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Abstract 

Background: Respiratory syncytial virus (RSV) is responsible for a significant burden of acute 

respiratory illness in children under 5 years old. Prior to rolling out any vaccination program, 

identification of the source of infant infections could further guide vaccination strategies.  

Methods: We extended a dynamic model calibrated at the individual host level initially fit to 

social-temporal data on shedding patterns to include whole genome sequencing data 

available at a lower sampling intensity.  

Results: In this study population of 493 individuals with 55 infants under the age of 1 year 

distributed across 47 households, we found that 52% of RSV-B and 60% of RSV-A cases 

arose from infection within the household. Forty-five percent of infant infections appeared 

to occur in the household, of which 68% were a result of transmission from a child aged 

between 2 and 13 years living in the same household as the infant.  

Conclusion: These results further highlight the importance of pre-school and school-aged 

children in RSV transmission, particularly the role they play in directly infecting the 

household infant. These age groups are a potential RSV vaccination target group.  

 

Keywords: RSV;  household; transmission chain; modelling; coastal Kenya; “genomics”   
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Introduction  

In 2015 the estimated RSV acute lower respiratory illness (ALRI) burden in children less than 

5 years old was 33.1 million cases resulting in 118,200 (94,600-149,400) deaths. Over 90% of 

the estimated RSV burden was in developing countries [1]. A recent study across sites in 7 

low-income and low-middle-income countries looking into the aetiology of severe and very 

severe pneumonia found that RSV is the single pathogen with the largest attributable 

fraction [2]. Infants below 6 months of age experience the most severe disease [3]. 

Increasingly, RSV is also being identified as a disease causing pathogen in the elderly [4]. 

There are currently over fifty candidate vaccines against RSV at different stages of 

development with the most advanced being a maternal vaccine [5–7].  

 

RSV disease occurs in a seasonal pattern with most populations experiencing annual cycles 

[8–12]. Virus isolates can be classified into two antigenically and genetically distinct groups 

(RSV-A and RSV-B) and consecutive seasons are not only characterized by a change in the 

dominant group, but also changes to the genotype composition [12,13]. Though several 

studies have predicted a maternal vaccination would be effective [14–16] by extending the 

duration of protection by passive immunity early in life, the vaccination of older children has 

also been theorized as an effective alternative or complementary strategy by producing a 

heard immunity effect [17–20]. Elder and, particularly, school going children have been 

shown in previous work to be associated with increased risk of infant (sibling) infection [21–

24] - though no direct infection link between the older siblings and the infant was confirmed 

- and have been identified as drivers of the initial epidemic phase [25]. Identifying the role 

of different age and social groups in RSV transmission networks may provide further 

evidence for optimal vaccine target groups.  
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Previously, using data from a cohort study that followed household members for 6 months, 

we have attempted to identify the source of infant infection in the household. In a 

descriptive analysis of the social-temporal data, school-going siblings were frequently (73%) 

identified as index cases in household outbreaks where an infant was infected [24]. In a 

phylogenetic analysis of whole genome sequence (WGS) data from of a subset of the 

household data the household source of infant infection was definitively identified for just 4 

of the 23 infant cases in the subset data, while 9 others were identified as index cases in 

household outbreaks [26]. An attempt to use shared minor variants obtained from deep 

sequencing failed to add further resolution to the transmission chains [27]. In a modelling 

study using the social-temporal data, it was found that about half of all cases occurred in 

the household [28]. Independently, these studies were unable to clearly determine who 

infected the infants with RSV and how infection spread once introduced in the household.  

 

In this article, we extend the previous modelling study to integrate social-temporal and WGS 

data to identify generalizable characteristics of RSV transmission chains at the household 

level. In doing so, we will identify if data integration, and hence increased pathogen 

resolution, increases the precision with which model parameters are estimated or changes 

the estimates such that different transmission dynamics are inferred.  To our knowledge, 

this is the first attempt at combining these two data types in a single modelling framework 

for RSV. There are several approaches to integrating genetic data with other data types [29–

31], the choice of which is dependent on the data available and the aims of the study [32].  

Similar to the approach used by Didelot et al,  [33] we used a two-step approach of first 
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making inference from the genetic data and then incorporating this into the dynamic 

transmission model of RSV.  
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Methods  

Data 

During a seasonal RSV outbreak beginning late 2009, members of 47 households in a rural 

coastal Kenya were followed up for a period of 6 months with an aim of recording the 

incidence of RSV and inferring who infects the infant [24]. A household in this study was 

defined as comprising of people who share food from the same kitchen. Households were 

recruited on the basis of having an infant born after the previous RSV epidemic who had at 

least 1 elder sibling <13 years old. Members of the household had nasopharyngeal swab 

(NPS) samples and clinical data collected every 3-4 days. The samples were tested for RSV 

using an in-house real-time multiplexed polymerase chain reaction (PCR) assay [34]. A 

sample was considered RSV positive if the PCR cycle threshold value was >0 and ≤35. An RSV 

infection episode was defined as a period within which an individual provided positive 

samples for the same RSV group that were no more than 14 days apart. A shedding episode 

was referred to as symptomatic if within the window of virus shedding, there is at least one 

day where symptoms were recorded. The symptoms of interest are those of an acute 

respiratory illness (ARI), which are: cough, or nasal discharge/blockage, or difficulty 

breathing. There were 16928 samples collected, of which 205 were positive for RSV-A and 

306 for RSV-B. This translated to 97 RSV-A episodes (88 infected individuals and 25 infected 

households) and 125 RSV-B episodes (113 infected individuals and 34 infected households).  

 

Whole genome sequences (WGS) were obtained for 103 (41.2%) of the RSV-A samples and 

88 (28.8%) of the RSV-B using the Illumina MiSeq platform [26]. The sequences were 

distributed across 54 (55.6%) episodes, 50 (56.8%) individuals and 9 (36%) households for 

RSV-A, and 54 (43.2%) episodes, 53 (45.9%) individuals and 15 (44.1%) households for RSV-
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B. During phylogenetic analysis [26], genetic clades and subclades were established based 

on a combination of criteria: nucleotide distance cut-off, clustering patterns on the global 

RSV phylogeny and the inferred date of sequence divergence. We did not make a distinction 

between clades and subclades, resulting in 5 RSV-A and 7 RSV-B clusters. 

 

The model required daily infection data where a viral shedding episode can be identified by 

RSV group and by genetic cluster within each group. However, given the sampling interval 

and incomplete sequencing, we had to make assumptions to fill in the days of missing data. 

Imputation of cluster shedding durations was done for episodes that had at least one 

sequence, and for episodes with no sequences yet were part of a household outbreak with 

at least one sequence. The cluster ID for any episodes left unassigned at this stage were 

inferred along with the model parameters. Details of the data pre-processing can be found 

in supplementary appendix A1.  

 

Informed written consent was obtained from all the study participants or their 

parent/guardian. The KEMRI-Scientific and Ethical Review Committee in Kenya provided 

ethical approval for the initial study and any analysis thereafter. The Observational/ 

Interventions Research Ethics Committee at the London School of Hygiene and Tropical 

Medicine provided further approval for this analysis.  

 

Transmission model 

Similar to our previous work [28], we modelled RSV transmission at the individual host level 

in daily timesteps for the 6-month study period. The model was formulated to investigate 
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the factors that determine infection onset, following from which, inference on the 

transmission chain was made.  

 

Everyone was assumed to be susceptible to infection by RSV at the start of the outbreak, 

but the risk of infection was dependent on age. Once individuals were exposed to infection, 

they entered a latency period that ranged between 2 to 5 days after which they became 

infectious [35]. After the infectious period, individuals became susceptible to infection 

again, but with a modified risk, i.e. RSV conferred partial transient immunity that lasts as 

long as the outbreak is ongoing. This partial immunity is assumed to be different for 

heterologous group re-infection and homologous group re-infection. Individuals can get 

heterologous group co-infections, we explored if susceptibility to infection by RSV-A was 

modified if an individual was currently shedding RSV-B, and vice-versa.  

 

The main assumptions about transmission were contained in the equation giving the cluster 

specific (index c) per capita (index i) rate of exposure to infection per unit time (denoted t), 

also known as the infection hazard or  force of infection, denoted 𝜆!,#(𝑡). At its base:  

 

𝜆!,#(𝑡) = 𝜂 ∗ ( 𝐼$,#(𝑡)
$∈	!'()#*!+,-

#+'*.#*

 

Where 𝜂 is the baseline rate of exposure and 𝐼$,#(𝑡) is an indicator variable of infectiousness 

of j at time t. 

In addition to the assumptions about RSV natural history, we extend this basic formulation 

to allow transmission from within the household or external sources, and to explore if 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.08.20030742doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.08.20030742
http://creativecommons.org/licenses/by/4.0/


 9 

factors such as household size, infectiousness (as determined by viral load and ARI 

symptoms) and age are determinants of exposure. We also explored if within-cluster 

genetic (nucleotide) distances could further be used to identify transmission events. The 

final model had 19 parameters. Further model details can be found in supplementary 

appendix A2.  

 

We used Bayesian inference and Metropolis-Hasting Markov Chain Monte Carlo (MH-

MCMC) to obtain estimates of the model parameters and augment missing cluster identities 

given the observed data. Further details can be found in supplementary appendix A3. All the 

computation was done using the Julia language (version 1.1) [36,37]. The code is publicly 

available at https://github.com/Ikadzo/HH_Transmission_Model. 

 

Following the estimation of the posterior parameter distribution, we randomly selected a 

subset to determine infection sources for every case. Further details can be found in the 

supplementary appendix A4.  A hundred parameter sets were sampled and the highest 

probability transmission source (HPTS) for each case established for each sample. From the 

distribution of 100 HPTS, the one with the highest frequency was selected as the source of 

transmission. This frequency becomes the weight assigned in the transmission network.  
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Results  

The data imputation process resulted in shedding episodes that ranged from 2 to 35 days 

for RSV A, and 3 to 45 days for RSV B. The cluster ids for 12 of 43 RSV A episodes and 19 of 

71 RSV B episodes with no genetic information were imputed prior to model fitting, the rest 

were inferred along with model parameters. The shedding patterns after the data pre-

processing are shown in Figure 1 and Figure 2. The study initially recruited 60 households 

but 13 were lost to follow-up, hence the numbering of the households goes beyond 47.  

 

 

Figure 1: Distribution of available sequences across RSV-A infection episodes (A) and the 

results of the imputation of genetic information (B). The y-axis shows the household where 

each notch is a single individual, time in days is on the x-axis. The horizontal grey lines 

demarcate the households. The grey regions shows days of shedding whose cluster id is 

unknown. 
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Figure 2: Distribution of available sequences across RSV-B infection episodes (A) and the 

results of the imputation of genetic information (B). The y-axis shows the household where 

each notch is a single individual, time in days is on the x-axis. The horizontal grey lines 

demarcate the households. The grey regions shows days of shedding whose cluster id is 

unknown. 

 

Model Inference  

Parameter trace plots and results of convergence checks can be found in supplementary 

appendix A5. Based on the estimated parameters we observed an inverse relationship 

between age and susceptibility to infection, relative to infants (<1 year old), the percentage 

reduction in the rate of exposure for 1-4, 5-14 and ≥15 year olds was 22% (95% CrI:50% , -

61%) , 73% (95% CrI:51%, 84%) and 84% (95% CrI:71%, 91%), respectively. RSV conferred 

partial immunity following infection, more so for homologous (57% (95% CrI:33%, 73%) 

reduced exposure) than heterologous (49% (95% CrI:10%, 74%) reduced exposure) group 
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reinfections. Households of ≥ 8 individuals had a 54% (95% CrI:32%, 71%) reduction in pair-

wise rate of exposure within the household relative to smaller households. Symptomatic 

cases were more infectious than asymptomatic cases, more so with a high viral load 

(relative infectiousness 4.4 (95% CrI:1 .8, 9.0)) than a low viral load (relative infectiousness: 

2.1 (95% CrI: 1.2, 3.7)). Transmission between the study households is unlikely to have 

occurred, although the large credibility interval on the parameter suggests that there is 

limited information for this parameter. Estimates of the rate of exponential decrease in 

transmission probability with increasing genetic distance  parameter imply that within 

cluster transmission was nearly 100% likely regardless of the pair-wise nucleotide distances. 

The effect of age in community exposure was unclear as the parameters were estimated 

with credible intervals including 1. Table A5.3 of parameter estimates can be found in 

supplementary appendix A5. 

 

To validate the model, we simulated multiple epidemics which verified that key aspects of 

the epidemic were being reproduced by the simulations. Details of this can be found in 

supplementary appendix A6.  

 

To assess the impact of increased resolution in pathogen identification on estimated 

parameters we compared the distributions of parameters estimated using RSV cases 

identified at the pathogen, group and cluster level. Figure 3 shows the density plots 

comparing these distributions, details of the model modifications to allow fitting of group 

level data are in supplementary appendix A7. This figure shows 17 of the 19 comparable 

parameters in the model with genetic clusters. For most of the parameters, the estimated 

distributions do not differ by resolution in pathogen identification. The parameters 
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measuring the effect of viral load and symptoms on infectiousness are estimated with 

increased precision with increased pathogen resolution. The distribution of the within 

household transmission coefficients shift slightly towards higher values with increased 

resolution both for RSV-A and B while the community transmission coefficient for RSV-A has 

a slight shift towards lower values. 

 

 

Figure 3: A comparison of the parameter distributions obtained from the model using 

different resolutions in pathogen identification. The green curves show the results using 
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data at the pathogen level, the blue curves show the group level and the pink curves show 

the cluster level. Each panel shows 1 one of 17 comparable parameters. The values in the 

panel are the median parameter estimates colour-coded by pathogen resolution. 

 
Highest Probability transmission source 

As described in the methods section, the HPTS was established for each case and these are 

shown in Figure 4. Thirty-nine out of ninety-seven (40%) of the RSV-A and 60/125 (48%) 

RSV-B cases were from sources outside of the household; 33% (13/39) of RSV-A 

introductions into the household led to infection of other household members, as did 38% 

(23/60) of RSV-B introductions. Table 1 gives the age distribution of all index cases 

compared to the age distribution of index cases that led to other infections in the household 

(HH outbreaks). Household outbreaks were as frequently initiated by a symptomatic infant 

as they were by a symptomatic child between 5-13 years. Fifty five percent (11/20) RSV-A 

and 36% (8/22) RSV-B infant (<1 year old) infections were acquired within the household. Of 

the 11 infant RSV-A, 8 were infected by children aged between 2 and 13 years (5 siblings 

and 3 cousins), 1 was infected by another younger infant (cousin), 1 by a 16-year old 

(unknown relation) and 1 by a 37-year old (mother). Five out of 8 of the infant RSV-B cases 

were infected by children between 2 and 13 years (4 siblings and 1 cousin), 2 were infected 

by a 16-year-old (unknown relation)  and 18-year-old (sibling) while one was most likely 

infected by a 49-year-old (father).  Figure 5 shows the transmission network by relationship 

centred around the infants.  Infants infected several household members, mostly siblings 

and cousins.  
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Table 1: Age distribution of index cases of household outbreaks. Index cases are clustered 

into 4 age groups and according to whether they led to onward transmission in the 

household or not.   

Age 

group 

RSV A RSV B 

No. index cases 

(number of 

symptomatic 

cases) 

No. index cases 

leading to onward 

transmission 

(number of 

symptomatic cases) 

No. index cases 

(number of 

symptomatic 

cases) 

No. index cases 

leading to onward 

transmission 

(number of 

symptomatic cases) 

 < 1 9 (8) 3 (3) 14 (14) 9 (9) 

1 − 4  5 (3) 1 (1) 12 (8) 6 (4) 

 5 −

13 

16 (10) 7 (7) 18 (9) 5 (5) 

 ≥ 13 9 (3) 2 (1) 16 (3) 3 (0) 

Total 39 (24) 13 (12) 60 (34) 23 (18) 
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Figure 4: Transmission networks showing the highest probability source of transmission 

given by our model results. Each vertex is an RSV case labelled by individual study number 

(top) and age in years (bottom) and color-coded by household. Cases that are <1 year old 
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are represented by square shaped vertices.  The width of the connecting edge is 

proportional to the frequency at which the particular source was identified as the HPTS 

given different parameter set values. 

 

 

Figure 5: Network showing the sources of infection to the infant and who the infants 

infected as identified by social relationship. The blue circles show the sources to infant 

infection while the green show who the infants infected. The size of the circles is 

proportional to the number of cases which is given in brackets. 
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Discussion  

We carried out an analysis of data on the social-temporal and genetic pattern of spread of 

RSV in a sample of households in rural Kenya followed up for six months with an aim of 

identifying characteristics of household transmission chains. We found that most household 

outbreaks were initiated by a symptomatic child <13 years old, with infants and 5-13 year 

olds contributing equally. Infant infections that occurred in the household were mostly 

attributed to transmission from an elder sibling or cousin between 2 and 13 years old. 

Similar to a simulation study based on the same population from which our data was 

collected [19], we found over half of the infant infections were acquired outside of the 

household. Infants were the source of infection in 42/123 infections that were acquired in 

the household. Infants are therefore not only an important risk group but are also important 

as transmitters of household RSV infections. These results imply that a reduction in infant 

infections, say through a vaccine, would have a positive indirect (otherwise called herd)  

effect on RSV infections in other age groups. In addition, vaccination of household co-

occupants of pre-school and school-going age would have an impact through reducing 

within household transmission to the infant. A significant portion of index cases that led to 

onward transmission in the household were symptomatic, a factor which we inferred to 

increase infectiousness. This implies - similar to past work [18]- that a vaccine that works 

against symptomatic infections, therefore reducing infectiousness, should be highly 

effective. 

 

 We inferred that 55% of infant RSV-A infections were acquired within the household, 

compared to 36% of infant RSV-B. There were also slight differences between the RSV 

groups in terms of proportion of cases that were index cases and proportion of index cases 
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that led to onward transmission. Slower mutation rates in RSV-A [38,39], implying less 

variability from one season to the next, could account for its niche being in young infection-

naïve infants as opposed to older individuals with previous exposure to RSV. In accord with 

this, White et al found evidence that RSV-A is slightly more transmissible than RSV-B [40]. 

We cannot state with certainty that there is a difference in transmission niche between the 

two groups, a study that incorporates information from different potential transmission 

hubs such as households, schools and workplaces would be better placed to do so. These 

differences between RSV-A and RSV-B might be specific to the outbreak under investigation, 

however, they do call for further investigations.  

 

Through combining epidemiological and phylogenetic inference, our method was able to 

better resolve transmission chains within households compared to a preceding phylogenetic 

analysis [26,41]. The networks inferred from the present analysis did not contradict any of 

the inference from the phylogenetic analysis, with one exception. We assigned individual 

3806 as the source of 3801’s RSV-B infection rather than 3805. In addition to considering 

the social grouping, infection window and genetic cluster, our approach also considers the 

infectiousness of a potential source. In this case, 3806 had symptoms and a high viral load in 

the three days preceding shedding onset in 3801, while 3805 did not. Such an example 

highlights the strength in our technique in being able to incorporate all possible 

determinants of a transmission event. It is worth mentioning that several super-spreader 

events were inferred. The model arrives at these networks based on the patterns in the 

available data. Though such events are plausible, to tease apart true super-spreader events 

from “convenience” networks, additional data on within household contacts would be 

needed, such as the kind collected by [42].  
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We found that increased pathogen resolution by including WGS data had a slight effect on 

both accuracy (resulting in narrower credible intervals for some parameters) and model 

inference (resulting in a change of transmission hypothesis). With resolution at the group 

level we had previously inferred possible niche separations between RSV-A and RSV-B based 

on overlapping but slightly different distributions of the transmission coefficients. Increased 

pathogen resolution resulted in a slight change in parameter distributions and this form of 

evidence was lost. Other inferred dynamics such as the effect of age, household size, 

previous infection remained relatively unchanged. The lack of a drastic effect of increased 

pathogen resolution could be due to the study design. The frequency in sampling, increased 

the accuracy of inferred onset dates, while, information on the social structuring of the 

population in the form of households provided information on some of the most frequent 

contacts each participant had. Since the genetic information’s clustering pattern mimicked 

the household structure, its utility was likely marginal. This result should not be surprising; 

[43] in integrating genetic, temporal and contact data found that contact data could replace 

the genetic data in transmission chain inference. This implies that good quality data on 

timing of cases and their most frequent contacts is key to be able to infer transmission 

characteristics. Nonetheless, it should be borne in mind that during an outbreak, it can be 

difficult to effectively gather contact data. In place of a dense sampling, integrating 

temporal and genetic data is the next best thing. Our results point to data integration being 

able to reduce measurement error (increase accuracy of parameter estimates) and provide 

information essential for correct inference (change interpretation of estimated parameters). 
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This study is not without its limitations. Firstly, similar to previous work [33,44,45], we used 

a two-step approach in our application of phylodynamics.  This has the potential to lead to 

inconsistencies that would otherwise not occur with simultaneous inference of the 

evolutionary and epidemiological dynamics. However, given that we only used aggregated 

results of the phylogenetic analysis, in the form of clusters, and raw nucleotide distances as 

opposed to phylogenetic tree distances, we do not heavily rely on the exact results of the 

independent phylogenetic analysis. Using genetic clusters provides the advantage of being 

able to identify obvious separate introductions, a characteristic that can be difficult to 

account for in the models of simultaneous inference. The two-step approach was more 

computationally tractable than a simultaneous-inference version of it would have been. 

Secondly, the clusters were not probabilistically determined, in particular, uncertainty in the 

estimated date of sequence divergence was not considered. Finally, given the sampling 

interval of 3-4 days, short duration shedding episodes might have been missed and 

apparent co-index cases might actually have different onset dates.  

 

In conclusion, we were able to integrate the results of a phylogenetic analysis with 

epidemiological data to infer that nearly half of the RSV infections in this study were 

acquired within the household. We showed explicitly that most infants were infected by an 

older sibling or cousin (2 to 13 years). A vaccine that limits the transmission capabilities (e.g. 

by eliminating ARI symptoms and reducing viral load) of this age group is  therefore likely to 

reduce a significant portion of infant infection through indirect protection.  The differences 

in infection patterns and interaction through modified susceptibility inferred between RSV-A 

and RSV-B warrant further investigation.  
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