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Abstract  1 

Previous research has shown that polygenic risk scores (PRS) can be used to stratify women 2 

according to their risk of developing primary invasive breast cancer. This study aimed to 3 

evaluate the association between a recently validated PRS of 313 germline variants (PRS313) 4 

and contralateral breast cancer (CBC) risk. We included 56,068 women of European ancestry 5 

diagnosed with first invasive breast cancer from 1990 onwards with follow-up from the Breast 6 

Cancer Association Consortium. Metachronous CBC risk (N=1,027) according to the distribution 7 

of the PRS313 was quantified using Cox regression analyses. We assessed PRS313 interaction 8 

with age at first diagnosis, family history, morphology, ER-, PR-, and HER2-status, and 9 

(neo)adjuvant therapy. In Asian studies, with limited follow-up, CBC risk associated with PRS313 10 

was assessed using logistic regression for 340 women with CBC compared with 12,133 women 11 

with unilateral breast cancer. Higher PRS313 was associated with increased CBC risk: hazard 12 

ratio per standard deviation (SD)=1.25 (95%CI=1.18-1.33) for Europeans, and an OR per 13 

SD=1.15 (95%CI=1.02-1.29) for Asians. The absolute lifetime risks of CBC, accounting for 14 

death as competing risk, were 12.4% for European women at the 10th percentile and 20.5% at 15 

the 90th percentile of the PRS313. We found no evidence of confounding by, or interaction with 16 

patient characteristics, characteristics of the primary tumor, or treatment. The C-index for the 17 

PRS313 alone was 0.563 (95%CI=0.547-0.586). In conclusion, the PRS313 is an independent 18 

factor associated with CBC risk, and may be incorporated in CBC risk prediction models to help 19 

improve stratification of patients and optimize surveillance and treatment strategies.  20 
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Introduction 21 

Due to the high incidence of breast cancer and improving survival, an increasing number of 22 

breast cancer survivors are at risk of developing contralateral breast cancer (CBC). The 10-year 23 

cumulative incidence of CBC is ~4%1; 2, however estimates vary widely depending on factors 24 

such as germline genetics, family history, and (neo)adjuvant systemic therapy for the first breast 25 

cancer3. The risk of developing CBC is particularly high in women carrying rare mutations in 26 

certain genes including BRCA1, BRCA2, and CHEK2, with approximately two- to fourfold higher 27 

risks reported compared with non-carriers3. 28 

 29 

Recently, genome-wide association studies (GWAS) have identified multiple common germline 30 

variants that are associated with first primary breast cancer risk4; 5. These are associated with 31 

small differences in risk individually, but their combined effects can be summarized in a 32 

polygenic risk score (PRS), which has been shown to stratify women according to their risk of 33 

developing breast cancer6-9. Using a large GWAS dataset from the Breast Cancer Association 34 

Consortium (BCAC), we previously developed and validated a 313-variant PRS (PRS313) among 35 

women of European descent. In independent prospective studies, this PRS313 predicted the risk 36 

of primary invasive breast cancer with an odds ratio (OR) per standard deviation (SD) of 1.61 37 

(95% confidence interval (95%CI)=1.57-1.65)7. The PRS313 has also been externally validated 38 

using the UK Biobank cohort. 39 

 40 

The aim of the current study was to evaluate the association between PRS313 and CBC risk, 41 

using data from BCAC. Other studies have shown associations between risk of CBC and both a 42 

67-variant PRS10 and individual variants11, but not yet with PRS313, the most extensively 43 

validated PRS. Further, the data-set currently evaluated is larger than those previously tested. 44 

We carried out two types of analyses. We conducted a cohort study among studies of European 45 

ancestry women with follow-up data available, and performed Cox regression analyses to 46 



16 
 

estimate hazard ratios (HRs) for CBC. Potential confounding and interaction with patient 47 

characteristics, characteristics of the primary tumor, or treatment were tested. In addition, to 48 

directly compare the OR reported for PRS313 and first breast cancer, we selected case-case 49 

series and performed logistic regression analyses comparing the PRS313 distribution in women 50 

with CBC versus those with unilateral breast cancer. These analyses were conducted 51 

separately in European and Asian women (follow-up was too limited to perform a cohort study 52 

for the Asian population).  53 
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Material and Methods 54 

Study subjects 55 

Case-case series 56 

We selected women who were diagnosed with breast cancer and women without any diagnosis 57 

of breast cancer from the BCAC including all women of European ancestry, based on 58 

genotyping data, selecting only those studies which reported on CBC (62 studies) (Figure S1A, 59 

Table S1-S2). BCAC database version freeze 12 was used. All women diagnosed with invasive 60 

breast cancer as a first cancer were included in the analysis; the small number of tumors with 61 

unknown invasiveness were considered invasive (Table S2). In the case-case series, a CBC 62 

was defined as a breast cancer (in situ or invasive) in the contralateral breast irrespective of the 63 

time since the first breast cancer. The case-case series comprised 81,000 women with 64 

unilateral breast cancer, 3,607 women with CBC, and 62,830 women without any diagnosis of 65 

breast cancer (Figure S1A). We also compared unilateral breast cancers to women without any 66 

diagnosis of breast cancer to reproduce earlier published estimates7 in our set of studies with 67 

information available on CBC. 68 

 69 

We selected for a separate analysis women of Asian ancestry of the BCAC data comprising 70 

12,133 women with unilateral breast cancer, 340 women with CBC, and 13,398 women without 71 

any diagnosis of breast cancer from eight studies (Figure S1B, Table S2). 72 

 73 

Cohort 74 

In the cohort we used metachronous CBC as the outcome, defined as a breast cancer in the 75 

contralateral breast (in situ or invasive) diagnosed at least three months after the first breast 76 

cancer. We used a cut-off of three months to increase the likelihood that these CBCs represent 77 

true second primary tumors rather than metastases or synchronous bilateral tumors. We 78 

selected all women diagnosed with breast cancer from the European case-case series and 79 
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excluded four studies that did not provide follow-up information on vital status (Figure S1A). We 80 

did not include Asian women since follow-up was too limited in these studies. We additionally 81 

excluded 6,207 women with no follow-up and 2,208 women who developed synchronous CBC, 82 

distant metastasis, or who died or last known to be alive within three months after the first 83 

breast cancer diagnosis. Since BCAC also included prevalent cases, we excluded 3,796 women 84 

who developed CBC or were censored before study entry. The case-case series included 85 

women diagnosed between 1947 and 2018. In the cohort, we excluded 2,235 women who were 86 

diagnosed with their first breast cancer before 1990 or who had missing year of first diagnosis. 87 

We restricted to women diagnosed from 1990 onwards so that diagnostic procedures and 88 

treatment would be more representative of current practice. Moreover, clinico-pathological, 89 

treatment and follow-up data were more complete after 1990. In addition, we excluded 16 90 

studies (9,783women) without information about metachronous CBC events (Figure S1A). After 91 

these exclusions, the cohort for this analysis comprised data from 42 studies, including 56,068 92 

women with invasive breast cancer among whom 1,027 metachronous CBC occurred (Table 93 

S2). 94 

 95 

All individuals provided written informed consent, and all studies were approved by the relevant 96 

institutional review boards. BCAC data were centrally harmonized and cleaned in 97 

communication with the study data managers and principal investigators. Data collection for 98 

individual studies is described in Table S1.  99 

 100 

UK biobank cohort 101 

We performed a secondary analysis of the association between the overall breast cancer 102 

PRS313 and risk of second breast cancer among 10,567 women in the UK biobank cohort. For 103 

details see Supplement UK biobank. 104 

 105 
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Genotyping and PRS 106 

DNA samples from participants were genotyped using the iCOGS array12; 13 or the OncoArray4; 107 

14, with genotypes for variants not on the arrays estimated by imputation4; 13. The PRS313 was 108 

calculated as a weighted sum of the minor allele dosages; the variant selection and weights are 109 

as given by Mavaddat et al.7. We also calculated estimates for a previously published PRS77
6, 110 

and estrogen receptor (ER)-specific PRSs (ER-positive PRS313 and ER-negative PRS313)7. The 111 

ER-specific PRSs were constructed by defining subtype-specific weights for the 313 variants 112 

using a hybrid approach7. Variants and corresponding coefficients used to construct the PRS 113 

are shown in Table S3. We standardized the PRS in our analyses by dividing it by the SD of the 114 

PRS of the controls (PRS77 SD=0.45; PRS313 SD=0.61; ER-positive PRS313 SD=0.65; ER-115 

negative PRS313 SD=0.59) exactly as was done in the analyses of the PRS and first breast 116 

cancer risk6; 7. This allows a direct comparison of the magnitude of the CBC relative risk 117 

estimation to that of the first breast cancer.  118 

 119 

For samples genotyped with both OncoArray and iCOGS array (9,071 samples), OncoArray 120 

data were used in preference as the imputation quality was generally higher. The intraclass 121 

correlation coefficient (ICC) between the PRS derived from the two platforms was 0.99 122 

(95%CI=0.99-0.99) for the PRS77, and 0.96 (95%CI=0.95-0.96) for PRS313 (Figure S2). Given 123 

the high correlation between the two platforms, PRS measures from both platforms were used 124 

in the analyses without adjustment.  125 

 126 

Statistical analysis  127 

Cohort 128 

The primary outcome in the cohort was the development of metachronous CBC. Cox 129 

proportional hazards models were used to estimate HRs for metachronous CBC risk by PRS, 130 

stratified by country. Since previous studies have shown that age at first breast cancer 131 
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diagnosis is an important predictor of CBC3, the analyses were performed with attained age as 132 

the time scale. Time at risk started three months after the first breast cancer diagnosis and 133 

ended at the age of CBC diagnosis, distant metastasis (where available), death, or end of 134 

follow-up, whichever came first. For patients that had a study entry more than three months 135 

after first breast cancer diagnosis, follow-up started at the age of study entry. We also 136 

performed a fixed-effect meta-analysis of country-specific effects using the STATA command 137 

metan. We performed a fixed-effect meta-analysis over a random-effect meta-analysis since 138 

there was no evidence for heterogeneity in effect sizes between countries (I-squared=0%, 139 

Figure S3). For some analyses, only invasive CBC was used as the outcome; in these analyses 140 

we censored on in situ CBC. Separate analyses were conducted for ER-positive CBC (censored 141 

on ER-negative- and ER-unknown CBC) and ER-negative CBC (censored on ER-positive- and 142 

ER-unknown CBC). 143 

 144 

We evaluated the linearity of the association between PRS313 per unit SD and CBC risk using 145 

restricted cubic splines with three knots. There was no evidence for violation of the linearity 146 

assumption. Therefore, in the main analysis, the PRS313 was treated as a continuous covariate, 147 

and estimated the HR per unit SD of the PRS313. Violation of the proportional hazard assumption 148 

was assessed by inspection of the Schoenfeld residuals15. As a second analysis, we used the 149 

per SD log HR of the PRS313 to calculate the predicted HR at different percentiles of the PRS313, 150 

compared to the 50th percentile. Third, the PRS313 was categorized into percentile groups (0th to 151 

10th, 10th to 20th, 20th to 40th, 40th to 60th, 60th to 80th, 80th to 90th, 90th to 100th) to illustrate the 152 

differences between PRS313 subgroups, with the middle quintile (40th to 60th) as the reference.  153 

 154 

We also performed multivariable Cox regression analyses to determine whether the log HR of 155 

CBC risk by PRS changed when adjusting for year of first breast cancer diagnosis, family 156 

history of breast cancer in a first degree relative, and several clinical characteristics of the first 157 
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breast cancer such as nodal status, tumor size, morphology, ER-, progesterone receptor (PR)- 158 

and human epidermal growth factor receptor 2 (HER2)-status, (neo)adjuvant chemotherapy, 159 

adjuvant endocrine therapy, and radiotherapy. These analyses were performed in all patients, a 160 

complete case set (excluding patients with unknown values for the covariates), and in a set 161 

excluding studies oversampling cases with family history. Potential effect modification of the 162 

PRS313 effect by the same variables was evaluated by fitting interaction terms in different 163 

models using complete case sets, including the standardized PRS313, modifier, and interaction.  164 

 165 

The discriminative ability of different models; ([model 1] PRS313 alone, [model 2] other risk 166 

factors (the adjustment variables from the multivariable Cox regression analyses), [model 3] 167 

PRS313 + other risk factors) was calculated using Harrell’s C-index16. Since no standard 168 

performance measures are currently available to account for left-truncated follow-up time (i.e., 169 

to start analyses at age at study entry), we used time since first breast cancer as the time scale 170 

to calculate the C-index. 171 

 172 

Absolute risks 173 

We followed the procedure as previously described17. Absolute risks of developing CBC at 174 

PRS313 percentiles were calculated using the estimated log HRs per SD from the breast cancer 175 

cohort (BCAC) under the log-linear model, assuming the PRS is normally distributed. The 176 

PRS313- and age-specific incidences were constrained to the age-specific CBC incidences from 177 

women diagnosed with a first invasive breast cancer in the period 2003-2010 from the 178 

Netherlands Cancer Registry (NCR)1. The age-specific CBC incidences were calculated overall 179 

and for age-specific groups, censoring on death and distant metastasis. We used data from the 180 

NCR since this registry has complete coverage of all newly diagnosed cancers in the 181 

Netherlands. The NCR cohort included all females aged ≥18 years and follow-up for second 182 

cancers was complete until February 1, 20161. We then applied the competing risk of dying on 183 
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the absolute CBC risks. The absolute CBC risk (ARg) by age t in PRS313 category g, taking into 184 

account the competing risk of dying was calculated by:                          185 

  186 

Where μg (t) is the CBC incidence associated with PRS313 category g, Sg (t) the probability of 187 

being free of CBC to age t,  and Sm (t) the probability of surviving to age t.   188 

 189 

Case-case series 190 

For the case-case series (European and Asian), logistic regression models were used to 191 

estimate the ORs for CBC risk (comparing with unilateral breast cancer) and for unilateral breast 192 

cancer risk (comparing with women without any diagnosis of breast cancer) associated with 193 

PRS313. All analyses were adjusted for age and country (Table S1). For all unilateral- and 194 

contralateral breast cancer patients we used age at first breast cancer diagnosis, and for 195 

women without any diagnosis of breast cancer we used age at baseline questionnaire. 196 

 197 

For direct comparison with the estimate reported for PRS313 and first breast cancer, we also 198 

performed logistic regression analyses in the same BCAC study participants included in the 199 

validation of the association between PRS313 and first breast cancer risk7. This validation set 200 

comprised a subsample from 24 studies and included 3,781 women with unilateral breast 201 

cancer, 94 women with CBC, and 3,753 women without any diagnosis of breast cancer (Table 202 

S2). For this analysis, we adjusted for 10 principal components, in line with Mavaddat et al.7. 203 

 204 
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For European women who had follow-up time available more than three months after the first 205 

breast cancer diagnosis, a sensitivity analysis was performed for metachronous CBC (1,702 206 

CBCs). We also did a separate analysis for invasive CBC (N=3,246), by excluding CBC in situ.  207 

 208 

All P-values are two sided; tests with P<.05 are referred to as statistically significant. Analyses 209 

were performed using STATA, version 13.1 (StataCorp) and R version 3.3.2.  210 
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Results 211 

European (cohort) Cox regression analyses 212 

The cohort included 56,068 women diagnosed with first invasive breast cancer with 1,027 213 

metachronous CBC events. Median follow-up was 8.4 years. Patient, tumor, and treatment 214 

characteristics are summarized in Table S4.  215 

 216 

The associations between the different PRSs and CBC risk are shown in Table 1. The HR for 217 

CBC per SD of PRS313 was 1.25 (95%CI=1.18-1.33). For comparison, the HR per SD for PRS77 218 

was 1.21 (95%CI=1.14-1.29). Women within the 0th to 10th and the 90th to 100th percentile of the 219 

PRS313 had 0.59-fold (95%CI=0.45-0.78) and 1.38-fold (95%CI=1.13-1.69) risks of CBC, 220 

respectively, compared with women within the 40th to 60th percentile (Figure 1, Table S5). The 221 

predicted HRs of CBC for women at the 10th and 90th percentile of the PRS313 were 0.75 and 222 

1.33, respectively, compared to the 50th percentile (Figure 1). Since we observed evidence of 223 

departure from the proportional hazards assumption (P=0.02)15, we also calculated HRs 224 

stratified for follow-up duration (<five and ≥five years). The HR by SD of the PRS313 was 1.21 225 

(95%CI=1.10-1.32) for CBC diagnosed ≤five years after first breast cancer diagnosis (CBC 226 

N=428), and 1.28 (95%CI=1.18-1.38) for CBC diagnosed >five years after first diagnosis (CBC 227 

N=599).  228 

 229 

The HR per SD of PRS313 for ER-positive invasive CBC was 1.38 (95%CI=1.23-1.55), compared 230 

to a HR per SD of the ER-positive PRS313 of 1.37 (95%CI=1.22-1.54) (Table 1). For ER-negative 231 

invasive CBC, the HR per SD was 0.92 (95%CI=0.75-1.12) for PRS313 and 1.06 (95%CI=0.86-232 

1.30) for the ER-negative PRS313. 233 

 234 

Sensitivity analysis using the overall PRS313 showed a HR per SD of 1.24 (95%CI=1.16-1.32) for 235 

invasive CBC risk. When we used time since first breast cancer as the time scale, we found 236 
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similar results (HR per SD=1.25, 95%CI=1.18-1.33). Meta-analysis of country-specific effects 237 

showed a HR per SD of 1.25 (95%CI=1.18-1.33) for CBC risk by PRS313 (Figure S3).  238 

 239 

The association between the PRS313 and CBC risk did not change when adjusting for patient, 240 

tumor, and treatment characteristics, nor when excluding studies oversampling cases with a 241 

family history (Table S6). When considering potential modifiers of the effect of the PRS313 on 242 

CBC risk (Table 2), we found that the HR was the lowest in women aged <40 years at first 243 

breast cancer diagnosis (HR per SD=1.13; 95%CI=0.98-1.31), and tended to increase with age, 244 

although these effects were not statistically significant (Pheterogeneity=.26; Ptrend=.05). We found no 245 

indication for effect modification by family history (Pheterogeneity=.63), morphology (Pheterogeneity=.14), 246 

ER-status (Pheterogeneity=.13), PR-status (P=.26), HER2-status (Pheterogeneity=.42), chemotherapy 247 

(Pheterogeneity=.60), endocrine therapy (Pheterogeneity=.79), or radiotherapy (Pheterogeneity =.40) (Table 248 

2).  249 

 250 

The C-index was 0.563 (95%CI=0.547-0.586) for the model only including PRS313, 0.605 251 

(95%CI=0.591-0.629) for the model only including other risk factors, and 0.623 (95%CI=0.608-252 

0.645) for the complete model (Table 3). 253 

 254 

Absolute risks 255 

Based on the HR estimates for PRS313, the predicted CBC risk by age 80 years was 12.4% at 256 

the 10th percentile of the PRS313, compared with 20.5% at the 90th percentile of the PRS313 257 

(Figure 2), accounting for death as competing risk. When death was not taken into account as 258 

competing risk, the corresponding predicted risks by age 80 were 17.0% at the 10% percentile 259 

and 27.9% at the 90th percentile of the PRS313 (Figure S4). Table 4 shows the five- and 10-year 260 

cumulative CBC risks by PRS313 for different age groups, accounting for death as competing risk 261 

(Table S7 shows results without competing risks). 262 
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European and Asian (case-case series) logistic regression analyses 263 

Figure 3 shows the distribution of the PRS313 per SD in the European case-case series. Median 264 

PRS313 was -0.4 (interquartile range [IQR]=1.35) for control women without any diagnosis of 265 

breast cancer (N=81,000), 0.2 (IQR=1.36) for women with unilateral breast cancer (N=62,830), 266 

and 0.5 (IQR=1.40) for women with CBC (N=3,607). The OR for unilateral breast cancer per SD 267 

of the PRS313 was 1.82 (95%CI=1.80-1.84) compared to control women (Table S8). The OR for 268 

CBC per SD of PRS313 was 1.30 (95%CI=1.26-1.35) compared to unilateral breast cancer.  269 

 270 

In sensitivity analyses, the OR per SD of PRS313 was 1.27 (95%CI=1.21-1.33) for metachronous 271 

CBC and the OR per SD was 1.29 (95%CI=1.24-1.33) for invasive CBC, compared to unilateral 272 

breast cancer. When analyses were restricted to the validation set of Mavaddat et al7, the OR 273 

for unilateral breast cancer per SD of the PRS313 was 1.67 (95%CI=1.59-1.76) compared to 274 

control women, and the OR for CBC per SD of PRS313 was 1.39 (95%CI=1.13-1.70) compared 275 

to unilateral breast cancer (Table S8). 276 

 277 

For women of Asian descent, the OR for unilateral breast cancer per SD of the PRS313 was 1.56 278 

(95%CI=1.52-1.60) compared to control women, and the OR for CBC per SD of PRS313 was 279 

1.15 (95%CI=1.02-1.29) compared to women with unilateral breast cancer (Table S8).  280 
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Discussion 281 

Previous studies have shown that a PRS, summarizing the effects of common germline 282 

variants, can be used to stratify women with respect to their risk to develop a primary breast 283 

cancer6-9. In this study, we observed a clear association between the PRS313 and CBC risk in 284 

women of both European and Asian ancestry. The association was observed in both the case-285 

case series and the cohort. The HRs per SD of CBC for women at the 10th and 90th percentile of 286 

the continuous predicted PRS313 were 0.75 and 1.33, respectively, compared to the 50th 287 

percentile. This translates to absolute risks at the 10th and the 90th percentile of the PRS313 of 288 

12.4% and 20.5%, respectively, by age 80 years. We estimated a C-index for the PRS313, 289 

summarizing its discriminatory ability, of 0.563 in the European cohort. 290 

 291 

One previous study has investigated the effect of a PRS, including 67 variants, and CBC risk10. 292 

This study found a risk ratio of 1.75 (95%CI=1.41-2.18) for women in the upper quartile of the 293 

PRS compared with women in the lowest quartile. To facilitate comparison, we performed a 294 

similar analysis in our case-case series, showing an OR of 1.98 (95%CI=1.79-2.18), adjusted 295 

for country and age at first diagnosis, for women in the upper quartile of the PRS313. This 296 

indicates the PRS313 improves stratification relative to PRSs including fewer variants. Moreover, 297 

in our cohort, the C-index for the PRS alone improved from 0.547 (95%CI=0.536-0.575) for the 298 

previously reported PRS77
6 to 0.563 (95%CI=0.547-0.586) for the PRS313.  299 

 300 

We found no evidence that the association between the PRS313 and CBC risk was confounded 301 

by family history, adjuvant therapy, morphology, age, or tumor receptor status of the first breast 302 

cancer, nor that there was effect modification by those factors. The absence of notable effect 303 

modification is in line with the abovementioned study of a 67-variant PRS and CBC risk; no 304 

heterogeneity in association was found by age, family history, morphology, ER-status, and 305 

adjuvant treatment10.  306 
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 307 

We considered the UK biobank cohort the most logical choice, given the large number of 308 

women diagnosed with breast cancer with information available on the PRS313, for an external 309 

validation of our findings. However, it became apparent that the UK biobank cohort had no 310 

information available on the laterality of the tumor. Therefore, it was not possible to distinguish 311 

between contralateral and ipsilateral breast cancers and we performed analyses using any 312 

second breast cancer as the endpoint. This secondary analysis did confirm the association 313 

between the PRS313 and second breast cancer risk (HR per SD=1.13, 95%CI=1.01-1.27), but 314 

with a lower estimate than in our cohort. The lower estimate may be explained by the inclusion 315 

of the ipsilateral breast cancers, which may be more likely to be recurrences than new primary 316 

breast cancers compared to CBCs. Indeed, when we used ipsilateral breast cancer as the 317 

outcome in our BCAC cohort, we found no association with the PRS313 (HR=1.02, 95%CI=0.90-318 

1.15).  319 

 320 

The association between the PRS313 and CBC risk (OR per SD=1.30; 95%CI=1.26-1.35) in the 321 

BCAC database was weaker (expressed in terms of an OR) than was found for first breast 322 

cancer among independent prospective studies (OR per SD=1.61; 95%CI=1.57-1.65). Under a 323 

simple polygenic model, the relative risk would be expected to be similar for the second breast 324 

cancer. The attenuated estimate for CBC might however be explained by several factors. Some 325 

attenuation of the estimate might have been due to dilution in the end-point definition, i.e., if 326 

some of the CBCs were metastases. Previous studies investigating the clonal relatedness of 327 

first breast cancers and CBCs using tumor sequencing have shown that 6-12% of CBCs 328 

represent metastases18; 19. This hypothesis would be consistent with our finding of a slightly 329 

stronger association between the PRS313 and late CBCs, diagnosed >five years after the first 330 

breast cancer, than for early CBCs, diagnosed ≤five years after the first cancer, since the latter 331 

are more likely to be metastases. In addition, 3-5% of the breast cancer patients will be BRCA1 332 
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or BRCA2 mutation carriers20; 21, who have high CBC risks. It has been shown that the relative 333 

risk associated with PRS is lower (for the first breast cancer) for BRCA1 and BRCA2 mutation 334 

carriers than in the general population22, diluting the overall relative risk for CBC. More 335 

generally, it is possible that the CBC association may be attenuated due to the effect of other, 336 

unmeasured, genetic or other risk factors. If the risks are high, cases with higher PRS313 will 337 

have, on average, lower values of other risk factors, due to elimination of the highest risk 338 

individuals, again attenuating the CBC association. Finally, given the limited information on 339 

family history in our dataset, the estimate could have been biased due to a family history effect 340 

not detected in our data. 341 

 342 

There was some suggestion that the relative risk associated with PRS313 decreased with 343 

younger age, (Ptrend=.05), and, specifically, was lower for women aged <40 years (HR per 344 

SD=1.13; 95%CI=0.98-1.31). Interestingly, Mavaddat et al7 also found a lower relative risk 345 

below age 40 for first breast cancer. This effect may reflect the different characteristics of breast 346 

cancers at young ages, both in terms of germline susceptibility and pathology23; 24. For example, 347 

the proportion of ER-negative breast cancers is higher at young ages, and the PRS is less 348 

predictive for ER-negative disease6; 7; 24.  349 

 350 

In the logistic regression analyses in Asian women, the association between the PRS313 and 351 

CBC risk was slightly weaker than in European women. This finding is consistent with a study 352 

investigating the association between a 287-variant PRS and first breast cancer risk in the Asian 353 

population25, which showed an attenuated OR in Asian women (OR=1.52, 95%CI=1.49-1.56) 354 

compared to European women (OR=1.61, 95%CI=1.57-1.66). The lower estimate for Asian 355 

women might reflect the fact the PRS313 was developed in European populations, and the 356 

different LD structure in Asians may attenuate the association since the variants in the PRS are 357 

likely to be surrogates for the causal variants. Other explanations for the attenuated estimate 358 
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may be the slightly younger age at first breast cancer diagnosis and the higher proportion ER-359 

negative CBCs in Asian women compared to European women in our study. Finally, the 360 

imputation quality for variants was somewhat lower, on average, for the Asian than for the 361 

European dataset, with three variants on OncoArray and four variants on ICOGs with an 362 

imputation quality score<0.3 (Table S3). Nevertheless, we included those variants in the PRS 363 

for both European and Asian women, to keep the PRS comparable between ethnicities and 364 

studies. Future studies including larger numbers of Asian women, and women of other 365 

ethnicities, are needed to generate population-specific PRSs and to validate our findings in 366 

these groups. 367 

 368 

A major strength of this study is the very large sample size in the BCAC dataset, including 369 

genotype information for ~150,000 women and a large number of CBC events. A limitation of 370 

this study is missing data on the patient, tumor, and treatment characteristics, which reduces 371 

the power of the multivariable Cox regression analyses and interaction analyses. In addition, 372 

registration of CBC was not complete; the 10-year cumulative CBC incidence was 2.2% in the 373 

BCAC dataset, compared to 3.8% using complete data from the Netherlands Cancer Registry1. 374 

For this reason, we estimated relative risk estimates using the BCAC data and applied these to 375 

external registry data to obtain absolute risk estimates. The underreporting of CBC should not 376 

bias our HR estimates, given that the event rate is low and reporting of CBC is unlikely to be 377 

related to the PRS313. Moreover, we reran the cohort analysis in the subset of countries with a 378 

10-year cumulative CBC incidence ≥3.0% in the BCAC dataset, and the estimates were very 379 

similar to the main analyses (HR per SD=1.23, 95%CI=1.14-1.33) (Figure S3). 380 

 381 

In conclusion, the PRS313 is predictive for the development of CBC. We found no evidence for 382 

confounding or effect modification by other previously established CBC risk factors. The PRS313 383 

is therefore likely to be an independent risk factor for CBC. Since the predictive ability of the 384 
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PRS on its own is modest, it should be combined with other breast cancer risk factors to provide 385 

more useful CBC risk prediction models. More accurate risk prediction will help identify women 386 

at high CBC risk who will benefit from additional surveillance and/or risk reducing mastectomy, 387 

and equally important, to identify those women at low risk in order to avoid unnecessary 388 

surgeries. 389 
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Supplemental Data 

Supplemental data include four figures, eight tables, supplement UK biobank and 

acknowledgements. 

 

Data and Code Availability 

Data used in this manuscript may be requested through the original providers. Data of the 

Breast Cancer Association Consortium may be requested for non-profit research through an 

application procedure with the Breast Cancer Association Consortium; more information: 

http://bcac.ccge.medschl.cam.ac.uk/bcacdata/. Data of the UK biobank needs to be requested 

through UK biobank; more information: https://www.ukbiobank.ac.uk/researchers/ 
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Figure 1. Estimates for contralateral breast cancer risk by percentile categories of the 

313-variant PRS (PRS313) 

The figure shows the hazard ratios per SD and 95% confidence intervals for percentiles of the 

PRS313 relative to the middle quintile (underlying table can be found in Table S5). The solid line 

denotes the estimates for contralateral breast cancer risk with the PRS313 fitted as a continuous 

covariate. Coefficients to construct the PRS313 are shown in Table S3. The PRS313 was 

standardized by SD=0.61, in line with Mavaddat et al.7. The analyses were performed with 

attained age as time scale. PRS = polygenic risk score, SD = standard deviation 

 

Figure 2. Predicted contralateral breast cancer risk by percentile of the 313-variant PRS 

(PRS313) with death as competing risk 

Coefficients to construct the PRS313 are shown in Table S3. The PRS313 was standardized by 

SD=0.61, in line with Mavaddat et al.7 The CBC incidences were calculated based on incidence 

data from the Netherlands Cancer Registry1 and relative risks estimated as described in the 

Material and Methods. PRS = polygenic risk score, CBC = contralateral breast cancer 

 

Figure 3. Distribution of the 313-variant PRS (PRS313) in 62,830 control women without 

any diagnosis of breast cancer, 81,000 women with unilateral breast cancer, and 3,607 

women with contralateral breast cancer 

Coefficients to construct the PRS313 are shown in Table S3. The PRS313 was standardized by 

SD=0.61, in line with Mavaddat et al.7. PRS = polygenic risk score, BC = breast cancer, CBC = 

contralateral breast cancer, SD = standard deviation 

 

 

  



46 
 

Table 1. Association between PRSs and contralateral breast cancer risk in the cohort 
(N=56,068) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abbreviations: PRS = polygenic risk score, No. = number, CBC = contralateral breast cancer, HR = hazard ratio, CI = 
confidence interval, ER = estrogen receptor, SD = standard deviation 
a  All analyses were performed with attained age as time scale 
b Coefficients to construct the PRSs are shown in Table S3. All PRSs were standardized by the same SD as was 
used by Mavaddat et al.7. The SD was 0.45 for overall breast cancer PRS77, 0.61 for overall breast cancer PRS313, 
0.65 for ER-positive PRS313, and 0.59 for ER-negative PRS313 
c ER-specific PRSs were constructed using a hybrid method, as described by Mavaddat et al.7  
d Patients with ER-unknown CBC (N=551) were censored in these analyses  

  

Polygenic risk score (PRS) No. of 
CBC 

HR per 
unit SDa 95%CI P-value 

PRS77 
b     

All CBC 1,027 1.21 1.14-1.29 <.001 

Invasive CBC 923 1.21 1.13-1.29 <.001 

PRS313
 b     

All CBC 1,027 1.25 1.18-1.33 <.001 

Invasive CBC 923 1.24 1.16-1.32 <.001 

ER-positive invasive CBCd 275 1.38 1.23-1.55 <.001 
ER-negative invasive CBCd 97 0.92 0.75-1.12 .39 

ER-positive PRS313
 b,c     

All CBC 1,027 1.23 1.16-1.31 <.001 

Invasive CBC 923 1.22 1.15-1.30 <.001 

ER-positive invasive CBCd 275 1.37 1.22-1.54 <.001 

ER-negative PRS313
 b,c     

All CBC 1,027 1.25 1.17-1.33 <.001 

Invasive CBC 923 1.24 1.16-1.33 <.001 

ER-negative invasive CBCd 97 1.06 0.86-1.30 .58 
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Table 2. Association between the 313-variant PRS (PRS313) and contralateral breast 
cancer risk for subgroups 

 

 
Abbreviations: PRS = polygenic risk score, No. = number, CBC = contralateral breast cancer, HR = hazard ratio, CI = 
confidence interval, ER = estrogen receptor, PR = progesterone receptor, HER2 = human epidermal growth factor 
receptor 2 
a HR for CBC risk by unit SD of PRS313. All analyses were performed with attained age as time scale 
b Coefficients to construct the PRS313 are shown in Table S3. The PRS313 was standardized by standard 
deviation=0.61, in line with Mavaddat et al.7 
c The interaction between the PRS313 and each subgroup was tested in different models including the standardized 
PRS313, modifier, and interaction. Patients with unknown values were excluded from these analyses. Since attained 
age was used as time scale in all models, the model with age at first breast cancer only included the PRS313 and 
interaction 

d P for interaction based on test for heterogeneity across categories 
e P for interaction based on a trend test with age as continuous variable 

 
 
 
 

Subgroups No. of 
patients 

No. of 
CBC 

HR per 
unit SDa,b 

95%CI P-value Phetero-

geneity
c,d 

Ptrend
c,e 

All patients 56,068 1,027 1.25 1.18-1.33 <.001 - - 

Age at first breast cancer 
diagnosis (years) 

     .26 .05 

  <40  5,877 171 1.13 0.98-1.31 .09   
  40-49 11,928 265 1.25 1.11-1.41 <.001   
  50-59 16,882 320 1.22 1.09-1.36 <.001   

  60+ 21,381 271 1.36 1.21-1.52 <.001   

Family history (first degree 
relative)  

     .63 - 

  no 33,623 618 1.26 1.16-1.36 <.001   
  yes 10,369 302 1.22 1.09-1.36 <.001   

Morphology      .14 - 

  ductal 37,324 621 1.21 1.12-1.31 <.001   
  lobular 5,878 118 1.32 1.10-1.59 .002   

  mixed (ductal and lobular) 2,174 46 1.52 1.15-2.02 .004   
  other  3,344 70 1.20 0.96-1.50 .11   

ER-status      .13 - 

  negative 9,527 194 1.13 0.98-1.30 .08   
  positive 38,090 670 1.28 1.19-1.38 <.001   

PR-status      .26 - 

negative 13,098 244 1.16 1.03-1.32 .02   

positive 27,044 554 1.27 1.17-1.38 <.001   

HER2-status      .42 - 

  negative 23,787 352 1.29 1.17-1.44 <.001   
  positive 4,969 60 1.45 1.13-1.85 .004   

(Neo)adjuvant chemotherapy      .60 - 

  no 18,110 361 1.28 1.16-1.42 <.001   
  yes 18,559 363 1.24 1.12-1.37 <.001   

(Neo)adjuvant endocrine 
therapy   

   .79 - 

  no 10,781 242 1.28 1.13-1.44 <.001   
  yes 27,322 460 1.30 1.19-1.43 <.001   

Radiotherapy      .40 - 

  no 11,023 188 1.33 1.15-1.53 <.001   
  yes 29,142 617 1.24 1.15-1.34 <.001   
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Table 3. Discriminatory ability (C-index) of the 313-variant PRS (PRS313) and other risk 
factors for contralateral breast cancer risk in the cohort 
 

 
 
 
 
 
 
 
 
 

 
Abbreviations: PRS = polygenic risk score, CI = confidence interval 
a The Harrell’s C-index was obtained by the STATA stcox postestimation command ‘estat concordance’, using time 
since first breast cancer on the time scale without taking delayed entry (prevalent cases) into account. We did not 
consider delayed-entry since no standard performance measures are currently available in the statistical literature to 
account for left-truncated follow-up time. The median of delayed entry was 0.4 years (standard deviation=2.7) in our 
study 
b The 95% CIs were obtained by use of the ‘somersd’ package in STATA 
c Coefficients to construct the PRS313 are shown in Table S3. The PRS313 was standardized by SD=0.61, in line with 
Mavaddat et al.7 

d Including age at first diagnosis, year of first diagnosis, family history for breast cancer in a first degree relative, and 

clinical characteristics of the first breast cancer (nodal status, tumor size, differentiation grade, morphology, estrogen 

receptor status, human epidermal growth factor receptor 2 status, chemotherapy, endocrine therapy, radiotherapy) 

  

 C-index (95%CI)a,b 

Model 1 
PRS313

c alone 0.563 (0.547-0.586) 

Model 2 
Other risk factorsd 0.605 (0.591-0.629) 

Model 3 
PRS313

c + other risk factorsd 0.623 (0.608-0.645) 
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Table 4. Five- and ten-year cumulative risks of contralateral breast cancer by the 313-variant PRS (PRS313) for different age 

groups with death as competing risk 

 

 
Abbreviations: PRS = polygenic risk score, CBC = contralateral breast cancer 

Coefficients to construct the PRS313 are shown in Table S3. The PRS313 was standardized by SD=0.61, in line with Mavaddat et al7. The CBC incidences for each 
age group were calculated based on incidence data from the Netherlands Cancer Registry1 and relative risks estimated as described in the Material and Methods. 
Death was taken into account as competing risk. 

 

 5-year cumulative CBC risks (%) 

range by age 

10-year cumulative CBC risks (%) 

range by age 

Age at first 

breast cancer 

diagnosis 

(years) 

5th 

percentile 

PRS313 

10th 

percentile 

PRS313 

50th 

percentile 

PRS313 

90th 

percentile 

PRS313 

95th 

percentile 

PRS313 

5th 

percentile 

PRS313 

10th 

percentile 

PRS313 

50th 

percentile 

PRS313 

90th 

percentile 

PRS313 

95th 

percentile 

PRS313 

30-34 1.9-3.1 2.1-3.4 2.7-4.5 3.6-5.9 4.0-6.5 3.1-4.1 3.4-4.5 4.5-5.9 5.9-7.7 6.5-8.5 

35-39 0.8-2.1 0.9-2.3 1.2-3.0 1.5-3.9 1.7-4.3 2.1-3.5 2.3-3.8 3.0-5.0 3.9-6.6 4.3-7.2 

40-44 1.5-2.8 1.7-3.1 2.2-4.1 2.9-5.3 3.2-5.9 2.8-4.6 3.1-5.0 4.1-6.6 5.3-8.6 5.9-9.4 

45-49 1.4-2.5 1.5-2.7 2.0-3.6 2.6-4.7 2.9-5.2 2.5-3.9 2.7-4.3 3.6-5.6 4.7-7.4 5.2-8.1 

50-54 1.4-2.8 1.5-3.0 1.9-4.0 2.6-5.2 2.8-5.8 2.8-4.5 3.0-4.9 4.0-6.4 5.2-8.4 5.8-9.3 

55-59 1.6-3.1 1.8-3.4 2.3-4.5 3.1-5.9 3.4-6.5 3.1-4.8 3.4-5.2 4.5-6.9 5.9-9.0 6.5-9.9 

60-64 1.7-3.3 1.9-3.6 2.5-4.7 3.3-6.2 3.6-6.8 3.3-5.0 3.6-5.4 4.7-7.1 6.2-9.3 6.8-10.2 

65-70 1.5-3.2 1.6-3.5 2.1-4.6 2.8-6.1 3.1-6.7 3.2-4.1 3.5-4.5 4.6-5.9 6.1-7.7 6.7-8.5 


