL 
without primaquine. A previous study found no he-molysis after AL 
in homozygous/hemizygous individuals (12), and we conclude our 
observation may be a spurious finding and related to our small 
sample size. We observed no statistically sig-nificant associations 
between G6PD genotype and absolute or rel-ative Hb concentrations 
in any treatment arm on days 3 and 10 after initiation of treatment 
(see the supplemental material). Six-ty-nine individuals experienced 
a reduction of 2 g/dl in the first 2 weeks of follow-up: 13.7% (51/373) 
of the WT individuals, 26.2% (16/61; P 0.031) of the heterozygous 
individuals, and 7.4% (2/27; P 0.48) of the G6PD 202 A 
homozygous/hemizy- 

 
gous individuals (P 0.020). For all individuals, Hb concentra-tions 
normalized during follow-up. The current findings provide important 
data on the hemolytic effect of single-, low-dose prim-aquine. Our 
results show that the predominant test for G6PD deficiency 
screening, the FST (13), failed to identify a substantial proportion of 
individuals who were genotypically G6PD deficient, particularly 
female heterozygotes, who experienced significant re-ductions in 
hemoglobin following higher doses of primaquine. The observation 
that some G6PD-deficient individuals were FST normal is 
unsurprising since the test may be insufficiently sensi-tive to detect 
mild G6PD deficiency (13), but there are few supportive published 
data. We observed statistically significant decreases in Hb following 
single-dose primaquine in these G6PD-deficient individuals. A 
hemolytic effect of a single dose of 0.75 mg/kg primaquine base has 
been reported before (6); our study shows that a reduction in Hb 
concentrations is also evident after a single dose of 0.4 mg/kg but not 
0.1 mg/kg. Moreover, reductions in Hb were transient, with no 
participant experiencing clinical symptoms suggestive of anemia and 
none requiring related clini-cal care. Although these findings are 
notable, a major limitation of the study is that individuals who were 
determined G6PD deficient based on the FST were excluded from 
the study (n 32), thereby plausibly removing those most severely 
deficient and thereby those with the highest risk of primaquine-
induced hemolysis. There is therefore a need for confirmatory trials 
to formally assess primaquine safety in G6PD-deficient individuals, 
in particular with the World Health Organization recommended dose 
of 0.25 mg/kg. Such studies will have to take into account 
interindividual differences in primaquine metabolism that determine 
primaquine efficacy in P. vivax (14) and potentially also safety. 
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 RESEAERCH PAPER 5: Field testing for G6PD deficiency 

The thesis provided the opportunity to test novel methods for assessing G6PD status in a large 

field-based sample. The evaluation of a high-throughput method, the WST8/1-methoxy-PMS 

enzymatic assay was peer-reviewed and published and is presented here (171).  
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Abstract 
 
Background 
 
The distribution of the enzymopathy glucose-6-phosphate dehydrogenase (G6PD) deficiency 
is linked to areas of high malaria endemicity due to its association with protection from disease. 
G6PD deficiency is also identified as the cause of severe haemolysis following administration 
of the anti-malarial drug primaquine and further use of this drug will likely require 
identification of G6PD deficiency on a population level. Current conventional methods for 
G6PD screening have various disadvantages for field use. 
 
Methods 
 
The WST8/1-methoxy PMS method, recently adapted for field use, was validated using a gold 
standard enzymatic assay (R&D Diagnostics Ltd ®) in a study involving 235 children under 
five years of age, who were recruited by random selection from a cohort study in Tororo, 
Uganda. Blood spots were collected by finger-prick onto filter paper at routine visits, and 
G6PD activity was determined by both tests. Performance of the WST8/1-methoxy PMS test 
under various temperature, light, and storage conditions was evaluated. 
 
Results 
 
The WST8/1-methoxy PMS assay was found to have 72% sensitivity and 98% specificity when 
compared to the commercial enzymatic assay and the AUC was 0.904, suggesting good 
agreement. Misclassifications were at borderline values of G6PD activity between mild and 
normal levels, or related to outlier haemoglobin values (<8.0gHb/dl or >14gHb/dl) associated 
with ongoing anaemia or recent haemolytic crises. Although severe G6PD deficiency was not 
found in the area, the test enabled identification of low G6PD activity. The assay was found to 
be highly robust for field use; showing less light sensitivity, good performance over a wide 
temperature range, and good capacity for medium-to-long term storage. 
 
Conclusions 
 
The WST8/1-methoxy PMS assay was comparable to the currently used standard enzymatic 
test, and offers advantages in terms of cost, storage, portability and use in resource-limited 
settings. Such features make this test a potential key tool for deployment in the field for point 
of care assessment prior to primaquine administration in malaria-endemic areas. As with other 
G6PD tests, outlier haemoglobin levels may confound G6PD level estimation. 
 

Keywords 
 
Malaria, G6PD deficiency, WST8/1-methoxy PMS, Primaquine 
 

Background 
 
Malaria has exerted the greatest genetic pressure on the human genome in recent times, 
resulting in the evolutionary selection of genetic mutations that confer protection against the 
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disease [1-4]. Glucose-6-phosphate dehydrogenase (G6PD) is an X-linked recessive hereditary 
disorder that currently affects 200–400 million people worldw ide, with over 160 mutations 
identified [3-6] and there is pronounced geographical overlap between areas of G6PD 
deficiency prevalence and malaria endemicity [2,7-15]. The G6PD gene codes for an enzyme 
responsible for catalyzing nicotidamine adenine dinucleotide phosphate (NADP+) to its 
reduced form, NADPH, in the pentose phosphate pathway. Among G6PD variants with reduced 
enzyme activity, several phenotypic effects have been described, and are classified by the WHO 
as: enzyme deficiency with chronic non-spherocytic anaemia (class I, <10% activity); severe 
enzyme deficiency (class II, <10% activity); moderate/mild enzyme deficiency (class III, 10-
60% activity); very mild or no enzyme deficiency (class IV, >60-100% activity); and increased 
enzyme activity (class V, >150% activity) [16]. Erythrocytes with insufficient G6PD are thus 
unprotected against oxidative injury, and individuals with G6PD deficiency may develop 
haemolytic anaemia in response to a number of stresses, including infection and exposure to 
medications such as the 8 amino-quinoline, primaquine [17]. 
 
Primaquine has received renewed interest in the context of malaria eradication. The drug is 
recommended as presumptive anti-relapse treatment of Plasmodium vivax and Plasmodium 
ovale infection due to its activity against hypnozoites. Furthermore, it remains the only readily-
available drug that actively clears mature P. falciparum gametocytes [18-22]. Given the risk of 
haemolysis in G6PD deficient individuals, and the genetic and phenotypic variability of G6PD 
deficiency across geographic areas where primaquine treatment is considered, estimation of 
G6PD enzyme function prior to drug administration is recommended [23]. At present, however, 
primaquine therapy without prior determination of G6PD enzyme function, perhaps due to a 
lack of reliable tests, is thought to be common [24]. 
 
One possible reason for the current lack of a standard diagnostic test is that the majority of 
methods for assessing G6PD deficiency have shortcomings for field use in tropical countries 
[25-27] (see Table 1). In 2003, a novel enzymatic method to detect G6PD deficiency was 
developed [28], based on the WST8 tetrazolium salt and the 1-methoxy PMS hydrogen carrier. 
The assay has reduced light sensitivity, and is easily interpretable, both quantitatively and 
qualitatively. In 2010 Kuwahata et al. reported a version of this method, optimized for use in a 
96-well plate format using dried bloodspots in filter paper, which was successfully tested as an 
in-field mass-screening tool for G6PD deficiency in the Solomon Islands [25]. The aims of this 
current study were to further validate the WST8/1-methoxy-PMS test by comparison with a 
commercially available enzymatic reference test and to assess the test’s robustness for field 
use. 
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Table 1 Available tests for determination of G6PD deficiency and their use in field 
settings   

Test Characteristics Shortcomings for field and mass-screening   
DNA sequence analysis of Extremely reliable. Primers are used to 
the G6PD gene. check whether the G6PD gene contains  

a mutation. 

  
Requires training, and equipment. Genotype does 
not correlate with enzyme function and the risk of 
haemolysis. Female heterozygous have 
unpredictable phenotype due to X chromosome 
lyonization. Only one mutation can be analysed 
with one primer (>160 mutations exist).  

Brilliant cresyl blue Involves the action of G6PD and 
decolouration test NADPH diaphorase. A deficiency of  

either one of these enzymes on RBCs 
would result in the brilliant cresyl blue 
remaining unchanged in the test. 

 
Laborious processes; requires technical skill, and 
has low sensitivity. 

 
Methaemoglobin reduction Based on the oxidation of Hb to MetHb Laborious, qualitative and low sensitivity. Does 
test by sodium nitrate and the subsequent not enable identification of heterozygous deficient  

enzymatic reconversion to Hb in the females. 
presence of methylene blue.  

Formazan ring method Uses the principle of the MTT-Linked  
spot test. When G6PD is present at 
normal levels, MTT is reduced to a 
purple insoluble formazan derivative, 
and results in a specific diameter of 
discolouration. 

  
Prone to misdiagnosis.Ring thickness may be 
affected by exogenous factors. 

 

Sephadex gel MTT-PMS Mostly used in Asia, and predecessor 
method in concept, of the WST8/1-methoxy 

PMS test. 

 
Reacts with haemoglobin; is light sensitive and 
water insoluble. It is of a qualitative nature. 
 

Fluorescent spot test (FST) ICSH-recommended method. Its cut-off value for G6PD deficiency  
determination is only 10-20% of the normal G6PD  
activity, which excludes patients with moderate 
enzyme deficiency and increases the risk of false-  
normal diagnosis.  

BinaxNOW® rapid test Rapid test format: Overcomes i ssues of  
technical skill, sophisticated equipment 
and reliability. 

 
CareStart TM test RDT format. Qualitative 

chromatographic test, based in the  
reduction of colourless nitro blue 
tetrazolium dye to dark colour 
formazan. Long-term temperature 
stability. 

  
It is highly dependent on temperature-sensitive 
kinetic enzymatic reactions. This limits its use to 
areas with temperatures between 18 and 25C. 
Potential cost.  
Potential cost. 

 

R&D® enzymatic test 
(reference)  
WST8/1-methoxy PMS test  
(test under validation) 

 
Both depend on the conversion of 
NADP + to NADPH by G6PD. 
NADPH converts colourless 
tetrazolium salt into a coloured 
formazan, while NADP + does not.  

 
Enzymatic gold standard. Requires various 
temperature-dependent incubations.  
Evaluated in this work. Advantages: no reaction 
with haemoglobin, lower light sensitivity. 

 
 

Methods 
 

Study site & sample selection 
 

The study was conducted in seven sub-counties (Nagongera, Paya, Kirewa, Kisoko, Petta, 
Mulanda, and Rubongi) in Tororo district, an area with very high malaria transmission intensity 
in Uganda. In August-September 2010, the study area was mapped and a census 
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survey carried out. Households within 2km of a health facility were included in the sampling 
frame. Children under the age of five years were recruited from randomly selected households 
and were enrolled into a cohort study (Clinical Trials registration number NCT01024426) if 
they met the following inclusion criteria: 1) age < 5 years, 2) agreement of parents or guardians 
to provide informed consent, 3) no intention to move during the follow-up period. Clinical and 
laboratory evaluations were conducted at enrolment and repeated every six months over the 
period of follow-up. Blood samples collected from cohort study participants at follow-up visits 
conducted in July and August 2011 were used for the G6PD study. 
 
Laboratory procedures 
 
Blood samples were collected by finger-prick, onto 3MM filter paper, and were dried at 
ambient temperature. Samples were then stored at room temperature in zip-lock bags 
containing silica desiccant beads, and assayed within 24-72h. The remainder of the sample was 
stored for various time periods and temperature/illumination conditions for further evaluation. 
Additionally, haemoglobin values were obtained using a HaemoCue B analyser. In parallel, 
two sets of internal controls were generated to calibrate the assay. A commercial standard 
reagent of known G6PD activity (Trinity Biotech Normal Control) was used to create a panel 
of normal, moderate, and severe deficiency (100%, 30% and 10% activity respectively), as well 
as a no-enzyme control (0%). The second set of internal controls was generated from human 
blood from two volunteers with normal G6PD activity, and followed the procedure described 
for the field-adapted test [25]. Each set of controls were spotted onto 3MM filter paper 
(Whatman), and stored under the same conditions as the samples. Blood spots and controls 
were tested by both the optimized WST8/1-methoxy PMS assay, and by the commercially 
available standard R&D® test. Results were evaluated both visually and quantitatively using a 
spectrophotemer at 450 nm. 
 
WST8/1-methoxy PMS assay 
 
The principle of the WST8/1-methoxy PMS method depends on reducing hydrogen from 
NADPH converting WST8 to WST8-formazan in the presence of the hydrogen carrier 1-
methoxy-PMS. This reaction yields a strong easily detectable orange colour, with colour 
intensity directly proportional to G6PD activity. After a 2hr incubation at room temperature, 
samples with normal G6PD activity show strong orange colour, deficient samples show faint 
colour (moderate deficiency likely to represent heterozygotes) or no colour (severe deficiency 
& negative controls). 
 
Two stock solutions were prepared: a working mix, and a control mix. The working mix 
contained 50mM G6P (Roche), 4mM NADP (Merck Pty Ltd), 1M Tris–HCl pH 7.2-7.5, and 
100mM MgCl2 (Sigma-Aldrich). The control mix contained all reagents in the concentrations 
described above, but lacked NADP and G6P. Mixes for assay development consisted of 0.5mL 
of WST8/1-methoxy PMS (Dojindo Laboratories), 0.5mL of working stock solution, and 19mL 
of distilled water for every 96-well plate. Negative controls were generated on site as described 
in previous studies [25]. 
 
A 1.5mm diameter disc was punched out from each blood spot sample and placed inside a 
single well of the 96-well flat bottom microplate. Samples were assessed in duplicate. Plates 
were incubated for 2h at ambient temperature, and were then inspected by eye by two different 
observers for qualitative analysis. For quantitative analysis, the optical density was 
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quantified in a microplate reader (Multiskan EX, Thermo scientific) at wavelength OD450-
594nm. G6PD levels were determined in reference to the control panels. 
 
Reference assay: standard quantitative G6PD assay (R&D® diagnostics) 
 
The R&D® colourimetric test was used for validation [29,30]. In this t est, the resulting 
NADPH reacts with a colour reagent in which a formazan salt (nitrotetrazolium blue) is 
produced, generating a visually detectable purple colour. The resulting OD (measured at 
550nm), is proportional to the level of G6PD present in the dried sample. The assay was 
performed using 96-well plates and dried blood-spots in filter paper as per manufacturers 
instructions. The same sets of controls were used for both assays, and their robustness tested 
under various temperature, storage and light conditions. 
 
Experiments to assess assay robustness 
 
Storage 
 
Storage of 150 dried blood spots (FPBS) prior to development of the assay was done at 24°C 
and 4°C and tested at days 1, 2, 4, 5, 9, and 10 post-collection. Working mixes w ere stored at 
24, 4, and −20°C, and tested at weeks 1,2 and 3. 
 
Reaction stability 
 
Control assays were developed for 2hrs at 3 different temperatures (37°C, 24°C and 10°C) to 
determine whether the kinetics of the assay was affected by temperature. Given the 
identification of limitations related to storage at room temperature of blood-spots in filter 
paper previously reported [25], a selection of samples were assayed 24h after collection of 
the sample, and frozen at −20°C immediately after absorbance was quantified. They 
remained frozen for 1, 2, 3 and 4 weeks before G6PD assessment was carried out again both 
qualitatively and quantitatively. 
 
Light 
 
The 2hr development of assays for G6PD determination was done under various light 
conditions: in the dark, scattered light (indoors), and direct exposure to sunlight (outdoors). 
 
Filter paper use 
 
Assays for filter-paper saturation with blood-spots were done for both the WST8/1-methoxy 
PMS assay and the standard test, to assess whether or not significant differences in saturation 
could affect G6PD level determination. Such assessment was done by perforating 5–6 blood 
spots with different levels of saturation from the filter paper, and comparing the final 
quantitative readout. 
 
For all measurements, the same preliminary experiments to those carried out with the WST8/1-
methoxy PMS assay were reproduced with the standard reference test. 
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Sample size 
 
The sample size was computed based on G6PD deficiency prevalence previously calculated by 
two independent studies in Kampala (16%) [31,32]. To validate the WST8/1-methoxy PMS 
method by comparison to the reference test with 80% power, the minimum number of samples 
calculated was 108. The final number of samples compared was 122, and a further 113 samples 
were evaluated by the WST8/1-methoxy PMS method alone. 
 
Data entry and statistical analysis 
 
Data regarding clinical evaluations, and G6PD assay outcomes were double-entered and 
validated. Visual analysis was done independently by two observers. Agreement scores 
between observers, G6PD level visual determination, and quantitative data were produced, and 
analysed with STATA version 11 (STATA Corporation, College Station, TX). For analysis of 
the use of the two tests, a contingency table was produced and sensitivity, specificity, PPV and 
NPV were calculated. A Receiver Operating Characteristic (ROC) curve was calculated. 
Potential characteristics that could affect G6PD deficiency assessment including gender, age, 
haemoglobin levels, and prevalence of anaemia were tested by univariate and multivariate 
regression analysis. Agreement between observers regarding qualitative G6PD activity levels 
by the WST8 assay, and the R&D reference test was determined by calculating a weighted 
kappa (Kw) value. A p-value < 0.05 was considered as statistically significant. 
 
Ethics 
 
Ethical approval to perform the G6PD assay validation was obtained from the London School 
of Hygiene and Tropical Medicine Ethics Committee (application no. 010/361). The use of 
human participant samples from the ACT PRIME study was under ethical approval of the 
Makerere University School of Medicine Research and Ethical Committee (no. 2010–108), the 
Ugandan National Council for Science and Technology (no. HS 794), the LSHTM Ethics 
Committee (no. 5779), and the University of California San Francisco (no. 006160). 
 

Results 
 
WST8/1-methoxy PMS test use in a field setting 
 
Timeframe and temperature storage conditions affect assay performance 
 
Bloodspot storage 
 
Following collection, a random selection of 150 FPBS were stored at two different 
temperatures (4°C and 24°C), and assayed at various days (1, 2, 4, 5, 6, 9, 10) to determine 
optimal storage times before degradation of G6PD occurs and risk of misclassification 
increases. G6PD enzymatic activity could still be accurately assessed 10 days after sample 
collection with storage of blood spots at 4°C. Beyond this timeframe, the risk of 
misclassification increased (Figure 1a). For samples stored at room temperature, enzyme 
degradation occurred at a faster rate than previously reported [25], and classification at day 5 
post-sample collection was not possible due to a high degree of misclassification (Figure 1b). 
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Figure 1 Enzyme degradation due to storage on filter papers. a) 150 filter papers with 
control blood spots with normal activity, moderate deficiency, severe deficiency, and no 
enzyme (100%, 30%, 10%, and 0%) were stored for up to 10 days at 4°C, and their activity 
measured at days 1,2,4,6,9, and 10. b) Samples were stored at room temperature, in the dark, 
for days 1–5, and the activity measured daily.  
 
Assay mix storage 
 
The stability of assay concentrated mixes was evaluated for a three-week time frame following 
storage at room temperature, 4°C and −20°C. Assays were t hen developed and ODs measured 
at time 0, and weeks 1, 2, and 3. Results for assay mixes stored at room temperature and 4°C 
were comparable to those obtained by Kuwahata et al. [25]. Results for assay mixes stored at 
−20°C yielded comparable results to those obtained using fresh mixes at all time points 
evaluated. 
 
Assayed plate storage post-development 
 
As the storage time of blood spots prior to assay was limited due to enzyme degradation, 
developed plates were re-assayed after initial assessment, after storage at −20°C for various 
time points including 24 hours, 1, 2, 3 and 4 weeks. Figure 2 shows that both visual and 
quantitative assessment of samples evaluated using the WST8 test was possible at all time 
points.  
 
Figure 2 Temperature effects on storage of developed assays. G6PD activity was 
measured by the WST8/1-methoxy PMS test on fresh samples. The developed assay was then 
stored at −20°C for 24h, and 1–4 weeks.  
 
Temperature and scattered light had little effect on G6PD classification and 
assay performance 
 
Half-hourly kinetics of assays developed at 10, 24 and 37°C were meas ured and shown in 
Figure 3a. It was observed that G6PD level assessment and classification was not compromised 
across temperature ranges, although G6PD level assessment at 10°C was complicated (Figure 
3a). In terms of assay sensitivity to aberrant colouration due to light, exposure of the assay to 
scattered light had little effect on abnormal colour development during a 2hr period, however, 
direct exposure to UV light led to aberrant colour development (Figure 3b).  
 
Figure 3 Assay kinetics at various temperature and light levels. a) G6PD activity measured 
after 2hr development at 37°C, 24°C, and 10°C. Classification of G6PD values was possible at 
all temperatures, with 10°C showing the least variation Results repe ated 3x in duplicate (p > 
0.05). b) Colouration development in reagents only, following 2hr incubation outdoors 
(exposure to sunlight), and indoors (exposure to scattered light). Aberrant colouration measured 
at the same wavelength as the G6PD assay (OD 450nm) was detected.  
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Test validation by comparison to reference test 
 

High inter-observer reliability exists for qualitative classification of G6PD levels 
using the WST8 test 

 
A weighted kappa statistic (Kw) for inter-observer reliability (based on qualitative G6PD 
classification by two observers visual assessment) was calculated to be 0.922, indicating 
excellent agreement. Paired assessment was conducted for 122 samples. Most mismatches 
between observers occurred for samples with G6PD levels with threshold values between mild 
deficiency (30-60% activity) and normal activity. Such range of G6PD levels is not of 
significant clinical relevance. A 90% agreement between both observers and the quantitative 
estimation of enzyme activity was calculated, and 10% discordance in samples with borderline 
G6PD values (at the normal/moderately deficient threshold) was found. Importantly, moderate 
and severe deficiency values were always accurately classified. It was observed that fresh 
human blood controls led to an estimation of a significantly higher percentage of G6PD 
deficient samples (in the 10-20% activity range), than the commercial control (p < 0.05). 
Controls with similar storage time-frames as the samples being tested were used, in order to 
prevent misclassification due to higher or lower reference OD values, as has been also reported 
elsewhere [25,30,33]. 

 
The WST8/1-methoxy-PMS test has high agreement with the reference test 

 
Agreement values between the WST8/1-methoxy-PMS assay and the reference R&D test were 
assessed using the categorization of G6PD enzyme function into a) severe deficiency (<10% 
G6PD activity), moderate deficiency (10-30%), mild deficiency (30-60%), and normal activity 
(60-100%). Results are shown in Table 2. There was 100% agreement in classification of 
severe, moderate, and >150% activity samples. The lowest agreement recorded occurred near 
the cut-off point between normal and mild deficiency values (40-60% enzyme activity). 
Importantly, both the WST8 test, and the R&D test enabled identification of individuals with 
low G6PD enzyme activity with the highest risk for haemolytic anaemia (<30% activity). The 
Using the R&D test as a reference standard, the WST8 test’s overall sensitivity for G6PD 
normal or G6PD deficient was found to be 72%, specificity 98%, PPV 91.3%, NPV 91.9%. 
The overall percentage of correct diagnosis was 91.8%, and an AUC value of 0.904 was 
calculated (Figure 4). 

 
Table 2 Detection of G6PD deficiency levels: agreement and validation of 
WST8/1-methoxy PMS test   

  WST8/1-methoxy PMS Standard colourimetric test Agreement (%) 
 Total samples tested 122 122 - 
 Normal activity 98 (80.4%) 94 (77.04%) 92.63% 
 Mild deficiency (30-60% activity) 15 (12.3%) 21 (16.4%) 96.72% 
 Moderate deficiency (10-30% activity) 9 (7.38%) 9 (7.38%) 100% 
 Severe deficiency (<10%) 0 (0%) 0 (0%) 100% 
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Table 3 Baseline measurements and G6PD classification by the WST8/1-methoxy PMS test   

 Glucose-6-phosphate dehydrogenase classification     
 Normal (40-100 +% act.) Moderate Moderate Summary statistic Total 
  (mild: 20-40% activity) (low:10-20% activity) (univariate normal/deficient)   
Number     235  
Males (n) 96 21 8 p = 0.136 125 (53.2%) 
Females (n) 93 10 7  110 (46.8%) 
Age (years, range) 2.83 (0.1-5.3) 2.89 (0.01-5.8) 2.87 (0.01 -5.1) p = 0.802 2.84 (0.01 - 5.8) 
Hb level (g/dl, mean, range) 11.18 (4.9-14.9) 11.74 (8–16) 11.90 (8.8 - 17) p = 0.022 11.3 (4.9 - 17.0 ) 
Anaemia (%) 28.57 16.12 20.0 p = 0.072 26.4% 
G6PD activity (%, range) 72.6 (40.3-137.8) 29.2 (20.5-39.6) 15.11(10.3-19.8) n/a 63.2 (10.3-137.8) 
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Figure 4 Validation of the WST8/1-methoxy PMS assay (AUC). Receiver operating 
characteristic curve for the performance of the WST8/1-methoxy PMS test for G6PD 
diagnosis in the field study in Uganda.  
 
Study population and assessment of G6PD enzymatic activity 
 
Samples from 235 children (110 females, 125 males) were analysed. No significant difference 
in G6PD deficiency levels between males and females was found (p = 0.136) by either the WST 
test or the reference R&D test. Among the male children, 16.5% showed intermediate levels of 
G6PD activity (Figure 5). Mean age and age distribution was similar among all G6PD classes 
(normal, mild, moderate and low deficiency) (p = 0.802). No severe deficiency was detected in 
this study population. While children with severe G6PD deficiency were not seen, G6PD values 
as low as 10.3% activity were identified. Anaemia prevalence (defined in this case as Hb levels 
under 10g/dl) was not significantly different between G6PD classes (p = 0.072). However, 
overall haemoglobin levels between the 3 main G6PD classes was significantly different (p = 
0.022), with general haemoglobin levels being lower in G6PD normal children (Table 2).  
 
Figure 5 G6PD distribution by gender. a) Among 110 females, 84.5% had G6PD levels 
ranging from 60% to 123% activity; 9.37% of females had G6PD activity lower than 30% - the 
activity threshold established by the WHO as posing a risk for primaquine administration at the 
present regime. Most females had activity values between 60 and 80%. b) Among 125 males, 
76.8% had G6PD levels ranging from 40.3% to 137.8%. 9.4% of males had values lower than 
30% activity. Most males had activity values in the 60-70% range.  
 

Discussion 
 
Susceptibility of G6PD deficient individuals to haemolysis caused by anti-malarial drugs such 
as primaquine and other 8-aminoquinolines is a concern for worldwide efforts for malaria 
eradication, given the geographical overlap between malaria-endemic areas and those 
populations with high prevalence of G6PD deficiency [12,13,27]. While primaquine 
administration without G6PD screening for confirmed malaria cases is thought to be relatively 
common, ethical issues regarding the use of the drug are regaining attention as wider 
community use is considered. At present, a main limitation for wide-scale implementation of 
G6PD screening is the lack of a robust, low-cost and rapid test that can accurately classify the 
majority of samples obtained from individuals in a steady state (ie. not suffering from 
haemolytic anaemia at the time of test), and that enables testing of a large number of samples 
simultaneously. In 2003, Tantular and Kawamoto published a simple screening method for 
detection of G6PD deficiency based on enzymatic activity, with improved performance and 
reagent stability compared to its predecessors [28]. Additionally, the method offers the 
advantage of enabling both qualitative and quantitative assessment of G6PD levels based on 
the NADPH concentration in the test, which yields strong colouration. Since its description in 
2003, the assay has been used in various settings, including Thailand  
[12] and Suriname [26]. In 2010, Kuwahata et al. successfully optimized the WST8/1-methoxy 
PMS assay for field use by adapting it to a 96-well plate format, and dried blood-spots in filter 
paper. The optimized test was successfully used to determine G6PD deficiency prevalence in 
Isabel Province, Solomon Islands [25]. Given the observations previously described regarding 
the performance of the WST8 test, the aims of this study were to validate the WST8 method in 
relation to a standard reference enzymatic test (commercially available 
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R&D); and to identify operational shortcomings and advantages of this test for use in field 
and resource-limited settings. 
 
The assay was found to be easy to use, with low use of consumables, and low requirements 
for sophisticated equipment, as well as being less time consuming than the reference test. On 
average, processing time for a 96-well plate worth of samples took 10 minutes of active 
processing and a 2hr waiting period for development, while the R&D test took 1 hour of 
active processing. The WST8 test was not overly affected by temperature variation, and the 
temperature range within which accurate G6PD classification was possible, includes 
temperatures generally observed in tropical areas. Similarly, the test was less sensitive to 
scattered light in the laboratory than previously reported for other tests. Nevertheless, from 
our observations, we suggest avoiding unnecessary exposure of the test and the reagents to 
light for extended periods. In terms of storage of assay mixes and reagents, our conclusions 
are similar to those previously reached by Kuwahata et al. and confirm that long-term storage 
is advantageous for assay transport and assay use in field settings where assays may need to 
be run in the field, and subsequently tested in a central laboratory. This is likely, as a major 
limitation for storage is that enzyme degradation occurs in blood spots in filter papers limiting 
the time they can be held prior to testing. Previously, Kuwahata et al. determined that 
accurate G6PD classification could be done by the WST8 method on filter papers stored at 
ambient temperature for no more than five days, or alternatively at 4°C for up to 10 days. 
This is similar to the findings of this study for storage of samples at 4°C, yet storage of 
samples at room temperature for more than four days led to G6PD level misclassification. It 
is thus recommended that the samples be tested within 48-72h following sample collection, 
given that degradation time may vary slightly among different settings after this time frame. 
An alternative is the possibility to freeze assayed plates at −20°C for quantitation at a later 
time point. Although this requires freezing facilities, it would allow subsequent mass testing 
of samples for confirmation of visual readings. A key observation from this and previous 
studies [30], is that a control panel, which comprises positive controls and various levels of 
relative G6PD concentrations, should be stored in similar conditions to those of samples to be 
tested, as this will reduce the risk of misclassification. Two other observations, common to 
spectrophotometric assessments with FPBS were that both blood spot saturation and bubbles 
in the microplate wells can adversely affect reactions leading to aberrant readings and 
underestimation of G6PD levels. Overall, it was found that the WST8 assay offered major 
advantages in relation to other currently-used G6PD screening tests in its suitability for field 
use. 
 
Importantly the assay also performed well. In comparison with the standard reference test, the 
WST8 test had 72% sensitivity, 98% specificity, and an AUC value of 0.904. The sensitivity 
of the test was only with misclassifications corresponding to samples with values between 
normal enzyme activity and mild G6PD deficiency i.e. individuals not at risk of severe 
haemolytic anaemia after treatment with primaquine (ie. >30% enzyme activity as defined by 
the WHO). Current tests, including the ICSH recommended fluorescent spot test (FST) method, 
report a sensitivity value as low as 32% [27,34-36]. In this context, the WST8 test enabled 
accurate identification of a wide range of G6PD enzyme levels. The study also showed a good 
inter-observer reliability (qualitative assessment) with very good agreement in relation to the 
quantitative classification though numbers of observers and samples were relatively few. 
 
A known confounder for G6PD tests is haemoglobin concentration. This may be potentially 
attributed to the fact that in patients with haemolytic anaemia, older erythrocytes are 
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haemolysed, while the remaining reticulocytes have normal or near-normal enzyme activity. 
Previous G6PD screening studies have therefore suggested that G6PD testing must be done in 
parallel with haemoglobin measurements [25,33], or that inbuilt haemoglobin normalization 
must be considered for accurate determination of status [30]. In this study, baseline 
haemoglobin measurements in G6PD normal and G6PD-deficient children were significantly 
different by univariate analysis. The lower haemoglobin levels in children with normal G6PD 
in this study may be attributable to G6PD deficiency being associated with a protective effect 
against infections that may result in anaemia, however, the study was not powered to test this 
effect. Importantly, no severe deficiency was detected in this study population using both the 
reference and WST8 tests, which is in agreement with the expected G6PD A- prevalent 
genotype in Africa [5,8]. 
 
In conclusion, the WST8 test offers some important advantages in comparison to other tests for 
G6PD deficiency assessment in large-scale screening studies and public health interventions 
where primaquine administration is being considered. As demonstrated by this study, G6PD 
screening using the WST8 assay can be easily nested into other public health interventions, 
which is advantageous for its inclusion in malaria elimination programmes contemplating the 
use of primaquine. Additionally, the high comparability of quantitative and qualitative G6PD 
estimates between the WST8- and the standard colorimetric tests used for diagnosis in hospital 
settings, suggest that the WST8 test would be a relatively safe basis for clinical decisions. This 
would obviously depend on existing clinical and laboratory capacity in any facility and require 
some adaptation to single sample testing [37]. No individuals with severe deficiency were 
identified in this study. Although this is a limitation in terms of validation of the test, a previous 
study carried out in the Solomon Islands with the WST8 test [25], enabled the identification of 
severely G6PD deficient individuals, as well as a range of G6PD activities similar to the one 
reported here. In order to fully assess the capacity of the test in various field settings, further 
studies in various geographical locations where diverse G6PD genotypes are prevalent, would 
be advantageous. A further key observation is the need for parallel haemoglobin determination, 
emphasized in previous G6PD deficiency assessments [25,26,30,33]. This is likely to be of 
general benefit both in assessing the interpretability of the test and also may indicate other 
causes of anaemia and any required treatment. Overall, the WST8 test has a considerable 
potential as a diagnostic tool prior to primaquine administration in malaria-endemic areas as a 
point of care test and/or as a screening tool for assessing G6PD prevalence in large-scale 
screening studies in areas contemplating primaquine deployment. 
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 Additional sub-analyses of trial G6PD data 

 Assessment of G6PD status 

 Assessment of G6PD phenotype by Fluorescent Spot Test 

 

 

Figure 4-1 The fluorescent spot test. Labelled blood spots from trial participants fluoresce 

under ultraviolet light after treatment with reagents.  

The photograph shows a strip of filter paper with three labelled participant blood spots. In a darkened 

box. The strip is lit with ultraviolet light. Fluorescence under ultraviolet light is detectable in the second 

two blood spots, indicating normal G6PD enzyme level. The first blood spot remains dull, with no 

fluorescence, indicating a negative result (G6PD deficiency). 

A positive fluorescent spot test (normal fluorescence) was a criterion for trial eligibility. 19.1% 

of the study participants with a normal spot test result had genotypic G6PD deficiency, with 

detectable G202A and A376G mutations (G6PD A- variant) (262).  
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 Assessment of G6PD genotype 

In the study, all individuals with the 376 A->G mutation had the 202 G->A mutation. Wild type 

individuals have 202G/376A in both X chromosomes. Individuals who carried both the 

mutation and carried the wild type sequence were labelled as heterozygotes (all females). 

Individuals who carried only the 202A/376G mutation were labelled as male hemizygotes or 

female homozygotes. The genotyping methodology and the breakdown of G6PD genotype by 

treatment arm are presented in a peer-reviewed manuscript (Section 4.1, ) (262).  

G6PD G376A SNP
= heterozygote

= homo/ 
hemizygote

L1 C 176 248 254 264 263 235 203 219 238 207 236 192 211 234 208 193 298 323 300 253 258 242 293

L2 C 180 257 259 267 262 237 223 245 218 220 224 199 195 232 201 255 296 301 335 244 250 251 278

 

Figure 4-2 PCR-RFLP gel electrophoresis product for G6PD G376A SNP, courtesy of Dr Helmi 

Pett, University of Helsinki 

Briefly, DNA was extracted from Whatman filter papers and was amplified in reaction solution 

containing primers for G6PD A- allele G376A primers, using BioTaq DNA polymerase. Amplified products 

were then digested with a restriction enzyme and analysed with gel electrophoresis (263, 264), with 

results as shown. The red arrows correspond to fragments from samples reacting with heterozygote 

primers and the blue arrows correspond to fragments from samples reacting with homo/ hemizygote 

primers. The first and last lanes in each row represent the base pair scale. 
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Higher baseline parasitaemias were found in female heterozygotes than in wild type or homo-

/ hemizygotes. Whilst there are hypotheses proposing that female heterozygotes are 

protected from severe disease (discussed in Section 4.4), further interpretation cannot be 

made with these results, as the study design and recruitment size were not planned for this 

evaluation. 

Haemoglobin nadirs that occurred earlier in follow up might have been attributed to the 

haemolysis due to clinical malaria, combined with a lack of primaquine-induced haemolysis. A 

delayed nadir in haemoglobin might be due to the added haematological insult of primaquine 

dosing on day 2 of follow up in individuals who are susceptible to primaquine-induced 

haemolysis. Table 4-1 shows the day of haemoglobin nadir after enrolment. The nadir was 

earlier with increasing levels of G6PD deficiency, hemi/ homozygotes having earlier nadirs for 

a given primaquine dose arm, except for those receiving high dose primaquine (0.75mg/kg). In 

this group, the nadir was latest in those with G6PD deficiency. None of these trends reached 

significance; the numbers in these subgroups were small, and this sub-analysis was under-

powered.  
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Table 4-1 Treatment day (after enrolment) of haemoglobin nadir by G6PD genotype across 

treatment arms 

 Day of haemoglobin nadir after enrolment, by G6PD genotype 

 Wild type Heterozygote Hemi/homozygote 

Treatment 

arm Mean SD 

P 

value* Mean SD 

P 

value* Mean SD 

P 

value* 

AL 5.3 6.6 -- 3.9 4.7 0.41 3.3 3.3 0.46 

                 

AL-PQ-

0.1 4.8 5.6 -- 2.8 2.5 0.14 2.3 0.5 0.25 

                 

AL-PQ-

0.4 5.7 6.4 -- 6.2 7.3 0.81 3.5 2.5 0.30 

                 

AL-PQ-

0.75 4.2 4.4 -- 5.9 4.3 0.19 6.3 3.8 0.36 

All arms 5.0 5.8 -- 4.5 4.9 0.56 3.6 2.8 0.22 

*All P values are for the difference from wild type  

SD = standard deviation; AL = artemether-lumefantrine; PQ = primaquine 

Only two people with a G6PD hemi-homozygote genotype had a maximal fall in haemoglobin 

of over 2g/dL during follow up, one from the placebo group and one from the 0.75mg/kg 
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primaquine group (table 4-2). This compared with 54 wild type and 17 heterozygote 

individuals. There was only one female homozygote, so determination of trends in the risk of 

haemolysis according to gender was not possible. 

Table 4-2 G6PD status of individuals with a total fall in haemoglobin of >2g/dL during follow 

up 

Primaquine 

dose 

Wild type, n (%) Heterozygote, n 

(%)  

Homozygote Total 

Placebo 13       (24.07)       6      (35.29) 1       (50.00) 20 

0.1 mg/kg 13       (24.07) 2       (11.76) 0 15 

0.4 mg/kg 14       (25.93)     4       (23.53) 0 18 

0.75 mg/kg 14       (25.93)      5       (29.41) 1       (50.00) 20 

Total 54 17 2 73 

 

 Assessment of G6PD enzyme activity 

The small total number of hemi-/ homozygotes limited the extent of meaningful sub-analysis 

of G6PD enzyme activity according to genotype. The data are presented here to illustrate 

trends, and generated hypotheses. Female heterozygotes had a broad range of enzyme 

activity levels, as would be expected due to lyonisation, but the median was significantly 

lower than wild type and homozygotes had uniformly less than 20% of normal male activity, 

corresponding with the significant change in haemoglobin from baseline in these individuals 

after higher doses of primaquine (262). Wild type individuals had a lower mean activity than 

expected.  
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Figure 4-3 shows the estimated G6PD enzyme activity, as a percentage of normal male activity 

grouped in bins of 10% and coded by G6PD genotype; values on the X-axis indicate the lower 

limit of these bins. 

   

Figure 4-3 Estimated G6PD enzyme activity at enrolment in relation to G6PD A- genotype 

Histogram of quantitative G6PD enzyme activity level shows the frequency distribution according to 

G6PD genotype.  

The quantitative enzyme activity level at baseline (day 0), during clinical malaria infection, was 

compared to enzyme activity on day 14, when malaria parasitaemia and malaria-attributable 

fever was expected to have been cleared. This difference was found to be associated with 

G6PD genotype (p=0.044). Hemi-/ homozygotes, had significantly lower G6PD enzyme activity 

on day 14 compared to day 0 (Table 4-3, Figure 4-4). Wild type individuals had increased G6PD 

activity at day 14 as expected. 
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Table 4-3 Mean G6PD residual enzyme activity at enrolment and day 14, by G6PD genotype 

 On Day 0 (enrolment) On Day 14 Change 

G6PD Genotype Total 

observations 

Mean 

activity, % 

(SD) 

P value for 

difference from 

wild type  

Total 

observations 

Mean 

activity, % 

(SD) 

P value for 

difference from 

wild type 

Change in 

activity, % 

(SD) 

P value for 

difference from 

Day 0 

Wild type 354 40.1 (16.0) - 348 43.2 (16.7) - 2.4 (18.6) 0.020 

Heterozygote 58 32.5 (19.5) 0.001 59 31.8 (12.3) <0.001 -1.7 (17.6) 0.45 

Hemi/homozygote 26 16.1 (13.1) <0.001 24 10.6 (3.5) <0.001 -5.7 (13.4) 0.048 

*residual enzyme function is % G6PD enzyme activity of normal male 
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Figure 4-4 Change in G6PD enzyme activity during follow up 

The mean G6PD enzyme function, as a percentage of a G6PD-normal male standard activity, is shown 

on day 0 (enrolment day) and day 14 after enrolment, stratified by G6PD genotype. G6PD enzyme 

activity in heterozygotes and hemi-/homozygotes was significantly lower than in individuals genotyped 

as wild type. This was the case at enrolment and on day 14. On day 14, G6PD enzyme activity had 

significantly reduced from enrolment values in hemi-/homozygous individuals. 

*denotes significant difference from wild type; ** denotes both significant difference from wild type and 

significant reduction from Day 0 

 

 Definition of the optimal approaches for G6PD testing for the safe deployment of 

primaquine for falciparum malaria elimination 

In many regions of the world with overlapping Plasmodium falciparum and P. vivax malaria 

endemicity, particularly, in South and Southeast Asia and the Pacific, the obstacles to 

primaquine use have come under focus for both transmission-blocking (for Plasmodium 

Day after enrolment 

Hemizygote/ homozygo  
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falciparum) and relapse prevention (for P. vivax) properties. A stakeholder meeting was held 

in Bangkok, Thailand in October 2012, to determine key research questions for the 

development of malaria and G6PD testing strategies and technologies, and priorities for 

product design for a range of use case scenarios and to determine relevant operational 

research priorities (185) (Appendix D).  

There was consensus that there was an incomplete appreciation of the relationship between 

genotype and risk of haemolysis with primaquine dosing. The role of phenotypic testing both 

at the point of care and for population screening remained unclear, largely due to issues of 

test reliability, challenging logistical requirements of test kits, and lack of calibration to clinical 

outcomes. Regulatory issues and cost effectiveness were, at the time, undetermined. There 

was an incomplete picture of the range of genotypes prevalent in several malaria endemic 

areas, deeming population surveys an important research priority. Much discussion was held 

on the optimal enzyme function cut-off level for a test that would determine safe primaquine 

administration in those at risk of haemolysis and also that would avoid withholding 

primaquine administration (and the benefits of drug effect) in individuals who are not at risk. 

There was still a lack of clarity as to what was the level of haemolytic risk associated with 

single dose primaquine and whether G6PD testing would be required prior to treatment.  

The meeting took place after this trial started, highlighting the lack of appropriate resources 

for G6PD testing in the context of primaquine use at the point of trial design, and the trial was 

part of the evidence base for the meeting. The aim of participation was to contribute to 

pushing the agenda to define what would constitute safe deployment of primaquine as a 

gametocytocide. 

  Discussion of G6PD sub-analyses 

Much development has occurred in the evaluation of G6PD deficiency in relation to 

primaquine deployment since this trial completed and these are discussed in Chapter 5 
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(Discussion). In this section, there is a discussion of the sub-analyses conducted using the 

G6PD data in the trial. 

Genotypic analysis of trial participants’ blood samples showed that the fluorescent spot test 

failed to identify mild G6PD deficiency. There are several reasons why this may have occurred. 

First, it was predictable, given the low threshold for fluorescence (“normal” result) with the 

standard spot test assay that was used for exclusion from recruitment. Second, as female 

heterozygotes undergo lyonisation, their expression of the deficient gene is continuously 

variable and unpredictable so a proportion of females would be expected to exhibit a normal 

phenotype whilst carrying the deficient gene (182). Third, all of the participants had 

symptomatic malaria infection. Individuals with clinical malaria are expected to have a degree 

of haemolysis due to malaria infection, which drives their red blood cell population towards a 

left shift, or reticulocytosis, producing young, “fit” red cells with higher average G6PD function 

than the more aged red cell population in the non-haemolysing state. G6PD enzyme activity 

data from prospective community cohort studies sampling uninfected individuals is likely to 

be more reflective of baseline enzyme activity. Concomitant reticulocyte counts in this trial 

would have confirmed these assumptions. In some individuals, reticulocytosis may have 

occurred due to background co-morbidities associated with haemolytic anaemia that were 

not excluded by the selection criteria, such as undiagnosed beta thalassaemia, or other 

haemoglobinopathies, co-infections, drugs or auto-immune disease. Although a past medical 

history was taken to exclude these potential confounders as causes of significant morbidity, 

no diagnostic tests for these co-morbidities were performed at the point of screening or after 

recruitment. 

The high degree of spread of enzyme activity data and the lower than expected activity in wild 

type individuals may reflect unreliability of the assay. As sample and assay kit storage 

conditions can affect the performance of the assay, efforts were made to control these 
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factors, including cool storage provision in the field laboratory, transfer in a portable 

refrigeration and freezer unit and installation of a back-up generator to enable continuous 

power supply during occasional national power cuts. Despite this, there were some 

inconsistencies in the cold chain. Therefore, these data were not presented as part of the peer 

reviewed publication. Two findings, however, show some expected trends. First, the female 

heterozygotes had a broad range of enzyme activity levels at the time of presentation with 

uncomplicated malaria (although it was, predictably, significantly lower than those with wild-

type genotype), a finding which is expected due to lyonisation. Second, after recovery from 

clinical malaria on day 14, those with most severe enzyme deficiency, the hemi- and 

homozygotes, had significantly lower enzyme function levels than on day 0. This suggests that 

an initial malaria-associated reticulocytosis had masked their intrinsic enzyme deficiency at 

recruitment, and it explains why they had a normal spot test at recruitment such that they 

met inclusion criteria. Repeat fluorescent spot testing on day 14 or 28 may have confirmed 

this. 

This raises an important consideration for future trial design and for the planning and 

implementation of community interventions. Phenotypic point-of-care G6PD testing may yield 

false negative (falsely normal) results in both female heterozygotes and in the context of 

acute clinical malaria. A given individual may express variable levels of G6PD activity 

depending on their physiological status at the time of sampling. Co-morbidity with other 

infections or injury may also affect production of reticulocytes (129). It is crucial to consider 

the immediate health status of participants when drawing inferences from G6PD analyses of 

trial data.  

For community-level interventions, for individuals with acute haemolysis of any cause, false 

negatives are expected. If primaquine is to be administered with prior G6PD testing, as it is for 

radical cure (relapse prevention) of Plasmodium vivax, then future research needs to focus 
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not only on how to roll out G6PD testing for safe primaquine administration, but also on what 

tests are relevant in a given population, and how to predict the risk of haemolysis at the point 

of G6PD screening prior to primaquine administration. 

As this trial data indicates, homo-/ hemizygotes and heterozygotes with falsely normal 

phenotypic G6PD screening results had a greater fall in haemoglobin after primaquine 

administration and this was dose-dependent. Although no individuals in the trial experienced 

severe haemolysis, when primaquine is administered at community level, a greater diversity 

of baseline haematological status and risk factors will be expected. The size of the risk in more 

susceptible individuals must be considered when extrapolating the predicted safety of a given 

dose of primaquine from clinical trial data.  

In reality, both mass-testing for G6PD deficiency at the time of mass primaquine 

interventions, and individual-level testing at community health posts for case-based 

primaquine administration are expected to be logistically challenging and cost-efficiency is a 

major consideration (175, 187, 265). Hence, research policy for primaquine as a 

gametocytocide is targeted at determining a single low dose of primaquine that is predicted 

to be safe even in G6PD deficient individuals. 

In conclusion, the G6PD genotype analysis from this trial indicates that 19% of children with 

uncomplicated malaria had a normal fluorescent spot test result (i.e., normal G6PD 

phenotype) on the day they came to the health centre with fever, but they had a genotype 

consistent with G6PD deficiency. The acute haemolysis of clinical malaria can mask their 

underlying G6PD deficiency. Other factors, including X chromosome lyonisation in female 

heterozygotes and co-morbidities that predispose to reticulocytosis may also have 

contributed to the false-negative fluorescent spot test results. Individuals who were 

misdiagnosed as having normal G6PD activity by phenotypic testing had a greater risk of 

primaquine-induced haemolysis. The elevated mean G6PD enzyme activity waned after the 
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transient reticulocytosis of acute malaria. For community primaquine interventions to be safe, 

the implemented dose of primaquine must be safe in asymptomatic G6PD deficient people, 

such as would be included in a mass drug administration or a mass screen and treat 

intervention (targeting asymptomatically infected people), who are not protected by a 

transient reticulocytosis at the time of dosing. Trials of reducing doses of primaquine in G6PD 

deficient males with asymptomatic Plasmodium falciparum malaria were conducted in 

Burkina Faso and the Gambia were designed following this trial, with contribution from this 

thesis, and the results indicate that low-dose primaquine is safe in this population (251). 
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5  Discussion  

 Statement of results 

The World Health Organization recommends the addition of a single dose of primaquine to 

standard antimalarial treatment (ACT) as a gametocytocide, with the aim to block Plasmodium 

falciparum malaria transmission in the setting of malaria elimination programmes and as an 

intervention to stop the spread of artemisinin resistance (112). Since the 1960s, a single dose 

of 0.75mg/kg primaquine base has been recommended as a gametocytocide, but, historically, 

dose-finding studies for primaquine’s efficacy for this indication have been marked by their 

absence. A reliable dose threshold for primaquine’s safety was also lacking. Despite its 

incorporation into malaria guidelines for decades, the extent of primaquine’s deployment was 

limited most likely because of concerns over the risk of haemolysis in people with G6PD 

deficiency. 

This trial was designed in 2009, registered in 2010, and recruitment completed in 2012. It 

sought to address the evidence gap by providing relevant data on efficacy and safety 

outcomes in relation to primaquine dose for transmission-blocking.  It was completed prior to 

a 2012 revision of the WHO guidelines on single-dose primaquine use, and it was the sole 

contemporary source of dose-finding data available at the time. 

This first formal dose-finding trial tested the null hypothesis that non-inferiority of lower 

doses of primaquine for gametocyte clearance could not be established, compared to a 

reference dose of 0.75mg/kg; the dose that was recommended by the WHO at the start of the 

trial. Primaquine was administered in addition to the standard antimalarial treatment, 

artemether-lumefantrine, to 468 children in Jinja, Uganda with uncomplicated Plasmodium 

falciparum malaria and they were followed up for 28 days. The primary endpoint for efficacy 

was submicroscopic gametocyte clearance, and was measured by the mean duration of 
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gametocyte carriage, using QT NASBA for molecular gametocyte detection and was assessed 

for non-inferiority to the WHO reference dose. The primary safety endpoint, the mean 

maximal decrease in haemoglobin concentration over 28 days of follow up, was assessed for 

superiority to the placebo group who received artemether-lumefantrine alone (200). 

The 0.75mg/kg dose reduced the mean duration of gametocyte carriage by 47%; it was 6.6 

days (95% CI 5.3-7.8 days) compared to 12.4 days (95% CI 9.9-15.0 days; p<0.0001) in children 

receiving ACT alone (256). The rate of gametocyte clearance in the 0.4mg/kg group (6.3 days; 

95% CI 5.1-7.5, p=0.74) was found to be non-inferior to the reference 0.75mg/kg dose, whilst 

the interpretation for the 0.1mg/kg group outcome (8.0 days; 95% CI 6.6-9.4, p<0.14) was 

“not non-inferior”, or “inconclusive”. None of the safety outcomes differed significantly from 

those in the ACT alone group. 

Contemporaneously to the completion of this study, the WHO convened an expert review 

group to assess the safety and effectiveness of single dose primaquine as a Plasmodium 

falciparum gametocytocide. The expert panel reviewed historical studies and included this 

trial as the only contemporary dose-finding data available. The outcome was a revision of the 

recommended dose for transmission-blocking from the original 0.75mg/kg, recommended 

since the 1960s, to 0.25mg/kg primaquine base (257). 

The historical data comprised small, non-randomised, transmission studies of between one to 

three individuals that pre-dated contemporary standards of research methodology (123). 

These studies assessed primaquine’s transmission-blocking efficacy measured using mosquito 

feeding experiments and included only 10 participants that received the recommended dose 

of 0.25mg/kg or less (67). At the same time, primaquine’s safety was reviewed in an extensive 

search of historical trials, largely non-randomised experiments on single individuals (110) or 

small numbers that predate modern standards of assessment. Safety data was also collated 

from post-implementation reports from mass drug administrations in the second half of the 
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20th century in China, Russia and North Korea and from an analysis of all reported deaths due 

to primaquine use. 

At the time of study design, no clinical trials had been conducted to assess dose-finding for 

primaquine as a gametocytocide. Through the publication of its protocol, results and through 

data-sharing, this study has sparked a proliferation in research efforts to define and optimise 

the role of single-dose primaquine for Plasmodium falciparum transmission-blocking.  

 Limitations of trial design 

The trial incorporated only four dose arms and none of these included the 0.25mg/kg 

primaquine base dose that the WHO selected for the revised guidelines. The 2012 WHO 

Expert Review Group meeting was initiated after this trial was designed and trial recruitment 

was almost complete. Given that there were only four dose intervals, statistical interpolation 

of these results to propose the lowest non-inferior dose was not undertaken. Instead, the new 

WHO-recommended 0.2gmg.kg dose was assessed by visual interpolation. The expectation 

that it would lie on a trajectory between that of the 0.1mg/kg and 0.4mg/kg primaquine base 

doses is illustrated in Figure 3-2 (Chapter 3). Following this trial, further clinical trials have 

adopted the published trial protocol (200) and incorporated the 0.25mg/kg dose arm. 

 Can we translate drug efficacy into effectiveness? 

The primary efficacy outcome, the time to gametocyte clearance, was estimated by a 

mathematical model, using molecular quantification of gametocytes as an input. To use this 

data to inform malaria elimination policy, we must consider how variation in gametocyte 

clearance in an individual would translate to effectiveness at blocking malaria transmission at 

the community/ population level. Namely, what is the impact of a given reduction in the 

duration of submicroscopic gametocyte carriage in treated individuals upon the level of 

malaria transmission in the community? This question about effectiveness, rather than 

efficacy, has yet to be answered, despite the large number of clinical trials that are now 
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complete, or underway to further investigate primaquine as a transmission-blocker. The 

resources required to evaluate effectiveness at the level of malaria transmission in the 

community, using outcome measures such as community parasite prevalence and 

entomological inoculation rate (EIR), are expected to be considerable. In a large trial assessing 

the effect on community level transmission of a different control intervention designed to 

interrupt transmission (intermittent preventive treatment of school children with 

dihydroartemisinin-piperaquine), for example, the importance of high population coverage 

was acknowledged (266). 

 Are we really measuring transmission-blocking? 

The ideal efficacy outcome measure for transmission-blocking intervention trials has yet to be 

defined, as is clear from the heterogeneity of trial methodologies (194). Mosquito feeding 

assays may be considered to be the gold standard in representing the biological outcome of 

infectivity to mosquitoes more accurately than gametocyte measurements (124, 199) but 

their utility for dose-finding has been hampered by the poor reproducibility and logistical 

complexity of these assays. Two approaches are used; skin feeding assays exhibit higher 

sensitivity, i.e., higher mosquito infection rates (267), but are not acceptable to ethical 

committees in many settings. Furthermore, they do not allow for quantification of the number 

of gametocytes or analysis of the constituents of the blood meal. Hence, there is no possibility 

for comparison of the infectiveness of different concentrations of gametocytes or evaluation 

of the effect of any relevant inhibitory factors in the blood the mosquitoes are ingesting, only 

in peripheral blood samples of the participant. Membrane feeding assays, by contrast, can be 

standardised, controlling the quantity, maturity and source of the feeding mosquitoes and the 

conditions and duration for their feed, but they are inherently variable both within and 

between sites. The likelihood that a reared mosquito will feed and that the ingested 

gametocytes will cause a mosquito infection is affected by the mosquito species and strain 
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(268, 269) and by variable mosquito factors such as the microbial flora of the mosquito 

midgut (270, 271) and probably by human  immune responses to the parasite . 

Delivering membrane feeding assays in the field is substantially more difficult than in optimal 

laboratory conditions. Membrane feeding is labour intensive and large numbers of mosquito 

feeds are required in order to maintain assay sensitivity.  In Burkina Faso, a trial conducted in 

asymptomatically infected children used a similar protocol, but included membrane feeding 

assays to assess infectivity on days -1, 3, 7, 10 and 14 of follow up in a subset of individuals 

(259). In only one child was mosquito infection demonstrable after treatment; in the 

artemether-lumefantrine alone arm on day 7, the predetermined efficacy endpoint (259), 

leaving no scope to assess the impact of variable-doses of primaquine on transmission post 

treatment. In The Gambia, only two children infected mosquitoes 7 days after treatment; one 

in the placebo arm and one in the 0.2mg/kg primaquine treatment arm, in the higher dose 

primaquine arms (0.4 and 0.75mg/kg primaquine) there was no post-treatment transmission. 

In Mali, infectivity on day 7 was detectable in the control arm, receiving dihydroartemisinin 

piperaquine alone (3/13 individuals; 23%) and in two of the primaquine arms, 0.0625mg/kg 

(1/15 individuals; 6.7%) and 0.5mg/kg (1/14 individuals; 7.1%), but not in the intermediate 

doses (0.125mg/kg and 2.5mg.kg) (272). Analysis was limited to individuals who had a pre-

treatment mosquito infectivity measurement and at least one post-treatment mosquito 

infectivity measurement. The membrane feeding assay was optimised after recruitment was 

initiated and the primary endpoint focussed on feeding on day 2 rather than day 7. The 

outcomes of membrane feeding on day 2 are discussed in section 6.3.1 

Novel adaptations to the membrane feeding assay to allow higher throughput assays include 

the introduction of a transgenic Plasmodium falciparum “reporter” parasite that expresses 

luciferase, enabling detection of infected mosquitoes by luminescence readouts (273), but 
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currently their application is in screening for candidate drug compounds in vitro, not for 

clinical drug trials. 

 What is the right gametocyte marker? 

Pfs25 mRNA has been used in a range of settings to detect and quantify mature gametocytes 

in field isolates (54, 63, 212, 274-276)  . The molecular detection of gametocytes is up to ten 

times more sensitive than microscopy, with a detection limit of at least one gametocyte per 

microliter of blood (237, 277, 278). The precise mechanism of primaquine’s action is unknown 

so the accuracy of any given mRNA marker in detecting the impact of primaquine, although it 

is gametocyte specific, is undetermined. There is some suggestion that primaquine may act 

earlier than Pfs25 mRNA is expressed. Recently, Pfs25 mRNA was found to be expressed 

almost exclusively in female gametocytes (279), whilst an alternative gene, Pfs230p (also 

Pf3D7/ PfMGET) mRNA appears to exhibit male-specificity (280, 281). Female gametocytes 

predominate in acute malaria infection, comprising approximately 70% of the circulating 

gametocyte population (124, 282), but the proportion of male gametocytes might relate more 

directly to the likelihood of infectivity (283). Male gametocytes appear to be more sensitive to 

certain antimalarial drugs than females (284), although this has not been determined clearly 

for primaquine. A recent paper suggests that primaquine does not preferentially clear male 

gametocytes (281). Amongst plasmodia species, the gametocyte sex ratio is found to vary 

during the course of an infection and with the degree of anaemia, reticulocytosis, asexual 

parasitaemia, and the density of gametocytes (282, 285, 286), reviewed in White 2014 (124). 

 What is the point of counting gametocytes? 

The non-inferiority margin of 2.5 days revealed a dose-dependent effect that was reproduced 

in two subsequent trials using a comparable protocol (259, 287), but how well does 2.5 days 

of gametocyte carriage discriminate between effective doses to block transmission at 

community level? In the thesis, even with the highest dose of primaquine, six out of 106 
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children (5.7%) still carried gametocytes on day 14 after follow up. This figure was not 

significantly different for all primaquine doses in the trial; 3 out of 103 children (2.3%) with 

the non-inferior 0.4mg/kg dose (p=0.51), and 6 out of 103 children (5.8%) with 0.1mg/kg 

primaquine base (p=0.72) had a gametocytaemia on day 14. This prolonged persistence of 

gametocytaemia after primaquine in a subset of individuals has been noted subsequently 

(259, 287). To put this into context: children with uncomplicated malaria are managed as 

outpatients, so, the child treated with primaquine would return home from the clinic carrying 

gametocytes that are available for ingestion by biting mosquitoes in their home community. 

Whether these gametocytes are viable and of sufficient density to infect mosquitoes 

successfully is a pivotal question. Molecular detection of gametocytes using pfs25 shows a 

positive correlation with mosquito infectivity, but it is a weak and indirect trend (46, 124, 

288). Mosquito feeding experiments suggest that primaquine renders gametocytes non-

infectious within 24 to 48 hours of treatment (67, 77, 124). Gametocytes that persist beyond 

this timeframe may be non-viable, their duration in the circulation being determined by their 

rate of clearance by the spleen rather than any continuing drug effect. Recent work highlights 

that gametocyte density is independent of the transmission-blocking effect of primaquine in 

the first 48 hours after treatment (289). Hence, although gametocyte clearance did effectively 

discriminate between primaquine doses, and these dose-dependent trends have been 

reproduced in subsequent trials (259, 287), these trials might underestimate the size of the 

effect of primaquine on transmission blocking. Furthermore, the gametocyte prevalences post 

primaquine administration were low. This has important policy implications; the threshold 

dose for efficacy must be in line with the threshold dose for safety in G6PD deficient 

individuals. Clearly, high quality informative safety trials are needed to establish an effective 

dose range for primaquine deployment. Work towards this has been started with trials in 

West Africa and Myanmar (251, 290). 
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In interpreting the trial outcomes, we must take into account that a mathematical model was 

used to estimate the actual day of gametocyte clearance (200, 258). Gametocyte prevalence, 

assessed at a limited number of time points, was used to populate the model. The timescale 

for gametocyte measurements was limited to 14 days to reduce the confounding potential of 

reinfections, which would be expected to be more common thereafter (63, 258), but this also 

limited accuracy in extrapolating individual clearance times. The model incorporates an 

assumption to estimate the proportion of gametocytes that are released from sequestration. 

This might be affected by the trial drugs. Currently, we have no established method for 

assessing the sequestered gametocyte load nor how these gametocytes are affected by drug 

treatment and how their infectivity is affected upon release into the circulation (108, 258, 

291-293). 

 Does the trial setting matter? 

The trial was conducted in a moderate malaria transmission setting; the annual 

epidemiological inoculation rate in Walukuba was 3.8 in 2012 (294). How applicable the trial 

data is to other transmission settings is worth exploring, considering that primaquine is a 

candidate intervention in pre-elimination or elimination settings. Specifically, would the trial 

safety and efficacy be preserved in other settings? Not all countries are comfortable 

incorporating primaquine recommendations into their malaria elimination policies unless 

there is local trial data in their setting (295). Gametocyte dynamics vary across 

epidemiological settings (230) and marked differences have been observed in the duration of 

gametocyte carriage after primaquine treatment in different geographical locations (258). 

Pre-treatment patent gametocyte levels are identified as a significant predictor of 

gametocytaemia after drug treatment (228) and broadly increase with transmission intensity 

(37). Further factors may affect the response to treatment according to transmission setting; 

the clonal complexity of parasites in any single infection increases with transmission intensity 

(296). Clonality impacts the rate of gametocyte maturation and release during an infection 
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(297) and by implication, the prevalence of peripheral blood gametocytes at any measured 

time point. Efficacy and safety will also be affected by variation in human immune responses 

to gametocytes and vector factors between populations and the genetic variation in G6PD 

alleles between populations. 

The feasibility of conducting a primaquine trial in an elimination setting, i.e., an EIR of less 

than one infective bite per person per year, is limited significantly by the low case incidence 

rate. In Zanzibar, for example, there are less than 1000 microscopy-confirmed cases per year 

(20). This is too few to enable completion of a well-powered clinical dose-finding trial both 

cost-effectively and to a timeline that would be useful to assist policy-makers intending to 

implement the WHO recommendations for primaquine use. For the purpose of dose-finding, 

therefore, we decided that a moderate transmission setting in East Africa would enable timely 

collection of relevant data. The choice to test primaquine in clinical cases and in individuals 

with higher densities of gametocytes was made in order to produce data about efficacy in 

individuals who are most likely to be the infectious (compared to individuals from elimination 

settings). We do not yet have data on how variation in the transmission setting might affect 

the trial outcomes. 

 Are we collecting relevant safety data? 

Prior to this trial, no trials had been statistically powered to assess safety outcomes in 

individuals treated with primaquine for transmission blocking. Safety was assessed by passive 

pharmacovigilance of adverse events (298) or discrete haematological measurements in 

participants (63, 216)  without assessment of the likelihood that a difference could be 

detectable between study arms. 

The selection of an informative safety outcome is intuitive; given that primaquine induces 

haemolysis, an accurate measurement of haemoglobin levels post treatment was paramount. 

HemoCue®, a self-calibrating point of care test lends itself to the clinical trial setting. A recent 
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meta-analysis indicated that haemoglobin values measured by HemoCue® in 3084 patients 

diverged from gold standard laboratory assessment by 0.08 g/dL (95% CI -1.3, 1.4 g/dL) (299) 

and in children in the field, the correlation with gold standard was 98.7% (p<0.0001) (300). 

Only one trial prior to this had established a curve for the predicted fall in haemoglobin post 

single dose primaquine (63). In this study in Tanzanian children with clinical malaria, the 

haemoglobin nadir in the primaquine-containing arm was on day 7 (5 days after primaquine 

administration), whilst those who received ACT alone had a haemoglobin nadir on day 3. 

Clearly, there is an expected haemolysis attributable to clinical malaria and ACT and the 

additional impact of primaquine would be expected to depend on the severity of 

presentation, co-morbidities, gender and the level of functional G6PD enzyme as well as the 

dose of primaquine administered. In this thesis, we aimed to capture a range of dynamics of 

the haemoglobin response post primaquine: maximal fall, nadir day, percentage fall. An 

endpoint measuring haemoglobin at a single time point post treatment might not have 

captured differences in haemoglobin between dose arms. The day of dosing impacts the 

optimal scheduled days of haemoglobin measurement; if primaquine is given on day 0 rather 

than day 2, haemoglobin should be recovering by day 7 (63). We captured specific endpoints 

that would indicate severe haemolysis (requirement for blood transfusion, black urine) and 

any child whose haemoglobin fell below 5g/dl. These had not been captured in primaquine 

trials prior to this trial and have been incorporated into protocols subsequently. However, the 

reliability of these clinical markers for detecting severe haemolysis has not been quantified in 

a field context. Their detection depends on patient or parent reports and study clinician 

assessments. The decision to transfuse a patient depends on an assessment of their clinical 

status, not just on the level of haemoglobin. This is of particular importance when the level is 

measured by a point-of-care device (299).  

An important limitation of this trial is that, in excluding children who were phenotypically 

G6PD deficient, the safety data cannot be used to predict the risk of haemolysis in children 
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with G6PD deficiency. As this was the first dose-finding trial, the ethical logic was to first 

assess the lowest efficacious dose of primaquine in a population at low risk of haemolytic side 

effects. Subsequent to this, trials were planned to assess the safety of this low dose in G6PD 

deficient populations(251).  

 The trial in context: updates since this trial (and trials in progress) 

 Primaquine dose-finding trials in Africa following this thesis 

 Assessment of gametocyte clearance 

New trials that have assessed gametocyte outcomes after variable-dose primaquine have 

assessed different outcomes, and in different age groups and clinical populations but, in 

summary, have found the lowest efficacious dose of primaquine to be in the range of 0.2 to 

0.4 mg/kg. In The Gambia, the primary endpoint of the fall in submicroscopic gametocyte 

prevalence between day 0 and day 7 in asymptomatically infected children after 

dihydroartemisinin-piperaquine was significantly greater for all three primaquine doses, 0.2 

mg/kg, 0.4 mg/kg and 0.75 mg/kg (287). Gonçalves et. al. compared submicroscopic 

gametocyte prevalence after artemether-lumefantrine plus 0.25 mg/kg and 0.4 mg/kg 

primaquine with artemether-lumefantrine alone in 360 Burkinabe children with asymptomatic 

infection using superiority analysis (259). From day 7 onwards, for both primaquine doses, 

submicroscopic gametocyte prevalence was significantly lower than the control arm with and 

gametocyte clearance times were faster (7.7 days (6.3 – 9.1) for 0.25 mg/kg, p value <0.001 

for difference from control; 8.2 (6.7 – 9.6) for 0.4 mg/kg arm, p value <0.001). In Mali 

submicroscopic gametocyte prevalence was significantly lower in the group receiving 

0.5mg/kg primaquine base from day 7 onwards but gametocyte prevalence was not 

significantly different to control throughout follow up for lower doses (0.065, 0.125 and 0.25 

mg/kg) (272). This smaller trial (n=79) was, however, not powered to assess gametocyte 

outcomes. All of these trials used superiority analysis to compare variable-dose primaquine to 
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placebo. To determine the lowest dose with equal efficacy to the well-investigated 0.75 mg/kg 

dose, non-inferiority analyses of these data would be informative, but would require larger 

numbers of participants. 

 Assessment of infectivity to mosquitoes 

The adaptive trial design in Mali assessed the dose response to primaquine using the 

standardised membrane feeding assay as an outcome measure (272). The research team 

measured the reduction in post-treatment compared to pre-treatment mosquito infections in 

samples from 81 male participants (aged 7 to 32 years) who had Plasmodium falciparum 

gametocytes in their blood. No systematic process was employed to select participants for 

screening and they were a heterogeneous group in terms of malaria presentation; overall, 7% 

of participants had symptomatic uncomplicated malaria, ranging from zero in the control 

group to 19% (n=3) in the lowest dose group (0.0625mg/kg primaquine base), the remainder 

had asymptomatic infection. Participants were randomised to treatment with 

dihydroartemisinin-piperaquine alone (control) or in combination with a primaquine dose of 

0.0625 mg/kg, 0.125 mg/kg, 0.25 mg/kg, and 0.5 mg/kg. Mosquito feeding was conducted 

prior to treatment on day 0, and also on day 1, day 2 and day 7. The primary efficacy endpoint 

was the mean within-person change in infectivity to mosquitoes, measured by comparing 

membrane feeding assay outcomes at baseline and on day 2. Significant reductions in day 2 

infectivity were noted in the 0.25mg/kg and the 0.5mg/kg primaquine dose groups (92·6% 

[95% CI 78·3–100]; p=0·0014 and 75·0% [45·7–100]; p=0·014, respectively) compared to the 

control group (11·3% [–27·4 to 50·0]), but not for the lower dose groups of 0.0625mg/kg and 

0.125mg/kg primaquine base. This supports the inference of the WHO primaquine expert 

review group, proposing 0.25mg/kg primaquine base as the lowest efficacious dose to block 

transmission of Plasmodium falciparum malaria (301).  
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Table 5-1 Completed contemporary primaquine dose-finding trials 

Location Author, 

date 

Number of 

participants 

Age Malaria infection 

status 

Primaquine doses 

assessed 

PRIMAQUINE 

administered 

Partner 

ACT 

Gametocyte 

outcome 

Infectivity studies Safety 

Gambia Okebe (287) 694 Children Asymptomatic 0.2, 0.4, 0.75 

mg/kg 

Day 2 DP Day 7 vs day 0 

prevalence 

Day 7 Unpowered. Mean 

change in Hb 

Burkina 

Faso 

Gonçalves 

(259) 

360 Children Asymptomatic 0.25, 0.4 mg/kg Day 2 AL Prevalence and time 

to clearance 

Day 0,  3, 7, 10, 

14* 

Unpowered. Mean 

change in Hb 

Mali Dicko (272) 81 Adults and 

children 

Symptomatic (7%) and 

asymptomatic 

0.0625, 0.125, 

0.25, 0.5 mg/kg 

Day 0 DP Prevalence (and 

mosquito infectivity) 

Day 1, 2 (primary 

outcome), 7† 

Unpowered. Mean 

change in Hb 

Uganda Eziefula 

(256) 

468 Children Symptomatic 0.1, 0.4, 0.75 

mg/kg 

Day 2 AL Prevalence and time 

to clearance 

None Powered. Mean 

change in Hb 

*primaquine administered on day 2; †primaquine administered on day 0 

DP = dihydroartemisinin-piperaquine; AL = artemether-lumefantrine 
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 Assessment of safety 

Safety outcome measures have been more standardised across dose-finding trials (table 5-2), 

and have mirrored the protocol used in this trial, assessing the mean within-person change in 

haemoglobin over 28 days of follow up, using finger prick blood near-patient assessment 

(HemoCue AB, Ängelholm, Sweden). In trials in G6PD normal individuals, in asymptomatic 

Burkinabe children (259), in asymptomatic Gambian children (287) and in variably 

symptomatic Malian men and boys (272), the mean fall in haemoglobin was not significantly 

different in primaquine-containing arms compared to the control arm receiving ACT alone. 

None of these trials were specifically powered to assess safety outcomes and all of them 

included asymptomatic individuals. The risk of adverse safety outcomes is of particular 

pertinence in asymptomatic individuals receiving an antimalarial plus primaquine for the 

purpose of blocking community transmission, rather than the benefit of individual clinical 

cure. The fall in haemoglobin after ACT alone is expected to be smaller in the absence of 

malaria-associated haemolysis. Therefore, larger sample sizes might be required to discern 

any difference between treatment groups.  

The recent dose-finding trials, for efficacy, in Africa have identified G6PD normal individuals, 

using phenotypic testing to screen for G6PD deficiency (259, 272, 287). It is not logistically 

practical to genotype individuals at the stage of screening for trial entry. Our finding, that 

5.9% of phenotypically normal children were homozygous/hemizygous at the G6PD 202A 

locus (i.e., G6PD deficient of A- variant) and 13.2% were female heterozygotes demonstrates 

that these trial populations may include individuals at higher risk, unevenly distributed across 

dose arms (262). Enzymatic phenotypic testing for G6PD deficiency at the start of treatment, 

has reduced specificity compared with genotypic testing with regard to identifying those at 

risk of haemolysis. We found significant reductions in haemoglobin from baseline in the 

homozygous/hemizygous individuals (n=10) who received 0.4 mg/kg and in female 
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heterozygotes (n=14) who received 0.75 mg/kg primaquine base. The low numbers in each 

treatment group might explain the lack of trend of risk of haemolysis with dose.  

Subsequent studies have assessed haemolytic risk in G6PD deficient populations. A study in 

Mali assessed single dose primaquine safety in 25 adult males and 26 male children aged 5-17 

all with phenotypic G6PD deficiency (using R&D fluorescent spot test) and without malaria 

(microscopy negative) (302). Adults received doses of 0.4-0.5mg/kg primaquine base and 

children were treated with 0.4mg/kg. The largest within person fall in haemoglobin after 

primaquine was 23%, in an adult male who was one of the 40% of participants who had 

submicroscopic parasitaemia at enrolment and 8% who developed symptomatic malaria 

during follow up. The authors concluded that the upper bound of the therapeutic dose range 

for primaquine should be 0.4mg/kg in Africa.  

In Burkina Faso and The Gambia, G6PD deficient male participants with asymptomatic malaria 

were treated with ACT alone or variable dose primaquine (0.25-0.4mg/kg) and post-treatment 

change in haemoglobin was compared with G6PD normal participants (251). No participants 

developed moderate or severe anaemia. The haemoglobin fall in G6PD deficient participants 

was greater than that in G6PD normal participants in Burkina Faso. Although 35-40% of all 

G6PD deficient participants across the two sites had a haemoglobin drop of >2.5g/dL, this was 

not statistically different to the fall in G6PD normal participants. 

In Tanzania, a mixed gender population excluding pregnant and lactating women was treated 

for uncomplicated Plasmodium falciparum malaria with artemether-lumefantrine with and 

without a single dose of 0.25mg/kg primaquine base (303). The participants were enrolled 

regardless of G6PD status, but genotype analysis found a statistically significant greater day 0-

7 fall in haemoglobin concentration in female G6PD heterozygotes compared to people with 

wild-type genotype. 
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All of these studies found a lack of severe haemolysis with primaquine doses of 0.5mg/kg base 

and below in G6PD deficient individuals. These are clinical trials with defined study 

populations. Primaquine is designed as an intervention for large unscreened populations. The 

common definition of severe haemolysis in these studies is a relative fall in haemoglobin post 

primaquine to >25% of baseline value. There is heterogeneity in these study populations in 

terms of malaria status (symptomatic, asymptomatic or malaria-free) and age, but crucial 

factors that affect baseline haemoglobin, such as co-morbidities, including HIV status, and 

presence of haemoglobinopathy (such as sickle cell anaemia, thalassaemia or haemoglobin C) 

are not considered in trial protocols or analysis strategies. 

 A more translatable evaluation was conducted in Thailand, forming the sub-analysis of a large 

community mass drug administration intervention with dihydroartemisinin-piperaquine plus 

single dose primaquine (0.25mg/kg base) (290). Bancone et. al. screened for eligibility to the 

sub-analysis using G6PD phenotypic testing, then further assessed G6PD genotype and 

quantitative enzyme function as we did. Of all those screened, four G6PD heterozygote 

women were misclassified as normal phenotypically and had significant falls in haemoglobin 

(either 25% fall from baseline or a reading less than 7g/dL) after primaquine treatment. 

Overall, as found in the African studies, the relative fall in haemoglobin after primaquine was 

greater in G6PD deficient individuals, by both phenotype and genotype, but there was no 

significant clinical haemolysis in any of the participants. 
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Table 5-2 Characteristics of safety trials of primaquine in Africa following this thesis 

Location Study ID Number of 

participants 

Age 

(yr) 

Malaria infection 

status 

Primaquine doses 

assessed 

PRIMAQUINE 

dosing 

Partner 

ACT 

G6PD status Safety PK (Yes/ 

No) 

Burkina Faso (251) NCT02174900 70 18 to 

45 

Asymptomatic 0.25, 0.4 mg/kg Day 2 AL Normal and 

deficient males 

Hb change 28 

days 

Y 

Kenya (281) NCT02259426 35/ arm  Asymptomatic 0.25 to 0.6 mg/kg Day 2 DP Normal and 

deficient 

Hb change 14 

days 

N 

Mali (302) NCT02535767 28 18 to 

50 

Variable 0.4, 0.45, 0.50 

mg/kg 

Day 0 DP Deficient males Hb change 28 

days 

Y 

Tanzania (303) NCT02090036 220 >1 Symptomatic 0.25 mg/kg Day 0 AL Normal and 

deficient 

Hb change 28 

days 

N 

Swaziland, Senegal 

(304) 

PROMPT (survey) 

 

* >1 Symptomatic 15 mg Day 0 AL, DP, AS 

+ AQ 

Normal and 

deficient 

Hb change day 0 

to day 7 

N 

Gabon, DRC and 16 

Asian sites 

NCT02453308 1680 0.5 to 

65 

Symptomatic Not specified Day 0 DP, AL, MQ Normal and 

deficient 

Hb change 42 

days 

Y 

Senegal (305) PACTR201411 

000937373 

300 20 to 

50 

symptomatic 0.25 mg/kg Day 0 ACT Normal and 

deficient 

Hb change day 0 

to day 7 

N 

* pharmacovigilance study 

AL = artemether-lumefantrine; DP = dihydroartemisinin-piperaquine; AS = artesunate; AQ = amodiaquine; MQ = mefloquine 
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 Alternatives to primaquine   

 Existing drugs 

The efficacy and safety data we have available for primaquine in Africa is from well-defined 

low risk trial populations or from G6PD deficient individuals in a controlled environment. If we 

cannot guarantee primaquine’s safety for general population roll out, where the risk in the 

context of co-morbidities, pregnancy or postnatal status, and potential drug interactions is 

undefined, should we opt for a safer alternative? If so, what drugs are available?  

The thiazine dye, methylene blue was the first synthetic antimalarial compound (306).  It is an 

inhibitor of the parasite glutathione reductase and, like the 4-aminoquinolones, prevents the 

polymerization of haem into haemozoin. In vitro schizontocidal activity has been 

demonstrated (307) and there is some evidence of synergy with the schizontocidal activity of 

artemisinin derivatives. It also prevents the development of methaemoglobinaemia; by 

converting iron from the ferric (Fe3+) to its ferrous state (Fe2+), it reduces oxidized 

haemoglobin.  Its use as an antimalarial was phased out after the introduction and 

widespread use of chloroquine. Since then it has been used primarily as a treatment for 

pathological levels of methaemoglobinaemia. It is not effective as monotherapy, but there is 

renewed interest in its antimalarial properties as part of an ACT (308). Its gametocytocidal 

properties have prompted its investigation as an alternative to primaquine as a drug for 

malaria elimination. 

Coulibaly et al compared gametocyte clearance after treatment of uncomplicated Plasmodium 

falciparum malaria in Burkinabe children with artesunate-amodiaquine with and without the 

addition of 15mg/kg (?base) methylene blue dispersible tablets (309).  Gametocyte clearance 

was measured by reciprocal time to positivity (TTP-1) of submicroscopic gametocytaemia, 
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measured by QT-NASBA. Despite the finding that a significantly higher proportion of children 

had microscopic gametocytes at baseline in the artesunate-amodiaquine plus methylene blue 

group (6.5% versus 1.0%, in the artesunate-amodiaquine group, p=0.04), by day 7, the TTP-1 

was significantly lower in the artesunate-amodiaquine plus methylene blue group than the 

artesunate-amodiaquine alone group (0.037 [interquartile range 0.030-0.041] versus 0.045 

[interquartile range 0.039-0.051], respectively, p<0.001). 

Haemolytic toxicity is seen in individuals with G6PD deficiency (310). It can cause severe 

anaphylactoid serotonin toxicity in patients on monoamine oxidase inhibitors or selective 

serotonin reuptake inhibitors. 

Following primaquine’s introduction to malaria elimination strategies, methylene blue is being 

investigated as an alternative to primaquine. In a registered trial, NCT02851108, Burkinabe 

children aged 6 months to 5 years with any G6PD status and uncomplicated Plasmodium 

falciparum malaria received fixed dose artesunate-amodiaquine with either 0.25 mg/kg 

primaquine (n=50) on day 2 or 15 mg/kg methylene blue daily for three days. The primary 

endpoint was the day 0 to day 7 haemoglobin change and secondary endpoints included 

gametocyte prevalence and density assessed over 28 days. Compared to ACT alone, 

submicroscopic gametocyte prevalence was noted to be reduced with methylene blue from 

day 7 onwards in a previous trial  but, significantly lower haemoglobin levels attributable to 

methylene blue were found on day 2 and day 7 after treatment started and there was 

significantly more vomiting in the methylene blue arm (309). A recent trial,  in Mali compared 

primaquine and methylene blue with partner antimalarial treatment (311). Efficacy, safety 

and pharmacokinetics were evaluated in phenotypically G6PD normal males (aged 5-50 years) 

with asymptomatic gametocyte carriage in four parallel treatment arms. Sulphadoxine-

pyrimethamine-amodiaquine was administered with and without 0.25 mg/kg primaquine on 

day 0 and dihydroartemisinin-piperaquine was administered with and without 15 mg/kg 
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methylene blue daily for three days. Transmission-blocking was assessed using gametocyte 

measurements and infectivity studies at baseline, day 2 and day 7. The two test drugs were 

given with different partner ACTs, which may have differing impacts on post-treatment 

gametocyte prevalence (section 5.2.3). Infectivity to mosquitoes was reduced significantly in 

the arms containing primaquine and methylene blue compared to their reference arms of 

partner drug alone. The transmission-blocking effect (using membrane feeding outcomes) and 

pharmacokinetics of primaquine versus methylene blue were explored further in an in vitro 

study in Thailand, NCT01668433. In summary, methylene blue appears to have a similar 

efficacy profile to primaquine. The haematological risk of methylene blue treatment also looks 

similar to that with primaquine dosing of 0.25-0.5mg/kg; a significantly reduced haemoglobin 

in the treatment arms but no severe haemolysis (309, 311). However, vomiting with 

methylene blue carried a risk of non-completion of treatment and exclusion from enrolment. 

This might make it a less attractive option for mass treatment. 

Tafenoquine has been under evaluation for chemoprophylaxis for Plasmodium falciparum 

malaria (312) and for anti-relapse therapy for Plasmodium vivax infection (313, 314), but not 

for a transmission-blocking indication. The primaquine pro-drug bulaquine (synonyms: 

elubaquine, aablaquine) cleared microscopic gametocytes more rapidly and left fewer viable 

gametocytes compared with primaquine 0.75mg/kg base (215, 315).  No trials are in the 

public domain comparing the safety and efficacy of bulaquine with low-dose primaquine. In 

particular, comparative mosquito infection efficacy data and safety data in G6PD deficient 

individuals may be of value. 

Ivermectin is used for the treatment of nematode infections and scabies (316) and for mass 

drug administrations for the control and elimination of onchocerciasis (317, 318) and 

lymphatic filariasis (319). It has been found in in vitro and veterinary studies (320, 321), and in 

clinical studies (322, 323) to be lethal to anopheles mosquitoes (endectocidal) when ingested 
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in sufficient concentrations in a human or animal blood meal and this property has led to 

investigation of its potential as a tool for malaria elimination. For zoophilic Anopheline 

vectors, treatment of livestock may be optimal and for anthropophilic vectors, treatment of 

humans may have higher impact (324). Specific challenges include defining the endpoints to 

assess the efficacy of ivermectin, defining the optimal dose of ivermectin in humans for safety 

and efficacy to kill mosquitoes, delineating the strategy and dosing schedule in humans and 

livestock for its administration (325). In recent years, a research agenda has been developed 

to provide an informative evidence base (322) and a target product profile was generated by a 

technical committee and presented to the WHO Malaria Policy Advisory Committee (MPAC) to 

focus research and policy initiatives (326). 

 New drugs 

Contemporary recommendations are that integral activity against sexual stages should be an 

essential characteristic, a component of the “target product profile”, of all new antimalarial 

drugs (107). This has been accompanied by a flourish of high throughput methods to screen 

new candidate compounds for activity against gametocytes (108, 327-329). The development 

of stage-specific assays, for example, to assess in vitro efficacy, can highlight drugs with 

transmission-blocking effects as candidates for further development (108, 330, 331). Some 

examples are highlighted below. 

The monovalent ionophores, including salinomycin, monensin and nigericin, are being 

repurposed from their established use in veterinary medicine (332, 333). They exhibit very low 

IC50 values for viability of mature gametocytes and ookinetes, as well as asexual stages, 

meriting further downstream drug evaluation (334). 

In vitro assessments indicate that the spirindolone drug KAE609 (formerly, NITD609) 

significantly reduces early and late stage gametocyte counts and oocyst counts in standard 

membrane feeding assays (335). More recently, the drug has undergone phase II clinical trials 
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for both asexual and sexual stage efficacy against both Plasmodium falciparum and P. vivax 

malaria (336). Parasite clearance times are rapid and there are indications of good tolerability, 

nausea being the most common side effect. Participants were unselected for G6PD deficiency, 

given that drug-induced haemolysis has not been observed. 

The imidazolopiperazine KAF156 has undergone Phase I (337) and Phase II trials (338). Slightly 

longer parasite clearance times are observed and adverse events of a range of character were 

seen in the majority of participants, the most common being sinus bradycardia, hypokalaemia, 

hyperbilirubinaemia, anaemia and thrombocytopenia. 

 The choice of partner ACT for combination with primaquine 

Until novel compounds are available, which ACT should best be combined with primaquine for 

optimal effect on transmission? Following an ACT plus gametocytocidal drug intervention, a 

gradual resurgence of gametocyte carriage is observed in an endemic setting (after 

approximately 14 days following AL treatment) and is attributed to re-infection (63). 

Subsequently, the risk that individuals will be infectious will gradually increases (summarised 

in Bousema, 2011 (37)). An optimally-effective schizontocide should partner the 

gametocytocidal drug intervention in order to prevent emerging gametocytaemia from 

untreated asexual parasites. ACTs provide rapid and powerful asexual efficacy and have been 

recommended for first-line use globally since 2005 (339), but their effectiveness is threatened 

by the development of artemisinin resistance (22). Reduced asexual parasite clearance time 

was associated with patent gametocytaemia (above the microscopic detection level) after 

treatment in the TRAC study, that characterised and mapped artemisinin resistance across 

Southeast Asia and in three African sites (340). At sites with longer parasite clearance times, 

pre-treatment gametocytaemia was also more prevalent, suggesting a sustained effect at 

population level.  
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The choice of partnered drugs in an ACT is an integral determinant of its asexual efficacy (341) 

and failing antimalarial drug regimens have been characterised by increased post-treatment 

gametocytaemia (342) and the risk of onward transmission (66). A prospective study of 4116 

children treated with four different ACT regimens for uncomplicated Plasmodium falciparum 

malaria across 12 sites in sub-Saharan Africa found gametocyte prevalence to be significantly 

higher in children after treatment with dihydroartemisinin-piperaquine or artesunate-

amodiaquine or chlorproguanil-dapsone-artesunate than those treated with artemether-

lumefantrine (343). The duration of gametocyte carriage was also shorter with AL.  

A meta-analysis of 121 trials, including 48 840 patients confirmed these findings (48); 

sulphadoxine-pyrimethamine-amodiaquine and dihydroartemisinin-piperaquine were 

associated with an increased risk of development of patent gametocytaemia after treatment 

compared to artemether-lumefantrine of artesunate-mefloquine. This powerful analysis 

countered previous findings in showing no association of asexual parasite clearance times 

with post-treatment gametocytaemia, implying the importance of both the initial treatment 

efficacy and the post-treatment prophylaxis effect of the partner drug.  

Will these differences in post-treatment gametocytaemia compromise primaquine’s impact 

on transmission interruption enough to favour the selection of any given partner ACT? 

Primaquine’s action against gametocytes is early and rapid and could be expected to negate 

the effects of varying ACT combinations. In Myanmar, there was no difference in patent 

gametocytaemia after treatment with six difference ACT regimens when 0.75mg/kg 

primaquine was added. With low dose primaquine, the assessment of microscopic 

gametocytaemia and transmission outcomes combined with different ACTs will be pertinent.  
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 Areas for future research/ unanswered questions 

 Primaquine pharmacokinetics and pharmacodynamics 

An important component of safe, widespread roll-out of primaquine is an understanding of 

the pharmacokinetics of the drug and its potential interactions with co-administered 

medications.  

The cytochrome P450 isoenzymes, particularly 2D6, 3A4 and 2C19, play an significant role in 

primaquine metabolism, along with the monoamine oxidase enzymes (344, 345). Hence there 

is potential for interaction with other drugs. Similar to the synergy found between primaquine 

and chloroquine (346), increased plasma primaquine levels were found when it is co-

administered with dihydroartemisinin-piperaquine (347). Primaquine concentration is also 

increased by co-administration with pyronaridine-artesunate (348).  

In addition to CYP 2D6 enzyme activity, age and weight were found to affect primaquine 

pharmacokinetics in a sister study to this thesis (349). Unfortunately, due to substandard 

sample conditions in transit, all of the samples were thawed and, therefore, the novel 

pharmacokinetic analysis that was planned for this thesis (350) (Appendix A: Trial protocol) 

could not be conducted. 

Primaquine is typically available in its racemic form. Recent work suggests that the different 

enantiomers vary in their anti-parasitic efficacy and also in toxicity in terms of propensity to 

cause methaemoglobinaemia and haemolysis (351). The different enantiomers are also 

metabolised at different rates, which may affect the likelihood of formation of clinically-

significant metabolites (352). The properties of the primaquine enantiomers have been 

further characterised by population pharmacokinetic modelling (353).  

Whilst polymorphisms resulting in differential isoenzyme activity may be more important in 

determining the outcome of longer course primaquine for P. vivax radical cure (354), these 
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findings need some consideration for single low-dose primaquine interventions. Clearly, more 

work is needed to establish any interactions between primaquine and commonly co-

administered drugs, including anti-retroviral drugs for HIV. 

 Haematological response in asymptomatic and unparasitised populations 

Reportedly, millions of people have received primaquine without screening for G6PD 

deficiency as part of large MDAs in the former USSR (355) , in China (87) and in US Army 

malaria programmes during the war in Vietnam (202) and Korea (87). All reported deaths due 

to primaquine have been associated with multiple doses (73). If single-dose primaquine is to 

be distributed in population mass treatment initiatives that incorporate asymptomatically 

infected or even uninfected individuals, a quantitative understanding of the risks is crucial. 

Very limited data are available currently. 

In an extensive review of the safety of primaquine, Recht, et al., (73) found that, in all records 

of patients receiving any dose of primaquine (single or multiple), whether in case-based 

treatment or mass drug administrations with published outcomes, the risk of death 

attributable to primaquine treatment was 1 in 621 428. For single low-dose primaquine , the 

risk of severity and death from haemolysis is expected to be low (290). Data are available from 

small, focussed clinical trials assessing the risk of haemolysis in G6PD deficient individuals 

(section 5.2.1.3 and 5.3.3), but these trials comprise a combination of symptomatic and 

asymptomatic individuals in a defined study population. Few trials have included unselected 

and untested individuals in a community.  

 Pharmacogenomic factors 

The investigation of the haematological toxicity of primaquine in the 1950s led to the 

discovery of G6PD deficiency and highlighted the importance of pharmacogenomics in 

antimalarial therapeutics (95). The last few decades have seen increasing recognition of the 

role of genetic factors in treatment failures and drug-attributable adverse events. This has 
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driven research to increase our understanding of the molecular mechanism underlying 

particular phenotypes. There is a niche for pharmacogenomic analysis to help inform cost-

effectiveness assessments and to help drive policy decisions (356). The Worldwide 

Antimalarial Resistance Network (WWARN) are collating and analysing huge pharmacogenetic 

datasets from clinical trials (see http://www.wwarn.org) to help define drug resistance and to 

optimise drug dosing. Regional bodies such as the African Medicines Regulatory 

Harmonization Initiative aim to facilitate processes to enable such data to impact policy and 

health (357) . 

 G6PD variants 

Limited data are available on the safety of low dose primaquine in the wide range of G6PD 

deficient variants across the globe. Results are available from African studies assessing 

haemolysis risk with a single dose of 0.25mg/kg primaquine in G6PD deficient individuals (251, 

302). These clinical trials involve well-defined study populations, but, few large community 

interventions have been conducted to assess primaquine safety in Africa, where the A- variant 

is prevalent. In a cluster randomised mass drug administration trial of 1110 individuals in 

Tanzania, given sulphadoxine-pyrimethamine plus artesunate  plus primaquine (0.75mg/kg) 

versus placebo (358), although day 7 haemoglobin fell most significantly in the G6PD A- 

individuals, haemolysis was also seen in the wild type group and the most severe haemolytic 

event was in a child with G6PD B genotype (101). This suggests that other pharmacogenetic 

factors may be important, or that the single nucleotide polymorphisms used to identify the A, 

B and A- G6PD variants may incompletely define the range of G6PD alleles in the African 

population. 

In Southeast Asia, compared to Africa, the diversity of genotypes is high, as is the range of 

residual enzyme function that the variants encode (191, 359). A large study of Targeted 

Malaria Elimination in a population on the Myanmar-Thailand border assessed the safety of 
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three monthly rounds of MDA containing dihydroartemisinin-piperaquine and a single dose of 

0.25mg/kg primaquine (290). The frequency G6PD deficiency was 13.7% using phenotypic 

testing and residual enzyme function ranged from 3.9% of normal (Canton variant) to 73% of 

normal (Mahidol and Viangchan variants), with considerable variability seen within the 

Mahidol variant (290). The fractional fall in haemoglobin after treatment was significantly 

greater in G6PD deficient individuals after the first and second doses of primaquine and, 

unlike people with normal genotype, they did not see a total rise in haemoglobin over the 

three months of follow up. There were, however, no recorded episodes of symptomatic or 

clinically significant haemolysis, leading to the conclusion that low dose primaquine can be 

administered safely without prior G6PD testing.  

The greatest unpredictability is in female G6PD heterozygotes, whose residual enzyme 

function may be highly variable (360). Effective prior testing at the point of care for G6PD 

status, particularly in this group, is challenging, because phenotypic tests may be normal. 

Further work correlating haemolytic risk with G6PD genotype, including exploration of new 

mutations using sequencing, and gender will be valuable. 

 Cytochrome P450 (cyp) variants 

The isoenzyme cytochrome P450 2D6 is highly polymorphic with allelic variants exhibiting a 

broad range in levels of enzyme activity. In common with a significant proportion of drugs 

available on the market (361), it has an essential role in the hepatic metabolism of primaquine 

(345).  In 2013, Bennet reported two failures of primaquine treatment for radical cure of P. 

vivax in two individuals in a malaria challenge experiment (362). They were found to have low 

CYP2D6 enzyme activity. Subsequent work demonstrated failure of primaquine as a causal 

prophylaxis in CYP2D6 knockout mice exposed to Plasmodium berghei infection (363), leading 

to concern that primaquine should be used with caution for primary prophylaxis in some 

human populations (364). CYP2D6 variants have been categorised into four different 
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phenotypes: poor, intermediate, extensive, and ultra-rapid metabolisers (365) . Potentially, 

identification of populations with a high frequency of poor metabolisers could highlight 

people at risk of drug failure. Ultra-high metabolisers might theoretically be at a higher risk of 

adverse events (344). However, thus far, it appears that the proportion of individuals with the 

extremes of enzyme functionality is relatively small (366) and although there is geographical 

variation in the distribution of genotypes, the diversity is higher within populations than 

between populations (366). At this stage, there is no obvious lead as to how to direct policy 

decisions in a given population. Whether there are settings where genotypic or phenotypic 

testing for CYP2D6 variation, for which a range of methods have been identified (367) will be 

cost-effective has yet to be determined. Testing requires large volumes of blood and high 

costs in terms of time, expertise and equipment. Furthermore, although CYP2D6-meditated 

metabolism is important for action against the hepatic stages of Plasmodia spp., there is some 

evidence that it may be unnecessary for action against the asexual and the sexual erythrocytic 

stages (368). By contrast, CYP2C8, CYP2C9 and CYP3A5 activity appeared to correlate with P. 

vivax gametocyte clearance in 164 individuals in the Brazilian Amazon (369) after treatment 

with chloroquine and primaquine(369). Clearly, more pharmacogenomics work is needed in 

target populations for primaquine treatment.   

Drug interactions mediated by CYP2D6 activity should also be considered, such as primaquine-

chloroquine potentiation and the effect of other CYP p450 isoenzymes on the metabolism of 

ACTs (370). Pyronaridine, a relatively new antimalarial, is a potent inhibitor of CYP2D6, and 

increases the plasma concentration of primaquine (348).  

247 out of 468 samples from the trial in this thesis were genotyped successfully for CYP2D6 

(371, 372). The percentage of poor metabolisers and ultra-rapid metabolisers was 2%. 25% of 

the children were extensive metabolisers. For those who received the 0.4mg/kg primaquine 

dose, day 7 gametocyte prevalence was 7% (2/28) in children who were either extensive or 
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ultra rapid metabolisers, compared to 38% in the intermediate metabolisers and 100% (1/1) in 

the poor metaboliser (P=0.009). The unequal distribution of samples across treatment groups 

prevented further conclusive analysis. CYP2D6 activity data from this trial and subsequent 

primaquine trials in Burkina Faso, Mali, Kenya and The Gambia were pooled in a recent 

analysis (372). CYP2D6 data from these trials were incomplete, but suggested that poor and 

intermediate CYP2D6 metabolisers were more likely to have persisting gametocytes after ACT-

primaquine treatment, whilst safety (haemoglobin concentration) was not affected. 

 

The challenge is to decide what should be the policy implications for the size of the effect 

these polymorphisms have on primaquine safety and efficacy. Whilst these polymorphisms 

might be more relevant in determining outcomes of Plasmodium vivax anti-relapse treatment 

(373), currently, there is little suggestion that their effect should be taken into account in 

policy for Plasmodium falciparum gametocyte clearance treatment, given that the effect is 

comparatively limited. 

 Methaemoglobinaemia 

Methaemoglobinaemia is an expected side effect of primaquine treatment (219). The 

oxidising action of primaquine increases production of methaemoglobin until drug levels fall 

and the NADH-dependent reducing system compensates and levels normalise (90). 

Methaemoglobin is seldom measured in primaquine safety evaluations, because after 

primaquine treatment, levels are typically sub-clinical (89). Levels increase in proportion with 

the dose of primaquine, but, even at a high dose of 1.14mg/kg daily for 14 day vivax relapse 

prevention, no treatment interventions were needed in a Colombian trial (374). 

As the proportion of methaemoglobin in the blood increases, cyanosis is detectable, causing 

pale, grey or blue coloured skin, lips, and nail beds. Symptoms develop when methaemoglobin 
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levels are over 30%: light-headedness, headache, tachycardia, fatigue, dyspnoea, and 

lethargy. Very high levels, over 50-60%, may be life-threatening (90).  

A cluster of congenital and acquired conditions can increase the propensity to 

methaemoglobinaemia. Congenital causes, such as methaemoglobin reductase deficiency 

(Cytochrome b5 reductase deficiency) may cause a raised baseline methaemoglobin or 

individuals may be asymptomatic unless exposed to an oxidising trigger (such as primaquine) 

(375). Acquired methaemoglobinaemia is precipitated only after ingestion of trigger 

compounds and may result from partial enzyme deficiency. Case reports have identified 

individuals with documented or likely enzyme deficiencies who have suffered clinical 

methaemoglobinaemia after antimalarial treatment (376, 377) . Future pharmacogenomic 

studies might elucidate the extent to which these polymorphisms contribute to primaquine-

related adverse events.  

 The risk of primaquine in pregnancy and lactation 

The G6PD status of the foetus cannot be determined routinely and therefore haemolytic or 

other risks due to primaquine treatment in pregnancy cannot be excluded. In accordance with 

the WHO guidelines and drug labelling, women who are pregnant have been excluded from 

population interventions and treatment with primaquine (33, 247). No clinical trials have 

assessed the efficacy or safety of single-dose primaquine for transmission-blocking in 

pregnant or lactating women. A missed abortion in a woman in Switzerland in 2002 was 

reported as potentially caused by the drugs she was treated with; primaquine and 

artemether-lumefantrine for malaria and ciprofloxacin, for a bacterial infection (73). Malaria 

infection itself increases the risk of stillbirth (378) and it increases the risk of miscarriage 

independently of antimalarial treatment (379).  

A recent evaluation of primaquine pharmacokinetics in lactating women suggests that very 

limited amounts of primaquine are secreted in breastmilk and that the plasma concentrations 
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of primaquine in breastfed infants are too low to pose any risk of haemolysis (380). Plasma 

levels in women and infants were assessed during 14-day treatment for radical cure of P. vivax 

(primaquine base 0.5mg/kg/ day). The authors recommend that primaquine should not be 

withheld in breastfeeding women. 

Pregnant or lactating women are likely to represent a significant proportion of the infectious 

reservoir for malaria transmission (381, 382) and the cost of their exclusion from community 

interventions must be considered, both in terms of operational feasibility and the 

effectiveness of the intervention.  

 

 HIV, malnutrition and other at risk populations 

Primaquine administration in people who have both G6PD deficiency and an elevated baseline 

risk for anaemia would be expected to carry a higher likelihood of harm. Examples include HIV 

infection, helminth infection, malnutrition and chronic disease; conditions that are prevalent 

in malaria-endemic countries (383-386). HIV co-infection is known to increase the parasite 

density and severity of malaria and increase the risk of anaemia (387). In addition, the risk of 

drug-drug interactions from ongoing treatment, e.g. with anti-retroviral drugs for HIV, may 

increase the chance of adverse outcome. Co-morbidities are typically an exclusion criterion in 

clinical trials designed to assess the safety of low dose primaquine in African and Asian 

populations with G6PD deficiency (e.g., ClinicalTrials.gov trial identifiers: NCT02535767 in 

Mali, NCT02434952 in Cambodia, NCT02259426 in Kenya). Upon population deployment, 

however, it is in these vulnerable subgroups that the risk of primaquine treatment needs to be 

considered carefully. More research is needed to assess the likely impact of population 

interventions that would include these groups. 
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 Endemicity: does the transmission setting matter? 

Human-generated immune responses against molecular components of the gametocyte may 

affect the likelihood that the gametocyte develops to maturity, the rate of its clearance from 

the bloodstream and the success of its infectiousness to mosquitoes when ingested in a blood 

meal. They may also influence the likelihood of fertilisation and sporogony within the 

mosquito (388-390), (reviewed in (391)). These properties place them as candidate molecules 

for transmission-blocking vaccines (388). Their presence is correlated with reduced 

transmission in mosquito membrane feeding studies (392, 393). 

There is some evidence that the expression of anti-gametocyte antibodies is increased during 

the transmission season (394) and correlates with exposure to gametocytes (395). Therefore, 

the prevalence of anti-gametocyte immune responses may vary depending on extent of prior 

exposure to the parasite and with transmission intensity. The transmission-blocking effect of 

primaquine in trials, such as this one, conducted in a non-elimination setting may differ to one 

involving participants from an area of lower transmission intensity if different levels of anti-

gametocyte immunity affect drug efficacy. In line with evaluations of transmission-blocking 

vaccines (51) the impact of the level of anti-gametocyte antibodies on likelihood of 

transmission with and without primaquine deserves consideration. Human anti-gametocyte 

antibodies have been shown to reduce transmission in mosquito feeding assays, but the effect 

is complex (393). It is unlikely that it would have a significant effect on the efficacy of 

primaquine. 

 Application: is there a role for primaquine in mass drug administrations? 

As a tool for malaria elimination, primaquine is recommended to reduce transmission at 

population level. The outstanding question is how should the drug best be deployed? Current 

guidelines recommend adding primaquine to treatment of clinical cases of malaria, i.e., case-

based treatment. There is much debate over the potential impact of this strategy compared to 
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mass drug administration campaigns designed to interrupt community-level transmission over 

a defined time period. Mass drug administration involves administration of antimalarials at 

the same time to all members of a given population regardless of age and sex and malaria 

infection status. High coverage is a crucial determinant of the impact of an MDA (84, 396) and 

this requires community buy-in of acceptability, safety and efficacy of the intervention and 

efficient systems for implementation and monitoring; all of which are logistically challenging 

(397-401). 

In the last half century, several mass drug administrations have included primaquine or 

another 8-aminoquinoline as a gametocytocide, but they form a highly heterogeneous group 

of interventions, leaving little consensus data with which to predict the effect on community-

level transmission, the optimal strategy for implementation or the safety implications when 

primaquine use is scaled up. Almost exclusively, they comprise baseline and end-line surveys 

of parasite prevalence (396, 401), rather than integrally testing a hypothesis, incorporating a 

control arm or randomisation strategy. There is great variation in the drug regimen 

administered, in the choice of schizontocidal drug, the dosing regimen, the number of rounds 

of MDA, the malaria species targeted, the simultaneous deployment of vector control 

interventions and the selection and handling of individuals who were excluded from the 

intervention (e.g. children, pregnant women and people with G6PD deficiency) (396, 401, 

402). A small number of interventions are in low and moderate transmission settings, where 

elimination efforts will be focussed (see public health section). Conclusions on efficacy or 

effectiveness of MDA depend on how and at what time interval after the intervention it is 

assessed, since the reduction of transmission after MDA is expected to be transient, with an 

ultimate return to pre-intervention levels (84).  

Reviews of primaquine-containing MDA interventions have discovered no reports of deaths, 

prolonged hospitalisations or blood transfusions  (73, 396, 401), yet many programmes and 
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studies lack safety assessments relevant to the risk of haemolysis with G6PD deficiency or 

systematic prospective pharmacovigilance methodology. Two successive WHO Evidence 

Review Groups have concluded that clear evidence is lacking for any benefit of the addition of 

single low dose primaquine to MDA regimens (402, 403). Further studies will address the 

incorporation into MDA of alternative transmission-blocking agents, such as ivermectin or 

methylene blue (404).  

Kaneko reported the complete absence of microscopic parasite detection in a population on 

Vanuatu island in following 9 weekly administrations of chloroquine, pyrimethamine-

sulfadoxine, and primaquine (0.75mg/kg) (405). Song and colleagues conducted a MDA in 

3653 individuals in rural Cambodia, administering low dose primaquine (9mg adult dose, 

approximately 0.15mg/kg) with artemisinin-piperaquine (406). The ACT was given at baseline, 

with primaquine, then the primaquine dose was repeated every 10 days for six months, 

regardless of G6PD status. ACT treatment was repeated if the village parasite rate was >10%. 

There was a dramatic reduction in, but not elimination of, microscopic parasitaemia over the 

three-year study period. There was no comparator arm without primaquine. The safety 

analysis of the three-monthly rounds of MDA with dihydroartemisinin-piperaquine and a 

single dose of 0.25mg/kg primaquine (on day 1) given in an MDA in Thailand (290) are 

reviewed in section 6.3.3.1. There was no comparator arm without primaquine 

administration. Subsequent southeast Asian primaquine-ACT containing mass drug 

administrations have demonstrated early reduction in parasite rates with three consecutive 

monthly rounds in Myanmar (407), and three annual rounds in Laos (408). Although 

primaquine was well-tolerated, the population parasite rate rose after discontinuation. An 

Indonesian MDA showed no impact on malaria transmission of two to three rounds of 

primaquine and dihydroartemisinin-piperaquine treatment (409). In the low transmission-

setting of Zanzibar, a two-round primaquine-containing MDA had no effect on PCR-detected 

parasite rate (410). In contrast, in the high transmission setting of Comoros, a high-intensity 
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MDA consisting of 3-monthly artemisinin-piperaquine with or without low-dose primaquine 

over a year, with 85-93% coverage, reduced malaria cases and malaria-attributable deaths 

(411). The effect on parasite rates was only reported in children, being reduced for up to 18 

months post MDA.  

Since mass treatment exposes community members who may be uninfected to potential drug 

toxicity, and the risk of emergent drug resistance, treating only those people who harbour 

malaria parasites may appear preferable. The cost-efficiency of pre-treatment screening for 

infection (mass screen and treat [MSAT] or focussed screen and treat [FSAT]) depends on 

optimised methods for the detection of infections and for implementation of testing. 

Screening with rapid diagnostic tests (RDTs) is found to miss low density infections (412-416) . 

Options include the use of more costly high-throughput PCR techniques (417) or opting for 

presumptive treatment with no screening. 

An ambitious cluster randomised trial compared the impact on population parasite prevalence 

of focussed screening and treatment (FSAT or fMDA) with more standard MDA compared with 

no mass treatment and found no benefit from screening (with RDTs) prior to treatment (418). 

The ACT used was dihydroartemisinin-piperaquine and primaquine was not given. A clear 

benefit of MDA was offset by a parallel reduction in parasite prevalence and malaria incidence 

in the control arms, attributed to improved access to treatment and vector control during the 

study period. Further studies have found a limited impact of mass screening prior to 

treatment (413, 419, 420) and it was advised against in the recommendations of the WHO 

Evidence Review Group meeting (403). 

It is clear that we need to understand how MDA can best be incorporated into long-term 

elimination strategies alongside other control interventions in order to sustain a lasting 

impact on transmission (25, 402). Current, evidence suggests that MDA antimalarial drugs 
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should have a long half-life and be different to the national first-line antimalarial treatment, to 

minimise risks of the development of drug resistance. 

More work is needed to assess the relative contribution of primaquine (or other 

gametocytocidal/ transmission-blockers) versus ACT (or other schizontocide); to explore at 

what level of transmission and in what populations MDA is likely to have the highest impact; 

to determine how safety can be optimised and monitored; and to explore the relative effect 

of ACT drug efficacy, in the context of emerging artemisinin-resistant parasites. Table 5-3 

highlights the settings where the WHO Evidence Review Group proposes that MDA should be 

considered for Plasmodium falciparum  control (402) (Table 5-3). 
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Table 5-3 Settings in which mass drug administration should be considered for control of 

Plasmodium falciparum malaria, as advised by the WHO Evidence Review Group, 2019 (402) 

Settings where mass drug administration may contribute to the control of Plasmodium 

falciparum malaria 

Low transmission areas approaching elimination with good access to treatment, 

minimal risk of re-introduction of infection and implementation of vector control and 

surveillance. 

Endemic island communities with limited risk of re-introduction of parasites, with 

implementation of effective treatment, vector control and surveillance 

For short term reduction in transmission in areas of moderate to high transmission, but 

evidence is lacking that this accelerates progression towards elimination 

To reduce the spread of multi-drug resistant malaria (in the Greater Mekong sub-

region), but with recognition that effective antimalarial options for MDA are limited 

due to widespread multidrug resistance 

As a time-limited intervention, to reduce morbidity and mortality where a health 

system is overwhelmed, such as, for epidemic control, and in complex emergencies 

 

 Dosing regimens for low-dose primaquine: single dose, multiple doses and seasonal 

dosing 

The optimal timing of gametocytocidal interventions during the course of treating an infection 

has not yet been investigated. Given that ACT incompletely clears gametocytes (421), and 

considering the timescale of further emergence of gametocytaemia post ACT (WWARN 

gametocyte), how and with what treatment regimen can we get the greatest gains by using 
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primaquine to clear mature gametocytes? For optimal safety, dose-finding studies have 

administered primaquine on day 2, to avoid dosing during the haemolysis of acute malaria 

infection (63, 256, 259, 287), but day 0 administration retains high transmission-blocking 

efficacy (206, 422) and is operationally desirable, requiring no further interface with health 

services or reliance on compliance.  

An open-label trial in 250 G6PD normal aged Tanzanian children aged 3 to 17 years with 

uncomplicated malaria will compare submicroscopic gametocytaemia and haemoglobin levels 

post dosing on day 0 versus day 2. 0.75mg/kg primaquine (NCT01906788). 

Any residual asexual parasites after ACT therapy can potentially enable the development of 

mature gametocytes, leading to proposals that, for optimal impact, primaquine treatment 

should be repeated 2 weeks after ACT treatment (423). Where the efficacy of ACTs is reduced, 

with emerging artemisinin resistance, this may be a more important consideration, but 

operational practicality is likely to be challenging. 

 Modelling the effect of primaquine 

Mathematical modelling provides a tool to predict the impact of health interventions. In the 

context of transmission-blocking, the lack of data on the community level impact of 

primaquine treatment leaves a niche for models to help guide policy. Models synthesise 

paradigms, using existing data as an input, to run simulations. The layering of different 

simulations can incorporate considerations of differing malaria epidemiology and differing 

intervention strategies (25, 424, 425), drug resistance and pharmacokinetics (426, 427) , 

parasite and vector biology (424, 428), health systems, treatment seeking behaviour and 

health economics (429) to increase the relevance to a given real-life setting (430, 431) . Where 

data are lacking, the models use assumptions and they often incorporate significant degrees 

of uncertainty; it is crucial that these limitations are considered carefully when using models 

to design interventions. 



209 
 

There is a consensus across modelling groups that the additional impact of primaquine, added 

to ACT interventions, will be small (432). The prediction is that ACT itself has such a large 

effect on transmission interruption, when administered at high coverage in a population, that 

ongoing transmission after a mass treatment intervention will be attributed mostly to 

individuals who did not participate and were untreated (432). The impact depends on 

whether ACTs are used for case based treatment, for presumptive treatment, or mass drug 

administration (25) Hence, although infectiousness after ACTs is well-demonstrated in 

individuals (37, 62-66), this is predicted to have only an incremental effect on ongoing 

transmission compared to reducing the asexual parasite burden by administering ACTs widely 

in the population (228, 426, 433). However, how primaquine’s action is calculated in the 

models may affect the interpretation of their outputs. For example, data from gametocyte 

measurements underestimates the rapidity of primaquine’s action compared to mosquito 

feeding assays (124). Furthermore, in the light of emerging artemisinin resistance, modelling 

suggests an important role for primaquine in preventing transmission of resistant parasites 

(425). 

According to the models, two factors have a strong influence on the predicted impact of 

adding primaquine to ACT; the strategy for administration (to clinical cases versus to 

asymptomatic individuals) and the transmission intensity (434). Models evaluate primaquine 

interventions in two broad categories; primaquine administered to clinical malaria cases (25, 

424, 435) and primaquine administered in mass treatment initiatives, i.e. to a defined 

population, regardless of symptomatology (402). Whereas most models incorporate addition 

of primaquine to treatment for clinical cases (436), there is some evidence that in mass drug 

administrations, primaquine can have a modest impact especially when combined with a drug 

with a long prophylactic effect, such as dihydroartemisinin-piperaquine (426, 434) .  
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Perhaps the most important factor determining the impact of primaquine is the duration of 

individual infectiousness. Conceptually, if individuals remain infectious for a short period, then 

primaquine may have more impact, but if the duration of infection is long, then primaquine is 

less likely to have any additional impact to a long-acting ACT. Certainly, in mass drug 

administrations, evidence indicates that ACTs with a long half-life are desirable for optimal 

effect (402). Findings that the choice of non-artemisinin partner drug affects the risk of post-

treatment gametocytaemia (48) and by implication, the duration of infectiousness, make 

scrutiny of model parameters important. Primaquine may have a role in reducing post-

treatment infectiousness with some ACT combinations more than others.  

The consensus among modellers convening at a WHO expert review group in September 2015 

was that available data predicts that incorporation of primaquine into MDA will have limited 

additional impact on transmission (432). However, subsequent to this, a role for primaquine 

as a transmission-blocker has been proposed in both case management and MDA in low 

transmission settings and in combination with an ACT with long-lasting prophylactic effect in 

high transmission settings (434). 

 Predicting and analysing the cost-benefit of low-dose primaquine 

Cost-benefit analysis involves assessing the relative monetary costs of deploying an 

intervention, including the effects of any harms incurred and the costs to avert those harms, 

compared with the monetary benefits accrued from deploying the intervention, which may 

include the effects of prevented low productivity and deaths measured as disability-adjusted 

life-years (DALYs). A possible consideration prior to large scale intervention deployment, this 

has not been undertaken in depth for primaquine as a gametocytocide (197). The cost of 

excluding high-risk G6PD deficient individuals by prior testing needs to be considered. This has 

been explored for primaquine for radical cure of Plasmodium vivax infections (187, 437) and 

for the use of primaquine as a prophylactic agent (438). For Plasmodium falciparum 
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transmission-blocking, reliable prior testing for G6PD status in the individual healthcare 

setting in case-based treatment and in the field at population level for mass treatment 

initiatives would involve significant infrastructural costs to avert what appears to be a 

relatively small risk of significant haemolysis (Section 5.2.1.3). Identifying and excluding other 

high-risk groups, including pregnant women could be expected to have cost implications for 

both the delivery of the intervention and the benefit at population level. The accurate 

diagnosis, quantification and reliable recording of primaquine-induced haemolysis would be 

an essential component of a costed intervention and although tools have been proposed 

(304), effective systems for this pharmacovigilance have not yet been established. Although 

the cost of generic primaquine is small, accurate dispensing of the proposed low, single dose 

for transmission-blocking will involve the use of safely-prepared solutions as in this study or of 

new formulations of the drug, which might be expected come at an increased cost. It is hoped 

that these costs will not be prohibitive. 

 Public health application 

 What this trial addresses in the context of what is needed. Are we ready to use 

primaquine? 

 Where and how should primaquine be used optimally?  

At the individual level, we have clear evidence for the efficacy of primaquine in reducing 

gametocyte carriage and blocking transmission to mosquitoes. Recent trials have further 

defined its safety profile (Section 5.2.1.3). The gap in evidence is in the translational aspects of 

primaquine’s deployment. In what epidemiological settings would primaquine-containing 

interventions have the greatest impact? What is the optimal strategy for deployment; mass 

drug administrations, case-based treatment or a combination thereof? New research agendas 

will now focus on determining what sections of the population and what types of infection 

(symptomatic or asymptomatic) maintain transmission of Plasmodium falciparum malaria. 
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There is an important dichotomy focusing on the importance of treating the reservoir of 

asymptomatic infections. The proportion of submicroscopic and asymptomatic infections 

increases inversely with malaria transmission intensity, being highest in low endemic settings 

(415). In high endemic areas, asymptomatic infections predominate in individuals who have 

had most exposure to infections (30), typically, adults, who may be less easy than children to 

access in community outreach initiatives.  One premise, in recognition of the burden of low 

density infections across the range of transmission settings, their adverse clinical 

consequences (439), the challenges of detecting them (412, 414, 419, 440), and their 

contribution to ongoing transmission (415), is that the greatest gains will come from 

population-wide mass-treatment interventions. The counter argument is that, despite their 

frequency, the actual contribution of low-density infections to ongoing transmission is small 

compared to that of patent, symptomatic infections and that targeting symptomatic 

infections, with optimised case-based treatment, even in the absence of a gametocytocidal 

drug, will reduce population transmission most efficiently (434). An advantage to this 

approach is logistical; as transmission intensity falls, clinical cases are more easily detected if 

adequate surveillance is in place, and strengthened health systems allow for prompt 

treatment. This may be particularly efficient when malaria transmission has reduced recently 

(441). The malaria elimination in Sri Lanka is a case in point. The successful elimination 

campaign was based largely on enhancing the standard of care of clinical cases and a focus on 

maintaining the supply chain of ACTs and rapid diagnostic tests (442).  If primaquine is to be 

deployed, notwithstanding the inherent safety issues of its use, any success depends on 

treating the reservoir of infections that sustains transmission most efficiently in the 

population. Identifying the source and dynamics of ongoing transmission in any given 

population is therefore a priority for on-going research for malaria elimination. 
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 Pharmacovigilance: How can we ensure safety when primaquine is rolled out? 

Clinical trial evidence and extensive literature reviews suggest that low dose primaquine is 

safe, even in G6PD deficient individuals, but outside of the well-defined trial population, 

prediction of the risk to vulnerable members of the population is challenging (Section 5.3). 

Most studies reporting primaquine’s safety in risk groups include a cut-off defining severe 

haemolysis as a fall in haemoglobin of >2.5g/dL or >25% fall from baseline value. In a large 

community roll-out of primaquine, how acceptable would this definition be in people who are 

anaemic at baseline due to co-morbidity? How acceptable would this risk be compared with 

other largely accepted risks, such as that of sulfadoxine-pyrimethamine-induced Stevens-

Johnsons syndrome or toxic epidermal necrolysis? Large, historical mass drug administrations 

have reported are remarkable in the absence of reports of adverse events, haemolytic or 

otherwise associated with primaquine use (73, 401), but crucially, descriptions of surveillance 

systems for safety are limited. For a large roll-out of primaquine, tailor made 

pharmacovigilance would be essential. This would require large-scale health worker training, 

and provision for community-based G6PD screening, monitoring systems to detect severe 

haemolysis and platforms for data collection to monitor adverse events, potential drug 

interactions and safety in pregnancy and co-morbid conditions (443). The Primaquine Roll Out 

Monitoring Pharmacovigilance Tool (304) is being piloted in Swaziland in parallel with the 

implementation of policy to treat all clinical cases of malaria with ACT plus low dose 

primaquine. Safe deployment will require infrastructure to enable follow up and testing of 

haemoglobin and G6PD function in those at risk and access to safe and timely blood 

transfusion. This brings into question the cost-effectiveness of such an intervention; analyses 

that will need to be done to enable the process of policy development. A safer alternative to 

primaquine is clearly desirable although, as yet, none such exists. Pharmacovigilance 

infrastructure will be important for the range of transmission-blocking interventions under 

current evaluation, including tafenoquine and methylene blue. 
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 Therapeutic dose range 

At the country-level implementation, accurate primaquine dosing is a challenge. The need to 

titrate each dose to weight and the lack of incremental tablet sizes or a paediatric formulation 

mean that delivery of the drug in elimination interventions and in health clinics will require 

tailored equipment and training.  

A therapeutic dose range for single dose primaquine for transmission blocking represents the 

lowest efficacious and the highest safe dose. More data from safety trials and a WWARN 

analysis is in process, of pooled data from primaquine trials will define this further (198). 

Accurate dosing by weight is feasible in a clinical trial setting, but is costly and highly 

challenging at a programmatic level. Age-based dosing is preferable, but must be designed to 

avoid over- or under-dosing children at the peripheries of each category. Hypothetical dose 

bands have been generated from modelling potential therapeutic ranges (260).  A model 

incorporating pharmacological, pharmacokinetic and anthropometric data proposes four age 

bands for Cambodian children (444). A five age-band model has been developed for children 

in sub-Saharan Africa (445). Ideally, the dosing age-bands for primaquine will align with those 

for partner ACTs so that health workers can more easily assign as number of tablets for a 

given child’s age. Currently, the smallest available tablet size is 7.5mg and the case is being 

put forward to manufacturers for production of smaller dose per tablet for children; the ideal 

tablet size being informed by dose modelling (250, 446).  

 Drug availability/ licencing 

In the series of meetings of the Single Low-dose Primaquine Working Group, country 

representatives shared that they were encountering significant difficulty with the 

procurement of primaquine (443). 

Drugs that are rolled out at scale by international procurement agencies must carry a high 

standard of globally-recognised regulatory approval (447, 448) typically requiring that they 
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have attained WHO pre-qualification. The process of WHO pre-qualification scrutinises 

thoroughly both the product, in terms of its safety, efficacy and quality, and the manufacturer, 

in terms of their ability to assure the quality of the product and ensure that this is maintained 

between batches (449). If WHO pre-qualification has not yet been attained, Stringent 

Regulatory Authority approval may be accepted instead. A SRA is a drug regulatory authority 

defined by the WHO as either: “a member of the International Conference on Harmonisation 

of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) (as 

specified on www.ich.org); or an ICH observer, being the European Free Trade Association 

(EFTA), as represented by Swissmedic and Health Canada (as may be updated from time to 

time); or a regulatory authority associated with an ICH member through a legally-binding, 

mutual recognition agreement including Australia, Iceland, Liechtenstein and Norway” (page 

147 of (449)).  

For the off-label indication of transmission-blocking, primaquine phosphate is neither WHO 

pre-qualified nor is it approved by an SRA. Since it is a generic drug, and its use is already 

endorsed by the WHO, it is unlikely that manufacturers of primaquine will seek a label-claim 

for the transmission-blocking indication (199). Therefore, the evidence base for primaquine 

for transmission-blocking will come from non-commercial investigators, such as was the case 

in this thesis. As has happened with precedents such as the programmatic use of ivermectin 

and albendazole for helminth infections, it looks likely that collaboration between the WHO 

and partners such as the Medicines for Malaria Venture and manufacturers will enable WHO 

approval for the off-label use of primaquine for transmission-blocking (443).  

A recent survey found that, globally, only two manufacturers produce SRA-approved 

primaquine phosphate (Sanofi in Canada and Remedica in Cyprus), for the indication of radical 

cure of vivax (260). This mismatch between licensed indication and the need for high quality 

supply has meant that primaquine procurement is a logistical roadblock for countries 
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intending to put the current WHO guidelines on the use of primaquine for transmission-

blocking into policy and practice (260, 446). 

The Single Low-dose Primaquine Working Group (Section 3.3.4.1) created a platform to bring 

together stakeholders from procurers, the WHO and manufacturers such that agreements are 

now being forged to facilitate procurement for this indication (443). 

 

 Countries using it already 

Prior to this trial, of the African countries targeting malaria elimination, none had 

incorporated primaquine use as a gametocytocide into national guidelines. In Ethiopia, 

primaquine was used with chloroquine for both P. vivax and Plasmodium falciparum malaria 

for 25 years until 1990, when its use was discontinued (199). Primaquine use as a 

gametocytocide alongside antimalarial therapy was adopted mainly in countries in South-East 

Asia and South America. These are regions where P. vivax and Plasmodium falciparum malaria 

co-exist, so there was established use of primaquine for vivax anti-relapse treatment as well. 

There was likely to have been a mismatch, however, between guideline-recommended use 

and actual use, particularly in Asia, because of safety concerns with G6PD deficiency (175). A 

limited number of mass drug administrations had incorporated primaquine with the aim to 

eliminate malaria (73, 83, 406, 411, 450, 451) . 

Now that a lower dose has been authorised by the WHO, its use is more widespread. The 

World Malaria Report 2016 identified 31 countries that include low-dose primaquine in first 

line therapy of confirmed uncomplicated Plasmodium falciparum malaria in national 

guidelines (20), these are principally in South America, South-East Asian and Eastern 

Mediterranean regions. In 2017, this figure rose to 54 malaria-endemic countries (1). In 2015, 

African countries that expressed an intention to incorporate single low-dose primaquine into 
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policy included Ethiopia, Senegal, Zambia, Swaziland and Zanzibar (260). Since then, 14 African 

countries, largely those on the threshold of malaria elimination or pre-elimination, have 

adopted single low-dose primaquine into policy (1). 

Primaquine as a Plasmodium falciparum transmission-blocker has been firmly incorporated 

into global policy and into implementation strategies for malaria elimination (452).  
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6 Conclusions 

 Global malaria control status: global targets and the role of primaquine 

In the period 2010 to 2015, the global estimated number of malaria cases fell by 14% to total 

212 million. There were 429 000 deaths, 92% of which were in Africa and 70% were in children 

aged under 5 years. Since 2015, the WHO Malaria Global Technical Strategy  is to eliminate 

malaria from 35 endemic countries by 2030, and from 10 by 2020 (13). Single low-dose 

primaquine is now recommended as a component of the toolkit for countries and 

programmes targeting malaria elimination, and it has been incorporated into first-line 

treatment in 31 countries and its use is now recorded as an indicator of malaria policy 

adoption (20).  

Although single low-dose primaquine is recommended widely, its case-based use is estimated 

to be more limited in regions with higher prevalence and severity of G6PD deficiency (175).   

 Contribution to knowledge 

This trial contributed the first randomised and controlled dose-finding data for single dose 

primaquine for gametocyte clearance since the drug was developed in the 1960s (194). The 

trial was novel in being powered for both efficacy and safety outcomes. The original 

0.75mg/kg dose was perceived as carrying an unacceptable risk of haemolysis in G6PD 

deficiency and the identification of a lower safe dose was key to enabling more widespread 

use. This opened the door to a new research agenda. The work incorporated trial design 

elements to evaluate transmission-blocking, rather than asexual efficacy and to assess safety 

in G6PD deficiency which have been adopted by subsequent investigators, and the field has 

expanded substantially to generate a battery of research to inform policy. 
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 Limitations of the trial in the context of its application to diverse 

epidemiological settings 

Due to resource limitations, the thesis did not incorporate mosquito feeding assays to assess 

the infectiousness of individuals to mosquitoes after primaquine treatment. Mosquito feeding 

studies demonstrate a more rapid action of primaquine than that determined using 

gametocyte clearance as an outcome (289). Primaquine efficacy was retained at lower doses 

when determined using membrane feeding assays compared to using gametocyte clearance 

as an outcome (256, 272). The use of the gene pfs25 as a molecular marker to detect 

gametocytes might mean that the efficacy of lower doses was underestimated. This is because 

the gene is detected in both viable and non-viable gametocytes. Hence, gametocytes 

rendered non-viable by primaquine, but not yet cleared by the spleen may have been 

detected in blood samples post treatment. The trial was carried out in an area with a level of 

malaria transmission above that at which elimination intervention might be initiated and the 

role that immune factors play in gametocyte clearance might differ across settings.  

 Policy recommendations and areas for future research 

Coinciding with the use of this trial as a pre-read for the WHO Expert Review Group on The 

Safety and Effectiveness of Single Dose Primaquine as a Plasmodium falciparum 

gametocytocide, recommendations on the use of low dose primaquine were incorporated 

into WHO guidelines, setting in motion its adoption into policy globally.  

However, despite clear evidence for its efficacy against gametocytes, this thesis highlights that 

several questions still remain to determine the best strategy for primaquine’s use for optimal 

impact and safety. Furthermore, policy makers are experiencing substantial roadblocks in 

pursuit of its implementation. 
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Priorities include an exploration of primaquine’s effectiveness for reducing community-level 

transmission, and investigation of the most high-impact and cost-effective strategy for its use, 

specifically as case-based treatment versus mass treatment. We need to further define 

primaquine’s safety and operational studies are needed to embed strategies for safety 

surveillance that incorporates the most vulnerable members of a population. Epidemiological 

work aimed at clearly determining which individuals or groups sustain malaria transmission in 

endemic communities will determine where the parasite is most efficiently targeted with 

single low-dose primaquine. 
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STUDY SUMMARY  
Title Evaluation of the efficacy and safety of primaquine for clearance of 
 gametocytes in uncomplicated falciparum malaria 
Study design A randomized, double-blinded placebo-controlled clinical trial with 4 
 parallel arms    
Participants and sample size Individuals aged 1 year to 10 years with uncomplicated falciparum 
 malaria     
 Target sample size is 480 participants 
Phase III     
Study site Country: Uganda 
 The study will be conducted at the Uganda Malaria Surveillance Project 
 (UMSP) sentinel site in Walukuba, Jinja 
Selection criteria Inclusion criteria:  
 1. Age >/ 1 year and </10 years 
 2. Weight over 10kg 
 3. Fever >38 degrees C (tympanic) or history of fever in the last 
  24 hours 
 4. P. falciparum parasitaemia <500 000/µl 
 5. Normal G6PD enzyme function 

 Exclusion criteria:  
 1. Enrolled in another study 
 2. Evidence of severe illness/ danger signs (Appendix A) 
 3. Known allergy to study medications 
 4. Haemoglobin< 8g/dL) 
 5. Started menstruation 
 6. Pregnancy or breastfeeding 
 7. Taken antimalarials within the last 2 days 
 8. Primaquine taken within the last 4 weeks 
 9. Blood transfusion within the last 90 days 
 10. Non-falciparum malaria co-infection 
Study intervention Participants receive AL on days 0-2 and are randomized to one of four 
 treatment arms (below) on day 2. They are followed up for 28 days 
  • Placebo 
  • PQ1 (primaquine 0.1mg/kg) 
  • PQ2 (primaquine 0.4mg/kg) 
  • PQ-R (primaquine 0.75mg/kg) 
General objective To evaluate the efficacy and safety of different doses of primaquine 
 administered with AL for the purpose of reducing P. falciparum 
 gametocytes in the infected human host to prevent transmission of 
 falciparum malaria the anopheles mosquito vector. 
Specific objectives 1.  To evaluate the efficacy of different doses of primaquine when 
 administered with AL as measured by gametocyte prevalence 
 and density 

 2.  To evaluate the safety of different doses of primaquine when 
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administered with AL as measured by change in mean 
haemoglobin, prevalence of severe anaemia (Hb <5g/dL), and 
evidence of black urine (haemoglobinuria; dipstick positive) 

 
3. To assess the safety of different doses of primaquine when 

administered with AL as measured by prevalence/ incidence 
of adverse events and tolerability 

 
4. To obtain basic pharmacokinetic parameters for primaquine 

in the study population  
Outcome measures 

  EFFICACY   SAFETY  
 

PRIMARY  Mean number of   Mean (+/- SD) maximal fall (+/ or  
 

  days to gametocyte   -) in Hb (g/dL) from enrollment  
 

  clearance   to day 28 of follow-up  
 

  (gametocyte     
 

  clearance time,     
 

  GCT)     
 

        

SECONDARY  Mean (+/- SD) area   Follow-up day of Hb nadir  
 

  under the curve of     
 

  gametocyte density     
 

  per day during 14     
 

  days of follow-up     
 

        

  Point prevalence of   Maximal percentage fall in Hb  
 

  gametocytes on   level compared to enrolment  
 

  days 7, 10 and 14   value  
 

        

  Proportion (%) of   % participants with Hb < 5g/Dl  
 

  participants with   during follow up  
 

  gametocytes on     
 

    Requirement for blood  
 

  
each day of follow    

 

    transfusion  
 

  
up 

   
 

      
 

     Evidence of black urine  
 

       
 

     Incidence of serious adverse  
 

     events by sign, symptom,  
 

     laboratory parameter and  
 

     relationship to taking study drug  
 

       
 

     Incidence of gastrointestinal  
 

     symptoms after taking study drug  
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1. BACKGROUND 
 
1.1 INTRODUCTION 
 
The plasmodial parasite, malaria, infects an estimated 450 million people globally each year[1]. The majority 
of these infections occur in Sub-Saharan Africa where the predominate species, Plasmodium falciparum, is 
responsible for the greatest proportion of deaths worldwide due to malaria [2-3]. The five countries with the 
greatest number of malaria deaths in the world are Uganda, DRC, Nigeria, Ethiopia and Tanzania[1]. Aside 
from directly-attributable morbidity and mortality from severe malaria, malaria is responsible for a 
substantial all-cause mortality[4] and morbidity which is contributed to by anaemia[5], adverse pregnancy 
outcomes for mother and child[6] and long term sequelae of infection[7-9]. 
 
In Uganda, malaria transmission intensity is high and stable in most parts of the country. The national 
malaria control programme (MCP) supports the large-scale distribution of long-lasting insecticide-
treated bed nets (LLINs), mosquito vector control with household indoor residual spraying of insecticide 
and intermittent preventive anti-malarial therapy in pregnancy. The other main strategy is effective 
diagnosis and case management. 
 
Since 2004, the Ugandan national malaria treatment guidelines recommend artemisinin combination 
treatment (first line choice: artemether-lumefantrine [AL]) for uncomplicated malaria. This followed 
acknowledgment of the high level and widespread resistance to the previously recommended 
regimen of chloroquine plus sulphadoxine-pyrimethamine (SP). 
 
 
Currently, the Ugandan national guidelines for treatment of severe malaria and of failure of first line 
treatment of uncomplicated malaria are under review given trial data on the efficacy of parenteral 
artemisinin treatment compared to the standard iv quinine. 
 
Despite scaled-up control measures and support from international funding initiatives, the burden 
of malaria in Uganda has increased over the last decade and control remains a priority. 
 
 
1.2 Global malaria control and elimination  
A new global effort is underway to step up malaria control and push towards the elimination of 
malaria as a public health problem. This started in 2007 as a proposal by Bill and Melinda Gates and 
was supported by the WHO[10]. Since this declaration, some substantial successes have been achieved 
in shrinking the global distribution of malaria. In Africa, effective elimination programmes have been 
initiated in Zanzibar and South Africa. There are now 8 African countries with a commitment to malaria 
elimination (E8 Ministerial Resolution, Southern African Development Community 2009). 
 
This call for elimination has created a drive for the development of new and innovative tools to 
reduce malaria transmission. One such tool is primaquine. It is a drug which can efficiently block the 
transmission of Plasmodium falciparum malaria from humans to mosquitoes. 
 
Malaria is transmitted from mosquito vector to the human host by the injection of parasites from the 
mosquito mouthparts as it ingests a human blood meal. Onward transmission to the mosquito occurs 
when it feeds on an infected human host harbouring gametocytes, the sexual form of the parasite. 
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Figure 1 Malaria lifecycle (from TDR/ Wellcome Trust) 
 

 
The WHO recommends the use of a single dose of primaquine as part of malaria elimination 
programmes: 
 
“As the anti-gametocyte effects of artemisinins are incomplete, malaria elimination programmes 
require that artemisinin-based therapies be combined with primaquine to block transmission more 
effectively” (from Malaria Control and Elimination 2008, WHO publication). 
 
 
 
1.3 PRIMAQUINE  
 
 
 
 
 
 
 
 
 

Figure 2 Primaquine- chemical structure 
 
Primaquine is an old drug, developed in the 1940s and in widespread use since the 1960s. It was one of 
the first synthetic antimalarials to be developed. It belongs to the 8-aminoquinoline drug class. Other 
drugs in this class include Tafenoquine and Bulaquine, but these are not yet widely available. The 8-
aminoquinolines are gametocytocidal, that is, they are active against the sexual forms of the P. 
falciparum malaria parasite, the gametocytes. These blood-borne sexual stages, although harmless to 
humans, are infectious to mosquitoes and are responsible for onward transmission of malaria from 
human to mosquito. 
 
Primaquine is also effective against the sporozoites of Plasmodium vivax and Plasmodium falciparum, 
and against the hypnozoites of Plasmodium vivax and Plasmodium ovale but it has no effect on the 
blood stages of Plasmodium falciparum. Primaquine is most widely used for its effect against P. vivax 
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and P. ovale hypnozoites as anti-relapse therapy. For this purposes, it has been used for decades. In 
adults, the dosing of primaquine for PART is 30mg daily for two weeks. 
 
Primaquine pharmacokinetics: 
 
Pharmacokinetic data describes how a drug is managed (and metabolized) in different groups of 
individuals. Peak plasma concentration is within 1-4 hours[11-13] and the terminal half life is 4-6 
hours[11]. 
 
Primaquine exhibits extensive tissue distribution[13-14]. About 75% of primaquine in plasma is bound to 
proteins and high concentrations occur in erythrocytes. 
 
The parent drug is converted to its active metabolites in the liver. Less than 2% of the parent drug, 
primaquine is excreted in the urine within 24hrs of dosing[11]. Several metabolites of primaquine have 
been identified, but it is unclear which are responsible for the gametocytocidal action and which for its 
toxic effects. Carboxyprimaquine is the main metabolite [15]and its formation is cytochrome CYP450-
dependent[16] . The 5-hydroxylated metabolite has been linked to both therapeutic efficacy and toxicity 
[17]. Other metabolites have been identified, but their function remains undetermined[18]. 
 
A high performance liquid chromatography (HPLC) method devised in 1984 
[15][15][15][15][15][15][15][15][15][14][12][12]to detect primaquine with a sensitivity of 1ng/ml has 
been updated by Cuong [19]. 
 
Studies that provide pharmacokinetic data on primaquine have been conducted largely in Southeast 
Asia and Australasia. The majority of studies have been on adults. There is a lack of data on the 
pharmacokinetics and pharmacodynamics of primaquine in African children. Given that primaquine 
may be deployed in malaria endemic areas in Africa, this data is needed. 
 
Side effects of primaquine: 
 
Given its widespread use over the last fifty years, there is extensive experience with regards the 
safety and side effects of primaquine. The main side effects are as follows: 
 

• Gastro-intestinal symptoms if not given with food 
• Methaemoglobinaemia  
• Transient haemolysis in individuals with a predisposition such as G6PD deficiency. The 

haemolysis is mostly in aged erythrocytes (red blood cells). Therefore, the 
retiulocytosis (proliferation of young red blood cells) in acute malaria affords some 
protection, as the population of red ells is relatively younger. 

 
The side effects are dose-related. Therefore, at lower doses the side effects are expected to be less or 
insignificant. It is common practice to give individuals with G6PD deficiency a lower dose of 0.75mg/kg 
once weekly) as treatment for P. vivax (WHO Malaria Treatment Guidelines 2010). 
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1.4 G6PD (GLUCOSE-6-PHOSPHATE DEHYDROGENASE) DEFICIENCY 
 
The glucose-6-phosphate dehydrogenase (G6PD) genetic polymorphism was discovered through the 
observation that certain individuals had the tendency to haemolyse (undergo destruction of red blood 
cells) when primaquine was administered[20]. Subsequently, other triggers have been discovered that 
promote haemolysis in individuals with G6PD deficiency. 
 
The G6PD polymorphism is conserved in malaria-endemic regions and this has led to speculation 
that alleles coding for deficiency of the enzyme afford protection against Falciparum malaria 
infection or against death from malaria. 
 
G6PD enzyme function varies widely in different regions across the globe due to the polymorphism.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 Crude average percentage G6PD prevalence from Nkhoma et al. 2009[21] 
 
The gene codes for an enzyme which catalyses the first step of the pentose phosphate pathway for 
glucose metabolism in red blood cells. The range of mutant alleles (over 140 have been characterized) 
result in varying degrees of deficiency of this enzyme. G6PD enzyme deficiency causes a reduction in 
this enzyme function. This leaves red cells with lower amounts of NADPH (reduced nicotinamide 
adenine dinucleotide phosphate) with the result that they are susceptible to oxidative stress. 
Subsequent oxidative stress can lead to haemolysis. Primaquine exposure leads to transient, dose-
dependent intravascular haemolysis in individuals carrying the mutant allele. The severity of the 
haemolysis depends on the degree of enzyme deficiency. 
 
The most common G6PD variant in Africa is the A- variant. This codes for a relatively mild deficiency of 
the enzyme. In contrast, some Southeast Asian and Mediterranean variants code for severe deficiency, 
whereby one single dose of a trigger compound, such as primaquine can provoke a severe haemolysis, 
requiring treatment (typically with blood transfusion and supportive measures). 
 
G6PD deficiency is an X-linked trait, meaning that the male hemizygote (males who carry the gene on 
their single X chromosome) has full expression of the trait. The prevalence of a given allele in a 
population is therefore commonly described as the percentage of males carrying the gene. Because it is 
carried on the X chromosome, females can have a variety of levels of gene expression. This is because 
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they exhibit "lyonisation". Lyonisation is the tendency to randomly inactivate one of the X chromosomes 
in every cell. Therefore, randomly, some females, although they carry the deficient allele, will have 
normal enzyme function, whilst others may have varying levels of deficiency. Therefore, the deficiency is 
less expressed in females at the population level. 

 
The genotype (genetic code) can code for different phenotypes (actual level of enzyme function), 
depending on the sex of the individual and the allele they carry (which variant they carry). Therefore, it 
is important to distinguish whether G6PD deficiency is being measured as a person's genotype or as 
their enzyme function. 

 
 

1.4.1 G6PD deficiency in Uganda. 
 

In an urban household survey in Kampala, 16% of male children and 10% of female children had reduced 
G6PD enzyme function [22] and reduced enzyme function was associated with reduced risk of malaria 
parasitaemia. 

 
The most common G6PD variant in Uganda is the A- variant. This comprises alleles from the A variant 
(G376A) and the G202A mutation. In up to 5% of A- variants, mutations occur at nucleotides 680 and 
968 in the gene coding for G6PD.The A- G6PD variant has up to 80% enzyme function compared to wild 
type. This variant is associated with mild haemolysis in the presence of stimuli such as primaquine. 

 
Table 1 G6PD variants, geography and broad risk of haemolysis 

 
G6PD variant  Geographic region  Risk/ severity of haemolysis 

 

      

     
 

B (Wild type)  Worldwide  None 
 

      

A  Africa  Mild 
 

      

A-  Africa  Mild-moderate 
 

  South America   
 

     
 

Mediterranean  Middle East, Europe, South  Severe 
 

  Asia   
 

     
 

Viangchan  Southeast Asia  Mild-moderate-severe 
 

  

Australasia 
   

Mahidol    
 

      

Vanua Lava     
 

Canton     
 

      

Anant     
 

      

Kaiping     
 

      

Seattle  Mediterranean, Western  Mild-moderate 
 

  Europe, North Africa   
 

     
 

Union  Mediterranean, Western  Moderate-severe 
 

  Europe, North Africa, China,   
 

  Pacific Islands   
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1.5 A NEW INDICATION FOR AN OLD DRUG: Primaquine for transmission-blocking 
 
The WHO first recommended primaquine for transmission-blocking in the 1970s. It was not until 
recently that this application has received more attention in the recent WHO recommendations in 
2008 and 2010. Despite this history, there is less widespread familiarity with primaquine as a 
transmission-blocking drug compared to the experience with its use in radial cure of P. vivax malaria. 
 

• Are there alternatives to primaquine for transmission-blocking?  
Artemisinin derivatives have some gametocytocidal action, being effective against developing 
gametocytes (stages 1 to 3 gametocytes). This may explain the reduction in malaria transmission in 
settings where their use is well-established [23-24]. However, following artemisinin combination 
therapy, microscopic and sub-microscopic (using molecular techniques) gametocytaemia is still 
detectable and individuals are still infectious to mosquitoes, i.e. transmission to mosquitoes can still 
occur[25]. The only drugs available which are highly effective against mature gametocytes (stages 4 to 
5) are the 8-aminoquinolines; primaquine being the least expensive and most widely available. 
 

• How is it given?  
The dose for transmission-blocking is much lower than the dose for radical cure of P. vivax. Instead of a 
14 day course, it is one single dose of 0.75mg/kg. 
 

• What is the evidence?  
The following studies provide data on the efficacy and safety of 0.75mg/kg single dose primaquine for 
transmission-blocking. 
 
Data from Africa:  
A recent study conducted in Tanzania[26] in asymptomatic parasitized children demonstrated a 
dramatic reduction of gametocyte circulation time with primaquine treatment from 28.6 days in the 
absence of primaquine (with ACT alone) to 6.3 days with primaquine. 
 
Primaquine reduced gametocytaemia significantly at days 4, 7, 14 and 28 post treatment in a Tanzanian 
study[27] comparing ACT with or without primaquine in children with uncomplicated clinical malaria. 
Here, the prevalence of gametocytes on day 14 after treatment was reduced from 62.7% to 3.9%. 
 
Shekalaghe et al[27] demonstrated that the addition of a single dose of primaquine to ACT in Tanzanian 
children aged 3 to 15 years with uncomplicated malaria and unknown G6PD status at baseline caused a 
maximal mean drop in haemoglobin on day 7 post treatment initiation (5 days after primaquine, which 
was given on day 2 after ACT treatment initiation). Mean haemoglobin fell by 5.2% from enrolment 
value. The greatest fall in haemoglobin was noted in the children with G6PD deficiency. However the 
study was not powered to detect a difference in outcomes by G6PD variant. By 28 days, haemoglobin 
values in all children were no longer significantly different to enrolment values. None of the children 
required transfusion or had symptomatic anaemia. 
 

 
When primaquine was given to Tanzanian children with asymptomatic malaria infection in later study 
[28], the mean change in haemoglobin at day 7 post treatment was -0.58g/dL and -2.5g/dL in the 
children with G6PD A- variant genotype. One child developed severe anaemia, but this child was not 
in the G6PD A- variant group, having genotype A and recovered with haematinics. No children 
required blood transfusion. 
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A study conducted in Sudan[29] showed no significant difference in gametocyte prevalence on day 7 or 
day 14 post treatment with or without primaquine in individuals with asymptomatic infection. This study 
was conducted in the dry season in an area with high seasonality for malaria infection. This highlights 
the need for more data to define the efficacy of primaquine in different transmission settings. No 
serious or severe adverse events were reported. 
 
Data from elsewhere:  
In Thailand[30], patients presenting with uncomplicated malaria in Bangkok had reduced gametocyte 
clearance times when primaquine was added to all drug combinations. Primaquine reduced gametocyte 
clearance with an odds ratio of 0.42 (0.20 to 0.83); P =0.009. 
 
In a recent study in Burma[31], 808 participants were randomized to receive ACT plus primaquine or 
ACT alone. Gametocyte carriage was substantially reduced by the addition of primaquine (rate ratio 11·9 
(95% CI 7·4–20·5; P =0.0001). There was an overall increase in haemoglobin during follow up in both the 
primaquine and the non-primaquine arms, but the increase was smaller in the primaquine group (0.75 
g/dL vs 1.04 g/dL; =0.036; mean difference 0.295 g/dL; 95% CI 0.199–0.570). There was no severe 
anaemia. This study provided detailed adverse events analysis and there were no severe adverse events. 
The only adverse event attributable to primaquine was abdominal pain. This is a known side effect and is 
reduced by administration with food[19]. 
 
In Colombia (2010)[32], investigators found a disappearance of gametocytes one week earlier when 
PQ was added to an artemisinin-containing regimen. 
 
In Cambodia, 3653 individuals received 0.75mg/kg primaquine (without G6PD screening) every ten days 
in a mass drug administration programme and there were no major adverse events[33]. 
 
 
OUTSTANDING QUESTIONS ON THE USE OF PRIMAQUINE AS A TRANSMISSION-BLOCKER  
Aside from basic information on the safety and efficacy of primaquine as a transmission-blocker, several 
important questions remain to be answered when it comes to considering how primaquine should be 
used: 
 

• What is the optimal dose of primaquine?  
The dose of 0.75mg/kg as a single dose dates back to the 1940s. A single dose of the daily dose used for 
P. vivax was found to clear P. falciparum gametocytes. Adequate dose-finding data are lacking and are 
now needed urgently. 
 
Studies using lower doses than 0.75mg/kg for P. falciparum transmission-blocking  
Two studies in Thailand have demonstrated that lower doses of primaquine had indistinguishable 
efficacy to higher doses. Bunnag [34](1980) compared the effect of 15mg daily for 5 days, 30mg 
single dose and 45mg single dose in Thai adults and found no significant difference in gametocyte 
clearance between doses. Pukrittayakamee [30](2004) compared 0.25mg/kg and 0.5mg/kg 
primaquine in adults and found both to have shorter gametocyte clearance times (GCT) than non-
primaquine-containing regimens, with no significant difference in outcomes between the two doses 
of primaquine. Clearly, there is a requirement for more detailed dose-response data. 
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The mass drug administration programme in Cambodia[33] used a 9mg stat dose of primaquine 
(approximately 0.15mg/kg) every ten days, with a significant reduction in microscopic gametocyte 
carriage from 13.1% to 0.8% after 3 years. 
 

• On what day of treatment should primaquine be added?  
If primaquine is to be given in clinical case treatment or mass treatment initiatives, it is much cheaper and 
more reliable to give it at the same day as the partner asexual treatment so that individuals do not need to 
return to the health facility or be reached on days after the first point of contact. However, often 
primaquine is given after the start of treatment (e.g. on day 3 of a 3 day ACT course) in order to avoid 
exacerbating the nadir in haemoglobin associated with clinical malaria. Based on a gametocyte half life of 
4-6 days, some authors suggest giving primaquine on day 7 or 8 to capture maturing gametocytes which 
develop in the first few days of treatment[35]. Few studies have examined the efficacy associated with the 
timing of primaquine treatment. Lederman[36] found a shorter GCT when primaquine was given on day 2 
rather than day 0, but this was not significant. Research is required to identify the optimal timing of 
primaquine administration for safety and efficacy. 
 

• Where should primaquine be used?  
Much of the pharmacokinetic data on primaquine is available from studies conducted in Southeast 
Asia. In these populations, the genetic susceptibility to primaquine sensitivity (G6PD deficiency) is 
very different to that in Africa. As elimination programmes move their focus to Africa, it is 
important that quality data are available for its use in Africa. 

 
• When should primaquine be used?  
At what stage of malaria control should primaquine be introduced? So far, primaquine has 
been introduced mainly in countries on the brink of elimination (in Africa, examples are 
Botswana, Madagascar, South Africa and Zanzibar), but as malaria control efforts increase in 
higher transmission countries, it is likely there will be opportunities to reduce transmission with 
primaquine in sub-regions with lower malaria endemicity. 

 
• How should primaquine be used operationally?  
Data are required to clarify how best primaquine should be used to block transmission on a 
population level. Should it be given as additional treatment to clinical cases of malaria, or should it 
be given as part of a mass treatment and screening initiative, to people with asymptomatic 
infections? As such, quality information on the safety and efficacy of primaquine is needed. 

 
The WHO recommendation is rapidly coming into policy. Primaquine is being introduced or considered 
in many settings. It may be a very useful tool to reduce malaria transmission, but urgently, we need data 
to inform policy makers on the appropriate and safe use of the drug. 
 
Of the few studies which have assessed primaquine efficacy for transmission-blocking, none are 
adequately powered and randomized to assess safety outcomes as well. There is a lack of quality data to 
inform policy makers on the safety of primaquine for transmission-blocking. 
 
We have chosen to investigate the most pressing issue, the effective and safe dosing of primaquine for 
transmission-blocking.  
We hypothesize that lower doses of primaquine may be effective at transmission-blocking, but have a 
much better safety profile. 
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This is particularly important in regions where G6PD deficiency is prevalent (See Section +++++G6PD 
deficiency) 
 
 
2.0 RATIONALE 
 
Malaria is a major public health problem. Every year, approximately one million people die from malaria 
and the majority of these are children aged less than five years. Current malaria control efforts are 
inadequate, despite a new drive for malaria elimination since 2007[10]. 
 
In 2008, the WHO recommended that, to block transmission of falciparum malaria, a single dose of 
primaquine should be added to ACTs in malaria control and eradication programmes (WHO “Malaria 
Control and Elimination”, 2008). Primaquine is a member of the 8-aminoquinoline drug class. This is the 
only drug class with activity against the mature gametocytes of P. falciparum, the form of the parasite 
which is responsible for onward transmission from humans to mosquitoes. Primaquine is the most 
widely-available drug in this class and its cost is low. We have less experience with other drugs in this 
class. 
 
Following the WHO recommendations, primaquine is rapidly coming into use as a transmission-blocker in 
malaria control programmes and it is estimated that millions of people stand to receive doses for this 
purpose annually[37]. Hence, high-quality regional data on primaquine’s safety and efficacy are required 
urgently. 
 
A single dose of 0.75mg/kg primaquine base is recommended for transmission-blocking. However the 
optimal dose for safety and efficacy has never been evaluated. Dose-finding data is important because 
primaquine has a dose-dependent risk of causing haemolysis (destruction of blood cells) in pre-
disposed individuals, such as those with G6PD deficiency. G6PD deficiency is most prevalent in malaria-
endemic areas. Therefore, it is essential that data on primaquine’s safety is available in such areas. 
 
Quality data are required to establish the safety of a single dose of primaquine in African children. Few 
studies have looked at the efficacy and safety of lower doses of primaquine than that recommended by 
the WHO for transmission-blocking. Those that have looked have found that lower doses still 
significantly reduce transmission/ gametocyte prevalence compared to placebo. No studies have 
compared the WHO dose to lower doses. A comparison of lower doses against the WHO dose and 
controlled against placebo is required because of the dose-dependent side-effects of primaquine. 
Pharmacokinetic data are also needed. No studies have documented the pharmacokinetics of 
primaquine in African children. 
 
We hypothesise that lower doses of primaquine have a substantially lower risk of, or an absence of 
adverse effects compared to the WHO-recommended dose, but retain the transmission-blocking 
efficacy. 
 
We propose to test this hypothesis in a four-arm clinical trial with a non-inferiority design to 
evaluate the efficacy and a superiority design to evaluate the safety of the WHO dose (0.75mg/kg) 
and lower doses of primaquine for clearance of P. falciparum gametocytes in children in Uganda. The 
study will include a pharmacokinetic analysis. 
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3.0 STUDY OBJECTIVES 
 
3.1 GENERAL OBJECTIVE 
 
To evaluate the efficacy and safety of different doses of primaquine administered with AL for the 
purpose of reducing P. falciparum gametocytes in the infected human host to prevent transmission of 
falciparum malaria to the anopheles mosquito vector. 
 
 
3.2 SPECIFIC OBJECTIVES 
 

1. To evaluate the efficacy of different doses of primaquine when administered with AL 
as measured by gametocyte prevalence and density 

 
2. To evaluate the safety of different doses of primaquine when administered with AL as 

measured by change in mean haemoglobin, prevalence of severe anaemia (Hb <5g/dL), and 
evidence of black urine (haemoglobinuria; dipstick positive) 

 
3. To assess the safety of different doses of primaquine when administered with AL as measured 

by prevalence/ incidence of adverse events and tolerability 
 

4. To obtain basic pharmacokinetic parameters for primaquine in the study population 
 
 
4.0 STUDY DESIGN/ METHODS 
 
4.1 STUDY DESIGN OVERVIEW 
 
The study is a randomized placebo-controlled trial with four parallel arms. A total of 500 individuals will 
be enrolled. Participants will be recruited from the Health Centre IV in Walukuba, Jinja if malaria is 
suspected, that is they have a history of fever at presentation and a positive malaria thick film. 
 
Prior to undergoing any study procedures, individuals will be screened by the study clinicians for 
eligibility to enter the study. If they satisfy initial criteria, individuals will be invited to give informed 
consent to participate in the clinical trial. Children over 8 years of age will be invited to give assent to 
participation in the clinical trial. Consenting participants will then undergo clinical and laboratory 
screening. If they satisfy the study selection criteria, they will be enrolled in the trial. A small minority 
may be excluded from the trial after day 0, when final laboratory screening results become available. If 
individuals do not satisfy selection criteria, their malaria infection will be managed by the local clinic 
staff. 
 
All enrolled individuals will receive a full three-day course of AL, and will be randomized to receive a 
dose of primaquine or placebo with their last dose of AL on day 2. All doses of AL and PQ will be directly 
observed. Sampling will be as follows: All individuals have finger prick blood samples on days 0, 1, 2, 3, 7, 
10, 14, 21 and 28 for malaria parasites (asexual and sexual), haemoglobin (using Hemocue®) and into an 
EDTA tube for gametocyte molecular analysis. In cases where there is insufficient blood via finger prick, 
a venopuncture sample may be obtained. On each day of follow up, there will be an assessment by a 
clinician and an assessment for adverse events. Participants will be reimbursed for travel to and from 
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the clinic for all scheduled and non-scheduled visits during the time they are enrolled in the study. On 
day 1, every 4th child enrolled will be invited to consent for pharmacokinetic analysis on days 2-4. 
During the 28 days of follow up, all participants will be encouraged to attend the clinic for any medical 
concerns and the cost of travel to the clinic will be reimbursed. 
 
4.1.1 RECRUITMENT PROCEDURES OVERVIEW  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Recruitment procedures 
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4.1.2 TREATMENT AND FOLLOW UP OVERVIEW  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Treatment and follow up 
 
4.2 OUTCOME MEASURES  
These are summarized in table 2 
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Table 2 Outcome measures  
 

OUTCOME MEASURE  
 

EFFICACY  
PRIMARY Mean number of days to 

gametocyte clearance 
(gametocyte clearance time, GCT) 

 
 
DESCRIPTION 
 
 
 
Mean number of days per 
treatment arm for gametocytes 
to become undetectable using 
sub-microscopic molecular testing 
methods (QT-NASBA). -Re-
appearance of gametocytes after 
day 14 will be considered re-
infection and excluded. 
  

SECONDARY Mean (+/- SD) area under the curve 
of gametocyte density per day 
during 14 days of follow-up 

 
 

Point prevalence of gametocytes on  
days 7, 10 and 14 

 
 

Proportion (%) of participants with  
gametocytes on each day of follow  
up  

  
Total number of gametocytes 
(measured by QT-NASBA) seen over 
follow up, averaged per day of 
follow up (days 0-14) 
 
Mean number of gametocytes 
(measured by QT-NASBA) per 
treatment arm on days 7, 10 and 14 
 
For each treatment arm, percentage 
of participants with gametocytes 
(measured by QT-NASBA) on each 
day of follow up from days 0-14. 
 

SAFETY  
PRIMARY Mean (+/- SD) maximal fall (+/ or -) 

in Hb (g/dL) from enrollment to day 
28 of follow-up 

 
 
 
Mean maximal greatest negative 
difference in Hb (measured by 
Hemocue®) from enrollment 
value per treatment arm over 28 
days follow up 
  

SECONDARY Follow-up day of Hb nadir Mean day of follow up (day 0-28)  
per treatment arm of lowest Hb  
measurement (by Hemocue®) 

 
Maximal percentage fall in Hb level  
compared to enrolment value 

 
 
 
 

% participants with Hb < 
5g/Dl during follow up  

 
 
Size of maximal Hb drop (by 
Hemocue ®) during follow up (day 0-  
28) from enrollment value, 
divided by enrollment value, *100 
 
Percentage(number) per treatment 
arm during days 0-28 
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Requirement for blood transfusion Percentage (number) of children 
 receiving blood transfusion per 
 treatment arm during days 0-28 

Evidence of black urine Percentage (number) of children 
 with documented black/ dark urine 
 with urine dipstick positive for Hb 
 per treatment arm during days 0-28 

Incidence of serious adverse events Percentage (number) per treatment 
by sign, symptom, laboratory arm during days 0-28 
parameter and relationship to  
taking study drug  

Incidence of gastrointestinal Percentage (number) per treatment 
symptoms after taking study drug arm during days 2-7 

  
 
 

4.3 SELECTION CRITERIA  
Complete selection criteria are listed as follows: 

 
Inclusion criteria: 

1. Age >/ 1 year and </10 years 
2. Weight over 10kg 
3. Fever >38 degrees C (tympanic) or history of fever in the last 24 hours 
4. P. falciparum parasitaemia <500 000/µl 
5. Normal G6PD enzyme function 

 
Exclusion criteria: 

1. Enrolled in another study 
2. Evidence of severe illness/ danger signs (Appendix A) 
3. Known allergy to study medications 
4. Haemoglobin< 8g/dL) 
5. Started menstruation 
6. Pregnancy or breastfeeding 
7. Antimalarials taken within the last 2 days 
8. Primaquine taken within the last 4 weeks 
9. Blood transfusion within the last 90 days 
10. Non-falciparum malaria co-infection 

 
 

4.4 STUDY SITE 
 

The study will be conducted at Walukuba Health Centre IV in Walukuba, Jinja. The EIR (entomological 
infective rate; the approximate number of infective bites per person per year) in Walukuba is estimated 
to be 7 (Okello 2006 ASTMH). 
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Walukuba Health Centre IV is in a peri-urban environment. The catchment area is up to 10km from the 
health centre, which incorporates some rural areas. Some individuals in the catchment area live on 
islands in Lake Victoria. From Walukuba Health Centre IV, there is good road access to the Jinja District 
Hospital where inpatient facilities and regional specialist paediatric services are available. 
 
The health centre has been used as a research site in the past and as a result, there is a good link 
between laboratory and clinic. The health centre is a sentinel site for the Uganda Malaria Surveillance 
Project (UMSP). Consequently, malaria diagnostic services are highly efficient. Much of the 
infrastructure required for clinical research in Walukuba has been established by UMSP. The proximity 
to Kampala is an advantage, with respect to research facilities and specialist medical services available at 
Mulago National Referral Hospital. 
 
4.5 PARTICIPANT SELECTION AND ENROLLMENT 
 
6.5.1 RECRUITMENT (Triage and blood slide) 
 
Study subjects will be recruited from the outpatient department of Walakuba Health Center IV in Jinja. 
As per usual practice in the health centre, all patients who present to the outpatient department will be 
seen by the health centre health workers for triage. Those with symptoms suggestive of malaria will be 
referred to the laboratory for a screening thick blood smear. Screening blood smear slides will be read 
and counted by the outpatient laboratory technicians. Any patient with a positive screening thick smear 
will be referred to our clinic for further evaluation. 
 
 
4.5.2 INITIAL SCREENING BY STUDY CLINICIAN. 
 
Upon referral to the study clinic, a standardized screening interview will be conducted by study 
physicians. This interview will go through the initial screening selection criteria (below). If the patient 
fulfills the initial screening criteria, the informed consent process will be initiated prior to examining the 
participant and performing any laboratory tests. All patients who are excluded from study enrollment 
will be referred back to the standard outpatient clinic for treatment of their malaria infection and other 
appropriate care. 
 
4.5.2.1 INITIAL SCREENING CRITERIA 
 
Inclusion criteria: 

1. Age >/ 1 year and </10 years 
 
Exclusion criteria: 

1. Enrolled in another study 
2. Chronic severe illness 
3. Primaquine taken within the last 4 weeks 
4. Known allergy to study medications 
5. Started menstruation 
6. Pregnant or breastfeeding 
7. Blood transfusion within the last 90 days 

 
 
4.5.3 INFORMED CONSENT PROCESS  
The process for obtaining informed consent involves 4 steps: 
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1. Study introduced verbally (discussion) 
2. Written information provided and read through word for word 
3. Time for asking questions 
4. Written consent given by participant/ guardian 

 
Study physicians will seek formal consent in the clinic. The consent form (Appendix C) comprises written 
information on the study and a section for declaration of consent and signature. After introducing the 
study, the information will be read to the parent/ guardian word for word by the study staff. The 
information will be available in the native language of the parents/ guardian (Luganda, Lusoga, Swahili, 
or English). A translator will be used if necessary. The information provided will be a full description of 
the study with details of the implications for the individual participant, and the constraints of the 
protocol, the known side effects and any risks involved in taking part. It will be clearly stated that the 
participant is free to withdraw from the study at any time for any reason without prejudice to future 
care, and with no obligation to give the reason for withdrawal. 
 
Adequate time will be allowed for the participant or parent/ guardian to consider the information and to 
ask questions. 
 
They will then be invited to sign the written consent form adjoining the written study information and 
approved by the IRBs for their child to participate in a research study and a second consent for the 
future use of biological specimens obtained during the course of the study (Appendix D). If the parent or 
guardian is unable to read or write, their fingerprint will be used in substitute for a signature, and a 
signature from an impartial witness to the informed consent discussion will be obtained. Two copies of 
the consent form must be signed. The parent/ guardian/ impartial witness will sign/ fingerprint one 
copy for the study staff and one copy to keep for themselves. 
 
If the child is 8 years of older, they will be invited to give written assent to participate in the study. The 
assent form (Appendix E) will be read through word for word and a witness signature will be requested. 
 
Following the informed consent discussion, parents (or guardians) will be given their copy of the form to 
keep which includes the study information, the signed consent form and contact names and telephone 
numbers to use if they have further questions regarding the study or follow up procedures. If assent is 
obtained, the participant will keep their signed copy. 
 
4.5.4 CLINICAL SCREENING 
 
Following the consent process, further screening will be conducted to determine whether the 
individual is eligible to participate in the trial, according to the study selection criteria. The clinician will 
take a brief, relevant history. If the clinician has any concerns that a female child may have undergone 
puberty and could be at risk of pregnancy, despite a history that she has not started menstruating 
(section  
4.5.2.1) then the clinician will recommend a pregnancy test. If the participant/ guardian declines a 
pregnancy test, then the child will be excluded. If a child is pregnant, she will be excluded from the 
study and referred for antenatal care and counseling. A clinical examination will be conducted to 
exclude signs of severe illness. 
 
 
4.5.4.1 CLINICAL SELECTION CRITERIA  
Inclusion criteria:  

1. Weight over 10kg 
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2. Fever >38 degrees C (tympanic) or history of fever in the last 24 hours 
 
Exclusion criteria: 

1. Evidence of severe illness/ danger signs (Appendix A) 
 
 
4.5.5 LABORATORY SCREENING 
 
If the clinical selection criteria are met, patients will go to the study laboratory and have a single venous 
blood sample in EDTA. This will be for baseline laboratory tests including haemoglobin (Hemocue®), 
thick and thin blood smears (Giemsa-stained) and G6PD enzyme level (fluorescent spot test), molecular 
gametocyte assay (QT-NASBA) and filter paper samples. The participant will return to the study clinician 
with the haemoglobin results. 
 
The clinician will assess whether the haemoglobin criteria are satisfied: 

1. Haemoglobin ≥8g/dL 
 
If haemoglobin criteria are satisfied, then the participant will be enrolled in the trial and they will 
be treated promptly with anti-malarial medication (AL). 
 
Four further inclusion criteria (below) will be assessed during the first 24 hours after enrollment by a 
study laboratory technologist who will be blinded to treatment group assignments. Results of the 
Giemsa-stained thick and thin blood smears will not be available until after the patients have been 
treated and discharged from the clinic. Thus, although it is unlikely, it could be possible for a patient 
to be excluded from the study after enrollment and AL treatment if these criteria are not met. 
Patients who are excluded on Day 1 for the following criteria will be treated and followed 
appropriately in the study clinic.  

1. Successful phlebotomy  
2. P. falciparum mono-infection  
3. P. falciparum parasitaemia less than 500 000/µl  
4. Normal G6PD enzyme level 

 
G6PD enzyme level is considered normal if there is fluorescence with the fluorescent spot test[38]. 
 
4.5.6 ENROLLMENT 
 
All patients who have given consent and satisfy the screening criteria will be seen by a study clinician for 
enrollment (Appendix G). 
 
They will be assigned a study number. 
 
All participants will be given a study clinic follow up appointment card. This will give their follow 
up dates and study ID number. 
 
The enrollment procedures are listed below: 
 
4.5.6.1 PATIENT HISTORY  

• History of presenting complaint. Include documentation of history of fever. 
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• Relevant past medical history 
• Drug history including allergies/ adverse reactions if known.  
• Demographics. Age and sex, preferred language. (Note: GPS readings of the household are to be 

taken by the fieldworker on bringing the patient home.) 
 
4.5.6.2 PHYSICAL EXAMINATION 
 
Examination of respiratory, cardiovascular, abdominal, nervous and musculoskeletal systems, ear, nose 
and throat, skin and nutritional status. 
 
4.5.6.3 LABORATORY INVESTIGATIONS 
 
Baseline analysis  
The following additional baseline tests are assessed from the blood sample taken by the phlebotomist 
in the clinic laboratory at screening: 
 

• malaria thick and thin blood smear (Giemsa-stained in clinic laboratory) 
• haemoglobin (Hemocue®) 

 
• EDTA (samples for quantification of gametocytes using molecular method [quantitative 

nucleic acid sequence-based amplification, QT-NASBA] and filter paper samples for future use) 
• quantitative G6PD enzyme function (ELISA) 

 
  SCREENING ENROLLMENT 

    
 Laboratory test Hospital triage finger prick 
    

  Malaria thick blood smear na 
    
  Study clinic EDTA venous sample 
    

  Malaria thick and thin blood QT-NASBA buffer and filter 
  smear (Giemsa-stained) paper samples 
    
  Haemoglobin (Hemocue®) Quantitative G6PD enzyme 
   function (ELISA) on filter paper 
    
  Qualitative G6PD enzyme  
    

  function (Fluorescent spot test)  
    
Table 3 Summary of laboratory tests in screening and enrollment  
 
4.6 STUDY INTERVENTION 
 
4.6.1 RANDOMIZATION 
 
After enrollment, participants will be assigned to a treatment group using a randomized method 
stratified by sex. The responsible study staff will select sequential opaque envelopes (from either the 
male or female pile). Each envelope contains a pre-determined treatment assignment code. The study 
nurse will bring the envelope to the study pharmacist. 
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4.6.2 ALLOCATION CONCEALMENT 
 
The study pharmacist will possess the assignment code breaker and will dispense the relevant 
treatment for days 0-2. The treatment assignment code corresponds to a PQ dose to be given on day 2: 
P0 (placebo), P1-3 (variable dose primaquine) and the study pharmacist has access to the code but the 
study nurses and clinicians do not.  
Having selected an opaque envelope for the child, the study nurse will bring the envelope to the study 
pharmacist. The study pharmacist will open the envelope, document the treatment assignment code 
and the participant’s study number on the treatment assignment log, calculate the correct dose of 
primaquine/ placebo in milligrams and document the number of millilitres of primaquine/ placebo 
solution that are required. The treatment assignment code and the dose to be given will not be 
documented on the CRF or provided to the study nurse. 
 
 
4.6.3 BLINDING 
 
The study pharmacist will be the only member of the clinic team not blinded to the treatment groups. 
The study pharmacist will not have patient contact and will not be involved in assessing patients or 
assigning outcomes. 
 
The study site staff who are administering drugs assessing patients and processing laboratory 
samples will not have access to the randomization code breaker. 
 
The participant will not be informed of the PQ dose to be administered 
 
The primaquine dose will be placebo-controlled. All participants will receive a second treatment on day  
2. Placebo will be as indistinguishable as possible from PQ, both being dissolved tablets in solution 
and of the same volume. 
 
 
 
 
 
4.6.4 PROCEDURES FOR RANDOMIZATION, ALLOCATION CONCEALMENT AND BLINDING  
The randomization and treatment allocation process is summarised below:  

• Upon enrollment, nurse selects next opaque envelope according to the child's gender. The 
envelope contains the participant’s allocation code. The allocation code corresponds to one 
of the four treatment arms 

 
• Study nurse labels envelope with the participant’s study number and weight 

 
• Study nurse presents envelope to pharmacist to request treatment. The pharmacist opens the 

envelope and documents the participant’s study number and allocation code on the treatment 
assignment log 

 
• Study pharmacist uses participant’s weight and assignment code to calculate the correct 

primaquine dose or the equivalent dose of placebo to be given on day 2 (Appendix I) 
 

• Study pharmacist logs this dose in the treatment assignment log together with the participant’s 
treatment allocation code and study number. There is one treatment assignment log for each 
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treatment arm (PQ1, PQ2, PQ3 and placebo). The study pharmacist calculates and documents 
the number of millilitres of PQ/ placebo solution that will need to be given on day 2 

 
• The study pharmacist dispenses the six AL doses when the nurses request (morning and evening 

of days 0-2 
 

• The study pharmacist labels the AL treatment assignment log form with the participant 
study number, treatment assignment code and AL batch number 

 
• For all treatments (PQ/ placebo and AL), the study nurse will document that the treatment 

has been given, the number of tablets/ millilitres of drug given and whether or not the dose 
was vomited or repeated 

 
 
4.6.5 TREATMENT ADMINISTRATION: PROCEDURES 

 
All treatments will be directly observed. A small snack will be administered prior to both AL 
and primaquine administration.  
Details of the study drugs are summarized in table 4 below: 
 
Table 4 Study drugs 
 
Drug name Trade name (Manufacturer) Drug class 
Artemether-lumefantrine (AL) Ajanta Pharma Ltd Artemisinin derivative and 
  bisquinoline 
Primaquine phosphate (PQ) Government Pharmaceutical 8-aminoquinoline 
 Organisation, Thailand  
Placebo Kampala Pharmaceutical Inert, non-active substance 
 Industries Ltd  
 
 
4.6.5.1 ADMINISTRATION OF AL 
 

• Study nurse requests AL from pharmacy 
 

• Study nurse then administers the first artemether-lumefantrine (AL) dose. The dose is dissolved 
in drinking water in a cup/spoon and administered to the child to drink under observation. The 
study nurse documents that the dose has been given on participant’s medication record and 
clinic card (Appendix J). 

 
• Study nurse observes the patient for 30 minutes. Any participant who vomits the medication 

within 30 minutes of administration will be re-treated with a second dose (requested from 
pharmacy). Any participant who vomits repeatedly (>3 times) will be recorded as 
complicated malaria and treated according to national guidelines. 

 
• If the participant vomits, the study nurse documents this on the participant’s medication record 

and clinic card. 
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4.6.5.2 ADMINISTRATION OF PRIMAQUINE/ PLACEBO 
 

• At the same time as the fifth dose of AL, in the morning of Day 2, the study nurse requests 
the primaquine dose from pharmacy. 

 
• The PQ/ placebo solution (1mg/ml) is prepared by the study pharmacist by dissolving the 

primaquine tablets according to a standardized SOP. The study pharmacist documents the 
dose on the treatment allocation form (as above). The pharmacist draws up the dose into a 
sterile syringe and hands the syringe to the study nurse. 

 
• The study nurse administers the liquid PQ/ placebo to the participant on a spoon. The study 

nurse documents that the PQ/ placebo has been given on the participant’s medication 
record and clinic card. 

 
• The study nurse observes the participant for 30 minutes. Any participant who vomits the 

medication within 30 minutes of administration will be re-treated with a second dose 
(requested from pharmacy). Any participant who vomits the primaquine/ placebo dose 
repeatedly (>3 times) will be excluded from the study. If there is a possibility that they have 
ingested any of the primaquine dose, they will be excluded from efficacy analysis, but followed 
up for safety outcomes and adverse events. If the participant vomits, the study nurse 
documents this on the participant’s medication record and clinic card. 

 
 
4.6.5.3 ADDITIONAL MEDICATIONS 
 
On the day malaria is diagnosed, patients will receive paracetamol (10mg/kg) to take as needed until 
the resolution of fever. Patients found to have uncomplicated malaria and a concomitant illness will be 
treated for both and followed up according to the study protocol. For patients with anaemia (Hb < 10 
gm/dL), we will follow Integrated Management of Childhood Illness (IMCI) and Ugandan national 
guidelines: anaemic children will be treated with iron sulfate (100 mg daily for 2 weeks) and 
mebendazole (250 mg age 1-2 years; 500 mg > 2 years age; treated no more frequently than every 6 
months). 
 
4.6.6 DRUG ACCOUNTABILITY  
The medications used in the study will be supplied to the main study office at the IDRC in Mulago 
Hospital Complex, Kampala. Artemether-lumefantrine will be ordered through the Ajanta Pharma Ltd 
representative, Surgipharm (Kampala, Uganda). Primaquine is ordered through the Government 
Pharmaceutical Organisation, Bangkok, Thailand. The medications will be stored as per manufacturers’ 
guidelines. Product inserts and detailed documentation relevant to the procurement of the study 
medications including batch number and expiry date will be kept in the study regulatory binder. 
 
Study medications will be stored at the study clinic. Monthly inventories of storage conditions and 
stocks (medications used and remaining) will be kept at the study clinic. 
 
Any unused primaquine after the study will be destroyed according to a protocol agreed with the 
Government Pharmaceutical Organisation, Thailand. 
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4.7 FOLLOW-UP EVALUATIONS AND PROCEDURES  
Table 5 summarizes the scheduled follow up evaluations and procedures. 
 
 
4.7.1 LOCATION FOR FOLLOW UP 
 
On each day, participants will attend the clinic in the morning and remain in the study clinic until they 
have been observed for 30 minutes after their second dose of AL. 
 
On Day 0, they will return home with fieldworkers so that the location of their home can be 
documented and marked with GPS. This is so that patients can be contacted at home if they do not 
attend for follow up, in order to reduce loss to follow up (Appendix K). 
 
Unless a patient is unable to attend and the study coordinator considers it appropriate/ possible to 
follow up at home, all follow up (days 1-28) will be conducted at the study clinic. 
 
 
4.7.2 HOME VISITS 
 
Individuals who are not well enough or unable to attend the study clinic on scheduled follow up days 
will be contacted at home and followed up at home if they are unable to come to the study clinic. As far 
as possible, these participants will be transported to the clinic for clinical care and follow up. 
 
 
4.7.3 CLINICAL EVALUATIONS 
 
On each day of follow up, a history of presenting complaint will be taken along with a focused physical 
examination (Appendix L). 
 
 
4.7.4 BLOOD SAMPLING 
 
On days 0, 1, 2, 3, 7, 10, 14, 21 and 28, a finger prick blood sample for thick and thin smear and filter 
paper sample will be taken. This will be taken by cleaning a digit with alcohol, then pricking with a lancet 
and allowing drops of blood to fall onto the following receptacles:  

1. Hemocue® cuvette (1 drop) 
2. EDTA eppendorf tube (approx 450µl)  

If not enough blood is obtainable through finger prick, a second digit will be pricked or a venous sample 
will be taken. 
 
In the laboratory, the EDTA sample will be mixed, then blood will be extracted using a micropipette to 
drop onto 2 glass slides for thick and thin malaria films, filter paper (6 drops of 50µl fixed volume), 
50µl into L6 buffer (a medium for QT-NASBA samples). On day 0 and 14, an additional 2 drops will be 
dropped onto filter paper for quantitative G6PD enzyme function assessment (ELISA). 
 
 
4.7.5 ADVERSE EVENT MONITORING 
 
Assessment for adverse events will be conducted in a systematic fashion at all visits, including the 
enrollment visit (e.g. vomiting post AL). 
 
At each follow up, study staff will assess participants in an objective manner according to the study 
clinical record form (Appendix L) so that there is standardization of the assessment and it can be 
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quantified. Relevant clinical data will be recorded in source documents. If a clinical sign, symptom, 
laboratory result or event is graded as serious/ severe, then it will be handled as an adverse event 
(Section 6.7.14). 
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Table 5 Follow up evaluations and procedures 
 

Day of follow up 0 1 2 3 7 10 14 21 28 Unsch 
               eduled 
                
CLINICAL:              
               
History X  X  X X X X X X X X 
               
Tympanic temperature X  X  X X X X X X X X 
               
Physical examination X  X  X X X X X X X X 
               
Assessment for adverse X  X  X X X X X X X X 
events             
               
Complete case record form X  X  X X X X X X X X 
              
TREATMENT:              
              
ACT X (1st) X (2nd)  X (3rd)        
              

Primaquine (PQ)     X        
             
LAB TESTING:              
             
Test  Sample collected into EDTA tube then pippetted in the lab  
             
Blood smear X  X  X X X X X X X X 
             
Filter paper W#3 + W#903 X  X  X X X X X X X X 
             
L6 buffer X  X  X X X X X X X  
             
Haemoglobin (Hemocue®) X  X  X X X X X X X  
             
G6PD function (Spot test) X            
             
G6PD function (ELISA) X        X    
                
 
 
4.7.6 UNSCHEDULED FOLLOW-UP 
 
Participants will be encouraged to come to the clinic on any day during the study (days 0-28, regardless 
of whether it is a planned follow-up day) when they require medical attention or they have a question 
for the study team. The participant will be reimbursed for travel to and from the clinic. 
 
On unscheduled follow up days, when the participant self-presents to the clinic, a history and physical 
examination will be conducted along with any relevant investigations to determine the cause of 
presentation. A finger prick blood sample for malaria thick smear and filter paper sample will also be 
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taken in those with fever. Adverse event monitoring will be conducted and a urine dipstick test will 
be taken to assess for haemolysis if suspected. 
 
Unscheduled assessments will be documented on a clinical case record form (Appendix M). 
 
4.7.7 MANAGEMENT OF MALARIA 
 
During follow up (scheduled and unscheduled visits), if there is any evidence of severe malaria, 
participants will be treated according to national guidelines and IMCI and referred and transferred to 
Jinja Children’s Hospital (the regional paediatric referral hospital) for inpatient care. The Jinja Hospital 
paediatricians are aware of the study and the transfer time by road is less than 20 minutes. Clinical 
records, blood slides and other blood results measurements and G6PD results obtained at Walukuba 
will be provided to the Jinja Hospital clinicians. Study clinicians will accompany the child upon referral 
and review and complete the case record form of referred patients daily and a hospital follow up record 
(Appendix N). 
 
 
4.7.7.1 MALARIA OUTCOME CLASSIFICATION SYSTEM FOR PATIENT MANAGEMENT 
 
For the purposes of clinical management of malaria, treatment outcomes not adjusted for genotyping 
will be measured using the standard WHO classification system (early treatment failure, late clinical 
failure, late parasitological failure, and adequate clinical and parasitological response) (“Methods for 
Surveillance of Anti-malarial Drug Efficacy, WHO 2009, Appendix O). 
 
These will be used to guide clinical case management. These treatment outcomes are not to be 
confused with the study outcome measurements. They are used purely to guide clinical decisions. The 
treatments used will be those advised by the Ugandan national malaria guidelines.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 From Methods for Surveillance of Anti-malarial Drug Efficacy. WHO, 2009 
 
 
For the the purpose of case management, clinical decisions will be based on the following scenarios:  

1) Danger signs or severe malaria in the presence of parasitaemia on any day of follow 
up→ treat with parenteral artemisinin/ iv quinine 

2) Early treatment failure → treat with quinine or alternative ACT 
3) Late clinical failure (day 4-14) → treat with alternative ACT 
4) Late clinical failure (day 15-28) →treat as new infection. Treat with AL 
5) Late parasitological failure→ treat as new infection. Treat with AL 
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6) Adequate clinical and parasitological response → no additional treatment 
 
 
 
4.7.8 MANAGEMENT OF HAEMOLYSIS 
 
In previous studies where a single dose of 0.75mg/kg primaquine has been administered, the incidence 
of severe haemolysis has been low. In Tanzania [27], none of the participants experienced symptoms of 
anaemia and no child required a blood transfusion. In the second study in Tanzania[28], one child who 
received primaquine 0.75mg/kg had severe anaemia, but did not require a blood transfusion and 
recovered with haematinic drug treatment. 
 
In Sudan[29], there were no severe or serious or adverse events and severe anaemia was not reported. 
 
Consequently, given that the frequency of G6PD deficiency is likely to be similar in Uganda, and children 
with low G6PD enzyme function on day 0 are excluded from enrolment we do not expect haemolysis to 
occur frequently in those participants receiving 0.75mg/kg of primaquine. We predict that those 
participants in the dose arms lower than 0.75mg/kg should have an even lower chance of developing 
haemolysis because haemolysis is dose-related. 
 
For the purposes of systematic and responsible safety monitoring, the following detailed protocols 
have been developed for the management of participants in whom haemolysis is suspected. 
 
4.7.8.1 MEASURES OF HAEMOLYSIS 
 
Haemolysis will be suspected according to criteria in a study SOP, detailing the size of haemoglobin fall 
(measured by Hemocue®) after PQ/ placebo treatment and the absolute haemoglobin value. In 
addition, any child presenting with or complaining of dark or black urine will be assessed for haemolysis. 
 
 
4.7.8.2 INVESTIGATION OF HAEMOLYSIS 
 
If haemolysis is suspected, a venepuncture sample will be taken for a full blood count and G6PD 
enzyme function, a blood film will be prepared and analysed for schistocytes, urine dipstix will be taken 
and a clinical examination performed. The procedures for further investigation are summarized in figure 
7 below. 
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Figure 7 Investigation of suspected haemolysis 
 
4.7.8.3 MANAGEMENT OF ANAEMIA/ HAEMOLYSIS  
If a participant shows signs of haemolysis, they will be managed according to the schematic in figure 8. 
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Figure 8 Management of haemolysis 
 
 
 
Anaemia 
 
Participants with a haemoglobin below 10g/dL (according to IMCI guidelines) will be treated 
with haematinic drugs and de-worming according to IMCI and national guidelines. 
 
 
Haemolysis 
 
Children with evidence of mild haemolysis will be observed and monitored and haematinic drugs will be 
considered according to IMCI and national guidelines. 
 
Haemoglobin testing will be repeated according to the child’s clinical progress. 
 
Any child reporting black urine will be assessed by a study physician. Black urine is defined as any 
dark-coloured urine with brown or black pigments (not orange). A full clinical exam and history will be 
obtained, a urine sample sent for analysis (haematuria, protein) and a venous blood sample drawn for 
assessment of full blood count (FBC) and renal function (including bicarbonate). A blood film will be 
assessed for schistocytes. 
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Requirement for blood transfusion will be assessed by physicians, considering the size and rate of Hb 
drop and signs of clinical compromise, according to IMCI guidelines. If blood transfusion is required, the 
participant will be transferred to Jinja Children’s Hospital. 
 
In addition to routine care in Jinja Children’s Hospital, daily follow-up will be provided by study 
physicians and progress will be documented in the case record form and hospital follow up form 
(Appendix N). 
 
If a participant is transferred to Mulago National Referral Hospital in Kampala, a study clinician will be in 
attendance for daily follow-up progress will be documented in the case record form and hospital follow 
up form (Appendix N). 
 
4.7.9 MANAGEMENT OF NON-MALARIAL ILLNESSES 
 
Participants found to have non-malarial illness in addition to their presentation or during follow-up will 
be managed at the discretion of the study physician with reference to standard protocols of care. 
These protocols are used by the IDRC and accepted to be consistent with the standard of care locally. 
This standard treatment will be given in the study clinic and recorded in the participant’s CRF. Where 
appropriate, referrals will be made to relevant specialist care in Jinja Children’s Hospital or Mulago 
National Referral Hospital. 
 
The routine use of non-study medications with antimalarial activity, including tetracycline, antifolates, 
and macrolide antibiotics, will be avoided when acceptable alternatives are available. If alternatives are 
available, new prescriptions of drugs which can exacerbate anaemia, such as trimethoprim, zidovudine 
and pyrimethamine or drugs which can precipitate haemolysis with G6PD deficiency (Youngster, Drug 
Safety 2010+++), such as dapsone and nitrofurantoin, will be avoided in all participants. Drugs which 
might interact with primaquine are penicillamine, and quinacrine. These are not available in this 
population, but study staff will be made aware to avoid prescribing. 
 
4.7.10 OUT OF HOURS PRESENTATIONS 
 
When participants attend the health facility out of study clinic hours, they will be treated with local 
standard care. The health facility staff will be requested to refer all out of hours participants to the 
study clinic the following morning for assessment by the study staff with a written note of out of hours 
clinical assessment. If they have been admitted, the health facility staff will inform the study staff of the 
event and study staff will assess and follow up the participant and document the episode as per a non-
scheduled visit. 
 
 
4.7.11 CRITERIA FOR EXCLUSION AFTER ENROLLMENT 
 
For efficacy analysis, participants will be excluded after enrollment for the reasons listed below. All 
participants who have received the study drug primaquine will be followed up for safety and adverse 
event outcomes. 
 

1. Repeated vomiting of primaquine on day 2. These patients will be excluded from the efficacy 
analysis, but they will be followed up for safety outcomes and have adverse event monitoring 
for the duration of the study (up to day 28), given the chance that they may have absorbed a 
small amount of study drug. 
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2. Evidence of serious illness. If, after enrollment and before receiving primaquine/ placebo on day 

2, a participant develops signs of severe malaria or another serious intercurrent illness, (e.g. 
measles, hepatitis) the participant will be excluded and referred for appropriate medical 
attention. If a participant develops signs of severe malaria or another serious intercurrent illness 
after receiving the study drug primaquine/ placebo, they will not be excluded from efficacy or 
safety analysis and will be followed up by the study staff. 

 
3. Withdrawal of consent at any stage. If a participant or their parent/ guardian withdraws 

consent at any stage of the study, they will be excluded from efficacy analysis and no further 
follow up will be conducted. They will be discharged to usual health centre care. 

 

 
4. Loss to follow-up. Participants who do not visit for days 1 and 2 will be contacted at home on 

the telephone (if available) or followed up by home visit (as far as possible). Considerable effort 
will be made to ensure the participant does not miss treatment for their malaria infection and 
attends for the study treatments within 24 hours. If they are not obtainable, this will be termed 
a missed visit and the participant will be noted as “lost to follow-up” for the purposes of the 
efficacy analysis. Missed visits after day 2 will be managed according to an SOP with regards 
safety and efficacy analysis. 

 
 
4.7.12 PHARMACOKINETIC ANALYSES 
 
4.7.12.1 Overview 
 
Pharmacokinetic evaluations will be obtained on approximately one quarter of the enrolled participants; 
a maximum of 160 participants will be recruited for pharmacokinetic sampling. There will be a separate 
consent process for this evaluation. Participants will be consented for this on day 1 and asked to come 
for sampling on days 2 to 4. The sampling on day 2 will happen whilst they are at the clinic for their last 
day of AL and the study dose of PQ/ placebo. 
 
The pharmacokinetic sampling will involve taking a total of 7 venous blood samples of less than 2mls. 
The total amount sampled, being approximately 11-14 mls in 3 days. The first sample is just prior to the 
PQ/ placebo dose (a baseline sample) and the subsequent six doses are at intervals up to 72 hours after 
the dose of primaquine/ placebo. The blood samples will be taken at fixed times between 8am to 5pm. 
Participants will have to attend the clinic a minimum of 30 minutes prior to this to enable preparation 
for sampling. The first 5 samples are taken on day 2 and they will be taken through a venflon, sited when 
the baseline pharmacokinetic sample is taken. If a venflon is not sited successfully, a butterfly needle 
may be used. The last two samples (one on day 3 and one on day 4) will be taken by individual blood 
draws (venepuncture). The participant will be asked to stay in the clinic between sampling times on day 
2. 
 
In order to minimize the total number of blood draws per participant, the sampling timeframe has 
been randomized so that over the total population of participants, a population pharmacokinetic 
model can be constructed for analysis. Six randomized sample times will be allocated to sequential 
consenting participants in opaque envelopes. Each sample time is within a window so that there are 5 
samples on day 2 and one each on days 3 and 4. 
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Pharmacokinetic samples will be analysed in Professor Niklas Lindegardh’s laboratory in Mahidol 
University, Bangkok, Thailand, where the randomized sampling framework was generated. 
 
4.7.12.2 Recruitment and consent to pharmacokinetic sampling  
On day 1, every fourth child who was enrolled will be invited to give written informed consent for 
pharmacokinetic sampling (Appendix P). As far as possible, children will be seen in enrollment order 
(study number order) on each day. If this child declines consent, the next consecutive participant will be 
invited. The consent interview will be conducted by study clinicians. The pharmacokinetics consent form 
will be attached to an information leaflet in the appropriate language and it will be read word for word 
to the guardian of the child. Children over the age of eight years will be invited to give written assent by 
signing a form with attached information sheet which is read to them. 
 
4.7.12.3 Selection criteria for pharmacokinetic sampling  
All participants undergoing pharmacokinetic sampling must satisfy the following criteria: 
 
Inclusion criteria: 

1. Haemoglobin >8g/dl 
2. Siting of secure blood sampling access feasible (venflon/ butterfly needle) on day 2 
3. Willing and able to attend study clinic by 7.30am on days 2-4 
4. Willing to stay on study clinic premises between 8am to 5pm on day 2 

 
 
4.7.12.4 Pharmacokinetic sampling procedures  
Allocating sampling times.  
Consenting participants will be seen by a study clinician who will select the next available 
pharmacokinetic opaque envelope. This will contain a sheet with the sampling times for the participant. 
The clinician will label this sheet with the participant’s study number. The clinician will be responsible 
for adhering to the sampling times. 
 
Taking blood samples.  
The clinician will fix venous access (using a venflon or butterfly) and take the baseline sample. All blood 
will be taken into heparinised tubes. The subsequent 4 samples will be taken at the allocated sampling 
times (Table 6). Then the fixed venous access will be removed. The participant will be informed as to 
what time they need to present by on days 3 and 4 for the last two samples. On these days, the sample 
will be taken by phlebotomy with no fixed access. 
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Table 6 Sampling framework for participants recruited to pharmacokinetic studies 
 
Day of follow up 0 1 2 3 4 5 6 7 

 

         
 

PQ pharmacokinetic sampling   0 24-33 48-72    
 

windows:*   0-2      
 

        
 

(baseline plus x 6 windows)   2-3      
 

Serum samples   3-6      
 

        
 

   6-9      
 

         
 

*each participant has one sample within each sampling window     
 

 
 
4.7.13 LABORATORY EVALUATIONS 
 
4.7.13.1 MICROSCOPY  
Microscopy will be conducted by laboratory technicians who are not involved in the clinical care and 
assessment of study participants. Thick and thin blood films will be stained with 10% Giemsa for 10 
minutes. Trained microscopists will calculate asexual parasite density per µl by dividing the number of 
asexual parasites per 200 white blood cells by 40. If there are less than 10 parasites per 200 WBCs, then 
they will count the number of asexual parasites per 500 WBC and divide by 16 to calculate a parasite 
density per µl. Slides will be considered negative if no parasites have been found after counting 500 
WBCs. Thin smears will be used for parasite speciation. All routine blood slides will be read within 24 
hours. Reading clinically urgent slides will be prioritized over routing slides. Slides will be read by two 
microscopists for quality control and discrepant results will be confirmed by a third reader. 
 
4.7.13.2 HAEMATOLOGY 
 
During screening, haemoglobin will be assessed with a finger prick blood sample using a HemoCue® 
photometer (Ängelholm, Sweden). This produces a point-of-care result. If clinically indicated during 
follow-up, a venepuncture sample will be taken for a full blood count (haemoglobin, white blood cell 
count, platelets and haematocrit). 
 
4.7.13.3 BIOCHEMISTRY 
 
Where required, for the investigation of adverse events, biochemistry samples may be taken, for 
example, for renal and liver function testing and urinalysis for haemolysis. These samples will be sent 
to a commercial laboratory with quality control systems. 
 
4.7.13.4 G6PD DEFICIENCY TESTING 
 
An EDTA tube or heparinized hematocrit capillary tube will be used to acquire blood for glucose-6-
phosphate-dehydrogenase semi-quantitative fluorescent spot test for initial screening in the clinic site. 
This will require approximately 0.5 ml of blood. A reagent solution containing Glucose-6-P + NADP+ is 
mixed with whole blood or a dried blood spot. Samples obtained from normal or slightly reduced G6PD 
activity will show strong fluoresce. Failure to fluoresce after 10-minutes of incubation suggests a total or 
marked deficiency of G6PD. This test may fluoresce falsely if the study participant has had a blood 
transfusion within the last 90 days hence, these persons will be excluded from the study. In addition, 
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dried blood spots obtained on filter paper will be stored for quantitative G6PD testing. This will be 
performed using the G-6-PD OSMMR 2000 kit (R&D Diagnostics). The dried blood spots will also be 
utilized for G6PD genotyping. 
 
 
4.7.13.5 MOLECULAR STUDIES  
Real-time quantitative nucleic acid sequence-based amplification (QT-NASBA)  
Blood will be stored in buffer (L6 buffer) and on filter paper. Nucleic acid will be extracted from blood 
using the Boom extraction method(1990)[39]. Sub-microscopic gametocyte density will be measured 
using the Plasmodium falciparum 25 S mRNA real time QT-NASBA developed by Schneider [40]. 
 
G6PD genotype  
Samples will be collected on filter paper for G6PD genotyping using PCR for the common alleles in 
Uganda and East Africa. 
 
 
4.7.13.6 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)-PRIMAQUINE PHARMACOKINETICS 
 
Whole blood samples will be collected in heparinised tubes from venepuncture for pharmacokinetic/ 
pharmacodynamic analysis on those patients who are consented for the procedure. Blood samples will 
be centrifuged to obtain serum samples. 
 
Samples for pharmacokinetic and pharmcodynamic analysis will be stored at -20 degrees and 
transported for analysis at Mahidol University, Bangkok, Thailand in the laboratory of Professor Niklas 
Lindegardh. This laboratory specializes in the pharmacokinetic analysis of antimalarials and HPLC 
analysis will be conducted for primaquine and relevant metabolites. 
 
4.7.14 ADVERSE EVENT MONITORING 
 
4.7.14.1 DEFINITIONS 
 
4.7.14.1.1 ADVERSE EVENTS 
 
An adverse event is defined as any untoward or unfavourable medical occurrence in a human subject, 
including and sign (such as a laboratory finding), symptom or disease and including errors in clinical 
management of the participant (e.g. dosing errors) which is temporally associated with the subject’s 
participation in the research, whether or not considered related to the subject’s participation in the 
research (modified from the definition of adverse events in the 1996 International Conference on 
Harmonization E-6 Guidelines for Good Clinical Practice). 
 
4.7.14.1.2 SERIOUS ADVERSE EVENTS  
A serious adverse event is any untoward medical occurrence which poses a threat to the participant’s 
life or functioning as follows: 
-Results in death 
-Is life-threatening (i.e. the participant was at risk of death at the time of the event)  
-Requires inpatient hospitalization or prolonged hospitalization beyond the expected stay 
-Results in persistent or significant disability/ incapacity -Is a congenital anomaly/ birth 
defect  
-Requires a medical or surgical intervention to prevent one of the outcomes listed above 
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4.7.14.1.3 UNEXPECTED ADVERSE EVENTS 
 
An unexpected adverse event is one which has not previously been observed, i.e., is not in the available 
product information irrespective of whether or not it is theoretically possible given the pharmacological 
properties of the study medication.  
A Suspected Unexpected Serious Adverse Reaction (SUSAR) is one which interpreted as a response to 
the medicinal product and is of severity or a nature which is not consistent with the product 
information. 
 
4.7.14.2 IDENTIFICATION AND RECORDING OF ADVERSE EVENTS 
 
Participants will be monitored for adverse events on each day of scheduled follow up and on 
unscheduled follow up visits. This will involve the identification of any new signs or symptoms that were 
not present on the previous visit.  
Adverse events will be recorded on a separate adverse event reporting form (Appendix Q). The following 
data will be collected on adverse events: 
-Description of adverse event 
-Date of adverse event onset 
-Date adverse event reported 
-Maximum severity of the adverse event  
-Maximum suspected relationship of the adverse event to the study medication 
-Is the adverse event serious?  
-Is the adverse event unexpected?  
-Identification of the person reporting the adverse event 
-Was the event episodic or intermittent in character? -
Outcome of the adverse event  
-Date of resolution of the adverse event  
Duration of follow up: Adverse events will be followed up until they have resolved or stabilized in the 
opinion of the study clinician, even in the event that this exceeds the end of the study or following a 
patient’s withdrawal from the study. 
 
4.7.14.3 GRADING OF SEVERITY OF ADVERSE EVENTS 
 
The severity of adverse events (symptoms, signs, abnormal laboratory parameters) will be graded 
according to a system developed by the UMSP/ IDRC[41] which are in accordance with guidance from 
the NIH Division of Microbiology and Infectious Diseases (DMID) toxicity tables 
(http://www.niaid.nih.gov/LabsAndResources/resources/DMIDClinRsrch/pages/toxtables.aspx ) and the 
WHO Toxicity grading scale for determining the severity of adverse events. The grading of severity of 
adverse events is summarized in Appendix R. The causal association of adverse events with use of study 
medication is summarized in Appendix S. 
 
4.7.14.4 REPORTING OF SERIOUS ADVERSE EVENTS 
 
Periodic summaries of all adverse events will be compiled by the principle investigator and submitted to 
the DSMB. Reporting of serious adverse events, fatal/ life-threatening events will be according to the 
requirements of the IRBs (SOMREC, LSHTM, UNCST) and the NDA. 
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5.0 STATISTICAL ISSUES 
 
5.1 SAMPLE SIZE 
 
The number of participants required in each treatment arm was calculated for each of the two 
primary outcome measures: 
 

1. EFFICACY PRIMARY OUTCOME MEASURE: number of days to gametocyte clearance 
(gametocyte clearance time, GCT)  

2. SAFETY PRIMARY OUTCOME MEASURE: maximal fall (+/ or -) in haemoglobin (g/dL) from 
enrollment to day 28 of follow-up 

 
Sample size for efficacy  
For efficacy, the sample size calculation is based on non-inferiority of each of the two test dose arms to 
the comparator arm, the WHO-recommended dose of PQ, 0.75mg/kg. 
 
The non-inferiority margin for days to gametocyte clearance is proposed as 2.5 days, taking into 
consideration data from previous studies. The addition of primaquine to ACT in Tanzania reduced 
the time to gametocyte clearance from 28.6 to 6.3 days. We used the size of this difference to 
consider a clinically acceptable inferiority margin. 
 
The standard deviation for time to gametocyte clearance is estimated as 6 days, using data from 
Bousema 2010 [26] with adjustment for the fact that re-infection was not accounted for in the 28 day 
follow up period. 
 
Applying these assumptions, and allowing for a 10% loss to follow up, a sample size of 120 per arm will 
provide over 80% power at the 0.05 significance level to detect non-inferiority to the standard arm with 
a non-inferiority margin of 2.5. 
 
This sample size also allows for an analysis of superiority of the efficacy of the two test dose arms to 
placebo. 
 
Sample size for safety  
For safety, the sample size calculation is based on superiority of each of the two test dose arms to 
the comparator arm, the WHO-recommended dose of PQ, 0.75mg/kg. 
 
From Bousema 2010[26], the overall mean absolute drop in Hb by day 7 after treatment with ACT/PQ 
was 0.6g/dL with a standard deviation of 1.5. Therefore, with 80% power and at the 0.05 significance 
level, a sample size of 99 would be required to detect a difference in mean maximal drop in Hb 
between treatment groups of 0.6g/dL. 
 
Therefore, a total study size of 480 will be required to analyse both of the primary outcomes. 
 
5.2 ANALYTICAL PLAN 
 
For each treatment group, the numbers of participants who were randomised, received each dose of the 
intended treatment, and were analysed for the primary outcome will be represented in a CONSORT flow 
chart[42]. 
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Baseline characteristics of each arm will be tabulated. 
 
5.2.1 Analysis for primary efficacy outcome: 
 
The mean and standard deviation of the number of days to gametocyte clearance (gametocyte 
clearance time; GCT) will be estimated in each treatment arm by use of a mathematical model[43]. 
 
Non-inferiority of test treatments compared to standard treatment  
For each of the two test PQ dose treatment arms, PQ1 and PQ2, a 95% confidence interval for the 
difference in mean GCT between the test arm and the WHO-recommended PQ dose, PQ-R, treatment 
arm will be calculated (mean GCT in test arm – mean GCT in PQ-R arm). Figure 9 demonstrates the 
possible scenarios of treatment differences in relation to the non-inferiority margin of 2.5 days, and 
how each would be interpreted. For example, if the upper limit of the 95% confidence interval is less 
than 2.5 days, then the conclusion would be that the test treatment is non-inferior to the comparison 
treatment. If the upper limit of the 95% confidence interval is greater than 2.5 days but the lower limit is 
less than  
2.5 days, then no conclusion on non-inferiority of the test treatment to the comparison treatment could 
be made. If both the lower and upper limits of the 95% confidence interval are greater than 2.5 days the 
conclusion will be that the test treatment is inferior to the comparison treatment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 Possible scenarios and interpretation of non-inferiority analysis 
 
 
Superiority of test treatments compared to placebo 
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For each of the two test arms, superiority over the placebo arm will be assessed using unpaired t-tests. 
Differences between means and 95% confidence intervals for the differences will be calculated. 
 
5.2.2 Analysis for primary safety outcome: 
 
The primary safety outcome, maximal fall (+/ or -) in haemoglobin (g/dL) compared to enrolment 
value during follow-up, is expressed as an arithmetic mean (+/- standard deviation) per treatment arm 
and pair-wise comparisons made between each of the two test treatment arms, PQ1 and PQ2, and the 
comparator (WHO-recommended) arm, PQ-R, using unpaired t-tests. Differences between means and 
95% confidence intervals will be calculated. 
 
5.2.3 Analysis for secondary efficacy outcome: 
 
For each participant, the mean AUC of sub-microscopic gametocyte density over time per 
day (meanAUC/day) will be calculated using the linear trapezoid method: meanAUC/day 
from days 0 to 28 is calculated as  
 
 
 
 
 
 
 
 
 
 
where gd represents gametocyte density on day d. 
 
The distribution of mean AUC/day is likely to be skewed, therefore the geometric mean (+/- standard 
deviation) of the mean AUC/day will be calculated for each treatment arm.  
(1) Non-inferiority of test treatment arms to reference arm  
The reference treatment arm, PQ-R, will be the WHO-recommended dose of PQ, 0.75mg/kg (plus ACT). 
The proposed non-inferiority margin for the difference between the means of test doses and mean of 
reference arm is 0.2. Confidence intervals for the difference between the means will be calculated.  
(2) Superiority of test treatment arms to placebo  
Two pair-wise comparisons of the test doses arms, PQ1 and PQ2, with the placebo arm will be made 
using the unpaired Student’s t-test with p values of 0.05 taken as significant.  
The anti-logAUC value will be used to give the pair-wise comparisons between the treatment arms as 
geometric mean ratios with 95% confidence intervals. 
 
5.2.4 Subgroup analyses  
Analysis stratified by gametocyte prevalence and by density at enrolment will also be presented. 
 
The primary and secondary efficacy and safety outcomes will be compared in the following groups 
(listed below) for each treatment arm and overall. Where outcomes are binary, they will be analysed 
using logistic regression, while continuous outcomes will be analysed using linear regression. Interaction 
terms will be fitted in regression models to assess whether the effect of each treatment compared is 
modified by each of the factors listed below. 
-Male vs female 
-Age<5 vs Age ≥ 5 years 
-Baseline Hb< 10 g/dL vs Baseline Hb≥10g/dL 
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5.2.5 Pharmacokinetic analysis 
 
Population pharmacokinetic modelling analysis is under design by collaborators in Mahidol Oxford 
Research Unit, Bangkok, Thailand. The sampling framework has been optimised to minimise 
sampling points, to prevent the need for overnight stay at the clinic and to produce basic 
pharmacokinetic parameters including: AUC of concentration over time, Tmax, Cmax, oral clearance, 
terminal half life of primaquine +/- metabolites. 
 
 
5.2.6 Additional analyses and management of missing data  
The above analyses will be undertaken as “intention-to-treat” (including all individuals 
randomized). Since ITT analysis may increase the risk of falsely claiming non-inferiority, a “per-
protocol” analysis (including all individuals followed up as per protocol) will also be undertaken. 
 
Missing data will be accounted for in the analysis. Weight will be placed on specific data points such that if crucial 
data points are missing, this will exclude a participant from per-protocol analysis. Sensitivity of primary outcomes 
to missing data will be assessed. 
 
 
Timing for any interim analysis will be fixed by the DSMB prior to starting the study. 
 
 

 

6.0 MONITORING 
 
6.1 DATA AND SAFETY MONITORING BOARD 
 
A data and safety monitoring board, will review the study protocol prior to implementation of the trial 
and will be convened to review the study periodically. The agenda for each meeting will be made in 
conjunction with the Clinical Trials Unit (CTU) at LSHTM and the DSMB Chair. The CTU is responsible for 
quality assurance in clinical trials sponsored by LSHTM. 
 
6.2 MONITORING PLAN  
All study data and interim results will be presented to the DSMB using treatment group codes (A, B, C, or  
D) that will correspond with, but not identify, the actual treatment groups. Master copies of the 
randomization code and treatment group assignments will be held in the administrative offices 
in Kampala and London. 
 
The timing of interim analysis is expected to be after 250 patients are enrolled and will be confirmed 
with the DSMB. 
 
Information reflecting study progress and data quality and safety and tolerability data will be 
provided to the DSMB at regular intervals determined by the DSMB. 
 
An external monitoring visit will be arranged with the LSHTM Clinical Trials Unit (the Sponsor) clinical 
trials Quality Manager. Monitoring visits at Walukuba Health Centre IV will be conducted alongside a 
comparison between a selection of CRFs and the study database to ensure accuracy of the data. 
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6.3 STOPPING GUIDELINES 
 
Guidelines for stopping the study due to safety outcomes will be developed and established by the 
DSMB. 
 
Interim/cumulative safety data will be made available to the DSMB for review in accordance with the 
schedule they recommend. 
 
 
7.0 DATA COLLECTION AND MANAGEMENT 
 
7.1 DATA MANAGEMENT 
 
All clinical data will be recorded onto standardized case record forms (Appendix L, M, N) by study 
physicians. Laboratory data will be recorded in a laboratory record book by the study laboratory 
technicians. Data will be transferred from the case record forms and laboratory records into a 
computerized database and will be double-entered to verify accuracy of entry. Adverse event data will 
be transferred onto standardized data extraction forms (Appendix Q) prior to entry into the database. 
Back-up files of the database will be stored as zip files on external hard drive or compact discs after each 
data entry session. After each week, new data will be sent to the server at UMSP, IDRC for secure 
storage and back up. For quality control, query programs will be written into the database to limit the 
entry of incorrect data and ensure entry of data into required fields. 
 
7.2 DATA QUALITY ASSURANCE AND MONITORING 
 
All members of the study team will be educated in the study protocol prior to the onset of the trial and 
training/ education sessions will continue for the duration of the trial. Knowledge of the study protocol 
and procedures will be assessed and documented with a post-training questionnaire. The study 
physicians and nurses will complete case record forms at each patient visit. These forms will be 
reviewed by the study coordinator for completeness and accuracy. To optimize the quality of thick blood 
smear slide readings, each slide will be read by two experienced microscopists who will be blinded to 
the patient’s treatment group. Any discrepancies in slide readings will be reviewed and resolved by a 
third microscopist. Molecular studies and G6PD ELISAs will be conducted in duplicate with positive and 
negative controls. Study group meetings will be conducted regularly to review the progress of the study, 
address any difficulties, and provide performance feedback to the members of the study group. 
 
7.3 RECORDS 
 
Individual case record forms will be provided for each subject (Appendix L, M, N). Participants will be 
identified by their study identification number on study documents and patient names will not be 
entered into the computerized database. All participant record forms will be kept in individual files in a 
secured filing cabinet in the study clinic. All corrections will be made on case record forms following 
GCP guidelines by striking through the incorrect entry with a single line and entering the correct 
information adjacent to it. All corrections will be initialed and dated by the investigator making the 
correction. Additional clinical records will be kept in the participant’s file. The investigators will 
cooperate with all requested monitoring visits, audits, or IRB or DSMB reviews. 
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8.0 PROTECTION OF HUMAN PARTICIPANTS 
 
8.1 ETHICAL CONSIDERATIONS 
 
All participants will receive optimal management of their asexual parasitaemia, with artemisinin 
combination treatment, artemether-lumefantrine, as per the Ugandan National malaria treatment 
guidelines. 
 
This study is designed to assess efficacy and safety of different doses of primaquine treatment for 
clearance of gametocytes, the sexual parasitaemia. Additional treatment of the sexual parasitaemia with 
primaquine or placebo has no additional benefit for the individual at the point of treatment because 
gametocytes are harmless to the individual. Primaquine is given in falciparum malaria infections 
because, by clearing gametocytes, it has the potential to reduce malaria transmission at the community 
level. This trial is not designed to assess reduction of transmission at the community level. Studies with 
such aims may follow on from this trial. This is explained to participants in the informed consent 
process. 
 
Primaquine has no effect on the asexual parasitaemia in P. falciparum infection (it is the asexual 
parasitaemia which causes morbidity and mortality). Individuals receiving placebo (0mg/kg of 
primaquine) will still have optimal treatment of their clinical malaria infection with AL. 
 
 
8.2 INSTITUTIONAL REVIEW BOARD 
 
This protocol and the informed consent documents will be reviewed and approved by all institutional 
review boards (IRBs) before the study begins. Any amendments or modifications to this material will 
also be reviewed and approved by the IRBs prior to implementations. The IRBs will include Makerere 
University School of Medicine Research and Ethics Committee (SOMREC), Uganda National Council of 
Science and Technology (UNCST) and the London School of Hygiene & Tropical Medicine (LSHTM) 
Ethics Committee. 
 
8.3 RISKS AND DISCOMFORTS 
 
8.3.1 PRIVACY 
 
Care will be taken to protect the privacy of subjects and parents/guardians, as described in this 
protocol. However, there is a risk that others may inadvertently see patients’ medical information, and 
thus their privacy compromised. 
 
8.3.2 FINGER PRICKS AND VENEPUNCTURE  
Risks of these procedures include pain, transient bleeding and soft-tissue infection. 
 
8.3.3 RISK OF STUDY MEDICATIONS 
 
8.3.3.1 RISK OF ARTEMETHER-LUMEFANTRINE 
 
AL (Coartem; Novartis) has been extensively studied through Good Clinical Practice (GCP) standardized preclinical and 
clinical trials and was added to the WHO Essential Medicines List in 2002 (WHO Roll Back Malaria Treatment Policy). 
Artefan (Ajanta Pharma Ltd) is on the WHO list of Prequalified Medicinal Products. As with other artemisinins, 
artemether is characterized by rapid antimalarial action, however, recrudescence is frequent when artemether is 
provided as a single agent, unless given for at least 5-7 days [44-45]. Lumefantrine also has a high 
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cure rate, but parasite and fever clearance is slower than with artemether [46]. Artemether-lumefantrine benefits 
from co-formulation, to improve compliance, and the three-day course is a highly effective antimalarial regime. 
 
 
The drug appears to be very well tolerated, especially in comparison with other antimalarials and 
antimalarial combinations. A clinical safety review of children under 12 years of age showed that the 
most common adverse events were abdominal pain, cough, anorexia, headache, vomiting, and 
diarrhea (all seen in 5-12% of subjects, Novartis, Coartem monograph, 3rd ed. 2004). 
 
An integrated review of toxicity [47] in 1869 patients (611 under age 13) showed the most commonly 
reported adverse events were gastrointestinal disturbances (abdominal pain, anorexia, nausea, vomiting 
diarrhea), headache, and dizziness. Rash and pruritis were reported in <2% of patients. No serious or 
persistent neurological toxicities were linked to AL therapy. Of 20 severe adverse events in 1869 
patients, 19 were likely attributable to underlying malaria or concomitant illness, and one was possibly 
related to AL use (hemolytic anemia in a 35-year-old 13 days after the last administered dose). One 
concern addressed in studies of AL was possible cardiac arrhythmogenic potential, based on similarities 
in the chemical structures of lumefantrine and halofantrine. Halofantrine can cause defects in cardiac 
conduction, particularly a marked QT prolongation that can produce arrhythmias. In 713 patients 
treated with lumefantrine and followed with serial electrocardiograms, no adverse clinical cardiac 
events were recorded. Although trials have been limited to date, no serious cardiotoxicity or 
neurotoxicity has been reported with the use of AL [46, 48]. 
 
8.3.3.2 RISK OF PRIMAQUINE 
 
Methaemoglobin is the product of the oxidation of the haemoglobin iron core, oxyhaemoglobin. This 
molecule is usually stable and auto-oxidises at a rate of 3% daily. In the presence of oxidative stress, the 
rate increases and methaemoglobin accumulates. Primaquine induces the formation of 
methaemoglobin at a higher rate than usual[11]. When the percentage of methaemoglobin exceeds 10% 
of the normal haemoglobin level, cyanosis can occur. Cyanosis with primaquine is transient and dose-
related[49]. There is a lack of evidence on the clinical significance of methaemoglobinaemia with a single 
dose of primaquine. 
 
In individuals with G6PD deficiency, primaquine causes transient, dose-dependent haemolysis[50]. It is 
likely that this is due to the effect of one of primaquine’s metabolites and that it is mediated through 
oxidative stress, but the exact mechanism is as yet unknown. In a mass screen and treatment 
programme in Tanzania[28], in asymptomatic parasitized children aged 1 to 12 years, the mean change 
in haemoglobin after a single dose of 0.75mg/kg primaquine in combination with sulphadoxine-
pyrimethamine artesunate treatment was -0.58g/dL. In G6PD heterozygotes, the mean change in 
haemoglobin was -1.6g/dL and in homozygote/ hemizygote deficient children, the mean change in 
haemoglobin was -2.5g/dL. One child had severe anaemia by haemoglobin measurement (4.8g/dL) but 
their G6PD status was not reported. No child required a blood transfusion. 
 
In a Tanzanian study where 0.75mg/kg primaquine was given to children aged 3 to 15 years with clinical 
malaria, the mean fall in haemoglobin was 5.2% from enrolment value and this was found on day 7 after 
primaquine was administered[27]. No child required a blood transfusion and no child had symptomatic 
anaemia. 
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In all individuals, primaquine causes abdominal symptoms in a dose-dependent manner. These include 
abdominal pain, nausea, vomiting and mild diarrhea. These side effects are avoided if primaquine is 
taken with food[19]. 
 
Following a course of primaquine for vivax malaria (30mg for 14 days), there is a single case report of 
depression and psychosis[51] and a single case report of confusion and hallucinations [52] in the 
literature. 
 
 
8.4 TREATMENT AND COMPENSATION FOR INJURY 
 
The usual services offered at the study clinic and at Walukuba Health Centre and Jinja Children’s 
Hospital will be available in case of any injury related to the study. Care will be provided free of charge 
for injuries or adverse drug reactions related to study participation using available funds. 
 
8.5 ALTERNATIVES 
 
Individuals whose parents or guardians choose not to participate in this study will not be enrolled. They 
will receive standard care for medical problems as they arise at the study clinic or other medical facilities 
in Jinja. 
 
8.6 COSTS TO THE SUBJECT  
There will be no cost to the patients or their parents/guardians for participation in this study. 
 
8.7 REIMBURSEMENT OF COSTS TO THE SUBJECT 
 
Subjects will not be paid for their participation in the study. We will provide all routine medical care, 
including evaluations and medications available in our clinic free of charge, and we will reimburse 
participants for the costs of all transportation to and from the study clinic (one round trip repaid at 
$2.60, which is 7000 Ugandan shillings at the time of writing). In addition, we will reimburse the cost of 
consultation for referrals made by study physicians to other clinics and services. We anticipate 
reimbursing the cost of most diagnostic tests (including laboratory test, X-rays, and ultrasounds) and 
medications resulting from these referrals, using available funds. However, reimbursement of all 
diagnostic tests and treatment recommended outside the study clinic cannot be guaranteed in all 
circumstances. 
 
When individuals and their parents/ guardians have to attend the clinic for follow-up visits, they will be 
compensated for the cost of travel to and from the study clinic using estimates provided by home 
visitors and information gathered during a household survey of the study area which was conducted by 
the Uganda malaria Surveillance Project in 2010. 
 
8.8 CONFIDENTIALITY OF RECORDS 
 
Parents and guardians will be informed that participation in a research study may involve a loss 
of privacy. Care will be taken to protect the privacy of subjects and parents/guardians. 
 
All records will be kept as confidential as possible with hard copies in locked filing cabinets and 

electronic data on password-protected computers and back-up drives. Participants will be identified 
primarily by their study number and their names will not be entered into the computerized database. 
No individual identities will be used in any reports or publications resulting from the study. 
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Data will be stored for the duration required by the IRBs. The principal investigator will be 
responsible for the security of records and project documents. For the purposes of GCP, trial 
regulators may be granted access to study documents. 
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10.0 APPENDICES 
 
APPENDIX A WHO SEVERE MALARIA CRITERIA AND DANGER SIGNS   
WHO CRITERIA FOR SEVERE MALARIA 2010 (From “Guidelines for the management of malaria”)  
Clinical features:  

• impaired consciousness or unrousable coma  
• prostration, i.e. generalized weakness so that the patient is unable 

walk or sit up without assistance  
• failure to feed  
• multiple convulsions – more than two episodes in 24 h 
• deep breathing, respiratory distress (acidotic breathing)  
• circulatory collapse or shock, systolic blood pressure < 70 mm Hg in adults 

and < 50 mm Hg in children  
• clinical jaundice plus evidence of other vital organ dysfunction  
• haemoglobinuria 
• abnormal spontaneous bleeding 
• pulmonary oedema (radiological) 

 
• hypoglycaemia (blood glucose < 2.2 mmol/l or < 40 mg/dl) 
• metabolic acidosis (plasma bicarbonate < 15 mmol/l) 
• severe normocytic anaemia (Hb < 5 g/dl, packed cell volume < 15%) 
• haemoglobinuria  
• hyperparasitaemia (> 2%/100 000/μl in low intensity transmission areas or > 5% 

or 250 000/μl in areas of high stable malaria transmission intensity)  
• hyperlactataemia (lactate > 5 mmol/l) 
• renal impairment (serum creatinine > 265 μmol/l). 

 
Danger signs  

• Less than 3 convulsions over 24 hour period 
• Inability to sit up or stand  
• Vomiting everything 
• Unable to breastfeed or drink 
• Lethargy 
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APPENDIX B SCREENING AND ENROLMENT PROCESS  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
APPENDIX C INFORMED CONSENT FOR PARTICIPATION IN STUDY 
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Appendix C  

Informed consent form for participation 
in research 
 
 
Protocol title: Evaluation of the efficacy and safety of Primaquine for clearance of gametocytes 
 in uncomplicated falciparum malaria 

Source of funding: The Wellcome Trust 

Sponsor: London School of Hygiene and Tropical Medicine 

Site of Research: Walukuba Health Centre IV, Jinja, Uganda 

Principle investigator: Dr Alice C. Eziefula, MBBS MA MRCP MRCPath 

Date: 10th May 2011 

  
 
 
 
PURPOSE OF THE STUDY 
 
This information is being read to you in order to ask you whether you will let your child/ the child under 
your care participate in this research study. We will now give you information about the research study 
so that you know what will be involved. We will explain the purpose of this study, how the study will be 
done, and any risks and benefits. You can ask questions at any time. After this consent form is read to 
you, and your questions have been answered, you will decide if your child or the child under your care 
will participate in the study. Medical research includes only people who choose to take part. So it is 
your choice whether your child or the child under your care will take part. Take your time to make your 
decision about participating. If you agree for your child or the child under your care to participate in 
this study, we will ask you to sign this consent form. You will get a copy of this form to keep. If at any 
time you change your mind about your child/ the child under your care participating in the study, then 
your decision will be respected. 
 
This study is being done by researchers from universities in Uganda (Makerere University and the 
Uganda Malaria Surveillance Project) and the United Kingdom (London School of Hygiene and Tropical 
Medicine) and Thailand (Mahidol Oxford Research Unit). This study is being done to find how well a drug 
called primaquine works and how this drug can affect a child’s health. The WHO (World Health 
Organisation) says that primaquine should be used to stop malaria spreading from people to 
mosquitoes. People get malaria when they are bitten by a mosquito infected with malaria. Mosquitoes 
get infected with malaria when they bite a person who has malaria. Malaria goes from mosquitoes to 
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people to mosquitoes to people. Primaquine helps stop malaria by preventing people who have malaria 
from passing malaria on to a mosquito. It does not affect the malaria illness in the individual person who 
already has malaria, but primaquine stops malaria getting into mosquitoes in that person’s home and 
community, so it stops other people getting malaria from mosquitoes. Primaquine has not been used 
before to stop malaria spreading in Uganda, but it has been used in other countries in East Africa and 
many other countries in the world. It has also been used in Uganda for other purposes. 
 
Primaquine is not a new drug, it has been used for many years. The WHO recommends how much 
primaquine should be given to block malaria from getting from people to mosquitoes. High doses of 
primaquine, give more chance there of it causing side effects. The main side effect of primaquine is 
having a lower amount of blood in the body. We are interested to know if lower doses of this drug can 
also stop malaria getting from people to mosquitoes so we are conducting this study to look at how well 
lower doses work. We want to know how big the chance of side effects is with the normal dose and with 
lower doses of primaquine in children in Uganda. 
 
HOW THE STUDY IS DONE 
 
Any child over the age of one year and under ten years who comes to the health centre with a fever and 
whose blood slide is positive for malaria parasites is invited to take part and be enrolled in the study, as 
long as there are no signs of serious illness. Approximately 500 children will be enrolled in the study. All 
children will be treated for malaria with artemether-lumefantrine. This is the malaria treatment advised 
by the Ugandan Ministry of Health. The study staff will observe all doses of malaria treatment to ensure 
that it has all been taken. On the last day of malaria treatment, children will be given a single dose (it is 
given only once) of the study medication, primaquine, which stops malaria getting from people to 
mosquitoes. Four different doses are being tested: the usual dose, and or two lower doses and or one 
dose which contains no primaquine at all. Children will be given one of the four doses. Since there are 
four different doses, this means that the participating child has a one in four chance of being given any 
one of those doses. Which one of these doses your child gets will be left to chance in a process like a 
lottery. 
 
After your child has had the study treatment, you will be asked to come back to the clinic for more tests 
to see how well the drug worked to stop the chance of mosquitoes getting malaria and what effects it 
has had on your child’s health, in terms of safety. 
 
Pregnant females cannot participate in the study. Your child may have a pregnancy test if the study 
clinicians consider it is necessary to be sure your child is not pregnant. 
 
 
 
DURATION OF PARTICIPATION IN THE STUDY 
 
Your child will be enrolled on the day that malaria is diagnosed at the health centre. After that, they will 
be asked to attend the clinic for eight more visits in the first month after the malaria infection was 
diagnosed. 
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PROCEDURES 
 
Enrollment 
 
On the day that malaria is diagnosed, your child will be seen and examined by a doctor and a blood 
sample will be taken from your child’s finger or arm. The blood is tested to find the amount and type 
of malaria parasites in the blood and the amount of blood (haemoglobin). This is done to help answer 
the research questions. We will also test the blood for “G6PD deficiency”, which can make the blood 
count fall if primaquine is given. If we find your child has this, they will not be enrolled in the study. 
 
Immediately after the blood samples are taken, your child will be given the standard best treatment for 
malaria (artemether-lumefantrine). You will be asked to stay in the clinic until your child has had his/ her 
second dose, then a field worker will accompany you home so that the study staff can make a note of 
where you live. You are asked to come back to the clinic so your child can be observed whilst taking their 
malaria treatment on the next two days. 
 
On the third day of malaria treatment, your child will be given the study treatment (primaquine) 
together with the last doses of the malaria treatment. Your child will be checked by the study doctor 
and another blood sample will be taken for malaria parasite testing and and the amount of blood in the 
body. 
 
On all the other days, your child will be checked by the study doctor and also have a blood sample taken, 
to measure the malaria parasites in the blood and the amount of blood in the body. 
 
Follow up visits 
 
Your child will be asked to attend the clinic for eight more visits after today. Also, you are free to attend 
the clinic on any extra day if your child has any medical problems or if you have questions during the 
time of the study. We will ask you for a contact telephone number if you have one so that we can 
contact you if you forget to come for follow up visits. The study clinic is open between 8am and 5pm and 
if problems occur out of these hours, you should attend the regular emergency services at Jinja Regional 
Childrens’ Hospital. If you visit outside of the hours of 8am and 5pm, please inform the Jinja Regional 
Children’s Hospital staff that your child is in this primaquine study so that study staff can attend to your 
child as soon as possible. You can show them your study clinic card. 
 
The follow up visits at the study clinic are on these days after malaria has been diagnosed: 
 
Day 1, 2, 3, 7, 10, 14 (2 weeks), 21 (3 weeks), 28 (4 weeks). 
 
On each follow up visit, your child will be checked by the study doctor and also have a blood sample 
taken, to measure the malaria parasites in the blood and the amount of blood in the body. Additional 
blood tests will only be taken if the study doctor feels it is appropriate for the clinical care of the child. 
 
If the study clinician finds any sign of severe illness or new illnesses, your child will be treated according 
to best local standards of care. Being in the study will not hamper the treatment of medical conditions. 
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RISKS AND DISCOMFORTS 
 
Blood tests: Your child will have a blood test on each visit to the study clinic (9 times in one month). On 
the first, the blood will be drawn from a vein. On other days, it will be drawn from a finger or heel prick. 
If the finger prick does not yield enough blood, then blood will be taken from a vein. The risks of drawing 
blood include temporary pain from the needle point, bruising, and skin infection. The amount of blood 
removed will be too small to affect your child’s health. 
 
Randomization: There are four different doses of the study medication (primaquine) and your child will 
be given one of these doses by random chance. The dose that your child receives does not affect your 
child’s recovery from malaria (that is treated with AL), only the chance that your child could pass malaria 
on to a mosquito, or give more or less side effects than other doses, but this will not be known to you or 
the study staff treating your child until after the study is completed. 
 
Study medication: The study medication (primaquine) can have the following effects on the body: 
gastrointestinal effects (e.g. abdominal pain, nausea, vomiting, diarrhoea), headache, dizziness and in 
individuals with G6PD deficiency it can cause anaemia (low amount of blood in the body) or tea-
coloured urine. We will monitor carefully for any signs of these problems and treat if necessary. The 
chance of your child getting serious blood cell damage is less than 1 in 100. 
 
Unknown risks: Primaquine treatment has been used for many years, but it may have side effects that 
no one knows about yet. The researchers will let you know if they learn anything that might make you 
change your mind about your child’s participation in the study. 
 
Confidentiality: Taking part in the study may involve a loss of privacy, because we will collect 
information about your child’s health in a record on paper and on a computer, but information about 
your child will be handled as confidentially as possible Only the people working on the study and 
researchers with permission will see it. During the study period, these records will be kept at the 
Walukuba study office and the IDRC offices at Mulago Hospital. Dr. Eziefula will be responsible for the 
use, storage, and disposal of records. Records will be kept as private as possible. People responsible for 
making sure that the research is done properly may ask to see your child's records. If you sign this 
consent form, you are allowing your child's records to be seen by these people. 
 
BENEFITS 
 
All children taking part in the study will have their malaria infection is treated with the best treatment 
available, in accordance with the Ugandan national guidelines. There is no personal immediate benefit 
to your child from the study medication (primaquine). The medication is given to reduce the chance that 
that your child can pass malaria on to a mosquito, reducing the risk of that mosquito passing on malaria 
to other people at home or in the local area. 
 
The results of the study may be used to decide if in the future, primaquine might be used to reduce 
malaria in the community. 
 
COST/ PAYMENT 
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You will not be charged for any of the study treatments or procedures. You will be responsible for all 
the normal costs for your child's routine health care. You and your child will not be paid for 
participation in the study. 
 
The cost of transport of your child to and from the study clinic for follow up visits or for any extra visits 
during the time your child is in the study will be reimbursed to you. The sum of 7000/- UGX (equivalent 
to $2.60) will be given at each clinic visit to cover the journey home and the next return visit from home 
to the clinic. 
 
ALTERNATIVES TO PARTICIPATION 
 
Participation in this study is completely voluntary. If you decide you do not want your child to 
participate in the study, this will not affect your child’s care at local clinics or at Jinja Children’s Hospital 
or Walukuba Health Centre. During the study, you will be informed promptly of any new information 
that may influence your willingness to stay in the study. 
 
CONSEQUENCES OF WITHDRAWAL 
 
You may withdraw your child from the study at any stage if you desire. The study doctors may decide to 
withdraw your child from the study if they think this is best for your child. In this case, your child will still 
be eligible for care at Walukuba Health Centre and at other local clinics. 
 
USE OF THE RESULTS 
 
The results from this study may be published in research publications or reported at research meetings.  
Your child will not be identified by name. 
 
TREATMENT AND COMPENSATION FOR INJURY 
 
If you are injured or have questions about injuries as a result of being in the study, please contact the 
doctors in the study clinic or Dr. Chi Eziefula (telephone 0784448758) or Dr. Arthur Mpimbaza (telephone 
0712 846 903 or 0702 846 903). The sponsoring organisation, the London School of Hygiene 
 
& Tropical Medicine, holds insurance policies which apply to this study. If your child experiences harm 
or injury as a result of taking part in this study, you may be eligible to claim compensation. 
 
QUESTIONS 
 
If you have any other questions about the study, you may call Dr. Chi Eziefula (telephone 0784448758) 
or Dr. Arthur Mpimbaza (telephone 0712 846 903 or 0702 846 903). You may also contact Dr. Charles 
Ibingira (telephone 0414-530020) at Mulago Hospital, who approved this study. 
 
WHAT YOUR SIGNATURE OR THUMBPRINT MEANS 
 
Your signature or thumbprint below means that you understand the information given to you about 
your child’s taking part in the study and you agree with the following statements: 
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"I have read the consent form concerning this study (or have understood the verbal explanation of the 
consent form) and I understand what will be required of me and what will happen to my child if we take 
part in it." 
 
 
 
"My questions concerning this study have been answered by the person who signed below." 
 
 

 
“I agree to results arising from my child’s participation in the study being included in any reports about 
the study” 
 
 
"I understand that at any time, I may withdraw from this study without giving a reason and 
without affecting my normal care and management." 
 
 
 
"I agree to my child taking part in this study." 
 
 
 
You will also be invited to sign another informed consent forms for the future use of stored specimens. 
 
If you wish your child to participate in this study, you should sign or place your thumbprint below. 
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WE WILL GIVE YOU A COPY OF THIS SIGNED AND DATED CONSENT FORM  
 
 
 
Name of Participant (printed) Study ID number  
 
 
 
Name of Parent/Guardian  
 
 
 
Signature or Fingerprint * of Parent/Guardian Date  
 
 
 
Name of Investigator Administering Consent (printed) Position/Title  
 
 
 
Signature of Investigator Administering Consent Date  
 
 
Name of Translator  
 
Signature of Translator Date 
 

 
*If the parent or guardian is unable to read and/or write, an impartial witness should be present 
during the informed consent discussion. After the written informed consent form is read and explained 
to the participant and parent or guardian, and after they have orally consented to their child’s 
participation in the trial, and have either signed the consent form or provided their fingerprint, the 
witness should sign and personally date the consent form. By signing the consent form, the witness 
attests that the information in the consent form and any other written information was accurately 
explained to, and apparently understood by the parent or guardian, and that informed consent was 
freely given by the participant and parent or guardian.  
 
 
 
Name of Person Witnessing Consent (printed)  
 
 
 
Signature of Person Witnessing Consent Date 
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APPENDIX D INFORMED CONSENT FOR FUTURE USE OF BIOLOGICAL SPECIMENS 
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Appendix D  

Informed consent form for future use of 
biological specimens 
 
 
Protocol title: Evaluation of the efficacy and safety of Primaquine for clearance of gametocytes 
 in uncomplicated falciparum malaria 

Source of funding: The Wellcome Trust 

Sponsor: London School of Hygiene and Tropical Medicine 

Site of Research: Walukuba Health Centre IV, Jinja, Uganda 

Principle investigator: Dr Alice C. Eziefula, MBBS MA MRCP MRCPath 

Date: 1st September 2011 

  
 
 
 
INTRODUCTION 
 
While your child is in this study, blood samples will be taken from them for tests for this study. Some of 
these samples may be useful to test other research questions in the future. We are reading you this 
information to ask if you will donate these samples to be used for medical research in the future. The 
samples will be stored for a long time in Uganda at Makerere University Medical School and in the 
United Kingdom at the London School of Hygiene and Tropical Medicine. Samples may also be shared 
with investigators at other institutions for the purposes of research if they have permission from the 
study organisers. 
 
It is your choice whether the samples from your child or the child under your care can be used for future 
research. Take your time to make your decision. If you agree for the samples from your child or the child 
under your care to be used for future research, we will ask you to sign this consent form. You will get a 
copy of this form to keep. If at any time you change your mind about the samples from your child/ the 
child under your care being used for future research, then your decision will be respected and the 
samples will be disposed of. 
 
 
 
WHAT SAMPLES WILL BE USED FOR 
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The blood samples taken during this study will be used to find the answers to the study question about 
how primaquine can stop the spread of malaria. After the study, the samples will not be thrown away; 
they will be kept so they can be used for future research if you decide to give permission. 
 

1. In the future, these samples may be used for research to learn more about malaria and the 
malaria parasites in your child’s blood. If researchers wish to study any other diseases in the 
future, they will seek permission to use your child’s blood samples from the Institutional 
Review Boards first. The results of these studies will not affect your child’s care. 

 
2. Your child’s samples will be used only for research and will not be sold or used for the 

production of commercial products. 
 
 

3. Whilst in the study, a genetic test will be performed to see if your child has the G6PD (glucose-6-
phosphate dehydrogenase) deficiency characteristic. Genetic tests look at the characteristics of 
a person. The information from these tests will be available to you through the study 
coordinator, but it will not be kept in your child’s medical records. After the study, the stored 
blood samples may be used for other genetic tests that have to do with how the body responds 
to malaria. No genetic information obtained from this research will be placed in your child’s 
health centre records. These samples will be identified only by codes so that they cannot be 
easily identified with your child. 

 
 
LEVEL OF IDENTIFICATION 
 
Your child’s blood samples will be coded with numbers instead of a name so that your child cannot 
easily be identified. Reports about research done with your child’s samples will not be put in their 
health centre record and will be kept private and safe to the best of our ability.  
 
In the future, researchers studying your child’s samples may need to know more about your child, such 
as their age, gender, and race. If this information is available in your child’s study records, it may be 
provided to the researcher. Your child’s name or anything that might identify them personally will not 
be provided. You will not be asked to provide additional consent. 
 
RISKS 
 
There are few risks to your child from future use of their samples. A potential risk might be the release 
of information from your child’s records. The study records will be kept private and safe as far as 
possible. Final reports about research done with your child’s samples will not be put in their health 
centre record. 
 
 
 
BENEFITS 
 
 

 
73 



 
There will be no direct benefit to your child. From studying your child’s samples we may learn more 
about malaria: how to prevent it, how to treat it, how to cure it. 
 
FINANCIAL ISSUES 
 
If you agree to donate your child’s blood samples to medical research, you will not be charged for this 
and you will not be paid for it. If the research leads to any discoveries that may have a commercial value, 
your child will not share in any financial benefits. 
 
 
 
RESEARCH RESULTS/MEDICAL RECORDS 
 
Results from future research using your child’s samples may be presented in research publications and 
meetings but your child’s name will not be identified. 
 
Reports from future research done with your child’s samples will not be given to you or your child’s 
doctor. These reports will not be put in your child’s medical record. 
 
 
 
QUESTIONS 
 
If you have any questions, comments or concerns about the future use of your child’s specimen’s, first 
talk to the research staff at the clinic. You may also contact Dr. Chi Eziefula (telephone 0784448758) or 
Dr. Arthur Mpimbaza (telephone 0712 846 903 or 0702 846 903). If for any reason you do not wish to 
do this, or you still have concerns about the future use of your child’s specimens, you may contact Dr. 
 
Charles Ibingira (telephone 0414-530020), Makerere University School of Medicine Research and 
Ethical Committee. 
 
 
 
FREEDOM TO REFUSE 
 
You can change your mind at any time about allowing your child’s samples to be used for future 
research. If you do change your mind, you can contact Dr. Chi Eziefula (telephone 0784448758) or Dr. 
Arthur Mpimbaza (telephone 0712 846 903 or 0702 846 903). Then your child’s samples will no longer 
be made available for research and we will make all efforts to dispose of the samples. Whether or not 
you allow us to use your child’s samples in future research will not have any effect on your child’s 
participation in this study or future participation in other studies. 
 
 
 
WHAT YOUR SIGNATURE OR THUMBPRINT MEANS 
 
Your signature or thumbprint below means that you have had enough time to ask questions and to 
understand the information given to you in this consent form about your child’s specimens to be used 
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for future research. If you wish to allow your child’s specimens to be used for future research, you 
should sign or place your thumbprint below. 
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WE WILL GIVE YOU A COPY OF THIS SIGNED AND DATED CONSENT FORM  
 
 
 
Name of Participant (printed) Study ID number  
 
 
 
Name of Parent/Guardian  
 
 
 
Signature or Fingerprint * of Parent/Guardian Date  
 
 
 
Name of Investigator Administering Consent (printed) Position/Title  
 
 
 
Signature of Investigator Administering Consent Date  
 
 
Name of Translator  
 
Signature of Translator Date 
 

 
*If the parent or guardian is unable to read and/or write, an impartial witness should be present during 
the informed consent discussion. After the written informed consent form is read and explained to the 
participant and parent or guardian, and after they have orally consented to their child’s participation in 
the trial, and have either signed the consent form or provided their fingerprint, the witness should sign 
and personally date the consent form. By signing the consent form, the witness attests that the 
information in the consent form and any other written information was accurately explained to, and 
apparently understood by the parent or guardian, and that informed consent was freely given by the 
participant and parent or guardian.  
 
 
 
Name of Person Witnessing Consent (printed)  
 
 
 
Signature of Person Witnessing Consent Date 
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APPENDIX E ASSENT FORM 
 
 

Research participant assent form for children  
 
 
 

Protocol Title: Evaluation of the efficacy and safety of primaquine for clearance of 
 gametocytes in uncomplicated falciparum malaria in Uganda 

Site of Research: Walukuba Health Centre IV, Jinja, Uganda 

Principal Investigators: Dr. Chi Eziefula 

Date: 27 May 2011 
  

 
 
 

 Š I am being asked to decide if I want to be in this research study. 
 

 Š I know that if I accept, I will come to the clinic every day for treatment and then six more times this 
month  

 Š Each time I come to the clinic, the staff will talk to me, ask me questions, and examine me. 
 

 Š I know I will have a few drops of blood drawn from my finger each time I come to the clinic for the 
study. 

 
 Š I know that they will give me medicine for malaria and an extra tablet for malaria that they are 

testing 
 

 Š I asked and got answers to my questions. I know that I can ask questions about this survey at any 
time.  

 Š I know that I can stop being in this survey at anytime without anyone being mad at me. 
 
 

Mark one box with X : 
 
 

I DO CONSENT:   I hereby agree to take part in this study 
 

I DO   NOT  CONSENT: 

 

I  do not wish to take part in this   study 

 

 
 

 
 

         
 

       
 

Name of  child :       
 

       
 

Signature or      
Date:  

fingerprint of child :     
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Witness: I hereby confirm that the study has been explained to the child. All questions (if any) have also been 
answered to his/her satisfaction, and he/she has, of his own free will, consented to take part in the survey. 

 
 
 

Name of w itness:  
  

Signature of w   itness: Date: 
  

  
Name of person  
explaining study:  

   
Signature : Date: 

   
 
 

APPENDIX F SCREENING FORM  
SCREENING FORM 

 
 
 
 
              

SCREENING ID: |_____|_____|_____|_____| Date of screening: |____|____|/|____|____|/|____|____|  
 

  day  month year  
 

     
 

             
 

Initials*             
 

 Date of birth |____|____|/|____|____|/|____|____|   
 

   day month year      
 

             
 

 Gender:            
 

Age: |_____| years  |_____|_____| months Male=0 Female=1  |_____|      
 

         
 

          

 *Initial of last name, followed by initial of first name  
 

            
 

ASSESS DURING SCREENING INTERVIEW            
 

            
 

Selection criteria   Include   Exclude   Code  
 

             
 

1. Age ≥1 year and ≤10 years   Yes=1    No=0      
 

             
 

2. Enrolled in another research study?   No=0    Yes=1      
 

            
 

3. Known or suspected serious chronic illness (eg AIDS, malnutrition ,cancer)?  No=0    Yes=1      
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 4. Intention to move from Walukuba during the study period? No=0  Yes=1      

          
 5. Taken Primaquine in the 4 weeks prior to the study? No=0  Yes=1      
          
 6. Taken antimalarials in the 2 days prior to the study? No=0  Yes=1      
          
 7. History of serious side effects with primaquine or AL? No=0  Yes=1      
         
 8. Started menstruating? No=0  Yes=1      
         
 9. Pregnant or breastfeeding? No=0  Yes=1      
         
 10. Blood transfusion in the last 90 days? No=0  Yes=1      
            

If any boxes in the "Exclude" column are ticked, exclude from the study. If not, proceed to the next section.  
 
 
 

INFORMED CONSENT DISCUSSION 
 
 Selection criteria  Include  Exclude    Code 
               

11. Parents or guardians provided written informed consent?  Yes=1  No=0        
             

If the box in the "Exclude" column are ticked, exclude from the study. If not, proceed to the next section.        
            
               

            
 CLINICAL SCREENING: MEASURE WEIGHT AND TEMPERATURE AND ASSESS MALARIA STATUS        
             

               

 Selection criteria     Include  Exclude  Code 
            

12. Weight < 10 kg    No=0  Yes=1      
            

13. Temperature >38°C or history if fever within 24 hours    Yes=1  No=0      
           

14. Evidence of severe malaria or danger signs (see SOP for WHO criteria)  No=0  Yes=1      
               

               

              
 LABORATORY SCREENING: MEASURE HAEMOGLOBIN           
          

          

 Selection criteria     Include  Exclude  Code 
            

15. Haemoglobin < 8.0 g/dL?    No=0  Yes=1      
           

16. G6PD deficiency?    No=0  Yes=1      
           

               

         
All criteria for study inclusion met? Date of enrollment (date study begins)        

            
               

           79 



 
     

Yes=1   No=0 Code: |___| |___|___|/|___|___|/|___|___|  
  day month   year  

(If no, exclude from the study)     
     

      
 
 

ASSIGN 
 

STUDY NUMBER PQ-|____|____|____|____|  
 
 
 
 
 
 

APPENDIX G ENROLLMENT FORM 
 
 
                 

 ENROLLMENT  Study Number:   Patient Initials:  Gender: |___|  
 

 FORM  PQ- |___|___|___|___|      male=0 female=1  
 

             
 

   Today’s Date:   Age: |___|___| years |___|___| months  
 

   |___|___|/|___|___|/|___|___|           
 

       (include months only if age < 8)   
 

   day month year           
 

                
 

 Preferred language: |____|             
 

 English=0, Lusoga=1, Luganda=2, Swahili=3            
 

               
 

                 

               
 

    PAST AND CHRONIC ILLNESSES          
 

       
 

 Prior illnesses  including blood disorders (include dates, if available)   Prior surgeries  (include dates, if  
 

_____________________________________________________________________  available)      
 

 

_______________________________   

_____________________________________________________________________   
 

 

_______________________________   

_____________________________________________________________ ________   
 

 

_______________________________   

_____________________________________________________________________   
 

 

_______________________________  
 

_____________________________________________________________________   
 

         

               
 

 Known drug allergies (include details)             
 

                
 

                  
 
 

MEDICATION RECORD (taken in the last 2 weeks) 
 

Medication Code Indication Date Prescribed 
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CLINICAL EXAMINATION  
NUTRITIONAL STATUS 
Weight (kg)  Height (cm)   HAZ -score (circle + or  -): WHZ -score (circle + or  -):  

|___|___|  |___|___|___|  +  /  -   _ B B B _   ‡   _ B B B _ +  / -   _ B B B _   ‡   _ B 
           
          

          
    LABORATORY TESTS     
       Result   Staff Initials  

P. falciparum parasite density (/ul)         
            

Gametocytes (Y/N)            
            

Hemoglobin (g/dL)            
        

 ‘Enrolled Date of enrollment: |___|___|/|___|___|/|___|___|     
    day  month year     

 ‘Excluded Date of exclusion: |___|___|/|___|___|/|___|___|     
            

            

 
 

APPENDIX H WEIGHT-BASED TREATMENT GUIDELINES (AL)  
The dosing schedule for artemether-lumefantrine in this study is according to manufacturer and 
Ugandan national malaria control programme guidelines, as follows: 
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Each dose (1-4 tablets) is given twice daily for three days. Weight rather than age criteria will be used. 
 
 
 

APPENDIX I DOSING OF STUDY DRUG (PRIMAQUINE)  
   Primaquine: number of mg given on day 2   

         
PQ Placebo (0 mg/kg) 0.1mg/kg 0.4mg/kg 0.75mg/kg 

dose         
         

Wt Target Actual Target Actual Target Actual Target Actual 
(Kg) dose dose dose dose dose dose dose dose 

         
10 0 0 1 1 4 4 7.5 7.5 

         
11 0 0 1.1 1 4.4 4 8.25 8 

         
12 0 0 1.2 1 4.8 4 9 9 

         
13 0 0 1.3 1 5.2 5 9.75 9.5 

         
14 0 0 1.4 1 5.6 5.5 10.5 10 

         
15 0 0 1.5 1.5 6 6 11.25 11 

         
16 0 0 1.6 1.5 6.4 6 12 12 

         
17 0 0 1.7 1.5 6.8 6.5 12.75 12.5 

         
18 0 0 1.8 1.5 7.2 7 13.5 13.5 

         
19 0 0 1.9 1.5 7.6 7.5 14.25 14 

         
20 0 0 2 2 8 8 15 15 
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21 0 0 2.1 2 8.4 8 15.75 15.5 
         

22 0 0 2.2 2 8.8 8.5 16.5 16 
         

23 0 0 2.3 2 9.2 9 17.25 17.5 
         

24 0 0 2.4 2 9.6 9.5 18 18 
         

25 0 0 2.5 2.5 10 10 18.75 18.5 
         

26 0 0 2.6 2.5 10.4 10 19.5 19.5 
         

27 0 0 2.7 2.5 10.8 10.5 20.25 20 
         

28 0 0 1 1 11.2 11 21 21 
         

29 0 0 1.1 1 11.6 11.5 21.75 21.5 
         

30 0 0 1.2 1 12 12 22.5 22.5 
         

31 0 0 1.3 1 12.4 12 23.25 23 
         

32 0 0 1.4 1 12.8 12.5 24 24 
         

33 0 0 1.5 1.5 13.2 13 24.75 24.5 
         

34 0 0 1.6 1.5 13.6 13.5 25.5 25 
         

35 0 0 1.7 1.5 14 14 26.25 26 
         

36 0 0 1.8 1.5 14.4 14 27 27 
         

37 0 0 1.9 1.5 14.8 14.5 27.75 27.5 
         

38 0 0 2 2 15.2 15 28.5 28.5 
         

39 0 0 2.1 2 15.6 15.5 29.25 29 
         

40 0 0 2.2 2 16 16 30 30 
          
 
 

 
STUDY NUMBER:______________ 

APPENDIX J  CLINIC CARD –STUDY DRUG VISITS  
Clinic card  

Day 0 Date: 
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Doctor station  Seen by (initials)     
         

        
Nurse station Seen by Number of Number of Vomited Vomited Vomited 

 (initials) tablets mls first dose? second third dose? 
       dose?  

1st AL dose         
2nd AL dose         

      
Laboratory station  Seen by (initials)  Finger prick taken  

         
 
 
 

Day 1 Date:        
         

Doctor station   Seen by (initials)     
         

        
Nurse station Seen by Number of Number of Vomited Vomited Vomited 

 (initials) tablets mls first dose? second third dose? 
       dose?  

1st AL dose         
2nd AL dose         

      
Laboratory station  Seen by (initials)  Finger prick taken  

         
 
 
 

Day 2 Date:        
         

Doctor station   Seen by (initials)     
         

       
Nurse station Seen by Number of Number of Vomited Vomited Vomited 

 (initials) tablets mls first dose? second third dose? 
       dose?  

1st AL dose         
PQ/ placebo         
2nd AL dose         
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Laboratory station Seen by (initials) Finger prick taken 

   
 
 
 
 
 

APPENDIX K HOUSEHOLD CONTACT FORM  
 

 

HOUSEHOLD CONTACT FORM 
 

CONFIDENTIAL INFORMATION: COMPLETE FORM AND FILE SEPARATELY 
 

Participant Study Number:  Gender: |___| Household GPS reading:  
Initials: PQ-|___|___|___||___|   |___|___|___|___|___|___|___|___|  

    Male=0, Female=2    
         

Date of enrollment:         

|___|___|/|___|___|/|___|___|   Age:_______years______months  
 day month year      
    (include months only if age < 5)  
        
        

        
Participant's name (last, first):        

        
Head of household's name:        

        
Relationship to participant:        

        
Primary caregiver's name:        

        
Relationship to participant:        

         
Father's name:         

         
Mother’s name:         

       
Name of other household member     Study  

       Number:  PQ-|___|___|___||___|  
enrolled in this study:         
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Name of other household member  Study 

  Number:  PQ-|___|___|___||___| 
enrolled in this study:   

   
Name of other household member  Study 

  Number:  PQ-|___|___|___||___| 
enrolled in this study:   

   
Name of other household member  Study 

  Number:  PQ-|___|___|___||___| 
enrolled in this study:   

   
Name of other household member  Study 

  Number:  PQ-|___|___|___||___| 
enrolled in this study:   

   
Name of other household member  Study 

  Number:  PQ-|___|___|___||___| 
enrolled in this study:   

   
Home parish: LC1: 

   
Home address if available:   

 
 

Phone number: No=0 Yes=1 Unknown=2 Code:  |___| 
 
 

If yes: Number 1: ____________________________ Name of phone owner: ________________________ 
 
 

Number 2: ____________________________ Name of phone owner: ________________________  
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APPENDIX L CASE RECORD FORMS  
      

CLINICAL RECORD FORM Patient    
 

(1) Initials: Day 0 Date:  
Study Number:  PQ- 

 

  |___|___|/|___|___|/|___|___| 
 

HISTORY  day month   year |___|___|___|___| 
 

    
 

     
 

       
 

SYMPTOM RECORD 
 

(Rank on scale of 0-4: absent = 0; mild = 1; moderate = 2; severe = 3, life-threatening = 4, N/A = unable to assess) 
 
 DAY 0 DAY 1 DAY 2  DAY 3  DAY 7  DAY 10 DAY 14 DAY 21 DAY 28 
             

DATE             
             

SYMPTOMS             
             

Fever (Y/N)  [grade] [ [  [  [  [ [ [ [ [ 
 ] ]  ]  ]  ] ] ] ] ] 
             

Weakness             
             

Headache†             
             

Anorexia             
             

Nausea†             
             

Vomiting             
             

Abdominal pain†             
             

Diarrhea             
             

Cough             
             

Pruritis             
             

Joint pains             
             

Urine colour             
             

Other____________             
             

Other____________             
           
   CLINICAL HISTORY RECORD       
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Record clinically 
relevant details of 
history 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Initials 
 
 CLINICAL RECORD FORM (2) Patient      
  Initials: Day 0 Date:    
 EXAMINATION  |___|___|/|___|___|/|___|___|  Study Number:  PQ-  
   day    month   year |___|___|___|___|  
        
         
 

PHYSICAL EXAM RECORD 
 

(Rank on scale of 0-4: absent = 0; mild = 1; moderate = 2; severe = 3, life-threatening = 4, N/A = unable to assess) 
 
 DAY 0 DAY 1 DAY 2 DAY 3 DAY 7 DAY 10 DAY 14 DAY 21 DAY 28  
           

DATE           
           

PHYSICAL EXAM           
           

Temperature (ºC) [   ] [   ] [   ] [   ] [   ] [   ] [   ] [   ] [   ]  

[grade]           
           

Respiratory rate           
           

Pallor           
           

Jaundice           
           

Eyes           
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Oropharynx 

 
Neck 

 
Chest 

 
CVS 

 
Abdomen 

 
Skin 

 
Hearing 

 
Tablet test/ CNS/  
PNS 

 
Urine (state colour) 

 
Other____________ 

 
Other____________ 

 
ABNORMAL EXAM RECORD 

 
If abnormality noted 
on physical exam,, 
describe all physical 
findings for the 
abnormal exam 

 
 
 
 
 

Initials  
 
 
 
 
 

 
APPENDIX M UNSCHEDULED VISITS   
CLINICAL RECORD FORM (3) Patient   

 

 Initials: Day 0 Date: 
Study Number:  PQ- 

 

UNSCHEDULED VISITS: HISTORY  |___|___|/|___|___|/|___|___| 
 

  daymonth   year |___|___|___|___| 
 

    
 

SYMPTOM RECORD 
 

(Rank on scale of 0-4: absent = 0; mild = 1; moderate = 2; severe = 3, life-threatening = 4, N/A = unable to assess)  
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 DAY __ DAY __ DAY __ DAY __ DAY __ DAY __ DAY __ DAY __ DAY __ 
          

DATE          
          

Reason for          
unscheduled visit          

          
SYMPTOMS          

          
Fever (Y/N)  [grade] [ [ [ [   ] [   ] [   ] [ [ [ 

 ] ] ]    ] ] ] 
          

Weakness          
          

Headache†          
          

Anorexia          
          

Nausea†          
          

Vomiting          
          

Abdominal pain†          
          

Diarrhea          
          

Cough          
          

Pruritis          
          

Joint pains          
          

Urine colour          
          

Other____________          
          

Other____________          
          
   CLINICAL HISTORY RECORD     
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Record clinically 
relevant details of 
history 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Initials  
 
 

 
CLINICAL RECORD FORM (3) Patient   

 

 Initials: Day 0 Date: 
Study Number:  PQ- 

 

UNSCHEDULED VISITS: EXAM  |___|___|/|___|___|/|___|___| 
 

  day    month   year |___|___|___|___| 
 

    
 

PHYSICAL EXAM RECORD 
 

(Rank on scale of 0-4: absent = 0; mild = 1; moderate = 2; severe = 3, life-threatening = 4, N/A = unable to assess) 
 
 DAY __ DAY __ DAY __ DAY __ DAY __ DAY __ DAY __ DAY __ DAY __  
           

DATE           
           

PHYSICAL EXAM           
           

Temperature (ºC) [ [   ] [   ] [   ] [   ] [   ] [   ] [   ] [   ]  

[grade] ]          
           

Respiratory rate           
           

Pallor           
           

Jaundice           
           

Eyes           
           

Oropharynx           
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Neck 

 
Chest 

 
CVS 

 
Abdomen 

 
Skin 

 
Hearing 

 
Tablet test/ CNS/  
PNS 

 
Urine (state colour) 

 
Other____________ 

 
Other____________ 

 
ABNORMAL EXAM RECORD  

 
If abnormality noted 
on physical exam,, 
describe all physical 
findings for the 
abnormal exam 

 
 
 
 
 

Initials  
 

CLINICAL RECORD FORM (3)  Patient          
 

   Initials: Day 0 Date:        
 

UNSCHEDULED VISITS:    |___|___|/|___|___|/|___|___|  Study Number: PQ- 
 

MANAGEMENT    day month year |___|___|___|___|  
 

            
 

              
 

             
 

 DAY __ DAY __ DAY __ DAY __  DAY __ DAY __  DAY __ DAY __  DAY __ 
 

              
 

DATE              
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Management  
summary for  
unscheduled visit 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Initials  
 
 
 
 
 
 
APPENDIX N HOSPITAL FOLLOW UP RECORD  
 
 

HOSPITAL ADMISSION FORM  
 
Patient initials:  

Study Number: PQ-|___|___|___|___| 
Age:_______years______months  

 
 

Study Day: 
 
Date of admission : |___|___|/|___|___|/|___|___| 
 

day month year 
 

Study Day: 
 
Date of discharge* : |___|___|/|___|___|/|___|___| 
 

day month year  
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Reason for admission: 
 
 
 
 
 
 
 
 
History: Exam: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Laboratory Results (with dates samples taken):  
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Assessment/Plan: (List all medications given during hospitalization on FOLLOW UP FORMS)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* Record date when patient has been discharged from the hospital 
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HOSPITAL FOLLOW-UP FORM 

 
  Patient initials:       
   Study Number: PQ-  Admit Date:    
   |___|___|___|___|  |___|___|/|___|___|/|___|___|   
     day month   year 
        

      
         

    Study Day: Temp: 

  Date of follow-up: |___|___|/|___|___|/|___|___|       
 

day month year 
 

Progress Note: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Initials:________ 
  

Study Day: Temp:  
 

Date of follow-up: |___|___|/|___|___|/|___|___| 
 

day month year  
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Progress Note: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Initials:________ 
  

Study Day: Temp: 
 

Date of follow-up: |___|___|/|___|___|/|___|___| 
 

day month year 
 

Progress Note: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Initials:________  
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APPENDIX O METHODS FOR SURVEILLANCE OF ANTIMALARIAL DRUG EFFICACY (WHO, 

2009)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
APPENDIX P INFORMED CONSENT FOR PHARMACOKINETIC STUDY  

Appendix P  

Informed consent form for participation 
in pharmacokinetic research 
 
 
 
Protocol title: Evaluation of the efficacy and safety of Primaquine for clearance of gametocytes 

in uncomplicated falciparum malaria 
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Source of funding: The Wellcome Trust 

Sponsor: London School of Hygiene and Tropical Medicine 

Site of Research: Walukuba Health Centre IV, Jinja, Uganda 

Principle investigator: Dr Alice C. Eziefula, MBBS MA MRCP MRCPath 

Date: 1st September 2011 

  
 
 
 
PURPOSE OF THE STUDY 
 
You are being asked whether you will let your child/ the child under your care participate part in an 
extra study which is part of the main study you are enrolled in. This involves some extra blood tests 
over the next three days. 
 
This information is being read to you in order to give you information about this extra study so that you 
know what will be involved. We will explain the purpose of this study, how the study will be done, and 
any risks and benefits. You can ask questions at any time. After this consent form is read to you, and 
your questions have been answered, you will decide if your child or the child under your care will 
participate in the study. Medical research includes only people who choose to take part. So it is your 
choice whether your child or the child under your care will take part. Take your time to make your 
decision about participating. If you agree for your child or the child under your care to participate in this 
study, we will ask you to sign this consent form. You will get a copy of this form to keep. If at any time 
you change your mind about your child/ the child under your care participating in the study, then your 
decision will be respected. 
 
This study is being done by researchers from universities in Uganda (Makerere University and the 
Uganda Malaria Surveillance Project) and the United Kingdom (London School of Hygiene and Tropical 
Medicine) and Thailand (Mahidol Oxford Research Unit). 
 
The purpose of this study is to learn more about how the study drug, primaquine works in different 
people. Some drugs work differently in males and females and in people of different ages. We need 
more information about this drug in Ugandan children in order to be sure that it has the correct effect. 
 
 
 
HOW THE STUDY IS DONE 
 
The pharmacokinetic study will involve: 
 
-coming early to the clinic (by 07.30) on the next three days 
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-staying in the study clinic between 08.00 hours and 05.00 hours tomorrow 
 
-having extra blood samples taken over the next three days 
 
This is explained in detail as follows: 
 
You will be asked to come early with your child to the study clinic tomorrow, by 07.30 hours. On arrival 
at the clinic, your child will be seen by a doctor and have a plastic tube (venous canula) fixed in their arm 
so that blood samples can be taken. This is so that the rest of the blood samples that day can be taken 
without the need to pierce the child’s skin again. 
 
Your child will then be given their study drugs. You and your child will need to stay in the study clinic for 
the rest of the day. During this time, the doctor will take four more blood samples from your child at 
fixed times. 
 
After the last sample tomorrow, the plastic tube will be removed from your child’s arm and you can 
go home. 
 
The next two days, you are asked to come back to the study clinic at 07.30 hours. On each day your child 
will be seen by the doctor and one blood sample will be taken, after which you can go home. 
 
The blood samples will be sent to Thailand to get the results. They will be kept there until we are allowed to 
close the study. They may be used for further research on malaria in Thailand after the study, but your 
child’s name will not be easily identified. The blood samples will be identified with a code. 
 
 
 
 
 
 
DURATION OF PARTICIPATION IN THE PHARMACOKINETIC STUDY 
 
This section of the study lasts three days. It requires that you attend the clinic early in the next three 
days for extra blood tests. After that, the study staff will ask you to come back to the clinic according to 
the appointments on your card for the main study. 
 
PROCEDURES 
 
RISKS AND DISCOMFORTS 
 
Blood tests: The risks of drawing blood include temporary discomfort from the needle point, bruising, and 
skin infection. The amount of blood removed will be too small to affect your child’s health. 
 
Confidentiality: Taking part in the study may involve a loss of privacy, because we will collect 
information about your child’s health in a record on paper and on a computer, but information about 
your child will be handled as confidentially as possible. Only the people working on the study and 
researchers with permission will see it. During the study period, these records will be kept at the 
Walukuba study office and the IDRC offices at Mulago Hospital. Dr. Eziefula will be responsible for the 
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use, storage, and disposal of records. Records will be kept as private as possible. People responsible for 
making sure that the research is done properly may ask to see your child's records. If you sign this 
consent form, you are allowing your child's records to be seen by these people. 
 
BENEFITS 
 
All children taking part in the study will have their malaria infection treated with the best treatment 
available, in accordance with the Ugandan national guidelines. There is no personal immediate benefit 
to your child from the study medication (primaquine). The medication is given to reduce the chance that 
that your child can pass malaria on to a mosquito, reducing the risk of that mosquito passing on malaria 
to other people at home or in the local area. 
 
The results of the study may be used to decide if in the future, primaquine might be used to reduce 
malaria in the community. 
 
 
 
COST/ PAYMENT 
 
You will not be charged for any of the study treatments or procedures. You will be responsible for all 
costs for your child's routine health care. You and your child will not be paid for participation in the 
study. 
 
The cost of transport of your child to and from the study clinic for follow up visits or for any extra visits 
during the time your child is in the study will be reimbursed to you. The sum of 7000/- UGX (equivalent 
to $2.60) will be given at each clinic visit to cover the journey home and the next return visit from home 
to the clinic. 
 
 
 
ALTERNATIVES TO PARTICIPATION 
 
Participation in this study is completely voluntary. If you decide you do not want yourself or your child 
to participate in the study, this will not affect your child’s care at local clinics or at Jinja Hospital or 
Walukuba Health Centre. During the study, you will be informed promptly of any new information that 
may influence your willingness to continue participation in the study. 
 
CONSEQUENCES OF WITHDRAWAL 
 
You may withdraw your child from the study at any stage if you desire. The study doctors may decide to 
withdraw your child from the study if they think this is best for your child. In this case, your child will still 
be eligible for care at Walukuba Health Centre and at other local clinics. 
 
USE OF THE RESULTS 
 
The findings from this study may be published in research publications or reported at research meetings.  
Your child will not be identified by name. 
 

101 



TREATMENT AND COMPENSATION FOR INJURY 
 
If you are injured or have questions about injuries as a result of being in the study, please contact the 
doctors in the study clinic or Dr. Chi Eziefula (telephone 0784448758) or Dr. Arthur Mpimbaza 
(telephone 0712 846 903 or 0702 846 903). The sponsoring organisation, the London School of Hygiene 
 
& Tropical Medicine, holds insurance policies which apply to this study. If your child experiences harm 
or injury as a result of taking part in this study, you may be eligible to claim compensation 
 
QUESTIONS 
 
If you have any other questions about the study, you may call Dr. Chi Eziefula (telephone 0784448758) 
or Dr. Arthur Mpimbaza (telephone 0712 846 903 or 0702 846 903). You may also contact Dr. Charles 
Ibingira (telephone 0414-530020) at Mulago Hospital, who approved this study. 
 
 
 
WHAT YOUR SIGNATURE OR THUMBPRINT MEANS 
 
Your signature or thumbprint below means that you understand the information given to you about your 
child’s participation in the study and in this consent form and agree with the following statements: 
 
 

 
"I have read the consent form concerning this study (or have understood the verbal explanation of the 
consent form) and I understand what will be required of me and what will happen to my child if we 
take part in it." 
 
 
 
"My questions concerning this study have been answered by the person who signed below." 
 
 

 
“I agree to results arising from my participation in the study being included, even anonymously in 
any reports about the study” 
 
 
"I understand that at any time, I may withdraw from this study without giving a reason and without 
affecting my normal care and management." 
 
 
 
"I agree to my child taking part in this study." 
 
 
 
If you wish your child to participate in this study, you should sign or place your thumbprint below. 
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WE WILL GIVE YOU A COPY OF THIS SIGNED AND DATED CONSENT FORM  
 
 
 
Name of Participant (printed) Study ID number  
 
 
 
Name of Parent/Guardian  
 
 
 
Signature or Fingerprint * of Parent/Guardian Date  
 
 
 
Name of Investigator Administering Consent (printed) Position/Title  
 
 
 
Signature of Investigator Administering Consent Date  
 

 
Name of Translator  
 
Signature of Translator Date 
 

 
*If the parent or guardian is unable to read and/or write, an impartial witness should be present 
during the informed consent discussion. After the written informed consent form is read and explained 
to the participant and parent or guardian, and after they have orally consented to their child’s 
participation in the trial, and have either signed the consent form or provided their fingerprint, the 
witness should sign and personally date the consent form. By signing the consent form, the witness 
attests that the information in the consent form and any other written information was accurately 
explained to, and apparently understood by the parent or guardian, and that informed consent was 
freely given by the participant and parent or guardian.  
 
 
 
Name of Person Witnessing Consent (printed) 
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Signature of Person Witnessing Consent Date 

 

Pharmacokinetics assent form for children  
 
 
 

Protocol Title: Evaluation of the efficacy and safety of primaquine for clearance of 
 gametocytes in uncomplicated falciparum malaria in Uganda 

Site of Research: Walukuba Health Centre IV, Jinja, Uganda 

Principal Investigators: Dr. Chi Eziefula 

Date: 27 May 2011 
  

 
 
 

 Š I am being asked to decide if I want to be in a study to measure the amount of medicines in my blood  
Š I know that if I accept, I will have seven extra blood tests in the next three days  Š I know that I will 
have a canula fitted tomorrow to take blood samples 

 
 Š I asked and got answers to my questions. I know that I can ask questions about this survey at any 

time.  
 Š I know that I can stop being in this survey at anytime without anyone being mad at me. 

 
 

Mark one box with X :      
 

I DO CONSENT: 
  

I hereby agree to take part in this study 
 

  
 

I DO   NOT CONSENT: 

 

I  do not wish to take part in this   study 

 

 
 

 
 

          
 

        
 

Name of child :       
 

        
 

Signature or       
Date:  

fingerprint of child :     
 

     
 

          
 

 
 

Witness: I hereby confirm that the study has been explained to the child. All questions (if any) have also been 
answered to his/her satisfaction, and he/she has, of his own free will, consented to take part in the survey.  

 
 
 

Name of w itness:  
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Signature of w itness: Date: 
    
 
 

Name of person  
explaining study: 

 
Signature  : Date: 

  
 
 

APPENDIX Q ADVERSE EVENT REPORTING FORM   
      

SERIOUS adverse event form – Initial report  UNCST study number: 
      

Study Number: Day 0 Date:    Gender |___| 
PQ- |___|___|___|___| |___|___|/|___|___|/|___|___|  

 day month year Male=0, Female=1 
       
 
 
 

Event description:______________________________________________________________________________ 
 

(symptom, sign, or laboratory abnormality)  
Date of event onset:  Date event reported:  

 

|___|___|/|___|___|/|___|___|___|___| 
|___|___|/|___|___|/|___|___|___|___| 

 

   
 

   day month year 
 

day month year    
 

  
 

Maximum event severity: Maximum relationship to study drugs: 
 

Mild  None  
 

Moderate  Unlikely  
 

Severe  Possible  
 

Life-threatening Probable  
 

Was the event unexpected? Definite  
 

Expected=0 Unexpected=1    
 

 |___|     
 

      
  

 
Indicate reason for serious AE: 
 
Fatal  
Life-threatening  

Resulted in significant 
/persistent disability or 
incapacity  
Resulted in hospitalization 
Prolonged hospitalization 
Required medical / surgical 
intervention to prevent  
serious outcome 

Other:___________________ 
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  Event history (symptoms, signs, differential diagnoses):  Event history (medical management): 

          
       Relevant past medical history:  

         
  Concomitant medications taken in the last month:     
         
  Medication Start date Stop date  Total daily Indication Suspect for SAE? 
    (dd/mm/yy) (dd/mm/yy)  dose  N=0, Y=1 

          
    |_|_|/|_|_|/|_|_| |_|_|/|_|_|/|_|_|    |___| 
          
    |_|_|/|_|_|/|_|_| |_|_|/|_|_|/|_|_|    |___| 
          
    |_|_|/|_|_|/|_|_| |_|_|/|_|_|/|_|_|    |___| 
          
    |_|_|/|_|_|/|_|_| |_|_|/|_|_|/|_|_|    |___| 
          
    |_|_|/|_|_|/|_|_| |_|_|/|_|_|/|_|_|    |___| 
          
    |_|_|/|_|_|/|_|_| |_|_|/|_|_|/|_|_|    |___| 
          
    |_|_|/|_|_|/|_|_| |_|_|/|_|_|/|_|_|    |___| 
        
          

  Date form completed: Investigator’s name (printed):  ________________________________ 

  |___|___|/|___|___|/|___|___|___|___|      

  day month year Investigator’s signature: ______________________________________ 
          
           
 
 

      

SERIOUS adverse event form – Initial report  UNCST study number: 
      

Study Number: Day 0 Date:    Gender |___| 
PQ- |___|___|___|___| |___|___|/|___|___|/|___|___|  

 day month year Male=0, Female=1 
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Event description:______________________________________________________________________________ 

 
(symptom, sign, or laboratory abnormality) 

Date of event onset:   Date event reported:  

|___|___|/|___|___|/|___|___|___|___|  |___|___|/|___|___|/|___|___|___|___| 

day month year  day month year  
        

Relevant diagnostic tests:       
         

Test   Collection date Result Normal range  Most recent Collection date (recent 
   (dd/mm/yy)     value prior to value) (dd/mm/yy) 
        SAE  
          
   |__|__|/|__|__|/|__|__|      |__|__|/|__|__|/|__|__| 
          
   |__|__|/|__|__|/|__|__|      |__|__|/|__|__|/|__|__| 
          
   |__|__|/|__|__|/|__|__|      |__|__|/|__|__|/|__|__| 
          
   |__|__|/|__|__|/|__|__|      |__|__|/|__|__|/|__|__| 
          
   |__|__|/|__|__|/|__|__|      |__|__|/|__|__|/|__|__| 
          
   |__|__|/|__|__|/|__|__|      |__|__|/|__|__|/|__|__| 
          
   |__|__|/|__|__|/|__|__|      |__|__|/|__|__|/|__|__| 
        

Other diagnostic investigations       
        

Investigation  Date performed Result      
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Summary of action taken: (tick all that apply) 

 
 
 

No change in current management 
Study medication discontinued 
Specific treatment given  

Patient hospitalized  
Laboratory tests obtained  
Other:____________________  
Other:____________________  

 
 

Outcome of event: 
 

Ongoing (SAE follow up form to be completed and sent at a 
later date)  

Resolved without sequelae  
Resolved with sequelae_________________________________  
Death  

 
 
 
If resolved or died, indicate date: 
 
|___|___|/|___|___|/|___|___|___|___| 
 

day month year 

 

Date form completed:  Investigator’s name (printed):  ________________________________ 

|___|___|/|___|___|/|___|___|___|___|  

day month year Investigator’s signature: ______________________________________ 
     

 
 
       

SERIOUS adverse event– Follow up report  UNCST study number: 
       

Study Number: Day 0 Date:    Gender |___| 
PQ- |___|___|___|___| |___|___|/|___|___|/|___|___|   

 day month year Male=0, Female=1 
       

       
        
 
 

Event description:______________________________________________________________________________ 
 

(symptom, sign, or laboratory abnormality) 
Date of first report:  Date of this progress report: 

|___|___|/|___|___|/|___|___|___|___| |___|___|/|___|___|/|___|___|___|___| 

day month year day month year 
      

Relevant diagnostic tests:  
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Test Date collected Result Other Date performed Result 
 (dd/mm/yy)  investigations (dd/mm/yy)  
   or   
   procedures   
      
 |_|_|/|_|_|/|_|_|   |_|_|/|_|_|/|_|_|  
      
 |_|_|/|_|_|/|_|_|   |_|_|/|_|_|/|_|_|  
      
 |_|_|/|_|_|/|_|_|   |_|_|/|_|_|/|_|_|  
      
 |_|_|/|_|_|/|_|_|   |_|_|/|_|_|/|_|_|  
      
 |_|_|/|_|_|/|_|_|   |_|_|/|_|_|/|_|_|  
      
 |_|_|/|_|_|/|_|_|   |_|_|/|_|_|/|_|_|  
      

Progress notes:      

        
Outcome of event: 

 
Ongoing (SAE follow up form to be completed and sent at a 
later date)  

Resolved without sequelae  
Resolved with sequelae_________________________________  
Death  

 
If resolved or died, indicate date: 
 
|___|___|/|___|___|/|___|___|___|___| 
 

day month year 

 

Date form completed:  Investigator’s name (printed):  ________________________________ 

|___|___|/|___|___|/|___|___|___|___|  

day month year Investigator’s signature: ______________________________________ 
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APPENDIX R ADVERSE EVENT GRADING SCHEME  

Grade Severity Description 
1 Mild Transient or mild discomfort; no limitation in activity; no medical 

  intervention/therapy required 
   

2 Moderate Mild to moderate limitation in activity – some assistance may be 
  needed; no or minimal medical intervention required 
   

3 Severe Marked limitation in activity; some assistance usually required; 
  hospitalization possible 
   

4 Life-threatening Extreme limitation in activity, significant assistance required; 
  significant medical intervention/therapy required; hospitalization 
  probable 
   

5 Death  

   
 
 
APPENDIX S CAUSAL ASSOCIATION OF ADVERSE EVENT WITH USE OF STUDY 
MEDICATION 
 
 
Causal relationships of adverse events to anti-malarial agents* 

Classification Definition 
Definite Clear-cut temporal association, with laboratory confirmation, if indicated 
Probable Clear-cut temporal association, with improvement upon study agent withdrawal, and 
 not reasonably explained by the subject’s known clinical state 
Possible Less clear temporal association, other etiologies possible 
Unlikely Less clear temporal association; relationship to study agent in doubt 
None Clearly related to other etiologies such as motor vehicle accident 

*Adapted from IDRC publications[41] 
 
The following criteria will be assessed in order to establish the suspected relationship of the event to the 
study medications: 
 

• Expectedness of the event 
• Timing of the onset of the event 
• New event vs. worsening of a condition present at baseline 
• Overall medical condition of the patient, including status of malaria. 
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APPENDIX B 
 
 

1) Clinical Trial Licence Application to 
Ugandan National Drug Authority  

2) Investigator’s Brochure 
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Evaluation of the efficacy and safety of 
primaquine for clearance of gametocytes in 

uncomplicated falciparum malaria in Uganda 
 
 
 

Prinicpal Investigator: 
Dr Chi Eziefula 

IDRC, Mulago Hospital Complex, Po Box 7475, Kampala, Uganda 
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Section 1 Identification of the Clinical Trial 

 
1.1 Title of the Study  

Evaluation of the efficacy and safety of primaquine for clearance of gametocytes in 
uncomplicated falciparum malaria in Uganda 

 
1.2 Protocol version number and date 

Version number 1.0, date 1st June 2011 
 
1.2 Contact 

Person 
Dr Chi Eziefula 
IDRC, Mulago Hospital Complex, Po Box 7475, Kampala, Uganda 
Telephone: +256784448758 
E-mail: chi.eziefula@gmail.com, chi.eziefula@lshtm.ac.uk 

1.4 [Space for NDA Reference Number] 

 
1.5 Declaration of Intent signed by the Principal Investigator 
We, the undersigned have submitted all the required documentation and have disclosed 
all the information required for approval of this application. 

 
 

We have read the Protocol and the Investigators brochure, appended. 
We have the authority and responsibility to oversee this clinical trial, and agree to ensure 
that the trial will be conducted according to the Protocol and all legal, ethical and regulatory 
requirements in Uganda. 

 
 

Applicant (Local Contact): 

 
 
 
NAME………………………………………… 
Date: 
 

 
Signature:----------------------------------------------------------------------------------------------- 
Designation--------------------------------------------------------------------------------------------- 

 
Principal Investigator: 

 
 
NAME: Dr Chi Eziefula 
Date: 
  

Signature:………………………………………………………………………………… 
Designation….............Clinical Research Fellow………………………………………… 
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 Name: Telephone Fax E-mail address Physical Postal 
  Number/s:   Address address 
Applicant Chi Eziefula +256784448758 none chi.eziefula@gmail.com, Jinja, IDRC, 

    chi.eziefula@lshtm.ac.uk Uganda Mulago 
      Hospital 
      Complex, 
      Po Box 
      7475, 
      Kampala 
      Uganda 
Sponsor London +44 (0)20 +44 patricia.henley@lshtm.ac.uk Keppel Keppel 

 School of 7299 4684 (0)20  Street, Street, 
 Hygiene and  7299  London, London, 
 Tropical  4663  WC1E WC1E 
 Medicine    7HT, 7HT, 
     UK UK 
       

Manufacturer Government +662 354 1395 +662 Phung@tropmedres.ac Wellcome Wellcome 
 pharmaceutical  354  Trust Trust 
 Organization  9169  Mahidol Mahidol 
     Oxford Oxford 
     Tropical Tropical 
     Medicine Medicine 
     Research Research 
     Unit, 420 Unit, 420 
     6 Rajvithi 6 Rajvithi 
     Road, Road, 
     Bangkok, Bangkok, 
     Thailand Thailand 
     10400 10400 

 
Note: This is an investigator-led trial sponsored by the applicant’s academic 
institution. 
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Section 2 Basic Administrative Data on the Application 

 
2.1 Name and address of the registered office of the Applicant 
Infectious Diseases Research Collaboration (IDRC), Mulago Hospital Complex, Po Box 
7475, Kampala, Uganda 

 
 
 

Section 3 Medicines to be used in the trial  
3.1 Investigational medicine 

 
3.1.1 Identifier or name of investigational medicine (code if applicable) 
Primaquine Phosphate 

 
3.1.2 Registration number 
NDA registration number: 1256/06/97 

 
3.1.3 Manufacturer/s (Include all sites) 
Government Pharmaceutical Organisation, 75/1 Rama VI Road, Ratchathewi, 
Bangkok 10400, Thailand 
Designated contact: Kanchana Pongsaswat, E-mail: Phung@tropmedres.ac, Wellcome 
Trust Mahidol Oxford Tropical Medicine Research Unit, 420 6 Rajvithi Road, 
Bangkok, Thailand 10400 

 
3.1.4 Active ingredient, complete composition, potency and presentation 
Each tablet contains 26.3 mg of Primaquine phosphate (equivalent to 15 mg of 
primaquine base). The dosage is expressed in terms of the base.  
Chemical name: 8-[(4-Amino-1-methylbutyl)amino]-6-methoxyquinoline phosphate 
Presentation: Dark brown, circular biconvex film-coated tablets 

 
3.1.5 Evidence of manufacture under conditions compliant with current codes of 

Good Manufacturing Practice  
The tablets are manufactured according to the quality assurance standards of the 
Government Pharmaceutical Organization of Thailand. The manufacturing process is run 
according to GMP. Please see Appendix 4 for further details. 

 
3.1.6 Release Specifications and tests. Include Certificate of Analysis. 
Please see data provided by the manufacturer in Appendix 4. 
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Clinical trial Application Form  
3.1.7 Current approved Package Insert if available. 
Package insert not available from GPO. The Sanofi-aventis package insert for primaquine 
phosphate is provided in Appendix 5. 

 
3.2 Comparator, Concomitant and Rescue medications (and Placebo) 
3.2.1 Proprietary name and INN 
Artemether-lumefantrine 

 
3.2.2 Active ingredient/s, composition, and presentation Artemether-lumefantrine 
tablets are a fixed dose combination of artemether and lumefantrine in the ratio of 1:6 

 
Each tablet contains 20 mg of artemether and 120 mg lumefantrine 
The chemical name of artemether is (3R,5aS,6R,8aS,9R,10S,12R,12aR)-decahydro-10-
methoxy-3,6,9-trimethyl-3,12-epoxy-12H-pyrano[4,3-j]-1,2-benzodioxepine 

 
The chemical name of lumefantrine is (±)-2-dibutylamino-1-[2,7-dichloro-9-(4-
chlorobenzylidene)-9H-fluorene-4-yl]ethanol 

 
Presentation: yellow, round flat tablets. 

 
3.2.3 Registration number/s (country) 
The Ugandan NDA registration number is: 5360/06/06 

 
3.2.4 Approved Package inserts to be appended to application [Appendix 5] 
Please see Appendix 5. 

 
3.2.5 Evidence that Placebo is manufactured under GMP. [Appendix 6] 
Please see Appendix 6. 

 
3.3 Details of handling Trial medicines 
3.3.1 Shipping, delivery and distribution of trial medicines 
Government Pharmaceutical Organisation, Thailand will supply the primaquine for the 
duration of the trial. 

 
3.3.2 Details of storage requirements and arrangements for cold-chain maintenance 
where necessary and monitoring during distribution.  
Storage requirements: Primaquine phosphate tablets should be stored in well-closed, light - 
resistant containers at a temperature less than 40 deg C, preferably between 15-30 deg C. 

 
3.3.3 Details of dispensing trial medicines and waste disposal procedures. The 
trial is randomized and double blinded. On days 0-2, artemether lumefantrine is 
given. Study medication is given on day 2. The study pharmacist will possess the 
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assignment code breaker and will dispense the relevant treatment for days 0 -2. The 
treatment assignment code corresponds to a primaquine/ placebo dose to be given on day 
2: this is either placebo or variable dose primaquine. The study pharmacist has access to 
the code but the study nurses and clinicians do not. 

 
Having selected an opaque envelope for the child, the study nurse will bring the 
envelope to the study pharmacist. The study pharmacist will open the envelope, 
document the treatment assignment code and the participant’s study number on the 
treatment assignment log, calculate the correct dose of primaquine/ placebo in 
milligrams and document the number of millilitres of primaquine/ placebo solution that 
are required. The treatment assignment code and the dose to be given will not be 
documented on the CRF or provided to the study nurse. 

 
The procedures for the administration of primaquine/ placebo are as follows: 

 
• At the same time as the fifth dose of AL, in the morning of Day 2, the study 

nurse requests the primaquine dose from pharmacy. 
 

• The primaquine solution (1mg/ml) is prepared by the study pharmacist by 
dissolving the primaquine tablets according to a standardized SOP. The study 
pharmacist documents the dose on the treatment allocation form (as above). 
The pharmacist draws up the dose into a sterile syringe and hands the syringe to 
the study nurse. 

 
• The placebo solution is prepared by the study pharmacist by dissolving the 

placebo tablets according to a standardized SOP. The study pharmacist draws 
up the pre-determined volume into a sterile syringe and hands the syringe to the 
study nurse. 

 
• The study nurse administers the liquid primaquine / placebo to the participant on a 

spoon. The study nurse documents that the primaquine / placebo has been given 
on the participant’s medication record and clinic card. 

 
• The study nurse observes the participant for 30 minutes. Any participant who 

vomits the medication within 30 minutes of administration will be re-treated with 
a second dose (requested from pharmacy). Any participant who vomits the 
primaquine/ placebo dose repeatedly (>3 times) will be excluded from the study. 
If there is a possibility that they have ingested any of the primaquine dose, they 
will be excluded from efficacy analysis, but followed up for safety outcomes and 
adverse events. If the participant vomits, the study nurse documents this on the 
participant’s medication record and clinic card. 

 
The medications used in the study will be supplied to the main study office at the IDRC 
in Mulago Hospital Complex, Kampala. Artemether-lumefantrine will be ordered through  
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the Ugandan Novartis representative, Surgipharm (Kampala, Uganda). Primaquine is 
ordered through the Government Pharmaceutical Organisation, Bangkok, Thailand. The 
medications will be stored as per manufacturers’ guidelines. Product inserts and 
detailed documentation relevant to the procurement of the study medications including 
batch number and expiry date will be kept in the study regulatory binder. 

 
Study medications will be stored at the study clinic. Monthly inventories of storage 
conditions and stocks (medications used and remaining) will be kept at the study clinic. 

 
Any unused primaquine after the study will be destroyed according to a protocol 
agreed with the Government Pharmaceutical Organisation, Thailand. 

 
3.3.4 Packaging and Labelling of the medical products 
Packaging of Primaquine Phosphate tablets: Light-resistant 
plastic sealable container. 

 
Labelling: this is shown in figure 3 and Appendix 12.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Medication labeling 
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3.4 Estimates of quantities of each medication (presentation) to be used for the 
trial, and for which an import permit is needed. 

 
Table 1 Study drug quantities  
Medication name Presentation Quantity required 
Primaquine Phosphate Tablets (250 per bottle) 1500 tablets (6 bottles) 

 
 
 

Section 4 Sites & Investigators  
4.1 National Principal Investigator or co-ordinator (Responsible person) 
Table 2 Responsible person 
Name: Chi Eziefula 
Qualifications MBBS, MRCP, MRCPath 
Contact Details +256784448758 
Physical address Walukuba Health Centre IV, 

 Jinja, Uganda 
Declaration of Capacity & Interests [Appendix 10] 

 
 

4.2 For each Site list the following: 
 

4.2.1 Site Identifier 
Name: Walukuba Health Centre IV, Walukuba, Jinja, Uganda 
Postal Address: Walukuba Health Centre IV, P.O. Box 720 Jinja 
Physical Address (GPS coordinates): N0 26.294' E33 13.504' 3805ft 
Telephone: +256772517468 
E-mail address: In charge is Dr Jenipher Namuganza jeniphernamuganza@yahoo.co.uk 

 
4.2.2 Description of the site facilities & Staff 

 
• Clinic and counselling rooms 

The clinic room is housed in a former hospital ward. This large room is for the conduct of 
screening, clinical activities (review and drug administration) and pharmacokinetic study 
sampling 

 
• Emergency facilities 
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These are available at the Health Facility Outpatient department and there is a hospital 
vehicle for transfer to the Jinja Regional Paediatric Referral Hospital, which is 15 minutes 
drive from the Health Centre. 

 
• Facilities for special examinations (if required) 

Special examinations are not required (routine only) 
 

• Capacity to collect, prepare, store and transport clinical samples 
Capacity is available in the hospital laboratory for sample collection, preparation and 
storage. Samples will be transported at regular intervals by Infectious Diseases Research 
Collaboration (IDRC) vehicles with trained drivers. 

 
• Storage and handling facilities for medicines 

Medicines will be stored as per manufacturer’s guidelines and they will be handled 
according to study SOPs. The study drug primaquine is to be stored in locked cupboards in 
a ventilated room designated as the study pharmacy. There is a window hatch to the study 
ward/ clinical area and to the study administrative area. 

 
• Name and qualifications of person with responsibility for dispensing medicines 

The study pharmacist is to be hired. Upon hiring, their name and qualifications will be 
available. 

 
4.3 Site Principal Investigator  
Name: Chi Eziefula 

 
Qualifications: MBBS, MRCP, MRCPath 

 
Contact Details: +256784448758 

 
Physical address: Walukuba Health Centre IV, Walukuba, Jinja. Offices: IDRC, Mulago 
Hospital Complex, Kampala, Uganda 

 
Declaration of Capacity & Interests: Please see Appendix 9 

 
4.4 Site Sub-investigators and trial-specific support staff 

 
SITE SUB-INVESTIGATORS: 

 
Sarah Staedke, MD, PhD  
Role in project: Co-investigator; PhD supervisor  
Clinical Senior Lecturer, London School of Hygiene and Tropical Medicine, London, UK 
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Co-director, Uganda Malaria Surveillance Project, Kampala, 
Uganda Email: sarah.staedke@lshtm.ac.uk 

 
Moses Kamya, MBChB, MPH, PhD  
Role in project: Co-Investigator  
Professor, Department of Medicine, Makerere University, Kampala, Uganda 
Director, Infectious Disease Research Collaboration / Uganda Malaria 
Surveillance Project, Kampala  
Email: mkamya@infocom.co.ug 

 
Christopher Drakeley, PhD 
Role in project: Co-investigator, PhD Supervisor/ advisor  
Senior lecturer, London School of Hygiene and Tropical Medicine, London, 
UK E-mail: chris.drakeley@lshtm.ac.uk 

 
Shunmay Yeung, MRCPCH, DTM&H, PhD 
Role in Project: Co-investigator, PhD Supervisor/ advisor  
Clinical Senior Lecturer, London School of Hygiene and Tropical Medicine, London, UK 
E-mail: shunmay.yeung@lshtm.ac.uk 

 
Nick White, OBE, DSc, MD, FRCP, F Med Sci 
Role in Project: Co-investigator, PhD Supervisor/ Advisor 
Wellcome Trust Principal Research Fellow, Chairman of the Wellcome Trust South-east 
Asian Tropical Medicine Research Programmes, Professor of Tropical Medicine Mahidol 
University & Oxford University 
E-mail: nickw@tropmedres.ac 

 
Teun Bousema, PhD 
Role in Project: Co-investigator; PhD advisor  
Lecturer, London School of Hygiene and Tropical Medicine, London, UK 
E-mail: Teun.Bousema@lshtm.ac.uk 

 
Arthur Mpimbaza, MBChB, MMed  
Role in project: Co-investigator/ collaborator  
Pediatrician, Uganda Malaria Surveillance Project, Infectious Diseases Research  
Collaboration,  
Kampala, Uganda  
Email: arthurwakg@yahoo.com 
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Nsobya Sam Lubwama BLT, MSc, PhD  
Role in project: Co-investigator/ collaborator, laboratory director  
Laboratory director, Uganda Malaria Surveillance Project, Infectious Diseases 
Research Collaboration, Kampala, Uganda 
Email: samnsobya@yahoo.co.uk 

 
Humphrey Wanzira, MBChB, Msc 
Role in project: Co-investigator/ collaborator 
Epidemiologist, Uganda Malaria Surveillance Project, Infectious Diseases Research 
Collaboration Kampala, Uganda 
Email: wanzirah@yahoo.com 

 
Emily Webb, PhD 
Role in project: Co-investigator; statistician  
Lecturer in Epidemiology and Medical Statistics, London School of Hygiene and  
Tropical Medicine, London, UK  
E-mail: Emily.webb@lshtm.ac.uk 

 
Please see Appendix 9 for Investigators’ Declaration of Capacity & Interests 

 
4.5 For Hospital or Public Health Clinic Sites  

• Responsible Administrator: 
Dr. Jenipher Namuganza 

 
• Contact Details: 
Telephone: +256772517468  
E-mail: jeniphernamuganza@yahoo.co.uk 

 
• Append Signed Letter of Agreement for Trial to take 
place. Please see Appendix 14 

 
4.6 Append Signed Agreement/s between the Investigators and the Sponsor/s and/or 

Clinical Research Organization. 
Please see Appendix 13. 
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Section 5 Participants 

 
5.1 Numbers of Participants as stipulated in the table below  
5.1.1 Total number to be enrolled, worldwide 500 
5.1.2 Total number to be enrolled in Uganda 500 
5.1.3 Number of trial sites in Uganda 1 
5.1.4 Intended numbers of participants at each site - evidence of 500 

 availability.  
5.2 Duration  

 
5.2.1 Estimated trial duration: First enrolment to Final Report 

1st August 2011 to 30th April 2012 
 

5.2.2 Duration for individual Participant  
• Screening period: 1 day  
• Intervention period: 3 days  
• Follow-up period: 28 days including enrolment day 

 
5.3 What is the intended compensation for time and other inconvenience per 
participant? This should not be confused with compensation in terms of damage.  
5000 UGX per day. 

 
 

Section 6 History of Previous and in-progress trials  
6.1 List the titles of previous trials with this (or similar) medicines in Uganda No 
previous trials with primaquine in Uganda 

 
6.2 List the titles of previous trials with this (or similar) medicines in other 

countries 
 

AFRICA: 
 

Tanzania: 
Bousema, T., et al., Revisiting the circulation time of Plasmodium falciparum gametocytes: 

molecular detection methods to estimate the duration of gametocyte carriage and the 
effect of gametocytocidal drugs. Malar J, 2010. 9: p. 136.  

Shekalaghe, S., et al., Primaquine clears submicroscopic Plasmodium falciparum 
gametocytes that persist after treatment with sulphadoxine-pyrimethamine and 
artesunate. PLoS One, 2007. 2(10): p. e1023. 
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Shekalaghe, S.A., et al., In Tanzania, hemolysis after a single dose of primaquine 

coadministered with an artemisinin is not restricted to glucose-6-phosphate 
dehydrogenase -deficient (G6PD A-) individuals. Antimicrob Agents 
Chemother, 2010. 54(5): p. 1762-8. 

Kenya: 
Schneider, P., et al., Submicroscopic Plasmodium falciparum gametocyte densities 

frequently result in mosquito infection. Am J Trop Med Hyg, 2007. 76(3): p. 
470-4. 

 
Sudan: 
El-Sayed, B., et al., A randomized open-label trial of artesunate- sulfadoxine-

pyrimethamine with or without primaquine for elimination of sub-microscopic 
P. falciparum parasitaemia and gametocyte carriage in eastern Sudan. PLoS 
One, 2007. 2(12): p. e1311. 

 
Burkina Faso  
Coulibaly, B., et al., Strong Gametocytocidal Effect of Methylene Blue-Based 

Combination Therapy against Falciparum Malaria: A Randomised Controlled 
Trial. PlosOne, 2009. 4 (5): e5318 

 
ASIA: 
Thailand: 
Pukrittayakamee, S., et al., Activities of artesunate and primaquine against asexual- and 

sexual-stage parasites in falciparum malaria. Antimicrob Agents Chemother, 2004. 
48(4): p. 1329-34. 

Cambodia: 
Song, J., et al., Rapid and effective malaria control in Cambodia through mass 

administration of artemisinin-piperaquine. Malar J, 2010. 9: p. 57.  
Myanmar: 
Smithuis, F., et al., Effectiveness of five artemisinin combination regimens with 

or without primaquine in uncomplicated falciparum malaria: an open-
label randomised trial. Lancet Infect Dis, 2010. 

 
SOUTH AMERICA: 
Colombia: 
Alvarez, G., et al., Dynamics of Plasmodium falciparum parasitemia regarding combined 

treatment regimens for acute uncomplicated malaria, Antioquia, Colombia. Am J 
Trop Med Hyg, 2010. 83(1): p. 90-6. 

 
6.3 Append Interim or Final report-summaries of these trials to this application. 

(This may be in the Investigators Brochure or APPENDIX 11)  
Please see appendix 11. 
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6.4 Include a letter or certificate from the regulatory authorities in countries where 
previous trials have been undertaken (including those in-progress) that these 
trials have been GCP compliant.  

Not available. 
 
 

Section 7 Ethics review  
7.1 Provide the local IRC approval of the Protocol for each site [Appendix 11] The 
protocol and the informed consent documents have been submitted for review and 
approval by all institutional review boards (IRBs) before the study begins. Any 
amendments or modifications to this material will also be reviewed and approved by the 
IRBs prior to implementations. The IRBs include Makerere University School of 
Medicine Research and Ethics Committee (SOMREC), Uganda National Council of 
Science and Technology (UNCST) and the London School of Hygiene & Tropical 
Medicine (LSHTM) Ethics Committee. 

 
 

7.2 What GCP Guidelines have been followed in compiling this protocol? 
GCP guidelines have been adhered to as follows: 

 
The clinical trial will be carried out in accordance with a written protocol agreed upon and 
signed by the investigator and the sponsor. Any change(s) subsequently required will be 
similarly agreed on and signed by the investigator and sponsor and appended to the 
protocol as amendments. 

 
The protocol, appendices and other relevant documentation states the aim of the trial and 
the procedures to be used; the reasons for proposing that it should be undertaken on 
humans; the nature and degree of any known risks; the groups from which it is proposed 
that trial subjects be selected and the means for ensuring that they are adequately 
informed before they give their consent. 

 
The protocol, appendices and other relevant documentation are to be reviewed from a 
scientific and ethical standpoint review bodies according to local laws and regulations (in 
this case: institutional review board, drug regulatory authority), constituted appropriately 
for this purpose and independent of the investigator(s) and sponsor. 

 
7.3 Will GCP training be provided for local staff and investigators? 
Yes, GCP training will be provided for local staff and investigators who are involved in 
the trial. 
The certificate of GCP training for the Principal Investigator is available in Appendix 9. 
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Section 8 Trial conduct monitoring and reports  
8.1 Describe the Safety and Monitoring Plan for each site. 
Since safety forms part of the primary objective and outcome measures for this study, there 
is a comprehensive plan for safety and monitoring. Staff procedures will be defined in 
training which will be conducted prior to the start of the trial (with competence testing) and 
refreshed once the trial is in progress. Responsible study site staff will be trained in GCP. 

 
 

Study procedures are documented in study-specific SOPs so that the study co-ordinator and 
Principal Investigator can monitor and assess adherence. Laboratory logs will be kept to 
monitor the performance of laboratory assays and to enable monitoring for abnormal 
laboratory results at the study site. Sample labelling will be according to SOPs and 
laboratory protocols will enable sample flow to be tracked at the study site. 

 
For all clinic visits both scheduled and unscheduled, a medical clinician will be available to 
assess patients. Assessments will be conducted and documented in an objective manner 
according to SOPs. In addition, for complicated clinical issues, pathways of referral to 
medical specialists are outlined in SOPs. At the Regional Paediatric Hospital in Jinja, a 
pathway of referral has been established specifically for this trial to assist with rapid and 
effective management of complications. Telephone access to the Principal and main Sub-
Investigators will be available to staff. The inclusion and exclusion criteria have been 
selected to optimise patient safety. For example, children with symptoms or signs of severe 
illness at baseline or who have risks for severe illness, such as anaemia or hyperparasitaemia 
have been excluded. 

 
8.2 Describe the system to be used to detect, record, assign causality and the actions 

for adverse events. 
 

SUMMARY OF SYSTEM FOR PHARMACOVIGILANCE  
Assessment for adverse events will be conducted in a systematic and objective fashion on 
each day of scheduled and unscheduled follow-up. Adverse events will be recorded on a 
separate adverse event reporting form. The severity of abnormal symptoms, signs and 
laboratory parameters will be graded. The causal association of adverse events with use of 
study medication will be graded. 

 
IDENTIFICATION AND RECORDING OF ADVERSE EVENTS  
Participants will be monitored for adverse events on each day of scheduled follow up and 
on unscheduled follow up visits. This will involve the identification of any new signs or 
symptoms that were not present on the previous visit. 

 
Adverse events will be recorded on a separate adverse event reporting form (Appendix 
Q). The following data will be collected on adverse events: 
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-Description of adverse event 
-Date of adverse event onset 
-Date adverse event reported 
-Maximum severity of the adverse event 
-Maximum suspected relationship of the adverse event to the study medication 
-Is the adverse event serious? 
-Is the adverse event unexpected? 
-Identification of the person reporting the adverse 
event -Was the event episodic or intermittent in 
character? -Outcome of the adverse event 
-Date of resolution of the adverse event 

 
Duration of follow up: Adverse events will be followed up until they have resolved or 
stabilized in the opinion of the study clinician, even in the event that this exceeds the end 
of the study or following a patient’s withdrawal from the study. 

 
GRADING OF SEVERITY OF ADVERSE EVENTS  
The severity of adverse events (symptoms, signs, abnormal laboratory parameters) will be 
graded according to a system developed by the UMSP/ IDRC which are in accordance with 
guidance from the NIH Division of Microbiology and Infectious Diseases (DMID) toxicity 
tables and the WHO Toxicity grading scale for determining the severity of adverse events. 

 
ANY clinical event deemed by the clinician to be serious or life-threatening is considered 
a grade 4 event. Clinical events considered to be serious or life-threatening include, but are 
not limited to: seizures, coma, tetany, diabetic ketoacidosis, disseminated intravascular 
coagulation, diffuse petechiae, paralysis, acute psychosis, severe depression. The grading 
of severity of adverse events is summarized in the table below. 
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Grading of severity of adverse events: 

 
Grade Severity Description 

1 Mild Transient or mild discomfort; no limitation in activity; no 
  medical intervention/therapy required 
   

2 Moderate Mild to moderate limitation in activity – some assistance may be 
  needed; no or minimal medical intervention required 
   

3 Severe Marked limitation in activity; some assistance usually required; 
  hospitalization possible 
   

4 Life-threatening Extreme limitation in activity, significant assistance required; 
  significant medical intervention/therapy required; hospitalization 
  probable 
   

5 Death  

   
 

The causal association of adverse events with use of study medication is summarized in 
Appendix S of the full study protocol. 

 
REPORTING OF SERIOUS ADVERSE EVENTS  
Periodic summaries of all adverse events will be compiled by the principle investigator 
and submitted to the DSMB. Reporting of serious adverse events, fatal/ life-threatening 
events will be according to the requirements of the IRBs (SOMREC, LSHTM, and 
UNCST) and the NDA. 

 
The guidelines for the local IRBs are as follows: 

 
Institution Type of Adverse Events When to Report 

 

  •   Death and Life-threatening 
 

  events within 48-hours by 
 

 •   All Serious* or Unexpected± events phone, fax or email with 
 

 report submitted within 7-  

 
irrespective of relationship  

UNCST calendar days  

 
 

  •   All other reportable events 
 

  within 15-calendar days of 
 

  awareness 
 

MU •   All Serious* or Unexpected± events •   Within 7-working days of 
 

SOMREC irrespective of relationship awareness 
 

LSHTM 
•   All Serious* or Unexpected± events •   Prompt reporting- All SAEs 

 

irrespective of relationship should be reported to the PI  
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within 24hours , PI should 
ensure that all SAEs are in  
annual report  

• Prompt reporting to QA/QC 
manager, RA, REC- Any SAE  
that is serious, suspected of 
having relationship to Trial 
drug and is unexpected  
(SUSAR)  

 
*Serious Adverse Event (SAE) is any AE that results in any of the following 
outcomes: 

• Death, 
• Life-threatening adverse experience 
• Inpatient hospitalization or prolongation of existing hospitalization, 
• Persistent or significant disability/incapacity, 
• Congenital anomaly/birth defect, or cancer, or 
• Any other experience that suggests a significant hazard, 
contraindication, side effect or precaution that may require medical or 
surgical intervention to prevent one of the outcomes listed above, 
• Event occurring in a gene therapy study 
• Event that changes the risk/benefit ratio of the study. 

 
±Unexpected Adverse Event. An adverse event is defined as being unexpected 
if the event exceeds the nature, severity, or frequency described in the protocol, 
consent form and investigator brochure (when applicable). An unexpected AE 
also includes any AE that meets any of the following criteria:  

• Results in subject withdrawal from study participation, 
• Due to an overdose of study medication, or 
• Due to a deviation from the study protocol 

 
8.3 Describe the actions to be taken following reports of Serious Adverse Events. 

DAIDS Grade 1 or 2 Toxicities 

 
Participants experiencing grade 1 or 2 toxicities and/or adverse events will be managed 
at the discretion of the site investigator and healthcare worker. 

 
DAIDS Grade 3 Toxicities 

 
Participants experiencing grade 3 toxicities will be referred to a clinician for immediate 
evaluation. If the study drug primaquine/ placebo has not yet been given, it may be 
withheld at the site investigator’s discretion. Clinicians will be encouraged to consult  
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with specialists at the Jinja Paediatric Regional Referral Hospital. Participants should be 
re-evaluated every 2 -3 days if possible ( if the patient is able to return for follow-up on 
that schedule), until the adverse event returns to ≤ grade 2 or until stabilized and no 
longer in need of frequent monitoring, to be determined by the site investigator. 

 
DAIDS Grade 4 Toxicities 

 
If a grade 4 adverse event or toxicity develops, the study drug should be withheld at the 
discretion of the site investigator if it has not yet been given. Appropriate consultations 
should be made to specialists at the Jinja Paediatric Regional Referral Hospital or 
Mulago National Referral Hospital and further consultations/ referrals made at the 
discretion of the site investigator. The patient should be monitored frequently until the 
adverse event returns to ≤ grade 2 or until stabilized and no longer in need of frequent 
monitoring, to be determined by the site investigator. 

 
 

 
8.4 Describe the composition and remit of the Data Safety Monitoring Board or 

similar body. Include conditions for Pause- or Stop- rules. 
 

A data and safety monitoring board comprising clinicians (including local specialist), a 
statistician and including clinical trials expertise, will review the study protocol prior to 
implementation of the trial and will be convened to review the study periodically. The 
agenda for each meeting will be made in conjunction with the Clinical Trials Unit (CTU) 
at LSHTM and the DSMB Chair. The CTU is responsible for quality assurance in clinical 
trials sponsored by LSHTM. 

 
All study data and interim results will be presented to the DSMB using treatment group 
codes (A, B, C, or D) that will correspond with, but not identify, the actual treatment 
groups. Master copies of the randomization code and treatment group assignments will 
be held in the administrative offices in Kampala and London. 

 
Guidelines for stopping the study due to safety outcomes will be developed and 
established by the DSMB. 

 
8.5 When will Interim Reports be submitted? 
Information reflecting study progress and data quality and safety and tolerability data 
will be provided to the DSMB at regular intervals for review in accordance with the 
schedule they recommend. The timing of interim analysis is expected to be after 250 
patients are enrolled and will be confirmed with the DSMB. 

 
The Interim report to the review bodies will summarise any adverse events. 
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8.6 Final Report - Estimated due-date? 
The final report summarizing adverse events is expected within 15 calendar days after the 

last patient has completed 28 days of follow up. This is expected by 30th April 2012. 
 

Section 9 Insurance 

 
9.1 Provide a copy of the current insurance certificate. (APPENDIX 9) 
Please see Appendix 9. 

 
9.2 Provide evidence that each member of the Investigator team is covered by 

relevant Malpractice insurance for this trial  
Please see Appendix 9 for details of the malpractice coverage for study personnel. 

 
 

Section 10 Description of the Trial 

 
10.1 Is the Title of the Trial fully descriptive? 
The trial is a double-blinded randomized, placebo-controlled clinical trial with four parallel 
arms to evaluate the efficacy and safety of variable dose primaquine for clearance of 
gametocytes in uncomplicated falciparum malaria in children in Uganda. 

 
10.2 Summarized Rationale for this Clinical Trial, including relevance to Uganda 
Malaria is a major public health problem. Every year, approximately one million people 
die from malaria and the majority of these are children aged less than five years. Globally, 
most deaths are due to P. falciparum malaria. This is the most prevalent species of malaria 
in Africa. The five countries with the greatest number of malaria deaths in the world are 
Uganda, DRC, Nigeria, Ethiopia and Tanzania. Current malaria control efforts are 
inadequate, despite a new drive for malaria elimination since 2007. Therefore, it is 
important that new tools are evaluated for use in malaria control. 

 
Malaria is transmitted from mosquitoes to humans through the bite of the mosquito. The 
mosquito injects malaria parasites from its mouthparts into the human bloodstream. In the 
human, the malaria parasite changes into sexual forms called gametocytes, and it is these 
that are infectious to mosquitoes. Onward transmission back to the mosquito occurs when 
it feeds on an infected human. 

 
Gametocytocidal drugs (drugs which destroy gametocytes) are now assuming a high profile 
as a tool for blocking transmission of falciparum malaria. Artemisinin derivatives have 
some gametocytocidal action, being effective against developing gametocytes (stages 1 to 
3 gametocytes). This may explain the reduction in malaria transmission in 
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settings where their use is well-established. However, following artemisinin combination 
therapy, microscopic and sub-microscopic (measured using molecular techniques) 
gametocytaemia is still detectable and individuals are still infectious to mosquitoes, i.e. 
transmission to mosquitoes can still occur. The only drugs available which are highly 
effective against mature gametocytes (stages 4 to 5) are the 8-aminoquinolines. Drugs in 
this class include primaquine and newer compounds such as tafenoquine and bulaquine. 
Of these, primaquine is the least expensive (cost of 69 Ugandan shillings per dose of 15mg) 
and most widely available. 

 
The WHO recommends that, to block transmission of falciparum malaria, a single dose of 
primaquine should be added to standard treatment regimes (artemisinin-containing therapy, 
or “ACT”) in malaria control and eradication programmes (WHO, Malaria Treatment 
Guidelines 2010). Primaquine acts against the gametocytes of the falciparum malaria 
parasite (the form of the parasite which is responsible for onward transmission from 
humans to mosquitoes). Primaquine is the only widely-available and affordable drug with 
this action, so it is likely to have an important role in blocking the transmission of malaria. 

 
The dose of primaquine recommended by the WHO is 0.75mg/kg. However the dose of 
primaquine for optimal safety and efficacy has never been evaluated in clinical trials. This 
is important because primaquine has a dose-dependent risk of causing haemolysis 
(destruction of red blood cells) in pre-disposed individuals, such as those with G6PD 
deficiency. The higher the dose, the higher the risk of haemolysis. G6PD deficiency is a 
condition which is prevalent in malaria-endemic areas such as Uganda. Therefore, it is 
essential that data on primaquine’s safety is available in such areas before the WHO 
recommendations are put into practice. Lower doses should have less impact on 
haemoglobin than the WHO-recommended dose of 0.75mg/kg. 

 
Following the WHO recommendations and renewed calls for malaria elimination, 
primaquine is rapidly generating interest and in several countries, already it is being used 
as a transmission-blocker. It is estimated that millions of people stand to receive doses for 
this purpose annually. As malaria control and elimination programmes are developed 
across Africa, primaquine is likely to assume an important role. 

 
Few studies have looked at the effect of lower doses of primaquine than the dose 
recommended by the WHO for transmission-blocking. Those that have looked have found 
that lower doses are still able to reduce transmission/ gametocytes when compared to 
placebo (non- active drug). No studies have compared the WHO dose to lower doses. None 
have been powered (large enough) to assess safety outcomes and no studies have 
documented the pharmacokinetics of primaquine in African children. Pharmacokinetic data 
provides an understanding of how the drug is handled in the body in specific 
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populations and age groups. This data is important when developing appropriate drug 
dosing strategies. 

 
We hypothesise that lower doses of primaquine have a significantly lower risk of, or an 
absence of adverse effects compared to the WHO-recommended dose, but retain the 
transmission-blocking effect. 

 
We propose to test this hypothesis in a four-arm placebo-controlled clinical trial with a 
non-inferiority design to evaluate the safety and efficacy of the WHO dose (0.75mg/kg) 
and lower doses of primaquine in combination with ACT for clearance of P. falciparum 
gametocytes in children in Uganda. The study will include a pharmacokinetic analysis. 

 
 

10.3 BRIEF Background information should include:  
• The disease or condition and local epidemiology  
• Properties of the medicine - hypothesis for action  
• Description of risks of the protocol and the potential harms of the medicine.  
• Pre-clinical animal toxicology test results in-animals and in-vitro that establishes 

probable safety and efficacy in humans  
• Prior Clinical trial report summaries that establishes probable safety and efficacy in 

humans 
• Include evidence that the formulations used in the pre-clinical and previous studies are 

identical to that in this application. Any variations should be highlighted and justified.  
• Published reviews or reports relevant to this disease and this type of medicine 

 
• The disease or condition and local epidemiology 

The plasmodial parasite, malaria, infects an estimated 450 million people globally each 
year. The majority of these infections occur in Sub-Saharan Africa where the predominate 
species, Plasmodium falciparum, is responsible for the greatest proportion of deaths 
worldwide due to malaria. Aside from directly-attributable morbidity and mortality from 
severe malaria, malaria is responsible for a substantial all-cause mortality and morbidity 
which is contributed to by anaemia, adverse pregnancy outcomes for mother and child and 
long term sequelae of infection. 

 
The burden of malaria in Uganda is high. Uganda is one of 5 countries with the highest 
global incidence of deaths and morbidity from malaria. 

 
In Uganda, malaria transmission intensity is highly heterogenous. In the south western 
districts such as Kabale and Kanungu, transmission is low and in mountainous areas, there 
is little or no malaria leaving the areas prone to epidemics. In southern urban areas, malaria 
endemicity is characteristically medium to high. In the East and Northern regions of the 
country malaria transmission is high or very high. In Apac very high transmission intensity 
has been recorded of 1500 infective bites per person per year. This 
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heterogeneity calls for a range of interventions to control and ultimately eliminate malaria 
from Uganda. 

 
 

• Properties of the medicine - hypothesis for action 
Primaquine is an old drug, developed in the 1940s and in widespread use since the 1960s. 
It was one of the first synthetic antimalarials to be developed. It belongs to the 8-
aminoquinoline drug class. Other drugs in this class include Tafenoquine and Bulaquine, 
but these are not yet widely available. The 8 -aminoquinolines are gametocytocidal, that 
is, they are active against the sexual forms of the P. falciparum malaria parasite, the 
gametocytes. These blood-borne sexual stages, although harmless to humans, are 
infectious to mosquitoes and are responsible for onward transmission of malaria from 
human to mosquito. 

 
Primaquine is also effective against the sporozoites of Plasmodium vivax, Plasmodium 
ovale, Plasmodium malariae and Plasmodium falciparum leading to its use as a 
prophylactic. It has no effect on the blood stages of Plasmodium falciparum. Primaquine 
is most widely used for its effect against P. vivax and P. ovale hypnozoites as anti-relapse 
therapy (PART). For this purpose, it has been used for decades. In adults, the dosing of 
primaquine for PART is 30mg daily for two weeks. This is a total dose of 420mg. In 
contrast, the WHO-recommended dose for P. Falciparum transmission-blocking is one 
single dose of 0.75mg/kg, a substantially smaller dose. 

 
• Description of risks of the protocol and the potential harms of the medicine. 

Risks of the study drug, primaquine, include abdominal symptoms (nausea, vomiting, 
abdominal discomfort) which are reduced by administration with food, 
methaemoglobinaemia (mild cyanosis may occur) and haemolysis (fall in blood count). 
In previous studies in East African children using the WHO-recommended dose of 
primaquine, (no higher doses will be given in the study) no subject had a fall in blood 
count that caused symptomatic anaemia, or required a blood transfusion or 
hospitalization. No serious adverse events have been recorded in other large studies using 
the WHO-recommended single dose of primaquine, 0.75mg/kg. Haemolysis is an 
outcome to which study clinicians will be highly alert and respond with prompt and 
appropriate SOP-guided management. As a precaution, in the case that specialist care or 
blood transfusion is required, referral systems to Jinja Paediatric Referral Hospital and 
procurement of blood have been optimised. 

 
To avoid administration in pregnancy, females will be asked if they have started 
menstruating. If they have, or they give a history that they are pregnant or breastfeeding, 
they will not be enrolled in the study. 
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The research will not have a direct benefit to the individual subject, but by clearing 
gametocytes and preventing the individual from transmitting malaria on to mosquitoes, 
primaquine has potential for reduction of transmission at the community level. The aim of 
this study is to provide information in the safety and dosing of primaquine for use in 
African malaria elimination and control programmes. 

 
Other protocol risks to participants include the risks of blood sampling procedures include 
pain, transient bleeding and soft-tissue infection. These will be minimized by adhering to 
strict protocols for cleaning skin and taking samples. 

 
• Pre-clinical  animal  toxicology  test  results  in-animals  and  in-vitro  that 

establishes probable safety and efficacy in humans 
These can be found in section 12 of the Investigator’s Brochure. 

 
• Prior Clinical trial report summaries that establishes probable safety and 

efficacy in humans 
These can be found in section 13 of the Investigator’s Brochure. 

 
• Include evidence that the formulations used in the pre-clinical and previous 

studies are identical to that in this application. Any variations should be 
highlighted and justified 

All studies used generic Primaquine Phosphate with the identical active ingredient. The 
following studies used exactly the same formulation as that in this application: 

 
Smithuis, F., et al., Effectiveness of five artemisinin combination regimens with 

or without primaquine in uncomplicated falciparum malaria: an open-
label randomised trial. Lancet Infect Dis, 2010. 

 
Pukrittayakamee, S., et al., Activities of artesunate and primaquine against asexual- and 
sexual-stage parasites in falciparum malaria. 

Antimicrob Agents Chemother, 2004. 48(4): p. 1329-34. 
 

• Published reviews or reports relevant to this disease and this type of medicine 
These can be found in Appendix 11. 

 
For full background information, please see pages 14-22 of the full trial protocol 
(Appendix 1). 
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10.4 Objectives of this trial 

 
Justification for objectives is given in italics. 

 
GENERAL OBJECTIVE 
To evaluate the efficacy and safety of different doses of primaquine administered with 
ACT for the purpose of reducing P. falciparum gametocytes in the infected human to 
prevent transmission of falciparum malaria to the anopheles mosquito. 

 
SPECIFIC OBJECTIVES 

1. To evaluate the efficacy of different doses of primaquine when administered with 
AL (artemether-lumefantrine, an ACT) as measured by gametocyte prevalence 
and density  

Gametocyte prevalence and density are a measure of the transmission potential of the 
human host to mosquitoes. 

 
2. To evaluate the safety of different doses of primaquine when administered with 

AL as measured by change in mean haemoglobin, prevalence of severe anaemia 
(Hb <5g/dL), and evidence of black urine (haemoglobinuria; dipstick positive) 

Haemoglobin level, anaemia and black urine (secondary to haemolysis) are all the 
adverse side effects of primaquine that this study seeks to evaluate. Although 
severe haemolysis is not expected with single dose primaquine, it is essential that 
this is captured in an objective. 

 
3. To assess the safety of different doses of primaquine when administered with AL 

as measured by prevalence/ incidence of adverse events and tolerability  
This forms the essential pharmacovigilance for this trial. 

 
4. To assess factors impacting the efficacy and safety of different doses of 

primaquine when administered with AL such as age, gender, pre-treatment 
level of gametocytes, G6PD enzyme function and G6PD genotype  

This is incorporated to provide data on confounding factors for primaquine’s 
efficacy and safety. This is to help inform operational programmes on the 
generalisability of this study, given this specific population and transmission setting. 

 
5. To obtain basic pharmacokinetic parameters for primaquine in the study 

population  
Pharmacokinetic data provides an understanding of how the drug is handled in 
the body in specific populations and age groups. This data will help define a 
dosing strategy for primaquine. 
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10.5 Trial Design: Describe and justify each component. 

 
10.5.1 Phase: 
This is a phase III trial according to the NDA definition: “with the purpose of determining 
the short- and long-term safety/efficacy balance of formulation(s) of the active ingredient, 
and of assessing its overall and relative therapeutic value.” 

 
Placebo or comparator: 
The two test doses of primaquine are compared to placebo and to the comparator (WHO 
recommended) dose of primaquine 0.75mg/kg. Hence the study has four arms. 

 
Randomization and blinding: 
After enrollment, participants will be assigned to a treatment group using a randomized 
method stratified by sex. The responsible study staff will select sequential opaque 
envelopes (from either the male or female pile). Each envelope contains a pre-determined 
treatment assignment code. The study nurse will bring the envelope to the study 
pharmacist. 

 
The study pharmacist will possess the assignment code breaker and will dispense the 
relevant treatment for days 0-2. The treatment assignment code corresponds to a PQ dose 
to be given on day 2: P0 (placebo), P1-3 (variable dose primaquine) and the study 
pharmacist has access to the code but the study nurses and clinicians do not. Having 
selected an opaque envelope for the child, the study nurse will bring the envelope to the 
study pharmacist. The study pharmacist will open the envelope, document the treatment 
assignment code and the participant’s study number on the treatment assignment log, 
calculate the correct dose of primaquine/ placebo in milligrams and document the number 
of millilitres of primaquine/ placebo solution that are required. The treatment assignment 
code and the dose to be given will not be documented on the CRF or provided to the study 
nurse. 

 
The study pharmacist will be the only member of the clinic team not blinded to the 
treatment groups. The study pharmacist will not have patient contact and will not be 
involved in assessing patients or assigning outcomes. 

 
The study site staff who are administering drugs assessing patients and processing 
laboratory samples will not have access to the randomization code breaker. 

 
The participant will not be informed of the PQ dose to be administered 

 
The primaquine dose will be placebo-controlled. All participants will receive a second 
treatment on day 2. Placebo will be as indistinguishable as possible from PQ, both being 
dissolved tablets in solution. 
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10.5.2 Time sequence – 
A Table of screening, intervention and follow-up visits will be of assistance. 

 
Day of follow up 0 1 2  3 7 10 14  21  28 Unsch 

                 edule 
                 d 
CLINICAL:               
Recruitment    X              
Screening interview X              
Informed consent X              
Clinical screening (history X              
and examination)               
Randomization X              
History X  X X  X X X X  X  X X 
Tympanic temperature X  X X  X X X X  X  X X 
                 
Physical examination X  X X  X X X X  X  X X 
Assessment for adverse X  X X  X X X X  X  X X 
events               
Complete case record form X  X X  X X X X  X  X X 
TREATMENT:               
ACT   X (1st)  X X           
     (2nd) (3rd)           
Primaquine (PQ)    X           
LAB TESTING:                
Finger prick sample Sample collected into EDTA eppendorf then pippetted in the lab 
Blood smear X  X X  X X X X  X  X X 
Filter paper W#3 + W#903 X  X X  X X X X  X  X X 
L6 buffer X  X X  X X X X  X  X  
Haemoglobin (Hemocue®) X  X X  X X X X  X  X  
Phlebotomy sample               
G6PD (serum)         X      
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10.5.3 Participants 

 
Eligibility 

 
Complete selection criteria are listed as follows:  
Inclusion criteria Justification 

1. Age >/ 1 year and </10 years Limited to define population. Highest 
  prevalence of clinical malaria in this age 
  group in this region. 

2. Weight over 10kg For safety: pharmacokinetics not defined in 
  infants 

3. Fever >38 degrees C (tympanic) Clinical malaria 
 or history of fever in the last 24  
 hours  

4. P. falciparum parasitaemia Excluding hyperparasitaemia which could 
 <500 000/µl be a risk factor for the development of 
  severe malaria prior to administration of 
  the study drug 
Exclusion criteria Justification 

1. Enrolled in another study To avoid complication for participants and 
  risks of dual interventions 

2. Evidence of severe illness/ To maximize safety and avoid confounders 
 danger signs  

3. Known allergy to study To maximize safety 
 medications  

4. Haemoglobin< 8g/dL) To maximize safety 
5. Started menstruation To avoid administration of primaquine in 

  pregnancy 
6. Pregnancy (by history) or Primaquine is contra-indicated in 

 breastfeeding pregnancy or breastfeeding 
7. Primaquine taken within the last To avoid confounding of the efficacy effect 

 4 weeks and avoid double dosing 
8. Blood transfusion within the To ensure that G6PD results are reliable 

 last 90 days  
9. Non-falciparum malaria co- To define the study population 

 infection  
 
 

10.5.4 Treatment regimens for each group. 
The table in 10.5.2 above can be used to set this out 

All enrolled individuals will receive a full three-day course of AL, and will be randomized 
to receive a dose of primaquine or placebo with their last dose of AL on day 2.  
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There are four treatment arms as follows:  

 
 
 
 
 

 
10.5.5 Follow-up, sampling collection and monitoring plans; 

Immediate monitoring - intermediate monitoring - long term 
monitoring Diary cards 

 
Enrolled participants will receive ACT treatment for their malaria infection on days 0, 1 
and 2. On day 2, they will receive a dose of primaquine or placebo (one of four treatment 
arms). All study medications will be given under direct observation and participants will 
be monitored for a minimum of 30 minutes after the last dose of AL to assess for vomiting 
(which is managed according to an SOP). 

 
Participants will return for follow up on days 3, 7, 10, 14, 21, and 28. On each day of follow 
up, there will be an assessment by a clinician and an assessment for adverse events and 
blood samples taken. If participants desire to be seen on other days, they are encouraged to 
come to the study clinic for any medical concerns or simply to contact the study team to 
ask questions. The blood samples will be taken by finger prick unless this method fails 
(unexpected), in which case, blood will be taken from a vein. The blood will be dropped 
onto a glass slide to make malaria blood films to examine the number of parasites and 
species, dropped onto a haemoglobin meter to assess the blood count and dropped onto 
filter paper for the following tests: 

 
• Gametocyte detection. This will be tested in London/ Nijmegen because facilities 

are not available in Uganda  
• G6PD enzyme function. This will be tested in Kampala.  
• G6PD genotype. This will be tested in Uganda as long as facilities remain available 

and also in London (confirmatory tests), where facilities are guaranteed. 
 

Remaining blood spots will be stored in London for future research, with 
subjects’ consent. 
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As per section 10.5.2, the sample collection schedule is as follows:  
Day of follow up 0 1 2 3 7 10 14  21  28 Unsch 

             edule 
             d 
Finger prick sample Sample  collected into EDTA eppendorf then pippetted in the lab 
Blood smear X  X X X X X X  X  X X 
Filter paper W#3 + W#903 X  X X X X X X  X  X X 
L6 buffer X  X X X X X X  X  X  
Haemoglobin (Hemocue®) X  X X X X X X  X  X  
Phlebotomy sample              
G6PD (serum)        X      

 
Additional diary cards will not be used. Primaquine is a relatively short-acting drug. The 
half life is 1-6 hours and after 24 hours, the parent drug is rarely detectable in the blood. 
The timescale for effect of the study drug is expected to be detected within the monitoring 
framework of the study. 

 
Telephone access to investigators: 

 
Telephone numbers (mobile phones) of the principal investigator and two alternative 
responsible clinicians will provided to all participants on the patient information 
leaflet and participants/ parents/ guardians will be encouraged to use the telephone 
number if required. 

 
 

10.6 Outcomes Measurements and Analysis 
 

10.6.1 Describe each outcome/variable (including safety) and explain or justify 
 

 OUTCOME MEASURE DESCRIPTION  
 EFFICACY   
 PRIMARY  Mean number of days to Mean number of days per  
 gametocyte clearance treatment arm for  
 (gametocyte clearance gametocytes to become  
 time, GCT) undetectable using sub-  
  microscopic molecular  
  testing methods (QT-  
  NASBA). -Re-appearance  
  of gametocytes after day  
  14 will be considered re-  
  infection and excluded.  
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SECONDARY Mean (+/ - SD) area under 

the curve of gametocyte 
density per day during 14 
days of follow-up 

 
Point prevalence of 
gametocytes on days 7, 10  
and 14 

  
Total number of 
gametocytes (measured by 
QT-NASBA) seen over 
follow up, averaged per day 
of follow up (days 0-14) 
Mean number of 
gametocytes (measured by 
QT-NASBA) per treatment 
arm on days 7, 10 and 14  

Proportion (%) of  
participants with 
gametocytes on each day of  
follow up 

 
For each treatment arm, 
percentage of participants 
with gametocytes 
(measured by QT -NASBA) 
on each day of follow up 
from days 0-14.  

SAFETY  
PRIMARY Mean (+/- SD) maximal 

fall (+/ or -) in Hb (g/dL) 
from enrollment to day 28 
of follow-up 

 
 

SECONDARY Follow-up day of Hb nadir 

 
Mean maximal greatest 
negative difference in Hb 
(measured by Hemocue®) 
from enrollment value per 
treatment arm over 28 
days follow up 
Mean day of follow up (day 
0-28) per treatment arm of 
lowest Hb measurement (by 
Hemocue®)  

Maximal percentage fall in 
Hb level compared to 
enrolment value 

 
Size of maximal Hb drop 
(by Hemocue ®) during 
follow up (day 0-28) from 
enrollment value, divided by 
enrollment value, *100  

 % participants with Hb < Percentage(number) per  
 5g/Dl during follow up treatment arm during days  
  0-28  
 Requirement for blood Percentage (number) of  
 transfusion children receiving blood  
  transfusion per treatment  
  arm during days 0-28  
 Evidence of black urine Percentage (number) of  
  children with documented  
  black/ dark urine with urine  
  dipstick positive for Hb per  
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Incidence of serious 
adverse events by sign, 
symptom, laboratory 
parameter and relationship 
to taking study drug 
Incidence of 
gastrointestinal symptoms 
after taking study drug  

  
treatment arm during days 
0-28 
Percentage (number) per 
treatment arm during days 
0-28 
 
 
Percentage (number) per 
treatment arm during days 
2-7 
 

 
10.6.2 Describe the samples that will be collected and the analyses to be conducted on 

each sample  
This is described in section 10.5.5 

 
 

10.6.3 Provide evidence that the Laboratories that will conduct the Safety screening, 
and the End-point assays are accredited and competent to do the assays. 
(APPENDIX 7)  

Laboratory analysis will be performed at the central IDRC laboratory in Kampala. This is a 
research laboratory which does not have accreditation, but all operations are according to 
approved SOPs and protocols. Quality assurance is adhered to with internal and, where 
appropriate, external validation of assays. Staff are trained in Good Laboratory Practice. This 
also applies to the research laboratories at London School of Hygiene and Tropical 
Medicine, the Radboud University of Nijmegen in the Netherlands, where the QT-NASBA 
analysis will be conducted and the Mahidol University Pharmacology laboratory in 
Thailand. The following assays will be performed at the study site: Hemocue®, initial 
malaria slide reading, G6PD qualitative analysis. These will be according to protocols and 
SOPs. Internal quality control will be conducted with each Hemocue and G6PD assay. The 
IDRC laboratory will provide quality control for malaria slide readings. 

 
 

10.6.4 Describe the intended statistical analysis to be conducted. Provide evidence that 
the study is powered to provide the intended outcome. 

 
Intended statistical analysis 
Please refer to section 5.2 of the full study protocol for a description of the planned statistical 
analysis. 
It is notable that analyses will be undertaken as “intention-to-treat” (including all 
individuals randomized). In addition, since ITT analysis may increase the risk of falsely 
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claiming non-inferiority, a “per-protocol” analysis (including all individuals followed up 
as per protocol) will also be undertaken. 

 
 

Sample size calculations 
For efficacy, the sample size calculation is based on non-inferiority of each of the two test 
dose arms to the comparator arm, the WHO-recommended dose of PQ, 0.75mg/kg. The 
non-inferiority margin for days to gametocyte clearance is proposed as 2.5 days, taking 
into consideration data from previous studies. The addition of primaquine to ACT in 
Tanzania reduced the time to gametocyte clearance from 28.6 to 6.3 days. We used the size 
of this difference to consider a clinically-acceptable inferiority margin. Allowing for 10% 
loss to follow up, a sample size of 120 per arm will provide over 80% power at the 0.05 
significance level to detect non-inferiority to the standard arm. This sample size also allows 
for an analysis of superiority of the efficacy of the two test dose arms to placebo. 

 
For safety, the sample size calculation is based on superiority of each of the two test dose 
arms to the comparator arm, the WHO-recommended dose of PQ, 0.75mg/kg. It is 
important that adequate numbers of G6PD deficient individuals are incorporated per group 
in order to enable appropriately-powered subgroup analyses because this is the subgroup 
where the fall in Hb after ACT/PQ treatment is expected to be largest. Expecting that 16% 
of males will be G6PD-hemizygous (from previous survey data), and given an overall mean 
absolute drop amongst the G6PD-deficient individuals of 2.5g/dL with SD 2.6 (from 
relevant Tanzanian data), a sample size of 113 per arm would be required to detect that 
drop. Allowing for 10% loss to follow up, this would require a sample size of 125 per arm. 
Hence, a total sample size of 500 will provide adequate power to analyse both primary 
outcomes. 

 
10.7 Are any Sub-studies intended? Provide full details. 
A pharmacokinetic sub-study will be conducted. 

 
Pharmacokinetic data describes how a drug is managed (and metabolized) in different 
groups of individuals. 

 
Studies that provide pharmacokinetic data on primaquine have been conducted largely in 
Southeast Asia and Australasia. The majority of studies have been on adults. There is a 
lack of data on the pharmacokinetics and pharmacodynamics of primaquine in African 
children. Given that primaquine may be deployed in malaria endemic areas in Africa, this 
data is needed. 

 
There will be a separate informed consent form for this. The details of the pharmacokinetic 
sub study are as follows: 
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Pharmacokinetic evaluations will be obtained on approximately one quarter of the enrolled 
participants; a maximum of 160 participants will be recruited for pharmacokinetic 
sampling. There will be a separate consent process for this evaluation. Participants will be 
consented for this on day 1 and asked to come for sampling on days 2 to 4. The sampling 
on day 2 will happen whilst they are at the clinic for their last day of AL and the study dose 
of PQ/ placebo. 

 
The pharmacokinetic sampling will involve taking a total of 7 venous blood samples of 
less than 2mls. The total amount sampled, being approximately 11-14 mls in 3 days. The 
first sample is just prior to the PQ/ placebo dose (a baseline sample) and the subsequent six 
doses are at intervals up to 72 hours after the dose of primaquine/ placebo. The blood 
samples will be taken at fixed times between 8am to 5pm. Participants will have to attend 
the clinic a minimum of 30 minutes prior to this to enable preparation for sampling. The 
first 5 samples are taken on day 2 and they will be taken through a venflon, sited when the 
baseline pharmacokinetic sample is taken. If a venflon is not sited successfully, a butterfly 
needle may be used. The last two samples (one on day 3 and one on day 4) will be taken 
by individual blood draws (venepuncture). The participant will be asked to stay in the clinic 
between sampling times on day 2. 

 
In order to minimize the total number of blood draws per participant, the sampling 
timeframe has been randomized so that over the total population of participants, a 
population pharmacokinetic model can be constructed for analysis. Six randomized sample 
times will be allocated to sequential consenting participants in opaque envelopes. Each 
sample time is within a window so that there are 5 samples on day 2 and one each on days 
3 and 4. 

 
Pharmacokinetic samples will be analysed in Professor Niklas Lindegardh’s laboratory in 
Mahidol University, Bangkok, Thailand, where the randomized sampling framework was 
generated. 

 
10.8 Are any genetic studies (HLA-typing or gene marker analysis) intended? 

Provide full details, and justify this.  
G6PD genotyping analysis will be performed. This will be by PCR for the most common 
G6PD alleles in East Africa. G6PD analysis forms a crucial part of the analysis, given that 
it is a risk factor for haemolysis with primaquine. 

 
Is there a separate Informed Consent Form for this? 

The Informed Consent for these genetic analyses is included in the consent for participation 
in the study and in the consent for future use of biological specimens. 
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10.9 Will clinical samples be stored for any period beyond the duration of this trial? 
Yes: informed consent is requested for the future use of samples by other investigators and  

storage of samples outside Uganda. 
 

10.9.1 What is the purpose of such archiving? 
It is intended that the samples may be available for further work on malaria research. 
Samples will be used only for research. They will not be sold or used for the production of 
commercial products. 

 
10.9.2 What controls are to be placed on their confidentiality and possible future use? 
No genetic information obtained from this research will be placed in participants’ medical 
records. These samples will be identified only by codes so that they cannot be readily 
identified with the patient. Therefore, all study staff using the specimens will not be able to 
readily find out the name of the participant. 

 
 

10.10  Participant Information Leaflet (PIL) and Informed Consent (ICON) 
 

10.10.1 Append a copy of the PIL & ICON [Appendix 
3] Please see Appendix 3. 

 
10.10.2 In what languages will this be available? 
This will be available in English, Luganda, Lusoga and Kiswahili. 

 
10.10.3 Append the Parent / guardian consent form, in the case where minor 

participants will be included.  
Please see Appendix 3. 

 
10.10.4 Are there separate ICON for sub-studies or Genetic studies? 
Yes, there is a separate ICON for the pharmacokinetic sub-study. Please see Appendix 3. 

 
10.11  Publication Policy 

Provide details of the Investigators and Sponsors intentions and freedom to 
publish the outcomes of this study.  

The findings of this study may be published in a medical journal in accordance with 
UNCST, Makerere University, Wellcome Trust and LSHTM guidelines. They may also 
be presented at relevant academic conferences and meetings. 
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APPENDIX 1: Trial Protocol 
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APPENDIX 2: Investigators Brochure 
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APPENDIX 3: Participant Information Leaflet 
and Informed Consent 
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APPENDIX 4: Certificate of GMP manufacture of 
the trial medicine or other evidence of 

manufacture quality, safety and consistency 
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APPENDIX 5: Package Inserts for trial  

medicines. 
 
 
 
 
 
 
 
 
 

 

 Primaquine Sanofi Aventis package insert 
 
 Artemether-Lumefantrine Ajanta Pharma Ltd 

package insert 
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APPENDIX 6: Certificate of GMP manufacture of 
the placebo - if appropriate. 
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APPENDIX 7: Evidence of accreditation of the 
designated Laboratories or other evidence of 

GLP and assay validation. 
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APPENDIX 8: Insurance Certificate specific for 
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APPENDIX 9: Signed and completed  

Declarations by all Investigators 
 
 
 
 
 
 
 
 
 
 
 
 

 Investigator Declarations 
 
 Investigator CVs 

 
 GCP certificate of Principal Investigator 
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APPENDIX 11: Full, legible copies of key, peer-
reviewed published articles supporting the 

application. 
 

Articles provided: 
Bousema, T., et al., Revisiting the circulation time of Plasmodium falciparum gametocytes: 

molecular detection methods to estimate the duration of gametocyte carriage and the 
effect of gametocytocidal drugs. Malar J, 2010. 9: p. 136.  

Shekalaghe, S., et al., Primaquine clears submicroscopic Plasmodium falciparum 
gametocytes that persist after treatment with sulphadoxine-pyrimethamine and 
artesunate. PLoS One, 2007. 2(10): p. e1023. 

Shekalaghe, S.A., et al., In Tanzania, hemolysis after a single dose of primaquine 
coadministered with an artemisinin is not restricted to glucose-6-phosphate 
dehydrogenase -deficient (G6PD A-) individuals. Antimicrob Agents 
Chemother, 2010. 54(5): p. 1762-8. 

Schneider, P., et al., Submicroscopic Plasmodium falciparum gametocyte densities 
frequently result in mosquito infection. Am J Trop Med Hyg, 2007. 76(3): p. 
470-4. 

El-Sayed, B., et al., A randomized open-label trial of artesunate- sulfadoxine-
pyrimethamine with or without primaquine for elimination of sub-microscopic 
P. falciparum parasitaemia and gametocyte carriage in eastern Sudan. PLoS 
One, 2007. 2(12): p. e1311.  

Coulibaly, B., et al., Strong Gametocytocidal Effect of Methylene Blue-Based 
Combination Therapy against Falciparum Malaria: A Randomised Controlled 
Trial. PlosOne, 2009. 4 (5): e5318  

Pukrittayakamee, S., et al., Activities of artesunate and primaquine against asexual- and 
sexual-stage parasites in falciparum malaria. Antimicrob Agents Chemother, 2004. 
48(4): p. 1329-34. 

Song, J., et al., Rapid and effective malaria control in Cambodia through mass 
administration of artemisinin-piperaquine. Malar J, 2010. 9: p. 57.  

Smithuis, F., et al., Effectiveness of five artemisinin combination regimens with 
or without primaquine in uncomplicated falciparum malaria: an open-
label randomised trial. Lancet Infect Dis, 2010. 

Alvarez, G., et al., Dynamics of Plasmodium falciparum parasitemia regarding combined 
treatment regimens for acute uncomplicated malaria, Antioquia, Colombia. Am J 
Trop Med Hyg, 2010. 83(1): p. 90-6. 

 
 49 
National Drug Authority Plot 48 Lumumba Avenue National Drug Authority 
Secretariat Office: Plot 46-48 Lumumba Avenue P.O. Box 23096, Kampala, Uganda 

Tel: +256-41-255665/347391/347392  
Email: ndaug@nda.or.ug  
Website: http:// www.nda.or.ug  



NATIONAL DRUG AUTHORITY 

Clinical trial Application Form 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

APPENDIX 12: Sample of the label for the 

imported products 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 50 
National Drug Authority Plot 48 Lumumba Avenue National Drug Authority 
Secretariat Office: Plot 46-48 Lumumba Avenue P.O. Box 23096, Kampala, Uganda 

Tel: +256-41-255665/347391/347392  
Email: ndaug@nda.or.ug  
Website: http:// www.nda.or.ug  



NATIONAL DRUG AUTHORITY 

Clinical trial Application Form 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX 13: Letter of authorization from the 
Trial Sponsor 
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APPENDIX 14: Other supporting documents 
 
 
 
 
 
 
 
 
 
 
 
 

 Letter of Agreement for Trial to take place 
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  1.  PRODUCT: 
 

Primaquine phosphate 2.  CHEMICAL NAME:  

  
 

8-[(4-Amino-1-methylbutyl)amino]-6-methoxyquinoline phosphate 
 

3. MANUFACTURER AND DISTRIBUTOR: 
 
Government Pharmaceutical Industry, Bangkok, Thailand  
 
 
 
Contact person: Kanchana Pongsaswat, E-mail: Phung@tropmedres.ac, Wellcome Trust Mahidol Oxford 
Tropical Medicine Research Unit, 420 6 Rajvithi Road, Bangkok, Thailand 10400 
 

4.  FORMULATION:  
 
 
TheEachdosagetablet containsisexpressed26.3inmgtermsofPrimaquineofthebase.phosphate (equivalent to 15 mg of primaquine base). 
 
 

Primaquine Phosphate 5.  ACTIVE INGREDIENTS:  
 
 
 

6.  INACTIVE INGREDIENTS: 
 
Calcium Phosphate (tribasic), Lactose, Tapioca starch, Povidone (K-25), Sodium Starch 
Glycollate, Magnesium stearate, Ethanol (96%)*, Titanium Dioxide, Talcum, Hydroxypropyl 
Methylcellulose 2910, Polyethelene Glycol 6000, Brilliant Blue Lake, Ponceau 4 R Lake, Sunset 
Yellow Lake, Tartrazine Lake, Isopropyl Alcohol*, Purified Water*  
*evaporated during the process 

 
7. METHOD OF PREPARATION: 

 
Primaquine phosphate is produced according to manufacturing standards of the Thai Government 

Department of Quality Assurance. The manufacturer’s original monograph of the manufacturing 

process is available in appendix A. 
 

8.  QUALITY CONTROL: 
 
In process quality control is performed on granules (moisture content), core tablets (appearance, 

weight, hardness, disintegration time and friability test) and coated tablets (appearance). Finished 3 



 



product quality control is conducted for dissolution, uniformity studies and assay for labelled 
 

primaquine. Details of the in-process and finished product quality control process from the 
 

manufacturer are available in appendix B and appendix C . 
 

Chemical structure: 

9.  PHYSICAL AND CHEMICAL PROPERTIES: 
 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
Molecular Formula: C15-H21-N3-O, 2HPO. Molecular weight: 259.35  
 
 
Mechanism of action: The exact mechanism of action of primaquine phosphate is unknown. It is 

likely that it is mediated through the selective generation of oxidative stress in parasitized cells. 
 
Characteristics: An orange-red, crystalline powder; odourless or almost odourless. 
 
Solubilities: Soluble in 16 parts of water, practically insoluble in chloroform and in ether. 
 
Identification1: 
 

A. Dissolve 0.1g in 10ml of water, add 2ml of 2M sodium hydroxide and extract with two 
20ml quantities of chloroform, reserving the aqueous layer for test C. Wash the 
chloroform extracts with water, dry with anhydrous sodium sulphate, evaporate to 
dryness and dissolve the residue in 2ml of chloroform IR. The infra -red absorption 
spectrum of the resulting solution is concordant with the reference spectrum of 
primaquine.  

B. The light absorption in the range 250 to 300 nm of a 0.003% w/v solution in 0.01M 
hydrochloric acid exhibits two maxima, at 265nm and 282nm. The absorbance at 265nm is 
about 0.99 and at 282nm is about 0.98.  

C. The aqueous layer obtained in test A, after neutralisation with 2M nitric acid, yields the 

reactions characteristic of phosphates. 

1 Sources: 

1. Government Pharmaceutical Organisation (Thailand) manufacturer’s official monographs 
 
 

2. McEvoy, G.K. (ed.). American Hospital Formulary Service. AHFS Drug Information. American Society of  
Health-System Pharmacists, Bethesda, MD. 2006., p. 870 4 

 

 
 



 

Acidity: pH of a 1% w/v solution, 2.5 to 3.5.            
 

Loss on drying: when dried to constant weight, losses not more than 0.5% of its weight. Use 1g.  
 

Assay: dissolve 0.2g in 40ml of anhydrous glacial acetic acid with gentle heating and carry out non- 
 

aqueous titration, determining the endpoint potentiometrically. Each ml of 0.1M perchloric acid VS 
 

is equivalent to 0.02277g of C15-H21-N3-O, 2HPO.           
 

Stability: Shelf life is 3 years. Long term stability data is available in appendix D.    
 

Storage: Primaquine phosphate tablets should be stored in well-closed, light-resistant containers at 
 

a temperature less than 40 deg C, preferably between 15-30 deg C.        
 

Appearance of tablets: Brown, circular biconvex film-coated tablets.        
 

Background      10.INDICATION AND USES:       
 

Primaquine is an old drug, developed in the 1940s and in widespread use (marketed) since the  
 

1960s. It was one of the first synthetic anti-malarials to be developed. It belongs to the 8-    
 

aminoquinoline drug class. Other drugs in this class include Tafenoquine and Bulaquine, but these 
 

are not yet widely available.     Plasmodium vivax 

and 

Plasmodium falciparum 
 

Primaquine is effective against the sporozoites of 
and 

      , 
 

and against the hypnozoites of           but it has no effect on the 
 

blood stages o f       Primaqui ne is mos t widely used for its ef fect agains t    

 

and        Plas modiu m vivax  Plas mod um ova le      

     hypnozoites as anti-relapse therapy. By eliminating these hepatic, tissue  

P. 
  

       Plasmodium falcip rum.             
 

(exoerythrocytic) stages of the parasite, primaquine prevents the development of blood stages  
 

vivax    P. ovale            

and 

 

. For this 

 

(erythrocytic) stages, thus preventing relapses of      
 

purposes, it has been used for decades. I n adul ts, the dosi ng of pri maqu ine for radical cure of   

               Plas modiu m vivax    Plas modiu m ovale     

        is 30mg daily for two weeks, a total dose of 420mg. By eliminating sporozoites, 
 

( pre-hepatic stages) , prima quine can ac t as a prophylac tic against i nfecti on an d the a dult dose is  

Plas modiu m vivax                    

30mg/day.                    
 

Primaquine is also gametocytocidal, that is, it is active against the sexual forms of the P. falciparum 
 

malaria parasite, the gametocytes. These blood-borne sexual stages, although harmless to humans, 
 

are infectious to mosquitoes and are responsible for onward transmission of malaria from human 
 

to mosquito. Therefore, by eliminating gametocytes, primaquine acts as a malaria transmission- 
 

blocker for falciparum malaria.     P. vivax 
  

6 mg/kg (30 mg 
   

 

Dose for P. Falciparum transmission-blocking       
 

In contrast with the total dose of primaquine base for  P. , which is      
 

base/day) i.e. 420mg, the 2WHO-recommended dose for    transmission-blocking is one 
 

single dose of 0. 75mg/ kg.         

Falciparum 
        

Primaquine is indicated for the radical cure (prevention of relapse) of vivax malaria. It is used as a  
 

prophylactic against all species of malaria. It is used to block transmission of falciparum malaria by 
 

eliminating gametocytes.  
 

2 WHO Malaria Treatment Guidelines 2010 
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11.PHARMACOKINETICS: 
 
Absorption, distribution and bioavailability: Primaquine is readily absorbed from the 
gastrointestinal tract. Peak plasma concentration is within 1-4 hours[1-3] and the terminal half life 
is 4-6 hours[1]. Inter- individual variation in peak plasma concentrations of primaquine has been 
reported with the same dose of the drug. 24 hr after ingestion the plasma concentration is 
negligibly low.  
Primaquine exhibits extensive tissue distribution [3-4]. About 75% of primaquine in plasma is 
bound to proteins and high concentrations occur in erythrocytes. Primaquine crosses the 
placenta but it is uncertain whether significant amounts occur in breast milk. 
 
Metabolism and elimination: Primaquine is extensively metabolized. Several metabolites of 
primaquine have been identified, but it is unclear which are responsible for the gametocytocidal 
action and which for its toxic effects. Carboxyprimaquine is the main metabolite [5]and its 
formation is cytochrome CYP450-dependent [6] . The 5-hydroxylated metabolite has been linked to 
both therapeutic efficacy and toxicity [7]. Other metabolites have been identified, but their function 
remains undetermined [8]. Less than 2% of the parent drug, primaquine is excreted in the urine 
within 24hrs of dosing[1].  
Studies that provide pharmacokinetic data on primaquine have been conducted largely in Southeast 
Asia and Australasia as above. The majority of studies have been on adults. There is a lack of data 
on the pharmacokinetics and pharmacodynamics of primaquine in African children. Given that 
primaquine may be deployed in malaria endemic areas in Africa, this data is needed. 
 

12.NON-CLINICAL STUDIES 
 
Organ toxicity: Given at lethal doses, primaquine causes hepatic and cardiac lesions in 
experimental animals. This has not been demonstrated in humans[9]. Based on its anti-arrhythmic 
activity in mice, primaquine is predicted to have quinidine like cardiotoxicity. 
 
Mutagenicity: no data available. 
 
Carcinogenicity: no data available. 
 
Reproductive toxicity: no reports are available to associate primaquine with congenital defects.3 

 
13.CLINICAL STUDIES 

 
SAFETY STUDIES  
 

1. Tolerability. 
 
The toxicity of primaquine phosphate is dose-dependent. The main toxic effects are gastro-

intestinal, methaemoglobinaemia and haemolysis. Gastro-intestinal effects include abdominal 

cramps, vomiting, burning epigastric pain, diarrhoea. These effects can be avoided if primaquine is 
 

3 US National Library of Medicine Hazardous substances Data Bank (TOXNET) 

6 

 

 
 



administered with food or a small snack[10]. Methaemoglobinaemia can cause cyanosis. In healthy 
subjects given primaquine for prophylaxis, primaquine elevates methaemoglobin levels by about 
4% [1]. The maximum reported rise was 13% in Indonesia[11]. Methaemoglobin levels less than 
20% are typically tolerated without signs or symptoms [12]. In individuals with nicotinamide 
adenine dinucleotide methemoglobin reductase deficiency, methaemoglobinaemia may be clinically 
significant (cyanosis and shortness of breath).  
In individuals with G6PD deficiency, primaquine causes transient, dose-dependent haemolysis. It is 
likely that this is due to the effect of one of primaquine’s metabolites and that it is mediated through 
oxidative stress, but the exact mechanism is as yet unknown. In a population, the risk of haemolysis 
with primaquine corresponds with the frequency of the defective gene the degree of G6PD enzyme 
dysfunction it codes for. In a mass screen and treatment programme in Tanzania, in asymptomatic 
parasitized children aged 1 to 12 years [13], the mean change in haemoglobin after a single dose of 
0.75mg/kg primaquine in combination with sulphadoxine-pyrimethamine artesunate treatment 
was - 0.58g/dL. In G6PD heterozygotes, the mean change in haemoglobin was - 1.6g/dL and in 
homozygote/ hemizygote deficient children, the mean change in haemoglobin was -2.5g/dL. One 
child had severe anaemia by haemoglobin measurement (4.8g/dL) but their G6PD status was not 
reported. No child required a blood transfusion.  
In a Tanzanian study where 0.75mg/kg primaquine was given to children aged 3 to 15 years with 

clinical malaria [14], the mean fall in haemoglobin was 5.2% from enrolment value and this was 

found on day 7 after primaquine was administered. No child required a blood transfusion and no 

child had symptomatic anaemia. 
 
Other reported toxic manifestations include cardiovascular disturbances (ventricular 
dysrhythmias, and hypertension have been reported on rare occasions of chronic poisoning 4, 
headache, confusion, interference with visual accommodation, pruritis and leucocytosis or 
leucopenia. Following a course of primaquine for vivax malaria (30mg for 14 days), there is a 
single case report of depression and psychosis[15] and a single case report of confusion and 
hallucinations [16] in the literature. 

2. Safety guidelines: Discontinue the use of primaquine phosphate promptly if signs suggestive 
of hemolytic anaemia occur (darkening of the urine, marked fall of haemoglobin or 
erythrocytic count).5 

 
3. Contra-indications6: The balance of risk and benefit should be considered when primaquine  

is administered under the following conditions: acutely ill patients suffering from systemic 

disease manifested by tendency to granulocytopenia, such as rheumatoid arthritis and lupus 

erythematosus. The drug is also contraindicated in patients receiving concurrently other 

potentially haemolytic drugs or depressants of myeloid elements of the bone marrow 
 
4 USUS NationalFoodandLibraryDrugAssociation,ofMedicinePrimaquineHazardous drugsubstancessafety information,DataBank(TOXNET)2008.. 
 
5 
 
6 International Programme on Chemical Safety; Poisons Information Monograph: Primaquine Phosphate (PIM 434) 
(1994) 
 

7 



(such as antineoplastic agents, colchicine, gold salts, penicillamine, 
phenylbutazone, quinacrine).  
Because quinacrine hydrochloride appears to potentiate the toxicity of antimalarial 
compounds which are structurally related to primaquine, the use of quinacrine in patients 
receiving primaquine is contraindicated. Similarly, primaquine should not be administered 
to patients who have received quinacrine within 3 months, as toxicity is increased. 
Concurrent use of primaquine with bone marrow depressants may increase the risk of 
leukopenia. If concurrent use is essential, close observation for myelotoxicity should be 
considered.  

4. Use in special populations:  
Pregnant women: Primaquine is contra-indicated in pregnancy because it is not possible to 

ascertain the G6PD status of the foetus and hence its risk of haemolysis. 
 

Lactating women7: There is no available data on the excretion of primaquine into breast 

milk. Problems in man have not been documented. 
 

Geriatric use8: There is insufficient data in subjects aged 65 and over to determine whether 

their response to primaquine differs from younger subjects. Reported clinical experience 

has not identified differences in responses between the elderly and younger patients. In 

general, dose selection for an elderly patient should be cautious, usually starting at the low 

end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or 

cardiac function, and of concomitant disease or other drug therapy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7 International Programme on Chemical Safety; Poisons Information Monograph: Primaquine Phosphate (PIM 434) 

US Food and Drug Association, Primaquine drug safety information, 2008.8(1994)8  



EFFICACY STUDIES 
 

Efficacy trial data and summary table  
 
 
 

 of publication primaquine,  group    effect of   
 

  day of      primaquine  
 

  treatment          
 

[17] single dose,  years  uncomplicated  circulation time 
 

  day 2    falciparum  reduced from 286 
 

      malaria  to 6.3 days  
 

        (p<0.001)  
 

[14] single dose,  years  uncomplicated  prevalence  
 

  day 2    falciparum  reduced from 
 

      malaria  62.7% to 3.9% 
 

        (p<0.001)  
 

[18] single dose,  to adult  administration,  difference in 
 

  day 2    asymptomatic  gametocyte  
 

      falciparum  prevalence on day 
 

      malaria  7 or day 14 post 
 

        treatment  
 

[19] mg/kg/day for    uncomplicated Artesunate odds ratio of 0 .42 
 

  

7 days and 0.5 
   

falciparum 
 (0.20 to 0.83);  

 

      =0.009   
 

  

mg/kg/day for 
   

malaria 
 

No significant P 
 

  
7 days 

     difference between 
 

       primaquine dosage 
 

        groups   
 

[20] single dose,  to adult  uncomplicated AA, AL, DP* carriage rate ratio 
 

  day 0    falciparum  11·9 (95% CI 7·4– 
 

      malaria  20·5; P = 0.0001). 
 

            

[21] dose  to adult  uncomplicated Mefloquine, non-primaquine- 
 

      falciparum plus 5 other containing  
 

      malaria regimes (not regimens,  
 

       all ACT) reduction in time 
 

        to gametocyte 
 

        clearance: 1 week 
 

 *AM-F=artesunate–mefloquine fixed-dose combination. AM- L=artesunate–mefloquine loose tablets. 
 

 AA=artesunate–amodiaquine. AL=artemether–lumefantrine. DP=dihydroartemisinin–piperaquine 
  

A recent study conducted in Tanzania[17] in asymptomatic parasitized children demonstrated a 

dramatic reduction of gametocyte circulation time with primaquine treatment from 28.6 days in the 

absence of primaquine (with ACT alone) to 6.3 days with primaquine. 
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Primaquine reduced gametocytaemia significantly at days 4, 7, 14 and 28 post treatment in a 
 

Tanzanian study[14] comparing ACT with or without primaquine in children with uncomplicated 
 

clinical malaria. Here, the prevalence of gametocytes on day 14 after treatment was reduced from 
 

62.7% to 3.9%.           
 

In Thailand[19], patients presenting with uncomplicated malaria in Bangkok had reduced 
 

gametocyte clearance times when primaquine was added to all drug combinations. Primaquine 
 

reduced gametocyte clearance with an odds ratio of 0.42 (0.20 to 0.83); P =0.009.  
 

In a recent study in Burma[20], 808 participants were randomized to receive ACT plus primaquine 
 

or ACT alone. Gametocyte carriage was substantially reduced by the addition of primaquine (rate 
 

ratio 11·9 (95% CI 7·4–20·5;   0.0001). There was an overall increase in haemoglobin during 
 

follow u p in b oth the prim aqui ne and the no n-pri maqui ne arms, bu t the i ncrease was smaller in the  

   P = 

1.04 g/dL; =0.036; mean difference 0.295 g/dL; 95% CI 0.199– 

 

primaquine group (0.75 g/dL  
 

0.570) . There was no severe anae mia . T his study provided detaile d adverse events a nalysis and  

    vs         

there were no severe adverse events. The only adverse event attributable to primaquine was 
 

abdominal pain. This is a known side effect and is reduced by administration with food[10]. 
 

In Colombia [21], investigators found a disappearance of gametocytes one week earlier when PQ 
 

was added to an artemisinin-containing regimen. Plasmodium vivax  
 

PQ 

    14.MARKETING EXPERIENCE:    
 

was developed by the US Army9 in the 1940s for radical cure of    . It was used to 
 

prevent relapse of vivax malaria in servicemen repatriated to the United States. Primaquine has 
 

been on the WHO essential drugs list since 1977. Currently, no Cochrane reviews are completed on 
 

the use of primaquine for gametocytocidal action. Observations that primaquine is effectively 
 

gametocytocidal were recorded in Bulletin of the WHO in 1961[22]. The use of single-dose 
 

primaquine as a gametocytocidal drug has10 been advised by the WHO since the 1970s without the 
 

  Pl s modium vivax        

need for scree ning for G 6PD deficie ncy  . In 1981, a WHO re vie w by Cly de advise d a re duced dose  

for radical cure of     for patients with G6PD. deficiency and caution upon 
 

prescription of primaquine in the context of acute malaria In 2008 and 2010, the WHO advised the 
 

use of primaquine as a gametocytocidal drug for malaria elimination and control in combination 
 

with ACTs (artemisinin combination therapies). Several nations in Southeast Asia and South 
 

America, including China, Indonesia, Thailand, India, Sri Lanka and Colombia advise primaquine for 
 

gametocyte clearance. It has not yet been used widely for this purpose in African countries. 
 

Primaquine is listed on the National Drug Authority (NDA) register of approved medications in 
 

Uganda under drug registration number 1256/06/97.     
  

9 Edgcomb, J.H. et al. (1950) Primaquine,SN13272,a new curative agent in vivax malaria; a preliminary report. 
 

J.0 Nat. Malaria Assoc. 9, 285–292  
 

World Health Organization (2000) The Use of Antimalarial Drugs: Report of a WHO Informal Consultation, 
 

13-17 November 2000 (WHO/ CDS/RBM/2001.33),World Health Organization 

10 
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APPENDICES 

 
APPENDIX A: MANUFACTURING PROCESS (THAI).  

 
English version is not available. Chemicals are in English.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 1 PRIMAQUINE MANUFACTURING PROCESS - PAGE 1: GPO 
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FIGURE 2 PRIMAQUINE MANUFACTURING PROCESS - PAGE 2: GPO 
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APPENDIX B: IN-PROCESS QUALITY CONTROL STANDARDS FROM MANUFACTURER GPO  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 3 PRIMAQUINE IN-PROCESS QUALITY CONTROL: GPO 
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APPENDIX C: FINISHED PRODUCT SPECIFICATION AND CONTROL METHOD FROM 

MANUFACTURER 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 4PRIMAQUINE FINISHED PRODUCT SPECIFICATIONS: GPO 
 
 
 
 

15 



APPENDIX D: LONG-TERM STABILITY DATA FROM MANUFACTURER  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 5 LONG-TERM STABILITY DATA: GPO 
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APPENDIX C 
 
 

1) Data Safety Monitoring 
Board reporting sheet  

2) DSMB statement on un-blinding 



DSMB shell report tables 
 
 
 
 
 
 
 
 
 
 
Study Title: Evaluation of the efficacy and safety of primaquine for clearance of 
 gametocytes in uncomplicated falciparum malaria in Uganda 

Source of funding: The Wellcome Trust 

Sponsor: London School of Hygiene and Tropical Medicine 

Site of Research: Walukuba Health Centre IV, Jinja, Uganda 

Principal Investigator: Dr. Chi Eziefula 
  

 
 
 

1. Enrolment for each site 
 

Month of study   Treatment arm (number enrolled)  
 A B  C D TOTAL 

1       
2       
3       
4       
5       
6       
7 (until sample       
size complete)       

 
 

2. Withdrawal reasons by trial arm 
 

  Treatment arm   
 

Withdrawal reason     
Total  

A B C D 
 

  
 

      
 

Moved from study area N (%) N (%) N (%) N (%) N (%) 
 

Concern regarding study drug     N (%) 
 

No reason given, just wants to withdraw     N (%) 
 

Adverse event prompted withdrawal by     
N (%)  

participant     
 

     
 

Died     N (%) 
 

Vomiting PQ/placebo > X2     N (%) 
 

Study physician decision to withdraw     N (%) 
 

Other     N (%) 
 

Total n (100%) n (100%) n (100%) n (100%) n (100%) 
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3. Loss to follow-up 
 
 

Month of study   Treatment arm number (%) lost to follow-up  
 A B  C D TOTAL 

1       
2       
3       
4       
5       
6       
7 (until sample       
size complete)       

 
 

4. Follow up numbers at 1, 2, 3, 4, 7, 10, 14, 21 and 28 days 
 
 1 2 3 4 7 10 14 21 28 

 

          
 

Group A          
 

 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) 
 

Attended  

         
 

          
 

Defaulted1          
 

          
 

Withdrew2          
 

 

N N N N N N N N N 
 

Total  

(100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)  

 
 

           

Group B          
 

 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) 
 

Attended  

         
 

          
 

Defaulted1          
 

          
 

Withdrew2          
 

 

N N N N N N N N N 
 

Total  

(100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)  

 
 

Group C          
 

 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) 
 

Attended  

         
 

          
 

Defaulted1          
 

          
 

Withdrew2          
 

 

N N N N N N N N N 
 

Total  

(100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)  

 
 

Group D          
 

 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) 
 

Attended  

         
 

          
 

Defaulted1          
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Withdrew2          
 

 

N N N N N N N N N 
 

Total  

(100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)  

 
 

           

All groups          
 

 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) 
 

Attended  

         
 

          
 

Defaulted1          
 

          
 

Withdrew2          
 

 

N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) 
 

Grand Total 
 

(n=)          
 

            
1 Participant did not attend visit but has not formally withdrawn from the study. 
 
2 Cumulative withdrawals. Participants who have formally dropped out of the study for any reason (includes deaths) 
 

5. Missing Data/ incomplete follow up 
 
 1 2 3 4 7 10 14 21  28 

 

           
 

Group A           
 

 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)  n (%) 
 

Missing Hb  

          
 

           
 

Missing L6 sample           
 

           
 

Missing 903 paper           
 

           
 

Missing Clinical review           
 

           
 

Missing parasitaemia           
 

           
 

Missing G6PD Day 14 ELISA           
 

           
 

Group B           
 

 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)  n (%) 
 

Missing Hb  

          
 

           
 

Missing L6 sample           
 

           
 

Missing 903 paper           
 

           
 

Missing Clinical review           
 

           
 

Missing parasitaemia           
 

           
 

Missing G6PD Day 14 ELISA           
 

           
 

Group C           
 

 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)  n (%) 
 

Missing Hb  

          
 

           
 

Missing L6 sample           
 

           
 

Missing 903 paper           
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Missing Clinical review          

 

          
 

Missing parasitaemia          
 

          
 

Missing G6PD Day 14 ELISA          
 

          
 

Group D          
 

 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) 
 

Missing Hb  

         
 

          
 

Missing L6 sample          
 

          
 

Missing 903 paper          
 

          
 

Missing Clinical review          
 

          
 

Missing parasitaemia          
 

          
 

Missing G6PD Day 14 ELISA          
 

          
 

All groups          
 

 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) 
 

Missing Hb  

         
 

          
 

Missing L6 sample          
 

          
 

Missing 903 paper          
 

          
 

Missing Clinical review          
 

          
 

Missing parasitaemia          
 

          
 

Missing G6PD Day 14 ELISA          
 

          
 

 
6. Parameters during follow up for this month 

 

 1 2 3 4 7 10 14 21 28 
 

          
 

Haemoglobin <5 (g/dL)          
 

 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) 
 

GROUP A  

         
 

          
 

GROUP B          
 

          
 

GROUP C          
 

          
 

GROUP D          
 

 

N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) 
 

TOTAL  

         
 

          
 

Requirement for transfusion1          
 

 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) 
 

GROUP A  

         
 

          
  

 
 
1 Number of units transfused will be available 
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GROUP B          
 

          
 

GROUP C          
 

          
 

GROUP D          
 

 

N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) 
 

TOTAL  

         
 

          
 

Black urine          
 

 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) 
 

GROUP A  

         
 

          
 

GROUP B          
 

          
 

GROUP C          
 

          
 

GROUP D          
 

 

N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) 
 

TOTAL  

         
 

          
 

Severe adverse event2          
 

 

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) 
 

GROUP A  

         
 

          
 

GROUP B          
 

          
 

GROUP C          
 

          
 

GROUP D          
 

 

N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) 
 

TOTAL  

         
 

          
 

Gastrointestinal adverse          
 

events ≥ grade 3          
 

           

GROUP A          
 

          
 

GROUP B          
 

          
 

GROUP C          
 

          
 

GROUP D          
 

 

N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) N (%) 
 

TOTAL  

         
 

          
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 Sign, symptom or laboratory value of severity grade 3 or above (See Appendix R: “Severity grading of adverse 
events”) 
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Protocol Title: Evaluation of the efficacy and safety of primaquine for clearance of 
 gametocytes in uncomplicated falciparum malaria in Uganda 
Site of Research: Walukuba Health Centre IV, Jinja, Uganda 
Principal Investigators: Dr. Chi Eziefula 
Date: 27 May 2011 

  

 
DSMB statement on trial unblinding and target sample size 
 
Since the start of this trial, there has been a shift in the global recognition of the potential role of primaquine 
in malaria elimination. Primaquine dose-finding for transmission-blocking has become an international 
priority. In the last week of september 2012, the WHO Malaria Policy Advisory Group announced that they 
have changed the WHO guidelines to recommend a lower dose of primaquine (0.25mg/kg) based on 
historical evidence. No formal dose-finding trial is available in the literature and the WHO has indicated 
that they are aware of our trial and others that have not yet started and they suggest they may well change 
the guidelines again, accordingly. 
 
The trial investigators are due to give an oral presentation at the 61st annual American Society for Tropical  

Medicine & Hygiene meeting in Atlanta on 12
th

 November 2012. The WHO Global Malaria Programme 
have approached the trial investigators to ask whether they (Rob Newman) can present a single slide at the 
end of our presentation, giving the updated WHO recommendations. 
 
The investigators feel it is going to be important to have data to present at ASTMH. However, given the 
lower than expected prevalence of malaria in Jinja this year, recruitment is not complete. This means it 
will not be possible to present the full results. 
 
The blinded analysis has begun and we would be very keen to learn whether you would consider that 
we unblind a proportion of the data in order that we can make a presentation of preliminary analyses. 
 
The trial DSMB was consulted on this matter on 18th October 2012. There was consensus that the decision 
to unblind for a preliminary analysis is reasonable given these developments. The final results of the trial 
will be submitted for publication in a peer reviewed publication once recruitment concludes. 
 
The DSMB reviewed the trial progress with regards recruitment and agreed that the rate of loss to follow 
up (5% rather than the estimated 10%) would imply that the target sample size should be 460 rather than 
480 participants. 
 
The signatures below (each in separate documents) confirm the DSMB members' agreement with 
this statement. 
 

Name Position Signature Date 
    

Grant Dorsey Chair of DSMB   
    

Sophie Namasopo DSMB member   
    

Jim Todd DSMB member   
    

Justus Byarugaba DSMB member   
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Wichai Satimai20, Siv Sovannaroth21, Lasse S Vestergaard22 and Lorenz Von Seidlein23  
 
 
 Abstract 
 

Malaria elimination will be possible only with serious attempts to address asymptomatic infection and chronic infection by 
both Plasmodium falciparum and Plasmodium vivax. Currently available drugs that can completely clear a human of P. 
vivax (known as “radical cure”), and that can reduce transmission of malaria parasites, are those in the  
8-aminoquinoline drug family, such as primaquine. Unfortunately, people with glucose-6-phosphate dehydrogenase 
(G6PD) deficiency risk having severe adverse reactions if exposed to these drugs at certain doses. G6PD deficiency is the 
most common human enzyme defect, affecting approximately 400 million people worldwide.  
Scaling up radical cure regimens will require testing for G6PD deficiency, at two levels: 1) the individual level to ensure safe 
case management, and 2) the population level to understand the risk in the local population to guide Plasmodium vivax 
treatment policy. Several technical and operational knowledge gaps must be addressed to expand access  
to G6PD deficiency testing and to ensure that a patient’s G6PD status is known before deciding 
to administer an 8-aminoquinoline-based drug.  
In this report from a stakeholder meeting held in Thailand on October 4 and 5, 2012, G6PD testing in support of radical cure 
is discussed in detail. The focus is on challenges to the development and evaluation of G6PD diagnostic tests, and on 
challenges related to the operational aspects of implementing G6PD testing in support of radical cure. The report also 
describes recommendations for evaluation of diagnostic tests for G6PD deficiency in support of radical cure. 

 
Goals of the G6PD workshop  
In October 2012, a workshop in Bangkok, Thailand, brought 
together researchers, diagnostic test developers, drug 
developers, National Malaria Control Programme (NMCP) 
representatives, development partners and donors to discuss 
priority issues related to malaria treatment  
[1]. The workshop built upon two previous meetings: a 
March 2012 meeting in London on the rationale for short-
course primaquine in Africa to interrupt malaria 
transmission [2] and a May 2012 workshop on glucose-6-
phosphate dehydrogenase (G6PD) deficiency that was held 
in South Korea as part of the Asia Pacific Malaria  
 
* Correspondence: gdomingo@path.org 
1PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA 98121, USA 
Full list of author information is available at the end of the article  

 
 
Elimination Network Vivax Working Group annual 
meeting [3,4]. The Bangkok workshop provided a forum 
for discussing the knowledge gaps, barriers, and research 
questions that must be addressed to support broader 
availability, adoption, and access to G6PD testing in sup-
port of radical cure of Plasmodium vivax.  

The goals of the Bangkok workshop were to: 
 

1. Identify technical research priorities to support 
development of appropriate G6PD testing 
technologies and strategies in support of P. vivax 
radical cure.  

2. Define use case scenarios or malaria treatment-
seeking behaviours that a G6PD test or test result  
must support. 

 
© 2013 Domingo et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons 
Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made 
available in this article, unless otherwise stated.  
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3. Identify operational research priorities to support 
implementation of appropriate G6PD testing 
technologies and strategies. 

 
Primaquine can be used at low doses as a malaria 

gametocytocidal to block the transmission of the parasite 
to the mosquito, or it can be used at higher doses in longer 
regimens for radical cure of P. vivax infection. The 
workshop focused on the use of G6PD testing in support of 
radical cure. The agenda and selected presentations are 
available online [1]. 

 
Background and context  
G6PD deficiency is the most common human enzyme 
defect, affecting more than 400 million people worldwide  
[5]. Several recent reviews have explored the relationship 
between malaria and G6PD deficiency [4,6-8]. The meet-
ing focused on topics relevant to developing and evaluat-
ing in vitro diagnostic tests for G6PD activity. 

 
Glucose-6-phosphate dehydrogenase  
G6PD is a critical housekeeping enzyme in red blood cells 
that supports protective systems against oxidative 
challenge by producing the reduced form of nicotinamide 
adenine dinucleotide phosphate (NADPH). The gene for 
the G6PD enzyme is spread over 18.5 Kb and 13 exons on 
the X chromosome and encodes for a 59 KDa polypeptide. 
The enzyme is active as a dimer or dimer of dimers 
configuration. G6PD deficiency is manifested in people 
with reduced levels of intra-erythrocyte G6PD activity 
arising typically from mutations in the G6PD gene that 
impact the stability of the enzyme.  

Results from several studies suggest that G6PD 
deficiency may confer some protection not only against 
severe malaria but also against non-severe disease [9-11]. 
Indeed, G6PD deficiency prevalence overlaps significantly 
with current and historical malaria endemicity [12]. Within 
these populations, the protection conferred by G6PD 
deficiency may result in a reduced prevalence of G6PD 
deficiency among malarial patients as compared to the 
general population [9-11]. 

 
Definition of G6PD activity  
One International Unit (U) is the amount of G6PD activity that 
will convert 1 micromole of NADP + per minute under 
predetermined substrate and reaction conditions  
[13]. Activity may be expressed in either a standard number 
of cells (U/1012 red blood cells) or amount of haemoglobin 
(U/g Hb). G6PD activity is typically deter-mined by 
measuring G6PD activity in lysate from a whole blood 
specimen or a red blood cell preparation from a specimen. 
G6PD deficiency is defined as a less-than-normal level of 
G6PD enzyme activity in a blood specimen. 

 
 
 
 
 

Almost 400 allelic variants in the G6PD gene have been 
recorded [8,14,15]. The variants known to result in G6PD 
deficiency tend to affect the stability of the enzyme rather 
than the catalytic activity of the enzyme [7,8,14,15]. G6PD 
variants are categorized based on the severity of the G6PD 
deficiency they cause. Class 1 variants cause congenital 
non-spherocytic haemolytic anaemia. Class 2 variants 
cause severe enzyme deficiency (less than 10% of normal). 
Class 3 variants cause moderate to mild enzyme deficiency 
(10% to 60% of normal). Class 4 variants cause very mild 
or no enzyme deficiency (60% to 100% of normal) [13,16]. 
How these activity ranges relate to safety of exposure to 8-
aminoquinolines is not very clear, nor is the definition of 
normal, as dis-cussed below. 
 
 
8-aminoquinolines, malaria, and G6PD deficiency  
Primaquine, an 8-aminoquinoline-based drug, is the only 
available drug recommended by the World Health Or-
ganization (WHO) for radical cure of P. vivax infection. The 
next most advanced product for radical cure is tafeno-quine, 
which recently completed phase 2 clinical trials.  

As a radical cure, primaquine is currently used either in a 7 
or 14 day regimen in a doses ranging from 0.25-0.5 mg/kg. 
For patients with mild to moderate variants of G6PD 
deficiency, a once-per-week, single 0.75 mg/kg dose of 
primaquine over eight weeks is recommended, although 
careful monitoring for hemolysis is also recommended. 
Unfortunately, none of these regimens is operationally easy to 
implement. In Brazil and Peru, this has been partially 
addressed by using a higher-dose, shorter-length primaquine 
regimen. Tafenoquine as a single-dose radical cure therapy 
would represent a significant advance in P. vivax therapy. 
However, a major barrier to widescale adoption of both of 
these drugs is toxicity in people with G6PD deficiency. While 
all people exposed to primaquine experience some drop in 
haemoglobin concentrations [17], people with G6PD 
deficiency are more likely to experience severe haemolysis, 
leading to severe haemolytic anaemia and, potentially, death. 
Despite the availability of primaquine since the 1950s, safety 
data are scarce.  

WHO, confronted with emerging resistance to artemisi-nin 
and renewed political will to eliminate malaria in many 
regions of the world, recently released recommendations to 
administer low doses of primaquine to all patients presenting 
with falciparum malaria in those settings [18,19]. Based on 
available data, the new recommended doses are suggested to 
be low enough to be safe even for G6PD-deficient patients but 
high enough to have a gametocytocidal effect and block 
transmission [19,20]. However, before these 
recommendations can be imple-mented, primaquine will need 
to be registered in many countries for this use. Uganda and 
other countries are conducting studies to better understand 
local prevalence 
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and types of G6PD deficiency, even within the context of 
these low doses [2,21]. 
 
User requirements and target product profile for G6PD tests  
The possible role of G6PD tests within the context of using 
primaquine for blocking transmission has been discussed 
elsewhere [2,18,19]. The Bangkok workshop focused on 
diagnostic tests for G6PD deficiency in P. vivax case 
management. One breakout session was dedicated to 
identifying how a patient typically presents with P. vivax 
infection, how the patient is managed in this scenario, and 
what type of diagnostic test would be required to support case 
management. Scenarios were created for Cambodia, India, 
Myanmar, and Thailand. At least one national malaria control 
programme representative participated, along with researchers 
with experience in each country. The different country groups 
were asked to select a target patient profile, regardless of 
whether this type of patient carried the highest burden of 
disease. 

 
 
 
 
 

In all four settings, it was determined that the target 
patient would benefit most from a point-of-care G6PD test. 
There was robust debate over who would use the test and 
exactly how far into the periphery of the health system the 
test should go, depending on how complex the treatment 
algorithm would be. For many cases, based on the fact that 
many users would have access to a mobile phone and, 
therefore, some access to electric power, participants felt 
that some type of automated reader, while not ideal, may 
be acceptable. While a reader may restrict some access, it 
can also confer benefits, such as remote monitoring, and it 
could possibly support some means of recordkeeping [22]. 
Part of the Bangkok discussion revolved around how often 
a G6PD test would have to be performed for each 
individual, and a discussion arose regarding the challenges 
of record keeping, espe-cially with migrant populations.  

Based on this discussion, workshop participants created 
a generic target product profile (Table 1) [4]. 
 

 
Table 1 Product features of a point-of-care G6PD test in support of radical cure   
Features Ideal Acceptable Comments 

 

     

Test output Binary, deficient/normal Quantitative Presumes a consensus definition 
 

   of normal that aligns with drug safety 
 

User Village health workers, mobile District hospital, laboratory This will be defined by national 
 

 malaria workers worker malaria control programmes 
 

Platform Point-of-care similar to a A disposable device coupled to a A reader would be acceptable if it significantly 
 

 malaria rapid diagnostic test portable, battery-operated device; improves operational performance 
 

  sensitivity significantly better than  
 

  human eye  
 

Specimen type Capillary blood Capillary blood Tests must be evaluated for performance 
 

   with this specimen type 
 

Stability 2 years at 37°C 1 year at 37°C Expect low throughput at clinic level, 
 

requirements   so requires small quantities per package 
 

Packaging Maximum 25 tests per kit Maximum 25 tests per kit or long shelf life 
 

 
 

Operational 25-40°C 25-40°C G6PD enzyme activity is highly temperature 
 

temperature range   dependent (see Figure 2) 
 

Operational 40-90% 40-90% None. 
 

humidity range    
 

Time to result <10 minutes <30minutes Availability of the test result should be 
 

   aligned with malaria diagnosis and 
 

   treatment work flow 
 

Read window >1 hour 10 minutes Ideally, the test result can be read at any 
 

   time point after the initial time to result 
   

Sensitivity Detects all patients (100%) with G6PD  
activity less than a predetermined cut-off,  
at or less than which it is unsafe to prescribe  
a particular dosage of an 8-aminoquinoline 

 
Specificity >95% 

  
>95% for patients at or less than 
a defined cut-off G6PD activity 
 
 
 
>70% 

  
For primaquine, where the fluorescent spot 
test has been accepted as the standard of 
care, a 30-40% normal G6PD activity cut-off 
should be used; for new drugs such as 
tafenoquine, the cut-off is likely to be higher  
It is preferable to have some patients with 
normal G6PD activity levels classified as 
deficient as determined by the Receiver 
Operating Curve of a diagnostic test  

Price Similar to or less than a malaria  
rapid diagnostic test  

 
Similar to or less than a 
malaria rapid diagnostic test 

 
G6PD test represents an additional cost 
over that of malaria diagnosis and treatment 
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G6PD product landscape  
G6PD activity tests  
A survey of products and reagents available for G6PD 
deficiency testing shows a surprisingly large number of 
products in the market (more than 20). Available tests 
determine the G6PD phenotype and overall G6PD activity 
in a blood specimen, either by direct measurement or 
through dyes. The outputs can be quantitative, semi-
quantitative, or qualitative depending on the platform and 
assay. Different types of G6PD phenotype assays have 
recently been reviewed [4,6,23,24].  

When workshop attendees were asked which G6PD tests 
they use, more than 15 products were mentioned, spanning 
at least three assay platforms. Perhaps the most 
consolidated G6PD products are those used for newborn 
screening, which often have high-complexity and 
sometimes high-throughput platforms [25]. These tests are 
used in Southeast Asia in national newborn screening due 
to the high G6PD deficiency prevalence in the region and 
the risk for infants to develop severe hyperbilirubinaemia, 
acute bilirubin encephalopathy, and kernicterus [26,27].  

Quantitative tests for G6PD activity are considered the 
gold standard. Yet the predominant standard of care for 
G6PD deficiency screening is a qualitative test, the fluor-
escent spot test, for which there are several commercial kits 
as well as homebrew assays (assays assembled in the 
testing laboratory). Beyond those, the wide range of 
products in the market offer different levels of com-plexity, 
usability, and performance. Some of these tests have been 
developed on platforms more suitable for use within the 
context of malaria case management [28-33]. Overall, with 
few exceptions [34], there is a paucity of published data 
that compare G6PD deficiency determin-ation across 
platforms, and most products on the market have not been 
evaluated independently. 
 
 
G6PD genotype tests  
G6PD genotype tests characterize the genetic contribution to 
the G6PD phenotype in a patient. There are several levels at 
which these tests can be performed, with different degrees of 
accuracy or resolution. Gel electrophoresis or cytochemical 
staining can indirectly determine zygosity in females based on 
whether two G6PD proteins with distinct electrophoretic 
characteristics or two red cell populations with distinct G6PD 
activity profiles are observed respectively [35-37]. These are 
predominantly laboratory-based or homebrew assays. More 
typically, genotyping is performed through polymerase chain 
reac-tion (PCR)-based single nucleotide polymorphism (SNP) 
analysis, and some commercial primer sets are available to 
determine the genotype through multiplexed PCR. Because 
not all SNPs can be multiplexed into a single 

 
 
 
 
 
PCR reaction, different panels have been developed based 
on population prevalence. This genotyping approach is 
limited to identifying known genotypes and results in 
severely biased genotype data. Consequently, when both 
genotyping and phenotyping have been performed on the 
same patients, the correlation has been mixed [9,38,39]. 
This is possibly due to different populations experiencing 
different degrees of polymorphism in this gene and to the 
severity in G6PD deficiency conferred by the prevalent 
genotype in a given population.  

Sequencing provides the most deterministic G6PD gene 
characterization, but the G6PD gene—with its 12 introns 
and 13 exons spanning 18.5 Kb base pairs—is an awkward 
gene to sequence economically. Given the new sequencing 
technologies now available, investments should be made in 
developing multiplexed sequencing assays that look at a 
range of haemoglobinopathies. Research ethics and 
consent implications for this type of multi-plexed 
sequencing assay need to be openly investigated and 
discussed. 
 
Technical knowledge gaps  
To develop G6PD tests that will inform patient manage-ment 
with 8-aminoquinolines, many questions remain to be 
answered, both in terms of the G6PD assay itself and the 
clinical context. Most of these questions revolve around two 
fundamental issues: (1) defining normal G6PD activity, and 
(2) defining a G6PD activity cut-off greater than which it is 
safe to administer a drug at a given. 

 
Defining normal G6PD activity  
For the purpose of evaluating diagnostic tests for G6PD 
deficiency a standard approach for defining an absolute value 
for normal G6PD activity in a population is required. 
Ambiguity in how this value is calculated presents practical 
difficulties in evaluating the performance of G6PD tests, and 
particularly that of qualitative tests. For qualitative tests, 
performance will depend on the boundary, or the cut-off point, 
between normal and deficiency. Typically, G6PD deficiency 
has been defined as a percentage of normal G6PD activity. In 
practice, there are almost as many definitions of normal 
activity as there are publica-tions for evaluating G6PD 
diagnostic tests [30-33,40,41]. 
 
Defining the boundary between normal G6PD activity 
and G6PD deficiency 
Further complicating the issue, there is a paucity of data to 
correlate definitions for different degrees of G6PD deficiency 
with risk after exposure to an 8-aminoquinoline challenge 
[6,42]. This remains a major knowledge gap in understanding 
G6PD deficiency and the risk of exposure to primaquine and 
tafenoquine. While it is known that G6PD genotypes 
differentially impact the response to 



Domingo et al. Malaria Journal 2013, 12:391 Page 5 of 12 http://www.malariajournal.com/content/12/1/391 
 
 
 
 
primaquine, this knowledge is restricted to only a few of the 
known G6PD deficiency traits [43,44]. Additionally, 
acceptable G6PD activity levels for primaquine adminis-
tration have been defined by the most predominantly used 
G6PD assay—the fluorescent spot test. This test, by nature of 
its assay conditions, defines “deficient” at approximately 10% 
to 30% of normal G6PD activity. As a result, people with 
severe G6PD deficiency are predominantly excluded from 
primaquine treatment, whereas most people with mild G6PD 
activity and most heterozygous women are treated with 
primaquine. Anecdotally, “this works,” but there are no 
supportive, published data.  

If the goal is to expose only patients with normal G6PD 
activity to 8-aminoquinolines, then the cut-off G6PD 
activity level would have to be in range of 60% to 70% of 
normal values, as per the WHO classification. This would 
also exclude a significant portion of heterozygous women, 
at least those in whom there are a significant proportion of 
G6PD-deficient red blood cells.  

These two arbitrary definitions or cut-offs have an 
immense impact on performance requirements for a G6PD 
test. This is a consequence of the distribution of G6PD 
activities across a population (Figure 1). Typically, G6PD 
activity in a population is bimodal, with a minor group of 
individuals clustered around 10% or less G6PD activity 
and most clustered in the 60% to 150% range. The 10% to 
30% G6PD activity cut-off considered acceptable for 
primaquine is essentially defined by the fluorescent spot 
test, a qualitative test for G6PD activity. Thus, developing 
additional qualitative G6PD tests with similar performance 
is presumably feasible, though there is a need for im-
proved understanding of the impact of different genotypes 
on the performance of such qualitative tests against a 
quantitative test.  

By contrast, developing a qualitative G6PD test that 
accurately excludes patients with less than 60% or 70%  
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Figure 1 Histogram of G6PD activity for a population described in 
Table 3; 10%, 20%, 30%, and 60% of the adjusted normal G6PD 
activity for this population are indicated on the graph. 

 
 
 
 
 
G6PD activity is likely to be extremely challenging, given 
the noise-to-signal levels that are likely to exist at this level 
of activity. A test with discriminatory capabilities in the 
60% to 70% cut-off range is likely to require an underlying 
quantitative or semi-quantitative platform.  

Unfortunately, published G6PD test evaluations use 
inconsistent definitions of normal G6PD activity and also 
define test sensitivity and specificity based on different cut-
off points or degrees of G6PD deficiency. Thus, it is 
challenging to understand what a qualitative G6PD test 
defines as normal or deficient and to compare perform-
ance claims between publications. Consistent standards for 
evaluating G6PD tests are sorely needed. 
 
Factors affecting G6PD test performance  
Several factors can influence the performance of a G6PD test 
and its ability to correctly classify a patient as either normal 
or deficient, starting with the cut-off definition as previously 
described. These include biological conditions such as 
concomitant haemoglobinopathies, recent haemo-lytic events 
that leave a patient with a relatively high proportion of young 
cells with high G6PD activity that can produce a false normal 
result, and high leukocyte counts that also lead to a false 
normal G6PD result. For some of these factors—including a 
recent malaria infection or other pathological events—it may 
be possible to predict their effects on a G6PD activity-based 
assay, but it is still difficult to know how they may affect the 
risk of an adverse reaction to 8-aminoquinoline exposure. 
Understanding the impact of haemoglobinopathies and recent 
haemolytic events on a patient’s response to 8-
aminoquinolines and the test performance are critical research 
questions [4].  

Because they are enzyme activity tests, the G6PD assays are 
particularly sensitive to specimen handling and re-action 
conditions. Specimen integrity is highly sensitive to handling 
and storage conditions. Acceptable specimen storage 
conditions for whole blood is up to 14 days at 4°C and for 
dried blood spots up to 10 days at 4°C or 48–72 hours at room 
temperature [28,31,45]. Substrate concen-trations and 
fluctuations in assay temperature influence the enzyme 
turnover rate. A change of approximately 1 degree in 
temperature produces a change of 6% in enzyme activity 
(Figure 2A) [13]. The effect of temperature on G6PD activity 
values can be accounted for quite effectively by temperature 
correction factors (Figure 2B). However, in the case of 
qualitative tests, this may lead to misclassifying deficient 
specimens as normal if a test is used outside the validated 
working temperature range (Figure 2C). The combined impact 
of compromises in specimen collection and operational 
reaction conditions on the performance of the test in typical 
malaria treatment settings may result in a wider gap between 
operational performance of a G6PD test and analytical 
performance of the test determined under controlled 
laboratory conditions. 
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Figure 2 Impact of temperature on G6PD activity-based tests. A. Impact of temperature on quantitative determinations of G6PD 
activity for five normal and four deficient G6PD samples. B. Normalization of G6PD activity to 30°C through application of the 
temperature correction factor (Table 2) to values in A. C. Impact of temperature on outputs from a qualitative G6PD test. The 
deficient sample test result at high temperature looks similar to that of a normal sample at low temperature. Note: the temperature 
range used for Figure 2C is outside the recommended temperature range in the product insert. 

 
The high proportion of mutations leading to G6PD 

deficiency affect the stability of the enzyme and specif-
ically the dimer interface [15,46]. Consequently, the 
dilution factor to which the specimen is subjected in the 
final assay is also likely to affect the test result and this 
effect is potentially variant specific (Table 2). Given that 
the fluorescent spot test is the current standard of care, it 
will be important to compare the performance of the 
fluorescent spot test against a quantitative test in different 
geographical settings to understand this relationship. 
 

In the case of females with heterozygous G6PD alleles, 
while many display a phenotype of intermediate or mild 
G6PD deficiency, it is clear from available data that het-
erozygous women cannot be accurately identified through 
G6PD enzyme activity assays. 

 
 
Proposed principles for evaluating diagnostic tests  
G6PD tests play a critical safety role in strategies involving 
radical cure of P. vivax malaria and there is demand for 
evaluation of the tests. Defining pragmatic guidelines for 
the evaluation of G6PD tests will be critical to allow 
comparison of findings between evaluation studies. Below, 
one approach which would allow meta-analysis of data 
across sites is suggested. A quantitative test for the gold 
standard is recommended, but it is also recognized that it is 
not trivial to implement a G6PD quantitative assay in many 
field sites. 
 
Study population description  
Minimal study population characteristics that need to be 
assessed for any field evaluation include the proportion of 
G6PD-deficient cases in the study population, mean 
  

Table 2 Factor by which blood is diluted in the final G6PD activity assay as performed on different G6PD deficiency 
diagnostic platforms 
 Trinity biotech G-6- R&D diagnostics Ltd Trinity biotech G-6-PDH Alere BinaxNOWW Access Bio CareStart™ G6PD 
 PDH quantitative test quantitative test fluorescent spot test Malaria test deficiency screening test 
      

Initial specimen 10 ul 5 μl 10 μl 10 μl 3 μl 
volume      

Dilution factor 301 80 21 8 41   
G-6-PDH: glucose-6-phosphate dehydrogenase. 
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and median G6PD activity of the study population, and the 
adjusted male median activity (see below and Table 3). 
Mean and median values of G6PD activity need to be 
stratified by gender and adjusted for ambient temperature 
and the proportion of G6PD-deficient study participants 
(see below).  

If purposive patient recruitment results in inclusion of 
more G6PD-deficient patients than the local prevalence, 
mean and median G6PD activity levels also should be 
provided for the normal males in the study. 
 
Definitions  
The definitions provided below are for performance 
comparison of a qualitative G6PD test to a quantitative 
G6PD test. 
 
Male median  
To minimize the impact of heterozygosity on the defin-
ition of G6PD activity, researchers should use the median 
value of G6PD activity for the entire male population in the 
study. If purposive or biased recruitment were used for an 
evaluation, the median G6PD value of the G6PD-normal 
male recruited for the study should be used as the definition 
of normal. Otherwise, an adjusted male median calculated 
as described below should be used. 
 
 
Adjusted median (100% G6PD activity)  
To account for variability in prevalence of G6PD defi-
ciency in a given study population, an adjusted median 
value is calculated for which males with severe G6PD 
deficiency (activity less than 10% normal) have been 
excluded. This is accomplished by: 
 

1. Exclusion of all males with G6PD activity equal to or 
 less than 10% of the male median. 
2. Determination of a new median G6PD activity. This 

 is the “adjusted median,” which can be used as the 
 100% G6PD activity value from which cut-off levels 

 
 
 
 
 
Cut-off  
The percentage of adjusted median at or less than which a 
patient is classified as positive (G6PD deficient). Samples 
with G6PD activity greater than the cut-off are considered 
negative. 
 
True positive (TP)  
A sample correctly classified by the diagnostic test under 
evaluation as having G6PD activity at or less than the cut-
off. 
 
False positive (FP)  
A sample incorrectly classified by the diagnostic test under 
evaluation as having G6PD activity at or less than the cut-
off. 
 
True negative (TN)  
A sample correctly classified by the diagnostic test under 
evaluation as having G6PD activity greater than the cut-off. 
 
False negative (FN)  
A sample incorrectly classified by the diagnostic test under 
evaluation as having G6PD activity greater than the cut-
off. 
 
Range of patients that should be excluded from 
treatment with 8-aminoquinolines  
All patients with G6PD activity less than or equal to the 
cut-off as determined by the gold standard test (TP + FN). 
 
Range of patients with levels of G6PD activity safe to 
receive treatment with 8-aminoquinolines 
All patients with G6PD activity greater than the cut-off 
(TN + FP). 
 
Sensitivity  
Probability that the test will detect a person with G6PD 
deficiency. 
  

are defined. 
  
Sensitivity ¼ 

 
TP   

 
 
Table 3 Proposed reference values to describe the 
G6PD activity profile for a study population   
Reference values Total Female Male Adjusted male 
     

Number of cases 500 282 218 203 
Mean (95% CI) U/g Hb 10.23 10.38 10.03 10.72  

 
TPþFN 

 
 
Specificity  
Probability that the test will detect a person with G6PD-
normal activity. 
 

 
Standard deviation 2.28 2.10 2.52 1.97 

  
Specificity ¼ 

 
TN    

Median (95% CI) U/g Hb 10.33 10.31 10.34 10.70 
Range 0-32.25 0.38-32.25 0-24.32 1.50-24.32   
CI: confidence interval; Hb: haemoglobin; U: International Unit.  
The table is populated with an example data set randomly selected 
from a true set of quantitative G6PD test results for a population (data 
kindly provided by Ari Satyagraha). 

 
TNþFP 

 
 
Positive predictive value  
Probability that the patient is G6PD deficient when the 
diagnostic test under evaluation yields a positive result. 
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Positive predictive value ¼ 

 
 
 
 
 
TP  

 
 
 
 
 
confidence intervals around estimates of sensitivity and  

TPþFP 
 
 

 
Negative predictive value  
Probability that the patient has normal G6PD activity 
when the diagnostic test yields a negative result. 

 
specificity). Given the relatively low G6PD deficiency 
prevalence in most populations worldwide, the sample size 
is primarily driven by the prevalence and desired accuracy 
for the evaluation results. Table 5 shows sample 
calculations for a set of expected test sensitivities over two 
accuracy constraints and for three G6PD deficiency 
prevalence rates. In the absence of an appropriate sample 
size, the statistical power of the study is compromised   

Negative predictive value ¼ 
  
TN  

 
and  the  implied  uncertainty  of  the  study  must  be 
 

TNþFN 
 
 
Gold standard testing  
An established quantitative G6PD test should be imple-
mented as the gold standard test for which 100% G6PD 
activity and the cut-offs are defined. The quality of the 
quantitative test should be controlled either through 
commercially available artificial controls or through 
samples with known G6PD activity levels. Ideally, this is 
performed under strict temperature control using venous 
blood (acid-citrate-dextrose or EDTA anticoagu-lant). If 
strict temperature control cannot be applied, the 
temperatures at which the assays were performed should be 
recorded and then standardized to G6PD activity at 30°C 
according to temperature correction factors. Some product 
inserts, such as those for the Trinity Biotech. quantitative 
test, provide temperature correction factors (Table 4). 
 
Sample size calculations for diagnostic test evaluation  
The sample size for evaluations of G6PD tests is driven by 
the expected performance of the diagnostic test against the 
predicate gold standard, the local G6PD deficiency 
prevalence, and the desired accuracy for resulting 
sensitivity and specificity claims (width of 95% 
 
Table 4 Temperature correction factor as provided in 
the Trinity quantitative spectrophotometric assay 
product insert   
Cuvette Temperature Cuvette Temperature 
temperature (°C) correction factor temperature (°C) correction factor 
     

20 1.90 30 1.00  
21 1.76 31 0.94  
22 1.66 32 0.89  
23 1.55 33 0.83  
24 1.46 34 0.78  
25 1.37 35 0.74  
26 1.28 36 0.70  
27 1.20 37 0.66  
28 1.13 38 0.62  
29 1.06 39 0.58  
      

 
clearly explained. 
 
G6PD test performance criteria  
In the absence of a more complete understanding of the 
relationship between risk of haemolysis and level of G6PD 
deficiency, as well as local G6PD reference values, it is 
impossible to define a clear normal/deficient G6PD 
activity cut-off that is consistent and clinically relevant as 
pertaining to safety and treatment with an 8-aminoquino-
line. As a consequence, test performance criteria should be 
provided for a range of G6PD activity. Percentage of 
median activity is proposed in order to account for inter-
assay and inter-laboratory variability in absolute G6PD 
activity values. The minimum proposed degrees of 
deficiency are based on WHO classifications and 
commonly used ranges: 10%, 20%, 30%, and 60% of the 
normal male or adjusted median G6PD activity. Absolute 
cut-off values (in U/g Hb) and sensitivity, specificity, 
positive predictive value, and negative predictive value 
should be determined for this range of degrees of G6PD 
deficiency. Example performance data for the evaluation 
of a putative G6PD test are described in Tables 3 and 6; the 
cut-offs are shown in Figure 1. 
 
Regulatory considerations for G6PD testing  
The first step toward regulating the quality of G6PD tests 
will be to define evaluation standards for this class of 
diagnostic tests. In many countries where G6PD tests are 
needed to support P. vivax case management, regulatory 
mechanisms for diagnostic tests are absent, weak, or in 
transition. In the absence of national guide-lines, some 
countries default to CE mark and US Food and Drug 
Administration (FDA) approval. Currently, the 
BinaxNOWW G6PD test marketed in the United States has 
obtained FDA approval under 510(k) clearance. Most 
G6PD tests on the market have at best obtained only CE 
mark approval.  

There is a concern that without clear guidelines for G6PD 
testing performance criteria, point-of-care G6PD testing will 
follow a similar route as the malaria rapid diagnostic tests 
(RDTs), albeit to a smaller scale, wherein a large number of 
products with varying degrees of quality control and 
performance entered the market. Variability in RDT quality 
produced distrust of the product generally, 
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Table 5 Sample size calculations for evaluation of G6PD diagnostic tests for radical cure   
Expected Desired Confidence Number of   Sample size  

 

sensitivity width of CI level disease cases needed      

Prevalence rate 10% Prevalence rate 15% Prevalence rate 20%  

    
 

        

0.8 0.06 0.95 715 7150 4767 3575 
 

0.8 0.1 0.95 264 2640 1760 1320 
 

0.9 0.06 0.95 417 4170 2780 2085 
 

0.9 0.1 0.95 158 1580 1053 790 
 

0.95 0.06 0.95 238 2380 1587 1190 
 

0.95 0.1 0.95 94 940 627 470 
 

0.96 0.06 0.95 200 2000 1333 1000 
 

0.96 0.1 0.95 81 810 540 405 
 

0.97 0.06 0.95 161 1610 1073 805 
 

0.97 0.1 0.95 68 680 453 340 
 

0.98 0.06 0.95 123 1230 820 615 
 

0.98 0.1 0.95 55 550 367 275 
 

0.99 0.06 0.95 87 870 580 435 
 

0.99 0.1 0.95 44 440 293 220 
   

CI: confidence interval. 
 
and slowed uptake of RDT technology. For G6PD tests, 
prevention, rather than remediation, of such a problem will 
likely be less costly for the malaria control and elimination 
community. 
 
Operational considerations for G6PD testing  
Although participants in the workshop’s use case scenario 
session unanimously identified a point-of-care G6PD test 
as the ideal product profile to support P. vivax case 
management with 8-aminoquinolines, it does not ne-
cessarily follow that: 
 

1. This product profile has a large market demand. The 
workshop attendees were primarily focused on 
malaria patients who are the hardest to reach rather 
than on the largest number of people at risk. 

 
 

2. This is the best solution for all use cases. As 
neonatal screening programmes improve in many 
countries, a more cost-effective approach may be to 
improve information management systems such 
that the G6PD status of a patient is more readily 
available and the need for repeat testing can  
be minimized. 

 
In Malaysia, neonatal G6PD screening is routinely per-

formed, and G6PD records accompany the patient. In a 
case where a patient’s status is not known, a fluorescent 
spot test is done, and primaquine is administered based on 
G6PD status. In contrast, in the Philippines, neonatal 
screening is supposed to be routinely done but is not 
universally available, especially to remote and indigenous 
populations most at risk of malaria infection. 
  

Table 6 Performance results for a putative qualitative diagnostic test modeled against the quantitative results 
described in Table 3   
 10% cut-off 20% cut-off 30% cut-off 60% cut-off 
     

Cutoff value (U/g Hb) 1.07 2.14 3.21 6.42 
Number of samples with G6PD levels less than cut-off (percentage) 14 (2.8) 24 (4.8) 28 (5.6) 41 (8.2) 
Sensitivity percentage (95% CI) 100 95.8 89.3 68.3 
 (73–100) (77–100) (71–97) (52–81) 
Specificity percentage (95% CI) 97.1 98.9 99.4 100 
 (95–98) (97–100) (98–100) (99–100) 
Positive predictive value percentage (95% CI) 0.5 0.82 0.89 1.00 
 (0.31-0.69) (0.62-0.93) (0.71-0.97) (0.84-1.00) 
Negative predictive value percentage (95% CI) 1.00 1.00 0.99 0.97 
 (0.99-1.00) (0.99-1.00) (0.98-1.00) (0.95-0.98)   
CI: confidence interval; Hb: haemoglobin; U: International Unit. 
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The goal of operational research around G6PD defi-
ciency testing and radical cure with 8-aminoquinolines 
should focus on how to ensure that G6PD status infor-
mation is available at the point of case management for a 
patient presenting with P. vivax infection. This may 
involve linking drug availability to availability of a point-
of-care G6PD test, to medical records, or a combination of 
the two.  

Another challenge with introducing and scaling up new 
G6PD tests is that there are currently few guidelines for 
adopting and training end users on G6PD testing and 
counseling. Also, confirming or evaluating operational 
effectiveness of a G6PD test in clinical settings, as op-
posed to analytical performance, will be challenging. 
Additionally an external quality assurance programme will 
be required. Cost analysis of different approaches to 
ensuring safe delivery of 8-aminoquinolines should take 
these factors into consideration, as they may significantly 
influence cost-effectiveness outcomes.  

Market studies segmenting where point-of-care G6PD 
tests are needed in place of more complex assays will be 
useful for malaria programmes in terms of resource 
allocation and for suppliers in terms of understanding the 
true market size. From the pricing perspective, ideally a 
G6PD test would be available at the price of a malaria RDT 
or less. For primaquine, given its low cost, a significantly 
more expensive test will shift the burden of the cost 
significantly from treatment costs to diagnostic costs and 
may impact willingness to pay. Potentially more expensive 
drugs may tolerate higher prices. From a programme 
perspective, cost-effectiveness studies should be designed 
to identify boundaries of these costs. 
 
Conclusions  
From a public health perspective, uncertainty remains on 
whether G6PD testing deficiency status does not need to be 
taken into account for primaquine-based radical cure in 
some populations, as reflected in the current WHO 
guidelines. However, from a patient management 
perspective, where the individual risk/benefit ratio dictates 
optimal treatment, knowing the G6PD status of the patient 
is a prerequisite for prescribing an 8-aminoquino-line-
based drug.  

Although many questions remain regarding G6PD 
deficiency and the risk of drug-related adverse events, this 
should not hinder efforts to evaluate and adopt G6PD tests 
in support of radical cure. G6PD testing represents an 
additional cost for malaria treatment and unnecessary 
G6PD testing should be minimized. Health systems, health 
management information systems, care-seeking practices, 
and malaria epidemiology will determine the best way to 
ensure knowledge of G6PD status for people who have 
access to 8-aminoquinoline radical cure regimens. While 
an approach that includes population 

 
 
 
 
 
screening and effective recordkeeping is attractive for the 
long term, it is clear that point-of-care G6PD testing will 
be required to meet immediate needs, given that the 
populations most at risk of P. vivax infection are typically 
those at the periphery of health care systems and the 
hardest to reach. In these scenarios, significant operational 
research will be required to understand how to supply these 
tests, who the end users should be, how to link the 
availability of the tests with that of the drugs, and how to 
implement a recordkeeping system that minimizes the need 
for repeat testing of individual patients.  

A prerequisite to introducing G6PD testing is the 
availability of high-quality G6PD tests with product 
profiles that are compatible with end-use cases. Establish-
ing pragmatic and consistent criteria for evaluation of tests 
should be a high priority. The development and evaluation 
of new G6PD tests can benefit from the availability of 
specimen panels [47]. Because factors unique to local 
populations may affect the performance of G6PD tests, 
another priority should be to understand the impact of 
geographical and genetic diversity on the performance of 
these tests. 
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ABSTRACT 

Background 

Primaquine is the only currently available drug that clears mature P. falciparum gametocytes 

thereby preventing malaria transmission to mosquitoes. Concerns about dose-dependent 

haemolysis in G6PD deficient individuals have limited its use.  

Methods 

In this randomised double-blinded placebo-controlled trial with four parallel arms, Ugandan children 

with uncomplicated falciparum malaria and normal G6PD enzyme function were randomised to 

receive treatment with artemether lumefantrine (AL) plus (1) placebo or (2) 0∙1mg/kg, (3) 0∙4mg/kg, 

or (4) 0∙75mg/kg (WHO reference dose) primaquine base. The prevalence, density and duration of 

gametocyte carriage were determined by molecular methods and compared with the reference arm. 

Haemoglobin concentration and adverse events were determined during 28 days of follow-up.  

Findings  

A total of 468 participants were randomised to receive AL plus placebo (119), 0∙1mg/kg (116), 

0∙4mg/kg (116) or 0∙75mg/kg (117) primaquine base. The mean duration of gametocyte carriage was 

6∙6 days (95% CI: 5∙3-7∙8) in the 0∙75mg/kg reference arm, similar in the 0∙4mg/kg arm (6∙3 days; 

95% CI:5∙1-7∙5, non-inferior, p=0∙74) but longer in the 0∙1mg/kg (8∙0 days; 95% CI:6∙6-9∙4, p=0∙14) 

and placebo arms (12∙4 days; 95% CI:9∙9-15∙0, p<0∙001). None of the children showed evidence of 

treatment-related haemolysis, and the mean maximal fall in haemoglobin concentration was not 

associated with the dose of primaquine received (p≥0∙11). 

Interpretation 

We conclude that 0∙4mg/kg has similar gametocytocidal efficacy to the reference 0∙75mg/kg 

primaquine dose but 0∙1mg/kg may have lower efficacy. This calls for the prioritisation of further 
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trials on the efficacy and safety of doses of primaquine between 0∙1mg/kg and 0∙4mg/kg (including 

the recent WHO-recommended dose of 0∙25mg/kg), given the potential of widespread deployment 

to block malaria transmission. 

Funding  

The trial was funded by the Wellcome Trust (090558), with additional support from the Bill and 

Melinda Gates Foundation (OPP1034789).  

  



4 
 

INTRODUCTION 

Effective drug therapy is a key component of malaria control and elimination strategies to reduce 

both morbidity and onward transmission to mosquitoes.1 Artemisinin combination therapy (ACT), 

the current first line treatment in sub-Saharan African countries, achieves excellent cure rates for 

Plasmodium falciparum by rapid clearance of the asexual stages of the parasite. As a consequence of 

this efficient parasite clearance, ACT reduces the production of malaria transmission stages, 

gametocytes, and thereby reduces transmission potential.2 However, onward malaria transmission is 

not completely prevented because of the limited effect of artemisinins and their partner drugs 

against mature gametocytes. Mature gametocytes that are present before treatment persist after 

ACT, often at concentrations below the threshold for detection by conventional microscopy,3 and 

may allow onward malaria transmission for up to 14 days after treatment.3-6  

Primaquine, an 8-aminoquinoline, is the only available drug with well-established activity against 

mature gametocytes. It clears circulating gametocytes that persist after ACTs, thereby reduces the 

duration of gametocyte carriage 7-12 and renders most individuals gametocyte-free by day 14 after 

initiation of ACT-primaquine treatment. 7-9, 12 Primaquine reduces the transmission of malaria to 

mosquitoes and this effect may precede the clearance of gametocytes 13, 14. The transmission 

blocking properties of primaquine were reviewed recently in detail. 15 The World Health 

Organization has recommended a single dose of primaquine in addition to ACTs for use in two 

scenarios: for malaria elimination programmes and to stop the spread of emerging artemisinin 

resistance.16 Currently, primaquine is recommended for use in first-line antimalarial treatment in 

many countries.17  

Despite these recommendations, primaquine is often not deployed because of concerns regarding 

its haemolytic effect in people with glucose-6-phosphate dehydrogenase (G6PD) deficiency. 

Primaquine-induced haemolysis may occur after a single dose of primaquine18 and is dose-
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dependent.19 Because doses of primaquine lower than the WHO-recommended dose may be equally 

efficacious in clearing P. falciparum gametocytes,15 dose-optimisation for ACT-primaquine is needed. 

No formal randomised controlled trials have been conducted to characterise the dose-response 

relationship of primaquine for P. falciparum gametocyte clearance. This study was designed to 

evaluate the efficacy of reducing doses of primaquine for non-inferiority to the WHO reference 

0∙75mg primaquine base/kg that has proven efficacy7, 20 and to assess for superiority of the safety of 

reducing doses compared to placebo, in individuals with normal G6PD enzyme function. 

METHODS 

The study was a randomised, double-blinded, placebo-controlled trial with four parallel arms. The 

study protocol has been described elsewhere in detail.21 Briefly, the study was conducted at 

Walukuba Health Centre IV in Jinja district, in eastern Uganda in the period December 2011 to March 

2013. In this area, malaria transmission is perennial with seasonal peaks in intensity and an 

entomological inoculation rate (EIR) of seven infectious bites per person per year was estimated in 

2001.22  

Participants:  

Study participants were recruited from children aged 1-10 years attending the Health Centre with 

fever or history of fever in the last 24 hours, P. falciparum mono-infection with a parasite density 

<500 000/µl, and normal G6PD enzyme function based on a fluorescence spot test (R&D Diagnostics, 

Aghia Paraskevi, Greece).  Exclusion criteria were evidence of severe illness/ danger signs, 

haemoglobin< 8g/dL, known allergy to study medications, antimalarials taken within the last two 

days, primaquine taken within the last four weeks and blood transfusion within the last 90 days. 

 

Randomisation masking  
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Eligible participants were randomly assigned to one of four dose arms: artemether lumefantrine 

twice daily on days 0 to 2 and, with the fifth dose of AL, a single dose of placebo or primaquine 

(0∙1mg/kg, 0∙4mg/kg, or 0∙75mg/kg). Four-digit treatment assignment codes were computer-

generated by a statistician at LSHTM (EW) and allocated to random dose arms in block sizes of 16. To 

achieve treatment concealment, a standard volume of masking syrup that concealed the colour and 

taste of primaquine was added to all doses of primaquine or placebo. Because G6PD deficiency is an 

X-chromosome linked disorder, randomisation was stratified by gender. Sequential sealed envelopes 

containing a randomisation code were selected by the study pharmacist from either the male or 

female pile. The pharmacist was not involved in patient outcome assessment. All other study staff 

providing care or assessing outcomes, and the participants themselves remained blinded to the 

intervention arm after assignment.  

Procedures:  

Interventions: 15mg base primaquine phosphate tablets were crushed and dissolved in 15ml of 

drinking water to produce a stable 1mg/ml solution and the assigned dose to the nearest 0∙5 ml was 

drawn up by sterile syringe and administered immediately in a plastic cup or spoon. All treatments 

were administered after a fatty snack (biscuits) and were directly observed. If a participant vomited 

within 30 minutes, treatment was re-administered. Children who vomited more than three times 

were excluded from the study and treated for complicated malaria. 

Enrolled participants were reviewed on days 0, 1, 2, 3, 7, 10, 14, 21 and 28, or on additional days if 

they presented at the clinic. There was systematic and prospective assessment for adverse events. 

New or worsening symptoms, examination findings, or laboratory abnormalities were graded 

according to a severity scale23 and causal relationship to the study drug was assessed. A standardised 

protocol was implemented to detect episodes of haemolytic anaemia.21 On scheduled visits, 

approximately 500µL of venous blood was collected for laboratory assessments. On all visits, asexual 

malaria parasite counts were performed, enumerating parasites per 200 white blood cells; a 
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hundred microscopy fields were read in the Giemsa-stained thick blood film before a slide was 

considered parasite negative. At enrolment slides were double-read specifically for gametocytes, 

following the same procedures as for asexual parasites. Haemoglobin concentration was measured 

on days 0, 1, 2, 3, 7, 10, 14, 21 and 28 with self-calibrating HemoCue 201+ photometers (HemoCue; 

Angelholm, Sweden). Gametocytaemia was assessed by quantitative real time nucleic acid sequence 

based analysis (QT NASBA) using Pfs25 mRNA24 on days 0, 2, 3, 7, 10 and, 14. The timing of 

gametocytaemia measurements was based on previous studies that suggest the gametocyte-

clearing effect of primaquine is restricted to the first two weeks after treatment.7, 25 Nucleic acids 

were extracted from 50 µL blood samples in L6 buffer [Severn Biotech Limited, Kidderminster, UK] 

using Total Nucleic Acid Isolation Kits–High Performance [Roche Applied Science, Mannheim, 

Germany] and a MagNA Pure LC automated extractor [Roche Applied Science, Mannheim, 

Germany]. The sensitivity of this assay is related to the volume of blood sampled and is in the range 

of 0∙02-0∙1 gametocytes/µL for the samples collected 24. 

Outcomes and sample size:  

The primary outcome measure for efficacy was the non-inferiority of the mean duration of 

gametocyte carriage in the test doses compared to the reference arm of 0∙75mg primaquine 

base/kg. Secondary outcomes were the point prevalence of gametocytes on days 7, 10, and 14 after 

treatment, gametocyte circulation time and the area under the curve of gametocyte density over 

time after primaquine administration. The primary safety outcome was the superiority of the 

arithmetic mean maximal fall in haemoglobin concentration from enrolment to day 28 of follow up 

in the primaquine containing arms compared to placebo. Secondary safety outcomes were the 

superiority assessment of the day of haemoglobin nadir, the maximal percentage fall in 

haemoglobin, the percentage of participants with haemoglobin less than 5g/dL, requirement for 

blood transfusion, evidence of black urine, and incidence of severe adverse events. 



8 
 

The sample size calculation took into consideration the primary outcomes for both efficacy and 

safety. To guide the efficacy calculation we used the QT-NASBA-measured duration of gametocyte 

carriage in a Tanzanian study which was reduced from 28∙6 to 6∙3 days (standard deviation 6 days) 

when primaquine (0∙75mg/kg) was added to ACT alone.25 To assess non-inferiority of the test arms 

to the reference arm with 80% power, allowing for a 10% loss to follow up, and using a proposed 

clinically relevant non-inferiority margin of 2∙5 days, the target sample size for efficacy was 120 

participants per arm. For the safety component, the sample size calculation was based on the mean 

fall in Hemocue-measured haemoglobin concentration on day 7 after treatment with primaquine 

0∙6g/dL (standard deviation 1∙5) in an earlier Tanzanian study.18 A sample size of 99 participants per 

arm would provide 80% power to detect a difference in mean maximal fall in haemoglobin between 

treatment arms of 0∙6g/dL. 

Statistical analysis/ methods: 

Data were double-entered and transferred into Stata version 12∙0 (Statacorp Ltd, Texas, US) for 

analysis. The duration of gametocyte carriage and gametocyte circulation time were estimated in 

children with gametocytaemia on day 2, the day of primaquine dosing, using a simple deterministic 

compartmental mathematical model described by Bousema et al. 25 that allows for the release of 

gametocytes from sequestration and incorporates baseline gametocyte densities in model 

estimates. The model allows the duration of gametocyte carriage to be estimated as a continuous 

outcome. As the spacing between sampling times increases some degree of uncertainty is expected, 

but this was considered to be acceptable for estimates during the first 14 days after initiation of 

treatment. Treatment arms were compared for non-inferiority to the reference arm using two-sided 

95% confidence intervals. As the distribution of gametocyte densities was expected to be skewed, all 

density analyses involved log-10 transformed data and geometric means were used as summary 

statistics. The AUC of gametocyte density was assessed per individual using the linear trapezoid 

method 26 and log-10 transformed. Log AUC was compared to the reference treatment arm using 
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analysis of variance. Gametocyte point prevalence estimates per treatment arm were compared 

with the reference arm using the prevalence ratio with 95% confidence intervals. All efficacy 

analyses were adjusted for gametocyte density at enrolment; the potential effect of gender was 

tested by adding gender to multivariate models and by stratified analysis. 

The primary safety outcome, maximal fall in haemoglobin (g/dL) compared to enrolment value 

during follow-up, is expressed as an arithmetic mean per treatment arm and pair-wise comparisons 

made between placebo and each of the primaquine-containing arms, using unpaired t tests. The 

occurrence of adverse events was compared between arms; the significance level was adjusted for 

multiple comparisons by Bonferroni correction.  

Important changes to methods after trial commencement: During the course of review by the trial 

Data Safety Monitoring Board, the target sample size was reduced to a total 460 participants (i.e. 

115 per arm instead of 120) due to a lower than expected loss to follow up.  

Role of the funding source This study was funded primarily by a Wellcome Trust Bloomsbury Clinical 

Fellowship to ACE (090558) and supplemented by funds from the Bill and Melinda Gates Foundation 

to CD and TB (OPP1034789). The funders had no role in study design, data collection, data analysis, 

data interpretation or writing the report. The corresponding author had full access to all data in the 

study. All authors reviewed the manuscript and agreed to submission for publication. 
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RESULTS 

We screened 1215 children with a history of fever and a positive blood smear at Walukuba Health 

Centre for eligibility to enter the study. The most common reason for exclusion was taking 

antimalarials in the previous 48 hours. Between December 2011 and December 2012, 468 children 

were enrolled and randomised, 461 completed treatment and contributed data for the evaluation of 

safety and efficacy (Figure 1).  36 of these 461 children (7∙8%) did not complete 28 day follow-up; 

the proportion lost to follow-up did not differ significantly between treatment arms, but was higher 

in the placebo arm. Baseline characteristics are presented in table 1 and were similar in all treatment 

arms. 43% (199/461) of children were anaemic at baseline (Hb <11g/dL). Treatment failure, assessed 

clinically and microscopically, was uncommon (table 2) and did not differ between treatment arms 

(p= 0∙68).  

Gametocyte prevalence at enrolment was 22∙6% (104/461) by microscopy and 81∙8% (365/446) by 

QT-NASBA and did not differ between treatment arms (p=0∙91 and p=0∙42, respectively). Enrolment 

gametocyte density was numerically higher in the 0∙75mg/kg reference arm but not statistically 

different from any of the other arms (p≥0∙31). Gametocyte prevalence declined after enrolment, 

49∙3% (170/345) of the individuals who were gametocyte positive at enrolment were still 

gametocyte positive on day 2 prior to administration of primaquine or placebo. After day 2, the rate 

of gametocyte clearance was dependent on treatment arm. The mean duration of gametocyte 

carriage was 6∙6 days (95% CI 5∙3-7∙8) in the reference 0∙75mg/kg arm, 6∙3 days (95% CI 5∙1-7∙5) in 

the 0∙4mg/kg arm, 8∙0 days (95% CI 6∙6-9∙4) in the 0∙1 mg/kg arm and 12∙4 (95% CI 9∙9-15∙0) in the 

placebo arm (Table 3).  The duration of gametocyte carriage for those gametocyte positive at the 

moment of primaquine administration was the primary outcome and was tested for non-inferiority 

to the 0.75mg/kg reference arm. Using the proposed non-inferiority margin of 2∙5 days, the 

0∙4mg/kg arm showed non-inferiority to the reference 0∙75mg/kg arm, but the 0∙1mg/kg arm did not 

(being inconclusive for non-inferiority) and placebo was inferior (Figure 2). The mean circulation 
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time of gametocytes was estimated using Pfs25 QT-NASBA gametocyte density data and indicated a 

longer circulation time of gametocytes in the 0∙1mg/kg arm (p=0∙0012) and placebo arm (p<0∙0001) 

compared to the reference 0∙75mg/kg arm (Table 3). Gametocyte circulation time was not 

significantly different between the 0∙4mg/kg arm and the reference 0∙75mg/kg arm (p=0∙80). 

Compared to the reference arm of 0∙75mg/kg, gametocyte prevalence was significantly higher in the 

0∙1 mg/kg arm on days 7 and 10 and significantly higher in the placebo arm on days 7, 10 and 14 

(Table 3). There was no difference in prevalence between the 0∙4mg/kg arm and the reference arm 

throughout follow up (Figure 3). The overall geometric mean gametocyte density was 17∙9 

gametocytes/µL (95% CI 13∙8-23∙3) at enrolment, 15∙7 gametocytes/µL (95% CI 11∙0-22∙2)on day 2 

before primaquine treatment, 11∙6 gametocytes/µL (95% CI 7∙2-18∙8) on day 3, 5∙3 gametocytes/µL 

(95% CI 3∙0-9∙3) on day 7, 5∙2 gametocytes/µL (95% CI 2∙6-10∙5) on day 10, and 2∙1 gametocytes/µL 

(95% CI 0∙7-5∙7) on day 14. This decline in the density of gametocytes in gametocyte positive 

individuals during follow-up was statistically significant (p<0∙001) but densities in gametocyte-

positive individuals did not differ significantly between treatment arms on discrete follow up days 

(data not shown).  

The area under the curve of gametocyte density over time, a measure that incorporates both 

prevalence and density of QT-NASBA estimates, was 3∙8 (95% CI 1∙7-8∙2) gametocytes per µL per day 

in the placebo arm, 3∙8 (95% CI 1∙8-7∙8) in the 0∙1mg/kg arm, 2∙1 (95% CI 1∙0-4∙5) in the 0∙4mg/kg 

arm, and 2∙0 (95% CI 0∙9-4∙3) in the 0∙75mg/kg arm (Table 3). After adjustment for gametocyte 

density at enrolment, the AUC compared to the reference arm was not statistically significantly 

different for the 0∙4mg/kg arm (p=0∙79), significantly higher in the 0∙1 mg/kg arm (p=0∙043), and was 

non-significantly higher in the placebo arm (p=0∙16). None of the efficacy estimates were influenced 

by the gender of participants. 

The mean maximal fall in haemoglobin level did not differ significantly compared to placebo 

(1∙07g/dL; SD 1∙11) in the 0∙1mg/kg (1∙14g/dL; SD 0∙94; p=0∙61), 0∙4mg/kg (1∙13g/dL; SD 1∙00; 
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p=0∙67), or 0∙75mg/kg (1∙27g/dL; SD 0∙82; p=0∙11) arms. The size of the fall in haemoglobin 

increased with increasing primaquine dose, but this trend was not significant (p=0∙46). The timing of 

the nadir in haemoglobin was independent of treatment arm and the greatest contribution to the 

total fall in haemoglobin occurred prior to day 2 when the study drug was administered. By day 28, 

in all treatment arms, haemoglobin had recovered and exceeded baseline levels (figure 4). There 

were no cases of black water fever, red, black or tea-coloured urine or severe haemolysis and no 

child required a blood transfusion. There was no impact on safety outcomes by gender. 

The proportion of participants experiencing adverse events did not differ between treatment arms 

after adjustment of significance levels for multiple comparisons. In the gender-stratified analysis, the 

maximum fall in haemoglobin level appeared larger in the 0.75mg/kg arm compared to placebo arm 

in females (p=0.023), but this was not statistically significant after Bonferroni correction for multiple 

comparisons. One child, aged 1.5 years, had a haemoglobin level of less than 5g/dL constituting the 

single severe adverse event. This male child, who received 0∙4mg/kg primaquine, had a baseline 

haemoglobin concentration of 9∙9g/dL. On day 9 of follow up, he had an elective surgical procedure 

in a mobile clinic. The mother reported no attempt at haemostasis post-operatively and the child 

had bled severely. By day 14, the haemoglobin had fallen to 4∙9g/dL without clinical compromise. 

Wound care and iron and folate were administered and the haemoglobin recovered to 10∙6g/dL on 

day 28. This event was considered unrelated to the study drug. 
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DISCUSSION 

This is the first formal dose-finding study to assess P. falciparum gametocyte clearance following 

treatment with single-dose primaquine when given in combination with an ACT. We found that the 

duration of gametocyte carriage was approximately halved when 0∙75mg primaquine/kg was given 

in addition to ACTs. A reduced dose of 0∙4mg/kg had a non-inferior gametocytocidal effect 

compared to the WHO reference dose, while the duration of gametocyte carriage did not reach non-

inferiority in the 0∙1mg/kg arm and gametocyte prevalence was higher during follow-up.  Safety 

outcomes did not differ significantly between the treatment arms. 

In this population with uncomplicated clinical malaria, gametocytes were detected at baseline in 

23% of children by microscopy compared to 81% by molecular methods, consistent with previous 

observations and highlighting the insensitivity of microscopy in identifying potentially infectious 

individuals.27 Gametocyte prevalence declined during follow-up; approximately half of the patients 

with gametocytes at enrolment cleared their gametocytes during the first two days of treatment, 

before primaquine was given. These dynamics differ from those observed in children a previous ACT-

primaquine trial that showed a more gradual decline in gametocyte prevalence after ACT,7 but 

resemble those observed recently in symptomatic Kenyan children of the same age-group.3 Although 

primaquine shortened the duration of gametocyte carriage, we observed that even the highest 

single dose of primaquine did not render all individuals gametocyte-negative. In Myanmar and 

Indonesia, microscopic gametocytes persisted in a small fraction of individuals 21 days after 

primaquine treatment.8, 9 In our study, 6% of individuals were gametocyte positive by molecular 

methods on day 14 after initiation of treatment even with the highest dose of primaquine. The 

density of these persistent gametocytes was much lower than the density at enrolment.  We used 

gametocyte density estimates for secondary outcome measures because there is no clear lower 

threshold gametocyte density that is needed for successful mosquito infection.28-30 The gametocyte 

circulation time that was calculated based on the rate of decline of gametocyte densities after 
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treatment, was significantly longer in the placebo and 0∙1mg/kg arm but not significantly different in 

the 0∙4mg/kg arm compared to the reference 0∙75mg/kg arm. The area under the curve of 

gametocyte density over time, a summary measure for malaria transmission potential, 7, 26, 31 was not 

significantly different between the 0∙4 and the 0∙75mg/kg dose group but was numerically higher in 

the 0∙1mg/kg dose and placebo arm, compared to the reference dose of 0∙75mg/kg. Baseline 

differences between treatment arms in asexual parasite density did not result in differences in 

baseline gametocyte prevalence or density or differences in treatment outcome and did not 

confound the comparison of gametocyte dynamics between treatment arms. 

While our trial used sensitive molecular gametocyte detection tools and thereby provides a level of 

detail that is lacking in most other primaquine trials, a relevant shortcoming of this study and other 

studies is that gametocyte infectiousness to mosquitoes was not determined. A proportion of the 

gametocytes that are observed by microscopy shortly after primaquine treatment may be non-

infectious.15 It is currently unknown whether Pfs25 mRNA can be detected from non-viable 

gametocytes and it is plausible that a proportion of the gametocytes that we detected were non-

infectious. We may, therefore, have underestimated the transmission-blocking effect of primaquine. 

None of the currently available gametocyte detection tools allow inferences on the infectiousness of 

gametocytes to mosquitoes to be made and only mosquito feeding assays can provide definitive 

evidence for the transmissibility of gametocytes. There are, however, limitations in the extent to 

which labour-intensive mosquito feeding assays can be used in clinical trials.32 While gametocyte 

measurements can be conducted repeatedly from the same individual, the handful of clinical trials 

that have used mosquito feeding assays typically perform feeding experiments on a single time-point 

per individual 3, 33, 34 and thereby ignore the dynamics of gametocyte infectivity 34. Future studies that 

confirm the gametocytocidal effects of low dose primaquine should therefore preferentially include 

mosquito feeding assays at intervals during follow up.  
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A further limitation of this study was the lack of available paediatric dose formulations for 

primaquine, which necessitated titration of crushed primaquine in solution for accurate dosing. 

Whilst the approach of using crushed tablets has been used previously for the 0∙75mg/kg dose, 7, 8 it 

is conceivable that this may have impacted efficacy particularly of the 0.1mg/kg dose. Further data 

on the relative bioavailability of different formulations of primaquine are required. Hence, a pre-

requisite to the up-scaling of primaquine deployment will be the availability of reliable paediatric 

formulations for low dose primaquine. This study aimed to determine the safety of low-dose 

primaquine in individuals with normal G6PD enzyme function. G6PD deficient individuals were 

excluded in this study based on the fluorescent spot test, the most widely used enzyme function 

test13 that detects enzyme function to a cut off of approximately 20-30% of normal activity.35. We 

chose to exclude G6PD deficient individuals to first establish the lowest efficacious dose before 

vulnerable individuals are exposed to a potentially haemolytic drug. Although haemolysis has been 

observed in individuals without common mutations in the G6PD enzyme,36 the exclusion of 

individuals with abnormal enzyme function obviously limits the generalisability of the safety 

outcomes of this study and this needs to be addressed in future studies. Given this caveat, 

haemoglobin fell most rapidly in the first two days after enrolment in all study arms, implying that 

the greatest effect on haemoglobin was due to clinical malaria rather than a drug effect. Thereafter, 

haemoglobin recovered to pre-morbid levels. A similar trend was found in Tanzanian children,7 in 

Myanmar,37 and in Indonesia.9 We found no children with objective measures of clinically significant 

haemolysis, black urine, or requirement for hospital admission or blood transfusion. The single 

severe adverse event was in a child who underwent an elective surgical procedure unrelated to the 

clinical malaria episode on day 9 and therefore after the expected duration of primaquine-

associated haemolysis. 

In this dose-finding trial, primaquine administration was delayed until day 2 after initiation of 

schizonticidal therapy. This is when, in the context of uncomplicated malaria, the rate of malaria-

attributable haemolysis is expected to be declining, and comparisons of haematological effects 
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between dose arms are expected to be less affected by the effects of acute malaria infection. In 

operational terms, administering primaquine on the first day of schizonticidal treatment is likely to 

be advantageous and comparisons of the efficacy of day 0 versus day 2 administration will be 

important.  

The World Health Organization has recommended the use of a single dose of 0∙75mg primaquine 

base/kg in combination with schizonticidal drugs to reduce transmission of malaria for over 40 

years.38 However, no dose-finding trials underpinned this recommendation. The limited evidence 

base for primaquine use has prompted uncertainty as to the benefit of an intervention which carries 

a documented risk of haemolysis in malaria endemic populations.39, 40 The real threat of spreading 

artemisinin resistance41 has led to urgency in addressing this problem. In September 2012, whilst the 

current study was ongoing, an Evidence Review Group commissioned by the World Health 

Organization revised its recommended dose to 0∙25mg primaquine base/kg to be added to ACT to 

treat parasitologically-confirmed falciparum malaria infection in new programmes for malaria 

elimination and to stop the spread of artemisinin resistance.42 This dose revision was based on 

under-powered historical studies and the need for contemporary data was highlighted 43. The 

0∙25mg/kg dose was not evaluated in the current study. This is a limitation of the current study and 

leaves important questions for future dose-findings studies. However, we have shown that 

gametocytocidal efficacy is retained when the primaquine dose is reduced from 0∙75mg/kg to 

0∙4mg/kg and that a dose-response relationship exists for lower doses. The finding of a reduced 

gametocytocidal efficacy below 0.4mg/kg appears to contradict suggestions of uniform efficacy in 

the range of 0.065 and 0.75mg PQ/kg (ref 16). This novel information provides a valuable  starting 

point in identifying the most efficacious and safe low dose of primaquine for transmission blocking. 

The subsequent evaluations of primaquine should include assessments of i) the efficacy of doses less 

than 0∙4mg/kg (including the newly-recommended 0∙25mg/kg dose), using mosquito transmission 

endpoints to allow for differences in infectiousness of gametocytes persisting after treatment, ii) the 

optimal timing of primaquine in combination with ACT, iii) the pharmacokinetics of low-dose 
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primaquine and iv) the safety of low dose primaquine in individuals with G6PD enzyme deficiency, 

which is of high priority. Because of differences in gametocyte dynamics between African and Asian 

settings 44 and differences in the severity of G6PD deficiency between geographical regions,45 studies 

in a range of malaria endemic settings are needed. 

Panel: Research in context 

Systematic review 

We searched PubMed in May 2013, without date or language restrictions, with the terms 

“primaquine” AND “malaria, falciparum” AND “gametocyte” OR “primaquine” AND “malaria, 

falciparum” AND “transmission”. We found no randomised controlled trials evaluating the dose-

response relationship of primaquine for gametocytocidal activity. A Cochrane review of the 

transmission-reducing efficacy of primaquine published in September 2012 found five trials 

evaluating a primaquine-ACT combination that satisfied the criteria for inclusion and none of these 

evaluated a range of doses.40 Three studies have assessed the haematological safety of primaquine 

with ACTs,7, 36, 37 but this trial is unique in having been specifically powered to assess safety 

outcomes.  

A search of clinical trial registration sites for primaquine dose-finding trials for transmission blocking 

revealed one single trial that is underway in the Gambia (NCT01838902) to assess the efficacy of ACT 

alone, 0.2mg/kg, 0.4mg/kg and 0.75mg/kg primaquine base in asymptomatic individuals and this 

trial is scheduled for completion in 2015. Another study (NCT01743820) is in development to assess 

primaquine dose escalation from 0.125mg/kg in a total of 50 participants randomized over different 

dosing arms. Several other registered studies with primaquine for P. falciparum do not involve dose-

finding but will address relevant questions for future wide-scale deployment of primaquine. These 

studies include a study on the optimal timing of primaquine administration (NCT01906788, trial 

recruiting), primaquine pharmacokinetics (NCT01552330, NCT01525511 both completed august 
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2013) and mosquito feeding as an endpoint comparing ACT alone with 0.75mg/kg primaquine 

(NCT01849640 not yet recruiting, with a scheduled three-year timeline). 

Interpretation 

This is, to our knowledge, the first randomised, placebo-controlled trial to evaluate the dose-

response relationship of single-dose primaquine for gametocyte clearance and for safety in 

falciparum malaria. This trial was conducted in African children with clinical malaria and normal 

G6PD enzyme function. A dose reduction to 0∙4mg/kg primaquine base had demonstrable non-

inferiorityto the reference 0.75mg/kg dose, whilst a dose of0.1mg/kg did not achieve non-inferiority. 

This trial was designed and initiated prior to a revision of the WHO guidelines recommending 

0.25mg/kg primaquine for transmission blocking, in the light of which, this new dose must now be 

evaluated. In this population, all doses of primaquine had similar safety profiles to placebo. An 

assessment of low dose primaquine in G6PD deficient individuals is warranted.  
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Legend for table 1: 

AL = artemether lumefantrine; PQ = primaquine; IQR = Interquartile range (25th-75th percentile); SD = 

standard deviation; GM = geometric mean  

 

Table 2: Treatment outcomes for the different regimens on day 28 after initiation of treatment.  

Legend for table 2: 

*p value for comparison with placebo, using chi-squared or Fisher's exact tests Outcomes are 

unadjusted by PCR. 

AL = artemether lumefantrine; PQ = primaquine; ITT = intention to treat; ACPR = adequate clinical 

and parasitological response; ETF = early treatment failure; LTF = late treatment failure. Definitions 

of ACPR, ETF and LTF are according to WHO Methods for Surveillance of Antimalarial Drug Efficacy 

2009. 

 

Table 3: Efficacy outcome: gametocyte carriage during follow-up for the different treatment 

regimens 

Except for the duration of gametocyte carriage, all estimates were adjusted for gametocyte density 

at enrolment. 

*p value for comparison with reference 0∙75mg/kg treatment arm. 

†calculated for all children who had gametocytes on the day of primaquine/ placebo administration. 

AL = artemether lumefantrine; PQ = primaquine;  

 

Figure 1: Trial profile 
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Legend for figure 1: 

AL=artemether lumefantrine; PQ=primaquine; ITT=intention to treat. AL was administered as six 

doses over 3 days (days 0, 1, 2); PQ or placebo was given together with the fifth dose of AL on the 

morning of day 2. 

The two post-treatment exclusions (due to delayed confirmation of parasitaemia) were followed up 

for safety 

 

Figure 2: Mean duration of gametocyte carriage by treatment regimen 

Legend for figure 2: 

The duration of gametocyte carriage was estimated by fitting a simple deterministic compartmental 

mathematical model to repeated Pfs25 QT-NASBA gametocyte prevalence estimates. Artemether-

lumefantrine (AL) was administered as six doses over 3 days (days 0, 1, 2); PQ or placebo was given 

together with the fifth dose of AL on the morning of day 2. Symbols indicate the mean duration of 

gametocyte carriage, error bars the upper and lower limit of the 95% confidence interval. The 

dashed line indicates the set threshold for non-inferiority compared to the 0∙75mg/kg reference arm 

of 2∙5 days. 

 

Figure 3: Gametocyte prevalence (a) and prevalence ratio (b) for each treatment regimen during 

the14 day follow up period 

Legend for figure 3: 

Gametocyte prevalence during follow-up. The prevalence of gametocytes determined by Pfs25 QT-

NASBA is given in the upper panel. Error bars indicate the upper limit of the 95% confidence interval; 
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asterisks indicate a statically significant difference compared to the reference 0∙75mg/kg arm. The 

lower panel shows the odds ratio of gametocyte prevalence on each of the days of follow-up 

compared to the reference 0∙75mg/kg arm after adjustment for baseline gametocyte density. Error 

bars indicate the upper and lower limits of the 95% confidence interval. Artemether-lumefantrine 

(AL) was administered as six doses over 3 days (days 0, 1, 2); PQ or placebo was given together with 

the fifth dose of AL on the morning of day 2. 

 

Figure 4: Mean change in haemoglobin measurements by treatment regimen during follow up 

Legend for figure 4: 

Haemoglobin concentrations (g/dL) during follow up are expressed relative to that at enrolment for 

Artemether-lumefantrine (AL)-placebo (black symbols and dashed line), AL-primaquine 0∙1mg/kg 

(pink symbols and solid line), AL-primaquine 0∙4mg/kg (orange symbols and dashed line) and AL-

primaquine 0∙75mg/kg treatment regimens (red symbols and solid line). AL was administered as six 

doses over 3 days (days 0, 1, 2); PQ or placebo was given together with the fifth dose of AL on the 

morning of day 2. 
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Table 1: Baseline characteristics of study participants 

 

AL + Placebo AL + PQ 0∙1mg/kg AL + PQ 0∙4mg/kg 

AL + PQ 

0∙75mg/kg 

N 117 115 113 116 

Gender, % male 

(n/N) 

48∙7 (57/117) 49∙6 (57/115) 49∙6 (56/113) 49∙1 (57/116) 

Age, median (IQR) 5∙0 (3∙0-7∙5) 5∙0 (3∙3-7∙0) 5∙3 (3∙2-7∙0) 4∙1 (3∙0-7∙0) 

Bodyweight, 

median (IQR) 

16∙0 (13∙0-20∙5) 16∙0 (13-22) 17∙0 (14-23) 15∙0 (13-19) 

Body 

temperature, 

mean °C (SD)  

38∙0 (1∙0) 38∙3 (1∙1) 38∙0 (1∙2) 38∙2 (1∙1) 

Haemoglobin, 

mean g/dL (SD) 

11∙3 (1∙5) 10∙9 (1∙5) 11∙2 (1∙5) 11∙2 (1∙4) 

Table



Asexual parasite 

density, GM 

parasites/L(IQR) 

17661 (5260-

65130) 

18420 (4440-

92780) 

16457 (3260-

81240) 

32497 (10880-

151180) 

Gametocyte 

prevalence by 

microscopy, % 

(n/N) 

23∙1 (27/117) 24∙4 (28/115) 20∙4 (23/113) 22∙4 (26/116) 

Gametocyte 

prevalence by QT-

NASBA, % (n/N) 

78∙5 (91/116) 86∙0 (98/114) 77∙5 (86/111) 81∙3 (91/112) 

Gametocyte 

density by QT-

NASBA, GM (IQR)  

38∙4 (5∙6-302∙8) 37∙8 (12∙6-149∙1) 38∙0 (1∙0-190∙4) 79∙8 (25∙4-245∙7) 

 

  



Table 2: Treatment outcomes for the different regimens on day 28 after initiation of treatment.  

Outcome Details 
AL + 
Placebo 

AL + PQ 
0∙1mg/kg p value* 

AL + PQ 
0∙4mg/kg p value* 

AL + PQ 
0∙75mg/kg 

p 
value* 

Number evaluated   117 115   115   116   

Day 28 treatment outcomes 
        Excluded from ITT analysis, % 

(n) 
Withdrawal unrelated to 
study drug or malaria  0  0   2    0    

 
Lost to follow up 15 7 

 
7 

 
5 

 
ACPR, % (n) Day 28:  

96∙1% 
(98) 

93∙5% 
(101) 0∙41 

100% 
(106) 0∙12 

95∙5% 
(106) 0∙83 

Treatment failures, % (n) ETF 0 0 
 

0 
 

0 
   LTF (day 28) 3∙9% (4 ) 6∙5% (7) 0∙41 0 0∙12 4∙5% (5) 0∙83 

 

  



Table 3: Efficacy outcome: gametocyte carriage during follow-up for the different treatment regimens 

Treatment 

AL + Placebo p value* 
AL + PQ 
0∙1mg/kg p value* 

AL + PQ 
0∙4mg/kg p value* 

AL + PQ 
0∙75mg/kg 

Mean duration 
of gametocyte 
carriage in days 
(95% CI) † 

12∙4 (9∙9-
15∙0) 

<0∙0001 8∙0 (6∙6-9∙4)  0∙14 6∙3 (5∙1-7∙5)  0∙74 6∙6  (5∙3-
7∙8) 

Mean circulation 
time in days, per 
gametocyte 
(95% CI) 

1∙97 (1∙64-
2∙31) 

<0∙0001 1∙47 (1∙22-
1∙73) 

0∙001 0∙95 (0∙77-
1∙13) 

0∙80 0∙98 (0∙78-
1∙18) 

Gametocyte 
prevalence on 
day 7, % (n/N) 

34∙8 
(40/115) 

0∙001 23∙1 
(25/108) 

0∙044 10∙6 
(11/104) 

0∙47 14∙4 
(15/104) 

Gametocyte 
prevalence on 
day 10, % (n/N) 

20∙5 
(23/112) 

0∙008 16∙8 
(18/107) 

0∙020 9∙3 (10/107) 0∙46 7∙4 (8/108) 

Gametocyte 
prevalence on 
day 14, % (n/N) 

15∙2 
(16/105) 

0∙017 5∙8 (6/103) 0∙72 2∙9 (3/103) 0∙51 5∙7 (6/107) 

 



1215 assessed for eligibility 

Excluded:  
463 exclusion criteria 
 5 serious chronic illness 
 83 intention to leave study area 
 154 took antimalarials 2 days prior 
 91 underweight 
 7 severe malaria/ danger signs 
 31 low Hb 
 32 G6PD deficiency 
 6 mixed infection 
 17 hyperparasitaemia 
 37 other (<5 per group) 
96 declined to participate  
188 unaccompanied minor (ineligible) 

468 randomly assigned 

119 allocated to 
AL+ placebo 

116 allocated to   AL 
+ PQ 0.1mg/kg 

116 allocated to AL 
+ PQ 0.4mg/kg 

117 allocated to 
AL+ PQ 0.75mg/kg 

2 Excluded 
before day 3 

106 completed 
efficacy follow up 

117 recieved AL+ 
placebo (ITT 
population) 

11 lost to 
follow up 

0 Withdrew 
consent 

7 lost to follow 
up 

0 Withdrew 
consent 

102 completed 
safety follow up 

1 Excluded 
before day 3 

3 Excluded 
before day 3 

1 Excluded 
before day 3 

115 recieved AL + PQ 
0.1mg/kg (ITT 
population) 

4 lost to follow 
up  

0 Withdrew 
consent 

0 lost to follow 
up 

0 Withdrew 
consent 

107 completed 
efficacy follow up 

111 completed 
efficacy follow up 

108 completed 
efficacy follow up 

108 completed 
safety follow up 

113 recieved AL + 
PQ 0.4mg/kg (ITT 

population) 

116 recieved AL + 
PQ 0.75mg/kg (ITT 

population) 

6 lost to follow 
up 

0 Withdrew 
consent 

5 lost to follow 
up 

0 Withdrew 
consent 

3 lost to follow 
up 

0 Withdrew 
consent 

0 lost to follow 
up 

0 Withdrew 
consent 

106 completed 
safety follow up 

111 completed 
safety follow up 

Initial screening 

Randomisation 

Treatment 
allocation 

Study drug 

14 day follow up for 
efficacy 

28 day follow up for 
safety 

Figure 1 revised trial profile



Figure 2 gametocyte durations
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Figure 3 revised gametocyte prevalence tiff
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Figure 4 revised safety
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