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A B S T R A C T

It is increasingly apparent that heterogeneity in the interaction between individuals plays an important role in
the dynamics, persistence, evolution and control of infectious diseases. In epidemic modelling two main forms of
heterogeneity are commonly considered: spatial heterogeneity due to the segregation of populations and het-
erogeneity in risk at the same location. The transition from random-mixing to heterogeneous-mixing models is
made by incorporating the interaction, or coupling, within and between subpopulations. However, such cou-
plings are difficult to measure explicitly; instead, their action through the correlations between subpopulations is
often all that can be observed. Here, using moment-closure methodology supported by stochastic simulation, we
investigate how the coupling and resulting correlation are related. We focus on the simplest case of interactions,
two identical coupled populations, and show that for a wide range of parameters the correlation between the
prevalence of infection takes a relatively simple form. In particular, the correlation can be approximated by a
logistic function of the between population coupling, with the free parameter determined analytically from the
epidemiological parameters. These results suggest that detailed case-reporting data alone may be sufficient to
infer the strength of between population interaction and hence lead to more accurate mathematical descriptions
of infectious disease behaviour.

1. Introduction

The incorporation of heterogeneity is an increasingly important
feature of epidemiological models, with spatial-structure (Grenfell and
Bolker, 1998; Xia et al., 2004; Viboud et al., 2006) and risk-structure
(Schenzle, 1984; Keeling and Grenfell, 1997; Keeling and White, 2010)
most prominently considered. This more realistic heterogeneous
structure has marked influences on many properties including: invasion
dynamics, leading to travelling waves in spatial systems (Viboud et al.,
2006; Diekmann, 1978; Grenfell et al., 2002) and aggregation in certain
groups for risk-structured populations (Schenzle, 1984); endemic be-
haviour, breaking the simple relationships between proportion sus-
ceptible and the basic reproductive ratio that hold for simpler models
(Keeling and Rohani, 2008); persistence, generally acting to increase
the persistence within stochastic populations (Keeling, 2000c;
Hagenaars et al., 2004); and control, leading to targeted interventions
(Keeling and White, 2010; Christley et al., 2005; Wallinga et al., 2010).
Therefore, structuring the population has profound and wide-reaching
implications.

A common modelling paradigm that captures multiple forms of
heterogeneity in epidemic models is the metapopulation-type model
(Gilpin and Hanski, 1991; Hanski, 1998; Hanski and Gaggiotti, 2004;

Keeling et al., 2010). In such models, the population is divided into
multiple interacting, or ‘coupled’, subpopulations, where within-popu-
lation interactions, and hence transmission, typically occur at a much
higher rate than between-population interactions. Although metapo-
pulation models are often considered as a form of spatial model, their
compartmental structure can equally well apply to age or risk struc-
tured mixing, or to multiple host species. In the case of two coupled
subpopulations, which we focus on in this work, these could refer to
two distinct communities, different risk groups (e.g. high and low risk)
or different age groups (e.g. adults and children).

In general, the difference between the metapopulation framework
and the standard homogeneous mixing models is the way that trans-
mission, or interaction, between the subpopulations is incorporated.
The interaction between subpopulations is often represented as a matrix
of transmission rates within and between populations, which has clear
links to the number of cases generated by each group and hence to the
basic reproductive ratio, R0, through the dominant eigenvalue
(Diekmann et al., 1990; Heesterbeek, 2002). When dealing with M
populations, this transmission matrix has M2 terms, which creates
unidentifiability problems when attempting to estimate parameters
from endemic equilibria, as we only have M pieces of information
(Grenfell and Anderson, 1985).
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For spatial models, there have been some efforts to construct me-
chanistic models of between-population interaction (Belik et al., 2011;
Sattenspiel and Dietz, 1995; Keeling and Rohani, 2002). Other ap-
proaches estimate the coupling using a generalised gravity transmission
model in combination with data, for example: commuter mobility data
(Viboud et al., 2006; Balcan et al., 2009), mobile phone data (used as a
proxy for human mobility) (Tizzoni et al., 2014) or spatiotemporal time
series of disease incidence (Xia et al., 2004), where coupling parameters
are estimated so that simulated epidemic sizes, fade-out lengths and
spatial synchrony patterns replicate observed ones. However, the rules
governing between-population interactions are complex and good data
on relevant movements between populations is rare, especially in de-
veloping countries where epidemiological models are likely to be ap-
plied. Moreover, even with access to good data it is far from clear how a
given pattern of movements should translate into a single phenomen-
ological transmission parameter for the subpopulations concerned.
Radiation models have been proposed more recently as an alternative to
gravity models and only require spatial distribution of population to
estimate coupling (Simini et al., 2012; Masucci et al., 2013), although
this model sometimes fail to describe human mobility at smaller scales
(Masucci et al., 2013; Yang et al., 2014). For age-structured models, the
transmission matrix is often based upon diary-based records of inter-
actions (Mossong et al., 2008; Danon et al., 2013; Read et al., 2014),
but the same issues regarding translation of social interactions into a
transmission rate between age-groups applies.

However, for a stochastic system, the −M M( 1)1
2 correlations be-

tween the levels of infection in the subpopulations may help to mitigate
this unidentifiability, especially if the transmission matrix can be as-
sumed to have some form of symmetry. Such long-term data on disease
incidence is more widely available (Olsen and Schaffer, 1990; Grenfell
and Harwood, 1997). From this data we can estimate the correlation
between epidemics in distinct subpopulations and, given a relationship
between the coupling strength and the correlation, we can then infer
possible movement parameters. This extra information that is accrued
from the correlations between subpopulations is a substantive moti-
vating element for this study.

Due to the nonlinearity of the processes invoked by transmission,
exact analysis of stochastic epidemics is often mathematically in-
tractable. Computer simulation of the epidemic process, whilst com-
monly used and clearly useful, provides only a limited insight into the
dynamics and can be computationally expensive. Approximation
methods circumvent these issues and allow us to derive analytic results
and develop intuition about the expected behaviour and variability of
the epidemic process. One widely used method is the moment closure
approximation, whereby differential equations for the means, variances
and covariances can be derived either from first principles or from the
Kolmogorov forward equations (Keeling, 2000a,b; Lloyd, 2004; Keeling
and Ross, 2008). The most commonly used moment closure approx-
imation, and the one used throughout this paper, assumes that third-
order cumulants and higher are equal to zero; this is equivalent to as-
suming the distribution of states follows a multivariate normal dis-
tribution (Whittle, 1957). Alternative approximations have been pro-
posed based on different distributional assumptions: the multiplicative
moment closure approximation of Keeling (2000a) assumes a multi-
variate log-normal distribution; (Nåsell, 2003) assumes a binomial
distribution; while (Krishnarajah et al., 2005) assumes a beta-binomial
distribution.

In this paper we derive an approximation for the correlation be-
tween the level of infection in two distinct subpopulations as a function
of the relative transmission rates, or the coupling, between them; this
improves upon the results of Keeling and Rohani (2002) and corrects an
error in the parametrisation of the original approximation. Using a
multivariate normal moment closure approximation we derive this
approximation for the simple case of two identical subpopulations and
provide conditions under which we expect this result to hold. We also
numerically evaluate our model and compare our analytic

approximation to stochastic simulations of the epidemic process.

2. Model formulation

2.1. A simple stochastic epidemic model

We begin by introducing the notation for a simple stochastic SIR
model, with births, deaths, transmission and recovery. At any time
t∈ [0, ∞), individuals are in one of three states: susceptible, infected or
recovered. A given susceptible individual meets other individuals at
rate k > 0. We assume that these encounters are sufficiently close that
if the other individual is infected, then transmission of infection occurs
with probability τ and the susceptible individual immediately becomes
infected and infectious to others. Reverting to standard epidemiological
modelling notation, we let the transmission rate be β= kτ. Susceptible
individuals can also succumb to infection independent of contact with
infected individuals in the populations; this occurs at rate ϵ > 0, the
external import rate. Infected individuals recover from infection at rate
γ > 0, after which they become immune to further infection.
Susceptible, infected and recovered individuals all die at rate μ > 0,
independent of infection status; we assume that a death is immediately
followed by the birth of a susceptible individual, and hence the total
population size remains constant. The basic reproductive ratio, R0, for
this process is R0= β/(γ+ μ). Let S(t), I(t), R(t)∈ {0, 1, 2, … } denote
the number of susceptible, infected and recovered individuals, respec-
tively, at time t≥ 0. If we take the (constant) population size to be N
then we can reduce the dimensionality of the system by setting R
(t)=N− S(t)− I(t).

Equivalently, we can write down the Kolmogorov forward equation,
also known as the ensemble or master equation, for this process. Let
pt(s, i) denote the probability that there are s susceptible individuals and
i infectious individuals in the population at time t; then the Kolmogorov
forward equations are given by

= + − + + + − + +

+
+ + − + + − − − −

− + + + + − −

( )

( )

s i s p s i γ i p s i
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( 1)( 1) ϵ( 1) ( 1, 1) ( 1) ( ,
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( ( 1) ( 1, 1) ( ( 1) ) ( 1, )

si ϵ ( ) ( , ).

s i β
N t t

t t
β
N t

dp ( , )
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t

(1)

This formulation is extremely useful for describing the complete
nature of a given stochastic system, but for large population sizes the
method is impractical as the number of ordinary differential equations
(ODEs) grows quadratically with the population size. However, such
equations have the advantage that they can be mechanistically used,
together with the closure assumption, to derive equations for means,
variances and other moments of interest.

2.2. A stochastic epidemic model for coupled populations

Now consider a pair of identical populations of size N. We assume
the populations are the same size for analytic tractability; we discuss
the relaxation of this assumption in Sections 3 and 4. Furthermore, we
assume that both populations exhibit the same population dynamics as
the simple stochastic epidemic model described in Section 2.1; how-
ever, we now assume that a proportion σ∈ [0, 1] of an individual's
contacts are with individuals in the other population. In this way, σ
describes the interaction, or ‘coupling’, between the two populations,
and the force of infection in each population depends on the number of
infected individuals in both populations. Changing σ does not change
the basic reproductive ratio in this model, but simply determines the
distribution of secondary cases between the two subpopulations.

We now let Sj(t), Ij(t), Rj(t)∈ {0, 1, 2, … } denote the number of
susceptible, infected and recovered individuals, respectively, in popu-
lation j=1, 2 at time t≥ 0; and again insist that population sizes
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remain constant: N= Sj(t)+ Ij(t)+ Rj(t), ∀ t≥ 0, j=1, 2. The transi-
tion rates for the resulting four-dimensional Markov chain from state
(s1, i1, s2, i2) at time t are summarised in Table 1. Again the Kolmogorov
forward equations for this process can be formulated; these are shown
in the Supplementary Information.

2.3. Moment closure approximations in the coupled stochastic epidemic
model

An exact analysis of the coupled stochastic epidemic model is
mathematically intractable. Instead we consider the approximate be-
haviour of the first- and second-order central moments of the process.
For the coupled stochastic epidemic model there are eight distinct first-
and second-order central moments, five of which are ‘within-popula-
tion’ and three of which are ‘between-population’. Since the two po-
pulations are identical, there are symmetries within the system that can
be exploited: for example, =S S[ ] [ ]1 2  and Var(S1)= Var(S2), and
similarly for other central moments. We denote the within-population
central moments by

= =
= =
= =
= =
= =

S S S
I I I

C S S
C I I
C S I S I

[ ] [ ]
[ ] [ ]

Var( ) Var( )
Var( ) Var( )
Cov( , ) Cov( , )

1 2

1 2

SS 1 2

II 1 2

SI 1 1 2 2

 

 

and denote the between-population central moments by

=
=
= =

C S S
C I I
C S I S I

ˆ Cov( , )
ˆ Cov( , )
ˆ Cov( , ) Cov( , ).

SS 1 2

II 1 2

SI 1 2 2 1

Using the Kolmogorov forward equation, we can write down an
ODE for each of the eight first- and second-order central moments,
details of this method can be found in existing literature on moment
closure approximations in epidemiological modelling (Keeling and
Rohani, 2002; Keeling, 2000b; Lloyd, 2004; Keeling et al., 2000); or the
differential equation for X[ ] can be calculated from first principles
using:

∑= ×d X X[ ]
dt

rate of event change in due to event.
events



(2)

Due to the non-linearity of the infection term in the model, the ODE
for an nth-order moment will depend on one or more (n+1)th-order
moments. To fully define the system of ODEs we would therefore have
to write down an infinite set of equations. To circumvent this problem
we use a moment closure approximation, which truncates this set of
equations at some order. Here, we make a second-order moment closure
approximation, which assumes that third- and higher-order cumulants
are equal to zero. In this way, third-order moments can be written in
terms of the mean and covariance. This is equivalent to assuming that

the random variable has a multivariate normal (MVN) distribution
(Whittle, 1957) and so we refer to this approximation as a second-order
MVN moment closure approximation. The resulting set of eight ODEs
and their derivation can be found in the Supplementary Information.
Note that a first-order moment closure approximation assumes that
second- and higher-order cumulants are equal to zero; this approx-
imation returns the standard set of ODEs for the SIR-model, which
describe the stochastic process in the large-population limit.

3. Results

We derive a theoretical approximation for the correlation at en-
demic equilibrium between the number of infected individuals in po-
pulation 1 and the number of infected individuals in population 2 as a
function of the coupling, σ. We define the correlation between the
number of infected individuals in each population at endemic equili-
brium as:

=ρ I I
I I

Cov( , )
Var( )Var( )

,1 2

1 2

which, in the case of two identical populations where the variances are
equal and using our earlier notation, simplifies to:

=ρ
C
C

ˆ *
*

,II

II

where X* denotes the quantity X at endemic equilibrium.

3.1. Theoretical result

For two identical populations we find that we can write the corre-
lation as a sigmoidal function plus a correction term that is often re-
latively small:
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+
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To derive this result, we use the moment equation for ĈII derived in the
Supplementary Information:
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and hence we have the following approximation for the correlation that
we will henceforth refer to as the MVN correlation:
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Moreover, if we can show that Δ≪ 1 then we have the following sim-
plified approximation for the correlation

Table 1
A summary of the transition rates of the four-dimensional Markov chain epi-
demic model {(S1(t), I1(t), S2(t), I2(t)) : t≥ 0} from state (s1, i1, s2, i2) with birth/
death rate μ > 0, contact rate β > 0, external import rate ϵ > 0, recovery rate
γ > 0 and coupling σ∈ [0, 1].

Population Event Transition Rate

j, k∈ {1, 2},
k≠ j

Infection sj→ sj− 1,
ij→ ij+1

βsj[(1− σ)ij+ σik]/N+ ϵsj

Recovery ij→ ij− 1,
rj→ rj+1

γij

Death of
infected

sj→ sj+1,
i1→ ij− 1

μij

Death of
recovered

sj→ sj+1,
rj→ rj− 1

μ(N− sj− ij)
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≈
+

ρ σ
ξ σ

.
(9)

If we relax the assumption that the two populations are of equal size,
then we do not obtain this simple relationship between the coupling
and correlation. The model is less amenable to analytic methods and the
resulting approximation now depends on r=N1/N2 and on the equi-
librium values S *j and Var(Ij), j=1, 2. To fully define the approxima-
tion we would need to estimate these values from data or through si-
mulation. This result and full derivation are given in the Supplementary
Information.

We can also derive an alternative approximate expression for ξ that
is independent of S *, hence eliminating the need to find the equilibrium
of the 8-dimensional ODE model. By ignoring the effects of both im-
ports and correlations and taking the large population limit, we can find
an approximation to S*, which leads to the following expression:

≈ ′ =
+

− −
=

−
ξ ξ

γ μ
μ β γ μ μ R

ϵ( )
( )

ϵ
( 1)

.
0 (10)

Full details of this derivation can be found in the Supplementary
Information. This parametrisation of ξ is preferable to the original (Eq.
(4)) as it removes the need to estimate the number of susceptible in-
dividuals in the population at endemic equilibrium, either from data or
through simulation. In addition, this alternative parametrisation pro-
vides intuition into how the epidemic parameters directly impact the
correlation. We can see that as R0 increases then the correlation also
increases. Conversely, as the external import rate ϵ increases, then the
correlation decreases: as ϵ increases then external infections mask the
effect of the between-population infections. Given the appeal of the
simpler from of Eq. (10), in the work that follows we evaluate the ap-
proximation of the correlation ρ by the sigmoidal function σ/(ξ′+ σ).

The MVN moment closure approximation holds in the large-popu-
lation limit (i.e N→∞) and assumes that the distribution of states is a
multivariate normal distribution; this follows from the results of (Kurtz,
1970, 1971), which show that a stochastic process can be approximated
by a deterministic processes in the large population limit. Further error
in approximation comes from assuming that Δ≪ 1 and that ξ is constant
and equal to ξ′. In the following section, our aim is to understand
whether our approximation (Eq. (9)) and expression for ξ′ (Eq. (10)) are
generic to a wider range of assumptions and parameters.

Given parameter values for our coupled stochastic epidemic model,
we are able solve the underlying ODEs and hence check numerically
that Δ is small and calculate ξ. The absolute error introduced into our
approximation by assuming that Δ≪ 1 is given by Δ; the error relative
to the correlation ρ is given by Δ/ρ. The absolute error introduced into
our approximation by assuming that ξ is constant (Eq. (10)) is [ρ− σ/
(ξ′+ σ)+ Δ], or equivalently [σ/(ξ+ σ)− σ/(ξ′+ σ)]; the error re-
lative to the correlation ρ is given by [σ/(ξ+ σ)− σ/(ξ′+ σ)]/ρ. In this
paper we take 0.1 as a threshold for the absolute error and 0.25 as a
threshold for the error relative to the correlation ρ. If the absolute or
relative error exceed 0.1 or 0.25 respectively, then we say that the
approximation fails.

3.2. Numerical results

To compare our analytic predictions to simulation results, we need
to define a set of base parameters. In the majority of the numerical
analysis we will utilise parameters for a highly-transmissible measles-
like endemic disease in the UK (Anderson and May, 1992), although we
note that a full model of measles requires both seasonality (Earn et al.,
2000; Rohani et al., 2002; Grenfell and Bolker, 1995) and age-structure
(Schenzle, 1984; Keeling and Grenfell, 1997; Bolker, 1993). We will
also use parameters representing mumps (Anderson and May, 1992),
rubella (Anderson and May, 1992), chickenpox (Anderson and May,
1992), whooping cough (Anderson and May, 1992), smallpox (Keeling
and Rohani, 2008) and influenza (Cauchemez et al., 2004; Biggerstaff

et al., 2014). For all diseases, we consider two identical populations of
size N=105 where μ=5.5×10−5 days−1 and ϵ=5.5×10−5

days−1. Disease-specific parameters are given in Table 2. The numerical
integration of ODEs is performed using the MATLAB ode45 solver with
a relative error tolerance of 10−5.

Fig. 1 shows the equilibrium values of the first-order central mo-
ments S * and I * and second-order central moments C*II and Ĉ *

II for a
measles-like endemic disease in the UK as the coupling parameter σ is
varied between 0 and 1. These results are obtained by numerical in-
tegration of the 8-dimensional ODEs given in the Supplementary In-
formation, and therefore only depend on the MVN moment closure
approximation. We note that all curves broadly show a sigmoidal pat-
tern (although S * has a minimum and I * a maximum at σ=0.5), with
S * and C*II decreasing with the coupling and I * and Ĉ *

II increasing with
the coupling.

For these measles-like epidemic parameters, we compare the MVN
correlation ρ (Eq. (8)) and our approximation σ/(ξ′+ σ), ξ′=0.0625,
to the results of full stochastic simulations (Fig. 2a). We simulate the
stochastic process over a 200 year period using the Gillespie algorithm,
with a burn-in period of 50 years, and generate 1000 realisations of the
process for each value of σ. The correlation is calculated as a time-
weighted Pearson correlation coefficient for 50 < t≤ 200 years. From
this comparison we draw three conclusions. Firstly, all three correla-
tions follow a sigmoidal relationship increasing from zero for low
coupling to a value close to one when the coupling is largest- although
we note that values of σ > 0.5 do not match with our idealised view of
a metapopulation in which within-population transmission is larger
than between-population transmission. Secondly, the remarkably close
agreement between ρ and the simulation results, suggest our use of the
MVN moment closure approximation is justified. Finally, σ/(ξ′+ σ) is a
reasonable approximation for the MVN correlation ρ as the difference
between the two curves is small.

We also compare the MVN correlation ρ and our approximation σ/
(ξ′+ σ) for six other infectious diseases in the UK: mumps, rubella,
chickenpox, whooping cough, smallpox and influenza (Fig. 2b). Inter-
estingly we observe that our approximation underestimates the corre-
lation for diseases with a high R0 (e.g. whooping cough) and over-
estimates the correlation for diseases with a low R0 (e.g. smallpox and
influenza). We attribute this to the differential action of Δ and the ap-
proximation to ξ across epidemiological parameters. However, across
all diseases the difference between ρ and our approximation is small,
hence we can relate the phenomenological coupling parameter, σ, to the
correlation between the number of infected individuals in two popu-
lations by ρ= σ/(ξ′+ σ).

In Fig. 3, we evaluate the two main sources of error in our ap-
proximation (Eq. (9)), introduced by assuming that Δ≪ 1 and that ξ is
constant and equal to ξ′. For measles-like parameters, Δ is small in both
absolute and relative terms (green lines in Fig. 3); importantly, Δ never
exceeds our chosen thresholds of 0.1 and 0.25 for the absolute and
relative error respectively, and has a diminishing impact on the

Table 2
Epidemiological parameters for seven infectious diseases in the UK; across all
diseases we take N=105, μ=5.5×10−5 days−1 and ϵ=5.5×10−5 days−1.
We also give the value of the parameter ξ′= ϵ/(μ(R0− 1)) taken in our ap-
proximation for the correlation.

Disease Basic reproductive ratio
R0

Average infectious period
γ−1 (days)

ξ′

Measles 17 13 0.0625
Mumps 12 21 0.0909
Rubella 7 17 0.1667
Chickenpox 11 20 0.1
Whooping cough 17 22 0.0625
Smallpox 5 7 0.25
Influenza 2 4 1
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correlation when the coupling σ exceeds 0.065. The error introduced
into the approximation by assuming ξ is constant is given by [ρ− σ/
(0.0625+ σ)+ Δ]= [σ/(ξ+ σ)− σ/(0.0625+ σ)] (yellow lines in
Fig. 3). Again, we observe that this error is well within our chosen
thresholds of 0.1 and 0.25 for the absolute and relative error respec-
tively. Moreover, this error is approximately one order of magnitude
smaller than Δ, which tells us that for measles-like parameters the main
source of error is our approximation is due to assuming that Δ≪ 1.
Overall, these findings suggest that our simple approximation (Eq. (9))
should hold for these parameters across the entire range of coupling
values.

3.2.1. Smaller population sizes
Whilst the MVN moment closure approximation holds in the large

population limit (Kurtz, 1970, 1971), we may often be interested in
much smaller populations where the impact of stochasticity is more
pronounced. For N=102, 103, 104, 105 we compare our approximation
for the correlation to stochastic simulations. We generate 1000 rea-
lisations of each (N, σ) pair using the same method as described in
Section 3.2 and calculate the mean of all first- and second-order central
moments and the mean and variance of the correlation. Since ξ′= ϵ/
(μ(R0− 1)) is independent of N then we take ξ′=0.0625 for all N.

In Fig. 4 we compare the stochastic simulations for each of N=102,
103, 104, 105 to our approximation σ/(0.0625+ σ). We find that, for a
given σ, decreasing the population size leads to weaker correlations;
equivalently, this means that in smaller populations stronger coupling
is required to achieve the same level of correlation. This is because in
smaller populations the correlation between the two populations is
reduced by independent stochastic effects acting on the two popula-
tions. Despite this, we find even for N=103 the correlation between
the two populations is well approximated by σ/(ξ′+ σ); only at very
small population sizes, N=100, is our approximation a poor estimate
of the correlation.

Although it is simpler to take ξ= ξ′, this value can also be calcu-
lated as = + −ξ N γ μ βS βS( ( ) *)/ *, for some specific value of S *. This
method requires the numerical integration of the ODEs given in the

Supplementary Information; however, we find that for N≲ 104.2≈ 16,
000 the numerical solution to the system of ODEs “blows up”.
Therefore, we cannot use this method for calculating ξ to parametrise
our approximation in smaller populations. This phenomenon occurs
since we assume that the distribution of states follows a multivariate
normal distribution and at low levels of infection this leads to a sig-
nificant proportion of the distribution being negative. For example, for
N=105 then ≈I * 67, but for N≲ 104.2 then ≲I 10.6. Zero infectious
cases should act as a boundary for the distribution, and hence as I
reduces the multivariate normal assumption breaks down.

3.2.2. Parameter sensitivity analysis
We perform a brief parameter sensitivity analysis to understand how

the correlation between the number of infected individuals in the two
populations is affected by the value of the epidemiological parameters.
In the first half of the analysis, we use the parameters for a measles-like
disease in the UK (N=105, μ=5.5× 10−5, R0= 17, γ−1= 13 and
ϵ=5.5× 10−5) and independently change the value of each of the
four parameters μ, β, ϵ and γ. We show the impact of these epidemio-
logical parameters on ξ′= ϵ/(μ(R0− 1)). For each set of epidemiolo-
gical parameter values we also calculate Δ and compare ξ∼ ξ′ across all
values of coupling σ to determine the range of parameter values for
which our approximation holds, that is, for which the absolute and
relative errors are within our chosen thresholds of 0.1 and 0.25 re-
spectively for all coupling values.

We find that the values of each of the four key parameters have a
profound impact on the correlation between the number of infected
individuals in the two populations, but that our approximation holds
for a wide range of realistic values (Fig. 5a). The correlation increases
with the birth rate, μ, the basic reproductive ratio, R0= β/(γ+ μ),
varied by changing β, and the mean infectious period, γ−1; increases in
the external import rate, ϵ, lead to a decrease in the correlation. The
exact region in which our approximation fails is a complex trade-off
between all parameters; however, for all four parameters the approx-
imation fails (that is, either the absolute or relative error exceeds our
chosen thresholds) as ′+ξ becomes smaller; failures occur for

Fig. 1. The effect of the coupling, σ, on key mean variables S I C*, *, *II and Ĉ *
II for a measles-like endemic disease in the UK (N=105, μ=5.5×10−5, R0= 17,

γ−1= 13 and ϵ=5.5×10−5), calculated from the ODEs given in the Supplementary Information.
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μ≳ 5.62× 10−5, β≳ 1.35 (R0≳ 17.5), ϵ≲ 4.61× 10−5 and γ−1≳ 13.
This failure mode is due to the growing importance of the correction
term Δ relative to our approximation σ/(ξ′+ σ).

In the second half of the analysis, we focus on the external import
rate ϵ, as this is generally the most difficult parameter to estimate. For
each of the epidemiological parameter sets representing mumps,

Fig. 2. Comparing the MVN correlation ρ and our approximation σ/(ξ′+ σ) to stochastic simulations, for (a) a measles-like endemic disease in the UK (N=105,
μ=5.5× 10−5, R0= 17, γ−1= 13 and ϵ=5.5× 10−5; ξ′=0.0625) and (b) for parameters representing mumps, rubella, chickenpox, whooping cough, smallpox
and influenza (parameter values are given in Table 2). We generate 1000 realisations of the process for each value of σ and calculate the correlation as a time-
weighted Pearson correlation coefficient for 50 < t≤ 200 years; error bars represent± 2 standard deviations.
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rubella, chickenpox, whooping cough, smallpox and influenza, and for
each value of ϵ, we show ξ′= ϵ/(μ(R0− 1)). For each diseases para-
meter set we also determine a range of values for ϵ for which the ap-
proximation holds, that is, for which the absolute and relative error are
within our chosen thresholds of 0.1 and 0.25 respectively.

We find that the external import rate ϵ has a significant impact on
the correlation (Fig. 5b). For all diseases we consider, increasing the
external import rate leads to a higher value of ξ′ and thus predicts a
lower correlation for a given coupling strength: as the external import
rate is increased, external infections mask the effect of the between-
population infections. For measles, mumps, rubella, chickenpox,
whooping cough and smallpox, the approximation fails (that is, either
the absolute or relative error exceeds our chosen thresholds) as ϵ be-
come smaller. We also observe that our approximation fails at lower
values of ϵ in diseases with a lower R0: for example, our approximation

for whooping cough (R0= 17) fails for ϵ≲ 8.71× 10−5, whereas our
approximation for rubella (R0= 7) fails for ϵ≲ 9.78×10−6. However,
for influenza, our approximation fails as ϵ becomes larger. Further
analysis (given in the Supplementary Information) shows that for in-
fluenza, ξ′= ϵ/μ(R0− 1)) significantly overestimates ξ for large values
of ϵ, so assuming that ξ= ξ′ leads to a large error in our approximation.
However, for smallpox, rubella, chickenpox, mumps and whooping
cough the difference between ξ′ and ξ is small and so we do not observe
failure for large values of ϵ in the range of values that we consider; the
value of ϵ would have to be unrealistically high to observe such an
effect.

4. Discussion

A limitation of metapopulation-type models within epidemiological

Fig. 3. Evaluating the sources of error
in our approximation for a measles-like
endemic disease in the UK (N=105,
μ=5.5× 10−5, R0= 17, γ−1= 13
and ϵ=5.5×10−5), taking 0.1 and
0.25 as thresholds for the absolute
(left) and relative (right) error, re-
spectively. We compare the MVN cor-
relation ρ and our approximation σ/
(ξ′+ σ) to the two sources of error in
our approximation: assuming Δ≪ 1,
and assuming that ξ is constant and
equal to ξ′= ϵ/(μ(R0− 1))= 0.0625.

Fig. 4. Comparing our approximation σ/
(ξ′+ σ), ξ′=0.0625, to stochastic simulations
for a measles-like endemic disease in the UK
(μ=5.5× 10−5, R0= 17, γ−1= 13 and
ϵ=5.5× 10−5) and N=102, 103, 104, 105.
We simulate the stochastic process over a 200
year period using the Gillespie algorithm, with
a burn-in period of 50 years, and generate
1000 realisations of the process for each of (N,
σ) pair. The correlation is calculated as a time-
weighted Pearson correlation coefficient for
50 < t≤ 200; error bars represent± 2 stan-
dard deviations.
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modelling is how to infer the coupling between subpopulations.
Sufficiently rich data on relevant interactions is often lacking, espe-
cially in developing countries, and it is unclear how such data should
translate into a single phenomenological coupling parameter. In light of

data on disease incidence being more widely available, we derive an
approximation for the correlation, ρ, between the number of infected
individuals in two identical populations as a function of the coupling
parameter σ, providing a one-to-one mapping between the correlation

Fig. 5. Sensitivity analysis for our approximation to the epidemic parameters. The parameter ξ in our approximation is calculated as ξ′= ϵ/(μ(R0− 1)); our
approximation holds if both the absolute and relative error is within our chosen thresholds of 0.1 and 0.25 respectively (represented by a solid line). The ap-
proximation fails due to one or both of the absolute and relative errors exceeding our chosen thresholds (dotted and dashed lines respectively). This analysis is
performed for (a) each of the four epidemiological parameters μ, β, ϵ and γ with baseline parameters μ=5.5× 10−5, R0= 17, γ−1= 13 and ϵ=5.5×10−5 (shown
by a circle) and (b) for the external import rate ϵ for the given diseases with baseline parameters given in Table 2 (shown by an arrow on the x-axis). N=105

throughout.
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and the coupling.
The results presented here refine the analysis of (Keeling and

Rohani, 2002) and correct an error in the original derivation of ξ. Our
numerical results for a measles-like infection show substantial corre-
lation for all but the weakest coupling. These findings are consistent
with similar studies focussing on persistence and spatial synchronisa-
tion of measles outbreaks (Lloyd, 2004; Bolker and Grenfell, 1996),
despite differences in the characterisation of the basic model. An ana-
lytic relationship between the coupling and correlation has been pre-
viously derived (Rozhnova et al., 2012) in a more general setting and
yields similar numerical results: their relationship is derived through
the van Kampen system-size expansion and analysis of the power
spectrum. However, we believe that our results provide a significantly
simpler relationship between correlations and epidemiological para-
meters, providing greater intuition and analytical traction. In addition,
throughout we compare our analytically tractable results to solution of
the moment-based ODEs (given in the Supplementary Information) and
to numerical simulation, providing a deeper understanding of the
parameter ranges over which the simple results hold and hence the
range of applications where the methods are of use. We also differ-
entiate between different modes of failure in our approximation be-
tween diseases with low and high basic reproductive ratios.

Our work also offers an alternative parametrisation of ξ (Eq. (10))
that depends only on the epidemiological parameters and holds in the
large-population limit; however, our numerical analysis shows that this
parametrisation also leads to a good qualitative approximation in po-
pulations of size N=103. This parametrisation is preferable to the
original as it provides intuition and insight into how the epidemic
parameters affect the correlation. In addition, it removes the need to
estimate the number of susceptible individuals in the population at
endemic equilibrium, either from data or through simulation. This is
particularly useful in smaller populations where we find that the MVN
moment closure approximation fails numerically and the solution to the
ODEs ‘blows up’. This type of failure is well-documented in the litera-
ture and typically attributed to large negative covariances, frequent
global extinctions or when the distribution of states is bimodal (Keeling,
2000a,b; Lloyd, 2004; Krishnarajah et al., 2005; Nåsell, 1999). In the
limit as N→∞, (Nåsell, 1999) shows that the distribution of states
conditioned on non-extinction is approximately normal when R0 is
greater than 1; however, this does not explain why the MVN moment
closure approximation sometimes appears to hold for smaller popula-
tions, such as in our own analysis and the wider literature (Isham,
1995).

Our model is sufficiently general that it can describe multiple forms
of heterogeneity in the population including spatial, age and risk het-
erogeneity; however, a limitation of the model it that the underlying
SIR model is too simple describe the full dynamics of many diseases. For
example, as noted previously a full model of measles dynamics should
include both seasonality and age structure. These limitations should be
addressed before using our results to infer the between-population
coupling parameters. We have also shown that adding complexity re-
duces the analytical tractability of the model, such as with populations
of unequal size; in the most general case, analysis of the model may
require a computational, rather than analytical, approach. Finally,
whilst data on disease incidence in each of the subpopulations is more
widely available than mobility data, our results are still limited by the
availability and quality of such data. In particular, our results will be
affected by under-reporting of infections.

Our results provide a method by which the coupling can be esti-
mated from the correlation between the number of infected individuals
in two populations using data on disease incidence. Crucially, this al-
lows us to estimate the coupling between subpopulations even in the
absence of data on human mobility, thus circumventing one of the main
limitations of metapopulation models. At present our model considers
the mathematically tractable case of two identical populations at en-
demic equilibrium. Future research should aim to address the

limitations outlined above by improving the underlying epidemic
model, for example by incorporating seasonality or age structure. The
current model can easily be extended to multiple identical interacting
populations when the underlying graph is a symmetric graph, such as
the complete graph or k-regular infinite tree graph. This holds since any
adjacent populations will have identical neighbourhoods. These ex-
tensions will significantly improve the realism of the model and vali-
date the use of the results in the inference of between-population
coupling parameters.

5. Conclusion

A limitation of metapopulation models is how to infer the coupling
between subpopulations. This paper relates the correlation between the
number of infected individuals in two identical populations as a func-
tion of the coupling, providing a one-to-one mapping between the
correlation and the coupling. Combined with data on disease incidence
in each of the subpopulations, this result provides a method by which
the between-population coupling can be estimated, even in the absence
of information on the population mobility.
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