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Abstract

Analyses of time-to-event outcomes almost infallibly rely either on the survival probability at
a given time or on the hazard ratio(s) associated with some variable(s) of interest. However,
these quantities may be confusing and hard to communicate to the general public. Further-
more, when cancer is the disease of interest most population-based studies focus on the net
survival. Net survival is crucial for comparison purposes between populations, but it is less
appropriate for planning a health policy or describing a patient’s prognosis, because it is
defined in the hypothetical world. Therefore, it is essential that we use alternative survival
indicators that could cover these needs, and that could be estimated using population-based
data, where the cause of death is usually not available/accurate.

Useful alternative indicators that could summarize the survival experience efficiently at
both population and individual levels include: the Crude Probability of Death (CPr) and
the number of Life years Lost (LYL) detailed by cause of death. These indicators may be
expressed using the cause-specific, the subdistribution, and the excess hazard depending
on the availability of the cause of death information (ie, either in the cause-specific or the
relative survival setting). Their estimation could be achieved with non-parametric methods
and regression models.

The aim of this PhD is to add to this topic by presenting two new methods for estimating
the CPr and the LYL using flexible regression models (in both settings) and the pseudo-
observations approach (in the relative survival setting). These methods have the additional
advantage of providing covariate effects on the quantities of interest. This thesis includes
one paper summarising the alternative indicators, two scientific papers that focus on the new
methods, and two R tutorials that show how the new methods may be applied to R software.
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1.1 Background

Cancer is one of the leading causes of death worldwide with the global cancer burden risen to
18.1 million new cases and 9.6 million deaths in 2018 according to IARC [14]. The increasing
cancer burden is due to several factors, including population growth and ageing as well as the
changing prevalence of certain causes of cancer linked to social and economic development.
Specifically in England, cancer survival has been improving steadily since the 1970s, but
socioeconomic inequalities in survival persist for most cancers, despite the concerted efforts
and investment in the National Health Service [23]. Our motivating example in this thesis
is to explore further the methods used to describe/analyse the differences in survival (after
cancer diagnosis) due to patient deprivation along with providing new methodologies on
investigating and reporting cancer burden.

Cancer survival is a key indicator to measure prognosis and burden of cancer. Large
inequalities in cancer survival have been consistently reported, between countries or within a
given country, between regions and sub-populations defined by a socio-economic level, or
other socio-demographic variables. These international, regional, and socio-economic dispar-
ities in survival represent large numbers of avoidable premature deaths [17]. Understanding
the main causes of these differences in survival can contribute to the formulation of a more
effective health strategy, which is aiming towards earlier diagnosis and an improved health
care provision.

However, such purposes cannot be achieved with analysing only patients selected for a
clinical trial or those found in the hospital. They require to take into account all those patients
diagnosed with cancer in the resident population of a given territory, including those who
did not receive any treatment or were not managed in hospitals. Population-based cancer
registries collect exactly such data, with information for some variables of interest, like
personal characteristics of the patients, their tumour, and so on. As such, they are considered
as a reliable source on the occurrence and outcome of cancer and form the basis of many
national or regional cancer control programmes [53].

In terms of analysis, the first step for exploring the survival experience of a group of
individuals should start from the overall (ie, all-cause mortality) setting. This gives us a crude
picture of the data and informs us about the mortality of the population under investigation.
However, when our goal is to distinguish deaths from different causes, a further step in the
analysis is required, as to account for competing events. A competing event is another event
that prevents the event of interest from happening eg, when an cancer patient dies from a
cardiovascular disease and death from cancer is the event of interest.

To perform an analysis with competing risks using cancer survival data, we need to
have information about the cause of death (COD) for each individual. The use of routinely
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collected population-based data for this purpose involves however additional methodological
challenges due to absence of reliable information on the COD of each patient. When the
information is present and considered reliable, we perform methods that belong to the
cause-specific setting, otherwise we need to apply methods that sit in the relative survival
setting. The relative survival setting is a particular competing risks setting which allows for
event-specific inferences even in the absence of the COD when appropriate population life
tables are available. In this setting we make the main assumption that the mortality hazard for
other causes of death can be approximated by the mortality hazard of the general population
(stratified by certain demographic characteristics), the latter being obtained from the national
life tables.

Unlike single event analyses where we define only one hazard, in the cause-specific setting
we may find two different types of hazard, namely the cause-specific and the subdistribution
hazard. Modelling these hazards, allows us to quantify the impact of the covariates on
these hazards through the cause-specific and the subdistribution hazard ratios, respectively.
While cause-specific hazard ratios describe the effect of the covariates only on the cause
of interest, the subdistribution hazard ratios “measure the effect of the covariate that can
be explained either because there is a direct effect of making the event more or less likely
to occur, or due to the indirect effect of influencing the other events to occur” [21]. In the
relative survival setting, we mostly rely on the excess hazard, also called excess mortality
rate. This shows how much higher the mortality rate is among the patients with the disease
of interest compared to the expected mortality of the general population. Quantifying the
impact of the covariates on the excess hazard (through excess hazard ratios) gives the same
interpretation as in the case of cause-specific hazard ratios due to the fact that the excess
hazard can be seen as the counterpart of the cause-specific hazard.

The aforementioned hazard ratios can be used to describe the effects of the risk factors in
the occurrence of different events. Nevertheless, communicating, describing, and understand-
ing cancer statistics is rather complicated and must involve various indicators. Towards this
direction, we suggest the use of alternative survival indicators.

1.1.1 Why do we need alternative survival indicators?

The most frequently reported indicator in survival analysis is the survival probability. Nev-
ertheless, the complicated nature of some diseases (eg, cancer) requires the use of com-
plementary survival measures in order to explore the progression and the evolution of the
disease. Developing a successful disease control plan or health care policy requires more than
understanding the formation and the mechanics of a particular disease. It is also essential
that we explore the different dimensions of the disease, in terms of prognosis, treatment
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choice, and development of a control strategy. To do so, we need to utilize different survival
indicators as to acquire a multiperspective approach. In order for them to be useful in cancer
epidemiology, these indicators must be able to focus on the cause of interest (ie, after taking
into account the other causes/competing events) either in the presence or in the absence of
the cause of death information.

In this thesis, we focus on two alternative indicators, namely the Cumulative probability of
death (CPr) and the Life years lost (LYL). These indicators have been previously introduced
and used in the past, yet focus was on their estimation rather than on quantifying the impact
of different prognostic factors on them. Although, providing covariate effects on the CPr may
be achieved with the subdistribution hazard in the cause-specific setting, the interpretation
of the covariate effects is limited to a qualitative level [9]. Here, we show how to quantify
the impact of the covariates on the CPr and the LYL in both cause-specific and relative
survival setting. We achieve that in two ways: i) indirectly with flexible regression models
after applying regression standardization and ii) directly by modelling the indicators using
the pseudo-observation approach. For the latter, modelling of CPr and LYL in the cause-
specific setting was already available, yet an extension to the relative survival setting was not
implemented.

1.2 Aims and objectives

The main aims of this PhD are to develop and illustrate approaches for quantifying exposure
effects on alternative measures that would be useful when analysing survival data in the
context of population-based cancer research.

Objectives

• To describe existing alternative measures for survival data;
• To derive measures at population level and to quantify the effect of a predictor on the

measure of interest using flexible hazard-based regression models (in the presence or
absence of cause of death);
• To propose a direct modelling approach for the measures of interest in the context

of population-based cancer registry data ie, in the absence of COD (relative survival
setting);
• To provide tutorials explaining how the approaches can be implemented using R

software.
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1.3 Outline of the thesis

The remainder of the thesis is structured as follows
• Chapter 2 describes the main concepts found in survival analysis. Starting from all-

cause survival analysis where we do not distinguish between different events, the
chapter extends to the competing risks case, where we focus on a particular event. In
this chapter we discuss about the main quantities and measures of interest, including
the alternative survival indicators, namely CPr and LYL. A detailed description of
them including their estimation via a non-parametric approach is also provided.
• Chapter 3 shows how to estimate CPr and LYL using flexible regression models in

the cause-specific and relative survival setting, including details on the regression
standardization that allows the quantification of covariate effects on the estimands or
quantities of interest. The section related to the cause-specific setting is presented with
a published research paper.
• Chapter 4 details the direct modelling of CPr and LYL using the pseudo-observation

approach. The method has been already introduced for the cause-specific setting thus,
the relevant section provides only a description based on the previous studies. However,
the approach in the relative survival setting is explained for the first time and an unpub-
lished research paper dedicated to that is provided, too. An extra section describing
the simulation algorithm that was developed in order to assess the performance of the
newly proposed method is also provided in the end of this chapter.
• Chapter 5 summarises and discusses the proposed methodologies; their advantages

and limitations; and their potential benefit when used for public health purposes.
• Lastly, in the appendices the reader may find a (published) research paper regarding the

alternative survival indicators and the R code for the approaches described in Chapter
3 and 4.



Chapter 2

Basic concepts in survival analysis
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2.1 Introduction

“Survival analysis is the phrase used to describe the analysis of data in the form of times
from a well-defined time origin until the occurrence of some particular event or end-point
[18]”.

Suppose there is a collection of individuals observed from some entry time until a
particular event happens. The observed time-to-event (eg, time-to-death) is the response
variable in survival analysis methods. The entry (origin) time may be the time of recruitment
of an individual into study, the age or time at diagnosis, the birth date etc. The event of
interest may vary between death and other events (eg, occurrence of a particular disease) or
states (eg, recurrence of symptoms). As it is often impossible to wait for the event to happen
to all individuals, we do not always observe the event (end of follow-up, lost to follow-up
etc.) for all of them. Therefore, it is only known that the event had not yet happened within
a time window and in this case the observation of time to the occurrence of the event (ie,
the survival time) is censored [3]. Censoring is what renders standard methods of analysis
inappropriate for analysing survival data calling for alternative methodologies.

In the remainder of this chapter, we will briefly explore the all-cause mortality case ie,
describing the survival experience of a cohort without distinguishing between different events,
and then move into a more detailed description of competing risks. We also, discuss about
common measures of interest whilst our main focus is on alternative survival indicators such
as CPr and LYL and their estimation with non-parametric methods.

2.2 All-cause survival analysis

Let us assume that we are in the very general occasion where we do not distinguish between
events/causes and that we are in the case where we have one initial state and only one event
type (see Figure 2.1). This figure indicates that an individual who is at state 0 at time origin,
moves to absorbing state 1 at some later random time T . Absorbing in this case means that
the individual is unable to move out of state 1, or that such transitions are beyond our analysis
interest. A typical example of such model is when we interpret 0 as ‘alive’ and 1 as ‘dead’,
with T being the survival or failure time [12].

0

Initial

1

Absorbing

Fig. 2.1 Survival model with one absorbing state.
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2.2.1 Quantities of interest in single-event survival analysis

The main quantities of interest in survival analysis is the survival probability (or survivor
function) and the hazard function.

With time-to-event data we record the time at which an event occurs. The observed
survival time t of an individual can be seen as the realisation of a non-negative random
variable T . The distribution function of T , is defined as

F(t) = P(T ≤ t) =
∫ t

0
f (u)du

This quantity comes under different names, with cumulative incidence function and cumula-
tive probability being the most frequently used. Survival probability S (t) is the complemen-
tary of this quantity,

S (t) = 1−F(t) (2.1)

and it represents that the survival time is greater than t. This is a very important relationship
as we will see later and it only applies when we do not distinguish between causes/events (if
we do not make any further assumptions).

Another important quantity in survival analysis is the hazard function h(t), which repre-
sents the instantaneous risk per unit of failure at time t given survival till just before t [4],
formally defined as

h(t) = lim
δt→0

{
P(t ≤ T < t+δt|T ≥ t)

δt

}
The h(t) is connected to the aforementioned quantities through this relationship

h(t) =
f (t)
S (t)

which can further lead to
S (t) = exp{−H(t)}

where H(t) is the cumulative hazard, expressed as H(t) =
∫ t

0 h(u)du.

2.3 Competing risks

In this section we will go a step further exploring the situation where we are interested in
making inferences for particular causes/events and the aim is to distinguish between the
possible types of the first (observed) event [12].
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The analysis in such studies (where individuals may experience several events) is often
performed using multi-state models. A multi-state model (MSM) is a model for a continuous
time stochastic process allowing individuals to move among a finite number of states. MSM
cover a wide range of cases allowing for more complicated representations (eg, when
including transient states). Yet our focus is on competing risks, which extends the simple
mortality model for survival data (see Figure 2.1) to the case where an individual may fail/die
from any of several events [40].

In the competing risks case we allow for multiple states by incorporating two or more
competing absorbing states that correspond to different events, j = 1, · · · , J (see Figure 2.2).
Usually, the main quantity of interest here is the transition (rate) to the jth competing event
state from origin state 0, i.e. λ0 j(t), which represent the occurrence of a competing event
[50]. The event time T is now the smallest time at which the process in not in the initial state

0

Initial

1

2

...

J

λ01(t)

λ02(t)

λ0J(t)

Fig. 2.2 Competing risks multistate model with cause-specific hazards. The vertical dots
indicate the competing event states {3,4, J−1}.

0 anymore.
In this representation, the transition intensities provide the hazards for movement from

one state to another. These functions can also be used to determine the mean sojourn time in
a given state and the number of individuals in different states at a certain moment [40]. Often
the interest lies in modelling the hazards and measuring the impact of the prognostic factors
on them.

2.3.1 Quantities of interest in competing risks

In this section we will present two key quantities, namely the cause-specific hazard and the
subdistribution hazard. The survival function is not of particular interest here due to the fact
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that conceptually, it is more intuitive to talk about the probability of failing from a particular
cause (eg, dying from a specific cause) rather than surviving from a particular cause. An
individual can only survive from all causes and a cause-specific survival probability would
be an entirely hypothetical probability, which is a concept used only in specific cases. More
details on that will follow in the next sections. Note also that in this section estimations rely
on the fact that information on event type is available and reliable ie, we know for every
individual the event/cause of failure/death. Since this might not be true for every analysis,
we will refer to this case as cause-specific setting.

Cause-specific hazard The cause-specific hazard, λ j(t), is the “risk per unit of time of the
event of cause j among those who have not failed from any cause”. It is estimated when the
risk set consists of individuals that had not experienced any event and consequently, are still
at risk for the event of interest at time t. Individuals experiencing causes other than cause
j prior to time t, are excluded from the risk set at time t, so that all of them are treated as
censored for all events but from cause j.

The cause-specific hazard can be defined in both discrete and continuous time setting.

Discrete time

λ j(t) = P(T = t, J = j | T ≥ t) (2.2)

Continuous time

λ j(t) = lim
∆t−→0

{
P(t ≤ T < t+∆t, J = j | T ≥ t)

∆t

}
=

f ∗j (t)

S (t)
(2.3)

Here, it holds that

S (t)+
J∑

j=1

F j(t) = 1

with F j being the probability (cumulative incidence) of failing from event j before time t:
F j(t) = P(T ≤ t,event = j).

From this definition it is apparent that the cumulative incidence of failing from event j
F j(t) does not only depend on the cause-specific hazard λ j(t) but also on the cause-specific
hazards which are related to the competing events. This means that in the presence of
competing events there is no longer a one-to-one correspondence between the cause-specific
hazard λ j(t) and the cumulative incidence F j(t):
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Discrete time

F j(t) =
∑
ti≤t

S (ti−)λ j(ti) (2.4)

Continuous time

F j(t) =
∫ t

0
S (u)λ j(u)du (2.5)

Subdistribution hazard The subdistribution hazard function for cause j, γ j(t) is defined
as “the probability for a subject to fail from cause j in an infinitesimal small time interval
∆t, given the subject experienced no event until time t or experienced an event other than j
before time t” [31]. In this case, the risk set consists of individuals who had not experienced
any event, but also patients who had a competing event. By doing so we may consider the
latter as those that for some reason cannot have the event of interest.

The subdistribution hazard, γ j(u), can be defined both in discrete and continuous time as
follows

Discrete time

γ(t) = P(T = t, J = j | T ≥ t or (T < t and J)) (2.6)

Continuous time

γ(t) = lim
∆t−→0

{
P(t < T ≤ t+∆t, J = j | T > t∪ (T < t∩ J , j))

∆t

}
(2.7)

=
f j(t)

1−F j(t)
=

f j(t)
P(J , j)+S j(t)

(2.8)

where F j(t) = P(T < t, J = j),S j(t) = P(T > t, J = j), and f j(t) =
dF j(t)

dt
are the cause-specific

cumulative probability, sub-survivor and sub-density functions.
This type of hazard does have a one-to-one relationship with the cause-specific cumulative

incidence:
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Discrete time

F(t) = 1−
∏
ti≤t

{
1−γ j(ti)

}
(2.9)

Continuous time

F j(t) = 1− exp
{
−

∫ t

0
γ j(u)du

}
(2.10)

2.3.2 Relative survival: a special setting within competing risks

All the quantities described so far rely on the fact that the information on the event (cause
of failure/death) for each individual is available and reliable. This assumption is essential
when we want to estimate the aforementioned quantities (hazards, etc). In reality, most of the
data especially those coming from population-based registries, do not meet this assumption,
calling for alternative methodologies that could make cause-specific inferences even in the
absence of such data. Such alternative methodologies belong to the so-called relative survival
setting.

2.3.2.1 Quantities of interest in relative survival setting

The main quantities of interest in this setting are the excess hazard and the net survival.

Excess hazard In the relative survival setting, we use two sets of data: i) data on time to
death (without the COD information) from a cohort of patients with the disease of interest
and, ii) life tables where all-cause hazard functions (stratified by some demographic variables
z) are available [49, 47]. The life tables provide the population mortality hazards stratified
by these demographic variables or the conditional probabilities of dying within the next year
for each combination of values of the demographic variables [22].

Here, we make the main assumption that the observed hazard λO(t;x) based on the
(individual) covariates x can be decomposed as the sum of the (known) population mortality
hazard λP(t;z) (with z ⊆ x), and the mortality hazard that is attributed to the event of interest,
also called excess hazard λC(t;x) as

λO(t;x) = λC(t;x)+λP(t;z), (2.11)
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For this decomposition to hold, there are some assumptions that must be met. Firstly, the
mortality rates obtained from the life table and detailed according to demographic variables
must properly reflect the other-cause mortality hazard that patients would experience if they
were not diagnosed with the disease of interest (eg, cancer). In some specific situations,
this assumption may seem unrealistic and adaptation of the method may be needed [52].
Secondly, the population mortality obtained from the life tables includes the deaths from the
disease of interest. Assuming that the contribution of the disease of interest to the population
mortality rate is negligible, the aforementioned relationship still holds (in practice). Thus,
even if we remove the disease of interest from the population life tables, the mortality rates
would be hardly affected.

Net survival Net survival is defined as the probability of surviving in a hypothetical world
where the cancer under study is the only possible cause of death. It is useful for comparisons
across time or groups, within or between populations, where mortality hazards might differ,
because this measure does not depend on these hazards. For these reasons and properties,
net survival is the most commonly used measure when analysing population-based cancer
registries data [20, 1].

The net survival function of a patient i (S Ni(t)) is the survival derived from the excess
mortality hazard

S Ni(t) = exp
(
−

∫ t

0
λEi(u)du

)
where λEi is the excess mortality hazard for individual i. The marginal (cohort) net survival
is obtained then as the average of the individual net survival functions

S N(t) =
1
n

n∑
i=1

S Ni(t)

.
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2.3.3 Basic measures of interest in competing risks: hazard ratios

A hazard ratio is the main and often the only effect measure reported in most epidemiological
studies [33] when interest lies in providing covariates effects on a time to event outcome.
Depending on the aim of the study (eg, overall or competing risks analysis) and setting
(cause-specific or relative survival), the reporting hazards differ and so do the hazard ratios
reported. If the COD is available and reliable we may report either the cause-specific (HRcs)
and the subdistribution hazard ratios (HRsd), or opt for the hazard ratios on the excess hazard
(HRe), otherwise. HRcs and HRe are more suitable for studying the etiology of diseases,
whereas HRsd is more suited for predicting an individual’s risk or for allocating resources
[38]. The interpretation of these quantities is summarised as follows:
• HRcs denotes the relative change in the instantaneous rate of occurence of event of

interest in subjects who have not experienced any event up to that timepoint. The rate
of occurence of event reflects the intensity thus, the HRcs can be seen as a rate ratio
[9].
• HRsd reports the relative change in the instantaneous rate of occurence of event in

those individuals who are either event-free or have already experienced the competing
event. Although, this might be rather counter-intuitive, we might think of those who
experienced the competing event as a placeholder for those who cannot have the event
of interest [38].
• HRe is a rate ratio and denotes the relative change in excess hazard, which is linked to

the event of interest.
Interpreting covariate effects using either of these hazard ratios might be rather unintuitive

and communicating analysis results based on them to the wider public might be challenging.
A recent study [9] highlighted the confusion that exists especially in the case of the HRsd

where studies often fail to make correct inferences. Therefore, the need of summarising the
survival experience differently is important.

In a recent paper, we summarised a couple of interesting alternative metrics that might be
used either in all-cause or in relative survival setting [10]. In that paper (see Appendix A) we
talked about the following indicators: net survival; crude probability of death (cause-specific
cumulative probability); restricted mean net survival; conditional net survival probability;
and number of life years lost. In the next section, we focus on two of them, namely the
cause-specific cumulative probability (also called crude probability of death, CPr), and the
number of life years lost (LYL).
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2.3.4 Alternative measures of interest in competing risks

CPr and LYL are useful for a number of reasons which are listed below. First of all,
they allow the quantification of the progression to a specific event type after taking into
account that individuals can also progress to other events, which is of main interest when
analysing competing risks. Another interesting feature of these indicators is that they are
expressed in probability terms (CPr) and time units (LYL), allowing for easy interpretations,
and better communication with non-specialized audience. Furthermore, they can be both
easily extended from all-cause mortality setting to competing risks setting, without needing
additional assumptions. Lastly, they are accounting for the other causes of death and give
real-world results therefore, being useful complementary indicators to standard survival
measures (eg, net survival).

2.3.4.1 Cause-specific cumulative probability

In competing risks analysis we usually want to quantify the progression to a specific event
while taking into account the fact that an individual might experience also a competing
event [25]. The cumulative progression over time to the event of interest is known as the
cause-specific cumulative probability or cumulative incidence function (in cause-specific
setting) or as the crude probability of death (in relative survival setting). Here, we will refer
to this quantity with the abbreviation CPr regardless the setting.

The CPr is defined as the probability of death due to cause j in the presence of other
causes between time 0 and t as a function of time since diagnosis.

F j(t) = Pr[0 ≤ T ≤ t, J = j] (2.12)

The CPr is a subdistribution function, which is a non-decreasing function of time with
F j(∞) = Pr[J = j]. It has not a proper probability distribution, because it does not integrate
to unity.

In (all-cause) survival analysis where we do not distinguish between different event
types, this quantity is simply the complement of the survival function, ie F(t) = 1−S (t). In
competing risks, this relationship does not hold any more for the cause-specific cumulative
probability (F j) because CPr depends on the rate of occurrence of all competing events. In
the following sections, we will show how the CPr can be expressed via the cause-specific
hazard, the subdistribution hazard, and the excess hazard.

Using the cause-specific hazard function The probability that an event of type j occurs
at some point s is a product of two terms: the probability of surviving just before time
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s, P(T ≥ u−); and the probability of the event of type j to occur at time u given that the
individual did not experience any event before, λ j(u).

0 u t

event type j

other events

λ j(u)
P(T ≥ u−)

Fig. 2.3 Graphical illustration of the probability to progress to event j at time s [25].

Therefore, the cumulative incidence function at time t is defined as F j(t) = P(T ≤ t, J = j)
and may be expressed for continuous and discrete distributions as follows,

Continuous time

F j(t) =
∫ t

0
λ j(u)exp

−
∫ u

0

J∑
j=1

λ j(v)dv

du, j = 1, · · · , J (2.13)

Discrete time

F j(t) =
∑
tk≤t

[
d j(tk)
Y(tk)

]∏
ti≤tk


Y(ti)−

J∑
j=1

d j(ti)

Y(ti)

 , j = 1, · · · , J

where d j(t) denotes the number of observed events of type j at time t and Y(t) the number
of individuals at risk at time t.

The cause-specific cumulative probability can be estimated with the so-called Aalen-
Johansen estimator as

F̂ j(t) =
∫ t

0
Ŝ KM(u−)dΛ̂ j(u) (2.14)

where Ŝ KM is the Kaplan-Meier estimator and dΛ̂ j(u) is the increment of the Nelson-Aalen
estimator of the cause-specific cumulative hazard for cause j.

From what showed above, it is clear why there is not one-to-one relationship between
cause-specific hazard and cause-specific cumulative probability. This would require that
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the causes act independently, an assumption that cannot be tested and in most cases seems
unrealistic.

Using the subdistribution hazard function Unlike cause-specific hazard, the subdistri-
bution hazard is directly linked tothe cause-specific cumulative probability (CPr). More
specifically, CPr (F j(t)) for cause j is related to subdistribution hazard γ j(t) with the following
expressions

Continuous time

F j(t) = 1− exp
{
−

∫ t

0
γ j(s)ds

}
, j = 1, · · · , J (2.15)

Discrete time

F j(t) = 1−
∏
tk≤t

{
1−γ j(tk)

}
, j = 1, · · · , J

Consequently, estimating the cause-specific cumulative probability requires the estimation
of subdistribution hazard which in the discrete scale is calculated as

γ̂ j(t) =
d j(t)
r∗(t)

(2.16)

where d j(t) denotes the number of observed events of type j and r∗(t) is the modified risk set
(ie, risk set includes all individuals who have not experienced the event of interest and also
those who experienced the competing event).

Using the excess hazard function The excess hazard function can be seen as the counter-
part of cause-specific hazard in relative survival setting. Estimation of CPr using the excess
hazard is based on the adaptation of Aalen-Johansen estimator thud, CPr for the event of
interest (FE) is estimated in a similar style as shown here

F̂E(t) =
∫ t

0
Ŝ KM(u−)dΛ̂E(u) (2.17)
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where Ŝ KM(t) is the Kaplan-Meier estimator of the overall survival whilst the estimator of
the excess (disease-specific) cumulative hazard is calculated as

dΛ̂E(t) =

dN(t)−
n∑

i=1

Yi(t)dΛP(t,zi)

Y(t)

Similarly, CPr from other causes (FP) can be estimated as

F̂P(t) =
∫ t

0
Ŝ (u−)dΛ̂P(u) (2.18)

where

dΛ̂P(t) =

n∑
i=1

Yi(t)dΛP(t,zi)

Y(t)

In both formulae, dΛP(t) is obtained through dλP(t,zi), which is the population mortality
hazard that an individual i with covariates zi, i = 1, · · · ,n, is exposed to at time t. N(t) and
Y(t) are counting processes, where N(t) is the number of individuals who have experienced
an event of any type in [0, t], and Y(t) is the number of individuals who are still at risk at time
t [37, 7, 48].

2.3.4.2 Life years lost

The expected number of life years lost (LYL) due to a specific cause (for a given time
window) is a useful complementary indicator [2], allowing for an easier interpretation of the
results, which are expressed with units of time. In clinical settings, this indicator provides an
interesting insight on prognosis and treatment choice.

Without distinguishing death from different causes, the LYL before time τ (compared to
an immortal cohort [2], ie where nobody dies before time τ), may be expressed as

L(0, τ) = τ−
∫ τ

0
S (u)du

Graphically, this can be seen as the (shaded) area under the CPr (see Graph 2.4).
The total LYL can be further decomposed according to COD in the classical competing

risks setting as

L j(0, τ) =
∫ τ

0
F j(u)du (2.19)
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where F j(t) is the cause j-specific cumulative probability of death [2]. Therefore, following
the same analogy as before, this decomposition can be extended to relative survival setting
for both LYL due to cancer LC and due to other causes LP [10]:

LC(0, τ) =
∫ τ

0
FC(u)du, LP(0, τ) =

∫ τ

0
FP(u)du (2.20)

Graphically, these can be represented as follows. Suppose for simplicity we have 2 causes.
The CPr for both causes (here F1(t), F2(t)) could be presented on a “stacked” plot ie, F1(t)
and F1(t)+F2(t) are plotted against t (see Graph 2.5). The LYL from the first cause (L1(0, τ))
is the area under the lower curve between 0 and τ, whereas L2(0, τ) is the area between the
two curves and τ.
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Fig. 2.4 The shaded area (CPr) gives an estimate of the total number of life years lost.
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Fig. 2.5 Decomposition of the CPr according to causes. The coloured areas provide an
estimate of the life years lost according to each cause.
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Estimation of alternative survival
indicators using flexible regression
models (FRM)
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3.1 Introduction

Modelling the alternative indicators can be achieved either in a direct or indirect way through
cause-specific hazard (CSH), subdistribution hazard (SDH), or excess hazard (EH). CSH
and EH regression models are easy to fit and their parameter estimates have an easier
interpretation than SDH models (see Section 2.3.3).

In this chapter, we will focus on the estimation of alternative survival indicators with
cause-specific flexible regression models (FRM). FRM were firstly proposed by Remontet et
al. [51] and recently extended by Charvat et al. [16]. These models may be used to model the
all-cause, cause-specific, or excess hazard. We show how to employ these models in order to
estimate all the quantities that are needed for the estimation of CPr and LYL due to a given
cause.

From a technical aspect these models have quite interesting traits that allow from flexible
baseline hazards to non-linear and time-dependent effects. More specifically, they utilise
a cubic regression spline function of time in order to model the baseline hazard expressed
with linear terms with respect to the parameters. This feature gives a greater flexibility for
fitting data, owing to their continuous first and second derivatives, while they stay relatively
parsimonious in terms of parameters compared with splines using a higher polynomial degree
[46]. Also, splines may be used for other continuous explanatory variables allowing for
non-linear effects. Interactions between covariates and spline functions of time may be
included in the model as to account for time-dependent effects. Lastly, a possible hierarchical
structure of the data could be also dealt with these models by incorporating random effects at
cluster level [16].

In the next sections, we describe how we can employ these flexible regression models
in order to estimate the CPr and consequently, the LYL. After introducing the basic idea
underlying the flexible regression models in Section 3.2, the Section 3.3.1 describes the
method based on the cause-specific hazards when the COD is available and reliable, whereas
Section 3.3.2 covers the excess hazard case to allow the modelling in relative survival setting.
An indirect way of obtaining covariate effects using regression standardization [54] for both
indicators is also provided.

3.2 Flexible regression models: an overview

FRM describe the class of regression models that provide flexible modelling by incorporating
splines. These splines are functions of time that can be used to model the log baseline
hazard or to account for time-dependent covariate effects obtained as interaction terms
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between a covariate and a B-spline function of time. The B-spline basis used here is a special
parametrisation of a cubic spline [46]. A general formulation of these models can be written
as follows

λ(t,x) = exp
{
ρ0+

M+N∑
k=1

ρkxk︸           ︷︷           ︸
Constant part

+

L∑
l=1

βl0+

M+N∑
m=N+1

βlmxm

BSl(t)︸                                 ︷︷                                 ︸
Time-dependent part

}
(3.1)

where
• N variables are modelled with a constant effect and the M following are modelled with

a time-dependent effect;
• BSl(t) are the basis functions of time used for the baseline hazard and for the time-

dependent effect of covariates. Applying this model in R software with R package
mexhaz[Charvat and Belot] allows the user to choose between a variety of functional
forms; a) B-splines of degree 1 to 3 (in which case L is the sum of the degree of the
spline and the number of interior knots), b) restricted cubic B-splines (in which case L
is equal to 1 plus the number of interior knots), and c) piecewise constant functions,
where L equals to 1 plus the number of interior knots;
• ρ0 refers to the intercept of the model;
• the ρk’s (κ ∈ {1, · · · ,N}) correspond to time-independent regression parameters;
• the ρk’s (κ ∈ {N +1, · · · ,M+N}) refer to time-dependent regression parameters;
• βl0’s are regression parameters related to the spline modelling of the baseline hazard;
• βlm’s (m > N) are regression parameters corresponding to the modelling of time-

dependent effect of variables.
In the formula above (3.1) we used only splines that are functions of time. Similarly, we
could also use splines functions for covariates as to account for non-linear effects.

An example to help us conceptualise the aforementioned is the following. Let us suppose
we have a model where a quadratic B-spline with two knots is used for the baseline hazard
(ie, 4 basis functions). A proportional (time-independent) and a time-dependent variable
(here x1 and x2, respectively) are also included, leading to the following model

λ(t, x1, x2) = exp
{
ρ0+ρ1x1+ρ2x2+

4∑
l=1

βl0BSl(t)+ x2

4∑
l=1

βl2BSl(t)
}

= exp
{
ρ0+

4∑
l=1

βl0BSl(t)
}

︸                        ︷︷                        ︸
λ0(t)

exp
{
ρ1x1+

(
ρ2+

4∑
l=1

βl2BSl(t)
)

︸                 ︷︷                 ︸
f (t)

x2

}

= λ0(t)exp(ρ1x1+ f (t)x2)

(3.2)
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In this model we make the assumption that f is based on the same basis functions of time as
those used to model the log of the baseline hazard.

3.2.1 B-splines

The B-splines basis that is included in the model shown in the previous section, is a commonly
used spline basis that can be seen as a particular parametrisation of a cubic spline [46]. The
B-splines basis is based on the knot sequence

ξ1 ≤· · ·ξd ≤ ξd+1 < ξd+2 < · · · < ξd+K+1

< ξd+K+2 ≤ ξd+K+3 ≤ · · · ≤ ξ2d+K+2

where d is the degree and K is the number of knots. The sets ξd+2 := τ1, · · · , ξd+K+1 := τK

and ξd+1 := α,ξd+K+2 := b are the so-called “inner” and “boundary” knots, respectively [46].
For some degree d > 0, B-spline basis functions of degree d (denoted by Bd

k (t)) are defined
by the recursive formula as

Bd
k (t) =

x− ξk
ξk+d − ξk

Bd−1
k (t)−

ξk+d+1− x
ξk+d+1− ξk+1)

Bd−1
k+1(t), k = 1, · · · ,K +d+1

where

B0
k(t) =

1, ξk ≤ x < ξk+1

0, else

and B0
k(t) ≡ 0 if ξk = ξk+1. More information about B-splines and other types of spline

functions may be found in Perperoglou et al [46].

3.3 Estimation of the crude probability of death using the
FRM

3.3.1 In cause-specific setting

3.3.1.1 Research Paper I

The approach is presented in a paper which was published in Statistics in Medicine [36]. The
paper is detailing the cause-specific hazard models, their specification and the likelihood
function, and also shows how we can combine the cause-specific hazard models (from
all causes) in order to estimate the CPr’s from each cause at individual and population
level. A section on how to obtain the adjusted CPr’s is also included using regression
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standardization. This may be used to calculate the standardized risk differences, which
under certain assumptions may be interpreted as causal effects. This has the nice feature
of providing only a single number to summarise the exposure effect (at a given timepoint)
even in the case of complex modelling (eg, when using interactions, time-dependent effects
etc.). Although not covered in this paper, we advocate the use of similar approach for the
case of LYL. In this paper, we also performed a simulation study to evaluate the frequentist
properties of our approach in its ability to estimate the CPr. Two simulating scenarios
were explored accounting for proportional and non-proportional hazards. Three models
with different baseline hazards were explored as to assess the performance of models with
different flexibility. The impact of model misspecification was also investigated by omitting a
time-dependent effect in the scenario where the proportional hazards assumption was not met.
Results showed that the proposed method was performing quite well even under slight model
misspecification when allowing for enough flexibility in the baseline hazards. Moreover,
neglecting the time-dependent effect hardly affects the CPr estimates of the whole population
but impacts them in the various subgroups. An illustration on real data was also performed
using a dataset with time-to-occurrence of plasma cell malignancy or death (whichever comes
first) of individuals diagnosed with MGUS. Results obtained for the population were further
compared to the non-parametric estimates as to assess graphically the adequacy of the FRM
used. Lastly, a tutorial showing how to apply the method in the R software may be found in
Appendix C.
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In competing risks setting, we account for death according to a specific cause
and the quantities of interest are usually the cause-specific hazards (CSHs) and
the cause-specific cumulative probabilities. A cause-specific cumulative proba-
bility can be obtained with a combination of the CSHs or via the subdistribution
hazard. Here, we modeled the CSH with flexible hazard-based regression mod-
els using B-splines for the baseline hazard and time-dependent (TD) effects. We
derived the variance of the cause-specific cumulative probabilities at the popula-
tion level using the multivariate delta method and showed how we could easily
quantify the impact of a covariate on the cumulative probability scale using
covariate-adjusted cause-specific cumulative probabilities and their difference.
We conducted a simulation study to evaluate the performance of this approach
in its ability to estimate the cumulative probabilities using different functions
for the cause-specific log baseline hazard and with or without a TD effect. In
the scenario with TD effect, we tested both well-specified and misspecified mod-
els. We showed that the flexible regression models perform nearly as well as the
nonparametric method, if we allow enough flexibility for the baseline hazards.
Moreover, neglecting the TD effect hardly affects the cumulative probabilities
estimates of the whole population but impacts them in the various subgroups.
We illustrated our approach using data from people diagnosed with monoclonal
gammopathy of undetermined significance and provided the R-code to derive
those quantities, as an extension of the R-package mexhaz.

KEYWORDS

cause-specific hazards, competing risks, cumulative incidence function, cumulative probability of
death, flexible parametric models

1 INTRODUCTION

In survival analysis, the one-to-one relationship between the risk of an event (probability scale) and the rate at which the
event occurs (hazard scale) is well known when studying a single event/cause. This is a key feature in hazard regression
models in order to examine how covariates affect the survival probability.1 Thus, assuming that the survival time t of an
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individual can be described by a positive random variable T with probability density function f, the cumulative distribution
function F is defined as F(t) = P(T ≤ t) = ∫ t

0 𝑓 (u)du = ∫ t
0 𝜆(u)S(u)du, where S(t) = P(T > t) = 1 − F(t) is the survival

probability and 𝜆(t) is the hazard function.
However, in the competing risks setting where more than one cause are acting, the (total) hazard is the sum of all

cause-specific hazards (CSHs) 𝜆(t) =
∑J

𝑗=1 𝜆𝑗(t), where the cause j-specific hazard 𝜆j represents the rate of failure from
cause j per time unit for individuals who are still at risk.2,3 The cumulative probability of dying from a particular cause until
time t in the presence of all other causes (also called the cumulative incidence function) depends on all the CSHs

F𝑗(t) = P(T ≤ t,Cause = 𝑗) =
t

∫
0

𝜆𝑗(u)S(u)du,

where S is the overall survival (ie, from all causes), S(t) = exp
(
− ∫ t

0
∑J

𝑗=1 𝜆𝑗(u)du
)

. As a result, the one-to-one relationship
between the rate and the risk for a given cause is now lost, since in this case, the risk of a given cause is affected by all CSHs.
Therefore, a covariate effect in a CSH model cannot be directly translated to an effect on the cause-specific cumulative
probability.4,5

Nevertheless, the cause-specific cumulative probability is of great interest in competing risks case since it quantifies
the cumulative probability (risk) in the presence of other causes,6,7 thus being a useful overall measure of prognosis
for the patients.8 Cause-specific cumulative probabilities can be estimated nonparametrically using the Aalen-Johansen
estimator3,7 or the so-called subdistribution hazard with the Fine and Gray model.3,9 However, our focus here is on its
estimation via CSH regression models as this approach allows the estimation of both CSHs (rate) and cause-specific
cumulative probabilities (risk). CSH regression models are quite useful because they are easy to fit (since we only need
to censor for the competing event),4 and unlike models on subdistribution hazard, they give a simple interpretation of
parameter estimates: CSH ratios measure the impact of the risk factors on the rate that correspond to a given cause of
death.10 Moreover, there is a wide variety of models that we can apply, which range from the simple Cox proportional
hazards models11 to the more sophisticated flexible regression models including time-dependent (TD) effects.12 Lastly,
another advantage of modeling on the CSH scale is the possibility to estimate easily the covariate-adjusted cause-specific
cumulative probabilities,13,14 which can be used to further calculate standardized risk differences.

In this paper, we focus on the use of flexible regression models for the CSH. Section 2 details how to obtain individual-
and population-level smooth estimates of the cause-specific cumulative probabilities, along with their variances, using
the parameter estimates from CSH models. We also explain how this approach can be easily employed for deriving directly
adjusted cause-specific cumulative probabilities. In Section 3, we provide results from a simulation study assessing the
performance of the approach in its ability to estimate the cause-specific cumulative probabilities, depending on whether
the proportional hazard assumption for one CSH is correct or not. In Section 4, we provide an illustrative example using
data from individuals diagnosed with monoclonal gammopathy of undetermined significance (MGUS) that are provided
in themgus2 dataset from the R-packagesurvival. Finally, we discuss the results and present ideas for further research.

2 METHODS

2.1 Flexible hazard-based regression model
2.1.1 Cause-specific hazard model
The regression model used for the CSH is defined on the log-hazard scale. It was first described by Remontet et al15

and recently extended by Charvat et al.16 In its general formulation, this model uses B-spline functions for modeling
the logarithm of the baseline hazard parameters 𝜸j and the time-dependent (cause j)-specific hazard ratios 𝜶j(t) for the
corresponding vector of covariates x. Thus, the model for the (logarithm of) the (cause j)-specific hazard may be written as

log[𝜆𝑗(t, x; 𝜷𝑗)] = log(𝜆0(t; 𝜸𝑗)) + x⊤𝜶𝑗(t),

where 𝜷 j is a vector of parameters, which includes the parameters for (i) the baseline hazard and (ii) the time-dependent
(cause j)-specific hazard ratios, ie, 𝜷𝑗 = (𝜸⊤𝑗 ,𝜶

⊤
𝑗 )

⊤. We advise the reader to refer to section 2.1 in the work of Charvat et al16

and the references mentioned therein for more details on splines and knots selection.
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2.1.2 Likelihood function
For an individual i, denote by ti the observed follow-up time, 𝛿i the failure indicator (0 for censoring and 1 for death), ji the
type of event among J different types (set ji = 0 for censored times), and xi a vector of covariates. Therefore, our sample
may be defined as {ti, 𝛿i, 𝑗i, xi}, i = 1, … ,N.

In a competing risks setting with J different causes, and assuming a random censoring mechanism, the likelihood
function may be written as2,17

N∏
i=1

[𝜆𝑗i(ti, xi)]𝛿i S(ti, xi) =
J∏

𝑗=1

N∏
i=1

[𝜆𝑗(ti, xi)]𝛿i𝑗 exp
⎛
⎜⎜⎝
−

ti

∫
0

𝜆𝑗(u, xi)du
⎞
⎟⎟⎠
, (1)

where 𝛿ij is equal to 1 if cause j was observed to happen at time ti, and 0 otherwise.
The likelihood can be factorized as the product of J cause-specific likelihood as defined in the right-hand side of for-

mula 1. Therefore, one can fit a hazard-based regression model for cause j on the observed data for statistical inference,
treating all failure times other than j as censored without relying on any assumption of independent competing risks.1,3

By doing so, the contribution to the log-likelihood for individual i when estimating the (cause j)-specific hazard is

l𝑗i (𝜷𝑗) = −

ti

∫
0

𝜆𝑗(u, xi; 𝜷𝑗)du + 𝛿i𝑗 log
[
𝜆𝑗(ti, xi;𝜷𝑗)

]
. (2)

2.2 Estimation of the cumulative probabilities of death from each cause
We show in the following how we estimated the cumulative probability of death for each cause, after plugging-in the esti-
mated parameters of the CSH models. We start with the estimation for a given set of observed covariates (individual-level
predictions) and then move on to the estimation of the cumulative probabilities of death from each cause in the whole
population. To simplify the notation without loss of generality, we consider only two different causes, denoted as j and 𝑗.

2.2.1 Individual-level prediction of the probability of death from a given cause
Point estimates
To estimate Fj at time t for an individual i with an observed vector of covariates xi, the CSHs need to be combined. We
use the (cause j)-specific vectors of parameters 𝜷𝑗 of length pj and define the total vector of parameters, 𝜷 = (𝜷

⊤
𝑗 , 𝜷

⊤
𝑗 )⊤ of

length m = p𝑗 + p𝑗 .

F̂𝑗

(
t, xi; 𝜷

)
=

t

∫
0

S
(

u, xi; 𝜷
)
𝜆𝑗

(
u, xi; 𝜷𝑗

)
𝑑𝑢

=
t

∫
0

exp
⎛
⎜⎜⎝
−

u

∫
0

𝜆𝑗
(
𝜈, xi; 𝜷𝑗

)
+ 𝜆𝑗

(
𝜈, xi;𝜷𝑗

)
𝑑𝜈

⎞
⎟⎟⎠
𝜆𝑗

(
u, xi;𝜷𝑗

)
𝑑𝑢

=
t

∫
0

S𝑗

(
𝜈, xi;𝜷𝑗

)
S𝑗

(
𝜈, xi; 𝜷𝑗

)
𝜆𝑗

(
u, xi; 𝜷𝑗

)
𝑑𝑢

(3)

Variance
The variance of the cause-specific cumulative probabilities is derived via the multivariate delta method. The delta method
is a general approach that allows to approximate the variance of a differentiable function 𝜙 of the estimated parameters as

Var
[
𝜙
(
𝜷
)]

≈
[
∇𝜙(𝜷)|𝜷=�̂�

]⊤
Σ𝜷

[
∇𝜙(𝜷)|𝜷=�̂�

]
,

where 𝚺𝜷 is the parameters covariance matrix and ∇𝜙 is the gradient of 𝜙, ie, the vector of first derivatives of 𝜙.

∇𝜙(𝜷)|𝜷=�̂� =
(
𝜕𝜙
𝜕𝛽1

(
𝜷
)
, … ,

𝜕𝜙
𝜕𝛽p

(
𝜷
))⊤
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So, in our case, the variance of Fj at time t for the vector of covariables x and based on the vector of estimated parameters
𝜷 would be approximated by

Var
[

F𝑗

(
t, x;𝜷

)]
=
[
∇F𝑗

(
t, x;𝜷

)
|𝜷=�̂�

]⊤
Σ̂𝜷

[
∇F𝑗

(
t, x; 𝜷

)
|𝜷=�̂�

]
.

Details on how to derive this quantity can be found in Appendix 1.B.
It is possible to obtain the approximate 100 ∗ (1 − 𝛼)% confidence interval of 1 − Fj(t, x; 𝜷) based on the (approximate)

normality assumption as

Var
[
log

(
− log

(
1 − F𝑗(t, x; 𝜷)

))]
=

Var
[
1 − F𝑗(t, x; 𝜷)

]
(
log

(
1 − F𝑗(t, x; 𝜷)

) (
1 − F𝑗(t, x; 𝜷)

))2 , (4)

where Var[1 − Fj(t, x; 𝜷)] = Var[Fj(t, x; 𝜷)]. We opted to estimate the approximate confidence intervals based on the
complementary of Fj in order to avoid problems in the denominator due to small probabilities coming as a result of rare
events or for probability inference shortly after diagnosis.

After backtransforming, the approximate 100 ∗ (1 − 𝛼)% confidence intervals can be estimated as

F𝑗(t, x;𝜷)Ω, (5)

where Ω = {exp{±z𝛼Var[log(− log(F𝑗(t, x; 𝜷)))]}} and z𝛼 is the (1-𝛼∕2) quantile of the standard normal distribution.

2.2.2 Population-level prediction of the probability of death from a given cause
Point estimates
To obtain the population value of the cumulative incidence function for cause j at time t, we need to compute the average
of the N individual predicted cumulative probabilities of death from cause j.

F̂P
𝑗 (t; 𝜷) =

1
N

N∑
i=1

F̂𝑗(t, xi; 𝜷)

Variance
The key point here is to account for the correlation of the N individual-predicted cumulative probabilities because they
were obtained from the same vector of estimated parameters 𝜷.18,19 By applying the multivariate delta method, we obtain
a variance estimation of the population value

Var
[
FP
𝑗 (t; 𝜷)

]
= w⊤

[
∇FMat

𝑗 (t; 𝜷)|𝜷=�̂�
]⊤
Σ̂𝜷

[
∇FMat

𝑗 (t; 𝜷)|𝜷=�̂�
]

w,

where w is a column vector of N weights (in our case, all equal to 1∕N), and ∇FMat
𝑗 (t, 𝜷) is a (m × N) matrix

∇FMat
𝑗 (t; 𝜷) =

(
∇F𝑗(t, x1; 𝜷)|𝜷=�̂� , … ,∇F𝑗(t, xN ; 𝜷)|𝜷=�̂�

)
,

with its elements defined in formula 4 of Appendix 1.B. The 100 ∗ (1 − 𝛼)% confidence interval is obtained using
formulae 4 and 5.

2.2.3 Adjusted cumulative probability of death from cause j and their difference
Using our approach, we can extend the idea of adjusted survival curve14,19-22 to the competing risks setting for providing
the adjusted cumulative probability of death estimates from a given cause FAdj

𝑗 .23 It would provide a quantity that is directly
standardized to the empirical distribution of the covariates observed in the study24 and may be further used to calculate
the standardized risk difference.25 FAdj

𝑗 is useful when there is an effect of interest, eg, treatment, and the treatment groups
are imbalanced with respect to factors influencing the CSH.14 Another advantage is that we can quantify the effect of a
specific covariate of interest on the probability scale (cumulative incidence). Although the covariate effect on the CSH is
not directly linked to the probability scale, with the adjusted probabilities it is possible to translate the covariate effect on
the probability scale by quantifying both the “direct” effect of a variable on the CSH of interest, as well as the “indirect”
effect of this variable on the competing hazard.26
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To compute the FAdj
𝑗 , we predict the Fj for each individual using their observed covariates (except for the variable we

are interested in, which is set to a specific value), and then, we average the estimates.19 For example, if the use of a specific
drug (say, A or B) is the exposure of interest, then we can construct hypothetical populations where all individuals keep
their characteristics z (z ⊂ x) as observed except that the drug is set to drug K = {A,B}.

FAdj
𝑗 (t,Drug = K, z) = 1

N

N∑
i=1

F̂𝑗(t,Drug = K, zi)

By taking the difference between FAdj
𝑗 (t,Drug = A, z) and FAdj

𝑗 (t,Drug = B, z), we can quantify the average treatment
effect on probability scale as

D(t; 𝜷) = E
[

FAdj
𝑗 (t,A, z;𝜷) − FAdj

𝑗 (t,B, z;𝜷)
]
= E

[
FAdj
𝑗 (t,A, z;𝜷)

]
− E

[
FAdj
𝑗 (t,B, z;𝜷)

]
. (6)

The 100 ∗ (1 − 𝛼)% confidence interval is obtained as D̂(t)± z𝛼
√

Var(D̂(t)), where

Var[D(t; 𝜷)] = w⊤
[
∇D(t; 𝜷)Mat

|𝜷=�̂�

]⊤
Σ̂𝜷

[
ΔD(t;𝜷)Mat

|𝜷=�̂�

]
w.

For more information on the variance calculation, the reader is referred to Appendix 1.C.
The same procedure can be repeated for the other cause 𝑗, and more generally, we can get as many estimands as the

number of competing events in the data.26 We can also apply this direct standardization process to a subsample of the
entire population (eg, the treated) if the interest is on standardizing only on the treated individuals or even use an external
(reference) population.

2.3 Implementation
To implement those theoretical quantities, we made some choices presented in the following.

Firstly, the log-likelihood (formula 2) cannot be evaluated analytically because the integral defining the cumulative
hazard, ∫ ti

0 𝜆𝑗(u, x)du, does not have a closed analytical form. In our approach, we used the Gauss-Legendre (G-L) quadra-
ture, which is a numerical integration technique that approximates the integral of a function defined in [−1, 1] with a
weighted sum using K pre-specified weights and nodes. By applying a simple change of variable, we can approximate the
integral of a function g on any bounded domain [a, b] on which it is defined by using the following formula:

b

∫
a

g(t, x)dt ≈ b − a
2

K∑
k=1

wK
k g

(
a + b

2
+ b − a

2
zK

k , x
)
,

where wK
k and zK

k are the weights and abscissas for the K-point G-L rule, respectively. We used the G-L quadrature to
calculate the cumulative hazards in formula 2, and the maximum likelihood estimates were obtained using a Newton-type
algorithm for the optimization (function nlm in R).

Because we estimated the parameters separately for each cause, we ended up with a m × m block diagonal covariance
matrix 𝚺𝜷 with two blocks Σ̂𝜷 𝑗

and Σ̂𝜷 𝑗
corresponding to the covariance matrix returned from each CSH model.

The cause-specific flexible hazard regression models were fitted using the R-package mexhaz with some additional
R-functions programmed in R. The R-code to implement our approach for the data used in the illustrative example is
provided in Appendix 2.

3 SIMULATION STUDY

We performed a simulation study to evaluate the frequentist properties of our approach based on flexible regression
models for the CSH in its ability to estimate the cumulative probabilities of death from each cause. To quantify the
impact of neglecting a TD effect on the estimation of the cause-specific cumulative probabilities, we simulated two sce-
narios: scenario 1 where the proportional hazards assumption is met and scenario 2 where a TD effect was simulated
on the cancer-specific hazard. We also evaluated the coverage properties of the detailed confidence intervals using the
multivariate delta method for the cumulative probabilities at population level.
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3.1 Data generation and simulation design
For each scenario, we simulated nsim = 500 datasets with sample size of N = {300, 1000}. Each individual was assigned a
vector of three covariates that included information about sex, year of diagnosis, and age at diagnosis. Sex was simulated
as a binary covariate drawn from a Bernoulli distribution with probability 0.5 in scenario 1 and 0.3 (of being a woman) in
scenario 2. This choice was made based on the fact that a TD effect of sex was simulated in scenario 2 and an unbalanced
distribution of sex would be more appropriate in order to test the performance of the method. Year of diagnosis was sim-
ulated as a continuous variable and sampled from a uniform distribution, ranging from 2000 to 2003. Age was simulated
as a continuous variable by first selecting an age class according to predefined probabilities (0.25 for age class [30, 65),
0.35 for age class [65, 75), and 0.40 for age class [75, 80)) and then sampling from a class-specific uniform distribution.17

The two scenarios tried to mimic typical real situations for colon cancer patients. We generated two independent
simulating processes as to account for two causes, namely, death from colon cancer and death from other causes.

We chose a Generalized Weibull distribution with parameters (𝜅, 𝜌, 𝛼) for the cancer-specific survival time (TC), and
we used the inverse probability transform method.17,27 For individual i, the cancer-specific hazard used to simulate TC
in scenario 1 was defined as 𝜆C(t,Agei, Sexi) = 𝜆0(t) exp

{
𝛽AgeAgei + 𝛽SexSexi

}
where 𝜆0(t) = 𝜅𝜌𝜅 t𝜅−1

1+ (𝜌t)𝜅
𝛼

. In scenario 1, the

parameters (𝜅, 𝜌, 𝛼) for the baseline hazard were equal to (2, 1.2, 0.1), and the values used for the covariate parameters
were 𝛽Age = 0.03 (for 1 year increase) and 𝛽Sex = 0.3. In scenario 2, we used a sex-specific baseline hazard (which leads
to a TD effect of sex), with the simulated parameters (𝜅, 𝜌, 𝛼) set to (2, 0.4, 0.2) for men and (2, 0.3, 0.2) for women, with
𝛽Age = 0.03 (for 1 year increase) for both sexes.

The time to death from other causes (TC̄) was simulated assuming a piecewise exponential distribution with the rates
coming from the population mortality rates obtained from the UK age- and sex-specific life tables. We set the adminis-
trative censoring time (C) at 10 years and a separate distribution for the dropouts following an exponential distribution
(𝜆d = 0.035) as to account for approximately 15% of people lost to follow-up, while the total amount of censoring in each
dataset was on average around 38%. The final survival time (T) was obtained as T = min(TC,TC̄,C). A vital status indi-
cator 𝛿 was created, 𝛿 = 0 for individual censored at T, and 𝛿 = 1 for those being dead at time T (whatever the cause).
Additionally, the cause of death j was denoted as j = 1 for death from cancer and j = 2 for death from other causes.

The true values F̃C(t) and F̃C̄(t) of the cumulative probabilities of death from cancer and from other causes were
obtained at time t = 1, 5, 10 years, calculated using the G-L quadrature. Although we assumed the same covariate distri-
bution in both simulations (N= 300 and N= 1000), the true values differ slightly because they rely on different simulated
individuals.

3.2 Analysis of simulated data
The simulated data were analyzed with a nonparametric method and with the flexible regression models for the log of the
baseline hazard. In scenario 1, we tested two flexible regression models for the logarithm of the cancer-specific hazard:
(a) a model with a quadratic B-spline baseline hazard function and knots at 1 and 5 years and (b) a model with cubic
B-spline baseline hazard function with same knots. The explanatory variables in both models were age at diagnosis and
sex. We omitted the year of diagnosis since we did not simulate an effect on the cancer-specific hazard (its range was very
small and it was mainly used to retrieve the population mortality rates from the UK life tables). In scenario 2, we used
the same models as in scenario 1 (models (a) and (b)) but also an additional model (model (c)) that had a cubic B-spline
for the baseline hazard function (with two knots at 1 and 5 years) and a TD effect for sex, which was modeled also with a
cubic B-spline with two knots at 1 and 5 years. The knots were located at these points based on our previous experience
analyzing cancer survival data.28,29 The model for the hazard of other causes was kept in all cases the same, with a baseline
hazard modeled with a quadratic B-spline with one knot at 1 year.

We assessed the performance of the aforementioned methods in their ability to estimate the probabilities of death from
cancer and death from other causes at t = {1, 5, 10} years after diagnosis. We calculated the following quantities: (i) the
bias, defined as the difference between the average of the nsim = 500 estimated values and the true value 𝜃: 1

nsim

∑nsim
i=1 �̂�i−𝜃;

(ii) the relative bias, expressed as the bias divided by the true value and multiplied by 100; (iii) the empirical standard error√
1

nsim−1

∑nsim
i=1 (�̂�i − �̄�)2 where �̄� =

∑nsim
i=1 �̂�i; (iv) the model standard error

√
1

nsim

∑nsim
i=1 V̂ar(𝜃i); (v) the root mean squared

error (RMSE)
√

1
nsim

∑nsim
i=1 (�̂�i − 𝜃)2; and (vi) the coverage probability that is the proportion of samples in which the 95%

confidence interval included 𝜃.
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Our computations were performed in R 3.2.0. We used the nonparametric method for the cumulative probability pro-
vided by R-package cmprsk (version 3.4.2, function cuminc), while flexible parametric models were estimated using
R-package mexhaz (version 1.5, function mexhaz).

3.3 Results
Performance on the whole population
Although sample size did not seem to affect the general performance of the method in scenario 1, density plots
(see Figure A1.4) showed that the models that were applied to bigger sample size datasets resulted in more accurate esti-
mates as expected. In all methods, the relative bias and the RMSEs were very low, the model standard errors (ModSE)
were quite close to the empirical ones (empSE), and the majority of the coverage probabilities were within the acceptable
coverage probability range ([0.931, 0.969])30 (see Table 1). Exception to that is model (a) at the 1st year for the 1st cause.
This could be explained by the fact that the model with a quadratic B-spline was not flexible enough and the estimated
baseline hazard could not approximate adequately the sudden peak of the simulated baseline hazard during the 1st year
(see Figure A1.1).

In scenario 2, where a TD effect of sex was simulated, models (a) and (b) were misspecified, while model (c) was prop-
erly specified. Interestingly, all methods performed well in terms of overall performance on the whole population. In
all cases, relative bias was low, empSE was very close to the ModSE, and RMSEs were all quite similar for a given time
(see Table 2). Estimates were nicely spread around the true values regardless of the sample size used, while higher accuracy
was achieved when sample size was equal to 1000 (see Figure 1).

We also tested whether a change in the knot location would affect the results. Therefore, we applied an additional model
to each scenario, with the same specification as model (b) for scenario 1 and model (c) for scenario 2, but with the only
difference being the knot location. The knots were corresponding to the 33rd and the 66th percentile of the time-to-cancer
distribution, meaning that, for each dataset, there was a different set of two knots. The results for the new models (model
(b′) and model (c′)) can be found in Table A1.3. Although differences compared to model (b) and model (c) were minor,
we observed that the relative bias in the new models was in most cases less than 1% for each cause and at each time point,
leading to more accurate results.

Performance on subgroups
It is also interesting to look at the sex-specific estimates and how these were affected by (i) model misspecification and
(ii) the distribution of sex (men/women: 201/99 for N = 300 and 703/297 for N = 1000). Results found in Tables A1.1
and A1.2 show the performance of flexible parametric models separately in men and women. In the misspecified models
(model (a) and model (b)), women were affected more than men especially in the earlier times regardless the sample size
used. This was true for men only when the sample size was equal to N = 1000. These results can be explained by the
incapability of the models to estimate the baseline hazards adequately in the earlier times where a sudden peak occurred
(see Figure A1.2 and Figure 2).

However, even with model (c), there was an occasion where the coverage probability at the 5th year for the 1st cause in
case of women was slightly worse than expected when N = 300 (Table A1.2). According to Figure A1.3, the estimates of the
baseline hazard in the top right panel were rather unstable after the 4th year (although the median is in good agreement
with the true), which can explain why we observed this poor coverage. With bigger sample sizes similar problems were
not observed.

In summary, neglecting the TD effect for sex did not affect much the population estimates but it did affect the sex-specific
estimates. Also, the effect of sex estimated with model (b) was overestimated in the beginning and underestimated after
2 years, whereas with model (c), the estimated effect was approximating well the true one (see Figure A1.3).

4 ILLUSTRATIVE EXAMPLE

We used the mgus2 dataset from the R-package survival to illustrate our approach. The dataset contains the
time-to-occurrence of plasma cell malignancy (PCM) or death whichever comes first of individuals diagnosed with MGUS.
By treating the progression to PCM as an absorbing state, we defined a competing risks setting that allowed subjects to
make a single transition to one of two terminal states. Our goal was to estimate the cumulative probabilities of progressing
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FIGURE 1 Empirical distribution of the 500 parameter estimates of cumulative probabilities for each model and each cause at
3 timepoints: 1, 5, and 10 years in scenario 2. Vertical lines denote the true values. Model (a) has a quadratic B-spline baseline function and
knots at 1 and 5 years, whereas model (b) has a cubic B-spline baseline function with the same knots. The explanatory variables in FPM
models were age and sex. Models (b) and (c) have the same baseline function (cubic B-spline with knots at 1 and 5 years), but model (b) has a
fixed effect for sex, whereas model (c) has a TD effect for sex, which is modeled with a cubic B-spline with two knots at 1 and 5 years

to PCM and of death—while not having progressed to PCM—according to age at diagnosis (age), sex, and the size of the
monoclonal serum splike (mspike). The R-code to implement the following is explained and provided in Appendix 2.

From the 1384 people originally in the dataset, we removed 11 patients with missing values for the variable mspike.
We observed 115 patients who progressed to PCM and 854 deaths among 627 females and 746 males. For each cause, we
applied 8 models depending on whether time-fixed or TD effects for each of the three variables were included, and the
baseline hazard was modeled with a cubic spline with two knots located at the 33rd and the 66th percentile of the distribu-
tion of times to event (without distinguishing the type of event). We selected the best model using the Akaike Information
Criterion. From the retained CSH regression models, we estimated the cumulative probability of progressing to PCM and
the cumulative probability of death, and we compared those model-based predicted probabilities to the nonparametric
estimates, using the cuminc function of the R-package cmprsk.

For the event PCM, the selected model assumed a time-fixed effect for the three variables, while for death a TD effect
was retained only for age. The model-based estimates of the cumulative probabilities of progressing to PCM and non-PCM
death are in very good agreement with the nonparametric estimates (Figure 3). We also quantified the effect of sex on the
cumulative probability scale. To do so, two hypothetical populations were created, one where all patients were considered
as women and another where all patients were considered as men, while keeping the other variables as observed. The new
hypothetical populations had the same sample size with the initial dataset. We predicted the cumulative probabilities of
progressing to PCM and non-PCM death and plotted the probabilities for both populations along with the standardized
risk difference due to sex for each cause (Figure 4). For progression to PCM, we observed a higher adjusted cumulative
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FIGURE 2 Simulated and estimated baseline hazard functions in scenario 2 with sample size of N = 1000. In each panel, the bold solid
curve represents the simulated baseline hazard function, the gray curves represent the 500 cause-specific spline estimates, and the dashed
curve represents the mean of these 500 estimates. Model (a) has a quadratic B-spline baseline function with knots at 1 and 5 years, whereas
model (b) has a cubic B-spline baseline hazard function with the same knots. The explanatory variables in both models were age and sex.
Models (b) and (c) have the same baseline function (cubic B-spline with knots at 1 and 5 years). Models (a) and (b) have a fixed effect for sex,
whereas model (c) has a TD effect for sex, which is modeled with a cubic B-spline with two knots at 1 and 5 years

probability in women (7% (95% CI:[5;9]) vs 6% (95% CI:[5;8]) at 10 years and 14% (95% CI:[11;18]) vs 10% (95% CI:[8;14]) at
30 years), while for death, we observed that the adjusted cumulative probability was higher in men (59% (95% CI:[56;62])
vs 47% (95% CI:[44;50]) at 10 years and 84% (95% CI:[80;87]) vs 77% (95% CI:[71;82]) at 30 years). The corresponding
time-varying differences of adjusted cause-specific probabilities between women and men are also displayed (Figure 4,
bottom panels).

5 DISCUSSION

This work presented a way of estimating the cumulative incidence function through flexible regression models for the
CSH. Once the regression coefficients of the CSH models have been estimated, one can derive individual or population
estimates of the cause-specific cumulative probabilities, with their corresponding variance accounting for the correla-
tion between individuals predictions.19 We also showed how to derive directly adjusted cumulative probabilities for each
competing event, in the same spirit of directly adjusted survival curves. Even though we exemplified our approach in the
context of two CSHs, it may be easily extended to situation with more than two competing events.

In the competing risks setting, it is advised that we report both quantities due to the lack of one-to-one relationship
between rates and risks.31 Indeed, a covariate may be strongly associated with one CSH while showing a fairly small effect
on the cause-specific cumulative probability (and vice versa). The cumulative probability for one cause is affected
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FIGURE 3 Cumulative probability of PCM and cumulative probability of death without malignancy over time (with the 95% confidence
intervals), estimated using the nonparametric approach (solid lines) and our approach based on the flexible CSH models (dashed lines). The
table below the graph indicated the number of subjects at risk as well as the cumulative number of each type of event [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 4 Adjusted cumulative probabilities of PCM (left top panel) and to death without malignancy (right top panel) for men and
women, and standardized risk difference due to sex (women-men) for PCM (left bottom panel) and death without malignancy (right bottom
panel) [Colour figure can be viewed at wileyonlinelibrary.com]
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by the CSHs of all competing events and unlike subdistribution hazard models, we need to define the same number of
models as the number of competing events observed in our data. On the other hand, the Fine and Gray approach based on
subdistribution hazard modeling allows for a direct prediction of the cause-specific cumulative probability although care
is needed when interpreting the subdistribution hazard ratios.10 Using our approach and the directly adjusted cumulative
probability, we can visualize and quantify (with the standardized risk difference) how the combination of the direct effect
(on the CSH of interest) and the indirect effect (on the CSH of the competing event) of a given variable translates to the
cumulative probability scale. It should be highlighted that CSH modeling in a competing risks analysis does not rely on
the assumption that the competing risks are independent3; this assumption is not really needed for inference purposes.1

Flexible regression models for the CSH have been used to estimate the cumulative probabilities for different causes12

using models defined on the cumulative (cause-specific) hazard scale that can accommodate both nonlinear (use of
splines) and TD effects of covariates.16 We proposed in our approach to stick to the instantaneous hazard scale as we believe
this scale is more familiar to researchers analyzing time-to-event data.32 Individual predictions of the cumulative proba-
bilities can be derived using parameters estimated with regression models,12 and we extended here those predictions to
population-level estimates, while accounting for the correlation of individuals predictions obtained from the same set of
regression parameters. Although nonparametric approaches are frequently used when population estimates are of inter-
est, covariate effects on CSH and predictions for a given covariate pattern are additional advantages flexible regression
models are bringing in.

We evaluated the ability of our approach in a simulation study and showed that our flexible model-based approach per-
forms well. We simulated two competing events using one specific distribution for cause 1 and demographic life tables
for cause 2. Although we could have defined two parametric distributions (one for each cause), we decided to choose this
specification in order to resemble a real data situation, ie, where cancer could be one of the causes following a known
distribution and other causes is the competing event (coming from the general population mortality) to describe non-
cancer deaths. Our conclusions from the simulations are summarized as follows. Model estimates using cubic B-splines
outperformed the less flexible models (using quadratic B-splines); they captured the shape of the cancer-specific hazard
better and gave more accurate estimates of the cumulative probabilities. Moreover, including a TD effect of sex gave bet-
ter sex-specific cumulative incidence estimates, while the omission of such TD effect was mainly impacting those shortly
after the time of diagnosis (where the baseline hazard showed a rapid increase), but not considerably the overall popu-
lation estimates. Comparing the time-fixed and time-varying cancer-specific hazard ratios (Figure A1.3) confirmed this
observation. Also, the multivariate delta method, used to derive the confidence intervals, provides a reliable method for
in-population estimation, with the requisite coverage probability properties. Regarding the sensitivity of the results to
the number and position of the knots, previous work using empirical comparisons has shown that the cumulative prob-
ability is not affected by a sensible modification (eg, using the quantiles of the time-to-event distribution to define their
location).12,33 Indeed, we examined two additional models, which used the tertiles of the time-to-event distribution rather
than fixed knots (at the 1st and 5th years). Using tertiles gave similar conclusions to the fixed knot model, with the only
notable difference being in most cases a slight decrease in relative bias, when using tertiles.

When analyzing the simulated data, we adjusted for the covariates age at diagnosis and sex, which were both associated
to the two CSHs used in the simulation. Thus, we did not use any model-building strategy, and as far as we know, there is
still no consensus regarding the “best” way to select the appropriate variable to adjust for, while accounting for complex
nonlinear and TD effects.34-36 Using a model-building strategy for the CSH would call for refined methodology (such as
bootstrap) when evaluating the variance of cumulative incidence functions.37-39 Nevertheless, adjusting for confounders
on the CSH of the competing event has been proved to be important even though the main interest is on the primary
outcome.26 In the application, we relied on the Akaike Information Criteria to select the regression models for the CSHs,
which provide the best fit to the data. We used cubic B-splines for the baseline hazards with two internal knots corre-
sponding to the 33rd and 66th percentiles. We obtained the smoothed cumulative incidence estimates that nicely matched
the nonparametric ones. Using our approach, we also provided the adjusted cumulative probabilities of PCM and death in
order to quantify the effect of sex in each cause, which would have been difficult to identify given the complicated nature
of the cumulative probabilities.

In summary, our approach based on flexible CSH regression models demonstrated nice frequentist properties in esti-
mating the cumulative probability for each cause. Estimation of the cumulative probabilities of death from each cause
along with the CSH estimates provides a very useful insight of the underlying mechanisms of the competing events. We
also presented a simple way of displaying and quantifying the overall (direct and indirect) impact of a variable on the
cumulative probability of death from each cause through direct adjusted probability estimates. The R-code associated
with the R-package mexhaz provides a tool in a free software, which could be useful to other researchers for computing
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these cumulative probabilities along with their confidence intervals (Appendix 2). It is worth noticing that the approach
proposed here relies on the availability of the cause of death information. However, in many population-based studies,
the cause of death is either missing or unreliable. Thus, an adaptation of our approach to the relative survival setting33

(when reliable information on the cause of death is not available) would be an interesting extension.
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Estimation of the adjusted cause-specific cumulative probability using

flexible regression models for the cause-specific hazards
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A Supplemetary results

Figure A1.1 : Simulated and estimated baseline hazard functions in scenario 1 with sample size of
N = {300, 1000}. In each panel, the bold solid curve represents the simulated baseline hazard function,
the grey curves represent the 500 cause-specific spline estimates and the dashed curve represents the
mean of the 500 estimates. Model (a) has a quadratic B-spline baseline hazard function and knots at 1
and 5 years. Models (b) has a cubic B-spline baseline function with the same knots. The explanatory
variables in both models were age and sex.
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Figure A1.2 : Simulated and estimated baseline hazard functions in scenario 2 with sample size of N = 300. In each panel, the bold solid curve represents
the simulated baseline hazard function, the grey curves represent the 500 cause-specific spline estimates and the dashed curve represents the mean of these
500 estimates. Model (a) has a quadratic B-spline baseline hazard function with knots at 1 and 5 years, while model (b) has a cubic B-spline baseline hazard
function with the same knots. The explanatory variables in both models were age and sex. Models (b) and (c) have the same baseline hazard function (cubic
B-spline with knots at 1 and 5 years), but model (b) has a fixed effect for sex while model (c) has a time-dependent effect for sex, which is modelled with a
cubic B-spline with two knots at 1 and 5 years.
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Figure A1.3 : Simulated and estimated time-dependent log hazard ratio of sex provided for model (b)
(PH) and model (c) (Non-PH) for scenario 2. Models (b) and (c) have the same baseline hazard function
(cubic B-spline with knots at 1 and 5 years), but model (b) has a fixed effect for sex while model (c) has
a time-dependent effect for sex, which is modelled with a cubic B-spline with two knots at 1 and 5 years.
In each panel, the bold solid curve represents the simulated log hazard ratio, the grey curves represent
the 500 sample-specific cubic spline log HR estimates, the dashed curve represents the median, and the
dotted curve the mean of these 500 estimates.
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Figure A1.4 : Empirical distribution of the 500 parameter estimates of cumulative probabilities for each model and each cause at 3 timepoints: 1,5 and
10 years in scenario 1. Vertical lines denote the true values for each sample size setting N = {300, 1000}. Non-parametric estimates are provided using
R-package cmprsk while model (a) and model (b) are flexible parametric models that are estimated using R-package mexhaz. Model (a) has a quadratic
B-spline baseline hazard function and knots at 1 and 5 years, while model (b) has a cubic B-spline baseline function with the same knots. The explanatory
variables in all models were age and sex.
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Table A1.1 : Performance results for the flexible parametric models regarding adjusted cumulative probabilities for men in scenario 2. The adjusted
probabilities were obtained with the method described in Section 2.2.3. Model (a) has a quadratic B-spline baseline hazard function and knots at 1 and
5 years, while model (b) has a cubic B-spline baseline hazard function with the same knots. The explanatory variables in FPM models were age and sex.
Models (b) and (c) have the same baseline hazard function (cubic B-spline with knots at 1 and 5 years), but model (b) has a fixed effect for sex while model
(c) has a time-dependent effect for sex, which is modelled with a cubic B-spline with two knots at 1 and 5 years.

Method Cause Time True value Mean value Bias∗ Relative Bias(%) empSE RMSE ModSE Coverage†

N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000

Model (a)

1 0.1102 0.1071 0.1050 0.1024 -5.1802 -4.6599 -4.7025 -4.3520 0.0170 0.0091 0.0178 0.0103 0.0166 0.0088 0.931 0.917
2 5 0.4072 0.4018 0.4076 0.4019 0.4697 0.0935 0.1154 0.0233 0.0337 0.0186 0.0338 0.0186 0.0338 0.0181 0.949 0.943

10 0.4886 0.4860 0.4933 0.4889 4.7230 2.8945 0.9666 0.5955 0.0369 0.0200 0.0372 0.0202 0.0364 0.0196 0.943 0.952
1 0.0426 0.0385 0.0423 0.0382 -0.2759 -0.2337 -0.6473 -0.6075 0.0107 0.0054 0.0108 0.0054 0.0109 0.0055 0.960 0.949

2 5 0.1511 0.1387 0.1517 0.1394 0.5525 0.7239 0.3656 0.5220 0.0227 0.0116 0.0227 0.0117 0.0229 0.0118 0.954 0.945
10 0.2313 0.2161 0.2313 0.2166 0.0220 0.4720 0.0095 0.2184 0.0289 0.0154 0.0289 0.0155 0.0295 0.0156 0.943 0.947

Model (b)

1 0.1102 0.1071 0.1050 0.1030 -5.1462 -4.0601 -4.6716 -3.7919 0.0180 0.0099 0.0187 0.0107 0.0175 0.0093 0.935 0.911
1 5 0.4072 0.4018 0.4073 0.4019 0.1558 0.0877 0.0383 0.0218 0.0339 0.0186 0.0339 0.0186 0.0337 0.0181 0.950 0.947

10 0.4886 0.4860 0.4934 0.4889 4.7491 2.9025 0.9719 0.5972 0.0368 0.0200 0.0371 0.0202 0.0364 0.0196 0.944 0.952
1 0.0426 0.0385 0.0423 0.0382 -0.2911 -0.2677 -0.6830 -0.6959 0.0107 0.0054 0.0107 0.0054 0.0109 0.0055 0.960 0.947

2 5 0.1511 0.1387 0.1517 0.1393 0.5464 0.6426 0.3615 0.4634 0.0227 0.0116 0.0227 0.0116 0.0229 0.0118 0.954 0.947
10 0.2313 0.2161 0.2314 0.2166 0.1438 0.4698 0.0622 0.2174 0.0289 0.0154 0.0289 0.0155 0.0295 0.0156 0.944 0.947

Model (c)

1 0.1102 0.1071 0.1121 0.1096 1.9203 2.4829 1.7432 2.3188 0.0206 0.0111 0.0207 0.0114 0.0203 0.0107 0.953 0.933
1 5 0.4072 0.4018 0.4073 0.4028 0.1565 0.9773 0.0384 0.2432 0.0345 0.0187 0.0345 0.0188 0.0344 0.0184 0.951 0.950

10 0.4886 0.4860 0.4888 0.4849 0.1556 -1.1622 0.0319 -0.2391 0.0364 0.0201 0.0364 0.0202 0.0367 0.0197 0.955 0.942
1 0.0426 0.0385 0.0422 0.0381 -0.4214 -0.3834 -0.9887 -0.9967 0.0108 0.0054 0.0108 0.0054 0.0109 0.0055 0.959 0.948

2 5 0.1511 0.1387 0.1506 0.1383 -0.5616 -0.3262 -0.3716 -0.2352 0.0226 0.0115 0.0226 0.0115 0.0228 0.0118 0.957 0.946
10 0.2313 0.2161 0.2312 0.2165 -0.1102 0.4075 -0.0477 0.1886 0.0288 0.0154 0.0288 0.0154 0.0295 0.0156 0.944 0.950

empSE: empirical standard error; RMSE: root mean square error; ModSE: model standard error.
∗ × 1000
† Acceptable coverage rate is [0.931, 0.969] (calculated based on 30)
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Table A1.2 : Performance results for the flexible parametric models regarding adjusted cumulative probabilities for women in scenario 2. The adjusted
probabilities were obtained with the method described in Section 2.2.3. Model (a) has a quadratic B-spline baseline hazard function and knots at 1 and
5 years, while model (b) has a cubic B-spline baseline hazard function with the same knots. The explanatory variables in FPM models were age and sex.
Models (b) and (c) have the same baseline hazard function (cubic B-spline with knots at 1 and 5 years). Models (a) and (b) have a fixed effect for sex while
model (c) has a time-dependent effect for sex, which is modelled with a cubic B-spline with two knots at 1 and 5 years.

Method Cause Time True value Mean value Bias∗ Relative Bias(%) empSE RMSE ModSE Coverage†

N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000

Model (a)

1 0.0693 0.0750 0.0839 0.0917 14.6018 16.6513 21.0717 22.1893 0.0169 0.0093 0.0223 0.0191 0.0167 0.0100 0.840 0.574
1 5 0.3515 0.3744 0.3506 0.3750 -0.8522 0.6770 -0.2425 0.1809 0.0462 0.0260 0.0462 0.0261 0.0441 0.0261 0.935 0.949

10 0.4510 0.4748 0.4398 0.4637 -11.2564 -11.1302 -2.4957 -2.3442 0.0525 0.0286 0.0537 0.0307 0.0499 0.0292 0.945 0.935
1 0.0266 0.0311 0.0270 0.0320 0.3850 0.9868 1.4464 3.1777 0.0090 0.0058 0.0090 0.0059 0.0092 0.0058 0.945 0.933

2 5 0.1072 0.1247 0.1068 0.1260 -0.4015 1.2912 -0.3745 1.0352 0.0251 0.0156 0.0251 0.0156 0.0258 0.0163 0.952 0.943
10 0.1793 0.2075 0.1791 0.2088 -0.2105 1.2862 -0.1174 0.6200 0.0370 0.0228 0.0370 0.0228 0.0377 0.0236 0.954 0.956

Model (b)

1 0.0693 0.0750 0.0840 0.0922 14.6660 17.1886 21.1643 22.9054 0.0174 0.0098 0.0228 0.0198 0.0174 0.0104 0.839 0.590
1 5 0.3515 0.3744 0.3504 0.3750 -1.0478 0.6675 -0.2981 0.1783 0.0458 0.0259 0.0459 0.0260 0.0440 0.0261 0.935 0.949

10 0.4510 0.4748 0.4400 0.4637 -11.0414 -11.1286 -2.4480 -2.3439 0.0521 0.0286 0.0533 0.0307 0.0499 0.0293 0.948 0.935
1 0.0266 0.0311 0.0270 0.0320 0.3829 0.9889 1.4382 3.1843 0.0090 0.0059 0.0090 0.0059 0.0092 0.0058 0.948 0.933

2 5 0.1072 0.1247 0.1068 0.1260 -0.3931 1.3134 -0.3666 1.0529 0.0253 0.0158 0.0254 0.0159 0.0258 0.0163 0.948 0.941
10 0.1793 0.2075 0.1792 0.2089 -0.1601 1.3966 -0.0893 0.6732 0.0372 0.0231 0.0372 0.0231 0.0377 0.0236 0.952 0.954

Model (c)

1 0.0693 0.0750 0.0701 0.0767 0.7628 1.6864 1.1008 2.2472 0.0221 0.0141 0.0221 0.0142 0.0229 0.0139 0.957 0.933
1 5 0.3515 0.3744 0.3481 0.3724 -3.3183 -2.0029 -0.9441 -0.5350 0.0513 0.0276 0.0514 0.0277 0.0468 0.0277 0.927 0.956

10 0.4510 0.4748 0.4483 0.4731 -2.7595 -1.6572 -0.6118 -0.3490 0.0557 0.0307 0.0557 0.0307 0.0516 0.0303 0.944 0.942
1 0.0266 0.0311 0.0273 0.0323 0.7245 1.2841 2.7216 4.1351 0.0092 0.0059 0.0092 0.0060 0.0093 0.0059 0.944 0.931

2 5 0.1072 0.1247 0.1089 0.1283 1.6992 3.5697 1.5850 2.8618 0.0260 0.0160 0.0261 0.0164 0.0263 0.0166 0.948 0.931
10 0.1793 0.2075 0.1800 0.2094 0.6694 1.9476 0.3733 0.9387 0.0376 0.0231 0.0376 0.0232 0.0378 0.0237 0.948 0.952

empSE: empirical standard error; RMSE: root mean square error; ModSE: model standard error.
∗ × 1000
† Acceptable coverage rate is [0.931, 0.969] (calculated based on 30)
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Table A1.3 : Simulation results for the population cause-specific cumulative probabilities based on 500 simulated datasets with sample size of N = {300, 1000}
for scenario 1 and scenario 2. The performance measures are given for the flexible parametric models (model (b′) and model (c′)). Model (b′) has a quadratic
B-spline baseline hazard function, while model (c′) has a cubic B-spline baseline hazard function including a time-dependent effect for sex. In both models,
we used two knots corresponding to the 33rd and the 66th percentile of the time-to-cancer distribution of each dataset. The explanatory variables in both
models were age and sex.

Scenario/
Model

Cause Time True value Mean value Bias∗ Relative Bias(%) empSE RMSE ModSE Coverage†

N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000 N=300 N=1000
1 0.2681 0.2637 0.2693 0.2635 1.1511 -0.2426 0.4293 -0.0920 0.0239 0.0131 0.0239 0.0131 0.0239 0.0130 0.9516 0.9577

1 5 0.4672 0.4604 0.4662 0.4588 -1.0151 -1.5622 -0.2173 -0.3393 0.0288 0.0155 0.0288 0.0156 0.0284 0.0156 0.9456 0.9598
Scenario 1/ 10 0.5209 0.5139 0.5195 0.5121 -1.3477 -1.8817 -0.2587 -0.3661 0.0293 0.0156 0.0294 0.0157 0.0295 0.0162 0.9476 0.9598
Model (b′) 1 0.0249 0.0243 0.0248 0.0243 -0.0737 0.0054 -0.2961 0.0221 0.0078 0.0042 0.0078 0.0042 0.0077 0.0042 0.9456 0.9497

2 5 0.0925 0.0903 0.0926 0.0908 0.0778 0.4860 0.0841 0.5381 0.0153 0.0087 0.0153 0.0087 0.0160 0.0087 0.9556 0.9557
10 0.1636 0.1600 0.1627 0.1610 -0.8965 0.9696 -0.5480 0.6060 0.0206 0.0121 0.0206 0.0122 0.0222 0.0122 0.9597 0.9396
1 0.0967 0.0976 0.0958 0.0979 -0.8300 0.3191 -0.8585 0.3271 0.0166 0.0093 0.0156 0.0093 0.0167 0.0087 0.9437 0.9276

1 5 0.3888 0.3937 0.3877 0.3934 -1.0513 -0.2342 -0.2704 -0.0595 0.0284 0.0155 0.0280 0.0155 0.0284 0.0155 0.9457 0.9618
Scenario 2/ 10 0.4762 0.4827 0.4755 0.4813 -0.6653 -1.3560 -0.1397 -0.2809 0.0309 0.0163 0.0301 0.0164 0.0309 0.0166 0.9557 0.9517
Model (c′) 1 0.0373 0.0363 0.0373 0.0364 -0.0809 0.1444 -0.2167 0.3981 0.0092 0.0050 0.0092 0.0050 0.0092 0.0050 0.9557 0.9376

2 5 0.1366 0.1345 0.1367 0.1354 0.1142 0.8733 0.0836 0.6491 0.0186 0.0100 0.0185 0.0101 0.0186 0.0102 0.9517 0.9517
10 0.2142 0.2135 0.2143 0.2144 0.1381 0.8514 0.0645 0.3987 0.0237 0.0131 0.0238 0.0132 0.0237 0.0132 0.9457 0.9537

empSE: empirical standard error; RMSE: root mean square error; ModSE: model standard error.
∗ × 1000
† Acceptable coverage rate is [0.931, 0.969] (calculated based on 30)

7



B Details for variance estimation of the crude probabilities

The partial derivative of Fj with respect to the parameter βi is given by

∂Fj(t,x;β)

∂βi
=

∂

∂βi

[∫ t

0

Sj(u,x;β)Sj̄(u,x;β)λj(u,x;β)du
]

=

∫ t

0

∂Sj(u,x;β)

∂βi
Sj̄(u,x;β)λj(u,x;β)du

+

∫ t

0

Sj(u,x;β)
∂Sj̄(u,x;β)

∂βi
λj(u,x;β)du

+

∫ t

0

Sj(u,x;β)Sj̄(u,x;β)
∂λj(u,x;β)

∂βi
du

(1)

Note that the corresponding formula for Fj̄ is obtained by exchanging the roles of j and j̄ in the
above expression.

The partial derivative of Sj with respect to βi is

∂Sj(t,x;β)

∂βi
=

∂

∂βi

[
exp(−

∫ t

0

λj(u,x;β)du)
]

=
∂

∂βi

[
−
∫ t

0

λj(u,x;β)du
]
Sj(t,x;β)

= −Sj(t,x;β)

∫ t

0

∂λj(u,x;β)

∂βi
du

(2)

if βi ∈ βj and 0 otherwise.
From formulae 1 and 2, it follows that

∂Fj(t,x;β)

∂βi
=

∫ t

0

S(u,x;β)

(
−
∫ u

0

(
∂λj(v,x;β)

∂βi
+
∂λj̄(v,x;β)

∂βi

)
dv

)
λj(u,x;β)du+

∫ t

0

S(u,x;β)
∂λj(u,x;β)

∂βi
du

=

∫ t

0

S(u,x;β)

(
∂λj(u,x;β)

∂βi
− λj(u,x;β)

∫ u

0

(
∂λj(v,x;β)

∂βi
+
∂λj̄(v,x;β)

∂βi

)
dv

)
du

(3)

In our work, we used flexible regression models defined on the log-hazard scale. Thus, the λjs may
be written as exponentials of differentiable functions Pj , i.e., λj(t,x;β) = exp

(
Pj(t,x;β)

)
, which leads

to
∂λj(t,x;β)

∂βi
=

∂

∂βi

[
exp (Pj(t,x;β))

]
= λj(t,x;β)

∂Pj(t,x;β)

∂βi

Formula 3 can now be written

∂Fj(t,x;β)

∂βi
=

∫ t

0

S(u,x;β)

(
λj(u,x;β)

∂Pj(u,x;β)

∂βi
− λj(u,x;β)

∫ u

0

(
λj(v,x;β)

∂Pj(v,x;β)

∂βi
+ λj̄(v,x;β)

∂Pj̄(v,x;β)

∂βi

)
dv

)
du

=

∫ t

0

S(u,x;β)λj(u,x;β)

(
∂Pj(u,x;β)

∂βi
−
∫ u

0

(
λj(v,x;β)

∂Pj(v,x;β)

∂βi
+ λj̄(v,x;β)

∂Pj̄(v,x;β)

∂βi

)
dv

)
du

=





∫ t

0

S(u,x;β)λj(u,x;β)

(
∂Pj(u,x;β)

∂βi
−
∫ u

0

λj(v,x;β)
∂Pj(v,x;β)

∂βi
dv

)
du , βi ∈ βj

∫ t

0

S(u,x;β)λj(u,x;β)

(
−
∫ u

0

λj̄(v,x;β)
∂Pj̄(v,x;β)

∂βi
dv

)
du , otherwise

(4)
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C Estimation of the variance of the difference between adjusted prob-
abilities

Following the reasoning in section 2.2.2, the variance of the difference between the adjusted probabilities
of death with different treatments, say A and B, is given by

Var[D(t;β)] = w>[∇D(t;β)Mat]>|β=β̂
Σ̂β[∇D(t;β)Mat]|β=β̂w

where ∇D(t;β)Mat is a (m×N) matrix:

∇D(t;β)Mat =
(
∇FMat

j (t, A;β)−∇FMat
j (t, B;β)

)

=
((
∇Fj(t, A, z1;β)|β=β̂, · · · ,∇Fj(t, A, zN ;β)|β=β̂

)
−
(
∇Fj(t, B, z1;β)|β=β̂, · · · ,∇Fj(t, B, zN ;β)|β=β̂

))

=
(
∇Fj (t, A, z1;β)|β=β̂ −∇Fj (t, B, z1;β)|β=β̂ , · · · ,∇Fj(t, A, zN ;β)|β=β̂ −∇Fj(t, B, zN ;β)|β=β̂

)

and w = 1
N .
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3.3 Estimation of the crude probability of death using the FRM 52

3.3.2 In relative survival setting

In the previous section, we showed how to estimate the (adjusted) CPr using FRM when
we rely on the COD information. The method can be extended to cases where COD is
not available or is unreliable ie, in relative survival setting. Here, instead of modelling the
cause-specific hazards, we model the excess hazard following the specification provided in
[16]. The necessary steps for the calculation of the CPr are based on the same principles as
shown in Section 3.3.1. In this section, we will start by defining the excess hazard model and
then move to the estimation of the adjusted CPr.

3.3.2.1 Excess hazard model

The relationship between overall, excess and population hazard can be expressed as

λO(t,a,y,X,z;β) = λE(t,X;β)+λP(t+a, t+ y,z)

where X is a vector of prognostics covariates, z is a vector of demographic characteristics, a
is the age of diagnosis (t+a represents the age at death or at censoring), and y is the year of
diagnosis (t+ y represents the year at death or at censoring) [16].

Following Charvat et al.[16], the excess hazard model is defined as

log(λE(t,X;β)) = log(λ0(t,X;β))+X⊤α(t) (3.3)

where β is a vector of parameters including the parameters for (i) the baseline hazard and the
(ii) the time-dependent hazard ratios, β = (γ⊤,α⊤).

For an individual i, denote by ti the observed follow-up time, δi the failure indicator (0 for
censoring and 1 for death), and Xi a vector of covariates. Then, the likelihood for a sample
defined by ti, δi,Xi with i = 1, · · · ,N is a function of the vector β associated with the baseline
hazard and the covariate effects may be written as

Li(β) = {λE(ti,Xi)+λP(ti+a, ti+ y,zi)}δi S (ti,Xi,zi)

where S (ti,Xi,zi) = exp {−ΛE(ti,Xi)−ΛP(ti+a, ti+ y,zi)}, with ΛE ,ΛP denoting the cumula-
tive hazards which can be calculated by the general formula Λ(t) =

∫ t
0 λ(u)du [16].
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3.3.2.2 Adjusted and population predictions

The CPr due to the event of interest (related to the excess hazard) FE is expressed as

FE(t,a,y,X,z;β) =
∫ t

0
S O(u,a,y,X,z;β)λE(u,X;β)dν

=

∫ t

0
exp

(
−

∫ u

0
λE(ν,Xi;β)+λP(ν+ai, ν+ yi,zi)dν

)
λE(u,X;β)du

(3.4)

To estimate the CPr due to other causes (related to the population hazard), FP, we replace
the λE(u,X;β) with λP(u,X). To simplify formula 3.4 we rewrite it as

FE(t,X;β) =
∫ t

0
exp

(
−

∫ u

0
λE(ν,X;β)+λP(ν,X)dν

)
λE(u,X;β)du (3.5)

By plugging in formula 3.5 the according estimators, we derive the CPr point estimates for a
particular individual with a given vector of covariates X. Extension to population estimates
requires calculating the average of all the individual predicted cumulative probabilities

FP
E(t;β) = 1/N

N∑
i=1

FE(t,X;β)

For the variance estimation, we follow the idea from [36] and the individual variance for the
FE is derived via the multivariate delta method

Var[FE(t,X; β̂)] = ∇FE(t,X; β̂)⊤
|β=β̂
Σ̂β∇FE(t,X; β̂)

|β=β̂

where Σβ is the parameters covariance matrix and ∇FE is the gradient of FE ie, the vector of
first derivatives of FE (see Appendix B).

For the population variance, we take into account that the N individual predictions for the
cumulative probabilities are correlated due to the fact they share the same vector of estimated
parameters β̂ [24, 55, 36]. Thus, the population variance after using the multivariate delta
method is now written

Var[FP
E(t;β)] = w⊤[∇FMat

E (t;β)]⊤
|β=β̂
Σ̂β∇FMat

E (t;β)
|β=β̂w

where w is a column vector of N weights (in our case all equal to 1/N), and ∇FMat
E (t,β) is a

(m×N) matrix

∇FMat
E (t;β) =

(
∇FE(t,X1;β)

|β=β̂, · · · ,∇FE(t,XN ;β)
|β=β̂

)
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Lastly, to derive the 100∗(1−α)% confidence interval, we assume normality of FE(t,X;β)
on the log-log scale, and then we back transform it to the probability scale. From

Var
[
log

(
− log(FE(t,X;β))

)]
=

Var(FE(t,X;β))(
log(FE(t,X;β))FE(t,X;β)

)2

we derive the boundaries of the 100∗ (1−α)% confidence interval as

FE(t,X;β)Ω

where Ω = exp
{
±καVar

[
log

(
− log(FE(t,X;β))

)]}
and κα is the (1-α/2) quantile of the stan-

dard normal distribution.

3.4 Estimation of the life years lost using the FRM

We provide here a general way of computing the LYL, which will not be distinguished
between cause-specific and relative survival setting. The reason being is that the estimation
of LYL is entirely dependant on CPr and a general way that shows the steps of this calculation
could be detailed for both cases. Therefore, the idea is that we use the quantities for the CPr
as obtained with the cause-specific or the excess hazard model (see previous sections) and
then derive the LYL as follows

L̂m(0, t,X;β) =
∫ t

0
F̂m(u,X;β)du ≈ lim

n→∞

n∑
i=1

∆u · F̂m(ui,X;β) (3.6)

where Lm is either the LYL corresponding to cause m (in cause-specific setting) or to the
disease of interest or other causes (in relative survival setting), ∆u = t

n , and ui = ∆u · i.
Depending on the cause and setting in question, the estimation involves the corresponding
CPr (here denoted as Fm). In this case, the variance of Lm at time t for an individual
characterized by a vector of covariables X and based on the vector of estimated parameters β̂
would be approximated by

Var[L̂m(0, t,X; β̂)] = ∇L̂m(0, t,X; β̂)⊤
β=β̂
Σ̂βL̂m(0, t,X; β̂)β=β̂ (3.7)
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where Σβ is the parameter covariance matrix and ∇Lm is the gradient of Lm, ie, the vector of
first derivatives of Lm.

∇Lm(0, t,X; β̂)β=β̂ =

∂Lm(0, t,X; β̂)β=β̂
∂β1

(β̂), · · · ,
∂Lm(0, t,X; β̂)β=β̂

∂βP
(β̂)


⊤

However, it holds that

∂Lm(0, t,X; β̂)
∂βi

=
∂

∂βi

[∫ t

0
Fm(u,X;β)du

]
=

∫ t

0

∂Fm(u,X;β)
∂βi

du

≈ lim
n→∞

n∑
i=1

∆u ·
∂Fm(ui,X;β)
∂βi

with the partial derivatives of Fm being already estimated in Section 3.3.2.2 and Appendix B.
The 100∗ (1−α)% confidence interval of the LYL is obtained after assuming normality

of the life years lost as
Lm± καVar[Lm(0, t)]

where κα is the (1-α/2) quantile of the standard normal distribution.
Lastly, we can also measure the exposure effects on LYL using regression standardization,

following the same principles described in the research paper from Section 3.3.1.
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Estimation of alternative survival
indicators using pseudo-observations
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4.1 Introduction

The main issue of survival data that renders classical methods inappropriate is that time-to-
event may be unobserved due to right-censoring. Provided a complete dataset, time T would
be available for all individuals, and one could set standard regression models for quantitative
data directly to T or, methods for binary data outcomes after dichotomizing T as I(T ≤ t)
or more generally for any function of T , f (T ) [7]. In this case, f (Ti) can be obtained for
each individual i and the expected value E[ f (T )] (equals to 1/n

∑
i f (Ti)) may be described

according to the covariates of interest with regression coefficient estimates. Nevertheless,
with incomplete data this is not possible.

To address this issue, Andersen, Klein and Rosthøj [6] proposed an alternative ap-
proach to model directly various survival indicators based on incomplete data using pseudo-
observations. Since then many extensions to several indicators were proposed (eg, for
cause-specific cumulative probabilities within the classical competing risks setting, [37, 41]
or for the restricted mean survival time [5]). Since the introduction of the approach, there
have been several extensions from the original setting dealing with various topics such as
left-truncation [29], landmarking [42, 28], etc. In a paper recently submitted, we show how
to apply the pseudo-observation method in the relative survival setting, where COD is either
missing or unreliable.

In both settings (cause-specific and relative survival), the main idea is the same and it
has two steps. The first step is to calculate the pseudo-observations for the indicator of
interest; the second step is to model these pseudo-observations in order to obtain the covariate
effects that are directly associated to the indicator. An essential assumption for this idea to
apply is that an (approximately) unbiased estimator of the indicator of interest exists (eg,
Kaplan-Meier estimator for S (t) = E (I(X > t))). This allows the further estimation of the
pseudo-observations through the so-called “leave-one-out” estimator, which will be used
as the outcome variables in a regression model (typically a Generalised Linear Model or
Generalised Estimating Equations are used). The covariate effects estimated in that model
would be directly linked to the quantity of interest. In the case of the CPr, if a cloglog
function is used then the model would be similar to Fine & Gray model, while different link
functions may be employed as to avoid the complicated interpretation of the subdistribution
hazard models.

In this chapter, we will present the approach for each setting separately. In each setting we
provide details for the estimation of the CPr and the LYL. For the cause-specific setting the
approach will be detailed based on previous work [6, 37, 7, 2]. For the relative survival setting,
we will present the method with a paper which was submitted recently and it is presented also
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in Section 4.3. In the end of this chapter, the reader may find also the simulation algorithm
that was developed for this paper.

4.2 Modelling pseudo-observations in the cause-specific set-
ting

For a population of individuals i = (1, · · · ,n), let Yi be independent and identically distributed
random variables (eg, time since diagnosis up to death), and Xi a p-dimensional vector of
(time-fixed) covariates. As it is often the case with time to event data analysis, Yi is not always
observed due to censoring. Pseudo-observations is a useful approach when information on Yi

is not available, and our interest lies on modelling the E
[
f (Yi)|Xi

]
for a given function f .

The main idea of pseudo-observations relies on the fact that even with incomplete
(censored) data we can still derive the marginal expectation E

[
f (Y)

]
. Assuming that a

consistent and (approximately) unbiased estimator θ̂ exists for θ = E
[
f (Y)

]
(eg, the Kaplan-

Meier estimator for the survival probability, or the Aalen-Johansen estimator for the cause-
specific cumulative incidence function [25]), then the possibly unknown f (Yi) could be
replaced by its pseudo-observation [7]. The estimators for the crude probability of death due
to cause j (F j) and the number of life years lost from cause j (L j) are shown below

F̂ j(t) =
∫ t

0

∏
Ti<u

(
1−

∑J
1 dNh(Ti)
Y(Ti)

)
dN j(u)
Y(u)

(4.1)

L̂ j(0, τ) =
∫ τ

0
F̂ j(u)du (4.2)

where N j(t) is the process counting patients who experienced a type j event up to time t, Y(t)
is the number of people at risk at time t.

Pseudo-observations are computed for every individual regardless of the availability of
f (Yi). Thus, the pseudo-observation for f (Yi) is defined for the individual i = 1, · · · ,n at a
given time t as

θ̃i = n · θ̂(t)− (n−1) · θ̂−i(t) (4.3)

where θ̂−i(t) is the estimator at time t based on the sample of size (n− 1), obtained by
eliminating individual i from the whole sample. Intuitively, the pseudo-observation θ̃i can be
seen as the “contribution” of the individual i to the E

[
f (Yi)|Xi

]
, estimated on the basis of the

full sample at time t [7].
Pseudo-observations may be calculated at several time points. In this case, the pseudo-

observation θ̃i is m-dimensional (ie, θ̃i = θ̃i j, j = 1, · · · ,m) and represents the f (Yi) (Yi =



4.3 Modelling pseudo-observations in the relative survival setting 59

(Yi1, · · · ,Yim)). These pseudo-observations may be used as the outcome variables in a gen-
eralised linear regression model in order to derive the covariate effects on the outcome of
interest:

g{E[ f (Yi)|Xi]} = β⊤X∗i j, i = 1, · · · ,n j = 1, · · · ,m (4.4)

where g is a monotone differentiable link function and X∗i j is a (m+ p dimensional) vector
including the indicators of the m time points and the covariates Xi, X∗i j = (I(t = t j); Xi) [7].

Because the pseudo-observations for a given subject could not be considered as inde-
pendent random variables, estimating the (m+ p) regression parameters β can be based on
Generalised Estimating Equations (GEE) method [39]. The estimating equations to be solved
are

n∑
i=1

(
∂

∂β
g−1(β⊤X∗i j)

)T

V−1
i

{
θ̃i−g−1(β⊤X∗i j)

}
= 0 (4.5)

where Vi is a working covariance matrix with a pre-defined structure.
In order for the pseudo-observation approach to work, it has been shown that the censoring

should not depend on covariates [30], alternatively modified pseudo-observations should be
applied [13]. For the variance of the estimated regression parameters β̂, a sandwich estimator
could be used [6] even if it has been shown that this might lead to inconsistent and upward
biased results especially in large samples. Nonetheless, this has an insignificant impact in
practical applications [35, 44, 43].

The user has various choices with respect to the link function g and the structure of the
working covariance matrix V . A clever choice of the latter may increase efficiency [2]. More
details in this topic are provided in the following paper.

4.3 Modelling pseudo-observations in the relative survival
setting

4.3.1 Research Paper II

This section shows how to apply the pseudo-observations approach to the relative survival
setting. A paper detailing the method which was submitted in Biostatistics may be found here
attached. This paper provides: (a) a general description of the pseudo-observation approach
and details how this can be adapted in the relative survival setting in order to model directly
the CPr and the LYL; (b) an extensive simulation scenario that assesses the performance of
models with different link functions; and (c) an application of the method to real population-
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based cancer registry data of women diagnosed with cervical cancer in England between
2008 and 2010. This paper also highlights the importance of having covariate effects that
are now directly linked to the indicator of interest. Easier interpretations of the results when
using the log or identity link function is also one of the big advantages of this method. Lastly,
it is important to note here that when we apply the pseudo-observation method in the relative
survival setting, we are still able to perform models like the subdistribution model (if we use
a cloglog link function) despite the fact that COD is either not available or is unreliable. This
process added an additional complexity in the simulation part that was conducted for this
paper, as we needed to generate a subdistribution hazard distribution for the cause of interest
and also, use the life tables for the other causes. The simulation algorithm is presented in
more detail in the end of this chapter.

The supplementary material including the R code that shows how to implement this
method may also be found in the Appendix D.
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Summary

In population-based cancer studies, net survival is a crucial measure for population comparison
purposes. However, alternative measures, namely the crude probability of death (CPr) and the
number of life years lost (LYL) due to death according to different causes, are useful as com-
plementary measures for reflecting different dimensions, in terms of prognosis, treatment choice,
or development of a control strategy. When the cause of death (COD) information is available,
both measures can be estimated in competing risks setting using either the cause-specific or sub-
distribution hazard regression models or with the pseudo-observation approach through direct
modelling. We extent the pseudo-observation approach in order to model the CPr and the LYL
due to different causes when information on COD is unavailable or unreliable (ie, in relative
survival setting). In a simulation study, we assessed the performance of the proposed approach
in estimating regression parameters and examined models with different link functions that can
provide an easier interpretation of the parameters. We showed that the pseudo-observation ap-
proach performs well for both measures, and we illustrated their use on cervical cancer data from
the England population-based cancer registry. The implementation of the method in R software
is provided.
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1. Introduction

When aiming to describe the survival experience of a group of individuals, we usually start by
estimating the overall survival. However, when our goal is to describe the probabilities of dying
from different causes, a further step is required to account for competing events. Competing risks
methods aim to identify covariates which not only affect the rate at which specific events occur,
but also the probability of occurrence of a specific event over time (Austin and Fine, 2017).

To perform an analysis of competing time to events, say cancer death and death from other
causes, we often rely on the cause of death (COD) information for each individual, assuming
that this is available and reliable. Two types of hazard, namely the cause-specific hazard and the
subdistribution hazard, may be used. Unlike cause-specific hazard, the subdistribution hazard is
useful for estimating covariate effects on the event-specific probability because they “measure the
effect of the covariate that can be explained either because there is a direct effect of making the
event more or less likely to occur, or due to the indirect effect of influencing the other events to
occur” (Dignam and Zhang, 2012). However, this leads to a weird interpretation, thus working
with cause-specific hazards might be preferred even though it does not directly describe the effect
on the probabilities (Andersen and Keiding, 2012).

Nevertheless, the use of routinely collected population-based registry data involves additional
methodological challenges due to the absence of reliable information on the COD of each patient,
leading to methods defined within the relative survival setting (Pohar Perme and others, 2016).
In this setting, the observed mortality hazard is split into two mortality hazards: the expected or
population mortality hazard (assumed known and provided by the population life tables) and the
excess mortality hazard, which is the main quantity of interest. The excess mortality hazard in
the relative survival setting is the equivalent of the cause-specific (here cancer-specific) hazard in
the classical competing risks setting. The most frequently used indicator derived from the excess
mortality hazard is the net survival (Pohar Perme and others, 2012), which is the probability of
surviving when assuming that the cancer under study is the only possible COD. Net survival is of
interest when making comparisons between populations since it is independent of the competing
risks of death, which may differ between these populations (Allemani and others, 2018; De Angelis
and others, 2014).

Despite the usefulness of net survival, communicating survival statistics is complicated and
must involve various indicators, as to reflect different dimensions, in terms of prognosis, treatment
choice, or development of a control strategy. Towards this direction, alternative indicators like (i)
the Crude Probability of Death (CPr) from a given cause (Cronin and Feuer, 2000; Mariotto and
others, 2014; Pfeiffer and Gail, 2017), also called cause-specific cumulative incidence function,
and (ii) the number of Life Years Lost (LYL) due to a given cause (Baade and others, 2015;
Andersen, 2013), can be used as complementary tools in order to provide a multi-perspective
approach (Belot and others, 2019).

Crude probabilities can be estimated nonparametrically, using Aalen-Johansen estimator (Sa-
tagopan and others, 2004; Geskus, 2015), or modelled in the cause-specific setting with regression
models on the cause-specific hazards (Pfeiffer and Gail, 2017; Kipourou and others, 2019) or the
subdistribution hazards (Fine and Gray, 1999; Geskus, 2015; Mozumder and others, 2018) or
modelled in the relative survival setting using regression models on the excess hazard (Lambert
and others, 2010; Eloranta and others, 2013; Charvat and others, 2013, 2016). In the cause-specific
setting, the pseudo-observations approach could also be used (Andersen and others, 2003; Klein
and Andersen, 2005; Andersen and Pohar Perme, 2010) allowing the direct modelling of the
probabilities. In the relative survival setting, although non-parametric estimation of the CPr’s
is feasible, quantifying the effect of covariates on them is not available yet. Similarly, although
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estimation and modelling of the LYL can be achieved in the cause-specific setting (Andersen,
2013), modelling them in the relative survival setting has yet to be done.

The scope of this paper is to present a way of modelling directly the CPr and LYL due to
the disease of interest and other causes in the relative survival setting (ie, when the COD is
not available) according to some covariates of interest. We chose to extend the most general
method, ie, the pseudo-observations method (Andersen and others, 2003; Klein and Andersen,
2005; Andersen and Pohar Perme, 2010; Andersen, 2013), which can be applied to both measures.
The main idea is based on the fact that when there is censoring we do not always observe the
random variable (eg, time to event). By generating the leave-one-out estimates at specific time
points, we replace the whole set of incompletely observed random variables with a complete
set of their pseudo-observations. Then, in order to quantify the impact of the covariates on the
random variable, we can apply standard methods like the generalised linear models (GLM) or
the generalised estimating equations (GEE), which can accommodate different link functions and
covariance matrix structures.

The remainder of the paper is organised as follows: Section 2 provides a general description
of the pseudo-observation approach and details how this can be adapted in the relative survival
setting in order to model directly the CPr and the LYL. In Section 3, we assessed the performance
of the method in its ability to estimate the regression parameters of interest and examined
models with different link functions using simulations. In Section 4, we applied the new method
on population-based cancer registry data of women diagnosed with cervical cancer in England
between 2008 and 2010, and discussed the useful interpretation that can be gained from these
models. Lastly, Section 5 summarises the results and presents ideas for further research.

2. Methods

2.1 Pseudo-observations

The method based on pseudo-observations provides a general framework that enables the direct
modelling of a given statistical measure (eg, the survival probability) as a function of some
covariates of interest. Pseudo-observations (also called pseudo-values) were first described for
multistate models (Andersen and others, 2003), and since then many extensions were proposed
(eg, for cause-specific cumulative probabilities within the classical competing risks setting, (Klein
and Andersen, 2005; Moreno-Betancur and Latouche, 2013) or for the restricted mean survival
time (Andersen and others, 2004)). This approach requires the existence of an (approximately)
unbiased estimator of the measure of interest (Andersen and Pohar Perme, 2010). While its
usefulness goes beyond modelling (as it can be extended to providing goodness-of-fit methods
(Andersen and Pohar Perme, 2010; Pavlič and others, 2018)), we concentrate on the modelling
part here, and summarize the main steps for their use when analysing time to event data.

For an individual i = 1, · · · , n, let Yi be independent and identically distributed random
variables (eg, time since diagnosis up to death), and Xi a p-dimensional vector of (time-fixed)
covariates. As it is often the case with time to event data analysis, Yi is not always observed due
to censoring. Pseudo-observations are useful when information on Yi is not available, and our
interest lies on modelling the E [f(Yi)|Xi] for a given function f .

The main idea of pseudo-observations relies on the fact that even with incomplete (censored)
data we can still derive the marginal expectation E [f(Y )]. Assuming that a consistent and

(approximately) unbiased estimator θ̂ exists for θ = E [f(Y )] (eg, the Kaplan-Meier estimator
for the survival probability, or the Aalen-Johansen estimator for the cause-specific cumulative
incidence function (Geskus, 2015)), then the possibly unknown f(Yi) could be replaced by its
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pseudo-observation (Andersen and Pohar Perme, 2010).
Pseudo-observations are computed for every individual regardless of the availability of the

f(Yi) at specific times. Thus, the pseudo-observation for f(Yi) is defined for individual i =
1, · · · , n at a given time t as

θ̃i = n · θ̂ − (n− 1) · θ̂−i (2.1)

where θ̂ is the estimator at time t based on the whole sample and θ̂−i is the estimator at time t
based on the sample of size (n− 1), obtained by eliminating individual i from the whole sample.
Intuitively, the pseudo-observation θ̃i can be seen as the “contribution” of the individual i to the
E [f(Yi)|Xi], estimated on the basis of the full sample at time t (Andersen and Pohar Perme,
2010).

Pseudo-observations may be calculated at several time points. In this case, the pseudo-
observation θ̃i is m-dimensional (ie, (θ̃i)j = θ̃ij , j = 1, · · · ,m) and represents the vector
f(Y i) (Y i = (Yi1, · · · , Yim)) with entries f(Yij). These pseudo-observations may be used as the
outcome variables in a generalised linear regression model in order to derive the covariate effects
on the outcome of interest as

g{E[f(Yij)|Xi]} = αj + γ>Xij = β>X∗ij , i = 1, · · · , n j = 1, · · · ,m (2.2)

where g is a monotone differentiable link function and X∗ij is a (m + p dimensional) vector in-

cluding the indicators of the time points and the covariates Xi, X
∗
ij = (e>j ,X

>
i )> where ej is the

m-dimensional vector with 1 on the jth entry and 0 otherwise (Andersen and Pohar Perme, 2010).
Adding interaction terms (between covariates and time terms) makes X∗ij higher dimensional.

Because the pseudo-observations for a given subject could not be considered as independent
random variables, estimating the (m + p) regression parameters β is based on the Generalised
Estimating Equations (GEE) method (Liang and Zeger, 1986). The estimating equations to be
solved are

n∑

i=1

(
∂

∂β
g−1(β>X∗i )

)>
V −1i

{
θ̃i − g−1(β>X∗i )

}
= 0 (2.3)

where g−1(β>X∗i ) is an m-dimensional vector with j entries (g−1(β>X∗i1), · · · , g−1(β>X∗im))
and Vi is a working covariance matrix with a pre-defined structure.

In order for the pseudo-observation approach to work, it has been shown that the censor-
ing should not depend on covariates (Graw and others, 2009), alternatively modified pseudo-
observations should be applied (Binder and others, 2014). For the variance of the estimated

regression parameters β̂, a sandwich estimator could be used (Andersen and others, 2003). Even
if it has been shown that this might lead to inconsistent and upward biased results (especially in
the case of large samples), yet this has an insignificant impact in practical applications (Jacobsen
and Martinussen, 2016; Overgaard and others, 2017, 2018).

The user has various choices with respect to the link function g and the structure of the
working covariance matrix V . A clever choice of the latter may increase efficiency (Andersen,
2013), but more guidance into that is provided in Section 2.4.1.

2.2 The relative survival setting and the excess mortality hazard approach

The relative survival setting is a specific competing risks framework where, although the COD
information is either missing or unreliable, inference about the event/disease of interest can still
be drawn under specific assumptions and conditions (detailed below). In this paper, the disease
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of interest is a specific cancer and the time scale used for measuring the time to event is the time
since cancer diagnosis.

In the relative survival setting, we use two sets of data: i) data on time to death (but without
COD information) from a cohort of patients with the specific cancer of interest and, ii) life tables
of the general population in which all-cause hazard functions (stratified by some sociodemographic
variables z) are available (Pohar Perme and others, 2012). The main assumption we make here
is that for an individual i, the observed hazard λO(t;Xi) described by the covariates Xi can be
decomposed as the sum of the cancer-specific mortality hazard λC(t;Xi) and the hazard related
to other causes λP (t; zi) (with zi ⊂Xi):

λO(t;Xi) = λC(t;Xi) + λP (t; zi) (2.4)

We further assume that the λP is equal to the all-cause hazard of the general population
within levels of z. For this assumption to hold, the following conditions must be met:

• the specific cancer of interest is considered a negligible cause of death in the general pop-
ulation probabilities (Ederer, 1961). This is especially true when prevalence is low (ie, rare
cancers and younger age groups), while might be problematic when focusing on older people
with common cancers (eg, prostate cancer) or when all cancer sites are combined (Hinchliffe
and others, 2012; Talbäck and Dickman, 2011).

• the other-cause hazard of the general population is equal to the other-cause hazard of the
study population within levels of z. Moreover, within levels of z, the other-cause hazard
does not further depend on X nor on any (unmeasured) covariates. This latter condition
may not be realistic for some cancers, and an adaptation of the method might be needed
(Rubio and others, 2019).

In most situations, the minimum set of sociodemographic covariates z stratifying the life
tables (and therefore λP ) is sex, age (in 1-year age-group), calendar year and geographical level.
In some countries, additional stratifying variables may be available, such as deprivation level or
ethnicity.

A discussion of the assumptions and related conditions that should be met for the relative
survival setting can be found in (Pavlič and Pohar Perme, 2018).

2.3 Measures of interest in the relative survival setting

2.3.1 Crude probability of death from a specific cause In the classical competing risks setting
where the COD is available, the (cause k)-specific probability of death Fk(t) (also called cumula-
tive incidence function) represents the probability of dying from cause-k before or at time t, and

can be expressed as Fk(t) =
∫ t
0
S(u−)dΛk(u), where S is the all-cause survival function and Λk

is the cumulative (cause k)-specific hazard.
In the relative survival framework, the crude probability of death from cancer (FC(t)) is

expressed as FC(t) =
∫ t
0
S(u−)dΛC(u) (Cronin and Feuer, 2000; Lambert and others, 2010;

Charvat and others, 2013). It may be estimated using the marginal cancer-specific hazard λC(t),
this latter being defined as the combination of the individual cancer-specific hazards, λC(t,X)
(see equations 5 and 6 in (Pohar Perme and others, 2012), while more details can be found in
(Belot and others, 2019; Pohar Perme and Pavlic, 2018)). Thus,

F̂C(t) =

∫ t

0

Ŝ(u−)dΛ̂C(u) (2.5)
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where Ŝ(u−) is the Kaplan-Meier estimator of the overall survival and the estimator of the
cancer-specific cumulative hazard is calculated as

dΛ̂C(t) =

dN(t)−
n∑

i=1

Yi(t)dΛP(t, zi)

Y (t)

Similarly, the crude probability of death from other causes could be estimated as

F̂P(t) =

∫ t

0

Ŝ(u−)dΛ̂P (u) (2.6)

where

dΛ̂P(t) =

n∑

i=1

Yi(t)dΛP(t, zi)

Y (t)

In both formulae, dΛP is obtained through the λP, which is the population mortality hazard
that an individual i with covariates zi, i = 1, · · · , n, is exposed to at time t. N(t) and Y (t) are
counting processes, where N(t) is the number of individuals who have experienced an event of
any type in [0, t], and Y (t) is the number of individuals who are still at risk at time t, obtained
as the sum of indicators whether a person is still at risk, Y (t) =

∑
Yi(t) (Klein and Andersen,

2005; Andersen and Pohar Perme, 2010; Pohar Perme and Pavlic, 2018).
This method of estimation is implemented in the R-package relsurv (Pohar Perme, 2018).

2.3.2 Number of life years lost due to a specific cause The expected LYL due to a specific
cause (for a given time window) is a useful complementary indicator (Andersen, 2013), allowing
for an easier interpretation of the results, which is expressed with a time unit. In clinical set-
tings, this indicator provides an interesting insight on the prognosis, the treatment choice, or the
development of a control strategy.

Without distinguishing death from different causes, the LYL before time τ (compared to an
immortal cohort (Andersen, 2013), ie where nobody dies before time τ), may be expressed as

L(0, τ) = τ −
∫ τ

0

S(u)du

The total LYL can be further decomposed according to COD in the classical competing risks
setting as Lk(0, τ) =

∫ τ
0
Fk(u)du where Fk(t) is the cause k-specific cumulative probability of

death (Andersen, 2013). Therefore, following the same analogy as before, this decomposition can
be extended to the relative survival setting for the LYL due to cancer LC and due to other-cause
LP (Belot and others, 2019):

LC(0, τ) =

∫ τ

0

FC(u)du, LP(0, τ) =

∫ τ

0

FP(u)du (2.7)

Finally, by plugging in the estimators 2.5 and 2.6 in the equation 2.7 we can estimate the
L̂C(0, τ) and L̂P(0, τ), respectively.
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2.4 Pseudo-observations in the relative survival setting for estimating covariates effects on the
CPr and the LYL due to different causes

The pseudo-observation for the CPr due to cancer for an individual i at time t, F̃C,it is calculated
(based on the equations 2.1 and 2.5) as

F̃C,it = n · F̂C(t)− (n− 1) · F̂−iC (t) (2.8)

This pseudo-observation is defined at a particular timepoint, and for regression modelling it
was advised to calculate pseudo-observations at m between 5 and 10 different timepoints, which
can be either equally spread or chosen based on quantiles of the overall survival time distribution
(Klein and Andersen, 2005). The pseudo-observations for the CPr of death due to other causes
are defined in the same way.

For the LYL due to cancer LC,i(0, τ) (resp. other cause, LP,i(0, τ) ), we compute only m=1
pseudo-observation at time τ for each individual (based on the equations 2.1, 2.7) as

L̃C,i(0, τ) = n · L̂C(0, τ)− (n− 1) · L̂C(0, τ)−i (2.9)

For both indicators, after calculating these pseudo-observations we generate a new dataset
in which every individual is assigned with m pseudo-observations (corresponding to the m time-
points), which later will be used as the main outcome in a regression model (Andersen and others,
2003). A GEE model of the form g(E[Y |Xi]) = β>X∗ij is typically used, where g is a link function,
β is the corresponding vector of m+ p regression parameters, and X∗ij is a vector including the
covariates for the individual i (Xi) as well as the intercept and the indicator functions of the
(m− 1) remaining timepoints.

2.4.1 User choices: link function and working covariance matrix Interpretation of regression
coefficients varies according to the link function used. For the CPr, most common g link functions
are the cloglog, log, and identity.

A cloglog link function on FC(t) leads to similar regression coefficient estimates to those
obtained with the Fine & Gray model (Fine and Gray, 1999). In this case, the exp(β) is a hazard
ratio which is related to the subdistribution hazard, ie, the instantaneous rate of failure per time
unit from cause j among those who are either alive or have had a competing event at time t. Due
to the complicated nature of this type of hazard ratios, the regression coefficients are interpreted
in a qualitative (higher or lower than 1) rather than a quantitative way (Andersen and others,
2012). Nonetheless, a test of statistical significance of a subdistribution hazard ratio provides a
test of the covariate effect on the CPr (Austin and Fine, 2017).

A log link function gives regression coefficients with a less complicated interpretation. The
exp(β) obtained from a model with log link function gives an estimate of the relative risks
(Overgaard and others, 2015) allowing for quantitative interpretations. However, constraining
probabilities between [0,1] might be problematic in situations with high absolute risks or when
extrapolating outside the data range (Lambert and others, 2017).

Additionally, an identity link function can be applied to CPr leading to regression coefficients
that are interpreted straightforwardly as risk differences (Klein, 2006; Hansen and others, 2014).
The identity link function is usually the link function of choice for the models on the LYL as well.
In this case, the interpretation is showing the increase or decrease in the life years that are lost
due to a given cause. In both cases though, results might go beyond the admissible range which
is set for each indicator and thus, one must be careful of predictions outside the observed limits.

Although we do not focus on that here, logit link function would be another option giving
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also convenient interpretations ie, odds ratios. This choice also suffers from certain drawbacks
like for example numerical instabilities for small values of time t (Gerds and others, 2012).

We account for the correlation in the pseudo-observation data through the use of a spe-
cific structure of the working covariance matrix (Pekár and Brabec, 2018). The choice for the
covariance matrix structure varies between independence, exchangeable, autoregressive and un-
structured, although it is suggested that even the independence working covariance matrix is
adequate (Klein and Andersen, 2005).

2.4.2 Prediction of the measure of interest: point estimates and confidence intervals We can
predict the individual point estimates of the measures of interest using the model regression
parameter estimates. By averaging the individual predictions, we obtain the population estimates
for each timepoint. These may be used later as a visual goodness-of-fit check when compared to
nonparametric estimates (Kipourou and others, 2019). Here, we provide a general way for deriving
these estimates which can be applied either to CPr or LYL.

For individual i, the estimate of CPr or LYL is given by its linear predictor (g−1(β̂
>
X∗ij)).

Averaging those estimates for all individuals of a population gives the population prediction:
1
N

∑N
i=1 g

−1(β̂
>
X∗ij).

To approximate the individual variance at a given time we utilize a general way that could
be used for any link function, namely the multivariate delta, as follows

Var
[
g−1(β̂

>
X∗ij)

]
≈
[
∇g−1(β̂

>
X∗ij)|β=β̂

]>
Cov(β̂)

[
∇g−1(β̂

>
X∗ij)|β=β̂

]
(2.10)

where Cov(β̂) is the (m+ p)× (m+ p) parameter covariance matrix and ∇g−1(β̂
>
X∗ij)|β=β̂ is a

vector of m+ p first derivatives,

∇g−1(β̂
>
X∗ij)|β=β̂ =


∂g

−1(β̂
>
X∗ij)

∂β1
(β̂), · · · , ∂g

−1(β̂
>
X∗ij)

∂βm+p
(β̂)


 (2.11)

The population variance at time j can then be obtained by taking into account all the individ-
ual predictions and combining them into a single formula using individual weights. This allows us
to take into account the correlation of N individual predicted estimates due to the fact that they
were obtained from the same vector of estimated parameters β̂ (Gail and Byar, 1986; Therneau
and others, 2015; Kipourou and others, 2019) as

w>
[
∇g−1Mat

(β̂
>
X∗ij)|β=β̂

]>
Cov(β̂)

[
∇g−1Mat

(β̂
>
X∗ij)|β=β̂

]
w (2.12)

where w is a column vector of N weights and ∇g−1(β̂
>
X∗ij) is a (m+ p)×N matrix expressed

as
∇g−1Mat

(β̂
>
X∗ij) =

(
∇g−1(β̂

>
X∗1j)|β=β̂, · · · ,∇g−1(β̂

>
X∗Nj)|β=β̂

)
(2.13)

The 100*(1-α) confidence intervals are estimated based on the (approximate) normality as-

sumption on the transformed outcome. Thus, it is essential that the variance of the g(β̂
>
X∗ij) is

estimated when a non-identity link function is employed.
For the cloglog and log link function, the variances of the transformed outcomes are obtained

as follows

Var [log (F (t))] =
Var [F (t)]

F (t)2
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Var [log(− log(1− F (t)))] =
Var [1− F (t)]

(log(1− F (t)(1− F (t))))
2

We prefer to use the complementary of F (t) in order to avoid problems with the denominator
due to small probabilities (eg, shortly after diagnosis).

Lastly, the confidence interval of the transformed outcome is obtained as g[F (t)]±zαVar (g[F (t)]),
and then, we reverse the transformation in order to get the interval in the CPr scale.

3. Simulation study

In this study, we conjecture that the pseudo-observation approach for the relative survival setting
will work in a similar way as in the classical competing risks setting and GEE would be a
reasonable approach to yield both regression parameter and variance estimates. With a simulation
study we examine the validity of the method in practice. A simulation study was performed in
order to evaluate the frequentist properties of the proposed method based on pseudo-observations,
in its ability to estimate the regression parameters of covariates associated to the CPr and the
LYL due to death from cancer and from other causes.

3.1 Data generation and simulation design

We simulated nsim = 500 datasets with sample size of N = {300, 1000}. Each individual was
assigned with a vector of three covariates which includes information about sex, year of diagnosis,
and age at diagnosis. Sex was simulated as binary drawn from a Bernoulli distribution with
probability 0.5. Year of diagnosis was simulated as a continuous variable and sampled from a
uniform distribution, ranging from 2000 to 2003. Age at diagnosis was simulated as a continuous
variable by first selecting an age class according to predefined probabilities (0.25 for age class
[30,65), 0.35 for age class [65,75) and 0.4 for age class [75,80)) and then sampling from a class-
specific uniform distribution (Belot and others, 2010).

This scenario tried to mimic what could be observed in real situations for colon cancer patients.
We used a Generalised Weibull distribution with parameters (κ, ρ, α) to model the subdistribution
hazard (SDH). For individual i, the SDH related to cancer γC was defined as

γC(t,Agei,Sexi,Yeari) = γ0(t) exp {βAgeAgei + βSexSexi + βYearYeari}

where

γ0(t) =
κρκtκ−1

1 + (ρt)κ

α

The parameters used here, namely {κ, ρ, α}, for the baseline hazard were set to {2, 1.6, 0.05}.
The values used for the covariate regression parameters were βAge = 0.2 (for 1 year increase),
βSex = 0.3, and βYear = 0, accounting for different strength in effect sizes; a very strong effect
(age), a weak effect (sex), and a null effect (year). In this way, the simulations include the most
common covariates in relative survival analyses.

We obtained the expected mortality λP from the UK life tables based on the demographic
characteristics (Danieli and others, 2012), namely year, age and sex. The λP changed annually for
a given age and sex and remains constant during a year, hence following a piecewise exponential
distribution.

Using γC and λP, we obtained the cancer specific hazard λC by adopting the approach de-
scribed in (Haller and Ulm, 2014). The individual survival time (from any cause) was obtained
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using the inverse probability transform method (Bender and others, 2005; Belot and others,
2010).

We set the administrative censoring time (C) at 10 years and allowed for a separate distri-
bution to account for the drop-outs, which followed an exponential distribution (λd = 0.035).
This results in approximately 8% of people lost to follow-up, while the total amount of censoring
in each dataset was on average around 42%. A vital status indicator δ was created, δ = 0 for
individual censored at T and δ = 1 for those being dead at time T (irrespective of the COD).

3.2 Analysis of simulated data

For the CPr from cancer and other causes, we tested three GEE models for the pseudo-observations:
(a) a model with log link function, (b) a model with cloglog link function, and (c) a model with
identity link function. All models were assuming independence working correlation and the ex-
planatory variables in all of them were: age at diagnosis, sex, and year of diagnosis.

To model the LYL within 10 years from death caused by cancer or other causes, we fitted a
GEE model with identity link function, the explanatory variables age at diagnosis, sex, and year
of diagnosis, and independence covariance structure.

We calculated the following performance measures:

1. bias, defined as the difference between the average of the nsim = 500 estimated values and
the true value β∗0 : 1

nsim

∑nsim

i=1 β̂i − β∗0 ,

2. empirical standard error
√

1
nsim−1

∑nsim

i=1 (β̂i − β̄)2 where β̄ = 1
nsim

∑nsim

i=1 β̂i,

3. model standard error
√

1
nsim

∑nsim

i=1 [V̂ar(β̂i)],

4. root mean squared error
√

1
nsim

∑nsim

i=1 (β̂i − β∗0)2, and

5. the coverage which is the proportion of samples in which the 95% confidence interval in-
cluded β∗0 .

Having simulated using the subdistribution hazard, our generated data followed the specified
model with the cloglog link function. For the other two link functions and the other causes with
cloglog (where real population hazards were taken), the performance was judged indirectly with
the least false parameters (LFP) (Hjort, 1992; Beyersmann and others, 2009). The LFP were
obtained after applying the same models described previously to a dataset of 100,000 individuals,
which was generated using the same simulation algorithm after not taking into account loss to
follow-up. Both true and LFP were available for the cloglog, so this case allowed to evaluate the
sensibility of the LFP as proxies of the true values. The LFP for model (b) for the cancer case
were (0.199, 0.299, 0.005) whereas the true (simulated) were (0.2, 0.3, 0), validating this way of
comparison.

Our computations were performed in R 3.2.0. We used the nonparametric method for the
CPr provided by the R-package relsurv (version 2.1.1, function cmp.rel (Pohar Perme, 2018)),
while GEE models were fitted with the R-package geepack (version 3.2.5, function geese).

3.3 Simulation results

3.3.1 CPr of death from colon cancer and other causes Results shown in Table 1 suggested
that regardless of the link function used, the regression parameter estimates of the covariate
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effects were almost unbiased with most of the coverage probabilities lying within the acceptable
coverage range ([0.931, 0.969]) for all parameter estimates and for any cause (cancer or other
causes). Results were similar for both sample sizes although, for model (c) results seem to be
slightly better when N = 1000 due to a smaller bias in the larger sample size. In most cases, the
relative bias was relatively small, except when the true regression parameter was very close to 0
where even a practically very small difference would yield a big relative bias. In general, standard
error was found to be adequately estimated with the models based on how close the empirical
standard errors compared to model standard errors are. RMSEs were also reasonably low proving
also good model performance.

The only exception to that is the regression parameter estimates in model (c) in the case of
age (for cancer) and year (for both causes) when N = 300. In all cases, standard error seemed to
be well estimated thus, indicating that the bias in the estimator should be probably the reason for
the problematic coverage probability. A different choice of working correlation structure would
change both the regression parameter estimate and its variance, leading to a possibly better
coverage probability, while model misspecification might be an additional issue which may be
considered.

3.3.2 Life years lost The regression parameters were well estimated when modelling the number
of LYL due to each cause, with a very small bias and a good coverage (see Table 2). Only exception
to that was the estimated regression parameter for the effect of sex and year in the case of other
causes when N = 1000. An overestimation of the standard error by the model might have inflated
the coverage probability in case of sex, while bias seems to be the source of problem in the case
of year. Another specification of the model including a change of the working covariance matrix
would be additional things to consider.

4. Illustrative example

We illustrated our approach using a dataset of 7351 women diagnosed in England with cervical
cancer between 2008 and 2010, obtained from the national population-based cancer registry. We
limited the sample to those aged between 15 and 89 years, the end of follow-up was set at the
31st of December of 2015 and all individuals had a minimum potential follow-up of 5 years. In
this dataset, 2255 (30.7%) deaths were observed (whatever the causes, as the exact COD was not
available) while 186 (2.5%) were lost to follow-up. We applied the nonparametric method and the
pseudo-observations approach defined in the relative survival setting, and we used the UK life
tables, stratified by sex, age, calendar year, government office region and deprivation quintiles.

The covariates of interest for studying their association with the crude probabilities of death or
with the number of LYL due to each cause were: age at diagnosis defined as a continuous variable,
and the deprivation quintiles. For the latter, patients were categorized in 5 socioeconomic groups
(from the least deprived group, level 1, to the most deprived group, level 5) using national
categories of the income domain of the Index of Multiple Deprivation score (IMD 2004) which is
a score defined at the lower super output area level in England.

In this illustration, our aim was to a) obtain and interpret the regression parameter estimates
which quantify the effect of the covariates on the CPr and LYL due to cancer and due to other
causes, and b) derive the population estimates ie, point estimates and confidence intervals of the
CPr and LYL due to cancer and other causes using the approach described in Section 2.4.2, which
we compared to the nonparametric population estimates as a crude way of assessing the models.
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4.1 Crude probabilities of death from cancer and other causes

We modelled the CPr from cancer and other causes using three different models. All models
included two main variables, namely age at diagnosis and deprivation group. We used a linear
term of age while deprivation was modelled as a categorical variable with 5 groups. Models differed
with respect to the choice of link function which varied between cloglog, log, and identity, while
the working covariance matrix used in all models was utilizing the independence structure.

Firstly, we estimated the pseudo-observations for the CPr from cancer and other causes.
The pseudo-observations for each cause (cervical cancer and other causes) were computed at 5
timepoints, which were decided based on the quantiles of the survival time distribution while
forcing the 1st and 5th year to be in the selecting timepoints. Modelling the pseudo-observations
requires the inclusion of the time-dependent terms along with the covariates of interest, namely
age at diagnosis and deprivation groups.

The results of the model parameters coming from the different choice of link functions can
be seen in Table 3. In the case of the cloglog model, the reported β̂ estimates correspond to the
log subdistribution hazard ratios associated with 1 unit change of the covariate X in the instan-
taneous rate of the occurrence of the event among those who are event-free or have experienced
the competing event (ie, the subdistribution hazard function). Following the reasoning described
in Section 2.4.1, we provided only a qualitative description of the results. Age was described by
a linear term having a positive value (0.452), which can be described as an increase in subdistri-
bution hazard and subsequently, in the probability of dying from cancer with the increase of age.
Similarly, the regression parameter for age in the case of other causes was also positive (0.702),
indicating an increase in the subdistribution hazard of other causes. Moreover, regardless the
COD, the most deprived people were associated with a bigger increase of the CPr compared to
the least deprived, with the only exception being those from deprivation group 2 in the cancer
event. Lastly, we can say that for example people from deprivation group 4 who had a larger
regression coefficient than those from deprivation 3, had a higher relative change in the incidence
of cancer death (see Proof from Ref. (Austin and Fine, 2017)).

Although this interpretation was informative, the model with the log link function provided
also a quantitative interpretation. The effect of age was quantified as exp(0.33), meaning that a
10-year increase in age at diagnosis was associated with an increase in the probability of death
from cancer by 39% (95% CI:[37, 42]), for a given deprivation group at a given time-point.
With respect to other causes, the regression parameter for the effect of a 10-year increase in
age indicated an 1.95-fold (95% CI:[1.84, 2.08]) increase in the risk of dying from other causes.
Regarding deprivation, by exponentiating the results shown in Table 3, we observed that the
most deprived group (deprivation 5) had approximately 1.12 (95% CI:[1, 1.27]) times higher risk
of dying from cancer compared to the least deprived group (deprivation 1) at a given time-point
after adjusting for age at diagnosis. The corresponding effect on the other causes was 1.23 (95%
CI:[0.97, 1.61]).

The identity link model has also the advantage of a simple interpretation of the coefficient
parameters, providing estimates of risk differences. Therefore, we observed that a 10-year increase
in age at diagnosis was associated with an increase in the risk of cancer death (0.101, 95%
CI:[0.095, 0.107]), for a given deprivation group at a given time-point (the corresponding estimates
for other causes is 0.017 (95% CI:[0.015, 0.019])). Furthermore, we observed that for the most
deprived group (deprivation 5) the risk difference related to death from cancer was estimated as
0.043 (95% CI:[0.02, 0.07]) compared to the least deprived group (deprivation 1) at a given time-
point after adjusting for age. The analogous effect on the other causes was 0.008 (95% CI:[0.004,
0.012]).
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After obtaining the parameter estimates for the models, we derived the population estimates
for both causes at 5 timepoints (365, 969, 1826, 2132 and, 2487 days) and compared them to the
nonparametric results. All approaches seemed to give very similar results with those from identity
link function model being closer to the nonparametric estimates (see Figure 1). Regardless the
method, the crude probability of dying from cancer in women diagnosed with cancer over the 1st
year was approximately 13% and after 5 years 27%, while the crude probability of dying from
other causes in women diagnosed with cancer at 1 year was less than 1% and at 5 years 3%.
Some results with the log link function were less well aligned to the nonparametric estimates,
indicating a slight model misspecification, probably arising due to a wrong way of modelling age.
Indeed, after subsetting the original sample to those aged 30-40 years the results were better (see
Figure 2).

We have to note here that all these results rely on the fact that the assumptions underlying
the relative survival setting hold (see section 2.2). We assume that the life tables were sufficiently
stratified and that all the relevant information has been used, so there is not a so called “mismatch
in the life table” (Rubio and others, 2019). We also believe that even though the population used
here is quite young, the contribution of cancer deaths to all causes mortality hazard remains still
low, in order to satisfy the last assumption made in the relative survival setting.

4.2 Life years lost due to cancer and other causes

The pseudo-observations for the LYL that were lost from cancer or other causes were estimated
up to 5 years. A GEE model with identity link function and independence working covariance
matrix was used with age at diagnosis and deprivation group as explanatory variables. A 10-year
increase in age at diagnosis led to approximately 0.44 (95% CI:[0.42, 0.47]) more years being lost
due to cancer and 0.055 (95% CI:[0.051, 0.059]) due to other causes in the first 5 years (see Table
4). Moreover, people who were more deprived lost on average more years than people who were
less deprived in the first 5 years, with those in the most deprived group losing around 0.188 (95%
CI:[0.08, 0.3]) more years due to cancer compared to the least deprived.

Also, we estimated that the average amount of years that this population lost were 0.97 years
(95% CI:[0.93, 1]) due to cancer and 0.065 years (95% CI:[0.062-0.067]) due to other causes in 5
years after diagnosis, and the point estimates of the model-based estimates were almost identical
to the nonparametric estimates (0.97 and 0.064, respectively).

5. Discussion

Alternative survival indicators such as the CPr and LYL due to different causes, can prove very
useful when communicating survival statistics, especially in the case where the event of interest is
cancer whose complexity requires a multi-perspective approach. The CPr and the LYL are both
defined in ”real world” and quantify the impact of a covariate on a given event in the presence
of other competing events thus, useful to inform about a patient’s prognosis, a treatment choice,
or even the development of a control strategy (Charvat and others, 2013; Mariotto and others,
2014; Pohar Perme and others, 2016). The LYL indicator has the additional advantage of being
defined on a time scale, making it easier to communicate the results of an analysis to a non-
scientific audience (Belot and others, 2019). Although these indicators have been well defined
and modelled in cause-specific setting, ie, when the information on COD is available and reliable,
a direct modelling of those measures in the relative survival setting was unavailable.

In this paper, we explored the use of pseudo-observations in modelling these alternative sur-
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vival measures in the relative survival setting with generalised linear models using the GEE
method. This approach can accommodate different link functions and various structures of work-
ing covariance matrix. We evaluated the new approach using simulations and we showed that
it performs well for both measures. Regarding CPr, assessment of the model through regression
parameters showed good performance regardless the choice of link function and by assuming a
simple independence working covariance structure (Klein and Andersen, 2005; Pekár and Brabec,
2018). Regarding LYL, the simulation results displayed good performance for that indicator as
well when applying an identity link function and an independence covariance matrix.

The application of the new method to cervical cancer data showed how the covariate effects
on the indicators of interest can be derived and interpreted. The models used in the illustration
were simple, and one interesting further step would be to use goodness-of-fit tests as recently
proposed (Pavlič and others, 2018), in order to assess the choices of the link function and the
functional form of continuous covariates.

In general, this approach offers a useful alternative, especially when considering how easy it
is to interpret a model for the CPr with a log and identity link function as compared to one with
a cloglog function. Although a cloglog link function would give similar interpretations to Fine &
Gray model, we advocate the use of log link function with which the exp(β) gives an estimate
of the relative risk (Overgaard and others, 2015), and of the identity link function which would
yield the risk difference estimates. This would avoid the pitfalls of interpreting subdistribution
hazard ratios (Andersen and others, 2012; Austin and Fine, 2017) with the additional advantage
of quantitative interpretation of covariate effects on the indicator of interest. However, one must
be careful when choosing these link functions as to avoid making predictions that go beyond the
acceptable range (ie,[0,1] for probabilities and (0,+∞) for time).

Time-dependent and non-linear effects can also be easily introduced into the model (Klein
and Andersen, 2005). However, inclusion of a time-dependent covariate needs careful consider-
ation, mostly in terms of interpretation due to the fact that the CPr is not a functional of the
sole intensity when (nondeterministic) time-dependent covariates are considered (Andersen and
others, 2003). Knowing the future evolution of such covariates is therefore needed, yet this cannot
be practically done when the observed COD is a competing event. Studies that deal with that
include a landmarking approach using direct binomial modelling (Grand and others, 2018) or a
synthesis of separate cause-specific hazard analyses (Beyersmann and Schumacher, 2008) etc, but
more research in that direction will be needed in the context of pseudo-observation approach.

There are also other issues in our work which were not explored, but which could be of possible
interest. Firstly, until this point we presented a way to model the pseudo-observations separately
for one cause at a time. An alternative choice would be to model them jointly and using a
working covariance matrix that reflects the correlation between pseudo-observations of the same
cause that would enable the joint estimation of parameters (Andersen, 2013). Secondly, the goal of
this paper was to show the sensible behaviour of the method in practice. This was well confirmed
with our simulations, yet more work is needed to to derive theoretically the asymptotic properties
of the estimators. Thirdly, even though modelling the pseudo-observations constitutes a simple
and general approach that can simplify survival analysis, it is usually less efficient compared to
other methods developed specifically for one indicator of interest. An additional consideration
in this approach before applying it to any data, is the assumptions behind the relative survival
setting (Pavlič and Pohar Perme, 2018), violation of which might result in biased estimators of
the pseudo-observations and an invalid analysis. Lastly, in this study we did not investigate the
performance using different covariance matrix structures but we used the independence structure
throughout as has been suggested by (Klein and Andersen, 2005). Impact of other structure on
the results would be an interesting further methodological development.
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In summary, our approach based on pseudo-observations in relative survival setting demon-
strated nice frequentist properties on estimating the crude probabilities of death and the life
years lost from different causes in realistic situations. These two indicators along with other
frequently reported measures like net survival, would help improve the understanding of the na-
ture and mechanism of the competing events. Their computation in relative survival setting is
quite important as routinely collected population-based data suffer from unreliable or unavail-
able information which would help us distinguish between different causes. The advantage of
the pseudo-observation approach to provide covariate effects directly affecting the indicators of
interest in the relative survival setting, makes the method appealing to the user. However, one
should be aware that this approach might be prone to a longer computational time (especially in
the case of big dataset) compared to conventional methods. A guide that provides the code for
applying the method in R software can be found in the supplementary material.

6. Supplementary Material

The reader is referred to the Supplementary Material for technical appendices, R programs,
and example output. Sample data used are available at https://github.com/pseudorel/supp_
material.git.
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Fig. 1. Estimates of the CPr from cancer and from other causes as obtained with the nonparametric
method and the models based on the pseudo-observation approach on the population of English women
aged between 15 and 89 years old of cervical cancer between 2008 and 2010. Nonparametric estimates
are drawn on a daily time scale (lines with their confidence intervals) while those obtained with pseudo-
observations, are illustrated for 5 timepoints (365, 969, 1826, 2132 and, 2487 days) (points with confidence
intervals). Models assumed either a cloglog, log or identity link function (from left to right panel), all
models using independence working covariance structure.
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Table 3. Regression parameter estimates (standard errors) for the direct modelling of the crude proba-
bilities of death from cancer and other causes, as obtained with 3 models using pseudo-observations with
link functions: cloglog, identity and log, and assuming an independence working covariance structure.

cloglog log identity

cancer other causes cancer other causes cancer other causes

(Intercept) -2.313(0.072) -5.835(0.149) -2.178(0.055) -5.743(0.14) 0.099(0.01) 0.002(0.001)
t= 969 days 0.626(0.028) 0.721(0.018) 0.477(0.023) 0.702(0.017) 0.098(0.004) 0.008(0)
t= 1826 days 0.845(0.031) 1.207(0.032) 0.612(0.025) 1.163(0.029) 0.14(0.004) 0.017(0.001)
t= 2132 days 0.881(0.032) 1.339(0.036) 0.633(0.026) 1.286(0.033) 0.147(0.004) 0.021(0.001)
t= 2487 days 0.927(0.033) 1.474(0.04) 0.659(0.026) 1.41(0.036) 0.156(0.005) 0.025(0.001)
Age† 0.452(0.014) 0.702(0.034) 0.33(0.009) 0.67(0.032) 0.101(0.003) 0.017(0.001)
Deprivation 2 -0.025(0.091) 0.158(0.147) -0.016(0.067) 0.151(0.141) -0.001(0.014) 0.002(0.002)
Deprivation 3 0.134(0.087) 0.099(0.137) 0.085(0.063) 0.094(0.131) 0.031(0.014) 0.003(0.002)
Deprivation 4 0.2(0.083) 0.135(0.126) 0.125(0.06) 0.125(0.121) 0.047(0.014) 0.005(0.002)
Deprivation 5 0.186(0.082) 0.223(0.129) 0.12(0.06) 0.203(0.124) 0.043(0.013) 0.008(0.002)

† (Age at diagnosis-47 (mean age in the dataset))/10
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Fig. 2. Estimates of the CPr from cancer and from other causes as obtained with the nonparametric
method and the models based on the pseudo-observation approach on the population of English women
aged between 30 and 40 years old of cervical cancer between 2008 and 2010. Nonparametric estimates
are drawn on a daily time scale (lines with their confidence intervals) while those obtained with pseudo-
observations, are illustrated for 5 timepoints (365, 969, 1826, 2132 and, 2487 days) (points with confidence
intervals). Models assumed either a cloglog, log or identity link function (from left to right panel), all
models using independence working covariance structure.
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Table 4. Regression parameter estimates (standard errors) for the direct modelling of the number of life
years lost due to cancer and due to other causes, as obtained with a model for pseudo-observations with
identity link function and assuming independence working covariance structure.

Cancer Other causes

(Intercept) 0.841 0.051
Age† 0.443 0.055

Deprivation 2 0.002 0.005
Deprivation 3 0.144 0.011
Deprivation 4 0.216 0.017
Deprivation 5 0.188 0.025

† (Age at diagnosis-47 (mean age in
the dataset))/10
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4.3.2 Simulation algorithm to assess pseudo-observation models in rel-
ative survival

To generate competing risks data, one usually simulates as many cause-specific hazards
(CSH) as competing event types. The CSH completely determine the stochastic behaviour
of the competing risks process [12], thus making it easier to conceptualise the simulation
algorithm. If however, our focus is on the cause-specific cumulative probabilities or in the
subdistribution hazard (SDH) models, then we need to simulate the SDH instead of the CSH.
That way, we would be able to assess the performance of the models by comparing directly
the regression coefficients estimated with the models to those set initially in the simulations.
Haller and Ulm [32] showed how to use pre-specified SDH combined with CSHs in order to
simulate such data in cause-specific setting. Here, we show how we could adapt this approach
to the relative survival setting. This was motivated by the paper described previously, where
our goal was to assess the performance of the pseudo-observation models in the relative
survival setting.

Simulation algorithm

The simulation algorithm has six steps:
1. Generate a certain population of individuals with desirable characteristics. These

should include all the covariates that will be included in our models plus, these
variables that are used to match the life tables with population.

2. Obtain the expected mortality λP (from the life tables according to demographic
covariates of each individual).

3. Estimate the cancer-specific hazard λ1 through the subdistribution hazard γ1 and λP.
4. Derive individual survival times.
5. Apply a censoring mechanism.
6. Determine final survival times and the event types (if needed).

Generate individual covariates

We start by generating a cohort with pre-defined characteristics such as demographic or
other information regarding treatment, disease stage, etc. We may opt between creating our
own population with characteristics based on pre-defined distributions or using an existing
dataset based on real data. We do not need to use many populations; by using the algorithm
described below, the survival time and the event types for each individual will differ from
dataset to dataset (despite individuals being exactly the same in them). If we choose to
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generate the individual characteristics from scratch we may rely on previous studies that may
provide some insight on the distribution of variables. Population variables must include those
included in the SDH or excess hazard models, along with those that will permit us to link our
dataset to life tables.

Obtain expected mortality, λP

We derive the expected mortality, λP after matching each individual to a similar one from a
life table with respect to some demographic characteristics. If the life tables are age- and
sex-specific, then we obtain λP as the expected mortality by matching the individual’s age
and sex for a given calendar year and assume that this will remain constant until either the
age or the year change. That means that λP follows a piecewise exponential distribution.

Estimate excess-hazard, λ1

If our aim is to assess the regression coefficients of a SDH model or models like in the case
of the paper presented in Section 4.3 then, it is essential that we know the parameters that
describe the effects of specific covariates on the quantity we are performing the regression.
The performance of the model in question will be assessed based on the comparison of the
estimated regression coefficients to those set in our simulations. Thus, it is essential that we
set a model on SDH for the cause of interest (here denoted as γ1).

A wide range of models can be used to specify γ1, from simple to more advanced
parametric models [11, 19]. Previous knowledge on distribution that might describe best
what we aim to generate can be quite helpful. Analysing real data can be rather insightful. In
that way we may get an idea of the shape of the excess baseline hazard and the regression
coefficients.

For this algorithm to work we need to calculate the excess hazard λ1 too, as it is essential
that we know both the λ1 and λP for the next steps. The calculation of the λ1 through γ1 and
λP may be achieved by utilizing the formula described by Haller et al. [32]. Here, we make
the assumption that the expected mortality would be the counterpart of the CSH for the other
causes (λP := λ2). Thus, when λP(t|x) and γ1(t|x) are specified, then λ1(t|x) may be obtained
via

λ1(t|x) =
γ1(t|x)exp(−Γ1(t|x)+ΛP(t|x))

1−
∫ t

0 γ1(u|x)exp(−Γ1(u|x)+ΛP(u|x))du
(4.6)

For this to be valid, there are some properties that need to be satisfied and the reader is
advised to refer to Section 3.2 of [32].
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Generate survival times, T

We choose to generate the individual survival times using the inversion method, a popular
technique for continuous random variables. Let us suppose that Λ(t) =

∫ t
0
∑J

j=1λ j(u)du is
the cumulative all-cause hazard, which is an increasing and invertible function as is the
distribution of survival time, T . Since we do not separate between causes here, it holds that

F(t) = P(T ≤ t) = 1− exp(−Λ(t))

If F−1 is the inverse of F and F(t) is uniformly distributed on [0,1] and then,

P(F(T ) ≤ u) = P(T ≤ F−1(u)) = F(F−1(u)) = u, u ∈ [0,1]

Assuming a random variable U with a uniform distribution on [0,1], then F−1(U) has the
same distribution as T . Thus, all we need to do to generate survival times is to compute the
F−1(U) = Λ−1(ln(1−U)). If we cannot find the Λ−1(t), then numerical inversion may be an
alternative [12].

Generate event types, ϵ

Using a Bernoulli experiment we determine the event type of each individual with probabili-
ties λ1(t|x)

(λ1(t|x)+λP(t|x)) for an event of type 1 and λP(t|x)
(λ1(t|x)+λP(t|x)) for an event of type 2.

Apply a censoring mechanism, C

We could assign an administrative censoring by censoring everyone after a specific timepoint
or generate a random drop-out mechanism during the follow-up time. The latter accounts for
more realistic scenarios and could also highlight important features of the method depending
on the amount of censoring applied to the sample.

Determine final survival times and event types

The final survival times (TS ) will be given as the min(T ;C). If the final survival time is equal
to the censoring time, then ϵ takes the value 0, otherwise it remains as it is.
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Discussion and Conclusions



5.1 Contributions of this work 90

5.1 Contributions of this work

The main aim of this PhD was three-fold: i) to highlight the importance of using the
alternative survival indicators like the cause-specific cumulative probability (CPr) and the
number of life years lost (LYL) when performing survival analysis in competing risks; ii) to
present two new ways of estimating these indicators and providing covariate effects on them
using flexible regression models and the pseudo-observation approach; and iii) to provide
code for applying those methods in R software.

Although the idea of using alternative survival indicators is not novel, only a few studies
have reported them either as primary or complementary metrics. Hazard ratios seem to
be the option of choice by most of researchers when the description of covariate effects
is of main interest. In this work, we suggested the use of alternative metrics to avoid
pitfalls in interpretation, especially when interpreting cause-specific or subdistribution hazard
ratios. Particularly, the peculiarity of the definition of the latter makes the subdistribution
hazard ratios being frequently misinterpreted. That is quite important since an incorrect
and inconsistent interpretation of regression coefficients might lead to confusion, especially
when we compare results with other studies [9]. Therefore, although there are a couple of
alternative survival indicators that might be used instead [10], in this work we focused on
the use of the CPr and the LYL. Both have easy interpretations that are expressed either in
a probability-scale or a time-scale (for CPr and LYL, respectively). This makes their use
quite attractive as they can be communicated easier to a scientific and non-scientific audience.
Interestingly, these indicators keep their simple interpretation regardless the setting they
are applied to (all-cause, cause-specific or relative survival setting). Their estimation, as
illustrated in Section 2.3.4, may be achieved non-parametrically using any of the hazards
found in the competing risks.

In Chapter 3 we presented how to estimate the CPr and LYL along with providing a
measure of covariate effects using flexible regression models [22, 16]. For the cause-specific
setting we need to model all cause-specific hazards and then combine these results in order
to estimate the CPr from a particular cause. Although we do not model directly the CPr,
we show how to measure the exposure (causal) effects with regression standardization (if
the underlying assumptions of causal inference are met). These were described in the paper
presented in Section 3.3.1. In relative survival setting, we only need to model the excess
hazard in order to compute the CPr. Then LYL could be easily calculated based on equation
2.3.4.2.

We also presented an additional way of estimating the CPr and LYL by setting a regression
model directly on them using the pseudo-observation approach. The pseudo-observation
approach was introduced by Andersen et al. [6] and was further developed specifically for
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the CPr and the LYL in [37, 7, 2]. This methodology is well established in cause-specific
setting; yet not extended to relative survival setting. Out of this work, I authored a research
paper dedicated to describing the adaptation of this method to relative survival setting. My
motivation was to show how to model and estimate the CPr and LYL in relative survival
setting, allowing for easier interpretations compared to those coming from hazard-based
analysis. Another advantage of this method is that the covariate effects now directly translate
to the indicators of interest. The use of different link functions (eg, log or identity) in the
case of CPr allow also for easier interpretations avoiding the complexity in interpretations
of subdistribution hazard ratios. The method per se is also quite general therefore, its
implementation is simple if an approximately unbiased estimator for the indicator in question
exists. Lastly, it is important to note here that the extension to relative survival setting is
important as COD is usually either unavailable or unreliable, thus making this new approach
very appealing to policy-relevant cancer research.

An interesting addition that came as a need for assessing pseudo-observation models in
relative survival, was a new simulation algorithm that I needed to develop, which is based
on [32] and that allows for simulating data in relative survival setting. The information on
the cause of interest was generated using a subdistribution hazard model, while for the other
causes we used the expected mortality found in life tables. Connecting all these quantities
together in order to generate the survival times is not a trivial issue and an extensive algorithm
was produced. More details can be found in Section 4.3.2.

Lastly, all the aforementioned were also coded in R software and tutorials that show how
to apply them are also provided in the Appendices. The R cookbooks for the FRM and the
pseudo-observations come as part of the corresponding papers.

5.2 Strengths and limitations

The methodologies that were presented in this thesis provide two ways of estimating the
alternative survival indicators with either hazard-based modelling (FRM) or with pseudo-
observations allowing for a direct approach. Both approaches have strengths and limitations
and the user may opt for either approach depending on the needs of the given study. Below,
we summarise the main arguments that show both sides of the coin of each method and
provide some insight for choosing the appropriate method in each occasion.

Firstly, in FRM we need to model all hazards from all event types (in the cause-specific
setting) or just the excess hazard (in relative survival setting). In the pseudo-observation
approach, we model the pseudo-observations of the indicator of interest, which are estimated
with the so-called “leave-one-out” estimator (see equation 4.3). A standard modelling using
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GEE could be applied allowing for different link functions and covariance matrix structures.
If a cloglog link function is used in a model using the pseudo-observations of the CPr as the
outcome, then the model would resemble the Fine & Gray model and thus, we would model
the subdistribution hazard. However, when comparing the pseudo-observation approach to
other “standard” methods (eg, Fine & Gray), pseudo-observation approach might be less
computationally efficient.

We may utilize FRM or pseudo-observation approach in order to make meaningful
interpretations on the CPr that avoid the difficult interpretations of subdistribution hazard
ratios. When using the FRM approach, we achieve that with the adjusted cumulative
probability. This allows us to visualize and quantify (with the standardized risk difference)
how the combination of the direct effect (on the CSH of interest) and the indirect effect (on
the CSH of the competing event) of a given variable translates to cumulative probability scale.
Using the pseudo-observation approach meaningful interpretations could be obtained after
changing the link function of the models to either log or identity. Both are appealing and
could give nice interpretations (eg, relative risk and risk differences). Of course, one must be
aware of making predictions outside the acceptable range when using these link functions.

From a technical perspective, both modelling approaches allow for time-dependent and
non-linear effects. Although time-dependent covariates could be also incorporated in a hazard
based model like the FRM, more consideration is needed in the pseudo-observation case,
where CPr is modelled directly. This is because CPr is not a function of the sole intensity
when (nondeterministic) time-dependent covariates are considered [6]. Knowing the future
evolution of such covariates is therefore needed, yet this cannot be practically done when
the observed cause of death is a competing event. Therefore, landmarking would be a more
appropriate method to use in such occasions [27].

Lastly, a nice feature that could be applied to both methodologies is a crude graphical
assessment of the final model. In the paper shown in 3.3.1, we showed how easily we could
assess the performance of a model by comparing the model estimates for the population
towards to the non-parametric estimates. Yet, this might be quite simplistic and more
sophisticated goodness-of-fit tests in the context of the recently proposed [45] is needed for a
more extensive model evaluation.

5.3 Future work

The work presented in this thesis could be extended towards a further methodological and a
more applied direction.
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An additional methodological work that could come as a natural further step would be
to extend the estimation of the CPr and LYL in the relative survival setting using FRM.
The theory has already been explained in the Section 3.3.2 thus, a first step would be to
draft a paper about that. Another methodological work that could follow is to define the
asymptotic properties of pseudo-observations that were described in the paper in Section 4.3.
The methodology that was described in that paper was assessed in practice with the use of
simulations, yet more work is needed to derive the asymptotic properties of the estimators.
Another interesting extension would be to use pseudo-observations in a causal framework
while accounting for the expected mortality [8]. In addition, the use of pseudo-observations
in a multi state model while accounting for the expected mortality could also be an interesting
methodological development ([26, 34]). Indeed, we have more and more information on
intermediate states patients reach before death occurs (complete response, recurrence/relapse,
hospitalization, occurrence of comorbidity, 2nd cancer, etc.). A direct modelling approach
using pseudo-observations would be very insightful for describing the state occupation
probabilities according to specific covariates.

From an epidemiological perspective, the two methodologies that were described in this
thesis will be applied on real cancer data to investigate deprivation inequalities among cancer
patients. The number of life years lost could also provide an interesting insight for public
health purposes especially if combined to annual costs following a cancer diagnosis.

5.4 Conclusions

This PhD offers two new methods on estimating the cause-specific cumulative probability
and the number of life years lost due to a given disease. Flexible regression models based on
the recent work of Charvat et al. [16] and the extension of the proposed pseudo-observation
approach by Andersen et al. [6] to the relative survival setting were the methods that were
detailed here. Covariate effects on the indicators were measured in both cases either directly
with pseudo-observations or indirectly with flexible regression models based on regression
standardization. Along with the theory, R-code for implementing those methods was also
provided. Further methodological developments to extend these methodologies and an
application to real cancer data would be interesting next steps.
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Abstract: Survival data analysis results are usually communicated through the overall survival 

probability. Alternative measures provide additional insights and may help in communicating 

the results to a wider audience. We describe these alternative measures in two data settings, 

the overall survival setting and the relative survival setting, the latter corresponding to the 

particular competing risk setting in which the cause of death is unavailable or unreliable. In the 

overall survival setting, we describe the overall survival probability, the conditional survival 

probability and the restricted mean survival time (restricted to a prespecified time window). 

In the relative survival setting, we describe the net survival probability, the conditional net 

survival probability, the restricted mean net survival time, the crude probability of death due 

to each cause and the number of life years lost due to each cause over a prespecified time 

window. These measures describe survival data either on a probability scale or on a timescale. 

The clinical or population health purpose of each measure is detailed, and their advantages 

and drawbacks are discussed. We then illustrate their use analyzing England population-based 

registry data of men 15–80 years old diagnosed with colon cancer in 2001–2003, aiming to 

describe the deprivation disparities in survival. We believe that both the provision of a detailed 

example of the interpretation of each measure and the software implementation will help in 

generalizing their use.

Keywords: survival, competing risks, relative survival setting, conditional survival, restricted 

mean survival time, net survival, crude probability of death, number of life years lost

Introduction
In epidemiology, survival data are commonly described with the probability of being 

alive after a certain time after the diagnosis of a particular disease. However, depending 

on the objectives, i) evaluating the patients prognosis or ii) giving useful information 

for public health policy, alternative measures may be useful. For both objectives, data 

gathered by population-based registries are one of the main sources of information 

because they represent the whole population.1 Additionally, many diseases are more 

prevalent among older groups of the population, who are also more likely to experi-

ence competing risks of death. Thus, one additional complexity is to disentangle the 

impact on survival of the disease under study from other causes of death. Because 

the cause of death is not routinely collected in population-based registries, or may be 

inaccurate or unreliable, especially for long-term studies as it may be diversely coded 

over time and on different regions,2–5 specific methods have been developed to allow 

the estimation of quantities associated with the disease under study without the need for 

the cause of death, known as the “relative survival” setting. These methods have been 
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mainly used in cancer epidemiology, with some attempts in 

other clinical areas (explained in the “Discussion” section).

Our aim is to provide an overview of different time-

to-event measures that can be used to summarize survival 

data in both the overall survival setting and the “relative 

survival” setting and to introduce them in a way they can 

be interpreted and estimated by applied researchers. In the 

overall survival setting, these measures are the overall sur-

vival, the conditional survival (CS) and the restricted mean 

survival time (RMST). In the “relative survival” setting, the 

measures detailed below are the net survival (NS), the con-

ditional net survival (CNS), the restricted mean net survival 

time (RMNST), the crude probabilities of death (CPD) due 

to each competing cause and the number of life years lost 

(NLYL) due to each competing cause. We illustrate their 

use and interpretation using a cancer epidemiology example 

with public health policy implications, where we display 

survival socioeconomic disparities after the diagnosis of 

colon cancer. We discuss their usefulness distinguishing 

clinical perspective from population health perspective. For 

reproducibility, we also provide R code for the derivation 

and the computation of all the measures introduced in the 

Supplementary materials.

Theoretical framework
Consider a group of patients diagnosed with a specific type 

of cancer and followed up over a period of time. During this 

period, we observe the time to death T
i
 for a patient i, with 

the corresponding vital status d
i 
= 1 (death). Patients lost to 

follow-up or alive at the end of the observation period are 

censored (d
i 
= 0) at the time of their last known vital status. 

Additionally, some prognosis variables X
i
, such as gender, 

age, among others, are known.

We consider two different settings, namely, the overall 

survival setting and the relative survival setting. The overall 

survival setting is the classical choice for survival data analy-

sis, where the only information used in the analysis are T
i
 

and d
i
, for patient i, among some patient-level characteristics. 

In the relative survival setting, we account for the fact that 

patients may die from other causes than cancer and our inter-

est translates to the survival experience related to a specific 

cause of interest. However, when analyzing population-based 

data, the cause of death is missing or not reliably known, thus 

leading to the relative survival setting. The relative survival 

setting is based on competing risks theory but applied to 

population-based data where the cause of death is unavailable. 

This distinction is useful because some statistical measures 

are defined only in the relative survival setting. In this set-

ting, we use the expected or population mortality hazard as 

additional information in order to derive quantities specifi-

cally associated to the cancer under study.

the “classical” overall survival setting
overall survival and conditional survival probabilities
The survival probability P(T>t) quantifies the probability to 

be alive after a certain time point t, and it can be written in 

terms of the mortality hazard l(t) through the relationship 

S t u du
t

( ) = − ( )∫exp( )
0

l . It follows that 1-S(t) quantifies the 

(cumulative) probability of death before time t, P(T ≤ t). An 

additional quantity that can be easily derived is the CS,6–10 

CS(t|s), defined as the probability of surviving further “t” 

years given that a patient has already survived “s” years 

after the diagnosis:7

CS t s P T t s T s
S s t

S s
u du

s

s t

| ( | exp( ) = > + > =
+( )

( ) = − ( )
+

∫) ( )l  (1)

It gives an updated survival probability for patients who 

survived up to time “s” and reflects the impact of late effects, 

complications or occurrence of late events (eg, recurrences) 

as their mortality hazard varies over time. This measure can 

be used as a function of the time point s, at which the predic-

tion is made in order to obtain the probability that a patient 

survives at least “t” more years7 after surviving the first “s” 

years from diagnosis. It could be useful to compare patient’s 

prognosis after say 1 year of follow-up, as the mortality 

hazard is often high during the first year after diagnosis, 

hence the cohort of patients surviving the first year may have 

different characteristics compared to the original cohort of 

patients. This measure is also related to the probability of 

the remaining life (also known as probability of the residual 

life), which is defined as PRL t s P T t s T s| ( |( ) = ≤ + > ) . The 

probability of the remaining life (PRL) is the probability that 

patients die within “t” years after having already survived 

“s” years from diagnosis.11

Restricted mean survival time
The mean survival time (MST) is the expected period of time 

that patients will survive after their cancer diagnosis. The 

calculation of the MST requires the estimation of the entire 

survival function (that is, until to the point when the survival 

probability reaches 0, in other words the follow-up is long 

enough for all events to be observed). This is an important 

limitation in practice given that survival data are typically 

right-censored due to random dropout or limited follow-up. 

This implies that the right-hand tail of the survival function 
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is usually unobserved (ie, we do not observe the deaths for 

the whole cohort). The RMST represents an alternative mea-

sure that overcomes this limitation12–17 and is defined as the 

mean survival time over a prespecified time window [0-τ]. 

The RMST is interpreted as the τ-year life expectancy. In 

mathematical terms, the RMST(τ) is defined as

RMST S u dut
t

( ) = ( )∫
0

   (2)

It can be seen from the previous equation that the RMST 

is simply the area under the survival curve between time 0 and 

τ (Figure 1). This measure is defined on the timescale (instead 

of the probability scale) and is therefore quite attractive due 

to its simplicity for both interpretation and communication 

in clinical setting.14,16,18 Moreover, the RMST is an appealing 

outcome measure as it produces a single summary value even 

in cases when the hazard ratio varies with time since diagno-

sis (ie, nonproportional hazards).14,19 Therefore, quantifying 

a difference between treatments using the RMST provides 

a clinically meaningful measure, compared to an estimated 

hazard ratio, only relevant in the limited number of scenarios 

where the proportional hazards assumption is reasonable.

Notice the reversed perspective with the restricted mean 

time lost (RMTL),16 RMTL S u du S u dut t
t t

( ) = − ( ) = − ( )∫ ∫
0 0

1 ,
  

which is interpreted as the expected number of years lost before 

time τ (compared to an “immortal” cohort). Geometrically, 

this quantity is the area above the survival curve (Figure 1).

Accounting for competing risks in the 
relative survival data setting
Net survival
Cancer patients may die from causes other than the cancer under 

study. However, in the relative survival setting, the cause of 

death is not available (or unreliable) and the mortality hazards 

from other causes are provided by the background mortality 

from the general population to deduce the excess mortality 

hazard that can be attributed, directly or indirectly, to the cancer 

under study. In mathematical terms, this means that the overall 

mortality hazard lOi
, for patient i, is the sum of two hazards, the 

excess hazard lEi
 (associated to the cancer under study) and the 

expected hazard l
Pi

(coming from the general population):20–25

l l lOi Ei Pit t t( ) = ( ) + ( )    (3)

The expected mortality hazard l
Pi is assumed to be 

known. In practice, l
Pi

 is usually obtained from life tables 

built by national statistics institutes and stratified on some 

sociodemographic variables (such as age, sex, calendar year, 

deprivation and region).
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Figure 1 graphical representation of the different measures using simulated data: the overall survival probability (dashed black curve), the 10-year RMSt (lower shaded 
area), the Nlyl at 10 years according to each cause (Nlylcancer – upper shaded area and Nlylother – middle shaded area, which sum up to give the RMtl), and the curves of 
the CPd due to cancer (CPdcancer) and due to other causes (CPdother), using a (reverse) stacked display format.
Note: Simulated data were used for this graphical representation; therefore, the values do not match the estimated values from the manuscript (which were based on real 
data).
Abbreviations: CPd, crude probability of death; Nlyl, number of life years lost; RMSt, restricted mean survival time; RMtl, restricted mean time lost.
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The hazard functions in equation (3) are defined at “indi-

vidual level”. From this hazard structure in equation (3), we 

can derive marginal hazard and marginal survival functions 

(ie, defined at the “population level”). The NS function of 

a patient i is the survival derived from the excess mortality 

hazard S t u duNi

t

Ei( ) = − ( )∫exp( )
0

l , while the NS of the 

whole cohort (ie, marginal) is the average of individual NS 

functions: S t
n

S tN

i

n

Ni( ) = ( )
=
∑1

1

. NS does not depend on 

mortality from other causes,22,23,26 so it is most useful for 

comparing different populations after age standardization 

to account for the difference in the structure of age between 

populations.27,28 It estimates the survival that cancer patients 

would experience if they could only die from the cancer under 

study. A nonparametric estimator of NS, relying on counting 

process theory, was proposed by Perme et al.23 This estimator 

is based on estimating the cumulative excess hazard in order 

to deduce the NS of the whole cohort S
N
(t). The marginal net 

hazard (ie, defined for the whole cohort) is derived from the 

marginal NS as a weighted sum of the individuals’ excess 

hazards (Supplementary materials for more explanations on 

the formulas):

l lN

i

n
Ni

i

n

Ni

Eit
S t

S t
t( ) =

( )
( )

( )
=

=

∑
∑1

1

  (4)

It is worth noting that the link between individual and 

marginal hazards to account for individuals’ heterogeneity also 

exists in the overall survival setting (Supplementary materi-

als), but is less important to be presented compared to the 

relative survival setting, as explained later in the manuscript 

(explained in the “Crude probability of death (CPD)” section).

Conditional net survival probability
Analogous to the overall survival setting, the CNS, CNS (t|s) 

is the probability patients survive further “t” years given that 

they have already survived “s” years after the diagnosis, but 

in the hypothetical situation where they could only die from 

the cancer under study:29–32

CNS t s
S s t

S s
N

N

|( ) =
+( )

( )   (5)

Restricted mean net survival time (RMNSt)
Analogous to the derivation of the RMST in the overall 

survival setting (equation 2), the RMNST is defined in the 

relative survival setting as

RMNST S u duNt
t

( ) = ( )∫
0

  (6)

with the NS function replacing the overall survival from 

equation (2).

The RMNST represents the mean NS over a prespecified 

time window [0,τ] and quantifies the mean time patients 

would survive if they were only exposed to the mortality 

hazard due to cancer between 0 and τ years from the diag-

nosis. Given that this measure is not affected by other causes 

of death, it represents a useful tool for comparing different 

populations. In addition, this measure can be derived with any 

NS model, including nonproportional excess hazard models, 

in contrast to other comparison tools such as log-rank-based 

test for comparing NS curves which loses power in case of 

nonproportional hazards.33,34

Crude probability of death (CPd)
For this measure, we first need to define the marginal cause-

specific hazard l
C
(t) and the marginal expected mortality 

hazard l
P
(t) (ie, defined on the whole population, Supple-

mentary materials). They are also derived from Equation 3:

l lC

i

n
i

i

n

i

Eit
S t

S t
t( ) =

( )
( )

( )
=

=

∑
∑1

1

  (7)

l lP

i

n
i

i

n

i

Pit
S t

S t
t( ) =

( )
( )

( )
=

=

∑
∑1

1

  (8)

At this point, it is crucial to highlight the difference 

between the marginal net hazard l
N
(t) and the marginal 

cause-specific hazard l
C
(t). Both are based on a weighted 

average of individuals’ excess hazards,23 and the differ-

ence lies in the weights that multiply the individual excess 

hazards, which are either based on the individual’s NS, 

S t u duNi

t

Ei( ) = − ( )










∫exp

0

l  or on the individual’s over-

all survival S t u dui

t

Oi( ) = − ( )










∫exp

0

l  (Supplementary 

materials). In other words, l
N
(t) does not depend on the 

individuals’ expected mortality hazards, while l
C
(t) does. 

Notice that if the individual excess hazards are identical 

for all patients (ie, no heterogeneity observed between 

patients), then the two population hazards l
N
(t) and l

C
(t) 

are equal.23

The CPD due to cancer F
C
(t) and the CPD due to other 

causes F
P
(t) are defined as

F t S u u duC

t

C( ) = ( ) ( )∫
0

l   (9)

F t S u u duP

t

P( ) = ( ) ( )∫
0

l   (10)
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The function F
C
(t) represents the probability of dying 

from cancer under study before time t, in the presence of 

other causes of death. F
P
(t) represents the probability of dying 

from other causes before time t, in the presence of cancer 

as a cause of death.35,36 More specifically, by splitting the 

overall mortality hazard of a group of individuals as the sum 

of the cause-specific mortality hazard and the other-cause 

mortality hazard, the probability of death can be written as 

the sum of the probability of death due to cancer and that 

due to other causes (Figure 1; Supplementary materials). 

The crude probability F
C
(t) is an indicator relevant to cancer 

patients interested in their prognosis as well as for health care 

planning.24,35,37–39 In the classical competing risks framework 

(ie, with known and reliable information on cause of death), 

this measure is also known as the cause-specific cumulative 

incidence function40,41 or the absolute cause-specific risk of 

death.42

Number of life years lost (Nlyl)
The restricted mean of time lost can be decomposed accord-

ing to the cause of death.43 This decomposition can be 

extended to the relative survival setting. Since the overall 

probability of death is equal to the sum of the probability of 

death from cancer and the probability of death from other 

causes, 1− ( ) = ( ) + ( )S t F t F tP C , we integrate this function 

between 0 and τ and decompose the RMTL(τ) (Figure 1) as

RMTL S t dt F t dt F t dtP Ct
t t t

( ) = − ( )( ) = ( ) + ( )∫ ∫ ∫
0 0 0

1   (11)

where each term on the right-hand side of the equation cor-

responds to the mean NLYL due to population mortality 

and cancer-specific mortality over a t-year time window, 

respectively.35

NLYL F t dtP Pt
t

( ) = ( )∫
0

  (12)

NLYL F t dtC Ct
t

( ) = ( )∫
0

  (13)

We can also use this decomposition to compare the cancer 

patients to the general population, in order to quantify how 

many years of life expectancy patients lose because of the 

cancer.43–45 Rearranging Equation 11, the NLYL due to the 

cancer before time τ, NLYL
C
(τ), is defined as

NLYL F t dt F t dt S t dtC C Pt
t t t

( ) = ( ) = − ( ){ } − ( )∫ ∫ ∫
0 0 0

1   (14)

where the quantity 1-F
P
(t) can be replaced by S

P
(t), ie, the 

classical survival function using the population mortality 

rates l
P
. Equation 14 shows that the NLYL due to the can-

cer before time τ is simply the difference between the area 

under the curve of the population survival minus the area 

under the curve of the overall survival (ie, the area between 

the two curves).46,47

Estimation
In both settings (overall and relative survival) and for each 

measure summarized in Table 1, we followed the same prin-

ciple of estimation; we used nonparametric estimators and 

plugged them in the corresponding formulas. In the overall 

survival setting, we used the nonparametric Kaplan–Meier 

estimator40,48 for overall survival and CS probabilities and for 

RMST(τ). In the relative survival setting, we used the nonpara-

metric Pohar-Perme estimator23 of NS, CNS and  RMNST(τ). 

For the CPD and the NLYL, we used an Aalen–Johansen type 

estimator defined in the relative survival setting. All analyses 

were done with the R software (R Foundation for Statistical 

Computing, Vienna, Austria), version 3.2.4 and the packages 

survival and relsurv. For the standard errors of the estimates, 

we used analytical formulas when available, or we used non-

parametric boostrap49 using the R-package boot (for the CNS 

and the RMNST). Supplementary materials detail the R code 

to perform the estimations.

Material for the illustration
To illustrate the usefulness and the interpretations of the 

different measures, we analyzed records of males diagnosed 

with colon cancer, obtained from the England population-

based cancer registry. We aimed to describe socioeconomic 

disparities in (cancer) survival. We limited the analysis to 

the patients diagnosed between 2001 and 2003 and aged 

between 15 and 80 years old at diagnosis and followed up 

up to December 31, 2014. Thus, all patients had a minimum 

potential follow-up of 10 years. Estimation in the relative 

survival setting used life tables stratified by age, sex, calendar 

year, Government office region and deprivation.

Patients were categorized in five socioeconomic status 

groups (from the least deprived group, level 1, to the most 

deprived group, level 5) using national quintiles of the income 

domain score of the Index of Multiple Deprivation (IMD 

2004),50 which is a score defined at the lower super output area 

level in England (geographical area of approximately 1,500 

inhabitants). The income domain score combines five indica-

tors, and it measures the proportion of the population in an area 

experiencing deprivation related to low income. When mea-

sured at a relatively small geographical level, this ecological 

deprivation score is considered as a good proxy of individual 

deprivation, while additionally measuring the patients’ social 

and economic environment.51,52 Methodological guidelines 
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describe the use of such ecological deprivation scores in the 

context of cancer survival and discuss their limits.53

Ethics approval
We obtained the ethical and statutory approvals required 

for this research (PIAG 1-05(c)/2007; ECC 1-05(a)/2010; 

ethical approval updated April 6, 2017 (REC 13/LO/0610)), 

from the Confidentiality Advisory Group (CAG) part of the 

Health Research Authority (HRA). 

Results
A total of 14,316 deaths out of 19,853 patients occurred over 

the study period. The group aged between 65 and 74 years 

constituted over 40% of the patients under study (Table 2).

overall survival setting
Survival and CS probabilities
The 10-year overall survival probability for all ages com-

bined was 0.36 (95% confidence interval [CI]: 0.34, 0.37) 

for deprivation group 1, and 0.25 (95% CI: 0.24, 0.27) for 

deprivation group 5 (Table 3), and the 10-year overall survival 

probabilities by deprivation and age group are detailed in 

Table S1 and Figure S1.

The CS gives a more optimistic picture of the prognosis, 

even though the deprivation disparities remain substantial: 

once patients survived the first 5 years, the probability to sur-

vive 5 more years CS(5|5) was 0.76 (95% CI: 0.74, 0.78) for 

the least deprived and 0.68 (95% CI: 0.66, 0.71) for the most 

deprived (Table 3). The deprivation disparity was observed 

in all age groups (Table S2; Figure S2).

RMSt
We estimated the 10-year RMST by deprivation group, for 

all ages combined (Table 3) and by age group (Table S3; 

 Figure S3). The RMST at 10 years was estimated as 

5.14 years, (95% CI: 5.01, 5.27) for the least deprived group 

compared to 4.16 years (95% CI: 4.03, 4.30) for the most 

deprived group of patients (Table 3).

While the 10-year RMSTs were almost similar across 

deprivation categories in the group aged 15–44 years, they 

differ by more than 1 year in the age groups 55–64 and 

65–74 years. Patients aged 55–64 years survived on average 

5.76 years (95% CI: 5.5, 6.02) in the least deprived group 

vs 4.73 years (95% CI: 4.43, 5.03) in the most deprived 

group of patients (Table S3). Patients aged 65–74 years 

survived on average 5.15 years (95% CI: 4.95, 5.34) in the 

least deprived group vs 4.04 years (95% CI: 3.83, 4.24) in 

the most deprived group.T
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Relative survival setting
NS and CNS probabilities
The 10-year NS still displays a clear disparity by depriva-

tion group even though slightly reduced compared to the 

overall survival (Table 4). These disparities of NS between 

deprivation groups remained by age group (Table S4; Figure 

S4). However, the deprivation disparity almost disappear 

on the CNS(5|5) for all ages combined (Table 4), and also 

by age group for patients younger than 74 years (Table S5; 

Figure S5). A nice illustration is given by cancer patients 

aged 55–64 years: the CNS(5|1) is quite different between 

the most deprived group and the other groups. But as the 

time we are conditioning on passes, the difference narrows 

(Table S5; Figure S5). It shows that most of the difference 

between deprivation groups happened during the beginning 

of the follow-up, while after 5 years, the excess mortality 

hazard was almost the same in the different deprivation 

groups, except for the group of age 75–80 years.

RMNSt
The RMNST at 10 years quantifies the average time patients 

would survive if they were only exposed to cancer-specific 

mortality during the next 10 years. Between the least and 

most deprived groups, a difference of 0.7 years was estimated: 

5.74 years (95% CI: 5.58, 5.90) vs 5.02 years (95% CI: 4.84, 

5.19) (Table 4). Differences in RMNST at 10 years were 

observed across all age groups; RMNST decreases while 

deprivation increases, with a steeper decrease for the most 

deprived group (Table S6; Figure S6).

CPd
The CPD gives an overall picture of the patients’ prognosis. 

All ages combined, the CPD from cancer 10 years after diag-

nosis was estimated as 0.50 (95% CI: 0.49, 0.52) for the least 

deprived and 0.56 (95% CI: 0.54, 0.58) for the most deprived 

(Table 4), while the CPD from other causes at 10 years was 

0.14 (95% CI: 0.13, 0.14) for deprivation group 1 and 0.19 

(95% CI: 0.19, 0.20) for deprivation group 5. We contrasted 

graphically the prognosis of death from cancer and from 

other causes, between the least deprived group and the most 

deprived group (Figure S7). By age group, the differences 

between the least and the most deprived groups were more 

pronounced for patients aged 55–64 and 65–74 years, with 

substantial differences in both CPD from cancer and from 

other causes (Table S7).

Nlyl
Disparities of survival between deprivation groups could also 

be quantified using the NLYL due to cancer and other causes. 

For the most deprived, the NLYL at 10 years due to cancer 

was 4.14 years (95% CI: 3.97, 4.28) and was 0.72 years 

(95% CI: 0.70, 0.75) due to other causes, compared to 4.77 

(95% CI: 4.60, 4.94) and 1.08 (95% CI: 1.03; 1.12) in the 

least deprived group, respectively (Table 3). Those disparities 

varied by age group. In the 55–64 years age group, the NLYL 

due to cancer was around 4 years for deprivation groups 1–4, 

Table 2 Number of cases (K) and deaths (d) observed before 
december 31, 2014, in men aged between 15 and 80 years old 
at diagnosis and diagnosed between 2001 and 2003 in England, 
by deprivation and age at diagnosis groups (deprivation 1 
corresponding to the less deprived and 5 to the most deprived)

Age at 
diagnosis

Deprivation group Total

1 2 3 4 5
[15;44] K 122 116 118 123 128 607

d 57 55 59 57 72 300
[45;54] K 326 322 294 287 275 1,504

d 169 181 156 177 163 846
[55;64] K 1,017 978 898 911 756 4,560

d 589 583 544 577 531 2,824
[65;74] K 1,699 1,740 1,680 1,669 1,482 8,270

d 1,180 1,248 1,200 1,247 1,200 6,075
[75;80] K 905 1,038 1,052 1,080 837 4,912

d 766 902 887 944 772 4,271
Total K 4,069 4,194 4,042 4,070 3,478 19,853

d 2,761 2,969 2,846 3,002 2,738 14,316

Table 3 Measures estimated in the classical survival setting, in men aged between 15 and 80 years old at diagnosis by deprivation group 
(dep), with their 95% CIs: the survival probability at 10 years after diagnosis S(t=10), the conditional probability of surviving further  
t=5 years given that a patient already survived s = 5 years CS(t=5|s=5), and the restricted mean survival time at 10 years RMST(τ = 10)

Dep 1 Dep 2 Dep 3 Dep 4 Dep 5

S (t=10) (%) 0.36 (0.34–0.37) 0.33 (0.32–0.35) 0.34 (0.32–0.35) 0.30 (0.28–0.31) 0.25 (0.24–0.27)

CS(t=5|s=5) (%) 0.76 (0.74–0.78) 0.74 (0.72–0.76) 0.75 (0.73–0.77) 0.73 (0.70–0.75) 0.68 (0.66–0.71)

RMST(τ = 10) 5.14 (5.01–5.27) 4.93 (4.80–5.05) 4.92 (4.79–5.05) 4.58 (4.45–4.70) 4.16 (4.03–4.30)

Abbreviations: CS, conditional survival; RMSt, restricted mean survival time.
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and it was more than 4.5 years for the most deprived. The 

disparities in NLYL due to other causes were also substantial 

in age groups 55–64 and 65–74 years (Table S8; Figure S8).

Discussion
Survival data are typically summarized through the prob-

ability of being alive after a certain amount of time. Even 

though this probability is a measure which cannot be directly 

assigned to individual patients (because of many unknown 

prognostic factors), it represents the main indicator patients 

(and their clinicians) are interested in. Nevertheless, alter-

native measures can be useful as they provide additional 

insights into the data as well as alternative ways of com-

municating cancer prognostic information to different 

target audiences. This need for presenting cancer survival 

statistics in different and complementary ways to patients, 

clinicians and policy makers becomes even more relevant as 

the burden of cancer rises worldwide.39 Using colon cancer 

data of men diagnosed in England between 2001 and 2003 

and followed up for 10 years, we illustrated the use of these 

alternative measures (Table 1). Overall survival shows clear 

deprivation-related pattern, and even after conditioning on 

being alive at 5 years after diagnosis, the probability to be 

alive after 5 more years still displays deprivation disparities 

(CS). The same is observed with the RMST, while quanti-

fied on a timescale. However, those measures are not able 

to separate the deprivation disparities associated to cancer-

specific mortality from that due to other causes. Accounting 

for the differences in expected mortality between deprivation 

groups is feasible using the relative survival setting (and its 

associated methodology); the obtained results in our example, 

however, do not explain much of these disparities. This 

methodology also allows to provide absolute risk of death for 

patients according to the cause of death, namely, cancer and 

other causes. Those absolute risks can be translated on the 

timescale using the NLYLs. It is however important to bear in 

mind that, when interest lies in comparing two populations, 

the use of NS methods (and other related measures such as 

CNS or RMNST) does not prevent to use conventional age 

standardization to account for differences in the age structure 

of the population.

We propose to (broadly) classify these alternative mea-

sures into two groups: those with a clinical perspective 

(for patients and clinicians) and those with a population 

health perspective (for health policy makers and economic 

evaluations).

From a clinical perspective, the CS is a measure providing 

an updated picture of the prognosis and thus a more hopeful 

value to communicate to patients, along their cancer path-

way.7 Moreover, the CS could easily be extended to different 

scenarios, such as the recurrence-free survival.54 When inter-

est lies in detailing the prognosis according to the cause of 

death, the crude probabilities of death complement the overall 

survival, as it distinguishes death from cancer to death from 

other causes. The CPD is a useful measure of the absolute risk 

of death for cancer patients and has been shown to improve 

patient’s understanding of survival statistics.55 Still within 

a clinical perspective, intuitive and “easy to communicate” 

measures are those based on a metric of time (instead of prob-

ability), such as the RMST over a τ-year period of time and 

Table 4 Measures estimated in the relative survival setting, in men aged between 15 and 80 years old at diagnosis by deprivation group 
(dep), with their 95% CIs: the NS probability at 10 years after diagnosis  NS(t = 10), the CNS,  CNS(t = 5|s = 5), the RMNSt at 10 years 
RMNST (τ = 10), the crude probability of death at 10 years for cancer FC(t = 10) and other causes FP(t = 10) , and the number of life 
years lost due to cancer NLYLC(τ = 10) and due to other causes NLYLP(τ = 10) over a 10-year time window

Dep 1
Estimate (95% CI)

Dep 2
Estimate (95% CI)

Dep 3
Estimate (95% CI)

Dep 4
Estimate (95% CI)

Dep 5
Estimate (95% CI)

NS (t = 10) (%) 0.47 (0.45–0.49) 0.46 (0.44–0.48) 0.50 (0.48–0.52) 0.46 (0.44–0.49) 0.40 (0.38–0.43)

CNS (t = 5|s = 5) (%) 0.89 (0.87–0.92) 0.90 (0.87–0.92) 0.94 (0.91–0.97) 0.93 (0.90–0.96) 0.88 (0.84–0.92)

RMNST (τ = 10) 5.74 (5.58–5.90) 5.61 (5.45–5.76) 5.76 (5.57–5.92) 5.43 (5.29–5.59) 5.02 (4.84–5.19)

Crude probability of death

FC (t = 10) 0.50 (0.49–0.52) 0.51 (0.49–0.53) 0.48 (0.46–0.50) 0.51 (0.49–0.53) 0.56 (0.54–0.58)

FP (t = 10) 0.14 (0.13–0.14) 0.16 (0.15–0.16) 0.19 (0.18–0.19) 0.19 (0.18–0.19) 0.19 (0.19–0.20)

Number of life years lost

NLYLC (τ = 10) 4.14 (3.97–4.28) 4.24 (4.09–4.38) 4.11 (3.95–4.26) 4.4 (4.24–4.55) 4.77 (4.60–4.94)

NLYLP (τ = 10) 0.72 (0.70–0.75) 0.83 (0.80–0.86) 0.97 (0.94–1.01) 1.03 (0.99–1.06) 1.08 (1.03–1.12)

Abbreviations: CNS, conditional net survival; Nlyl, number of life years lost; NS, net survival; RMNSt, restricted mean net survival time.
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the NLYL due to each cause. Those metrics help to quantify 

the loss in life expectancy (within a predefined time frame) 

between different groups.

From a population health perspective, the measures based 

on the net survival (NS, CNS and RMNST) are useful for 

comparison purposes. They allow comparisons of different 

populations, within a country (different periods or subpopu-

lations) or between countries (for example, to compare the 

performance of their health care system in managing cancer 

patients). Those comparisons are not affected by the differ-

ences in background mortality between populations. The NS 

quantifies the differences on a probability scale, the RMNST 

on a timescale, while the CNS gives an updated picture of the 

NS over time since diagnosis. A way of deriving a CI for the 

difference between (say) the NS in deprivation group 1 and 

the NS in deprivation group 5 could be the use of resampling 

methods, such as nonparametric bootstrap. One should, how-

ever, notice that this corresponds to a single time point dif-

ference, while testing difference between deprivation groups 

of the NS curves would be more of interest.33,34 Comparing 

RMNST curves would be an interesting extension of a work 

already done for the RMST,17 where the authors proposed a 

more sophisticated method for deriving simultaneous CIs. 

Other authors derived statistical tests and procedures when 

comparing the RMST in the context of clinical trials.56,57 

Measures based on NS are defined in a hypothetical world 

where patients could only die from their disease. Thus, their 

usefulness is mostly for comparisons in population health 

perspectives, but not for patient’s actual prognosis. If one 

is interested in quantifying how a given variable affects the 

cancer-specific mortality hazard (etiological assessment), the 

excess mortality hazard is the quantity to use,25,58–60 which is 

in line with the recommendation usually made in the classi-

cal competing risks setting when comparing cause-specific 

hazards instead of cumulative incidence functions.41,61 The 

excess mortality hazard helps to assess the cancer prognosis 

for patients, ie, the lethality of the cancer.

The perspective of the health economist is more, for 

example, in quantifying the burden of a given disease on the 

society and how that disease affects the population, possibly 

during their working life. In that sense, the NLYL might be 

of interest to quantify the economic cost of patients’ years of 

life lost at working age because of the disease. Health policy 

makers may use NLYL to quantify, for instance, the number 

of life years that could be saved by allocating more resources 

or reforming/changing the health care system.

We illustrated the use of these measures in cancer epide-

miology, but they could also be used in other clinical areas, 

where the assumption that patients can only die from the 

disease under study is still reasonable, such as survival after 

a HIV infection or following a stroke or a kidney disease 

diagnosis. Applying the CS and the RMST in those clinical 

areas can be done as detailed in the previous sections. For 

the relative survival setting, some research has already been 

done to estimate the excess mortality hazard in HIV-infected 

patients,62,63 in patients diagnosed with a kidney disease,64–67 

and for patients following myocardial infarction,68,69 or a 

stroke.70 The other measures available in the relative survival 

setting (CNS, RMNST, CPD and NLYL) have received 

much less attention. However, one should be careful when 

using the excess mortality hazard method in a given clini-

cal area, as one key assumption is the availability of a good 

approximation (with life tables) of the mortality hazard due 

to other causes. Depending on the context/geographical area, 

the life table may not provide a reasonable approximation of 

the mortality from other causes; for example, the life table 

in some sub-Saharan countries is hugely impacted by HIV 

mortality. Thus, the excess mortality hazard approach would 

need to account for this, if one is interested in estimating the 

excess mortality due to HIV infection.71

We used observational data to illustrate the depriva-

tion disparities in survival using different measures, and 

these measures were used as exploratory/descriptive tools 

rather than explanatory tools. Indeed, evaluating the effect 

of deprivation on these colon cancer disparities would call 

for methods besides standardization via life table data to 

account for confounding. Recent literature employs some 

of these alternative measures coupled with causal inference 

techniques. For instance, causal inference methods using the 

RMST in the overall survival setting have been developed 

recently.72,73 There are also causal inference studies in the 

context of the competing risks setting with known cause of 

death.74 The restricted mean residual lifetime has also been 

combined with g-computation to estimate an average causal 

effect.75

We presented and described the use of different ways for 

summarizing cancer survival data, each of them contribut-

ing differently to provide information to patients, clinicians, 

health policy makers and health economists on the disease 

disparities in deprivation groups. Even though we illustrated 

the use of these measures using nonparametric estimators, 

parametric and semiparametric hazard-based regression 

models could be also used. We provided the R code for imple-

menting all these measures with the hope that the reader will 

start applying and comparing different and complementary 

measures in the presentation of survival data.
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Abbreviations
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Appendix B

Estimation of alternative survival
indicators using flexible regression
modelling in the relative survival setting

The partial derivative of FE with respect to the parameter βi is given by

∂FE(t,x;β)
∂βi

=
∂

∂βi

[∫ t

0
S E(u,x;β)S P(u,X)λE(u,x;β)du

]
=

∫ t

0

∂S E(u,x;β)
∂βi

S P(u,X)λE(u,x;β)du

+

∫ t

0
S E(u,x;β)S P(u,X)

∂λE(u,x;β)
∂βi

du

(B.1)

The partial derivative of S E with respect to βi is

∂S E(t,x;β)
∂βi

=
∂

∂βi

[
exp(−

∫ t

0
λE(u,x;β)du)

]
=
∂

∂βi

[
−

∫ t

0
λE(u,x;β)du

]
S E(t,x;β)

= −S E(t,x;β)
∫ t

0

∂λE(u,x;β)
∂βi

du

(B.2)

Formula B.1 given formula B.2 becomes
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∂FE(t,x;β)
∂βi

=

∫ t

0
S (u,x;β)

(
−

∫ u

0

∂λE(v,x;β)
∂βi

dv
)
λE(u,x;β)du+

∫ t

0
S (u,x;β)

∂λE(u,x;β)
∂βi

du

=

∫ t

0
S (u,x;β)

(
∂λE(u,x;β)
∂βi

−λE(u,x;β)
∫ u

0

∂λE(v,x;β)
∂βi

dv
)
du

(B.3)

for βi ∈ β j and 0 otherwise.
In our work, we used flexible regression models defined on the log-hazard scale. Thus,

the λEs may be written as exponentials of differentiable functions PE , i.e., λE(t,x;β) =
exp

(
PE(t,x;β)

)
, which leads to

∂λ j(t,x;β)
∂βi

=
∂

∂βi

[
exp(PE(t,x;β))

]
= λE(t,x;β)

∂PE(t,x;β)
∂βi

Formula B.3 can now be written

∂FE(t,x;β)
∂βi

=

∫ t

0
S (u,x;β)

(
λE(u,x;β)

∂PE(u,x;β)
∂βi

−λE(u,x;β)
∫ u

0
λE(v,x;β)

∂PE(v,x;β)
∂βi

dv
)
du

=

∫ t

0
S (u,x;β)λE(u,x;β)

(
∂PE(u,x;β)
∂βi

−

∫ u

0
λE(v,x;β)

∂PE(v,x;β)
∂βi

dv
)
du

(B.4)

From the other hand, ∂FP(t,x;β)
∂βi

, will be written as

∂FP(t,x;β)
∂βi

=
∂

∂βi

[∫ t

0
S E(u,x;β)S P(u,X)λP(u,X)du

]
=

∫ t

0

∂S E(u,x;β)
∂βi

S P(u,X)λP(u,X)du

=

∫ t

0
S (u,x;β)

(
−

∫ u

0

∂λE(v,x;β)
∂βi

dv
)
λP(u,X)du

=−

∫ t

0
S (u,x;β)λP(u,X)

(∫ u

0
λE(t,x;β)

∂PE(t,x;β)
∂βi

)
du

(B.5)



Appendix C

R-code for applying the flexible
regression models in cause-specific
setting



Appendix 2

Estimation of cause -specific cumulative probabilities in

competing risks setting using flexible hazard-based regression

models fitted with the R-package mexhaz

DK Kipourou, H Charvat, B Rachet, A Belot

This tutorial describes the necessary steps to estimate the event-specific cumulative prob-
abilities after fitting a cause-specific (or more generally, event-specific) flexible hazard-based
regression models, using the R-package mexhaz. The estimation of the (adjusted) event-specific
cumulative probabilities and at the population level is a 3-step procedure:

1. Manage the data

2. Fit the flexible hazard-based regression models for each event

3. Estimate the (adjusted) event-specific cumulative probabilities and the standardised risk
differences

Before detailing the steps, we start by describing how to set the R-environment for our
objective. We need the following R-packages: Matrix, mexhaz, plyr, and doSNOW; all but the
last, are used for the estimations, while doSNOW is used for parallel computing. We will also use
the packages ggplot2 and gridExtra to plot some results.

Additionally, before going into any calculations we need to run the CumIncid.R which con-
tains all the essential functions for this tutorial. A copy of the script can be found at the end
of the tutorial.

One important thing for being able to follow this tutorial is to check the version of the
R-package mexhaz, as it works currently with version “1.5”. Moreover, you need to set the
working directory to the folder where the file CumIncid.R has been saved (“myWorkingfolder”).

# Change this path appropriately

#setwd("your path")

# Install the needed packages

reqPcks <- c("doSNOW", "mexhaz","Matrix","ggplot2", "plyr", "gridExtra")

for(p in reqPcks){
if(!require(p, character.only=TRUE)) {

install.packages(p)

library(p, character.only = TRUE)}
}

1 Data management

We use the mgus2 dataset from the R-package survival. The dataset contains the time to
the occurrence of plasma cell malignancy (PCM) or death (whichever comes first), of people
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diagnosed with monoclonal gammopathy of undetermined significance (MGUS). By treating
progression to PCM as an absorbing state we defined a competing risks setting that allowed
subjects to make a single transition to one of two terminal states. Our goal was to estimate
the cumulative probabilities of progressing to PCM and of death -while not having progressed
to PCM-, according to age at diagnosis (age), sex, and the size of the monoclonal serum spike
(mspike).

#Data

#-----

# Load the data

data("mgus2",package="survival")

mydata <- mgus2

# Create variable <timesurv> with the time to the first event (years)

mydata$timesurv <- with(mydata, ifelse(pstat==0, futime, ptime))

mydata$timesurv <- mydata$timesurv/12

# Create variable <event> defining the type of the first event

mydata$event <- with(mydata, ifelse(pstat==0, 2*death, 1))

mydata$event <- factor(mydata$event, levels=0:2,

labels=c("censor","pcm","death"))

# Create a variable <agec>, centered at 70 years old

mydata$agec <- mydata$age-70

# Discard missing values from <mspike>

mydata <- mydata[is.na(mydata$mspike)==F,]

dim(mydata)

## [1] 1373 13

table(mydata$event)

##

## censor pcm death

## 404 115 854

We create a new variable defining the time to the first event measured in years (timesurv),
and a variable (event) defining the type of the first observed event, including censoring as a
“type” of event (censor, PCM, and death). We exclude observations with missing values for
mspike (11 observations). Among the 1373 individuals, we observed 115 occurrences of PCM
events and 854 deaths (as the first event, i.e. without occurrence of PCM), while 404 patients
were censored alive without PCM.

2 Fit of the flexible hazard-based regression models for each
event

We fitted 2 flexible regression models, one for each type of event. To select the regression
model, we fitted 8 models depending on whether time-fixed or time-dependent effects for each

2



of the 3 variables were included. The baseline hazard was modelled with a cubic spline with 2
knots located at the 33rd and the 66th percentile of the times to event distribution (without
distinguishing the type of event). We selected the best model using the Akaike Loormation
Criterion. For the event PCM, the selected model assumed a time-fixed effect for the 3 variables,
while for death a time-dependent effect was retained for age. We report here only the fit of the
finally selected model for each event.

# myk defines the location of the knots

(myk <- quantile(mydata$timesurv, probs=c(1/3,2/3)))

## 33.33333% 66.66667%

## 4.416667 9.388889

# Run flexible parametric models for each event (Mod1 for pcm, Mod2 for death)

Mod1 <- mexhaz(Surv(timesurv,event=="pcm") ~ agec + mspike + sex,

data = mydata, base = "exp.bs", degree = 3, knots = myk,

verbose = 0, print.level = 0)

## Computation of the Hessian

##

## Data

## Name N.Obs.Tot N.Obs N.Events N.Clust

## mydata 1373 1373 115 1

##

## Details

## Iter Eval Base Nb.Leg Nb.Aghq Optim Method Code

## 124 1153 exp.bs 20 10 nlm --- 1

## LogLik Total.Time

## -617.2745 2.86

Mod2 <- mexhaz(Surv(timesurv, event=="death") ~ agec + nph(agec) +

mspike + sex, data = mydata, base = "exp.bs",

degree = 3, knots = myk, verbose = 0, print.level = 0)

## Computation of the Hessian

##

## Data

## Name N.Obs.Tot N.Obs N.Events N.Clust

## mydata 1373 1373 854 1

##

## Details

## Iter Eval Base Nb.Leg Nb.Aghq Optim Method Code

## 151 1558 exp.bs 20 10 nlm --- 1

## LogLik Total.Time

## -2767.594 9.36

3 Estimation of the event-specific cumulative probabilities

3.1 Main functions to be used

In this section, we will list the main functions needed in order to estimate the event-specific
cumulative probabilities (point estimates and 95% confidence intervals) along with other useful
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quantities. Below follows a brief explanation of the basic functions while a full specification of
them can be found in the CumIncid.R, in the end of this document.

1. csprob(data_df, modA, modB, time.max, frag)

Function that estimates the event-specific cumulative probabilities for all the individuals
included in the data df. The results are based on the event-specific regression models that
should be defined in the function as modA and modB (event-specific models corresponding
to 2 events). The time.max is the maximum time for which we want to estimate the event-
specific cumulative probabilities, subdiv is the number of subintervals that the interval
[0, time.max] should be split into. The output of this function is a list each element of
which contains the individual-specific results.

2. predict.prob(csprobObj, pop)

Function that uses the quantities that are calculated with the csprob function (csprobObj)
and predicts the event-specific probabilities for a fine grid of time-points, for either spe-
cific covariates or for the whole population. For the population estimates and confidence
intervals, pop should be set to TRUE. If pop=FALSE, then in the results we will have all
the covariate-specific point estimates and 95% confidence intervals for all the covariate-
combinations found in the dataset.

If pop=FALSE the function returns a list containing the following elements:

time points at which the estimations were made

frag number of subintervals

BGrad1.ls a list each element of which contains a data.frame corresponding to
∂F1(t,x;β)

∂βi
for a specific time point t

BGrad2.ls a list each element of which contains a data.frame corresponding to
∂F2(t,x;β)

∂βi
for a specific time point t

CPr1.df and CPr2.df dataframes with all the event-specific probabilities for all in-
dividuals included in the dataset at each time point

CPr1Lo.df, CPr2Lo.df dataframes which contain the lower limits of the event-specific
probabilities for cause 1 and 2, respectively

CPr1Up.df, CPr2Up.df dataframes which contain the upper limits of the event-
specific probabilities for cause 1 and 2, respectively

If pop=TRUE the values returned are:

time time that the estimations were made

frag number of subintervals

BGrad1.ls a list each element of which is corresponding to(
∇F1(t,x1;β)|β=β̂

, · · · ,∇F1(t,xN ;β)|β=β̂

)
for a specific time point

BGrad2.ls a list each element of which is corresponding to(
∇F2(t,x1;β)|β=β̂

, · · · ,∇F2(t,xN ;β)|β=β̂

)
for a specific time point

CPr.1 and CPr.2 vectors of the population-level event-specific probabilities based on
the whole dataset at each time point for cause 1 and 2, respectively

CPr1Lo, CPr2Lo vectors of the lower limits of the event-specific probabilities for cause
1 and 2, respectively

CPr1Up, CPr2Up vectors of the upper limits of the event-specific probabilities for cause
1 and 2, respectively
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CPr1.df and CPr2.df dataframes with all the event-specific probabilities for all in-
dividuals included in the dataset at each time point

NBGrad1.ls and NBGrad2.ls lists corresponding to
w>[∇FMat

j (t;β)]>|β=β̂
for j = 1, 2, respectively

Var1 and Var2 vectors with the estimated population-level variances of the cumula-
tive probabilities at each time point for cause 1 and 2, respectively

Var1b and Var2b vectors with the estimated population-level variances of the trans-
formed cumulative probabilities at each time point for cause 1 and 2, respectively

Both functions listed above are relying on other functions like the cumIncidence.CS, BGrad func,
etc, which are called internally by the aforementioned functions and not by the user.

Also, we have to note here that both functions (csprob, predict.prob) provide the indi-
vidual estimates but the type of the resulted objects are different.

3.2 Estimation of the event-specific cumulative probabilities and their vari-
ances based on specific covariates

No matter if our goal is to provide individual or population predictions, we must predict first
the covariate-specific point estimates and variances.

In the code below, we show how we can estimate the covariate-specific point estimates and
confidence intervals and plot them using ggplot2 for 3 random individuals.

fragm=1000

maxt=30

results <- csprob(mydata, Mod1, Mod2, maxt, fragm)

indivprob <- predict.prob(results, pop=FALSE)

# Choose a random sample of 3 individuals

ind <- sample(1:nrow(mydata),3)

randsam<- as.data.frame(

cbind(

'timesurv'=rep(indivprob$time[-1],3),

'mean' =c(indivprob$CPr2.df[,ind]),

'upper' =c(indivprob$CPr2Up.df[,ind]),

'lower' =c(indivprob$CPr2Lo.df[,ind]),

'individual'=(rep(ind, each=fragm))

))

randsam$individual <- as.factor(randsam$individual)

#Plot

ggplot(data=randsam, aes(x=timesurv, y=mean)) +

geom_line(aes(colour=individual)) +

geom_ribbon(aes(ymax=upper, ymin=lower, fill=individual),

alpha = 0.5)+

theme_bw()+

ggtitle("Covariate-specific predictions for Cause 2")+

ylab("Cumulative Probability")
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3.3 Estimation of the event-specific cumulative probabilities on the whole
population with their variances

Finally, the population estimates are obtained as follows.

popprob<- predict.prob(results, pop=TRUE)

popdat <- as.data.frame(

cbind('timesurv'=popprob$time,

'mean'=c(popprob$CPr.1,popprob$CPr.2),

'upper'=c(popprob$CPr1Lo,popprob$CPr2Lo),

'lower'=c(popprob$CPr1Up,popprob$CPr2Up),

'group'=(rep(1:2, each=fragm))

))

popdat$group <- as.factor(popdat$group)

levels(popdat$group) <- c("Cause 1","Cause 2")

ggplot(data=popdat, aes(x=timesurv, y=mean)) +

geom_line(aes(colour=group)) +

theme_bw()+

geom_ribbon(aes(ymax=upper, ymin=lower, fill=group), alpha = 0.5)+

ggtitle("Population estimates with their confidence intervals")+

labs(y="Cumulative Probability")
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3.4 Dealing with a big dataset

Let us suppose that we have a quite big dataset and we want to decrease the execution time.
We show here how to speed the calculations up by using the doSNOW package. The doSNOW

package allows for parallel programming with function foreach. To make this run we need first
to define how many jobs we want the computer to run at the same time and then run the loop
through the whole dataset. A small example of the correspondence between for and foreach

with doSNOW is shown below.

• for loop syntax

for (i in vector){

<code>

return(object)

}

• foreach loop syntax

foreach (i=vector, .combine='fun') %dopar% {

<code*>

return(object)

}

* For the foreach function, it is essential that the necessary packages be loaded via library()

inside the loop. This is similar to having multiple new R windows. Alternatively, there is the
.packages option within the loop specification.

An example of how we could replace for with foreach is shown below.
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# clusters: Number of slave nodes to create on the local machine

clusters<- 8

cl <- makeCluster(clusters, type = "SOCK")

registerDoSNOW(cl)

# Individual point estimates

csprobPar <- function(data_df, modA, modB, time.max, frag){
foreach(y = 1:nrow(data_df),.combine = "rbind") %dopar% {

library("mexhaz")

library("Matrix")

source("CumIncid.R")

list(cumIncidence.CS(modA, modB,time.max,subdiv=frag,

data.val=data_df[y,]))

}
}

resultsPar <- csprobPar(mydata, Mod1, Mod2, maxt, fragm)

stopCluster(cl)

popprob<-predict.prob(resultsPar, pop=TRUE)

3.5 Adjusted probabilities and standardised risk differences

In section 2.2.3 we discussed about the adjusted probabilities and how we could quantify the
effect of a variable on the cumulative probability scale. We show that here with the effect of
interest being the effect of sex. To do so, we created 2 hypothetical populations, one where
all patients were considered as women and another where all patients were considered as men,
while keeping the other variables as observed. Practically, we did exactly the same as before
when predicting the event-specific probabilities for the whole population with the only difference
being the data used.

The function that provides the event-specific probabilities for both populations are the
csprob and predict.prob applied to the data mydataF and results F for women and mydataM

and results M for men. Using the predictions ProbF and ProbM, we can further estimate the
differences and their 95% confidence intervals by using the function csprobdif.

Function csprobdif has the following syntax:

csprobdif(predprob1, predprob2)

where predprob1 and predprob2 are objects coming from the predict.prob function. The
returned values from this function are

time vector of times of estimation

ProbDif1, ProbDif2 estimated differences for cause 1 and 2, respectively

ProbDif1Lo, ProbDif2Lo the lower 95% confidence limits of the estimated differences for
cause 1 and 2, respectively
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ProbDif1Up, ProbDif2Up the upper 95% confidence limits of the estimated differences for
cause 1 and 2, respectively

levels(mydata$sex)

[1] ”F” ”M”

for (i in 1:length(levels(mydata$sex))){
mydataadj <- mydata

mydataadj$sex<-as.factor(levels(mydata$sex)[i])

assign(paste("mydata", levels(mydata$sex)[i],sep=""),mydataadj)

}

# csprob.predict

results_F<- csprob(data_df=mydataF, Mod1, Mod2, maxt, fragm)

results_M<- csprob(data_df=mydataM, Mod1, Mod2, maxt, fragm)

ProbF<-predict.prob(results_F, pop=TRUE)

ProbM<-predict.prob(results_M, pop=TRUE)

ProbDif<- csprobdif(ProbF, ProbM)

par(mfrow=c(2,2),oma = c(2, 1, 1, 1))

newdata<- data.frame(cbind("t"= ProbF$time,

"w2"=ProbF$CPr.2,"w2Lo"=ProbF$CPr2Lo,

"w2Up"=ProbF$CPr2Up,

"w1"=ProbF$CPr.1,"w1Lo"=ProbF$CPr1Lo,

"w1Up"=ProbF$CPr1Up,

"m2"=ProbM$CPr.2,"m2Lo"=ProbM$CPr2Lo,

"m2Up"=ProbM$CPr2Up,

"m1"=ProbM$CPr.1,"m1Lo"=ProbM$CPr1Lo,

"m1Up"=ProbM$CPr1Up))

dataPCM<- data.frame(cbind("Y"=c(newdata$w1,newdata$m1),

"L"=c(newdata$w1Lo,newdata$m1Lo),

"U"=c(newdata$w1Up,newdata$m1Up),

"X"=rep(newdata$t,2)))

dataD<- data.frame(cbind("Y"=c(newdata$w2,newdata$m2),

"L"=c(newdata$w2Lo,newdata$m2Lo),

"U"=c(newdata$w2Up,newdata$m2Up),

"X"=rep(newdata$t,2)))

dataPCM$gender <- dataD$gender <- as.factor(rep(c(2,1),each=fragm))

levels(dataPCM$gender) <- levels(dataD$gender)<- c("men", "women")
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plotPCM<- ggplot(data=dataPCM, aes(x=X, y=Y)) +

geom_line(aes(linetype=gender, color=gender)) +

geom_ribbon(aes(ymax=U, ymin=L, fill=gender), alpha = 0.5)+

theme_bw()+

labs(x="Time (in years)")+

theme(legend.position="top",plot.title = element_text(hjust = 0.5))+

ggtitle("PCM")+

ylab("Adjusted cumulative probability")

plotD<- ggplot(data=dataD, aes(x=X, y=Y)) +

geom_line(aes(linetype=gender)) +

theme_bw()+

theme(legend.position="top",plot.title = element_text(hjust = 0.5))+

geom_ribbon(aes(ymax=U, ymin=L, fill=gender), alpha = 0.5)+

ggtitle("Death w/o malignancy")+

labs(x="Time (in years)")+

ylab("Adjusted cumulative probability")

dataDifPCM <- data.frame(cbind("Y"=ProbDif$ProbDif1,

"L"=ProbDif$ProbDif1Lo,

"U"=ProbDif$ProbDif1Up,

"X"=ProbDif$time))

dataDifD <- data.frame(cbind("Y"=ProbDif$ProbDif2,

"L"=ProbDif$ProbDif2Lo,

"U"=ProbDif$ProbDif2Up,

"X"=ProbDif$time))

plotDifPCM<-ggplot(data=dataDifPCM, aes(x=X, y=Y)) +

geom_line() +

theme_bw()+

geom_hline(yintercept=0, linetype="dashed")+

geom_ribbon(aes(ymax=U, ymin=L), alpha = 0.3)+

ggtitle("")+

labs(x="Time (in years)")+

ylab("Standardised risk difference \n (women-men)")

plotDifD<-ggplot(data=dataDifD, aes(x=X, y=Y)) +

geom_line() +

theme_bw()+

geom_hline(yintercept=0, linetype="dashed")+

geom_ribbon(aes(ymax=U, ymin=L), alpha = 0.3)+

ggtitle("")+

labs(x="Time (in years)")+

ylab("Standardised risk difference \n (women-men)")
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Figure 1: Adjusted cumulative probabilities of progressing to plasma cell malignancy, PCM,
(left top panel) and to death (right top panel) for men and women, and average effect of sex
for PCM (left bottom panel) and death from other cause (right bottom panel).

grid.arrange(plotPCM, plotD,

plotDifPCM, plotDifD ,ncol=2)
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CumIncid.R

Please run these before starting any calculations.

# Cumulative incidence using two cause-specific models

cumIncidence.CS <- function(model1,model2,time.max,subdiv,

data.val=data.frame(.NotUsed=NA),alpha=0.05){
time.pts <- seq(0,time.max,le=(subdiv+1))

CstMult <- time.max/(2*subdiv)

CstCI <- qnorm(1-alpha/2)

# Or if you want to take into account the size of the population

# CstCI <- qt(1-alpha/2,df=model£n.obs)

Pred1 <- predict(model1,time.pts,data.val, include.gradient=T)

Pred2 <- predict(model2,time.pts,data.val, include.gradient=T)

ISurv1 <- Pred1$results$hazard*Pred1$results$surv*Pred2$results$surv

CPr.1 <- cumsum(ISurv1+c(0,ISurv1[-subdiv]))*(time.max/(2*subdiv))

ISurv2 <- Pred2$results$hazard*Pred1$results$surv*Pred2$results$surv

CPr.2 <- cumsum(ISurv2+c(0,ISurv2[-subdiv]))*(time.max/(2*subdiv))

ISurvT <- (Pred1$results$hazard+Pred2$results$hazard)*Pred1$results$surv*

Pred2$results$surv

CPrT<- cumsum(ISurvT+c(0,ISurvT[-subdiv]))*(time.max/(2*subdiv))

SurvT <- 1-CPrT

# Confidence intervals

which.td1<- rownames(Pred1$vcov)[-c(1,which(rownames(Pred1$vcov)

%in% model1$names.ph))]

which.ntd1 <- c(rownames(Pred1$vcov)[-c(which(rownames(Pred1$vcov)

%in% model1$names.ph))][1],

rownames(Pred1$vcov)[which(rownames(Pred1$vcov) %in%

model1$names.ph)])

which.td2<- rownames(Pred2$vcov)[-c(1,which(rownames(Pred2$vcov) %in%

model2$names.ph))]

which.ntd2 <- c(rownames(Pred2$vcov)[-c(which(rownames(Pred2$vcov) %in%

model2$names.ph))][1],

rownames(Pred2$vcov)[which(rownames(Pred2$vcov) %in%

model2$names.ph)])

Vcov1 <- model1$vcov[c(which.ntd1,which.td1),c(which.ntd1,which.td1)]

Vcov2 <- model2$vcov[c(which.ntd2,which.td2),c(which.ntd2,which.td2)]

CovMat <- as.matrix(bdiag(Vcov1,Vcov2))

AGrad11 <- (Pred1$grad.loghaz + Pred1$grad.logcum*(log(Pred1$results$surv)))

[,c(which.ntd1,which.td1)]

AGrad12 <- (Pred2$grad.logcum*(log(Pred2$results$surv)))

[,c(which.ntd2,which.td2)]

AGrad21 <- (Pred1$grad.logcum*(log(Pred1$results$surv)))

[,c(which.ntd1,which.td1)]
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AGrad22 <- (Pred2$grad.loghaz + Pred2$grad.logcum*(log(Pred2$results$surv)))

[,c(which.ntd2,which.td2)]

AGrad1 <- cbind(AGrad11,AGrad12)

AGrad2 <- cbind(AGrad21,AGrad22)

AGradT <- cbind(AGrad21,AGrad12)

Temp1 <- ISurv1*AGrad1

Denom1 <- (1-CPr.1)*log(1-CPr.1)

BGrad1 <- apply(Temp1,2,function(x) cumsum(x+c(0,x[-subdiv]))*

(time.max/(2*subdiv)))

TMatVar1 <- CovMat%*%t(BGrad1)

Var1 <- sapply(1:subdiv,function(i) BGrad1[i,]%*%TMatVar1[,i])

Var1b <- Var1/((1-CPr.1)*log(1-CPr.1))^2

Temp2 <- ISurv2*AGrad2

Denom2 <- (1-CPr.2)*log(1-CPr.2)^2

BGrad2 <- apply(Temp2,2,function(x) cumsum(x+c(0,x[-subdiv]))*

(time.max/(2*subdiv)))

TMatVar2 <- CovMat%*%t(BGrad2)

Var2 <- sapply(1:subdiv,function(i) BGrad2[i,]%*%TMatVar2[,i])

Var2b <- Var2/((1-CPr.2)*log(1-CPr.2))^2

BGradT <- AGradT/log(SurvT)

TMatVarT <- CovMat%*%t(BGradT)

VarT <- sapply(1:subdiv,function(i) BGradT[i,]%*%TMatVarT[,i])

Transf <- function(x,vx,m){
log(-log(x))+m*CstCI*sqrt(vx)

}
InvTransf <- function(x){

exp(-exp(x))

}
Cr1Lo <- 1-InvTransf(Transf(1-CPr.1,Var1b,-1))

Cr1Up <- 1-InvTransf(Transf(1-CPr.1,Var1b,1))

Cr2Lo <- 1-InvTransf(Transf(1-CPr.2,Var2b,-1))

Cr2Up <- 1-InvTransf(Transf(1-CPr.2,Var2b,1))

CrTLo <- 1-InvTransf(Transf(SurvT,VarT,-1))

CrTUp <- 1-InvTransf(Transf(SurvT,VarT,1))

return(list("time"= time.pts,

"frag"=subdiv,

"CPr.1"=CPr.1,"CPr.2"=CPr.2,"CovMat"=CovMat,

"BGrad1"=BGrad1,"BGrad2"=BGrad2,"CPr1Lo"= Cr1Lo,

"CPr1Up"=Cr1Up,"CPr2Lo"= Cr2Lo,"CPr2Up"=Cr2Up,

"Var1"=Var1, "Var2"=Var2,"Var1b"=Var1b,"Var2b"=Var2b))

}
#Functions for prediction

csprob<-function(data_df, modA, modB, time.max, frag){
results_list<- list()

for (y in 1:nrow(data_df)){
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results_list[[y]] <- cumIncidence.CS(modA, modB,time.max,

subdiv=frag,

data.val=data_df[y,])

}
return(results_list)

}

BGrad_func <- function(BGrad.ls,frag,N, p_dim){
BGrad.3da <- array(unlist(BGrad.ls),dim = c(frag,p_dim,N))

BGrad.3d <- aperm(BGrad.3da,dim=c(3,1,2))

NBGrad.ls <- alply(BGrad.3d,3)

return(NBGrad.ls)

}

Var_func <- function (x,w,NBGrad, CovMat){
BGrad<- w%*%NBGrad[[x]]

TMatVar <- CovMat%*%t(BGrad)

res<- BGrad%*%TMatVar

return(res)

}

Transf <- function(x,vx,m){log(-log(x))+m*qnorm(0.975)*sqrt(vx)}
InvTransf <- function(x){exp(-exp(x))}

predict.prob <- function(csprobObj, pop){

CovMat <- csprobObj[[1]]$CovMat

p_dim <- dim(csprobObj[[1]]$CovMat)[1]

N <- length(csprobObj)

frag <- csprobObj[[1]]$frag

if (pop==FALSE){
BGrad1.ls <- lapply(1:N, function(x) csprobObj[[x]]$BGrad1)

BGrad2.ls <- lapply(1:N, function(x) csprobObj[[x]]$BGrad2)

CPr1.df <- sapply(1:N, function(x) csprobObj[[x]]$CPr.1)

CPr2.df <- sapply(1:N, function(x) csprobObj[[x]]$CPr.2)

CPr1Lo.df <- sapply(1:N, function(x) csprobObj[[x]]$CPr1Lo)

CPr1Up.df <- sapply(1:N, function(x) csprobObj[[x]]$CPr1Up)

CPr2Lo.df <- sapply(1:N, function(x) csprobObj[[x]]$CPr2Lo)

CPr2Up.df <- sapply(1:N, function(x) csprobObj[[x]]$CPr2Up)

return(list("time"=csprobObj[[1]]$time,"frag"=frag,

"BGrad1.ls"=BGrad1.ls, "BGrad2.ls"=BGrad2.ls,

"CPr1Lo.df"=CPr1Lo.df,"CPr1Up.df"=CPr1Up.df,

"CPr2Lo.df"=CPr2Lo.df,"CPr2Up.df"=CPr2Up.df,

"CPr1.df"=CPr1.df,"CPr2.df"=CPr2.df))

}
if (pop==TRUE){

w <- matrix(rep(1/N,N), nrow =1)
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BGrad1.ls<- lapply(1:N, function(x) csprobObj[[x]]$BGrad1)

BGrad2.ls<- lapply(1:N, function(x) csprobObj[[x]]$BGrad2)

CPr1.df <- sapply(1:N, function(x) csprobObj[[x]]$CPr.1)

CPr2.df <- sapply(1:N, function(x) csprobObj[[x]]$CPr.2)

CPr.1 <- w%*%t(CPr1.df)

CPr.2 <- w%*%t(CPr2.df)

NBGrad1.ls <- BGrad_func(BGrad1.ls,frag,N,p_dim)

NBGrad2.ls <- BGrad_func(BGrad2.ls,frag,N,p_dim)

Var1 <- data.frame(sapply(1:frag, function(x)

Var_func(x,w,NBGrad1.ls, CovMat) ))

Var1b <- Var1/((1-CPr.1)*log(1-CPr.1))^2

CPr1Lo <- 1-InvTransf(Transf(1-CPr.1,Var1b,-1))

CPr1Up <- 1-InvTransf(Transf(1-CPr.1,Var1b,1))

Var2 <- data.frame(sapply(1:frag, function(x)

Var_func(x,w,NBGrad2.ls, CovMat) ))

Var2b <- Var2/((1-CPr.2)*log(1-CPr.2))^2

CPr2Lo <- 1-InvTransf(Transf(1-CPr.2,Var2b,-1))

CPr2Up <- 1-InvTransf(Transf(1-CPr.2,Var2b,1))

return(list("time"=csprobObj[[1]]$time[-1],"frag"=frag,

"BGrad1.ls"=BGrad1.ls, "BGrad2.ls"=BGrad2.ls,

"CPr.1"=CPr.1[1,],"CPr.2"=CPr.2[1,],"NBGrad1.ls"=NBGrad1.ls,

"NBGrad2.ls"=NBGrad2.ls,"Var1"=Var1,"Var2"=Var2,

"Var1b"=Var1b,"Var2b"=Var2b,

"CPr1Lo"=CPr1Lo[,1],"CPr1Up"=CPr1Up[,1],

"CPr2Lo"=CPr2Lo[,1],"CPr2Up"=CPr2Up[,1],

"CPr1.df"=CPr1.df,"CPr2.df"=CPr2.df,"CovMat"=CovMat))

}
}

# Calculate differences between populations

csprobdif<- function(predprob1, predprob2){

N <- ncol(predprob1$CPr1.df)

w<- matrix(rep(1/N,N), nrow =1)

frag <- predprob1$frag

CovMat <- predprob1$CovMat

NBGrad1.ls <- lapply(1:frag, function (x) predprob1$NBGrad1.ls[[x]]-

predprob2$NBGrad1.ls[[x]])

NBGrad2.ls <- lapply(1:frag, function (x) predprob1$NBGrad2.ls[[x]]-

predprob2$NBGrad2.ls[[x]])

CP1.dif_df <- predprob1$CPr1.df-predprob2$CPr1.df

CP2.dif_df <- predprob1$CPr2.df-predprob2$CPr2.df
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CP1.dif <-apply(CP1.dif_df,1,mean)

CP2.dif<-apply(CP2.dif_df,1,mean)

ci_form <- function(x,var,m){
x+m*qnorm(0.975)*sqrt(var)

}

Var1 <-data.frame(sapply(1:frag, function(x)

Var_func(x,w,NBGrad1.ls,CovMat)))

Var2 <-data.frame(sapply(1:frag, function(x)

Var_func(x,w,NBGrad2.ls,CovMat)))

CPr1.difLo <- ci_form(CP1.dif,Var1,-1)[,1]

CPr1.difUp <- ci_form(CP1.dif,Var1,+1)[,1]

CPr2.difLo <- ci_form(CP2.dif,Var2,-1)[,1]

CPr2.difUp <- ci_form(CP2.dif,Var2,+1)[,1]

return(list("time"= predprob1$time,

"ProbDif1"=CP1.dif, "ProbDif2"=CP2.dif,

"ProbDif1Lo"=CPr1.difLo,"ProbDif1Up"=CPr1.difUp,

"ProbDif2Lo"=CPr2.difLo,"ProbDif2Up"=CPr2.difUp))

}
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Appendix D

R-code for applying the
pseudo-observation approach in relative
survival setting



Supplementary material of the paper “Direct modelling of the

crude probability of cancer death and the number of life-years

lost due to cancer without needing the cause of death: a

pseudo-observation approach in the relative survival setting”.

A step-by-step guide on how to model the

pseudo-observations of the crude probability of death and the

life-years lost in the relative survival setting.

January 29, 2020

We illustrate the method using a simulated dataset that includes information on vital status,
covariables (age, sex, etc.), and the expected mortality rate coming from the lifetable from the
general population. For the user to be able to apply the method, 4 steps are needed:

1. Prepare the data.

2. Compute the pseudo-observations using the non-parametric estimator for the crude prob-
abilities and the number of life years lost for each cause.

3. Fit the models for each indicator and for each cause and derive the covariable effects.

4. Predict the population point estimates and confidence intervals.

The R-packages needed for the following calculations are survival, relsurv and geepack.
Please note here that if you use the version 2.2.1 of relsurv, you need to update the survival

package to version 2.42.6.

# Change appropriately the folder path where simdatn2.RData

# and the expectedrates.RT.dat are located

#setwd()

# Install the needed packages

reqPcks <- c("relsurv", "survival","geepack")

for(p in reqPcks){
if(!require(p, character.only=TRUE)) {

install.packages(p)

library(p, character.only = TRUE)}
}

packageVersion("relsurv")

## [1] '2.2.3'
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packageVersion("survival")

## [1] '2.44.1.1'

1 Step 1: Prepare the data

We start first by exploring our data (simdatn2). Data consist of 10 variables including the con-
tinuous variables age at diagnosis (age), year at diagnosis (year) and, survival time (timesurv),

all of them expressed in years. agecr is defined as (age−70)
10 and yearcr as (year−2002)

10 . There are
also the binary variables sex (sex, {1,2}) and vital status (vstat, {0,1}). cause is a variable
denoting the cause of death, which although is not used in the calculations, we will use it later
to help us understand the pseudo-observations. Lastly, popmrate corresponds to the expected
mortality rate for a given individual, while expectedrates.RT is a ratetable object showing the
event rates for a given year, age, and sex.

# Load data

load("data_pseudo_tutorial2.RData")

str(simdatn2)

## 'data.frame': 1000 obs. of 10 variables:

## $ id : int 1 2 3 4 5 6 7 8 9 10 ...

## $ sex : num 1 2 2 2 2 1 1 1 1 1 ...

## $ year : num 2000 2000 2000 2000 2000 ...

## $ age : num 34.7 43 43.4 47.3 50.3 ...

## $ agecr : num -3.53 -2.7 -2.66 -2.27 -1.97 ...

## $ yearcr : num -0.172 -0.183 -0.179 -0.187 -0.187 ...

## $ timesurv: num 0.548 0.572 0.31 0.602 0.409 ...

## $ vstat : num 1 1 1 1 0 1 1 0 1 0 ...

## $ cause : num 1 1 1 1 0 1 1 0 2 0 ...

## $ popmrate: num 0.00113 0.00133 0.00133 0.00198 0.00265 ...

head(simdatn2)

## id sex year age agecr yearcr timesurv

## 1 1 1 2000.278 34.71650 -3.528350 -0.1722157 0.5479875

## 2 2 2 2000.172 43.04669 -2.695331 -0.1827627 0.5719410

## 3 3 2 2000.215 43.44366 -2.655634 -0.1785245 0.3095095

## 4 4 2 2000.127 47.34635 -2.265365 -0.1873047 0.6024045

## 5 5 2 2000.125 50.32838 -1.967162 -0.1874797 0.4091484

## 6 6 1 2000.340 55.86828 -1.413172 -0.1660094 0.6528223

## vstat cause popmrate

## 1 1 1 0.001128884

## 2 1 1 0.001331712

## 3 1 1 0.001331712

## 4 1 1 0.001979022

## 5 0 0 0.002654055

## 6 1 1 0.007801306

For the application, we need to have in our dataset (or create if needed) those variables with
which we will link the data to the ratetable. We start with exploring our ratetable.
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# Explore the ratetable

str(expectedrates.RT)

## 'ratetable' num [1:100, 1:2, 1:35] 3.34e-05 2.87e-06 1.26e-06 9.00e-07 7.02e-07 ...

## - attr(*, "dimnames")=List of 3

## ..$ : chr [1:100] "0" "1" "2" "3" ...

## ..$ : chr [1:2] "1" "2"

## ..$ : chr [1:35] "1981" "1982" "1983" "1984" ...

## - attr(*, "dimid")= chr [1:3] "AGE.RT" "SEX.RT" "YEAR.RT"

## - attr(*, "factor")= num [1:3] 0 1 0

## - attr(*, "cutpoints")=List of 3

## ..$ : num [1:100] 0 365 730 1096 1461 ...

## ..$ : NULL

## ..$ : num [1:35] 7671 8036 8401 8766 9132 ...

Our ratetable, includes 3 variables:

• AGE.RT: age ranging from 0 to 99 years, expressed in days.

• SEX.RT: sex is binary with values 1,2.

• YEAR.RT: year is ranging from 1981 to 2015, expressed as the difference in days between
01/01/1960 and year of diagnosis.

Except for sex, none of these variables exist in our data, so we need to generate them. In
addition, we create also another variable called timesurvD, which corresponds to the survival
time expressed in days, as this is necessary for the cmp.rel command used in the next step.

N <- nrow(simdatn2)

# Convert (1) age at diagnosis, (2) time from 01-01-1960 until diag date in

# days.

#-----------------------------------------------------------------------------

# (1) Age at diagnosis in days

simdatn2$agediagdays <- round(simdatn2$age*365.241)

# (2) Transform continuous year of diagnosis the date of diagnosis

# and subtract it from 01-01-1960.

simdatn2$diag_year<- floor(simdatn2$year)

simdatn2$diag_moCont <- as.numeric(substr(simdatn2$year,5,

nchar(simdatn2$year)))

simdatn2$diagDate <- as.Date(paste(simdatn2$diag_year,

"-01-01",sep=""))+

round(simdatn2$diag_moCont*365.241)

simdatn2$diagdays1960 <- as.numeric(simdatn2$diagDate-

as.Date("01/01/1960",

format="%d/%m/%Y"))

# (3) Survival time in days

simdatn2$timesurvD <- floor(simdatn2$timesurv*365.241)
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2 Step 2: Calculation of pseudo-observations

For the next step, we need to decide on the timepoints, at which pseudo-observations will be
calculated. We chose 6 time-points (any number of time-points between 5-10 time-points should
be adequate) based on a random selection of quantiles of the time-to-any-event distirbution.

times_c <- quantile(simdatn2$timesurv, probs=seq(0.15,1,0.15))

times_c <- round(times_c,1)

print(times_c)

## 15% 30% 45% 60% 75% 90%

## 0.4 1.0 2.3 4.8 9.4 10.0

Then, we use the leave-one-out estimator as was described in eq.1 (Section 2.1) where each θ̂i
is calculated using the non-parametric estimator which is shown in Section 2.3.1. In R-software
this estimator is provided from R-package relsurv.

We run the cmp.rel command once, where all individuals are included and then we run it
another n times (with n being the sample size), where each time one individual is excluded from
the dataset (leave-one-out estimator). The non-parametric estimator (provided with cmp.rel)
gives estimates for both cancer and population estimates and thus, 2 sets of pseudo-observations
are created; one corresponding to cancer (pseudo CPr.1, pseudo lyl.1) and another to the
population (pseudo CPr.2, pseudo lyl.2). We show here how we can derive the pseudo-
observations for both crude probabilities of death and life years lost from each cause at the same
time. We have to note here though, that the pseudo-observations for the crude probabilities are
estimated for all the time-points we mentioned before, while the pseudo-observations for the life
years lost are only derived for the maximum time point, i.e. t=10 years.

#------------------------------------------------------------------

# L E A V E O N E O U T E S T I M A T O R

#------------------------------------------------------------------

# Thetas based on the whole sample

fit_all <- cmp.rel(Surv(timesurvD,vstat)~1+ratetable(AGE.RT=agediagdays,

SEX.RT=sex,

YEAR.RT=diagdays1960),

ratetable=expectedrates.RT,data=simdatn2,tau=3652.41,

conf.int=0.95)

results_relsurv<- list(summary(fit_all, times = times_c)$est,

cbind(fit_all$causeSpec$area, fit_all$population$area))

ls <- list()

for (y in 1:nrow(simdatn2)){
fit <- cmp.rel(Surv(timesurvD,vstat)~ratetable(AGE.RT=agediagdays,SEX.RT=sex,

YEAR.RT=diagdays1960),

ratetable=expectedrates.RT,data=simdatn2[-y,],tau=3652.41,

conf.int=0.95)

ls[[y]] <- list(summary(fit, times = times_c)$est,

cbind(fit$causeSpec$area, fit$population$area)) # to be stored

}
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# Separate estimates based on the indicator and the cause

CPr.1 <- t(sapply(1:N, function (x) ls[[x]][[1]][1,]))

#dataframe dimensions: (N x times_c)

CPr.2 <- t(sapply(1:N, function (x) ls[[x]][[1]][2,]))

lyl.1 <- sapply(1:N, function (x) ls[[x]][[2]][,1])

#dataframe dimensions: (N x 1)

lyl.2 <- sapply(1:N, function (x) ls[[x]][[2]][,2])

# Final step: leave - one - out estimator

pseudo_CPr.1<-data.frame(matrix(1,nrow(simdatn2),length(times_c)))

pseudo_CPr.2<-data.frame(matrix(1,nrow(simdatn2),length(times_c)))

colnames(pseudo_CPr.1)<- colnames(pseudo_CPr.2)<-

paste(times_c,"y",sep="")

pseudo_lyl.1<-data.frame(matrix(1,nrow(simdatn2),1))

pseudo_lyl.2<-data.frame(matrix(1,nrow(simdatn2),1))

colnames(pseudo_lyl.1)<- colnames(pseudo_lyl.2)<-

paste(max(times_c),"y",sep="")

for(y in 1:length(times_c)){
for (x in 1:N){
pseudo_CPr.1[x,y]<- N*results_relsurv[[1]][1,y]-(N-1)*CPr.1[x,y]

pseudo_CPr.2[x,y]<- N*results_relsurv[[1]][2,y]-(N-1)*CPr.2[x,y]

}
}

for (x in 1:N){
pseudo_lyl.1[x,]<- N*results_relsurv[[2]][,1]-(N-1)*lyl.1[x]

pseudo_lyl.2[x,]<- N*results_relsurv[[2]][,2]-(N-1)*lyl.2[x]

}

With this way, we summarised all the pseudo-observations into 4 dataframes, based on
the indicator and the cause of death. Before moving to the next step, it would be helpful to
conceptualise the pseudo-observations and how they behave depending on the censoring time
and status. According to Andersen & Pohar-Perme (2010), pseudo-observations calculated
within the cause-specific setting in the case of censoring, tend to be negative at first and then
jump above 1 in case of failing from cause of interest or remain negative (and decrease) in the
case of failing from the other cause; while if they are censored, the pseudo-observations start
increasing at the first next failure corresponding to the cause in question. To investigate if the
same applies for the pseudo-observations that were derived through the relative survival setting,
we provide 4 examples of individuals who experienced: 1. early censoring, 2. cancer death, 3.
death from other causes, and 4. administrative censoring. t We examine the behaviour of the
pseudo-observations that were calculated for cancer (pseudo CPr.1) and the results are shown
below.

The first and the second cases agree with the previous statement. However, in the third
case, although we would expect the pseudo-observations to remain negative and decrease, we
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cens time cause 0.4y 1y 2.3y 4.8y 9.4y 10y

1 1.642 0 -0.0111 -0.0307 0.0113 0.1262 0.2157 0.2227
2 3.807 1 -0.0056 -0.0157 -0.0389 1.0636 1.0507 1.0497
3 3.540 2 -0.0151 -0.0408 -0.1017 0.9550 0.9432 0.9422
4 10.000 0 -0.0120 -0.0321 -0.0800 -0.1957 -0.5141 -0.5704

notice a similar pattern with that of case 2, with the only exception being that the pseudo-
observations in this case did not reach 1. Lastly, for those who were administratively censored,
the pseudo-observations are negative and constantly decrease over time.

3 Step 3: Fit the models for each indicator and for each cause
and provide the covariable effects.

For this step we used a new dataset called b which is an “extended” version of the initial dataset
simdatn2. That means that the data were expanded in such way that now each individual
instead of having one row of information, they have as many rows as the timepoints that the
pseudo-observations were calculated (6). In this example, we used 6 timepoints for the pseudo-
observations for the crude probabilities for each of the N individuals, thus the b dataset consisted
of N × 6 rows. One can think of this new dataset, as a balanced longitudinal dataset with the
outcome (pseudo-observations) being measured at the same time-points. As opposed to that,
the dimensions of b corresponding to the pseudo-observations for the number of life years lost
are the same with simdatn2.

As we have 2 sets of pseudo-observations for each indicator, one for cancer and one for other
causes, we need to define 2 models to match each cause. For simplicity, we used the same
covariates for all causes, an identity link and an independent working covariance structure. The
model used in both cases included the variables agecr, sex and yearcr.

3.1 Models for the Crude Probabilities of death from cancer and other causes

linkfunc <- "identity"

covastr <- "independence"

for (h in 1:2){
pseudo <- get(paste("pseudo_CPr",h,sep="."))

b <- NULL

for (it in 1:length(times_c)) {
b <- rbind(b, cbind(simdatn2,

pseudo = pseudo[,it],

tpseudo = times_c[it],

id = 1:nrow(simdatn2)))

}
b <- b[order(b$id), ]

assign(paste("b_cpd", h, sep="."),b)

#Put sex always 2nd and interaction before any variables!

pseudo_fit <- geese(pseudo ~ as.factor(tpseudo) +
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agecr+sex+yearcr, data = b, id = id,

jack = TRUE, scale.fix = TRUE,

family = gaussian, mean.link = linkfunc,

corstr = covastr)

assign(paste("pseudo_fit_cpd", h, sep="."),pseudo_fit)

}

print(paste("Cause: Cancer"))

## [1] "Cause: Cancer"

print(summary(pseudo_fit_cpd.1)$mean)

## estimate san.se ajs.se

## (Intercept) 0.18592665 0.043376612 0.043319037

## as.factor(tpseudo)1 0.12214868 0.011010724 0.010966499

## as.factor(tpseudo)2.3 0.22912820 0.014575255 0.014516712

## as.factor(tpseudo)4.8 0.30213387 0.016839044 0.016771409

## as.factor(tpseudo)9.4 0.35894016 0.019110520 0.019033761

## as.factor(tpseudo)10 0.36339510 0.019357682 0.019279930

## agecr 0.06379199 0.009106758 0.009114273

## sex -0.01734549 0.027392288 0.027358494

## yearcr 0.17928122 0.162787334 0.162726497

## wald p

## (Intercept) 18.3726603 1.816457e-05

## as.factor(tpseudo)1 123.0681789 0.000000e+00

## as.factor(tpseudo)2.3 247.1296018 0.000000e+00

## as.factor(tpseudo)4.8 321.9318649 0.000000e+00

## as.factor(tpseudo)9.4 352.7760493 0.000000e+00

## as.factor(tpseudo)10 352.4126075 0.000000e+00

## agecr 49.0687160 2.471467e-12

## sex 0.4009741 5.265866e-01

## yearcr 1.2129095 2.707567e-01

print(paste("Cause: Other causes"))

## [1] "Cause: Other causes"

print(summary(pseudo_fit_cpd.2)$mean)

## estimate san.se ajs.se

## (Intercept) 0.05470728 0.0087119594 0.008701479

## as.factor(tpseudo)1 0.01346564 0.0004206486 0.000418959

## as.factor(tpseudo)2.3 0.03891401 0.0013402614 0.001334878

## as.factor(tpseudo)4.8 0.08101439 0.0031833026 0.003170517

## as.factor(tpseudo)9.4 0.14918598 0.0068458200 0.006818323

## as.factor(tpseudo)10 0.15728598 0.0073426576 0.007313165

## agecr 0.03443196 0.0018134048 0.001813052

## sex -0.02570726 0.0056628217 0.005654986

## yearcr -0.06548895 0.0333602341 0.033343488

## wald p

## (Intercept) 39.43288 3.395310e-10
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## as.factor(tpseudo)1 1024.74383 0.000000e+00

## as.factor(tpseudo)2.3 843.01036 0.000000e+00

## as.factor(tpseudo)4.8 647.69197 0.000000e+00

## as.factor(tpseudo)9.4 474.90315 0.000000e+00

## as.factor(tpseudo)10 458.85288 0.000000e+00

## agecr 360.52379 0.000000e+00

## sex 20.60847 5.634635e-06

## yearcr 3.85370 4.963637e-02

3.2 Models for the Number of Life Years Lost due to death from cancer and
other causes

linkfunc <- "identity"

covastr <- "independence"

times_lyl<- max(times_c)

for (h in 1:2){
pseudo <- get(paste("pseudo_lyl",h,sep="."))

b <- NULL

for (it in 1:length(times_lyl)) {
b <- rbind(b, cbind(simdatn2,

pseudo = pseudo[,it],

tpseudo = times_lyl[it],

id = 1:nrow(simdatn2)))

}
b <- b[order(b$id), ]

assign(paste("b_lyl", h, sep="."),b)

pseudo_fit <- geese(pseudo ~ agecr+sex+yearcr, data = b, id = id,

jack = TRUE, scale.fix = TRUE,

family = gaussian, mean.link = linkfunc,

corstr = covastr)

assign(paste("pseudo_fit_lyl", h, sep="."),pseudo_fit)

}

print(paste("Cause: Cancer"))

## [1] "Cause: Cancer"

print(summary(pseudo_fit_lyl.1)$mean)

## estimate san.se ajs.se wald

## (Intercept) 4.6540300 0.4879353 0.4885423 90.9774649

## agecr 0.6967687 0.1009452 0.1012960 47.6437187

## sex -0.2238582 0.3013415 0.3017322 0.5518592

## yearcr 2.0723053 1.7882753 1.7921353 1.3428847

## p

## (Intercept) 0.000000e+00

## agecr 5.111578e-12
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## sex 4.575590e-01

## yearcr 2.465259e-01

print(paste("Cause: Other causes"))

## [1] "Cause: Other causes"

print(summary(pseudo_fit_lyl.2)$mean)

## estimate san.se ajs.se wald

## (Intercept) 1.4294683 0.10742974 0.10754160 177.051685

## agecr 0.3805871 0.01934978 0.01939555 386.861907

## sex -0.2989296 0.06023483 0.06030396 24.628760

## yearcr -0.6943286 0.35731594 0.35803635 3.775942

## p

## (Intercept) 0.000000e+00

## agecr 0.000000e+00

## sex 6.950661e-07

## yearcr 5.199463e-02

4 Step 4: Predict the population point estimates and confidence
intervals.

We start with the function pseudo pred which is needed in order to predict the individ-
ual/population point estimates and confidence intervals of the cumulative probabilities. The
function is shown below:

pseudo pred <- function(mod, data,time)

where mod is the GEE model (run with function geese), data are the data for which we do
the predictions, and time is a vector defining the timepoints where pseudo-observations were
calculated. The resulted data.frame shows the estimate and the lower and upper confidence
intervals.

pseudo_pred<- function(mod,data,time){

N_t <- length(time)

N <- nrow(data)

expl.x.names <- mod$xnames[c( (N_t+1) :length(mod$xnames))]

N.expl <- length(expl.x.names)

xis<- data.frame(matrix(1, N, 1))

if (length(time)==1){
orig.vars <-all.vars(mod$formula)[-1]

}else{
orig.vars <-all.vars(mod$formula)[-c(1:2)]

}
orig.x<- data[,orig.vars]
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for (i in 1:ncol(orig.x)){
orig.x.var <- sapply(1:N, function(x) ifelse(length(levels(

orig.x[,i]))<3,orig.x[x,i],

list(acm.disjonctif(data.frame(orig.x[,i]))[x,-1])))

xis<-cbind(xis,orig.x.var)

}

xis<- xis[,-1]

colnames(xis) <- expl.x.names

time_ind <- diag(nrow=N_t, ncol=N_t)

time_ind[,1] <- 1

betas<- mod$beta

cov_vars <- mod$vbeta.ajs

ind_pred<-data.frame(matrix(1,N,N_t))

ind_var<-data.frame(matrix(1,N,N_t))

var <- rep(1, N_t)

varF <- rep(1, N_t)

var_weight <- data.matrix(rep(1/N, nrow(ind_var)))

for (i in 1:N_t){

deltamethodDK <- function(g, mean, cov, ses=TRUE){
cov<- as.matrix(cov)

n <- length(mean)

syms <- paste("x", 1:n, sep="")

dd <- deriv(g,syms)

for(i in 1:n){
x<- mean[i]

assign(paste("x",i,sep=""),x)

}
gg <- attr(eval(dd),"gradient")

return(gg)

}

#Use Delta to obtain the variances

if (pseudo_fit$model$mean.link=="cloglog"){
pg<- function(a){

syms <- paste("x", 1:length(betas), sep="")

xis.form<- t(c(xit[a,1:length(betas)]))

form <- do.call(sprintf, c(list(paste0(paste0("~exp(-exp(",
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paste0("%f*",

paste(syms,collapse="+%f*"))),

"))")),xis.form))

return(deltamethodDK(as.formula(form),betas,cov_vars))

}
}else if (pseudo_fit$model$mean.link=="log"){
pg<- function(a){

syms <- paste("x", 1:length(betas), sep="")

xis.form<- t(c(xit[a,1:length(betas)]))

form <- do.call(sprintf, c(list(paste0(paste0("~exp(",

paste0("%f*",paste(syms,collapse="+%f*"))),

")")),xis.form))

return(deltamethodDK(as.formula(form),betas,cov_vars))

}
}else if (pseudo_fit$model$mean.link=="identity"){
pg<- function(a){

syms <- paste("x", 1:length(betas), sep="")

xis.form<- t(c(xit[a,1:length(betas)]))

form <- do.call(sprintf, c(list(paste0("~",

paste0("%f*",

paste(syms,collapse="+%f*")))),

xis.form))

return(deltamethodDK(as.formula(form),betas,cov_vars))

}
}

xit <- data.matrix(data.frame(c(time_ind[i,], xis)))

xit_weighted <- 1/N*xit

ind_pred[,i] <- as.numeric(betas%*%t(xit))

ind_var[,i]<- as.numeric(apply(xit, 1, function(x)

as.numeric(t(x)%*%cov_vars%*%t(t(x)))))

ind_grad <- sapply(1:N, function(x) pg(x))

varF[i]<-t(var_weight)%*%t(ind_grad)%*%cov_vars%*%t(

t(ind_grad))%*%var_weight

var[i] <- t(var_weight)%*%xit%*%cov_vars%*%t(xit)%*%var_weight

}

pred<- ind_pred

if (pseudo_fit$model$mean.link=="cloglog"){

Transf <- function(x,vx,m){
log(-log(x))+m*qnorm(0.975)*sqrt(vx)

}

InvTransf <- function(x){
exp(-exp(x))

}

cpd <- colMeans(1-exp(-exp(pred)))

var<- varF/(( log(1-cpd)*((1-cpd)) )^2)
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lower <- 1-InvTransf(Transf(1-cpd,var,-1))

upper <- 1-InvTransf(Transf(1-cpd,var,1))

} else if (pseudo_fit$model$mean.link=="log"){
Transf <- function(x,vx,m){
log(x)+m*qnorm(0.975)*sqrt(vx)

}

InvTransf <- function(x){
exp(x)

}

cpd <- colMeans(exp(pred))

var<- varF/cpd^2

lower <- InvTransf(Transf(cpd,var,-1))

upper <- InvTransf(Transf(cpd,var,1))

} else if (pseudo_fit$model$mean.link=="identity"){
cpd <- colMeans(pred)

var <- varF

lower <- cpd-qnorm(0.975)*sqrt(var)

upper <- cpd+qnorm(0.975)*sqrt(var)

}

return(data.frame(cbind(cpd,lower,upper)))

}

Using the regression parameter estimates from the previous models and the function shown
above, we predict the mean point estimates along with their confidence intervals at population
level; although, this can be adopted for an individual or subgroup level. A comparison of these
estimates to the non-parametric estimates (provided by cmpr.rel, see object NP fit) could
provide a goodness-of-fit check. For the crude probabilities of death, we provide also a graph
except for the point estimates for visual inspection.

# N o n - P a r a m e t r i c

NP_fit <- cmp.rel(Surv(timesurvD,vstat)~ratetable(AGE.RT=agediagdays,

SEX.RT=sex,

YEAR.RT=diagdays1960),

ratetable=expectedrates.RT,data=simdatn2,

tau=max(times_c)*365.241,conf.int=0.95)

# C r u d e p r o b a b i l i t i e s

for (h in 1:2){
pseudo_fit <- get(paste("pseudo_fit_cpd",h,sep="."))

pseudo_data<-pseudo_pred(pseudo_fit,simdatn2,times_c)

pseudo_data

rownames(pseudo_data)<- paste(paste(paste(paste("CPr",h,sep="."),
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"at",sep=" "), times_c, sep=" "),

"y",sep="")

assign(paste("pseudo_data_cpd", h, sep="."),pseudo_data)

}

# L i f e Y e a r s L o s t

for (h in 1:2){
pseudo_fit <- get(paste("pseudo_fit_lyl",h,sep="."))

pseudo_data<-pseudo_pred(pseudo_fit,simdatn2,times_lyl)

assign(paste("pseudo_data_lyl", h, sep="."),pseudo_data)

}

# Plot to compare non-parametric and model estimates for CPr

plot(fit, conf.int = c(1,2), ylab="Crude probabilities of death", ylim=c(0,0.6))

points(times_c*365.241,pseudo_data_cpd.1$cpd, col="red", pch=19)

arrows(times_c*365.241,pseudo_data_cpd.1$lower,

times_c*365.241,pseudo_data_cpd.1$upper,

length=0.05, angle=90, code=3, col="red")

points(times_c*365.241,pseudo_data_cpd.2$cpd, col="red", pch=19)

arrows(times_c*365.241,pseudo_data_cpd.2$lower,

times_c*365.241,pseudo_data_cpd.2$upper,

length=0.05, angle=90, code=3, col="red")
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cpd lower upper Non Parametric

CPr.1 at 0.4y 0.13 0.11 0.16 0.13
CPr.1 at 1y 0.26 0.23 0.28 0.26

CPr.1 at 2.3y 0.36 0.33 0.40 0.36
CPr.1 at 4.8y 0.44 0.40 0.47 0.44
CPr.1 at 9.4y 0.49 0.46 0.53 0.49
CPr.1 at 10y 0.50 0.46 0.54 0.50
LYL.1 at 10y 4.03 3.74 4.33 4.03
CPr.2 at 0.4y 0.01 0.01 0.01 0.01

CPr.2 at 1y 0.02 0.02 0.03 0.02
CPr.2 at 2.3y 0.05 0.05 0.05 0.05
CPr.2 at 4.8y 0.09 0.09 0.10 0.09
CPr.2 at 9.4y 0.16 0.15 0.17 0.16
CPr.2 at 10y 0.17 0.15 0.18 0.17
LYL.2 at 10y 0.92 0.86 0.98 0.92

Table 1: Model estimates and confidence intervals (est, lower, upper) vs. non-parametric esti-
mates for both measures and both causes
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Appendix E

R-code for simulating survival times in
relative survival
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# Example code for designing a population

cDataDesignOptim <- function (n=NULL, cens.admin, ydiagmin, ydiagmax){

id <- c(1:n)

sex <- ifelse(runif(n) < 0.3, 2, 1)

IsexH <- ifelse(sex==1,1,0)

year <- runif(n, min = ydiagmin, max = ydiagmax)

age <- c(runif(n*0.3, min = 30, max = 65),

runif(n*0.3, min = 65, max = 75),

runif(n*0.40, min = 75, max = 85))

tab2 <- data.frame(id, sex, IsexH,year, age)

tab2$agecr <- (tab2$age-70)/10

tab2$yearcr <- tab2$year-2002

tab2 <- tab2[order(tab2$id),]

return(list(tab2 = tab2, n=n, cens.admin = cens.admin, ydiagmin=ydiagmin,

ydiagmax=ydiagmax))

}

Simdat.exa<- cDataDesignOptim(n = 10, cens.admin = 2014, ydiagmin=2000,

ydiagmax=2003)$tab2

# Main function for simulating survival times

sim_rel <- function(sdh,betaagec=NULL, betasex=NULL, betayearcr=NULL, kappa=NULL,

rho=NULL, alpha=NULL, adm.cens=NULL, drop.out=NULL, lifetable.DF=NULL,

lifetable.RT= NULL, Simdata=Simdat.exa){

reqPcks <- c("doSNOW", "lubridate","plyr","survival", "statmod")

for(p in reqPcks){

if(!require(p, character.only=TRUE)) {

install.packages(p)
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}

}

library(doSNOW)

cl<-makeCluster(10, type = "SOCK")

registerDoSNOW(cl)

Simdata$lambda1 <- Simdata$lambda2 <- Simdata$cause <- Simdata$finaltime <-

Simdata$timesurv<- Simdata$finalcause <- Simdata$cens<- 999

SimdataALL.df <- foreach(iloop = 1:nrow(Simdata),.combine = "rbind") %dopar% {

library(lubridate)

library(plyr)

library(survival)

library(statmod)

Xi= c(Simdata$agecr[iloop],Simdata$IsexH[iloop], Simdata$yearcr[iloop])

#-.-.-.-.-.-.-.--.-.-.-.--.--.-.-.-.---.-.-.-.-

# CAUSE-SPECIFIC HAZARD FOR CAUSE 2 (population)

#-.-.-.-.-.-.-.--.-.-.-.--.--.-.-.-.---.-.-.-.-

lambda2_ft <- Vectorize(function(t){

lambda2 <- subset(lifetable.DF, select="exprate",

subset=(AGERT==trunc(Simdata$age[iloop]+t) &

YEARRT==trunc(Simdata$year[iloop]+t) &

SEXRT==Simdata$sex[iloop])

)

return(lambda2)

})

cumlam2_ft <- Vectorize(function(t){

ddiag<-format(date_decimal(Simdata$year[iloop]), "%d-%m-%Y")
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yearout <- format(date_decimal(Simdata$year[iloop]+t), "%d-%m-%Y")

agediag<-Simdata$age[iloop]

sex<-Simdata$sex[iloop]

fuptimeday1<-as.Date(yearout, format="%d-%m-%Y")-as.Date(ddiag,

format="%d-%m-%Y")

fuptimeday <- ifelse(fuptimeday1==0,1,fuptimeday1)

#number of days

ddiagday<-as.numeric(as.Date(ddiag, format="%d-%m-%Y")-as.Date("01-01-1960",

format="%d-%m-%Y"))

agediagday<-Simdata$age[iloop]*365.25

#should be changed according to the attributes of the object ’lifetable’

cumlam2_x<- -log(survexp(~ ratetable(AGE.RT = agediagday, SEX.RT = sex,

YEAR.RT = ddiagday),

ratetable = lifetable.RT,

times = fuptimeday)$surv)

return(cumlam2_x)

})

if(sdh==TRUE){

#-.-.-.-.-.-.-.--.-.-.-.-

# SUBDISTRIBUTION HAZARD

#-.-.-.-.-.-.-.--.-.-.-.-

gamma_0<- Vectorize(function(t) {kappa*(rho^kappa)*(t^(kappa-1))/(1+

((rho*t)^kappa)/alpha)})

gamma_ft <- Vectorize(function(t) {exp(c(betaagec, betasex,

betayearcr)%*%Xi)*gamma_0(t)})

cumgam_ft<- Vectorize(function(lo,up) {integrate(gamma_ft, lower = lo,

upper = up)[1]$value})
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#-----------------------------------

# C a l c u l a t e l a m b d a 1

#------------------------------------

GLw1 <- gauss.quad(n=1, kind="legendre")

GLw10 <- gauss.quad(n=10, kind="legendre")

GLw <- gauss.quad(n=30, kind="legendre")

Rescale <- function(gl,a,b){

gl$mynod <- gl$nodes*(b-a)/2+(a+b)/2

gl$myw <- gl$weights*(b-a)/2

return(gl)

}

lambda1_ft <- Vectorize(function(t){

Numer <- gamma_ft(t)*exp(-cumgam_ft(0,t)+cumlam2_ft(t))

fDenom <- Vectorize(function(z) {gamma_ft(z)*exp(-cumgam_ft(0,z)+cumlam2_ft(z))})

if (t<4) {gg <- Rescale(GLw10,0,t)} else {gg <- Rescale(GLw,0,t)}

if (t<0.1){gg <- Rescale(GLw1,0,t)}

aa <- fDenom(gg$mynod)

Denom <- 1-sum(gg$myw*aa)

return(Numer/Denom)

})

cumlam1_ft <- function(t){

if (t<4) {gg <- Rescale(GLw10,0,t)} else {gg <- Rescale(GLw,0,t)}

if (t<0.1){gg <- Rescale(GLw1,0,t)}

bb=lambda1_ft(gg$mynod)

cum.GL=sum(gg$myw*bb)

if (t<0.003) cum.GL<-0.00001

return(cum.GL)

}

}

if(sdh==FALSE){

lambda_0<- Vectorize(function(t) {kappa*(rho^kappa)*(t^(kappa-1))/(1+

((rho*t)^kappa)/alpha)})

lambda1_ft <- Vectorize(function(t) {exp(c(betaagec, betasex,

betayearcr)%*%Xi)*lambda_0(t)})
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cumlam1_ft<- Vectorize(function(up) {integrate(lambda1_ft , lower = 0,

upper = up)[1]$value})

}

#------------------------------------

# C a l c u l a t e Survival Time

#------------------------------------

lambda_tot <- function(t) {lambda1_ft(t)+lambda2_ft(t)}

cumlam_tot <- function(t) {cumlam1_ft(t) + cumlam2_ft(t)}

# timmax <- min(trunc(2015-Simdata$year[iloop]) ,

# trunc(99-Simdata$age[iloop]))

u <- runif(1)

temp1 <- Vectorize(function(t,u){if (t==0) {myf=-u} else

myf=(1-exp(-cumlam_tot(t))- u)

return(myf)})

res <- try(uniroot(temp1, interval=c(0.001,adm.cens), u=u, tol=0.001), silent=T)

if (class(res)=="try-error"){stime=adm.cens} else {stime=res$root}

lambda1<- lambda1_ft(stime)

lambda2<- lambda2_ft(stime)

Cause <- sample(1:2, 1, prob = c(lambda1, lambda2))

Simdata$lambda1[iloop] <- lambda1

Simdata$lambda2[iloop] <- lambda2

Simdata$cause[iloop] <- Cause
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Simdata$finaltime[iloop] <- stime

#Censoring: administrative+drop outs

Simdata$cause[iloop] <- ifelse(stime==adm.cens,0,Cause)

temp.ut2 <- runif(nrow(Simdata))

Simdata$cens<- temp.ut2/drop.out

Simdata$timesurv <- sapply(1:nrow(Simdata), function (x) min(Simdata$finaltime[x],

Simdata$cens[x]))

Simdata$finalcause <- sapply(1:nrow(Simdata), function (x)

ifelse(Simdata$finaltime[x]==Simdata$timesurv[x], Simdata$cause[x], 0) )

return(Simdata[iloop,])

}

stopCluster(cl)

return(SimdataALL.df)

}
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