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Abstract 

Clostridium difficile infection (CDI) is the most common cause of nosocomial diarrhoea worldwide.  

Current treatment options have varied levels of success and there is no licensed vaccine. Most 

vaccines investigated to date use the C. difficile toxins, as these induce a protective immune 

response. However, this is only against the symptoms of CDI, therefore there is a need for antigens 

capable of preventing colonisation and transmission.  

The results of a C. difficile specific pan-protein array, screened against blood samples from CDI 

patients and healthy controls, was analysed and a shortlist of proteins identified where the IgG 

antibody response was significantly higher in the control group. Three of these were expressed and 

purified in E. coli, and tested against patient samples in an ELISA. For two of the three proteins, there 

was a higher IgG response in the healthy control group (albeit not significant) confirming the array 

results.  

Inactivation of three immunogenic proteins from the array in C. difficile R20291 revealed the 

putative permease CDR20291_0342, was not involved in efflux of the antimicrobials tested. 

Inactivation of the putative pilin protein, CDR20291_3343, did not influence surface motility, but 

motility was almost abolished in a flagella mutant. The putative cobalt transporter CDR20291_0330, 

was proposed to contribute to a putative vitamin B12 synthesis pathway, which is required for 

ethanolamine utilisation. Neither R20291Δ0330 or R20291 utilised ethanolamine in the conditions 

tested but it was found that inactivation of one component of the two-component regulatory 

system in C. difficile 630Δerm abolished ethanolamine utilisation.  

Finally, mechanisms of synthesising C. difficile glycoconjugates using bioconjugation were 

investigated, using a carrier protein and portion of the R20291 flagella glycan. A short acceptor 

peptide was designed and found to be glycosylated at all sites with a glycan from Campylobacter 

jejuni but it was not possible to detect glycosylation with the flagella glycan from C. difficile.  

Word count: 300 
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1. Introduction 

1.1. An introduction to Clostridium difficile  

In 1974, Tedesco and colleagues found 21% of patients receiving clindamycin experienced diarrhoea, 

with almost half of these also presenting with inflammatory lesions along the colonic mucosa, 

known as pseudomembranous colitis (PMC) [1]. Three years later, the causative agent Clostridium 

difficile was implicated [2-4]. First identified in infants in 1935, the strict anaerobe C. difficile is a 

Gram-positive spore forming organism from the Firmicutes phylum of bacteria [5]. More recently, 

the Clostridium genus was restricted to Clostridium butyricum and its related species. As C. difficile is 

phylogenetically distant from this species, it was reassigned into the Clostridioides genus [6]. It is 

found in 4-15% of healthy adults but can cause serious disease when established as a dominant 

member of the gut microbiome, following disturbance to the protective gut microbiome [7]. The 

symptoms of C. difficile infection (CDI) are primarily associated with the action of Toxins A and B, 

which the pathogen releases into the gut, resulting in breakdown of the epithelial cell barrier [8-10]. 

CDI is a major cause of nosocomial diarrhoea but can have more severe outcomes, including PMC, 

toxic megacolon and fatalities [11, 12].  

 C. difficile and the intestinal microbiota  

The microbiota of the intestinal tract is one of the most influential microbiomes in the human body, 

ranging from roles in intestinal illness such as inflammatory bowel disease through to development 

of the immune system [13-16]. Microbiome composition displays high inter-person variability, 

influenced by diet, environment and health status, but is relatively stable within individuals 

throughout adulthood [17-19]. Difficulties arise following community disturbance and loss in 

diversity, a process accelerated with advanced age, particularly in institutionalised settings [20, 21] 

and as a result of exposure to broad-spectrum antibiotics [22-24].  

A robust gut microbiome is crucial for protection against CDI. The microbiome can complete with C. 

difficile for space, nutrients and access to the epithelial cell lining and produces antimicrobial 
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peptides (AMPs), which may be toxic to C. difficile [25]. Specific species within this microbiome are 

particularly important in providing protection from CDI. Louie et al. found include Bacteroides and 

Prevotella species are important in the maintenance of a healthy microbiome as patients with lower 

counts of these were more likely to experience recurrence of CDI [26].   

Additionally, microbiome-mediated bile salt metabolism is also important, as certain bile salts can 

inhibit outgrowth of C. difficile. Primary bile salts such as glyco- and tauro- cholate and 

chenodeoxycholate are released into the gut by the gall bladder, for the digestion of dietary fats. 

They are then metabolised by the gut microbiome to release taurine and glycine, leaving behind the 

unconjugated cholate and chenodeoxycholate. Specific members of the gut microbiome can then 

further process these into secondary bile salts, deoxycholate and lithocholate [27]. Bile salts 

promote germination of C. difficile spores but interestingly secondary bile salts such as deoxycholate 

prevent their outgrowth [28, 29]. Therefore, secondary bile salts and the bacteria harbouring the 

enzymes to produce them are an important means of preventing C. difficile colonisation (although 

colonisation doesn’t automatically equate to CDI (1.1.2.1)). Buffie et al. identified Clostridium 

scindens as a member of the gut microbiome that harbours the 7α-dehydroxylating enzymes 

required for the production of secondary bile salts. Administration of this species to mice resulted in 

resolution of CDI [30]. Furthermore, Mullish et al. recently reported bile salt hydrolases, which 

mediate deconjugation of glycine and taurine from primary bile salts, are found in lower proportions 

in those with CDI [31].  

The increased understanding of the relationship between bile salts and particular species of the 

microbiome and C. difficile is now being investigated for its suitability as a treatment for CDI, with 

delivery of the whole microbiome via faecal transplants already in practice (1.4.4, 1.4.5).  

 C. difficile metabolism  

Defined minimal media is a valuable tool for bacterial study as it enables precise manipulation of the 

growth environment. Early work by Karasawa et al. identified the growth requirements for C. 
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difficile, including a combination of amino acids, salts, trace salts, vitamins and glucose as a carbon 

source [32]. This study also found, for the strains of C. difficile they investigated, proline, cysteine, 

isoleucine, leucine, valine and tryptophan were all essential for growth [32]. Many of these amino 

acids can be used in Stickland fermentation, a primary energy source for C. difficile involving the 

oxidation and reduction of amino acids [33]. Minimal media has been used to elucidate the 

nutritional relationship between toxin production and the metabolism of substrates in the host gut, 

such as glucose, sorbitol and ethanolamine [34][35, 36]. Theriot et al. used minimal media to 

demonstrate the range of carbohydrates C. difficile can utilise as a carbon source, including fructose, 

mannitol and sorbitol, which all increase in abundance following antibiotic ablation of the gut 

microbiome(i.e. a CDI susceptible state), in the mouse model [37]. Finally, in a recent study, Collins 

et al. used minimal media to support their finding that dietary trehalose in humans is associated 

with the emergence of hypervirulent strains of C. difficile [38].  

 C. difficile infection 

 Outcomes of infection and asymptomatic carriage 

C. difficile’s presence in the gut can result in a range of outcomes, from asymptomatic colonisation 

through to severe disease and fatalities. Although definitions vary, asymptomatic colonisation 

typically refers to patients who are positive for C. difficile (i.e. by faecal culture) but are negative for 

the detection of free Toxin A and B in stool and do not display clinical signs of CDI [7]. Current 

estimates indicate 4-15% of adults are asymptomatically colonised [7]. Rates of colonisation in 

infants under two years old tend to be higher than in adults, reaching over 50% in some studies [39-

41]. However, reports of actual CDI in this cohort are rare, which has been suggested to be a result 

of immaturity of the infant mucosa, rendering it resistant to Toxins A and B [39, 42-44].  

Colonisation with C. difficile is associated with increased risk of CDI [45]. In a recent review, Crobach 

et al. found the risk of developing CDI was increased in those colonised with toxigenic C. difficile [7]. 

Importantly, patients colonised with C. difficile are also a source of nosocomial transmission. High 
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levels of spores have been identified on the skin of these individuals which are then shed into the 

environment [46-50]. Lawley et al. found treating immunocompetent mice colonised with C. difficile 

with clindamycin resulted in disruption of the microbiome, C. difficile outgrowth and anincrease in 

sporulation. This increase in the presence of spores in the mouse faeces was termed a “super 

shedder” state and resulted in increased transmission to other animals [51]. As many hospitalised 

patients are on antibiotics, this study offers a plausible role for asymptomatically colonised patients 

in the transmission of CDI.  

Although CDI can result in self-limiting diarrhoea, it can also develop into a severe infection leading 

to PMC and toxic megacolon [12, 52]. Furthermore, there are reports of systemic and extra-

intestinal outcomes of CDI, including multiple organ dysfunction syndrome, liver abscesses and 

sepsis [53-55]. Of the total 13, 286 people diagnosed with CDI in England in 2017/18, 15.2% died 

within 30 days of onset [56]. Recurrence of infection is another well-established aspect of CDI and 

can be differentiated into relapse, i.e. infection with the same strain or re-infection, with a new 

isolate [57, 58]. Estimates put recurrence of CDI at 15-30% following primary infection but following 

two recurrent episodes, 45-65% will experience another case of CDI [59-61]. Multiple risk factors 

have been associated with recurrence of CDI, which often overlap with those for the acquisition of 

primary CDI, including antibiotic exposure and advanced age [62, 63].    

 Risk factors 

Antibiotic use is a major risk factor for CDI, as this depletes the microbiome, resulting in loss of 

colonisation resistance. Although the majority of antibiotics can disturb the microbiome to some 

extent, clindamycin, cephalosporins and fluoroquinolones are particularly associated with 

development of CDI [64, 65]. The predisposition of those receiving clindamycin treatment to CDI has 

been known since the 1970s [1, 3, 66] but the importance of fluoroquinolones only came to light in 

the early 2000s, when a hypervirulent ribotype 027 strain emerged in Canada which was highly 

fluoroquinolone resistant [67-69]. Restriction of fluoroquinolone use resulted in a substantial 
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decrease in fluoroquinolone resistant infections [70]. Proton pump inhibitors (PPI) are used to 

reduce gastric acid production and have been implicated in increasing susceptibility to CDI, by 

reducing stomach acid. However, this association is controversial, as spores are the major route of C. 

difficile transmission and these are unaffected by stomach acid[71-73]. A systematic review and 

meta-analysis conducted by Kwok et al. found a probable association between PPI use and CDI, but a 

similar study in the same year found low quality evidence for this [71, 74].  

Another predominant risk factor is advanced age (>65 years old). In the UK, the highest rates of CDI 

are found in people over 85 years of age [75-78]. Elderly people are more likely to experience the 

common risk factors of CDI, including hospitalisation, presence of co-morbidities and antibiotic use 

[79-83]. Furthermore, the diversity of the microbiome decreases with age, which could reduce 

colonisation resistance [17, 20, 21, 84, 85]. Waning of the humoral immune response with age is 

often mentioned as a risk of CDI due to the importance of antibodies in protection from infection, 

but there is a lack of evidence to fully support this (1.4.1) [86-88]. Kyne et al. found patients with 

higher IgG responses to Toxin A had reduced recurrence of infection, but IgG titres were not affected 

by age [89, 90]. Those with co-morbidities are also at an increased risk of CDI, both due to the fact 

they are likely immunocompromised and often require stays in hospital, which increases exposure to 

C. difficile [80, 83]. Illnesses, such as inflammatory bowel disease and surgery of the gastrointestinal 

tract are particularly associated with the development of CDI [76, 91-93].    

 Diagnosis 

PHE recommends screening for CDI in patients with diarrhoea which cannot be attributed to an 

underlying condition or therapy [94].  Diagnostics for C. difficile target either the organism or Toxins 

A and B. Toxigenic culture utilises selective agar to isolate C. difficile from a faecal sample before 

testing for toxin using an established method such as PCR or cell culture. This method is sensitive 

and specific for C. difficile and allows for detection of toxin producing strains [95, 96] but is also time 

consuming. Therefore, enzyme immunoassay (EIA) based detection of the C. difficile metabolic 
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enzyme glutamate dehydrogenase (GDH), directly on patient samples is a more frequently utilised 

test for the detection of C. difficile [97]. Cytotoxin assays detect the toxins by exposing in vitro cell 

lines to faecal samples and monitoring cell morphology for cytopathic effects [95, 97, 98]. However, 

these assays are also time consuming and require cell culture facilities and therefore have been 

replaced by the more rapid, nucleic acid amplification tests (NAATs) and enzyme immunoassays 

(EIAs) [99]. NAATs are a rapid PCR-based test which usually amplify conserved regions of the genes 

encoding Toxin A (tcdA) and B (tcdB) but use of these alone without confirmation of actual toxin 

production runs the risk of over diagnosing CDI [100, 101]. EIAs allow detection of Toxins A and B in 

faecal samples and sensitivity of these has improved in recent years, but it is still very variable [95, 

99]. Crobach et al. reviewed the sensitivity and specificity for the different available EIAs and NAATs 

for toxin detection and GDH testing and compared these to use of toxigenic tissue culture. The 

sensitivity was lowest and most variable for the Toxin EIA, while the sensitivity and specificity of the 

Toxin NAAT and GDH EIA were comparable and both >80% [101]. Detection of the organism cannot 

differentiate between toxigenic and non-toxigenic strains, therefore both organism and toxin-

specific tests are required to confirm CDI [101]. PHE recommends initial testing with a GDH EIA or 

Toxin NAAT and positive results followed up with a Toxin EIA to confirm CDI [94].   

1.2. Epidemiology of infection 

 Typing and phylogeny 

C. difficile is an extremely diverse species with many strains that can be grouped into distinct clades. 

C. difficile harbours a large, mosaic genome which enables it to occupy different niches. The 

environmental challenges of occupying these niches both in and out of the gut are believed to have 

been the driving force behind the highly diverse C. difficile strains seen today. There are a number of 

mechanisms behind this diversity, particularly the presence of transposable elements, which are 

particularly prevalent within the C. difficile genome (~11%) [102]. Additionally, there are regions 

where mutations are more common, for example within the PaLoc locus which encodes the genes 
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required for toxin production. Toxinotyping is a method of typing strains based on mutations within 

this region [103]. 

A number of techniques are utilised to differentiate strains based on different factors. Multi-locus 

typing (MLST) is a well-established typing system throughout bacteria and is based on sequencing 

conserved house-keeping genes [104]. These have been identified for C. difficile and used to assign a 

sequence type to different strains [104, 105]. An alternative to this is toxinotyping, a typing method 

based on the genes encoding Toxins A and B, tcdA and tcdB, respectively [103, 106]. One of the most 

heavily relied upon systems is ribotyping, which groups strains based on the pattern of amplified 

intergenic regions of the 16S and 23S ribosomal RNA [107, 108].  

Stabler et al. used MLST of 385 diverse strains to assess evolutionary relatedness of these (Figure 

1.1). Five clades were identified, each including clinically relevant strains in humans [109]. Clade 1 

contains strain 630 (ribotype 012) which was isolated from a patient with PMC in 1982 and was the 

first C. difficile genome to be fully sequenced and annotated, and therefore is a routine lab strain 

[110, 111]. Clade 2 contains ribotype 027 strains, including the epidemic BI/NAP1/027 strains which 

are highly virulent and fluoroquinolone resistant [68, 112, 113]. Clades 3 and 4 harbour ribotypes 

023 and 017, respectively. Ribotype 017 strains are notable as they are Toxin A-B+ but still cause 

infection in humans, while ribotype 023 strains have increased in recent years and are capable of 

causing severe infections [114, 115]. Finally, strains from clade 5 are very distinct from the other 

clades and include the ribotype 078 strains which are also associated with hyper-virulence and are 

frequently isolated from animals [116, 117].  
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Figure 1.1. Evolutionary relatedness of C. difficile strains. Clustering of strains by multi-locus sequence typing resulted in 5 distinct clades which all include 
strains capable of causing human infection. Clade 1 (black), clade 2 (red), clade 3 (blue), clade 4 (orange), clade 5 (green). Image taken from Stabler et al. 
[109].
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 Changing pattern of CDI 

Historically, C. difficile was considered a serious yet manageable infection, even following the rising 

incidence of PMC in the 1970s, mirroring the beginning of widespread antibiotic use. However, in 

the early 2000s, reports began of increased incidence and severity of CDI in Quebec, Canada, which 

quickly spread to cover North America and arrived in the UK with the highly publicised Stoke 

Mandeville epidemic . The causative agent, an emerging hypervirulent BI/NAP1/027 strain was 

isolated and identified as a ribotype 027 strain [69, 112, 118-121]. R20291 is the hypervirulent 027 

strain isolated from the Stoke Mandeville epidemic [113]. Multiple features of this strain were 

associated with its increased severity of infection and spread, including increased toxin production, 

increased spore germination and a single nucleotide polymorphism (SNP) in DNA gyrase, conferring 

high-level fluoroquinolone resistance [68, 122-125]. This is of particular importance as the use of 

fluoroquinolones was widespread at the time. He et al. identified two distinct lineages (FQR1 and 

FQR2) of the epidemic BI/NAP1/027 strain which acquired the same SNP in DNA gyrase 

independently [68]. Increased toxin production was suggested to be a result of modifications within 

TcdC, the negative regulator of Toxin A and B expression, but there are conflicting reports over the 

influence of this [122, 126, 127]. Furthermore, comparing pre and post epidemic strains of 

BI/NAP1/027 found there was no difference in the sequence of the Pathogenicity Locus (PaLoc) 

encoding the toxins and their regulators and accessory genes [68].  

In 2007/8, over 55,000 cases of CDI were reported in the UK, with over 8000 deaths, 5 times higher 

than those caused by MRSA [67]. More recently, these figures have reduced but CDI remains a 

persistent burden, particularly in healthcare associated settings, with over 12,000 cases reported in 

the UK between April 2018 and March 2019 [128]. Although both hospital and community onset 

cases of CDI have reduced, including those caused by ribotype 027 strains, this reduction is much 

less rapid for community onset cases, which now account for 66% of annual diagnoses [128].  



27 
 

The increase in prominence of community infections changed the view of C. difficile as a 

predominantly nosocomial pathogen, although definitions of community infection can vary and do 

not always exclude recent hospital contact [83, 129-131].  Those with community acquired CDI tend 

to be younger and harbour fewer risk factors than nosocomial patients [131]. In terms of the source 

of infection, environmental contamination with C. difficile spores has been reported numerous times 

[132-134]. Furthermore, C. difficile has also been detected in a number of animals, including 

household pets and farm animals, but whether this a source of transmission to humans is still under 

investigation [135-138]. One study isolated strains from cats and dogs being kept as pets, which are 

known to also infection humans, including those from ribotype 078 and 027. However, no 

simultaneous cases of CDI were reported between the pet and their owner [139].Ribotype 078 

strains are particularly common in animals [117, 140]. Dingle et al. recently demonstrated 76.5% of 

sequenced ribotype 078 strains, which are frequently isolated from animals, carried the tetM gene, 

which confers tetracycline resistance, an antibiotic frequently used in agriculture [141].  Ribotype 

078 strains began to emerge in 2005 and cause similar levels of severe diarrhoea and mortality as 

hypervirulent ribotype 027 strains [116, 142, 143]. However, compared to these strains, 078 

infections are more often found in younger people and as a cause of community infections [116].  

The changing epidemiology described above primarily relates to Europe and North America, where 

formal surveillance programmes were introduced following the ribotype 027 epidemic of the 2000s. 

Such surveillance programmes are not universal, particular in low resource areas where other 

infections can pose a greater burden, which hampers understanding of the global epidemiology of 

CDI. Furthermore, this can result in C. difficile being labelled a low prevalence pathogen when in fact 

this is due to incomplete testing, typing and reporting [144]. A recent meta-analysis noted a lack of 

incidence data from Latin America, Eastern Mediterranean, South-East Asia and Africa [145]. 

Perhaps unsurprisingly, another study found guidelines for management and infection control of CDI 

were either lacking or completely absent in these same regions [146]. In Asia, including China and 

South Korea, it has been documented that 027 strains did not pose the same burden as they did in 
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the West but instead, clade 4 ribotype 017 strains, which are typically Toxin A negative and Toxin B 

positive, were prominent [147]. A recent phylogenetic analysis of these strains found these in fact 

emerged in North America and reached Asia via Europe [148]. CDI has been identified in a number of 

African countries but these tend to be small studies with limited associated data such as sequence 

type or ribotype of the strains [149]. One study in South Africa found 50% of the 32 strains 

recovered from patients were ribotype 017 [150].   

1.3. Virulence factors of C. difficile  

 Toxins 

The major virulence determinants of C. difficile are Toxins A and B, which are the primary mediators 

of the symptoms of CDI [53]. These toxins are composed of an enzymatic glucosyltransferase domain 

(including a catalytic and cysteine protease domain), translocation and receptor binding domain, 

which all have a functional role in toxin activity [151]. Upon secretion from C. difficile, the receptor 

binding domains of Toxins A and B bind intestinal epithelial cells, resulting in host-mediated 

endocytosis [152, 153]. Potential receptors have been identified for both Toxins A and B, namely a 

glycoprotein (gp96) on the surface of colonocytes for Toxin A and the polio virus-like 3 receptor on 

colonic epithelial cells for Toxin B [154, 155]. Once internalised, the pH drop in the acidified 

endosome initiates a conformational change of the toxin resulting in pore formation within the 

endosome membrane and release of the glucosyltransferase domain into the cytosol [156, 157]. This 

domain can then go on to glucosylate Rho and Rac GTPases, resulting in disruption of the actin 

cytoskeleton and breakdown of the epithelial barrier [158, 159]. Toxins A and B are encoded by tcdA 

and tcdB, respectively, within the 19.6 Kb PaLoc [111, 160]. Three other genes are also present 

within this locus; tcdR, tcdC and tcdE. TcdE is a holin-like protein thought to mediate release of the 

toxins into the gut lumen [161]. TcdR is a positively regulator of toxin production and TcdC was 

initially believed to be an anti-sigma factor that repressed toxin expression, but this has since been 

debated [126, 162-164].  
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Some strains such as those from ribotype 027 also harbour the ADP-ribosylating binary toxin, which 

is encoded separately to the PaLoc [118, 165]. This toxin is also internalised and acts on the actin 

mesh under the cell membrane, resulting in protrusions from the cell that increase adherence of C. 

difficile [166-168]. The role of binary toxin in infection is not as pronounced as for Toxins A and B but 

some studies have found an association between its presence and an increased severity of infection 

or occurrence of relapse [169, 170]. However, in a hamster model of infection, Toxin A- Toxin B- 

Binary+ strains were able to colonise but did not cause symptoms of CDI [170]. 

The relative contributions of the C. difficile toxins in disease remains a source of debate. Lyras et al. 

found inactivation of Toxin A resulted in death of hamsters in a similar manner to the wild-type 

infection, whereas inactivation of Toxin B resulted in a significant increase in survival. Therefore, the 

authors concluded only Toxin B was essential for infection [10]. However, two following studies by 

Kuehne et al. reported both Toxin A only and B only strains can cause fulminant disease in the 

hamster model [8, 9]. Continuing on from this, Carter et al. used three different animal models to 

evaluate the influence of the toxins and found virulence was only attenuated upon inactivation of 

Toxin B [53]. From a human infection perspective, Toxin A-B+ strains have been isolated frequently 

and can cause CDI, but Toxin A+B- infections are very rare [114, 171, 172]. Finally, there are 

circulating Toxin A and B negative strains which can colonise the host but are not believed to cause 

infection in humans, although a toxin negative strain did result in mild caecal pathology in a hamster 

model of infection [173, 174].  

 Sporulation and Germination  

As a strict anaerobe, survival of vegetative cells outside of the gut or indeed any anaerobic 

environment would not be possible, therefore C. difficile produces highly resistant spores which can 

tolerate aerobic conditions, high temperatures and environmental desiccation [64, 132, 175-177]. 

Spores are the major route of C. difficile transmission, and only germinate once in the gut, a process 

influenced by bile salt composition (section 1.1.1) [28-30, 178]. Recent work has identified the spore 
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proteins CspC and CspA as the receptors detecting bile salt germinants [179, 180]. It has also been 

suggested that spores may be a source of the high recurrence of CDI, persisting within the gut until 

conditions are suitable for germination and outgrowth [178, 181]. The difficulty in spore eradication 

contributes to the rapid spread of CDI within healthcare settings [182, 183]. Furthermore, as 

discussed above, people asymptomatically colonised with C. difficile shed spores into their 

environment, a process which is  enhanced in mice upon antibiotic treatment, which also 

contributed to transmission of C. difficile [46-48, 51]. Deakin et al. demonstrated that the master 

regulator Spo0A is essential for sporulation, and its inactivation still enables acute infection in mice 

but relapse of infection is lost, as is host to host transmission [178].  

 Motility 

 Flagella 

Flagella are whip-like structures that extend from the cell surface and propel bacteria towards 

nutrient sources or away from potential stressors. They are frequently associated with virulence, 

particularly for adherence and colonisation in the host. C. difficile flagella facilitate swimming 

through semi-solid agar in vitro which is lost upon inactivation of the flagella, through mutation of 

the major structural subunit (FliC) or flagella cap (FliD) [184-187]. Other phenotypes attributed to 

the C. difficile flagella differ between strains. For example, inactivation of the flagella in 630 

increased adherence to Caco2 cells in vitro but the opposite was found for strain R20291 [186, 188]. 

Dapa et al. found removal of the flagella resulted in reduced biofilm formation in R20291 [189].  

Post-translational modification of the flagella also influences its function. Glycan modification of FliC 

for strains 630 (Type A) and R20291 (Type B) has been characterised in detail and revealed two 

distinct structures [184, 187, 190] (Figure 1.2). This variation in glycan structure is reflected in the 

glycosylation gene content of the flagella locus from different C. difficile strains [185]. Glycosylation 

of the flagella is essential for motility in both strains. Furthermore, modification or loss of these 

glycans increases cell aggregation, which is not seen with removal of the entire flagella [184, 187].  



31 
 

 

 

 

 

Figure 1.2. Flagella glycosylation in C. difficile 630 and R20291. Schematic of the solved glycan 
structures of the Type A and Type B modifications on the flagellum subunit, FliC. This is modified from 
an image by Dr Alexandra Faulds-Pain [184, 187].  
 

Faulds-Pain et al. found wild-type 630Δerm colonised a mouse model to the same extent as 

630Δerm with no flagella or harbouring a truncated flagella glycan. However, C. difficile was 

detected in the faeces for fewer days post-inoculation for the glycosylation mutant, suggesting this 

does play a role in colonisation [184]. Regarding the flagella directly, Dingle et al. found 630Δerm 

lacking a flagella was more virulent in a hamster model and suggested increased toxin production 

could be behind this [186].  

The link between the flagella operon and toxin production was found to be the sigma factor SigD, 

encoded with the early stage flagella genes. SigD positively regulates expression of late stage flagella 

genes, including fliC and the glycosyltransferases, as well as tcdR, the positive regulator of Toxin A 

and B [191]. Consequently in a sigD mutant strain, expression of the flagella biosynthesis genes and 

Toxin genes tcdA and tcdB is reduced [191, 192]. Expression of these genes is further influenced by 

the regulation of sigD, via both cyclic-diguanylate-guanosine monophosphate (c-di-GMP) and a 

genetic switch controlling phase variation [192-194]. c-di-GMP is a secondary messenger with a 

whole array of regulatory targets, but at high level is primarily associated with promoting entry into 

the sessile lifestyle, including a reduction in motility and increase in pili formation and cell 

aggregation [195, 196]. Cellular levels of c-di-GMP are tightly controlled by the action of two sets of 

enzymes which respond to signals to either synthesise (diguanylate cyclases) or degrade 

(phosphodiesterases) this secondary messenger [197]. In 630, there are 37 of these enzymes, 31 of 



32 
 

which are conserved in R20291 [198]. C-di-GMP controls expression by binding to a riboswitch in the 

5’ untranslated region of its target gene. The binding of c-di-GMP to a class I riboswitch results in 

premature translational termination and consequently no production of downstream gene products 

[199]. Class II riboswitches undergo a conformational change when bound by c-di-GMP which 

enables expression of the downstream genes [198, 200, 201]. Binding of c-di-GMP to the class I 

riboswitch within the 5’ untranslated region of the early stage flagella genes results in translational 

termination and consequently SigD is not produced [202, 203]. Furthermore, orientation of a genetic 

switch downstream of this riboswitch but before start of the flagella genes can also controlSigD, 

which in turn affects the production of Toxins A and B and flagella biosynthesis via phase variation 

[193, 194].   

 Pilli 

Pili are filamentous structures which extend from bacterial cells and can mediate adhesion and 

exchange of genetic material. Type 4 pili (T4P) are a sub-type of these, found in Gram-positive 

organisms and are associated with gliding and twitching motility, adhesion and biofilm formation 

[204]. C. difficile is predicted to encode a major (CDR20291_3340-3350) and minor 

(CDR20291_3153-3158) T4P locus which show a low level of divergence between strains and are 

thought to be core components of the C. difficile genome [205, 206]. Additional pilins encoded 

elsewhere on the chromosome display greater strain variation [204, 207]. Predicted T4P structures 

have been identified on the surface of C. difficile in vitro and pili like structures have been identified 

in hamster models [208-210] (Figure 1.3). Although C. difficile is also decorated with flagella 

structures on the surface, these are usually thicker than pili and surface appendages could still be 

identified in a flagella mutant, suggesting pili are also present [195]. T4P are composed of several 

pilin units each with a specific role for formation of the full pilus structure. In C. difficile, PilA1 is the 

predicted major structural unit with no visible pili in a pilA1 mutant in R20291 [211]. 
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As with the flagella, pili expression is also regulated by c-di-GMP, but this is via a type II riboswitch, 

meaning expression is upregulated in the presence of c-di-GMP. This corresponds with the role of c-

di-GMP, mediating the switch to the sessile lifestyle [196, 197]. In C. difficile, cell aggregation 

increases following expression of a diguanylate cyclase for c-di-GMP synthesis which is lost when 

PilA1 is disrupted [195]. T4P have also been demonstrated to have a role in motility on solid surfaces 

and initial biofilm formation [195, 212]. Recently, McKee et al. reported that T4P negative mutants 

were less able to adhere to epithelial cells in vitro and were cleared more quickly compared to the 

wild-type in a mouse model of infection [213]. 

 

 

 

 

 

 

 

 

 

Figure 1.3. Visualisation of the Type 4 pili on the surface of C. difficile. (A) Immunogold staining of 
the PilJ and PilA units on the surface of C. difficile (This research was originally published in the 
Journal of Biological Chemistry. Piepenbrink KH, Maldarelli GA, de la Peña CF, Mulvey GL, Snyder GA, 
De Masi L, von Rosenvinge EC, Günther S, Armstrong GD, Donnenberg MS and Sundberg EJ. 
Structure of Clostridium difficile PilJ Exhibits Unprecedented Divergence from Known Type IV Pilins. J 
Biol Chem. 2014; 289:4334-4345. © the American Society for Biochemistry and Molecular Biology or 
© the Piepenbrink KH, Maldarelli GA, de la Peña CF, Mulvey GL, Snyder GA, De Masi L, von 
Rosenvinge EC, Günther S, Armstrong GD, Donnenberg MS and Sundberg EJ)[209] (B) Comparison of 
flagella and pili structures on the surface of C. difficile [208].  

 

 The C. difficile cell surface  

 Proteins 

C. difficile harbours a dynamic cell surface. As a Gram-positive organism, it is encased within a single 

lipid membrane surrounded by a thick layer of peptidoglycan. Outside of this is an additional surface 

B. A. 
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layer (S-layer), a paracrystalline array that covers cell [214]. This is composed of the SlpA protein, 

which is expressed then post-translationally cleaved into a high molecular weight (HMW) and low 

molecular weight (LMW) component, by the cysteine protease Cwp84 [215-217]. The HMW protein 

interacts with the cell membrane and is highly conserved between strains whereas the LMW protein 

is exposed and variable, leading to suggestions it is involved in immune invasion [218, 219]. After 

much difficulty, in 2017 Kirk et al. isolated a strain of C. difficile that harboured point mutations 

within SlpA and consequently did not produce an S-layer [220]. This had profound effects on the 

bacteria including defects in sporulation and toxin production and increased sensitivity to the innate 

immune response. Furthermore, although this strain could colonise the hamster gut, it was not 

virulent [220].   

In addition to the S-layer, there are a number of other surface proteins decorating the cell that can 

contribute to adherence. This includes collagen (CbpA) and fibrinogen binding proteins (Fbp68 and 

FbpA), sorted proteins (CD3392), lipoproteins and cell wall proteins [221-226]. CwpV is the largest 

cell wall protein and its expression is phase variable [227, 228]. Although its role in virulence and 

host colonisation is not well understood, CwpV does contribute to cell-aggregation and resistance 

from bacteriophage infection [228, 229].  

 Surface polysaccharides and glycosylation  

Both glycosylated proteins and surface polysaccharides have been identified in C. difficile, although 

for some their purpose within C. difficile is poorly understood and therefore their contributions to 

virulence are often putative. As described above, flagella glycosylation in strains 630 and R20291 has 

been characterised in detail, resulting in resolution of these two distinct glycan structures and in 

vitro demonstration of their essentiality for flagella-mediated motility (1.3.3.1) [184, 187, 190]. 

Glycosylation of the LMW component of the S-layer is also restricted to certain strains. 

Characterisation of the S-layer from a ribotype 005 strain identified a complex glycan composed of 

three domains; a core peptide–linked tetrasaccharide, a repeating pentasaccharide and a rhamnose-
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rich non-reducing end. Loss of or modification to this glycan via interrupting genes within its 

synthesis locus is associated with alterations in sporulation and adherence [230].  

C. difficile encodes three surface polysaccharides; PS-I, PS-II and PS-III [231-233]. The latter is a lipid-

bound glycosyl phosphate polymer of the lipoteichoic acid (LTA) family and is sometimes referred to 

as a LTA or as having LTA domains. To our knowledge, both PS-II and PS-III have been found in all 

strains examined so far whereas PS-I has only been found in a small number of strains so far and 

doesn’t appear to be unique to a particular ribotype [234]. The structures for all three polymers have 

been solved and investigated for their immunogenicity and as vaccine candidates (1.6.3, Table 1.2) 

but their role in virulence is largely unknown [234-238]. Willing et al. identified a set of genes 

downstream of the large S-layer biogenesis locus which they named the anionic polymer (AP) locus. 

This was predicted to encode the synthesis of the hexaglycosyl phosphate repeating polymer PS-II, 

based on the presence of glycosyltransferases and genes related to the synthesis of surface 

polymers. It was not possible to inactivate genes within this locus using insertional inactivation, 

suggesting its essentiality. However, using anti-sense RNA knockdown experiments targeting three 

of the genes within this locus, disruption of S-layer assembly was demonstrated, suggesting a role 

for this polymer in correct assembly of this para-crystalline array [218].  

 Mechanisms for persistence within the gut 

Although the mechanisms enabling C. difficile’s persistence within the gut are not fully characterised, 

a number of processes have been identified which are likely to contribute, including sporulation 

(1.3.2). C. difficile is one of few bacteria to produce the phenolic compound para-cresol, a result of 

tyrosine fermentation [239], which is toxic to some members of the gut microbiome- particularly 

Gram-negative bacteria [240]. As C. difficile itself is comparably tolerant to p-cresol [240-242], its 

production has been suggested to confer a competitive advantage over other gut bacteria and 

facilitate maintenance of gut dysbiosis, therefore inhibiting the recovery of microbiota-mediated 

colonisation resistance [10]. Indeed, Passmore et al. found that in a relapse mouse model of CDI, the 
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C. difficile colony forming units (CFU) in the mouse stool was significantly reduced in a mutant which 

could not produce p-cresol compared to the wild-type, suggesting production of this compound 

facilitates relapse of infection [240].  

Furthermore, like many bacterial species, C. difficile can form biofilms- compact bacterial 

communities encased in a protective polymeric matrix. These have been repeatedly identified in 

vitro and mat-like structures were identified in a hamster model of infection [189, 243-246]. Biofilms 

have been suggested as a source of C. difficile relapse by maintaining a pool of viable cells that are 

protected from environmental stressors and only released under suitable conditions. Dapa et al. 

found within these biofilms, C. difficile is less susceptible to vancomycin, one of the major antibiotic 

therapies for CDI [189].  

 Antimicrobial resistance 

 
Antibiotics remain the first line treatment for CDI, and metronidazole, vancomycin and fidaxomycin 

are all recommended in the UK (1.4.3) [75].  With the exception of fluoroquinolone resistance in 

epidemic ribotype 027 strains, antibiotic resistance against first line antibiotic treatments in C. 

difficile remains relatively low, and antimicrobial resistance (AMR) has not been identified as a cause 

of treatment failure [247]. Fidaxomycin has only relatively recently been introduced and as such 

AMR is very rare [248, 249]. Metronidazole resistance has increased in recent years but a study of 39 

sites across 29 European countries found average metronidazole resistance rates were 0.2% over 3 

years [249]. This does display geographic variation, as a study in China found metronidazole 

resistance rates of 15.6% [250]. The European study described above found vancomycin resistance 

was also low, and only found in 0.1% of isolates [249] and the mechanism of resistance was not 

investigated. 

In order to survive and proliferate within the gut environment, C. difficile also encodes resistance 

mechanisms to antimicrobial peptides, which are secreted by both host cells and the indigenous 

microbiota. C. difficile can expel AMPs from the cell via the ABC transporters CprABC and ClnRAB. 
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Additionally, interaction with AMPs is reduced by the dlt operon, which encodes for the addition of 

D-alanine esterases to teichoic acids within the cell membrane, conferring a positive charge on the 

cell [251-253].  

1.4. Prevention and treatment of C. difficile infection 

 The host response to C. difficile  

 
The host defences play a key role in preventing CDI, and can be broadly divided into three arms; the 

microbiome (1.1.1), innate immunity and adaptive immunity. Breakdown of the intestinal epithelial 

cell (IEC) lining by Toxins A and B enables influx of commensal and pathogenic bacteria into the 

lamina propria. In response to this, a pro-inflammatory cytokine and chemokine cascade is initiated, 

to recruit immune cells such as macrophages and mast cells to the site of infection, in an effort to 

restore intestinal homeostasis. Studies have demonstrated increased release of IL-23, IL-8, IL-1β and 

IFN-γ in response to CDI, which can recruit immune cells such as neutrophils and dendritic cells [254-

258]. The latter is particularly important in initiation of adaptive immunity and T-cell responses [256, 

259]. Furthermore, surface layer proteins (SLPs) and flagellin proteins of C. difficile are also 

recognised via pathogen recognition receptors, TLR4 and TLR5, respectively [260-262].  

This innate response acts to clear the invading pathogen, and is required for the initiation of the 

adaptive immune response but overwhelming inflammation can in fact exacerbate host tissue 

damage [263, 264]. Furthermore, leucocytosis, a sign of the systemic inflammatory response, is 

associated with increased severity of CDI [265]. Buonomo et al. demonstrated a reduction in CDI-

associated mortality in two different mouse models which both lacked IL-23 signalling [266]. Overall, 

it appears that the strength and type of inflammation can differentiate between a protective or 

pathogenic innate immune response. 

Although there is a T-cell component to the adaptive immune response to C. difficile, this is 

predominantly B-cell driven, especially to Toxins A and B. The toxins were believed to be 
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immunologically distinct with no cross protection between them but in one study, mice immunised 

with Toxin A only also developed anti-Toxin B antibodies [267, 268]. Understanding of the humoral 

immune response to C. difficile is largely based on comparisons between the anti-Toxin A and B 

antibody titres of healthy controls and those with CDI, under the assumption that higher antibody 

responses in healthy participants relates to protection from infection. These studies have 

demonstrated an important role for humoral immunity in protection from CDI, with a number of 

studies finding higher anti-Toxin A and anti-Toxin B antibodies in healthy control groups compared 

to those with CDI, or those who have a single infection compared to those who experience 

recurrences [89, 264, 269-271]. However, this is not a consistent phenomenon and other studies 

reported no difference in antibody response between healthy and patient groups [272, 273]. Warny 

et al. found patients on immunosuppressants mounted a weak antibody response to C. difficile but 

only suffered from mild CDI. Although not demonstrated in the study, the authors suggest a link back 

to the inflammatory response in CDI and how the suppression of the immune system dampened this 

response, limiting the host tissue damage associated with severe CDI [274].  

Regarding antibody responses to non-toxin antigens, Pechine et al. found a significantly higher 

antibody response to the surface proteins Cwp66 and Cwp84 and the flagella proteins FliC and FliD 

in a healthy control group compared to patients with CDI [273]. As a gut pathogen, a robust mucosal 

response, mediated primarily by secretory IgA, is presumably important for protection from 

infection. There is evidence for a mucosal antibody response to C. difficile but these studies are 

limited, in part due to the challenges in obtaining appropriate samples to measure this response 

[274-276]. Oberli et al. (2011) screened the PS-II surface polysaccharide against stool supernatants 

from 10 hospitalised patients with and without CDI. Anti-PS-II antibodies were detected in 6 patient 

samples, three of which had CDI or were borderline for infection [235].  
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 Healthcare Practice 

Since mandatory reporting began in in 2007/08, there has been a 77.9% reduction in cases of CDI. 

This has largely been attributed to changes in healthcare practices, which focused on reducing 

antimicrobial prescribing and improved infection control [277]. Furthermore, these were enforced 

by fining NHS Trusts for cases of CDI [278].  

A number of infection control practices were implemented including hand washing with soap, 

improved C. difficile-specific decontamination of rooms and equipment, patient isolation and 

protective clothing for healthcare workers but it appears that targeting antibiotic use has had the 

greatest effect on the reduction of hospital-acquired CDI [277, 279-281]. A study of US hospitals by 

Kazakova et al. found an over 20% reduction in the administration of fluoroquinolones and 3rd and 

4th generation cephalosporins resulted in an 8% and 13% reduction in cases of hospital-acquired CDI, 

respectively. [282]. Similar findings have been reported for the UK [280, 283]. Dingle et al. reported 

that it was fluoroquinolone restriction specifically that resulted in the decline of CDI, via the 

substantial reduction of fluoroquinolone-resistant cases that were a major problem at the time [70].  

 Antibiotics 

Antibiotics are the first line treatment for CDI. Current UK guidelines recommend metronidazole for 

mild and moderate cases of CDI, while vancomycin and fidaxomycin are reserved for severe 

infections. There is a lack of definition as to what constitutes severe infection but current markers 

include raised blood creatine levels and white cell counts, a temperature over 38.5 oC and severe 

colitis [75]. Although vancomycin is superior to metronidazole for treating severe CDI [57], both 

antibiotics are broad-spectrum, meaning their use can result in collateral damage to the gut 

microbiome, which delays the restoration of colonisation resistance [24, 284]. This has been 

suggested as a contributing factor to the high rates of relapse following antibiotic treatment (1.1.2.1) 

[285]. 
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Fidaxomycin is narrow-spectrum and recommended for treating recurrent infections or those at high 

risk of recurrence [75, 286-289]. Louie et al. compared treatment of CDI patients with vancomycin 

and fidaxomycin and found perturbation of the microbiome following treatment in the vancomycin 

group only, where recurrence of infection was also higher (23% compared to 11% for fidaxomycin 

[26]. This supports the notion that preservation of the microbiome is important in the prevention of 

recurrent infection. However, recurrence in 11% of cases is still concerningly high and similar levels 

of recurrence post-fidaxomycin treatment have been reported elsewhere, demonstrating the 

challenges in antibiotic management of CDI [287]. Fidaxomycin is also more expensive than 

vancomycin, costing £1350 for a 10-day course as opposed to £189 to £378 for vancomycin [290]. 

Interestingly, a modelling study conducted from the perspective of NHS Scotland found the total cost 

of the two treatments was actually quite similar when factoring in the reduced need for 

hospitalisation in the fidaxomycin treatment group. They determined that fidaxomycin was cost-

effective for treating severe and first recurrence CDI [290].  

 Faecal microbiota therapy 

For those experiencing recurrent CDI, faecal microbiota therapy (FMT) offers an effective alternative 

to antibiotics. Here, faecal extracts from healthy donors are administered to patients with chronic 

CDI to repopulate the gut and reinstate colonisation resistance [289, 291, 292]. van Nood et al. 

reported 81% of patients with recurrent CDI were free from infection 10 weeks following 

administration of vancomycin with bowel lavage and nasoduodenal administration of FMT, as 

opposed to 23% in the vancomycin plus bowel lavage only group [293]. Additional studies have also 

demonstrated the superiority of FMT over antibiotics alone, even fidaxomycin, for the treatment of 

recurrent CDI [294-296]. The British Society of Gastrology recommends FMT for patients with two 

recurrent episodes of C. difficile, or a single recurrent case but at risk of further recurrence [297].  

Logistically, delivery of FMT is more complex than for antibiotics. It requires careful sourcing and 

screening of faecal samples to prevent transmission of pathogenic material to the patient. Infections 
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arising from FMT have so far been rare but there have been cases of norovirus and Escherichia coli 

bacteraemia [298-300]. Isolation, screening and administration of fresh faecal matter in a timely 

manner is challenging, but this can be overcome by sample freezing, which does not influence 

treatment efficacy [301]. Finally, a number of routes of administration have been trialled, including 

using nasogastric and nasointestinal tubes or colonoscopy [294, 295]. These have all proved effective 

delivery systems but there are concerns over conducting such invasive procedures in patients who 

are already unwell. Youngster et al. and Hirsch et al. both used orally ingested capsules for delivery 

of FMT and reported clinical cure rates of 90% and 89% for CDI patients, respectively. However, in 

some cases repeat administration of the FMT capsules was required and both studies had very small 

sample sizes- maximum 20 patients [302, 303].   

 CDI therapies in development  

Following on from FMT, there has been interest in the identification of a “minimal microbiota” that 

can be given to the patient to restore colonisation resistance. Lawley et al. administered six different 

gut bacteria to mice and found restoration of a healthy microbiome and clearance of CDI [304]. As 

discussed (1.1.1), Buffie et al. administered C. scindens to mice which resolved CDI [30], but this 

approach should be pursued with caution, due to the possible link between bile salts and 

gastrointestinal cancers [30, 305]. Alternatively, there has been promising progress in the use of 

non-toxigenic C. difficile strains to prevent CDI, which have now entered clinical trials [306-308]. A 

Phase II trial administered non-toxigenic C. difficile to patients who had already completed 

metronidazole or vancomycin treatment for primary CDI. The rate of relapse in the group colonised 

with non-toxigenic C. difficile was 2% as opposed to 31% in the colonised group [307]. One possible 

drawback of this approach is the opportunity for transfer of the PaLoc locus from toxigenic strains in 

the gut, resulting in the treatment strains becoming toxigenic and therefore capable of causing 

infection [309].  
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Bezlotoxumab is a humanised monoclonal antibody raised agaisnt Toxin B [310]. Monoclonal 

antibodies can be delivered to the patient for immediate protection agaisnt CDI and doesn’t rely on 

the immune status of the host, an important note considering how many CDI patients are unwell or 

immuncompromised. Bezlotoxumab has been evaluated in Phase II and III clinical trials and has been 

licensed for use in Europe [310-313]. It is specifically targeted for the recurrence of infection. A study 

in Finland found of those receiving bezlotoxumab, 73% did not experience recurrent infection within 

the three months following treatment, and found this was as effective as using FMT for recurrent 

infections [314]. Using probiotics to protect against CDI is not currently recommended in the UK, due 

to the lack of evidence of their efficacy and need for large scale evaluations [75]. The Cochrane 

Library recently published a systematic review of the use of probiotics for prevention of CDI. Meta-

analysis of 31 randomised control trials found moderate evidence that probiotics are effective at 

preventing C. difficile-associated disease [315]. Finally, Nale et al. found bacteriophage therapy 

delays the onset of symptoms of CDI in a hamster model of infection [316].   

1.5. Vaccine Development 

Immunisation is one of the most successful public health interventions ever implemented and mass 

immunisation programmes are credited in saving approximately 2.5 million lives, annually [317]. 

Immunisation can provide long-term or even lifelong protection from infection, reduce carriage and 

transmission and in some cases even result in total eradication of the pathogen, as was the case for 

smallpox in 1980, and the animal pathogen rinderpest in 2011 

(https://www.who.int/csr/disease/smallpox/en/) [318]. The basis of vaccination involves presenting 

the immune system with all or part of the target pathogen, to enable generation of a protective 

immune response without development of infection. There are many different vaccine designs 

available, which can be grouped into live attenuated, where the whole organism is presented but 

not capable of causing fulminant infection, or inactivated which can be the whole cell or 

components of it (Table 1.1).   
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Type of vaccine Description Licensed example 

Live attenuated 
Modified version of the whole organism 
which can no longer cause full infection  

Measles, mumps and rubella 

Whole cell  
Killed whole organism so no longer 
infectious 

Influenza 

Toxoid 
Inactivated or de-toxified toxins normally 
released by the pathogen during infection 

Tetanus and diphtheria 

Recombinant 

Expression of an immunogenic antigen from 
the target pathogen in another organism 
that is safer to handle and generates high 
yields of the desired antigen  

Human papilloma virus 

Glycoconjugate 
Immunogenic polysaccharide conjugated to 
a protein carrier to enable development of 
immunological memory  

Haemophilus influenza Type 
B and meningitis C 

Table 1.1. Different types of vaccination used for human infections. The information in this table 
was obtained from “The Green Book”, the UK guide on immunisation, printed by the Government 
and updated annually (https://www.gov.uk/government/collections/immunisation-against-
infectious-disease-the-green-book#the-green-book).  

 Glycoconjugate vaccines- use and production 

Bacterial cell surfaces are decorated with a host of glycans, many of which are immunogenic and 

therefore attractive vaccine candidates. However, polysaccharides alone induce a T-cell independent 

response, which does not result in immunological memory and is particularly weak in young 

children, the elderly and the immunocompromised [319-322].   

This can be overcome by covalent attachment of the polysaccharide to a carrier protein [323]. The 

resulting glycoprotein can be processed by antigen presenting cells and presented within the major 

histocompatibility complex II, enabling T-cell recognition. This induces a robust T-cell mediated 

response, including antibody isotope switching and the generation of immune memory [324-326]. 

The carrier proteins used to present the glycans are typically well-characterised immunogenic 

proteins, such as the inactivated diphtheria or tetanus toxin [327]. A more recent approach uses an 

immunogenic carrier protein from the same species as the glycan, to boost the organism-specific 

immune response, or from a different species, to produce a multipathogen vaccine [238, 328-330].  
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The development of glycoconjugate vaccines have been an invaluable contribution to the 

immunisation field and has resulted in the licensing and wide-spread use of vaccines against 

Haemophilus influenza Type b and meningitis C, among others [331]. These vaccines are synthesised 

using chemical conjugation, whereby the individual protein and glycan components are produced 

and isolated separately before being covalently joined (Figure 1.4) [332]. Both before and after 

conjugation, all components are subject to a series of purification steps, to remove any 

contaminating material. This technique is vital for the production of the currently available 

glycoconjugate vaccines but does carry certain limitations. These include cost and yield loss resulting 

from the multiple rounds of purification, batch to batch variation and working with pathogenic 

bacteria to isolate immunogenic material [332, 333]. As a result of this, alternative means of 

synthesising these vaccines is of great interest, particularly bioconjugation, whereby bacterias’ 

innate ability to synthesis and conjugate complex glycans is re-appropriated for vaccine synthesis.  

 

Figure 1.4. Chemical conjugation of glycoconjugate vaccines. The glycan and protein components of 
the vaccine are first produced separately, either recombinantly or in the native host. These are then 
isolated, purified to remove contaminating material then conjugated together before a final round 
of purification. Image from Kay et al. [332] (no changes were made to the original image 
(http://creativecommons.org/licenses/by/4.0/)). 

 

 Bacterial Glycosylation  

Bacterial glycosylation is a relatively recent discovery, with glycoproteins originally believed to be 

restricted to higher organisms. Investigations into prokaryotes has identified glycosylation 
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machinery and glycoproteins in a diverse range of bacterial species, and this is a continuing area of 

research [334, 335]. Glycoproteins can serve a multitude of functions for the cell, including 

conferring motility, colonisation of the host and immune evasion [184, 187, 336-339]. Glycans have 

been identified on the FliC protein of the flagella and S-layer proteins in C. difficile, but this is not 

universal to all strains (1.3.3.1, 1.3.4.2) [184, 185, 187, 230]. 

Glycosylation is one of the most predominant post-translational modifications of bacterial proteins, 

and bacteria employ a number of mechanisms to achieve this. Firstly, glycoproteins can be N-linked 

or O-linked, primarily characterised by the attachment of the glycan to an asparagine or 

serine/threonine residue within the acceptor protein, respectively. Furthermore, glycan synthesis 

can either be en bloc, where the whole polysaccharide is fully synthesised on a lipid linker within the 

inner membrane, prior to conjugation, or can be built via the addition of monosaccharides directly 

onto the carrier protein, sequentially [335, 340-344].  

The glycosyltransferase class of enzymes are central to these processes, and catalyse both the 

assembly of the glycan and its transfer to the target protein. In relation to glycan synthesis, the 

individual specificity of the glycosyltransferase dictates which monosaccharides are incorporated 

into the glycan and the glycosidic linkages by which they are joined [345, 346]. 

Oligosaccharyltransferases (OSTs) are a type of glycosyltransferase which mediate attachment of the 

glycan to the acceptor protein. These also hold their own specificities including the type of glycan 

they can transfer and the glycosylation sequence they recognise in the acceptor protein [347-351].  

Examples of two distinct glycosylation systems can be found in Campylobacter jejuni. O-linked 

glycans are often associated with flagella and are an important component of flagella assembly and 

function [336, 352, 353]. Indeed, the FlaA flagellin subunit from C. jejuni is O-glycosylated and the 

glycan is assembled sequentially, directly onto serine and threonine residues within FlaA before it is 

trafficked to the surface of the cell [335, 354-356] (Figure 1.5b). The mechanism of glycosylation for 
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the flagella has not yet been characterised in C. difficile but is proposed to follow a similar method to 

the one described here.  

The N-linked glycosylation pathway in C. jejuni was the first example of a bacterial N-linked 

glycosylation system [357, 358] (Figure 1.5a). Synthesis of the C. jejuni heptasaccharide utilises the 

en bloc mechanism of glycan assembly, whereby the sugar is built onto the undecaprenol 

pyrophosphate (UndPP) lipid linker on the cytoplasmic face of the inner membrane, to produce lipid-

linked oligosaccharide (LLO). This LLO can then be trafficked to the periplasm by the flippase 

enzyme, PglK. Once in the periplasm, the CjPglB OST transfers the glycan onto the asparagine 

residue within the target acceptor protein [335, 342, 359-361]. CjPglB recognises a specific sequon 

within the acceptor protein that includes the target asparagine residue, D-X-N-Y-S/T, where X and Y 

can be any amino acid except proline [348]. N-linked glycosylation systems harbouring enzymes 

orthologous to PglB have now been identified in a number of bacteria, including Helicobacter, 

Sulfurovum and Deffibacter [362, 363]. A similar system has not been identified in C. difficile 

although there are genes within the anionic polymer locus for synthesis of the surface 

polysaccharides that have putative functions similar to those within this system, including a putative 

flippase [218].  
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Figure 1.5. Campylobacter jejuni N-linked and O-linked glycosylation pathways. (A) The N-linked 

glycosylation locus from C. jejuni. Here, the glycan is assembled onto the undecaprenol 

pyrophosphate (UndPP) lipid linker at the cytoplasmic face of the inner membrane. The UndPP-

bound glycan is then transferred to the periplasm by the flippase PglK, before it is picked up by the 

oligosaccharyltransferase PglB and conjugated to a specific asparagine residue within the acceptor 

protein. (B) The O-linked glycosylation system from C. jejuni involves sequential addition of the 

individual monosaccharides onto the FlaA subunits of the flagella, before it is trafficked out of the 

cell. Image from Nothaft and Szymanski [335]. Reprinted by permission from Copyright Clearance 

Centre: Springer Nature, Nature Reviews Microbiology, Protein glycosylation in bacteria: sweeter 

than ever, Nothaft H and Szymanski CM, 2010. 

 Bioconjugation  

Bioconjugation harnesses the naturally occurring bacterial glycosylation pathways described above 

and repurposes them for glycoconjugate vaccine synthesis. The idea behind this is to build a 

“bacterial vaccine factory” which can overcome some of the shortfalls of chemical conjugation 

already discussed (1.5.1). Bioconjugation is often conducted in E. coli as the host organism, which 

offers a number of advantages over working with the target pathogen include, safety and ease of 

culture and the number of existing tools available for genetic manipulation.  

The development of bioconjugation and in particular the use of CjPglB is a result of a series of 

pioneering studies conducted in the mid-2000s. In 2002, Wacker et al. reconstituted the entire C. 

jejuni pgl locus in E. coli and demonstrated glycosylation of the acceptor protein AcrA [341] which 

was followed by further in depth characterisation of the biosynthesis locus [342]. Feldman et al. 

demonstrated CjPglB mediated transfer of O-antigens from E. coli and Pseudomonas aeruginosa, 
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which are distinct from its native heptasaccharide substrate. This demonstrated the promiscuity of 

CjPglB, a fundamental component of biocojugation. Further studies then defined the requirements 

of CjPglB, including an accessible D-X-N-Y-S/T recognition sequon within the acceptor, which 

contains the asparagine residue to be glycosylated and the need for an acetoamide group at the 

reducing end of the glycan substrates [347, 348, 364].  

Based on this understanding, it has become possible to build a diverse range of glycoconjugates 

which in its simplest form, can be achieved with plasmid mediated expression of three components; 

the carrier protein, the glycan synthesis locus and the OST, which conjugates the two together. How 

this work in practice when co-expressed in the same host is depicted in Figure 1.6. The glycan is 

synthesised onto the undecaprenol pyrophosphate lipid linker within the inner membrane then 

transferred into the periplasm by a dedicated flippase enzyme. CjPglB can then recognise the lipid-

linked glycan and transfer it to the provided acceptor protein, which harbours the recognised 

glycosylation sequon. This results in a synthesised glycoconjugate which can be purified from the cell 

[332, 333, 365].   

 

 

 

 

 

 

Figure 1.6. Production of glycoconjugates using C. jejuni PglB-mediated bioconjugation. The glycan 
biosynthesis locus is expressed in the host cell to enable its synthesis on the undecaprenol lipid 
linker within the inner membrane. This is then transferred into the periplasm by a specific flippase 
enzyme. Once in the periplasm it can be recognised by the oligosaccharyltransferase PglB from C. 
jejuni which transfers the glycan from the lipid linker onto an asparagine residue in the D-X-N-Y-S/T 
glycosylation sequence, within the carrier protein. GP, glycoprotein, IM, inner membrane, OM, outer 
membrane. Image from Cuccui et al. [365]. 
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Obviously within this, the requirements of CjPglB have to be adhered to, including the D-X-N-S/T 

recognition sequon and presentation of the polysaccharide on a lipid linked donor. Regarding the 

acceptor protein, some may contain natural glycosylation sites, such as C. jejuni AcrA, but others 

have to be modified first, either through mutagenesis to introduce internal glycosylation sites or 

through the addition of a series of glycosylation sequons at the N- and/or C-terminus of the protein, 

known as a glycotags [366]. Furthermore, as a lipid-linked glycan is required, the glycosylation locus 

transferred into the host cell, must encode the requisite components to assemble this, including 

glycosyltransferases to build the glycan onto UndPP and a flippase to transfer it to the periplasm.  

There are now multiple examples of CjPglB-based glycoconjugate synthesis, including for Francisella 

tularensis, Streptococcus pneumoniae, Burkholderia pseudomallei, and Staphylococcus aureus [365, 

367-369]. Importantly, this has also evolved from academic research into real world applications, 

with bioconjugation-synthesised vaccines against S. pneumoniae (NCT03303976), extra-intestinal E. 

coli, Shigella flexnerii and Shigella dysentariae now in Phase I clinical trials [370-372].  

1.6. Vaccine development in C. difficile 

All current C. difficile management approaches are unified by their requirement for further 

interaction with the gut microbiota and lack of long-term protection. The ideal model of CDI 

prevention would circumvent these issues and may be achievable through immunisation. This would 

not necessarily be a vaccine administered universally, but instead would target those harbouring risk 

factors that increase their susceptibility to infection, similar to the method already applied for the flu 

and pneumonia vaccines [373-375]. People with increased risk for acquiring CDI include the elderly, 

those on certain antibiotics and people in, or with planned stays in hospital [376, 377]. Additionally, 

this could be used in those who have already suffered from an episode of CDI to prevent recurrence 

of infection [378]. Increased interest in a C. difficile vaccine has also emerged from the AMR field, 

where vaccination has been targeted as a means of reducing AMR. This currently focuses on those 

pathogens where AMR is considered the greatest burden, which includes C. difficile [317].  
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 Analysis of the humoral immune response  

Identification and analysis of antigenic proteins, for example during vaccine candidate discovery, can 

be laborious but is necessary before assessment in animal models of infection. Enzyme-linked 

immunosorbent assays enable measurement of the humoral immune response to antigens of 

interest by binding the protein to the bottom of a 96-well plate then exposing it to the test sample 

which is detected with a labelled secondary antibody. Although widely applied and very useful, 

ELISAs are laborious and therefore unsuitable for mass screening for multiple antigens and samples. 

In recent years the same principle has been scaled up to a protein array format, whereby proteins of 

interest are bound to a glass slide then probed with the same antibody-containing patient sample 

simultaneously [379, 380]. This platform enables whole proteome screening of organisms of 

interest, with patient samples (usually sera or plasma), offering a rapid means of profiling the 

humoral immune response to these proteins and from there identifying potential vaccine or 

diagnostic candidates. Furthermore, combining these arrays with a cell free transcription translation 

system can enable rapid and high-throughput antigen production, which would otherwise be a rate 

limiting step [380-383]. These arrays have now been used for a multitude of infectious diseases, 

including but not limited to; N. meningitidis, Burkholderia pseudomallei, Brucella melitensis, human 

papilloma virus and Salmonella Typhi [384-389]. 

 Infection models for C. difficile 

Animal models have enabled study of C. difficile in the host, including identification of the factors 

involved in colonisation and pathogenesis and as a means of evaluating novel antimicrobials or 

vaccine candidates prior to human trials.  

Hamster models have been in use since the 1970s and are a favourable infection model as the 

course of CDI within them shares similarity with that seen in humans, including the development of 

diarrhoea, intestinal injury, pseudomembranous colitis and death [390]. They have enabled 

elucidation of a variety of aspects of CDI, including the effects of different strains on the host, 
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treatment of CDI and the role of the toxins in disease, although this remains controversial (1.3.1) [8, 

10, 173, 210, 391, 392]. Prior to inoculation with C. difficile spores, clindamycin is administered to 

induce gut dysbiosis and provide an environment suitable for C. difficile outgrowth and the 

development of CDI. The same process is less effective in mice, believed to be a result of a more 

robust gut microbiota. To overcome this, Chen et al. used an antibiotic cocktail that induces 

sufficient gut dysbiosis that following treatment with clindamycin, mice developed CDI [393]. As 

mouse models are less sensitive to C. difficile, it is possible to use them to study other aspects of 

infection, such as colonisation and relapse [240, 394-396]. Furthermore, these models can enable in 

vivo assessment of vaccine candidates, including analysis of antibody functionality towards a specific 

target, such as neutralising activity. 

 Current vaccine development for C. difficile  

Using immunisation to manage CDI has been of interest since the late 1980s, when investigations 

into the protective effects of Toxins A and B first began [397]. Since then, there has been substantial 

research in both animal models and humans, dedicated to characterising the immunogenicity of 

these antigens and into their use within a C. difficile vaccine, using whole inactivated toxins or 

specific immunogenic domains (1.3.1) [267, 276, 398-406]. Leuzzi et al. demonstrated immunisation 

with both toxins was required to provide optimal protection from infection [267]. Both anti-C. 

difficile vaccines in active clinical trials are based on the use of both Toxins A and B. 

In 2017, the C. difficile vaccine development field suffered a major setback when Sanofi Pasteur’s 

Phase III clinical trial of Cdiffense, based on formalin inactivated Toxins A and B, was terminated 

prematurely (NCT01887912) [407]. This was due to interim results indicating it was unlikely the trial 

would meet its primary objective of preventing primary CDI. Consequently, Sanofi Pasteur have now 

halted their C. difficile vaccine development programme (https://www.sanofi.com/en/media-

room/press-releases/2017/2017-12-01-22-00-00). Pfizer are currently undertaking Phase III testing 

of their detoxified Toxins A and B vaccine, but as mutation of the glucosyltransferase domains did 
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not sufficiently reduce toxicity, these are also chemically detoxified (NCT03090191). Previous Phase 

II trials of this vaccine found it was safe and immunogenic within their target population of 65-85 

year olds (NCT02561195) [408, 409]. A chimeric vaccine consisting of a single fusion protein 

combining the binding domains of Toxins A and B is being developed by Valneva and has completed 

a Phase II trial (NCT02316470) which demonstrated this vaccine was safe and immunogenic [410]. 

However, concerns have been raised over how removal of other immunogenic domains of the toxin 

would influence the overall immune response [375].  

There has also been interest in alternative mechanisms of toxin delivery, including the use of DNA 

vaccines and expression of Toxins A and B from Vibrio cholera, Salmonella typhimurium and 

Lactococcus lactis [411-415]. Permpoonpattana et al. demonstrated the production of specific serum 

IgG and faecal IgA antibodies to the C-terminal repeats of Toxin A, when presented on the surface of 

Bacillus subtilis spores and orally administered to mice. Furthermore, 6/8 hamsters orally immunised 

with these recombinant spores survived challenge with C. difficile strain 630 [268]. One drawback of 

this approach is the risk of these spores germinating within the gut, leading to release of genetically 

modified organisms. This offers a novel delivery system with the opportunity of induction of both 

the systemic and mucosal antibody responses and is being prepared for Phase I clinical trials. Only 

one study has investigated the binary toxin as a potential vaccine candidate. Secore et al. (2017), 

found that administering the binary toxin with Toxins A and B increased survival in immunised 

hamsters when challenged with a NAP1 strain of C. difficile, when compared to use of Toxins A and B 

alone [416].   

Despite significant effort into the production and testing of toxin-based immunisation, there remains 

no commercially available C. difficile vaccine, and termination of the Cdiffense trial so late in 

development highlights the challenges faced. Additionally, a frequently raised concern over the toxin 

approach is the lack of protection from colonisation, meaning shedding and transmission of infection 

can continue [267, 403]. Understandably, there are now increased calls for use of a combination of 
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antigens that can protect against symptomatic infection, colonisation and possibly even against 

spores.  

Investigations into antigens that could offer this has been almost exclusively restricted to pre-clinical 

development, using antigens from a variety of sources, including spores and the cell surface (Table 

1.2). Immunisation of mice with S-layer protein resulted in a reduced faecal bacterial count  [417] 

and serum antibodies were raised in hamsters sub-cutaneously immunised with the cell wall protein 

Cwp84 [395]. All three surface polymers have been investigated and found to induce a PS-specific 

antibody response in a mouse model of infection, when chemically conjugated to CRM197, a non-

toxic version of the diptheria toxin and a widely employed carrier protein within glycoconjugate 

vaccines [235, 418-420]. Interestingly, PS-II conjugated to the Toxin B glucosyltransferase domain 

induced a PS-specific antibody response while also retaining immunogenicity of the toxin [238]. This 

is promising for the combination of toxin and non-toxin antigens in future vaccine formulations. Only 

PS-III-CRM197 has been evaluated in challenge experiments, where colonisation was significantly 

reduced in immunised mice compared to controls [420]. Matrivax are currently testing a combined 

toxin and PS-II vaccine in Phase I clinical trials (https://www.matrivax.com/c-difficile-vaccine).  

Two of the most promising antigens emerging from pre-clinical development are the C. difficile 

exosporium proteins, CdeC and CdeM. These conferred protection in mouse and hamster models of 

infection (higher dose in the hamster model) and were delivered via the intra-peritoneal route with 

an aluminium adjuvant. 10/10 mice and 10/10 hamsters survived challenge with C. difficile following 

immunisation with CdeC, compared to 9/10 of mice and 8/10 hamsters immunised with CdeM [421].  

It is notable that the functionality of the antibodies detected to the cell surface antigens above was 

not assessed and therefore their role in an opsonophagocytic or neutralisation response is unknown. 

The above immunisation was delivered parentally. Although C. difficile is a gut pathogen and 

therefore the gut immune response is very important, the studies described above demonstrating 

protection from CDI using toxin fragments was achieved using parental administration. Furthermore, 
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attempts to provide protection and generate antibody responses using oral vaccination of non-toxin 

antigens have had limited success [422-424]. 50% of hamsters survived challenge with C. difficile 

spores following oral immunisation with pectin beads loaded with FliC, compared to 17% of 

hamsters which were immunised with beads only. However, these hamsters did not demonstrate 

increased serum anti-FliC antibody responses and no FliC specific antibodies could be detected in 

their faeces [422]. 
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 Target Formulation  
Model, dosage, 

antibiotic for 
dysbiosis 

Route 
Measure of 

immunogencitiy 
Outcome Ref. 

Surface 
poly-

saccharides 

PS-I PS-I-CRM197 + FA Mouse (C57BL/6), 3 N/S Antibody titre Anti-PS-I serum IgG response [419] 

PS-I and PS-
II 

PS-I and PS-II free 
polysaccharide 

Pregnant sow, 2 IM Antibody titre Anti-PS-I and anti-PS-II IgM response [234] 

PS-II 

PS-II-CRM197  Mouse (C57BL/6), 3 SC  Antibody titre Serum anti-PS-II IgG response  [235] 

PS-II-CRM197 + 
MF59  

Mouse (BALB/c), N/S N/S Antibody titre Serum anti-PSII IgG response.   [236] 

PS-II chemically 
conjugated to 
binding domain of 
Tox A or 
glucosyltransferas
e domain of Tox 
B, both + MF59 

Mouse (BALB/c), 3 IP Antibody titre 

Serum PS-II-Tox B IgG response comparable to 
using PS-II-CRM197 (lower for PS-II-Tox A). 
Antibody response lower in PS-II-Tox A 
glycoconjugate compared to Tox A alone. Toxin 
neutralising antibodies detected for both.  

[238] 

PS-III 
LTA of PS-III-ExoA 
or HSA, Rabbit FA, 
mouse SA 

Mouse (BALB/c) and 
rabbit, 3 

Mouse- 
IP 

Rabbit- 
SC 

Antibody titre Serum anti-PS-III IgG response [237] 

PS-III 
Portion of PS-III-
CRM197  alone or + 

FA or Alum  

Mouse (C57BL/6), 3, 
clindamycin 

SC 
Antibody titre and 
CFU for C. difficile 

colonisation 

Serum anti-PS-III IgG response and significant 
reduction in C. difficile colonisation upon 
challenge.  

[420] 

Cell surface 

 
 

FliC 
 

 

Recombinant FliC 
in pectin beads or 

alone 

Hamster, 3, 
clindamycin 

O, IP, IR 
Antibody titre, 

faecal cell count, 
survival 

50% hamsters survived when orally immunised 
with FliC loaded pectin beads as opposed to 17% 
with beads only. Using FliC only, 0%, 17% and 
33% survived challenge when immunised by the 
O, IR and IP route, respectively. No surviving 
hamster had detectable C. difficile in faeces but 
only the increased serum anti-FliC response was 
for IP-administered FliC only.  

[422] 
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 Target Formulation 
Model, dosage, 

antibiotic for gut 
dysbiosis 

Route 
Measure of 

immunogencitiy 
Outcome Ref. 

Cell 
Surface 

FliC 

Recombinant FliC 
alone or with 
recombinant 
receptor binding 
domains of Tox A 
and B. All + Alum 

Hamster, 3, 
clindamycin  Mouse 

(C57BL/6), 3, 
antibiotic cocktail* + 

clindamycin 

IP 
Antibody titre, 

stool spore count 
and survival 

Serum anti-FliC antibodies. Increased anti-Tox A 
antibodies when administered with FliC. All mice 
immunised with FliC +/- Tox A and B survived 
challenge and had significantly lower stool spore 
count compared to controls. 5/14 hamsters 
immunised with low dose FliC died following 
challenge, 8/14 died in high dose.   

[425] 

FliD 
 

Recombinant FliD 
adsorbed to 
Bacillus subtilis 
spores alone or 
also expressing 
CotB- human IL-2  

Mouse (BALB/c), oral 
9 and IN 8 

O and IN Antibody titre 

No anti-FliD antibodies detected following O 
immunisation. IN immunised mice had 
significantly higher serum anti-FliD IgG compared 
to controls but no difference in IgA in 
gastrointestinal tract. Serum IgG highest in spore 
expressing FliD  and CotB-IL-2.  

[424] 

Recombinant FliD 
and flagella 
preparation + CT 

Mouse (C3H), 3, 
amoxicillin + 

clavulanic acid  
IR 

CFU for C. difficile 
colonisation 

6 days post-challenge: colonisation higher in the 
immunised compared to controls, by day 30 
colonisation in the immunised group was 
significantly lower than controls  

[426] 

FliD + 
Cwp84 

Recombinant FliD 
and recombinant 
Cwp84 +CT 

Mouse (C3H), 3, 
amoxicillin + 

clavulanic acid  
IR 

CFU for C. difficile 
colonisation 

6 days post-challenge: colonisation higher in the 
immunised group compared to the control group. 
By day 30 colonisation in the immunised group 
was significantly lower than controls. 

[426] 

Cwp84 
Recombinant 
Cwp84 + FA (SC) 
or CT (R) 

Hamster, 3, 
clindamycin 

SC, IR, IG 
Antibody titres and 
CFU for C. difficile 

colonisation 

Serum antibodies to Cwp84 highest via SC route, 
no significant difference in antibody response 
when immunised by R or IG route compared to 
pre-immunisation.  

[395] 

GroEL 
Recombinant 
GroEL + CT 

Hamster, 3, 
clindamycin Mouse 
(C3H), 4, cefoxitin 

Hamster- 
IR, 

Mouse- 
IN 

Antibody titres, 
colonisation in 

mouse, survival in 
hamster 

No difference in survival between control and 
immunised for hamster. Colonisation significantly 
reduced in immunised mice 10 days post-
challenge, also had significantly higher serum 
anti-GroEL antibody response  

[396] 



57 
 

 Target Formulation 
Model, dosage, 

antibiotic for gut 
dysbiosis 

Route 
Measure of 

immunogencitiy 
Outcome Ref. 

Cell 
Surface 

SLP 
 

Recombinant 
SlpA + CT or 
recombinant C. 
difficile FliC 

Mouse (C57BL/6), 3, 
antibiotic cocktail 

IR 
Faecal bacterial 

count 

Faecal bacterial count significantly reduced 10 
days post-challenge for immunised compared to 
controls, no difference between adjuvants  

[417] 

Purified SLP 
containing 
equimolar 
amounts of LMW 
and HMW 
proteins + Alum, 
Ribi or CT  

Hamster,3, 
clindamycin 

Mouse (BALB/c), 3 
IP or IN 

Antibody titres, 
intestinal damage 

and survival 

Mice: immunised via IP with SLP+CT or Ribi 
developed serum anti-SLP IgG, more modest 
response for serum IgA. Mucosal IgA no different 
from controls. Hamsters: immunised via IP route 
with SLP+Alum, developed serum anti-SLP IgG 
but all died on challenge. Immunised via IP with 
SLP+Ribi- 2/5 survived challenge or SLP+Ribi+CT- 
2/3 survived- all had erosion of epithelium. 

[427] 

Cell wall 
extract 

Cell wall extract 
presumed to 
include Cwp66 
and S-layer 
protein + CT   

Mouse (C3H) IR 
CFU for C. difficile 

colonisation 

6 days post-challenge: colonisation higher in the 
immunised group compared to the control group. 
By day 30 colonisation in the immunised group 
was significantly lower than controls. 

[426] 

Membrane 
fraction 

Membrane 
fraction from a  
strain of non-
toxigenic C. 
difficile  

Mouse (C3H), 3, 
cefoxitin  Hamster, 3, 

clindamycin 

Mouse- 
O, IR, IN 
and SC 

Hamster- 
IR 

Antibody titres and 
colonisation by CFU 

count in mice, 
survival for 
hamsters 

Anti-membrane fraction IgG antibodies detected 
in sera for all routes of immunisation except O, 
with highest via SC. Overall lower intestinal IgA 
response, highest via IR. Hamster survival 7 days 
post challenge was 2/40 for controls and 14/40 
for IR immunised.   

[423] 

Spores 

CdeC, 
CdeM, 

BcIAI, SleC, 
CotA 

Recombinant 
CdeC, CdeM, 
BcIAI, SleC, CotA, 
all + Alum 

Mouse (C57BL/6), 3, 
antibiotic cocktail 

Hamster, 3, 
clindamycin 

IP 
Antibody titres, 
colonisation and 

survival 

Serum IgG response for all proteins. Best 
protection 15 days post-challenge for CdeC 
(100% survival) and CdeM (90% survival).  

[421] 

Table 1.2. Pre-clinical development of non-toxin antigens for inclusion within a C. difficile vaccine. LTA, lipoteichoic acid, CFU, colony forming units, SLP, surface layer 
protein, HMW and LMW are the high and low molecular weight products of the cleaved S-layer protein, SlpA. Carrier proteins; CRM197, detoxified diphtheria toxin, regions 
of C. difficile toxins A and B and HSA, human serum albumin. Adjuvants; MF59, squalene-based, CT, non-toxic derivative of the cholera toxin, Alum, aluminium hydroxide, 
SA, Sigma adjuvant, FA, Freund’s adjuvant and Ribi, oil in water emulsion of bacterial cell wall components. Route of administration; IP, intraperitoneal, IR, intrarectal, SC, 
subcutaneous, O, oral, IG, intragastric, IM intramuscular, N/S not stated. *Antibiotic cocktail consists of kanamycin, gentamycin, colistin, metronidazole and vancomycin. 
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1.7. Aims 

This research aimed to use the output of a novel pan-proteome array to identify reactive C. difficile 

antigens in both C. difficile patients and healthy age-matched controls. The results of this array were 

used to identify novel immunogenic vaccine candidates and characterise these to determine their 

function within C. difficile. Additionally, this study aimed to develop novel bioconjugation technology 

to produce a C. difficile-specific glycoconjugate, as proof of principle for C. difficile vaccine synthesis 

using this system. 

1. Identify potential C. difficile vaccine candidates using data from a high throughput pan-proteome 

array.   

• Analyse data resulting from a high-throughput C. difficile pan-proteome array designed to 

detect antibody response to C. difficile proteins with samples from infected patients 

compared to matched controls. 

• Identify potential vaccine candidates, with a higher response in healthy controls compared 

to CDI cases.   

2. Characterise novel vaccine candidates for C. difficile in vitro and validate their immunogenicity. 

• Make clean gene inactivation mutants in these strains using allele exchange mutagenesis 

and characterise the phenotype of these mutants in vitro based on their putative function.  

• Clone, express and purify these vaccine candidates for validation of their immunogenicity 

with patient samples using indirect ELISA assays. 

3. Design and construct a protein carrier for bioconjugation with the C. difficile flagella glycan.  

• Design a carrier protein suitable for bioconjugation and optimise in vitro glycosylation of the 

carrier protein using the oligosaccharyltransferase PglB and the heptasaccharide from C. 

jejuni.    
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 4. Employ bioconjugation to synthesise the flagella glycan from the hypervirulent C. difficile strain 

R20291 on a suitable acceptor protein. 

• Design, test and optimise an E. coli system to facilitate the production of the C. difficile 

flagella glycan and its conjugation onto a carrier protein.  

• Use a potential vaccine candidate identified on the pan-protein array as an acceptor protein 

for bioconjugation with the flagella glycan. 
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2. Materials and Methods 

2.1. Materials 

All oligonucleotides were ordered from Integrated DNA Technologies (IDT) and enzymes from New 

England Biolabs (NEB), unless otherwise stated (Appendix A). Plasmid construction is detailed in 

Appendix B.  

2.2. Growth conditions 

Strains used in this work are listed in Table 2.1. All strains were stored in 20% glycerol (Sigma 

Aldrich) at -80oC. 

 C. difficile growth 

Clostridium difficile strains were routinely cultured on brain heart infusion supplemented (BHIS) 

agar; brain heart infusion (BHI) agar (Oxoid) supplemented with 0.5% w/v yeast (Sigma Aldrich or 

Bacto) and 0.1% w/v L- cysteine (Sigma Aldrich), or in liquid cultures of BHIS broth; BHI broth 

supplemented with 0.5% w/v yeast and 0.1% w/v L- cysteine. All work with live C. difficile was 

performed at 37oC in an anaerobic atmosphere (10% CO2, 10% H2, 80% N2) in a Whitley MG500 

workstation and liquid cultures incubated shaking at 65 rpm. When required, the following was 

added; 0.1% w/v sodium taurocholate (Sigma Aldrich) for germination of C. difficile spores, 250 

µg/ml D-cycloserine and 8 µg/ml cefoxitin (ThermoFisher Scientific) for selection of C. difficile and 15 

µg/ml thiamphenicol (Sigma Aldrich) for selection of C. difficile harbouring plasmids with a 

thiamphenicol resistance cassette. With the exception of BHIS agar used to reactivate strains from 

glycerol, all media and reagents were pre-equilibrated for a minimum of 4 hours in the anaerobic 

workstation before use. 

 

 

 



61 
 

Strain Details Source 

Clostridium difficile  

630Δerm  
Erythromycin sensitive derivative of PCR-
ribotype 012 isolated in Zurich, Switzerland in 
1982 

[111, 428] 

630Δerm_1910::CT 
630Δerm with ClosTron insertion with CD1910, 
encoding EutV of the ethanolamine utilisation 
locus 

Alexandra Faulds-Pain 

630Δerm_1911::CT 
630Δerm with ClosTron insertion with CD1911, 
encoding EutW of the ethanolamine utilisation 
locus 

Alexandra Faulds-Pain  

R20291 
Fully sequenced PCR-ribotype 027 hypervirulent 
strain isolated from the Stoke Mandeville 
hospital epidemic 

[113] 

R20291Δ0330 
CDR20291_0330 gene deletion mutant in 
R20291, a putative cobalt binding protein 

This study 

R20291Δ3343 
CDR20291_3343 gene deletion mutant in 
R20291, a putative pilin protein 

This study 

R20291Δ0342 
CDR20291_0342 gene deletion mutant in 
R20291, a putative lipid transporter 

This study 

R20291_fliC::CT R20291 with ClosTron insertion within fliC  [187] 

R20291_fliC::CTΔ3343 
R20291 with ClosTron insertion within fliC and 
clean deletion of CDR20291_3343 

This study 

E. coli 

Top10 

Commercially available strain, electro-
competent. F− mcrA Δ(mrr-hsdRMS-mcrBC) 
φ80lacZΔM15 ΔlacX74 nupG recA1 
araD139Δ(ara-leu)7697 galE15 galK16 rpsL(Strr) 
endA1 λ 

Invitrogen 

DH5α 
Commercially available strain, chemically 
competent. 

NEB 

DH10β 
Commercially available strain, chemically 
competent. 

NEB 

BL21 (DE3) 
Protein expression strain: F-ompT hsdSB(rB - mB 
- ) gal dcm(DE3) 

Invitrogen 

CA434 

Kanamycin resistant conjugation donor strain. E. 
coli HB101 [F− mcrB mrr hsdS20(rB− mB−) 
recA13 leuB6 ara-14 proA2 lacY1galK2 xyl-5 mtl-
1 rpsL20(Smr) glnV44 λ−] containing plasmid 
R702 

[429] 

CLM24 
E. coli K12 strain W3110 with inactivated ligase 
(waaL)  

[430] 

CLM24pglB  
CLM24 with pglB integrated into cedA on the 
chromosome 

Jon Cuccui 

O13 
E. coli isolate harbouring the O13 antigen, from 
Public Health England Culture collection 

Public Health England 
Culture Collection 

Table 2.1 List of strains used in this study.  
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 C. difficile minimal media  

The C. difficile minimal media  recipe used was based on that described by Karasawa et al. [32] and 

simplified by Cartman et al. [431] (Table 2.2). tThis was used for motility assays performed in 

minimal media agar. Growth kinetics in ethanolamine minimal media were performed as described 

by Nawrocki et al. [36] (Table 2.3) which uses a reduced concentration of cas-amino acids and 

glucose compared to the Cartman recipe. Finally, the valine utilisation experiments were performed 

according to Cartman et al., [431] but cas-amino acids were replaced with individual amino acids as 

described in the Karasawa method (Table 2.4) [32]. All components were dissolved in d.H2O before 

sterilising with 0.22 µM syringe filter units (Merck Millipore). Iron sulphate (FeSO4) solution was 

prepared anaerobically and added to pre-equilibrated liquid media. For solid minimal media, agar 

was added to the required percentage and FeSO4 added prior to pre-equilibrating due to the 

difficulties in preparing plates in the anaerobic work station.  
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Component 
Stock Concentration 

(mg/ml) 
Final Concentration 

(mg/ml) 

Amino acids  

Cas-amino acids  50  10  

L-tryptophan 2.5  0.5  

L- cysteine  2.5  0.5  

Salts 

Na2HPO4 50 5 

NaHCO3 50 5 

KH2PO4 9 0.9 

NaCl 9 0.9 

Trace Salts 

(NH4)2SO4 2 0.04 

CaCl2·2H2O 1.3 0.026 

MgCl2·6H2O 1 0.02 

MnCl2·4H2O 0.5 0.01 

CoCl2·6H2O 0.05 0.001 

Glucose 200 10 

FeSO4·7H2O 0.4 0.004 

Vitamins 

D-biotin 0.1 0.001 

Calcium-D-pantothenate 0.1 0.001 

Pyridoxine 0.1 0.001 

 

Table 2.2. Minimal media recipe. Based on Cartman et al. [431] 
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Stock Concentration 

(mg/ml) 
Final Concentration 

(mg/ml) 

Amino acids  

Casamino acids  12.5 1.25 

L-tryptophan 0.625 0.0625 

L- cysteine  0.625 0.0625 

Salts 

Na2HPO4 50 5 

NaHCO3 50 5 

KH2PO4 9 0.9 

NaCl 9 0.9 

Trace Salts 

(NH4)2SO4 2 0.04 

CaCl2·2H2O 1.3 0.026 

MgCl2·6H2O 1 0.02 

MnCl2·4H2O 0.5 0.01 

CoCl2·6H2O 0.05 0.001 

Glucose 9 0.9 

Ethanolamine 14.6 1.46 

FeSO4·7H2O 0.4 0.004 

Vitamins 

D-biotin 0.1 0.001 

Calcium-D-pantothenate 0.1 0.001 

Pyridoxine 0.1 0.001 

Table 2.3. Minimal media recipe for ethanolamine utilisation. Based on recipe by Nawrocki et 
al.[36]. 
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Table 2.4. Amino acid composition for valine utilisation in minimal media. Recipe from Karasawa et 
al.[32].  

 

 E. coli growth 

Escherichia coli strains were cultured in lysogeny broth (LB) or on LB agar (Merck). LB was purchased 

(Merck), or prepared using 1% w/v tryptone (Sigma Aldrich), 0.5% w/v yeast and 0.5% w/v sodium 

chloride (Sigma Aldrich). Unless otherwise stated, all cultures were incubated at 37oC in an aerobic 

atmosphere, and liquid cultures shaken at 180 rpm. When required, LB was supplemented with 

antibiotics, as described in Table 2.5. 

Antibiotic Final concentration for E. coli 
(µg/ml) 

Final concentration for C. difficile 
(µg/ml) 

Thiamphenicol N/A 15 

Chloramphenicol 25 N/A 

Kanamycin 50 N/A 

Ampicillin 25 N/A 

Spectinomycin 250 N/A 

Table 2.5. List of antibiotics used in C. difficile and E. coli. N/A- not used for this bacteria.  

 

2.3. Bioinformatics 

The GENtle software was routinely used for viewing DNA sequences 

(http://gentle.magnusmanske.de/), designing plasmids and primers and analysing DNA sequencing 

results. The assembled genome sequences of C. difficile strains 630 and R20291 were downloaded as 

Amino acid Final concentration (mg/ml) 

Valine 0.3 

Proline 0.6 

Leucine 0.4 

Isoleucine 0.3 

Tryptophan 0.1 

Cysteine 0.5 

Histidine 0.1 

Arginine 0.2 

Methionine 0.2 

Threonine 0.2 

Glycine 0.1 
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EMBL genome files from the Wellcome Trust Sanger website 

(https://www.sanger.ac.uk/resources/downloads/bacteria/clostridium-difficile.html) and viewed 

using Artemis (https://www.sanger.ac.uk/science/tools/artemis) [432]. DNA and protein sequences 

of interest were extracted from these genome files and used for further analysis, including BLAST 

searches for prediction of gene function and for the identification of related genes 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=bla

sthome).  

For putative protein analysis, the Phyre2 Server (Protein Homology/analogY Recognition Engine V 

2.0) (http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id) [433] and pFam 32.0 database 

(https://pfam.xfam.org/) [434] were used for predicting protein function and structure, and 

identification of conserved domains. SignalP 4.1 Server (http://www.cbs.dtu.dk/services/SignalP/) 

[435] was used for detection of possible signal peptides, TMHMM Server v 2.0 

(http://www.cbs.dtu.dk/services/TMHMM/) [436] for identification of transmembrane domains and 

Protein Molecular Weight for the estimation of protein size from the amino acid sequence 

(https://www.bioinformatics.org/sms/prot_mw.html). Peptide2 

(https://www.peptide2.com/N_peptide_hydrophobicity_hydrophilicity.php) was used for 

hydrophobicity predictions based on amino acid sequence.  

2.4. DNA manipulation  

 DNA isolation 

DNA was isolated from C. difficile by Chelex preparation. 1.5 ml of overnight liquid culture was 

centrifuged at 14, 500 x g for 2 mins, the supernatant discarded and pellet resuspended in 300 µl 5% 

w/v Chelex (Sigma Aldrich). Suspensions were vortexed thoroughly before boiling then chilling on ice 

for 10 mins each. Following a final centrifugation step at 14, 500 x g for 1 min, 200 µl of the 

supernatant was stored at -20oC.  DNA concentration and purity was measured using a 

NanoDrop1000 spectrophotometer (NanoDrop Technologies, Inc). For DNA purification, the 
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QIAquick PCR Purification Kit (Qiagen) or the Monarch PCR & DNA Cleanup Kit (NEB) were used. For 

isolation of plasmid DNA from E. coli, the QIAprep Spin Miniprep Kit (Qiagen) or Monarch Plasmid 

Miniprep Kit (NEB) were used. All kits were used according to manufacturer’s instructions and DNA 

products stored at -20oC.   

 Polymerase chain reaction 

All oligonucleotides used are listed in Appendix A. Prior to ordering, these were checked for melting 

temperature and secondary structures using the NEB Tm calculator (https://tmcalculator.neb.com/) 

and NetPrimer (http://www.premierbiosoft.com/netprimer/), respectively. PCR reactions were 

performed using 1 unit of high-fidelity Phusion DNA polymerase (NEB), 1x Phusion HF buffer (20 mM 

Tris-HCl, 100 mM KCl, 1 mM DTT, 0.1 mM ethylenediaminetetraacetic acid (EDTA), 200 μg/ml BSA, 

50% Glycerol, 1X stabilizers) (NEB), 0.2 µM dNTPs (NEB), 0.2 µM of each primer and approx. 10 ng of 

template DNA. Annealing temperature and extension times were tailored to the specific reaction but 

the standard protocol followed; 98oC for 30 secs then 35 cycles of the following, 98oC for 10 secs, 

melting temperature (Tm) of the primers for 30 secs and 72oC for 2 mins then a final 4 min step at 

72oC. These were run in a DNA Engine Tetrad 2 thermal cycler (Bio-Rad Laboratories Inc.).   

 Agarose gel electrophoresis 

DNA samples were run on 1% w/v agarose gels containing a 1:10,000 dilution of GelRed Nucleic Acid 

Gel Stain (Biotium), in 1x TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA). Between 20 and 

50 µl of DNA were mixed with 1x DNA Gel Loading Dye (NEB) before running on the gel alongside a 1 

Kb DNA Hyper Ladder (Bioline). Routine conditions for resolving the gel were 100-120 volts for 30 to 

60 mins. Gels were visualised using a Gene Genius Bio Imaging System (Syngene) and DNA purified 

from the extracted agarose band using the QIAquick Gel Extraction Kit (Qiagen) or Monarch DNA Gel 

Extraction Kit (NEB), according to manufacturer’s instructions.  
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 Restriction digestion  

A list of plasmids used in this study can be found in Appendix A. Digestion reactions to be used for 

cloning contained 1x CutSmart reaction buffer (10 mM Bis-Tris-Propane-HCl, 10 mM MgCl2, 100 

μg/ml BSA (NEB), 50-100 ng of insert or plasmid DNA, 20 units of each restriction enzyme and d.H2O 

to a final 50 μl volume. Reactions were incubated at 37oC for 3 hours for plasmid DNA or 1 hour for 

insert DNA. 5’ phosphate groups were removed from the digested plasmid to prevent self-ligation by 

adding 5 units Antarctic phosphatase (NEB) and 1x Antarctic phosphatase buffer (50 mM Bis-Tris-

Propane-HCl, 1 mM MgCl2, 0.1 mM Zn6`Cl2) (NEB), directly to the digestion reaction, incubating at 

37°C for 15 mins then inactivating the enzyme at 65°C for 5 mins. Dephosphorylated digested 

plasmid was resolved on an agarose gel, extracted and purified (2.4.3) while the insert was purified 

directly after digestion (2.4.1). For test digests to confirm presence of an insert, reactions included 

1x CutSmart reaction buffer, 500 ng/ml BSA, 5 µl plasmid DNA and 10 units of each restriction 

enzyme, made up to a total 20 µl reaction volume with d.H2O.  

To remove any residual backbone when amplifying large fragments from plasmid DNA, 20 units DpnI 

and 1x CutSmart reaction buffer was added to 50 µl PCR reactions immediately after amplification. 

These were incubated for 1 hour at 37oC then the enzyme inactivated with incubation at 80oC for 20 

mins.  

 DNA ligation 

Ligation reactions contained insert and plasmid DNA at a 3:1 concentration ratio, 1 unit of T4 DNA 

ligase buffer (10 mM Tris-HCl pH 7.4, 50 mM KCl, 1 mM DTT, 0.1 mM EDTA and 50% glycerol) 

(Promega) and 1x T4 DNA ligase (Promega). Reactions were either incubated for 1 hour at 16°C or on 

ice overnight then dialysed on 0.45 µM membrane filters (Millipore) in sterile d.H2O for 30 minutes, 

before using immediately for E. coli transformation (2.6.2) or freezing at -20oC.  
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 Gibson assembly  

In addition to restriction/ligation cloning, plasmids were also constructed using Gibson assembly 

[437]. This involves the amplification of insert and plasmid DNA to include overlapping regions which 

can anneal following incubation with exonuclease, an enzyme which creates single-stranded 3’ 

overhangs. DNA polymerase then completes each annealed fragment and DNA ligase seals any nicks 

in the assemblies.    

Plasmids were constructed using the NEBuilder HiFi DNA Assembly Cloning Kit (NEB), according to 

manufacturer’s instructions. Briefly, the NEBuilder online tool (https://nebuilder.neb.com/) was 

used to design oligonucleotides for amplification of the plasmid and insert fragments with 5’ and 3’ 

overhangs. Following PCR amplification of each fragment (2.4.2) and DpnI treatment of the plasmid 

(2.4.4), these were resolved on an agarose gel and purified (2.4.3). 50-100 ng of the purified plasmid 

fragment was incubated at 50oC for 15-30 mins with 2x excess of the insert fragment, 1x NEBuilder 

DNA Assembly HiFi DNA Master Mix and d.H2O to a 20 µl total reaction volume. Reactions were then 

chilled on ice before either immediate transformation into competent cells (2.6.2) or storage at -

20oC.  

 DNA sequencing 

DNA and plasmid samples were sequenced using the Eurofins or Source Sanger sequencing services, 

according to company requirements.  

 Screening of transformants and colony PCR 

Colonies were screened for the desired construct using test digestion or colony PCR. For the former, 

single colonies to be screened were grown overnight in LB supplemented with appropriate antibiotic 

before plasmid isolation (2.4.1) and digestion with restriction endonucleases flanking the insert site 

(2.4.4). These were then visualised on a 1% w/v agarose gel (2.4.3) to determine if the released 

product equated to the size of the desired insert. Colony PCR was used to screen the transformants 

directly from the plate by resuspending each colony in 50 µl 1x sterile phosphate buffered saline 
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(PBS). 2 µl of resuspension was used in a 50 µl PCR reaction with d.H2O volume adjusted accordingly 

(2.4.2). The initial 98oC denaturation step was extended to 8 mins to aid cell lysis and release of DNA. 

When possible, oligonucleotides were used that annealed to the regions of the plasmid flanking the 

insert to ensure that amplification was not from residual insert, carried over from the ligation 

reaction. Test digestion and colony PCR results indicating presence of the insert were confirmed by 

sequencing (2.4.7).  

2.5. Manipulation of E. coli  

 Preparation of electrocompetent E. coli  

An overnight culture of the E. coli strain to be made electro-competent was diluted 1:100 into 100 

ml LB, supplemented with antibiotic as needed and incubated shaking at 180 rpm until OD595nm of 0.5 

and 1 was reached. Cells were chilled on ice for 15 mins before harvesting at 14, 500 x g, 4oC for 15 

mins. Supernatant was discarded and cells re-suspended in 100 ml pre-chilled d.H2O and centrifuged 

as described previously. Pelleted cells were re-suspended in 8 ml pre-chilled 10% glycerol and 

centrifuged. Supernatant was discarded and cells re-suspended in 500 μl 10% glycerol and stored at -

80oC in 55 μl aliquots.  

 Transformation of competent E. coli 

An aliquot of competent cells were thawed on ice and mixed with approx. 1-5 ng plasmid DNA. 

Electro-competent cells were electroporated at 2.5 KV in a Gene Pulser Xcell (Bio-Rad Laboratories 

Inc.) before recovery in 500 µl super optimal broth (SOC) (0.5% Yeast Extract, 2% Tryptone, 10 mM 

NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM Glucose) for 1 hour at 37°C, shaking 

incubation. Chemically competent NE5 alpha cells (NEB) were chilled on ice for 30 mins, incubated at 

42oC for 30 secs, chilled on ice for another 2 mins then incubated with 950 µl SOC buffer for 60 mins 

at 37oC, shaking incubation. Following recovery, both cell types were transferred to 5 ml LB or 100 µl 

was plated neat or 1:10 dilution on LB agar plates. Both broth and plates were supplemented with 
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the antibiotic corresponding to the resistance cassette on the plasmid and incubated overnight at 

37°C. 

2.6. Manipulation of C. difficile  

 Transformation of C. difficile  

As transformation of C. difficile cells requires conjugation with a competent donor strain of E. coli, 

the kanamycin resistant E. coli CA434 strain was used. CA434 cells were grown overnight in 5 ml LB 

broth supplemented with 50 µg/ml kanamycin and 25 µg/ml chloramphenicol to select for the strain 

and plasmid, respectively. Cells were prepared for mating by pelleting 1.5 ml of overnight culture for 

2 mins at 14,500 x g, discarding the supernatant, then gently re-suspending cells in 500 μl 1x PBS 

before centrifugation for 1 min at 14, 500 x g. Supernatant was again discarded and cells transferred 

to the anaerobic workstation and re-suspended in 200 μl overnight C. difficile culture before plating 

in 20 μl aliquots on BHI agar. When needed, a heat shock protocol was used to try and increase 

conjugation efficiency [438]. Here, pelleted E. coli cells were resuspended in 200 µl overnight C. 

difficile culture immediately after the first centrifugation step, without washing the cells with PBS, 

and incubated at 52oC for 5 minutes then 37oC for 2 minutes before spot plating as described. 

Following 24 hour conjugation, growth was re-suspended in sterile 1x PBS and spread plated in 100 

μl aliquots on BHIS agar supplemented with D-cycloserine and cefoxitin, for isolation of C. difficile 

only and thiamphenicol to select for the plasmid. Following 48-72 hours incubation, colonies were 

restreaked to confirm successful transformation.  

 C. difficile mutagenesis  

Genes of interest were deleted from the C. difficile chromosome using allele exchange mutagenesis 

[439]. This approach does not require a negative selection marker and instead relies on homologous 

recombination to remove the gene from the chromosome. This results in the generation of in-frame 

deletion mutants without polar effects to downstream genes, as can occur with insertional 

mutagenesis methods, such as ClosTron [440, 441].  
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 Plasmid construction for allele exchange mutagenesis 

Allele exchange cassettes were built using splicing by overlap extension (SOE) PCR [442] then cloned 

into pMTL82151 (http://www.clostron.com/) for conjugation into C. difficile. Each cassette consisted 

of the two ~1200 bp DNA regions (homology arms) immediately flanking the gene for deletion, 

which enable the homologous recombination event to occur. Homology arms 1 and 2 (HA1 and HA2) 

were amplified from C. difficile R20291 genomic DNA (gDNA) to include 5’ (HA1) and 3’ (HA2) 

restriction endonuclease sites for cloning into pMTL82151 and 3’ (HA1) and 5’ (HA2) complimentary 

overhangs, comprised of the first and last 21 bp of the gene for deletion. These complimentary 

regions permit joining of the two constructs in a second round of amplification, using the forward 

primer of HA1 and reverse primer of HA2. Allele exchange constructs were inserted into pMTL82151 

using restriction-ligation cloning (2.4.4, 2.4.5), with correct plasmid assembly confirmed using test 

digestion (2.4.4) and DNA sequencing (2.4.7).  

 Conjugation 

Each pMTL82151 plasmid carrying a different allele exchange cassette was transformed into electro-

competent CA434 cells (2.6.2) and conjugated with C. difficile R20291 (2.7.1). Following 

resuspension and spread plating of the conjugations, plates were incubated for 72 hours, before re-

streaking the largest colonies 3-4 times on BHIS agar, supplemented with D-cycloserine, cefoxitin 

and thiamphenicol. Larger colonies were preferentially restreaked, as these were most likely to have 

undergone the single cross over event and therefore harbour the plasmid on the chromosome 

(Figure 2.1). This is due to the use of the “pseudo-suicide” plasmid, pMTL82151, which replicates 

poorly in C. difficile so better growth is obtained when the plasmid has integrated and the 

thiamphenicol resistance cassette is therefore replicated with the chromosome.   
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Figure 2.1. Diagram of allele exchange mutagenesis. Example of deletion of ermB from the 
chromosome using allele exchange mutagenesis. (A) Single cross event resulting from one of the 
regions of homology (dark grey), leading to incorporation of the whole plasmid onto the 
chromosome. (B) Second cross over event with the second regions of homology (light grey), resulting 
in deletion of ermB from the chromosome (C) If the second recombination event occurs at the same 
region of homology as the first, the plasmid is lost and the strain reverts to wild-type sequence. 
Image taken from Faulds-Pain et al. [439]. 
 

 Isolation and screening of gene deletion mutants  

Predicted single cross over colonies were passaged 4-5 times on non-selective BHIS agar to remove 

the selection pressure to maintain the plasmid and enable the second recombination event to occur 

(Figure 2.1). Following passage, colonies were patch plated on non-selective BHIS agar and BHIS agar 

containing thiamphenicol to identify those which were had lost the plasmid. Colonies demonstrating 

thiamphenicol sensitivity were screened by PCR to differentiate between wild-type revertants (those 

which have lost the plasmid without complete integration) and double crossovers mutants, using 

A.  

B.  

C.  
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primers flanking the gene for deletion. Primers annealing upstream of the 5’ of HA1 and 

downstream of the 3’ of HA2 were used to amplify this region for sequencing, to ensure the gene 

had successfully been deleted from the chromosome and results were not due to interference from 

residual plasmid DNA.  

2.7.  Phenotypic assays 

 Growth kinetics of C. difficile  

To determine the growth rate of C. difficile, three colonies were used to inoculate a primary culture 

of 5 ml BHIS or BHI broth. Following overnight incubation, this was used to inoculate 25 cm3 vented 

tissue culture flasks containing 15 ml BHI or BHIS broth to a starting OD595nm 0.05. OD595nm readings 

were taken every hour for the first 8 hours then a final reading at 24 hours using a CO 8000 Cell 

Density Meter spectrophotometer (Biochrom WPA). Cultures were set up in duplicate and three 

independent replicates were performed. 

 Ethanolamine Utilisation 

An overnight 5 ml BHIS culture of C. difficile was diluted 1:100 into 10 ml fresh BHIS broth and 

shaking incubated to OD595nm 0.6. This was back-diluted in ethanolamine minimal media (Table 2.3) 

containing either 0.9 mg/ml glucose (Sigma Aldrich), 1.46 mg/ml ethanolamine (Sigma Aldrich) or 

water (no carbon control) to OD595nm 0.1.  Dilutions were used to inoculate 15 ml or 20 ml minimal 

media to a starting OD595nm 0.01. Cultures were incubated shaking for 72 hours, with OD595nm taken 

at; 16, 20, 24, 40, 44, 48, 64, 68 and 72 hours. Cultures were set up in duplicate and assay performed 

in three independent replicates.  

To investigate the role of cobalt in ethanolamine utilisation, an overnight 10 ml minimal broth, 

containing 0.9 mg/ml glucose and no cobalt was inoculated using three colonies of C. difficile. This 

was diluted 1:100 into a 10 ml minimal broth containing 0.9 mg/ml glucose and no cobalt, grown to 

OD595nm 0.6 then back-diluted to OD595nm 0.1 in media matching the final growth media, specifically 

ethanolamine minimal media +/- cobalt and either 0.9 mg/ml glucose (Sigma Aldrich), 1.46 mg/ml 
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ethanolamine (Sigma Aldrich) or water (no carbon control). This was used to inoculate a single 

minimal media flask per condition to OD595nm 0.01, then readings taken as above. The assay 

performed in two independent replicates.  

 Valine Utilisation 

Three colonises from a plate culture were used to inoculate 10 ml minimal media containing all 11 

amino acids plus glucose and incubated overnight (Table 2.4). This overnight was used to inoculate 

fresh 15 ml minimal media to a starting OD 0.05. Minimal media was either plus or minus glucose, and 

contained either all 11 amino acids (Table 2.4), 6 amino acids (proline, leucine, cysteine, valine, 

isoleucine, tryptophan) or 5 amino acids (proline, leucine, cysteine, isoleucine, tryptophan). 200 µl of 

culture was removed every hour for 8 hours then at a final 24 hours for OD595 readings taken using a 

plate reader.  This was performed in two independent replicates.  

 Colony forming units  

In order to determine the number of colony forming units (CFUs) of C. difficile, liquid cultures were 

serially diluted 1:10 until the 1:100,000 dilution, in 1x PBS. Each sample was vortexed between 

dilutions. 10 µl of neat C. difficile and each dilution were plated in triplicate on BHIS plates (without 

L-cysteine) containing 0.1% w/v sodium taurocholate to ensure germination of spores. For spore 

counts, 1 ml of neat C. difficile culture was transferred to 1.5 ml microcentrifuge tubes and heated at 

65oC for 20 mins, before serial dilution and plating. Plates were incubated anaerobically overnight at 

37oC and number of colonies counted by eye to the lowest dilution where colonies could still be 

differentiated. Colony counts were multiplied by 100 to obtain the number of colonies per ml then 

multiplied by the relevant dilution factor to determine the final CFU. Vegetative cell count was 

calculated by subtracting the spore count from the total cell count. This was performed in three 

independent replicates. 
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 Antimicrobial susceptibility 

The sensitivity of C. difficile to different antibiotics and antimicrobial peptides (AMPs) was measured 

using the broth dilution method [148, 443] under anaerobic conditions. 24-well flat-bottom plates 

contained each antibiotic concentration in duplicate (doubling dilutions were prepared from 32 to 

0.5 µg/ml for lincomycin and 512 to 0.5 µg/ml for bacitracin and erythromycin), a growth control (no 

antibiotic) and broth sterility control (no inoculant). Antibiotic stocks were prepared at either 10 

mg/ml or 1 mg/ml then diluted to the desired concentration in BHI broth, before aliquotting 990 µl 

into each well. An overnight C. difficile liquid culture was diluted 1:100 in 10 ml BHI broth and 

incubated shaking until OD595nm 0.3. 10 µl of culture was added to each well and plates were 

incubated shaking for 16 hours.  If C. difficile growth had sedimented to the bottom of the plate well, 

this was resuspended before OD595nm readings were taken using an ELx800 Absorbance microplate 

reader (Biotek). The minimum inhibitory concentration (MIC) determined in the first assay was 

confirmed with two more replicates at three concentrations; the MIC, and 2x and 0.5x this 

concentration (no 2x concentration was used for bacitracin and erythromycin as there was no 

growth at the highest concentration tested, 512 µg/ml).  

 Colony morphology 

To visualise colony morphology, overnight cultures in BHIS broth were diluted 1:100 into fresh BHIS 

and left to grow until OD595nm reached between 0.3 and 0.4. These were then diluted to between 

1:10,000 and 1:100,000 in sterile 1x PBS and 100 µl of each spread plated on 1.8% BHIS agar 

supplemented with thiamphenicol, 1% glucose, and 0 or 25 ng/ml anyhydrotetracycline (Atc), for 

induction of the Ptet promoter. Following 5 days incubation, the colonies were photographed using 

a Canon 600D SLR. 

 Swimming motility  

Swimming motility of C. difficile was assessed using minimal media with 0.3% agar and 

thiamphenicol. When required for induction of the Ptet promoter, anhydrotetracycline was added at 
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25, 50, 100 or 250 ng/ml. C. difficile colonies growing for 24-48 hours were picked using a sterile 

toothpick and the centre of the swimming plate stab inoculated to approximately halfway through 

the agar. Plates were incubated statically for 5 days then two perpendicular measurements of the 

diameter taken (Figure 2.1a), which were averaged. Plates were also photographed using a Canon 

600D SLR. Each plate was set up in duplicate and the assay performed in three independent 

replicates.  

 Surface motility 

Surface motility of C. difficile was assessed using 1.8% BHIS agar. Higher agar percentages increase 

surface hardness which enables the swarming movement to occur. An overnight broth culture of C. 

difficile was diluted 1:100 into fresh 10 ml BHIS and 5 µl spotted in quadruplicate onto BHIS agar 

plates supplemented with thiamphenicol, 1% glucose and 0 or 25 ng/ml Atc, once OD595nm reached 

0.3-0.4. Plates were incubated statically and 2 measurements taken for each spot every day for 5 

days- at the widest diameter of the colony and perpendicular to this measurement, which were then 

averaged (Figure 2.1b). Plates were also photographed on day 5 using a Canon 600D SLR. The assay 

was performed in triplicate.  

 

 

 

 

Figure 2.2. Motility measurements. Schematic of measuring diameter of bacteria in motility assays. 
(A) Swimming motility diameter, taking two perpendicular readings (B) swarming motility 
measurement, taking the diameter at the widest point and the diameter perpendicular to this. 
 

 

 

(A) (B) 
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 Biolog  

Biolog Phenotypic Microarrays assays enable high-throughput analysis of bacterial growth through 

comparing growth in many different conditions, simultaneously. Biolog assays were performed at 

the Wellcome Trust Sanger Institute by Dr Hilary Brown and Dr Kevin Vervier. In brief, these were 

conducted using an AN MicroPlateTM (Biolog) that was exposed to oxygen for 30 mins before 

transfer to the anaerobic cabinet. A plate culture of C. difficile was swabbed from the agar surface 

and resuspended in pre-reduced AN Inoculating Fluid (Biolog) then transferred to the AN Microplate, 

100 µl per well. Plates were sealed in an oxygen impermeable bag then transferred to the OmniLog 

incubator for 24 hours, which takes automated OD readings of cell growth. 

2.8. Protein techniques 

 SDS-PAGE 

15 µl of protein sample was mixed with 1x NuPAGE LDS sample buffer (ThermoFisher Scientific) to a 

total 20 µl volume and heated at 70oC for 5 mins. Standard conditions used a pre-cast 10% or 4-12% 

NuPAGE Bis-Tris gel (ThermoFisher Scientific) with PageRuler Prestained Protein Ladder 

(ThermoFisher Scientific) or PageRuler Plus Prestained Protein Ladder (ThermoFisher Scientific) in 1x 

3-(N-morpholino)propanesulfonic acid (MOPS) SDS Running Buffer (50 mM MOPS, 50 mM Tris Base, 

0.1% sodium dodecyl sulfate (SDS), 1 mM EDTA, pH 7.7) (ThermoFisher Scientific) for 50-60 mins at 

180 V. For resolution of smaller proteins, 1x 2-(N-morpholino)propanesulfonic acid (MES) SDS 

Running Buffer (50 mM MES, 50 mM Tris Base, 0.1% SDS, 1 mM EDTA, pH 7.3) was used. For 

separation and visualisation of proteins under 15 KDa, the same protocol was followed, but samples 

were resolved on 16% Tricine Protein Gels (ThermoFisher Scientific) in Tricine SDS Running Buffer 

(ThermoFisher Scientific) with SeeBlue Pre-Stained Protein Standard ladder (ThermoFisher 

Scientific). Gels were visualised using Western blotting (2.8.3) or by staining with Coomassie (2.8.2).  
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 Coomassie Staining 

Gels were incubated rocking with Coomassie Brilliant Blue R-250 stain (10% acetic acid, 10% ethanol, 

1 mg/ml Coomassie) at room temperature (RT) for 20-60 mins, then destained overnight in 10% 

ethanol, 10% acetic acid. Gels were visualised on an Azure c600 Gel Imaging System (Azure 

Biosystems).  

 Fluorescent Western Blotting 

The iBlot 2 Dry Blotting System (ThermoFisher Scientific) was used for transfer of samples from the 

SDS-PAGE gel to a nitrocellulose membrane (ThermoFisher Scientific). Transfer stacks were 

assembled and loaded onto the iBlot according to manufacturer’s instructions and transferred for 7 

mins (1 min at 20 V, 4 mins at 23 V, 2 mins at 25 V). Following transfer, membranes were washed for 

5 mins in 1x PBS + 0.1% Tween20 (Sigma Aldrich) then incubated with blocking buffer (1x PBS + 0.1% 

Tween20 and 5% skimmed milk) for 1 hour. When blotting with the soy bean agglutinin (SBA) lectin 

(Vector Laboratories), milk was not included as this lectin binds galactose. All incubation and wash 

steps were conducted at RT on a rocker. The blocking buffer was replaced with 10 ml fresh blocking 

buffer containing primary antibody and incubated for 1 hour. A list of antibodies used in this work 

are listed in Table 2.6. Membranes were washed 3 x 5 min with 1x PBS + 0.1% Tween20 before 

incubation with the secondary antibody at the appropriate dilution, in the dark. The membrane was 

again washed 3 x in 1x PBS + 0.1% Tween20 before visualisation on an Odyssey near-infrared imager 

(LI-COR Biosciences). Images were scanned at either 680 nm or 800 nm wavelengths, depending on 

the IRdye conjugated to the secondary antibody.  

Antibody Dilution Suppllier 

Mouse anti-Histag 1:5000 AbCam 

Rabbit anti-Histag 1:5000 AbCam 

Goat anti-mouse IRDye conjugated 
600CW 

1:5000 LI COR 

Goat anti-mouse IRDye conjugated 
800CW 

1:5000 LI COR 

Goat anti-rabbit conjugated to HRP 1:20,000 Sigma Aldrich 

Goat anti-human IgG 1:10,000 Sigma Aldrich 

Table 2.6. List of antibodies used in this study.  
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 Indirect Enzyme Linked Immunosorbent Assay (ELISA) 

Indirect ELISAs were performed in Nunc Maxisorp or Medisorp 96-well flat-bottom plates 

(ThermoFisher Scientific). Protein samples were serially diluted to the concentrations required in 

sodium carbonate buffer (Na2CO3, pH 9.6) or 1x PBS, and 50 µl added to each well before static 

incubation overnight at 4oC. Wells were washed 4 x 2 mins with 1x PBS + 0.05% Tween20 before 2 

hour shaking incubation at 500 rpm with 300 µl blocking buffer (1x PBS + 0.05% Tween20 + 10% milk 

(5% milk for human sera samples). Wells were washed once for 2 mins with 1x PBS + 0.05% Tween20 

then incubated shaking for 2 hours with 50 µl of human sera sample diluted 1:00 in 1x PBS + 0.05% 

Tween20 + 1% milk or primary antibody. (Table 2.6). Wells were washed again 4 x 2 mins before 

incubation with 50 µl horse radish peroxidase (HRP)-conjugated secondary antibody in 1x PBS + 

0.05% Tween20 + 1% milk for 90 mins, shaking incubation. A final 4 x 2 mins wash steps were 

performed with 1x PBS + 0.05% Tween20 before 100 µl of the 3,3',5,5'-tetramethylbenzidine (TMB) 

substrate (ThermoFisher Scientific) was added and the plates incubated in the dark for 2-15 minutes, 

until colour development had saturated. At this point, the reaction was stopped with 1 M H2SO4 and 

plates read at a 450 nm wavelength.  

 Protein expression in E. coli  

For protein expression tests in E. coli, 5 ml LB supplemented with appropriate antibiotic was 

inoculated with a single E. coli colony or directly from a glycerol stock and incubated overnight. This 

was diluted 1:100 into fresh 10 ml LB supplemented with antibiotic to maintain the plasmid and grown 

to OD595nm 0.4-0.8, before induction with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) 

(ThermoFisher Scientific) or 0.02-1% L-arabinose (Sigma Aldrich). L-arabinose can be metabolised by 

E. coli so was added again before leaving the culture shaking overnight at 30oC or 37oC. Following 

overnight growth, 200 µl of culture was removed to analyse the whole cell lysate and the remaining 

culture centrifuged at 14, 500 x g for 5 mins at 4oC. The supernatant was discarded and pellet either 

immediately extracted or stored at -20oC. For large scale expression using 1 to 2 litres of LB, the same 
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process was followed but the initial overnight culture was increased as necessary and cells pelleted at 

7459 x g for 30 mins at 4oC.  

 Protein extraction from E. coli  

 Ribolyser 

Pelleted bacteria were resuspended in 1-2 ml binding buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 

10-25 mM imidazole) and loaded into Lysing Matrix B- 2 ml Bead Beating Tubes (MP Biomedicals) 

before ribolysing in a FastPrep-24 Classic Instrument (MP Biomedicals) for 40 secs. Ribolysed 

extracts were centrifuged a 14,500 x g for 2 mins and the supernatant stored at 4oC, to reduce 

protein degredation.   

 Cell homogeniser  

Bacterial pellets obtained from the 1-2 litre cultures were resuspended in binding buffer to a 

maximum 50 ml volume which was diluted further in binding buffer for viscous resuspensions, 

before passing through the cell homogeniser, which uses high pressure to break the cells open. The 

homogeniser was first washed with 50 ml 20% ethanol, 50 ml 70% ethanol and 50 ml d.H2O before 

20 ml binding buffer was added. Once the last 10 ml of binding buffer was in the chamber of the 

homogeniser, the resuspended pellet was added, a maximum of 50 ml at a time, keeping the lysate 

on ice between runs. Cells were homogenised in 10 ml aliquots and the whole slurry was passed 

through three times or until the lysate started to become less opaque and viscous. The cell lysate 

was then centrifuged at 30, 966 x g for 1 hour before filtering the supernatant with a 0.22 µM filter 

and storing at 4oC. cOmplete™ mini EDTA-free Protease Inhibitor Cocktail tablets (Merck) (1 tablet 

per 10 ml lysate) were added to cell lysates to reduce proteolytic activity and protein degradation.  

 Protein purification  

 NiNTA agarose purification of His-tagged recombinant proteins  

Proteins harbouring a hexa-histidine tag (His-tag) were purified using nickel affinity chromatography. 

This was done in three different ways, depending on the volume of sample and intended use of the 
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purified protein. For clarified cell lysates under 1 ml, the supernatant was incubated with 100 µl Ni-

NTA agarose (Qiagen) in a microcentrifuge tube, rotating for 20-40 mins at 4oC. The agarose-protein 

complex was harvested at 14,500 x g for 1 minute, resuspended in 1 ml binding buffer and rotated 

for 10 mins at 4oC, a total of three times. After the last wash and centrifugation step, the cells were 

centrifuged again to remove any residual wash buffer and supernatant discarded. 100 µl of elution 

buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 300 mM imidazole) was added to the pelleted resin 

and the tube inverted for 2 mins at RT. Following a final centrifugation step at 14,500 x g for 1 

minute, 100 µl of the supernatant containing the eluted protein was stored at 4oC.  

For separation of Histagged and non-Histagged protein following incubation with tobacco etch virus 

(TEV) protease (Sigma Aldrich and NEB), a gravitational flow column was used. Here, protein samples 

were incubated with 500 µl to 1 ml Ni-NTA resin (depending on the volume of sample and amount of 

protein predicted) for 1 hour at 4oC, rotating. The column was then stood upright to allow the resin 

to settle to the bottom and the flow through released. The resin was then washed three times using 

20 column volumes (volume of resin) of binding buffer each time. The sample was eluted using 1 

column volume of elution buffer.  

 NiNTA agarose purification using HPLC  

Clarified and filtered cell lysate was passed over a 1 ml HisTrap HP column (GE Healthcare Life 

Sciences) to isolate His-tagged protein, using an AKTApurifier system (GE Healthcare Life Sciences). 

Applying a flow rate of 1 ml/min for the entire procedure, the column was washed with d.H2O then 

pre-equilibrated with binding buffer before loading of the sample. The column was washed again 

with 7 column volumes of binding buffer, before elution in 1 ml fractions using a gradient of 25 mM 

to 300 mM imidazole over 30 column volumes. The column was washed with d.H2O then 20% 

ethanol before storage. Protein from fractions corresponding to a peak on the UV280nm trace of the 

nickel affinity purification were run on an SDS-PAGE gel (section 2.8.1) to detect fractions harbouring 

the protein of interest.  
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 Gel filtration  

Proteins requiring additional purification were passed over a gel filtration column (GE Healthcare 

Life Sciences) using the AKTApurifier, for size exclusion chromatography (SEC). The column was 

washed with 1 column volume of d.H2O then SEC buffer (50 mM Tris-HCl pH 8.0 and 300 mM NaCl) 

before the protein sample was eluted in 1 ml fractions over 1.5 column volumes. The column was 

washed with 1 column volume of d.H2O and 20% ethanol before storage. As with His-purification, 

protein from fractions corresponding to a peak on the UV280nm trace were run on an SDS-PAGE gel 

(2.9.1) to detect the protein of interest. 

 Cleavage with the tobacco etch virus (TEV) protease 

When required, proteins were expressed with a TEV cleavage site between the His-tag and protein 

coding sequence, enabling removal of the Histag following nickel affinity purification. Eluted 

fractions confirmed to harbour the protein of interest by SDS-PAGE were pooled and exchanged into 

TEV buffer (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 1 mM DTT) using Vivaspin protein concentrator 

spin columns (GE Healthcare Life Sciences). These were incubated with 1 µg of TEV protease (NEB or 

Sigma Aldrich) for every 100 µg of target protein in a Slide-A-Lyser Dialysis Cassette (ThermoFisher 

Scientific), stirring overnight in 3 l of TEV buffer at 4oC. Following incubation, samples were purified 

using nickel affinity chromatography section 2.8.7.2) to remove the His-tagged TEV protease and 

isolate the cleaved protein of interest in the flow through fraction.    

 Protein identification 

To confirm the identity of purified proteins, samples were sent to King’s College London- Centre for 

Excellence for Mass Spectrometry for liquid chromatography-mass spectrometry (LC-MS/MS) 

analysis. Samples were run on an SDS-PAGE gel (section 2.9.1), the band corresponding to the 

protein of interest excised and stored in MilliQ d.H2O before processing. Results were viewed using 

Scaffold Proteome Software (http://www.proteomesoftware.com/products/scaffold/).  
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 Protein quantification 

The bicinchoninic acid assay (BCA) assay (ThermoFisher Scientific) was used for quantification of 

protein samples in a 96-well plate format, using known concentrations of BSA to generate a standard 

curve, according to manufacturer’s instructions. Results were read at a 595 nm wavelength on a plate 

reader and data plotted in Microsoft Excel to generate a standard curve, from which protein 

concentration could be calculated by rearranging the formula y=mx+c, where y= absorbance of 

protein of interest, m=gradient, c=y-intercept, and x=concentration of the protein of interest.  

2.9. Bioconjugation 

The expression, extraction, purification and visualisation of proteins within the bioconjugation work 

was conducted as described in 2.8.  

 In vitro glycosylation 

For in vitro glycosylation experiments, 1 L cultures of the strains carrying the acceptor protein, 

oligosaccharyltransferase (OST) and lipid-linked glycan donor were grown separately overnight at 

37oC and induced with 1 mM IPTG or 0.2% L-arabinose, as required (2.8.4). Cells were harvested at 

7459 x g for 30 mins at 4oC then washed three times in S30 buffer (10 mM Tris acetate, 14 mM 

magnesium acetate, 60 mM potassium acetate, pH 8.2) at a total 50 ml volume, centrifuging for 15 

mins at 2880 x g between each wash. Following the final wash step, pellets were resuspended in 20 

ml S30 buffer and lysed in the cell homogeniser (2.8.6.2). Lysates were clarified at 2880 x g for 15 

mins then stored at -80oC in 1 ml aliquots or used immediately in the reaction set up. When 

concentration of the glycan bound to the inner membrane was required, the supernatant isolated 

following clarification of the cell lysate was centrifuged at 100, 000 x g for 1 hour at 4oC and the 

pellet resuspended in 1 ml S30 buffer containing 1 mM n-dodecyl-β-D-maltoside (DDM). Each 

reaction contained 20 µl of the PglB OST, 1 mM DDM, 1% MnCl2 and a range of volumes of the 

acceptor protein and lipid-linked glycan, made up to a total 600 µl volume with S30 buffer. Reactions 

were incubated overnight at 100 rpm, 30oC then purified as described in section 2.8.7.1.  
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2.10. Statistical Analysis 

For all statistical tests, p<0.05 was considered significant linear regression was performed in Stata 

and data transformed to Log10 prior to analysis. Students t-tests were performed in Microsoft Excel 

and Wilcoxon Rank tests in SPSS. 
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3. Identification of novel immunogenic C. difficile proteins and 

expression and purification in E. coli 

 

3.1. Introduction 

Significant research has been dedicated to identifying candidates for inclusion within an anti-C. difficile 

vaccine. This has mostly centred on the use of Toxins A and B to provide protection from the symptoms 

of C. difficile infection (CDI). However, despite numerous toxin-based approaches entering clinical 

trials, there remains a lack of licensed vaccine against C. difficile [375]. The focus on the toxins as key 

targets for immunisation partly stems from their induction of the humoral immune response. Higher 

systemic antibody responses towards Toxin A and/or Toxin B have been associated with protection 

from infection, reduced duration of infection, prevention of mortality and reduced chance of 

recurrence [86, 269-271, 274, 444, 445]. However, these associations are not consistent, with some 

reports describing no difference in antibody response or higher antibody responses in those who 

developed infection or relapsed compared to healthy controls or asymptomatic carriers of C. difficile 

[272-275, 446].  

Beyond the toxins, there has been some interest in alternative antigens for inclusion in a C. difficile 

vaccine, but none of these have reached later stage clinical trials. Higher sera IgG was found towards 

the cell surface proteins Cwp66 and Cwp84 and the flagella components FliC and FliD in healthy 

controls compared to patients with C. difficile associated-disease [273]. In addition, the major surface 

layer protein SlpA has been demonstrated to be immunogenic in mice [447] and higher anti-SLP IgG 

titres were reported for healthy controls compared to those with CDI [272]. However, the exposed, 

low molecular weight portion of SlpA is variable between strains, which could limit vaccine coverage 

[448]. Overall, understanding of C. difficile antigens other than the toxins remains limited. This in turn 

restricts development of vaccines which target both the symptoms of CDI and colonisation by the 

pathogen, an approach which has received increased interest in light of the challenges associated with 
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toxin-only vaccines [449]. Antigen discovery can arise from a number of avenues, including antigenic 

components from other bacterial species, analysis of patient antibody responses during natural 

infection and rational hypotheses, such as the use of conserved cell surface proteins, which are 

exposed to the immune system. Once identified, typical in vitro characterisation of these as 

immunogenic proteins usually utilises immunoblots or enzyme-linked immunosorbent assays (ELISAs). 

Although different protocols are available, the basic principle of ELISAs is antibody-mediated detection 

and quantification of a specific ligand, including antigens and other antibodies.  These have been 

widely used to investigate antibody responses to C. difficile, particularly in relation to the toxins and 

are a well-established and valuable technique in quantifying humoral immune responses [86, 450]. 

However, both upscaling production of the antigens to be screened and testing these within a 96-well 

plate format  are labour intensive and unsuitable for the screening of multiple antigens and/or human 

samples and can also suffer from inter-assay variability.    

Just as DNA microarrays have been influential in the understanding of bacterial genomes and 

expression profiles, particularly before the advent of widely accessible and affordable sequencing 

technologies, protein microarrays offer a high-throughput means of quantifying antibody responses 

to a large number of antigens [380]. Here hundreds or thousands of antigens are expressed and 

printed onto glass slides, which can be probed with the sample of choice, usually human sera or 

plasma, simultaneously. Reactivity to the antigens is measured as with plate-type ELISAs, i.e. antigen-

bound sera or plasma antibodies are probed with anti-human antibodies harbouring a reporter 

enabling their fluorometric or colourmetric detection. This large-scale characterisation of the humoral 

response supports understanding of infection progression as well as vaccine and diagnostic discovery 

and has been used for investigation of a number of pathogens, including but not limited to; Leptospira 

interrogans, Francisella tularensis, Salmonella typhi, Coxiella burnetii and Plasmodium falciparum 

[384, 386, 451-453].   
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In this chapter it was aimed to use the results of a human C. difficile-specific protein array from an 

ongoing Medical Research Council programme grant of my supervisors, to identify novel vaccine 

candidates and purify these candidates to validate their immunogenicity for potential use in an anti-

C. difficile vaccine.  

3.2. Design, probing and analysis of the C. difficile protein array 

The C. difficile protein array was funded by a Medical Research Council Programme Grant entitled 

“Interactions between C. difficile, the intestinal microbiota and the host response in hospitalised 

patients”. This was awarded to a consortium of institutions, lead by London School of Hygiene and 

Tropical Medicine (LSHTM), comprising the University of Liverpool (UoL), Wellcome Trust Sanger 

Institute (WTSI) and the University of California, Irvine (UCI). The project was established to investigate 

the factors relating to progression and outcome of CDI, through analysis of a large cohort of 

longitudinal patient samples with accompanying clinical metadata. Analysis covered a range of 

approaches including profiling of the humoral immune response using a pan-protein array and 

sequencing of stool samples for analysis of the gut microbiota. The results from analysis of the 

humoral immune response were used for the identification of novel vaccine candidates in this study, 

as described below. Section 3.2 describes the work conducted by the consortium, both prior to and 

during my PhD, with those who completed the work named throughout.   

 Sample collection 

Patient recruitment and sample collection was conducted between 2013 and 2015. Patient 

recruitment and sample collection, storage and processing were conducted by UoL and the Royal 

Liverpool University Hospital. This was led by Professor Sir Munir Pirmohamed and involved a team of 

researchers, medics and NHS staff, including but not limited to: Dr Paul Roberts, Dr Neil French, Dr 

Fabio Miyajima and Ms Alejandra Doce-Carracedo. Patients were recruited from hospitals across 

Merseyside and Cheshire, including; Royal Liverpool and Broadgreen Hospitals, Aintree University 
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Hospitals, Wirral (Arrowe Park) Hospital, St. Helens & Knowsley (Whiston) Hospital and Countess of 

Chester Hospital.  

For recruitment into the study, participants had to be over 18 years of age and capable of providing 

written consent to confirm their willingness to participate. Patients/participants were recruited if they 

met the criteria for one of the three study groups; C. difficile infection (CDI), diarrhoea of unknown 

cause (CDU) and healthy controls (CDH) (Table 3.1). The patients were recruited in line with the ethics 

sought by UoL and awarded by Liverpool Research Ethics Committee (REC Reference 08/H1005/32) 

with additional approval granted by LSHTM for working with the samples at LSHTM (Appendix C). 

Diagnosis of C. difficile was conducted on patient stool samples by the NHS microbiology laboratory 

using NHS-approved methods, including an ELISA-based detection of the C. difficile Toxins A and B. 

During the study an additional test was adopted by participating hospitals for CDI detection- the 

glutamate dehydrogenase assay (GDH). Additional diagnostics available for some but not all samples 

included Toxin B PCR and microbiological culture. CDI patients were differentiated into mild and 

severe infection based on faecal white cell count.  

 
Table 3.1. Description of participant study groups for the C. difficile protein array. ELISA, enzyme-
linked immunosorbent assay, GDH, glutamate dehydrogenase assay, CDI, C. difficile infection.  

 

Study Group Definition Description 

CDI 
Patients with C. difficile 
infection  

Positive for C. difficile by Toxin A/B ELISA, 
as diagnosed by the NHS lab. Later into the 
study, GDH testing was also adopted at the 
recruiting hospitals and microbiological 
culture was performed. 

CDH Healthy controls 

Healthy people who were not hospitalised, 
had no history of CDI within the last 12 
months and Toxin A/B and culture 
negative. Where possible these were age 
and sex-matched to the CDI group. 

CDU 
Patients with diarrhoea of 
unknown origin 

Patients with diarrhoea but negative for C. 
difficile by Toxin A/B ELISA. These were 
either GDH positive or negative. 
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Upon recruitment, stool, urine and blood baseline samples were taken. The blood was fractionated 

into plasma and sera. Where possible, a maximum of three follow-up samples were taken 

longitudinally at 2, 4 and 6 weeks post-baseline. Time between initial NHS lab diagnosis and baseline 

sample collection ranged from approximately 1 to 7 days, in which time the patients may have already 

begun antibiotic treatment for C. difficile with metronidazole, vancomycin and/or fidaxomycin, as per 

NHS guidelines (Figure 3.1) [454]. Metadata was obtained throughout the study for recruited 

participants, including; previous history of CDI and/or previous antibiotic usage, severity of CDI and 

the PCR ribotype of infection, relapse or continuous colonisation, date, duration and type of 

antibiotics, proton pump inhibitors and nutritional supplements. The NHS diagnostic results for each 

patient were also extracted retrospectively, including some retrospective culturing form the lab stool 

sample. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1. Timeline for diagnosis and collection of participant samples. Baseline represents samples 
taken on recruitment into the study, with up to three additional samples taken in follow-up. Antibiotic 
prescription describes those administered for treatment of CDI.  
 

 Probing of the array 

The proteome of the hypervirulent C. difficile strain R20291 was used as the base for selection of 

proteins to be screened on the pan-protein array, with additional proteins included from three other 

lineages of C. difficile namely strains 630 (ribotype 012), CF5 (ribotype 017) and M120 (ribotype 078). 

Putative protein function as annotated in the C. difficile genome and pBLAST analysis enabled selection 
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of proteins for screening. This consisted of a number of different potential antigens, including surface-

associated proteins, virulence factors and strain specific unique proteins, including transposases. 

Analysis and selection of the proteins was performed by Dr Richard Stabler and Dr Lisa Dawson at 

LSHTM.  

The Felgner group at UCI have established a pan-protein array platform for the screening of bacterial, 

viral and parasitic proteomes against human samples, in the pursuit of vaccine and diagnostic 

discovery [380, 385, 455]. Production and probing of the C. difficile pan-protein array was undertaken 

by the consortium partners in the Felgner group at UCI Irvine, as described previously [380, 456]. 

Briefly, the coding sequence of the target proteins and the pXT7 plasmid for protein expression were 

amplified by PCR with complimentary overhangs to one another. Amplicons were transformed 

together into competent E. coli DH5α cells and incubated overnight in LB supplemented with 50 µg/ml 

of kanamycin for plasmid selection. From this, the ligated plasmids were isolated and a proportion of 

these confirmed by sequencing to encode the correct insert, with a total cloning efficiency rate of 

~93%.  

Protein expression was achieved using an in vitro transcription/translation (IVTT) cell free system, 

using the RTS 100, E. Coli HY Kit (Roche) [457]. Synthesised plasmids encoding the construct for 

expression with ribosome binding site and T7 promoter and terminator, were incubated with all the 

components required for transcription and translation, including T7 polymerase for production of 

mRNA and an E. coli lysate providing the ribosomal machinery required for translation [380]. Instead 

of purifying the protein, the IVTT reactions were centrifuged with 0.2% Tween20, then the 

supernatants printed directly onto nitrocellulose-coated glass FAST slides (Whatman) using an Omni 

Grid 100 microarray printer (Genomic Solutions). To confirm protein expression, the coding sequences 

for each protein also harboured a 5’ 10XHistag (HIS) and 3’ haemagluttinin tag (HA), enabling detection 

of full protein. In total, 3165 proteins were cloned, then successfully printed and screened on the 

array, by UCI. Arrays were printed throughout the study, as required. 
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 Optimisation of the pan-protein array and pilot study 

Plasma samples were selected as preliminary work found no difference in antibody response between 

plasma and sera samples. It was also attempted to use the stool samples to probe the array, to assess 

the level of secretory IgA present within the gut. However, unacceptable levels of background were 

produced in these assays which made it impossible to determine C. difficile-specific signal, therefore 

this was reserved for later use following optimisation.  

A pilot study was performed in 2015 using 189 plasma samples from the CDI (split into severe CDP and 

mild CDN) and CDU group, and a third control group collected by UCI, called GCRC. This is a standard 

healthy control group utilised in their arrays, constituting students and staff recruited from the UCI 

campus. This protein array was probed separately with IgG and IgA, using anti-human antibodies 

conjugated to the Cy5 fluorophore. As the IgA response was low across the sample set, the IgG 

response was analysed. This analysis was conducted by UCI following probing of the array, who then 

provided a short list of the top 70 reactive antigens which were significantly different in signal in at 

least one of the between group comparisons (CDI vs CDU,  CDP vs CDU, CDI vs GCRC) (Appendix D). 

The healthy control group from California were not age and sex matched to the CDI patients and little 

was known about these samples. As these were likely to be younger people these samples were 

deemed unsuitable as C. difficile primarily affects those over 65 years of age and therefore this is the 

target group for investigation. The CDU group was therefore used as a comparator. This group had 

diarrhoea but were negative for the C. difficile toxin and therefore assumed to be C. difficile negative. 

At this stage, the results were used to look for immunogenic proteins in the CDI group, to confirm 

these antigens are recognised by the human immune response. The proteins within the shortlist fell 

into many different functional categories but the majority came from one of four groups; enzymes, 

transport, cell surface proteins and hypothetical/uncharacterised proteins. From the shortlist of 

immunogenic proteins, three were selected for further characterisation in vitro. Proteins were 

preferentially selected that were predicted to be surface exposed and present in multiple clinically 

relevant strains as identified by pBLAST. Furthermore, proteins with a putative function that suggests 
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an important role in survival that would be valuable to characterise were also prioritised. This resulted 

in the selection of three proteins for characterisation in vitro, CDR20291_0330, a putative cobalt 

binding protein, CDR20291_3343 a putative pili protein and CDR20291_0342 a putative ABC 

transporter permease, as described in Chapter 4, 5 and 6, respectively. 

 Screening of CDI patients against matched healthy controls 

The protein arrays were probed in 2016 with 279 baseline plasma samples, from the CDI (128), CDH 

(71) and CDU (80) groups. The CDH group are matched controls from the Liverpool cohort of samples. 

The printed slides were incubated for 30 mins with protein array-blocking buffer (GVS Life Sciences, 

Sanford, USA) then incubated at 4oC overnight with 1:100 plasma, diluted in blocking buffer. Prior to 

probing, plasma samples were pre-absorbed with E. coli lysate to quench any anti- E. coli antibodies, 

which can mask organism-specific antibody responses [380]. Slides were washed, then incubated with 

anti-human IgG or IgA simultaneously, before washing again and visualising the results using an 

ArrayCAM imaging system, which enables two colour scanning of the arrays. IgG and IgA signals were 

differentiated by the Quantum dot conjugated to the anti-human antibodies, which have different 

fluorescent spectral profiles [456, 458].  

 Analysis of array results  

Processing and analysis of the raw data obtained following probing of the array was conducted by Dr 

Li Liang at UCI and Dr Lisa Dawson and Professor Taane Clarke at LSHTM, between 2016 and 2017. 

Firstly, background signal was removed by subtracting the mean of the no DNA control spots from the 

raw data values for each protein. The no DNA controls represent plasmid-free E. coli lysate from the 

IVTT system.  From this, the mean IgG reactivity for each protein was calculated for the different 

patient groups and any statistically significant differences between the CDI and CDH groups was 

determined using a Student’s t-test and Wilcoxon Rank test, where p<0.05 was considered significant. 

The IgA signal was consistently much lower than the IgG response and it was difficult to extract 



94 
 

meaningful data, therefore the IgG response was used for identification of potential vaccine 

candidates. 

3.3. Identification of novel immunogenic C. difficile proteins 

In order to identify immunogenic antigens that could serve as potential vaccine candidates, those 

proteins where the IgG reactivity signal was higher in CDH over the CDI group were investigated. It 

was hypothesised that a higher response in the CDH group suggests antibody development against 

the target protein has a protective effect against infection.  

 Identification of immunogenic proteins for recombinant expression in E. coli 

A table of the normalised intensity values for each antigen on the array was compiled, including the 

total number of samples reacting to each antigen (out of a total 279), where a minimum signal 

intensity of 0.5 was produced in both groups (Table 3.2). To identify potential vaccine candidates, 

these were sorted by the largest difference in signal intensity between the CDH and CDI group, where 

the CDH signal was significantly higher than in the CDI group, as determined by t-test or Wilcoxon rank 

test. From this antigen shortlist, 6 targets were selected for further investigation (in bold, Table 3.2), 

taking into consideration conservation across different C. difficile strains from the 5 clades; (630 

(ribotype 012), R20291 (ribotype 027), M120 (ribotype 078), M68 (ribotype 017) and CD305 (ribotype 

023)), as determined by pBLAST and sequence analysis. Additional factors include the mean signal in 

the two groups and putative annotation of the protein, selectively choosing those most likely to be 

surface exposed and a range of different putative functions to screen a variety of different candidates. 

Signal to purified Toxin A was significantly higher in the CDH compared to the CDI cases, but was 

excluded due to volume of existing research [86, 274, 445]. Two proteins were not conserved through 

all strains but were included for analysis, especially considering any eventual C. difficile vaccine would 

unlikely to be based on a single antigen, meaning the lack of the protein in all strains wouldn’t 

necessarily limit vaccine coverage. CDR20291_2697 was present in M68 but contained multiple stop 

codons and therefore was unlikely to produce a functional protein. However, the IgG response to this 
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protein was one of the highest for the CDH group and a high proportion of samples recognised this 

protein (228/279) (Table 3.2). CDR20291_0342 was found to not be present in the ribotype 023 CD305 

strain but as before, this wouldn’t be used in a vaccine alone and was one of the immunogenic proteins 

chosen for in vitro characterisation based on the pilot study. Of the three proteins selected for further 

investigation from the pilot study, both CDR20291_0330 and CDR20291_0342 demonstrated a 

significantly higher IgG response in the CDH group in this analysis, confirming their potential as vaccine 

candidates. The response to CDR20291_3343 was higher in the CDH group although this was not 

significant. 

Three additional proteins were also included for use as controls. These covered three different 

reactivity profiles- higher in the CDI group compared to the CDH group (CDR20291_3064) (negative 

control), high in both groups (CDR20291_2503) (positive control) and low in both groups 

(CDR20291_2536) (negative control). Therefore in total, 10 candidates were taken forward for 

expression, purification and testing in the ELISAs. 
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Name Putative Annotation 
No. of samples 

with signal 
(279) 

IgG signal CDH 
minus 

CDI 

Wilcoxon 
rank test 

T-test Outcome Mean 
CDH 

Mean 
CDI 

CDCF5_2692 Cell surface protein 135 4.51 1.24 3.27 0.01 0.00 Not conserved 

CDM120_orf03606 Putative class B sortase 210 6.02 2.76 3.26 0.01 0.04 Not conserved 

CDCF5_0223 Flagellin subunit 213 6.67 3.51 3.16 0.00 0.02 Not conserved 

CDR20291_2697 Hypothetical membrane protein 228 6.79 4.02 2.77 0.01 0.20 CANDIDATE 

CDM120_0411 Signaling protein 278 24.95 22.69 2.26 0.00 0.42 Not conserved 

CD0416 Exported protein 207 3.29 1.15 2.14 0.00 0.01 Not conserved 

CD0386 Collagen-binding surface protein 243 6.85 4.76 2.09 0.00 0.11 Not conserved 

CDR20291_2235 Membrane protein (HP) 213 10.07 8.16 1.91 0.01 0.63 High response in CDI 

CD1105 DNA primase 270 7.82 6.30 1.52 0.00 0.13 Not conserved 

CDR20291_2226 Hypothetical membrane protein 179 4.49 3.01 1.49 0.00 0.41 Unknown function 

CDR20291_2640 Accessory gene regulator 220 3.07 1.64 1.43 0.00 0.12 CANDIDATE 

CDM120_2021 
Type I-B CRISPR-associated endonuclease 
Cas1  

190 2.40 1.06 1.33 0.03 0.41 Not conserved 

CDR20291_2491 CdtA (adp-ribosyltransferase 192 5.25 4.01 1.24 0.00 0.41 Not conserved 

CDR20291_0330 Cobalt transport protein 156 2.07 0.86 1.21 0.15 0.03 CANDIDATE 
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Name Putative Annotation 
No. of samples 

with signal 
(279) 

IgG signal CDH 
minus 
CDIN 

Wilcoxon 
rank test 

T-test Outcome Mean 
CDH 

Mean 
CDIN 

CD0430 Membrane protein 238 2.46 1.32 1.14 0.00 0.00 Not conserved 

CDR20291_2389 Competence protein 175 2.05 0.92 1.13 0.02 0.15 
Unlikely to be surface 
exposed 

CDR20291_0342 ABC transporter, permease protein 212 2.55 1.44 1.11 0.01 0.04 CANDIDATE 

CDR20291_3155 Type IV pilin 179 2.12 1.02 1.10 0.02 0.13 CANDIDATE 

CD0453B Hypothetical protein 247 2.49 1.46 1.03 0.00 0.00 Not conserved 

CDR20291_0781 Hypothetical membrane protein 188 2.03 1.01 1.03 0.00 0.03 Unknown function 

CDR20291_0966 Transglycosylase 169 1.94 0.92 1.01 0.01 0.01 
Unlikely to be surface 
exposed 

CDM120_0286 Hypothetical protein 198 2.69 1.68 1.01 0.00 0.11 Not conserved 

CDR20291_1324 Uncharacterized protein 272 4.54 3.54 0.99 0.00 0.06 Not conserved 

CDR20291_0002 Mechanosensitive ion channel protein 176 1.96 1.00 0.96 0.00 0.24 
Low signal in both 
groups 

CDR20291_2253 Exported protein 167 2.59 1.68 0.91 0.03 0.33 CANDIDATE 

CDR20291_3343 Pilin protein 101 0.28 0.19 0.09 0.1 0.3 CANDIDATE 

Table 3.2. Top vaccine candidates from the protein array, based on difference in IgG reactivity. The IgG response of the 279 samples to the screened proteins was compared 
to identify the top 25 antigens with the largest difference in signal between the CDH and CDI sample groups, where the signal was significantly higher (p<0.05) in the CDH 
group, as determined by t-test or Wilcoxon rank test. From this list, six proteins were selected for purification and further screening with patient samples (bold). This was 
based on those with interesting putative functions that were likely to be surface exposed and conserved across multiple C. difficile strains. Proteins were considered conserved 
when they were identified in 4/5 strains investigated using pBLAST; 630, R20291, CD305, M68 and M120. The seventh bolded antigen is CDR20291_3343 which was selected 
for characterisation based on the result of a pilot study. CDH, healthy controls, CDI, patients with C. difficile infection.   



98 
 

3.4. Selection of regions for recombinant expression in E. coli  

Cell surface proteins often encode transmembrane domains (TMDs) for their anchoring into the cell 

membrane. As these are hydrophobic, when expressed recombinantly it can make isolation of soluble 

protein challenging. It was therefore decided to use a combination of bioinformatics approaches, 

namely Phyre2 and TMHMM Server v2.0, to identify predicted TMDs within each array candidate. 

Additionally, Phyre2 and SignalP were used for identification of signal sequences, which would not be 

present in the mature protein in vivo. Few signal peptides were identified during protein analysis, 

however many harboured putative N-terminal TMDs. It is possible that these TMDs are in fact signal 

peptides as both harbour a number of hydrophobic residues.  

In some instances, it was not possible to exclude all TMDs. For example, CDR20291_0330 is a small 

protein with two putative TMDs. Selecting the region between these domains would result in 

expression of a very small peptide which was not practical, therefore the region between these 

domains was expressed with the second TMD. CDR20291_2640 is TMD rich and there were no 

predicted exposed regions of suitable length for expression therefore the whole protein was included. 

Finally, as CDR20291_0342 is a large protein, two regions were selected for expression which were 

predicted to be extracellular, S1 and S3. Modified protein sequences were codon optimised for 

expression in E. coli and ordered for synthesis as G-block gene fragments (IDT) for downstream cloning 

(Figure 3.2).  
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Figure 3.2. Analysis of the C. difficile protein array candidates for recombinant expression in E. coli. 
Each array candidate was assessed for transmembrane domains (TMDs) (underlined) and signal 
peptides (bold) using a combination of Phyre2, TMHMM server v2.0 and SignalP. Both signal peptides 
and TMDs were removed where possible as these are hydrophobic and can hinder purification of 
soluble protein. Regions selected for expression are shaded in grey. Two regions of CDR20291_0342 
were proposed to be surface exposed and were selected for expression; S1 and S3.    
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3.5. Expression of recombinant C. difficile proteins in E. coli  

The array candidates selected for screening were recombinantly expressed in E. coli (Table 3.3). Large 

scale protein expression and purification is routine procedure and optimised for E. coli. Using this host 

also enabled expression from the pETM11 plasmid (Figure 3.3) [459], where  protein expressionis IPTG 

inducible. The candidate protein is cloned downstream of an IPTG inducible promoter, and 

transcriptionally fused to an N-terminal 6XHistag for nickel affinity purification of the desired protein, 

which is separated from the protein coding sequence by a tobacco etch virus (TEV) protease cleavage 

site. This enables cleavage of the 6XHistag following translation and purification, which provides an 

additional round of purification and removes the chance of background reactivity from the 6XHistag.   

 

 

 

 

 

 

 

 

 

 

 

 



102 
 

Name Putative function 
IgG response 
on protein 
array 

Size with 
6XHistag 
(KDa) 

Size without 
6XHistag 
(KDa) 

R20291_3155 
Pilin protein from the minor pili 
locus, PilA2 

Higher in CDH 12.37 9.23 

R20291_0342 S1 
Permease component of an 
ABC transporter (S1 region) 

Higher in CDH 26.39 23.25 

R20291_0342 S3 
Permease component of an 
ABC transporter (S3 region) 

Higher in CDH 36.37 33.23 

R20291_0330 Cobalt binding protein Higher in CDH 10.83 7.69 

R20291_3343 
Minor pilin, PilK, encoded 
within the major pili locus 

Higher in CDH 58.74 55.6 

R20291_2253 Exported protein  Higher in CDH 20.14 17 

R20291_2697 Membrane protein  Higher in CDH 22.03 18.89 

R20291_2640 Accessory regulator Higher in CDH 25.3 22.16 

R20291_2503 Cell-division initiation protein 
High in CDH 
and CDI 

20.3 17.16 

R20291_2536 Exported protein  
Low in CDH 
and CDI 

27.73 24.59 

R20291_3064 Membrane protein insertase Higher in CDI 6.11 2.97 

 
Table 3.3. Protein array candidates selected for recombinant expression in E. coli. Putative function 
of the C. difficile proteins selected for recombinant expression in E. coli, along with the predicted size 
before and after cleavage of the 6XHistag. IgG response is also included to describe the different 
candidates- higher in CDH (vaccine candidate), High in CDH and CDI (positive control), higher in CDI 
and low in both CDI and CDH (negative controls).  

 

 

 Cloning and test expression of recombinant proteins 

Codon optimised G-block fragments encoding the recombinant C. difficile protein sequences were 

inserted immediately downstream of the TEV cleavage site in pETM11 (Figure 3.3) using either 

restriction digest (section 2.4.4), for 0342 S1, 0342 S3, 2253, 3155 and 0330 or Gibson assembly 

(section 2.4.6), for 2697, 3343 and 2640. It was not possible to successfully clone 2536, 2503 and 3064 

into pETM11, therefore these were not taken further. All plasmids were confirmed to be correct by 

DNA sequencing.  
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Figure 3.3. Plasmid map of pETM11, used for recombinant expression of C. difficile protein array 
candidates in E. coli. Plasmid map and sequence of the pETM11 plasmid for protein expression. This 
harbours an N-terminal 6XHistag followed by a TEV protease cleavage site, enabling removal of the 
6XHistag following protein purification. Image from Dümmler et al. [459] and the EMBL Protein 
Expression and Purification Facility 
(https://www.embl.de/pepcore/pepcore_services/strains_vectors/vectors/pdf/pETM-11.pdf).  
 

The pETM11 plasmids harbouring the different recombinant proteins were transformed into the E. 

coli protein expression strain, BL21. As an initial test to confirm expression of the proteins, 10 ml 

cultures of the BL21 strain carrying the different pETM11 plasmids were induced overnight with 1 mM 

IPTG and cells harvested the next day. Extracted protein was purified using nickel affinity resin then 

probed with anti-His antibody in an immunoblot (Figure 3.4).  
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Figure 3.4. Recombinant expression of C. difficile protein array candidates in E. coli. Each pETM11 
plasmid harbouring a different construct for expression was induced overnight in 10 ml LB with 1 mM 
IPTG. The cells were disrupted and protein extracted and purified by nickel affinity chromatography. 
Purified protein samples were run on an SDS-PAGE gel then detected on an anti-his immunoblot 
(green). UI, uninduced, I, induced. Arrows indicate the band corresponding to the desired protein.    

 
When induced with 1 mM IPTG, a His-reactive band was detected at approximately the correct size 

for 0342 S1, 0342 S3, 3155, 3343, 2640, 2697 and 0330. Although for some proteins the level of 

expression appeared to be low (CDR20291_0330 and CDR20291_3155), it was deemed sufficient to 

be taken forward into upscale and further purification. A double band was produced for 2253 and 

therefore was excluded from further study. Higher levels of expression were achieved for 

CDR20291_2697 and CDR20291_2640, which was presumably the reason for detection of protein in 

the uninduced control, due to the promoter not being completely off.  

 Purification of the C. difficile recombinant proteins from E. coli  

In order to obtain sufficient protein for screening with the serum samples, eight litres of E. coli culture 

was prepared for expression of each C. difficile protein; 0342 S1, 0342 S3, 0330, 3155, 3343, 2697 and 

2640. Cultures were induced overnight at 37oC with 1 mM IPTG then cells harvested and lysed using a 
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cell homogeniser. The supernatant of the lysate was obtained by centrifugation then passed over a 1 

ml HisTrap HP column on an AKTA purifier system for isolation of the target protein via the N-terminal 

6XHistag. The purified protein was eluted from the column in 1 ml fractions and an aliquot of each 

corresponding to the AKTA peak were run on an SDS-PAGE gel to identify which held the protein of 

interest. Even though 0342 S3, 3343 and 2640 were detected in the test cultures, and despite repeated 

attempts with the large scale cultures at different temperatures and in difference flask sizes, very little 

or no protein was detected following purification of these in the larger scale set up and would not 

have been sufficient for downstream processing, therefore these were also not taken forward. This 

left four purified proteins to take forward; 0342 S1, 0330, 3155 and 2697.  

The fractions containing the eluted protein were pooled for each candidate then incubated overnight 

with TEV protease to remove the 6XHistag. Following incubation, the samples were run through an 

additional nickel affinity purification step but in this instance, any protein still harbouring the 6XHistag 

and the 6XHis-tagged TEV protease bind to the column, allowing the isolation of cleaved protein only 

in the flow-through. This also served as an additional purification step, as any histidine rich proteins 

pulled out in the first nickel affinity purification, also bound to the column (Figure 3.5). We thank the 

Issaacson group at Kings College London for their kind gift of purified TEV protease.  
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Figure 3.5. Cleavage of the 6XHistag from the nickel affinity purified proteins using TEV protease. 
Proteins purified using nickel affinity chromatography were incubated overnight with tobacco etch 
virus (TEV) protease for removal of the N-terminal 6XHistag. The protease cleaves at a recognition site 
upstream of the start of the recombinant protein, which can then be isolated in the flow-through 
fraction of a nickel affinity purification, where the 6XHistagged TEV protease remains bound to the 
column. Each protein isolated in the flow-through of the nickel affinity purification was run on an SDS-
PAGE gel to ensure the correct protein had been isolated and visualise the size shift resulting from 
removal of the 6XHistag. The predicted size of the protein pre and post incubation with TEV, 
respectively, is 26.4 KDa to 23.3 KDa for 0342 S1, 22 to 18.9 KDa for 2697 and 12.4 to 9.2 KDa for 3155. 
Lanes represent the different stages of purification; Pre- pre-TEV cleavage and the rest of the different 
stages of nickel affinity purification; FT- flow-through, W1- wash 1, W2- wash 2, W3- wash 3, W$- wash 
4, E-elution.   

 
The concentration of 0330 was low even before incubation with the TEV protease, and very little was 

left following the second nickel affinity purification, therefore this was not taken forward. As a final 

step, to ensure only the protein of interest would be tested on our ELISAs and minimise the risk of E. 

coli contamination, the three 6XHistag cleaved proteins were purified by gel filtration, which separates 

protein based on size. Again the fractions eluted from the column were run on an SDS-PAGE gel to 

confirm the protein location and presence (Figure 3.6). To ensure the correct protein had been 

purified, an aliquot 3155 and 0342 S1 was sent to Kings College London Centre of Excellence for Mass 

Spectrometry for liquid chromatography mass spectrometry (LC MS/MS). 2697 was analysed using LC 

MS/MS by Dr Sherif Abouelhadid at Imperial College London. Analysis for all three revealed the correct 

protein had been purified. This provided further confirmation that the correct protein had been 

purified for 3155, which was running at approx. 6 KDa on the SDS-PAGE gel as opposed to the 

predicted 9.2 KDa size of the protein.  
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Figure 3.6. Purification of the C. difficile recombinant array candidates using gel filtration. Flow-
through samples isolated form the nickel affinity purification following TEV mediated cleavage of the 
6XHistag were passed through a gel filtration column as an additional purification step. This separates 
protein based on size and was successful for all three proteins, as demonstrated in the corresponding 
SDS-PAGE gels.  

 

3.6. Screening of recombinant C. difficile proteins against CDI patient sera  

Three of the potential vaccine candidates identified on the protein array (2697, 0342 S1 and 3155) 

were purified to a sufficient concentration for screening against serum samples from patients with CDI 

and controls. To do so, an indirect ELISA was utilised. In this method, the protein antigens were bound 

to the bottom of a 96-well plate before probing with human sera (using a protocol from [460] and 

modified by Dr Tim Scott). Serum-derived antibodies bound to the protein were then detected using 
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a HRP-conjugated anti-human IgG antibody which enables colourmetric quantification of antibody 

binding when incubated with the 3,3',5,5'-tetramethylbenzidine (TMB) substrate.  

 Optimisation of ELISAs for protein screening  

The initial optimisation steps for the ELISAs, to determine the optimal plate type and coating buffer 

for adhering the protein to the plate, were performed using each protein still harbouring their 

6XHistag, to enable detection with an anti-His antibody rather than the limited human serum samples. 

Each protein was serially diluted in coating buffer, either carbonate/bicarbonate or PBS, and used to 

coat a Nunc Maxisorp flat-bottom or Nunc Medisorp flat-bottom plate. These plates are designed for 

use in immunoassays, with the Medisorp plate recommended for more hydrophobic proteins. Plates 

were incubated with the protein overnight then probed with rabbit anti-His antibody followed by HRP-

conjugated goat anti-rabbit IgG, with thorough washing steps between incubations. The TMB 

substrate which reacts with the HRP-conjugate was added to each well and the reaction stopped with 

1 M H2SO4 when the two highest concentrations of protein appeared to be the same colour by eye, 

suggesting the reaction had reached saturation point. OD450 readings were taken and the absorbance 

of each protein in the different conditions compared. All proteins were successfully bound to the plate, 

as demonstrated by the increase in absorbance reading with increasing protein concentration (Figure 

3.7). There was no difference between the Maxisorp and Medisorp plates, however, carbonate-

bicarbonate buffer did appear to confer improved protein coating over PBS (Figure 3.7). From this, 

Medisorp plates with carbonate-bicarbonate coating buffer were selected for the screening 

conditions.   
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Figure 3.7. Optimisation of ELISAs using 6XHistagged protein. Plate type and coating buffer for use in the ELISAs were determined prior to testing with human 
sera using each of the purified proteins still harbouring their 6XHistag. Each protein was serially diluted (32 µg/ml to 0.5 µg/ml) in carbonate-bicarbonate 
buffer or phosphate buffered saline and bound to a Nunc Maxisorp or Medisorp plate overnight. Proteins were identified using anti-his primary antibody 
followed by a secondary antibody conjugated to horseradish peroxidase which was detected using TMB substrate. Reactions were stopped with 1 M H2SO4 
following appropriate colour development and results read using a plate reader at OD 450nm. Each protein concentration was tested in duplicate and the 
assay performed twice. Error bars denote standard deviation from the mean.  
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 Testing patient samples  

A total of 39 serum samples were provided by UoL for screening against the three purified proteins. 

These samples are in the pipeline for screening on the protein array by UCI (includes longitudinal 

sampling of CDI patients). The samples provided by UoL consisted of 10 samples from the CDI group, 

nine from the CDH group (Table 3.1) and 20 from a diarrhoea CDU group. Due to time and protein 

sample limitations 10 samples from the CDU group were run for 2697 and 0342 S1. There was 

insufficient protein available to run these against 3155. As it wasn’t possible to clone the desired 

control, purified human IgG was used as a positive control for secondary antibody binding and buffer 

only as a negative control.  

To optimise the assay for use with human serum samples, one CDI and one CDH sample were screened 

against serial dilutions of the three purified proteins, from 1.5 µg/ml to 50 µg/ml. A broader dilution 

range was used compared to the anti-his ELISAs as the reactivity of the serum with the purified protein 

was unknown. A buffer only control was used to determine background signal for each serum sample 

and purified human IgG was used as a positive control for the secondary antibody.  

A signal was generated for all three proteins with both CDI and CDH serum samples, resulting in 

saturation at the highest protein concentrations (Figure 3.8). Signal strength varied greatly between 

both proteins and samples, therefore three concentrations of protein were selected for the full scale 

sample testing; 12.5 µg/ml, 6.25 µg/ml and 3.125 µg/ml. These concentrations translated to a signal 

between baseline and saturation in the test assay.  
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Figure 3.8. Optimisation of ELISAs using human plasma samples. To determine the concentration 
range of each protein for screening human plasma samples, a range of protein concentrations were 
first probed with one CDI and one CDH plasma sample. Plasma was diluted 1:100 before incubating 
with the serially diluted protein (50 µg/ml to 1.5 µg/ml). Human antibodies in the plasma were 
identified using anti-human IgG secondary antibody which was conjugated to horseradish peroxidase, 
enabling colourimetric detection upon addition of the TMB substrate. Reactions were stopped with 
1M H2SO4 following appropriate colour development and results read using a plate reader at OD 
450nm. This assay was performed once, as a screen to ensure sera responses could be detected.  

 

 

Concentration µg/ml Concentration µg/ml 
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Sample testing was conducted for the 10 CDI and 9 matched CDH samples, as described above, and 

the difference between the IgG signal in response to the different antigens was plotted for both groups 

and assessed using both a Students t-test and Wilcoxon rank test (Figure 3.9a). Any significant 

differences were set at a cut off p< 0.05. As seen in the optimisation steps (Figure 3.8), there were 

variations in the signal between the three protein antigens tested. The IgG response varied between 

protein antigen and sera samples (Figure 3.9a), with a similarly varied response pattern also seen in 

the results from the protein array when all patients’ screened are plotted individually (Figure 3.9b). 

However, unlike in the array results where all three proteins were associated with a significantly higher 

IgG response in the CDH group (Figure 3.9b), there was no significant difference in IgG response 

between the CDH and CDI groups for any protein, although the mean IgG signal against 0342 S1 and 

2697 did look to be higher by ELISA in the CDH compared to the CDI group (Figure 3.9a).   

Proteins 2697 and 0342 S1 were also screened against 10 serum samples from the CDU group. These 

samples were included as an additional group of patients who were in hospital and negative for the C. 

difficile toxin by ELISA, but still had diarrhoea of an unknown cause. Further investigation of these 

samples by the UoL using additional C. difficile diagnostics found some samples within this group were 

GDH and C. difficile culture positive, suggesting these patients had CDI. Therefore, the available 

metadata was used to categorise our CDU samples into two groups i) GDH positive culture positive 

(GDH +) which were most likely CDI positive patients and ii) GDH negative culture negative (GDH-), 

which potentially have diarrhoea from an unrelated source (non-CDI) (Figure 3.9a). There was no 

significant difference in response for either antigen when comparing the response in the GDH positive 

and negative groups.  
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Figure 3.9. Screening of human blood samples to quantify IgG reactivity towards three C. difficile proteins. Three C. difficile proteins were screened against 
human samples in either an ELISA or protein array format. (A) Three recombinant proteins from C. difficile were screened against 29 sera samples; 10 from 
patients with CDI (CDI), nine from healthy controls (CDH) and 10 from people with diarrhoea of unknown cause (CDU) which were further split depending on 
if the glutamate dehydrogenase (GDH) test was positive or negative. This was performed in an indirect ELISA using a horseradish peroxidase conjugated 
secondary antibody which recognises human IgG and enables chemiluminescent detection of IgG binding. (B) Results of the three C. difficile proteins on the 
protein array when screened against 279 human plasma samples; 128 CDIN, 71 CDH and 80 CDU. Statistical significance was determined by t-test or Wilcoxon 
rank test where p<0.05 was significant, *p<0.05, **p<0.005, NS- non-significant.  Each protein was tested in duplicate at three concentrations and the assay 
performed once.  Error bars denote standard deviation from the mean. 
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Additional data for each patient in the CDI group is detailed in Table 3.4, including culture result, 

ribotype of current infection, previous cases of CDI, severity of infection, relapse and antibiotic 

treatment prior to and during the study. The response to each protein on the ELISA was conditionally 

formatted, with highest responses in red and lowest in green and compared against this patient data 

to investigate whether there appear to be an association between sample response and patient 

outcome.  

From this, there did not appear to be a clear association between response to the samples in the ELISA 

and the outcome of C. difficile infection. Patients CDI 04 and CDI 05 were both continuously colonised 

with C. difficile throughout the study period and demonstrated a low IgG response to all three 

proteins. This suggests that they had not mounted a strong immune response to these antigens. 

However, there were also instances of patients clearing the infection whilst demonstrating no 

response to 0342 S1 or 2697 (CDI 09) and on the reverse, patient CDI 01 demonstrated a comparably 

high IgG response to all three proteins yet relapse of CDI was reported 2 weeks post-diagnosis. 

Therefore, from this sample set it was not possible to conclude as to whether 0342 S1, 3155 or 2697 

would provide protection from infection if included as a vaccine component.  
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ELISA IgG response of serum samples from the CDIN group 

0342 S1 0.087 0.009 0.111 0.004 0.032 0.097 0.014 0.129 0.000 0.056667 

2697 0.590 0.074 0.092 0.029 0.013 0.067 0.163 0.037 0.000 0.063333 

3155 0.068 0.517 0.008 0.001 0.080 0.031  0.317  0.018833 

Clinical data for participants in the CDIN group 

Sample No. CDI 01 CDI 02 CDI 03 CDI04 CDI 05 CDI 06 CDI 07 CDI 08 CDI 09 CDI 10 

Culture 
result 

POS POS POS POS POS POS POS POS POS POS 

GDH result N/A N/A N/A N/A POS N/A N/A N/A N/A POS 

Ribotype 049 002 078 017 002 002 N/A 027 014 N/A 

Previous CDI NO NO NO NO NO NO NO NO NO NO 

Severity of 
CDI 

MILD SEVERE MODERATE SEVERE MODERATE SEVERE MILD SEVERE MODERATE SEVERE 

Relapse 
Diarrhoea
-2 weeks 

Continued 
colonisation 

NO 
Continued 

colonisation 
Continued 

colonisation 
Continued 

colonisation 
NO NO NO NO 

Previous 
antibiotics 

CIP - - - BEN, AMX 
GEN, AMC, 
TZP, MEM 

SXT, GEN, 
FID, TZP 

CEF, TZP AMC 
AMC, 

GEN, TZP 

CDI 
treatment 

MTZ, 
VANC 

FID NONE FID MTZ, FID FID FID 
VANC, 
MTZ 

MTZ MTZ 

Antibiotics 
during study 

- - - - FLU, BEN MEM - - - - 

PPIs or H2Bs YES YES NO YES NO YES YES NO YES YES 

 
Table 3.4. IgG reactivity of three C. difficile proteins screened against sera samples from patients with CDI, with matching clinical data. CDIN, blood samples 
from patients with CDI, POS-positive, NEG-negative, CIP-ciprofloxacin, BEN-benzlycillin, AMX-amoxicillin, GEN-gentamicin, AMC-co-amoxiclav, TZP-tazocillin, 
MEM-meropenem, SXT-co-trimoxazole, FID-fidaxomycin, CEF-ceftriaxone, MEZ, metronidazole, VANC-vancomycin, FLU-flucloxcillin, N/A- not available, PPI- 
proton pump inhibitor, H2B- histamine-2 receptor blocker.  
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3.7. Discussion 

This chapter describes the identification of novel, immunogenic C. difficile antigens that hold potential 

as vaccine candidates for protection against CDI. These were identified based on the results of a C. 

difficile-specific protein array, a high-throughput platform for rapid screening of multiple antigens 

against human samples. Array-based characterisation of the humoral immune response during CDI is 

one component of an ongoing programme grant investigating progression of CDI, including analysis of 

host biomarkers and the intestinal microbiota.  

Protein arrays are yet to be fully exploited for the investigation of C. difficile. Negm et al. demonstrated 

their utility for screening purified Toxin A and B and three ribotype specific SLPs from C. difficile, with 

sera samples from patients with CDI, cystic fibrosis patients negative for symptomatic CDI and healthy 

controls [272]. Here, higher anti-SLP IgG responses were identified in the healthy controls compared 

to those with CDI, but there was no difference in the two groups when comparing the anti-toxin 

response [272]. An additional study found a higher anti-Toxin A and B IgA response and a higher level 

of neutralising IgA towards Toxin A in those with cystic fibrosis compared to those with CDI and healthy 

controls [461].  

The studies described above screened samples against array slides printed with purified protein. 

Although this is possible for a small number of antigens, it becomes impractical to prepare purified 

antigenic material for whole proteome analysis. The use of IVTT for the arrays described in this chapter 

enabled transcription and translation of the target protein in a one tube, cell-free system which is 

directly printed on the slides for probing [457]. Consequently, over 3000 C. difficile proteins were 

screened with plasma samples from patients with CDI, healthy controls (CDH) and those with 

diarrhoea of an unknown aetiology (CDU).  

From the primary pilot screen three candidates were prioritised to follow-up with for phenotypic 

characterisation as these were immunogenic proteins in the top 100 reactive antigens. Subsequently, 
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in the second array of 279 samples, 25 potential vaccine candidates were shortlisted, which displayed 

a significantly higher IgG response in the CDH over the CDI group. Two of these were CDR20291_0330 

and CDR20291_0342, those proteins chosen in the pilot screen. The third protein, CDR20291_3343, 

was associated with a higher response in the CDH group but this was not significant. However, this 

antigen was still investigated as pilins are a popular target for vaccines in many species [462-465]. A 

higher antibody response in healthy people suggests a protective effect from infection. This has been 

demonstrated for other protein in multiple studies which showed higher anti-toxin and anti-cell 

surface protein antibodies, such as FliC and Cwp84, in those without CDI or asymptomatic carriers of 

C. difficile, compared to those with CDI [86, 270, 273, 461]. However, these associations are not 

consistent across all studies. The relative contribution of antibodies to Toxin A versus Toxin B, the 

antibody isotype (IgG and IgA) and the overall role of anti-toxin antibodies in acquisition of infection, 

severity and duration of CDI and relapse, varies between reports [269, 271, 272, 275, 444-446]. 

Indeed, in our antigen shortlist, purified toxin A was present (but not pursued due to the wealth of 

information already available), yet purified toxin B and domains of toxins A and B produced using IVTT 

were not. One possible reason for the inconsistencies across the existing literature is the large 

variation in sample cohorts between reporting studies, including; geographical location, antibiotic 

administration, average age of the patient, co-morbidities, control groups selected for comparison 

and the overall number of samples. Further investigations should aim to stratify the existing data to 

facilitate meaningful comparisons in conjunction with the design and performance of additional 

research. 

In relation to the study groups investigated here, the IgG response between the CDI and CDH group 

were compared as the third group, the diarrhoea, C, difficile toxin negative CDU group has not been 

fully characterised. This group consists of hospitalised patients with diarrhoea of an unknown cause 

and negative for C. difficile Toxins A and B. Further analysis of these has found a subset of patients to 

be positive for C. difficile by GDH test and culture, therefore the lack of toxin detection could either 



118 
 
 

indicate a false-negative result by Toxin A/B ELISA or asymptomatic colonisation [466, 467]. 

Stratification of this group is ongoing, but in order to provide a valuable contribution towards analysis 

of the humoral immune response, would ideally include: 

CDI positive. Patients with toxigenic C. difficile causing symptomatic infection that was initially missed 

due to lack of sensitivity in toxin detection.   

Asymptomatic carriage. Patients negative for the toxins but still colonised with C. difficile. Ideally 

these would be differentiated into toxigenic and non-toxigenic colonising strains.  

CDI negative. Toxin, GDH and culture negative. This presents another control group who are 

hospitalised but free from both C. difficile infection and colonisation.  

Those who are asymptomatically colonised with toxigenic C. difficile are an interesting control group, 

as it suggests a host response is preventing the development of CDI. Previously, higher anti-toxin 

antibodies have been found in those asymptomatically colonised with C. difficile compared to CDI 

patients [86]. The existing sample cohort described here lacks a specified asymptomatic colonisation 

group but this could be derived from further analysis of the diarrhoea-positive CDU patients, including 

samples that are stool culture positive for C. difficile but free toxin negative. However, for these it 

would be very important to confirm the absence of free C. difficile toxin, ideally in combination with a 

diagnosis of the actual cause of diarrhoea, to confidently exclude symptomatic C. difficile infection. 

Following categorisation of these patients, associated longitudinal samples could be analysed to aid 

differentiation between transient and persistent colonisation, and how this relates to humoral 

immunity [7, 52]. Within this, it is obviously important to consider other factors that could prevent the 

switch from asymptomatic colonisation to CDI, such as the presence of certain bacterial taxa within 

the gut microbiota and antibiotic exposure [7, 468, 469].  

Ideally, an anti-C. difficile vaccine would prevent both the symptoms of CDI and colonisation of the 

pathogen. Comparison of the three groups described above plus the healthy controls could enable 
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further dissection of humoral immunity in these different states, with an aim to identify antibody 

responses specific to each. For example, by taking those patients who are in hospital with diarrhoea 

but negative for symptomatic CDI and comparing between those who are positive or negative for C. 

difficile colonisation, it may be possible to identify a specific anti-colonisation antibody signature.  

Screening of a larger proportion of the total sample cohort could aid in answering some of the 

questions raised above, especially when including the analysis of longitudinal samples and the host 

microbiota. This work is ongoing, with additional plasma samples being screened against a smaller 

number of antigens on a specifically designed down selected array than tested previously, focusing on 

proteins which were identified by the IgG response in the whole proteome screen as potential 

diagnostic or vaccine candidates.  

High sera IgG responses to C. difficile in healthy people has been reported previously and was the basis 

for selection of potential vaccine candidates in this study. It has been postulated that the high rate of 

circulating, systemic antibodies to C. difficile in healthy people is a result of prior exposure, for example 

in the environment or during colonisation in infancy [272, 470, 471]. This enables the development of 

immune memory which is activated upon exposure to or transient colonisation with C. difficile [472, 

473].  

However, this does raise the question as to why serum antibodies are so important for protection 

from a gut pathogen, as the secretory IgA response within mucosal immunity would presumably be 

more relevant. Robust mucosal immunity has been demonstrated to provide protection from 

numerous enteric pathogens, such as Salmonella Typhi [474]. Indeed, Warny et al. found higher faecal 

anti-Toxin A IgA in patients with mild CDI over those with more severe or recurrent infections [274] 

and comparisons of colonic biopsies between CDI patients and healthy controls found higher numbers 

of IgA-secreting cells in the latter group [475]. Furthermore, Hong et al. demonstrated protection from 

C. difficile colonisation in hamsters orally immunised with Bacillus subtilis spores expressing a portion 

of Toxin A, with a high secretory IgA response to Toxin A detected 14 days after completion of 
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immunisation [276]. As for the systemic response, its development and role is not fully understood. 

Suggestions include toxin-mediated disruption of the epithelial cells lining the gut enables circulating 

antibodies to encounter C. difficile, either by C. difficile antigens entering the mucosal tissue or 

systemic antibodies moving into the gut lumen [476, 477].  

The main limitation of protein arrays is the lack of information on antibody functionality. Antibody 

binding does not necessarily equate to a protective immune response and it is the activity of that 

antibody when bound to the antigen that is important. This is therefore an important area for future 

work, focusing on antibody binding to bacteria cells and neutralisation and opsonophagocytic assays 

to determine the response of the antibodies to the antigen of interest. It is also important to note that 

C. difficile is a complex infection and acquisition of CDI is influenced by a number of factors in addition 

to the antibody response, including immune capacity of the patient, previous exposure to C. difficile, 

state of the gut microbiome and co-morbidities. This can be addressed in part using patient metadata 

in conjunction with the antibody response results.  Another drawback to using this technology in C. 

difficile is that the E. coli background can mask immunogenicity of the C. difficile proteins as the 

systemic antibody response is not high enough to overcome it.  Blood-borne pathogens have a much 

higher systemic antibody response meaning this background is less of a problem [384]. This was the 

reason behind the use of purified protein for the ELISAs in this study. Regions of the protein selected 

for expression were based on likelihood of exposure to the immune system, meaning signal peptides 

and transmembrane domains were removed. As these are regions of hydrophobicity, their removal 

also aids purification of soluble protein. The regions selection for expression are therefore unlikely to 

be identical to those printed for the array, which were not purified and instead spotted directly on the 

slides. It is therefore possible that removal of the hydrophobic domains may have influenced the 

immune recognition of the proteins, not necessarily in terms of reactivity of the domains themselves, 

but how their removal may alter folding of the protein, and consequently the loss of certain 

conformational epitopes.The proteins were screened with polyclonal sera which is very likely to 
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recognise numerous epitopes, both conformational and linear, but the measured response could still 

be reduced if particularly immunodominant epitopes were lost. Indeed, if the whole protein were 

required for future investigations, a denaturing agent such as urea could be used to solubilise the 

protein, enabling purification [478]. It is also noteworthy that one limitation of protein arrays, even 

when the whole protein is successfully expressed, is the difficultly in ensuring the protein is folded 

correctly when printed on the array, in order to ensure conformational epitopes are presented as they 

would be in vivo [479]. In addition to protein folding, the success in cloning and expression of the 

protein may also affect the antibody response as protein concentration is not quantified before 

spotting on the array when using the IVTT system. Prior to testing, the ELISAs were optimised using 

both anti-His antibodies and human sera samples. When detecting bound anti-IgG antibodies using 

the TMB substrate, following incubation it was necessary to stop all reactions at the same point in 

order to enable comparison across the different serum samples. However, due to the natural variation 

in reactivity between protein antigens and serum samples, both found here and reported previously, 

some samples reached saturation before others had a detectable response [273, 445]. In the future, 

and with unlimited protein and sera samples, checkerboard assays could be performed to enable 

detection of the optimal combination of protein concentration and serum dilution. Here all 

combinations of protein and serum concentrations are tested until the correct ratio is determined 

[480]. Final testing could then use this information to include a larger range of protein concentrations 

and serum dilutions to better determine antibody responses in a varied sample population.  

Although this study provided a valuable starting point in the identification of novel vaccine candidates 

using a protein array, only a small sample set was investigated in the ELISAs, which limited conclusions 

to be drawn over the immunogenicity of the antigens of interest. The IgG response to 2697, 3155 and 

0342 S1 was significantly higher in healthy controls compared to those with CDI when assessed by 

protein array, whereas although 0342 and 2697 signals were higher in the CDH group by ELISA, these 

differences weren’t significant. This may be a result of the small sample sizes available for statistical 
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analysis compared to the 279 samples from the protein array which would likely have resulted in a 

higher power analysis. Furthermore, as noted, there was substantial variation in samples responses 

and as these were randomly selected, it may be that those tested were skewed towards a particular 

response. Regarding antigen choice, if this were to be repeated it would be useful to also include those 

proteins where a high response was identified in all patient groups. This would be a means of 

validating the array and identifying immunoreactive candidates, before then undergoing further 

analysis of any differences in response between patient groups groups. The down selected protein 

arrays that are currently underway will probe 250 IVTT expressed antigens, including 2697, 0342 S1 

and 3155 both purified and expressed using IVTT, against a number of additional samples including 

those tested here by ELISA. This will facilitate comparison of purified versus IVTT expressed protein, 

as well as between the protein arrays and ELISAs for measuring IgG reactivity. Previously, Negm et al. 

found significant correlation between ELISA and protein array quantification of anti-toxin antibodies, 

although this association was weaker for Toxin B compared to Toxin A [272].  
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4. Functional characterisation of CDR20291_0330, a putative cobalt 

transport protein 

4.1. Introduction 

The C. difficile protein array identified a number of immunogenic proteins, including 

CDR20291_0330. In the pilot study this protein was found to be immunogenic then in a follow up, 

using healthy matched controls to the CDI patients, a higher serum IgG response to the protein was 

detected in healthy controls compared to patients with CDI. This response is associated with 

potential vaccine candidates, as a higher response in the control group suggests a protective effect 

of harbouring antibodies to these proteins.  

CDR20291_0330 is a putative cobalt binding protein. Cobalt, along with many other micronutrients, 

is essential for bacterial survival, although it is usually only required in minute concentrations by the 

cell. Cobalt is primarily required for synthesis of the different cobalamin compounds through its 

incorporation into the corrin ring [481, 482]. Vitamin B12 (cyanocobalamin) is one of the most 

notable members of this groups and is important in many cellular processes, as are its derivatives 

(hydroxycobalamin, methylcobalamin and adenosylcobalamin), particularly as enzyme co-factors 

[483]. For clarity, from here on the different vitamers will all be referred to as B12.  

Some bacteria, along with archaea, are unique in their ability to synthesise B12, with both aerobic and 

anaerobic biosynthesis pathways identified in a broad range of organisms [484, 485]. Additionally, 

dedicated transporters can be utilised for direct uptake of B12 from the environment [486]. Cobalt and 

other micronutrients are often scarce within the environments that bacteria reside, meaning high 

affinity uptake transporters are employed to scavenge for necessary substrates. This includes energy 

coupling factor (ECF) transporters which mediate the uptake of micronutrients via hydrolysis of ATP 

[487]. They are similar to, but functionally distinct from ABC transporters and are composed of three 
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universal units; an A unit with ATPase activity, a T unit forming the transmembrane channel and an S 

unit for substrate binding [488, 489].   

Without in vitro characterisation, identification of transporters and more importantly, their targeted 

substrate is often based on a combination of factors, including; phylogenetic analysis, associated 

regulatory elements and the putative or actual function of genes with which they are co-localised 

[490]. Using this system, Rodionov et al. identified the cobalt ECF transporter, CbiMNQO (Figure 4.1) 

[490]. This transporter encodes two substrate binding components (CbiM and CbiN), a permease, 

(CbiQ) and an ATPase, (CbiO). It was confirmed to mediate high affinity uptake of cobalt when 

CbiMNQO transporters from Rhodobacter capsulatus and Salmonella enterica serovar Typhimurium 

were reconstituted in vitro [490, 491].   

 

 

 

 

 
Figure 4.1. Organisation of the CbiMNQO transporter. (A) Schematic of the suggested organisation 
of the CbiMNQO cobalt transporter in bactera, including the ATPase (CbiO), transmembrane 
components (CbiQ) and substrate binding domains (CbiM and CbiN). Image taken from Rodionov et 
al. [490]. (B) Genomic organisation of the putative CbiMNQO transporter in C. difficile R20291 
including; CbiM (CDR20291_0329), CbiN (CDR20291_0330), CbiQ (CDR20291_0331) and CbiO 
(CDR20291_0332).  

 
CbiMNQO and other genes encoding cobalt/B12 transporters or B12 synthesis pathways are often 

encoded downstream of a B12 riboswitch. These regulatory elements are encoded within the 5’ 

untranslated region of their associated gene and can be directly bound by B12 leading to structural 

changes within the RNA, resulting in transcriptional termination or translational sequestration [492, 

493]. Three riboswitches have been annotated within the C. difficile 630 genome, upstream of the 
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cbiMNQO operon, a putative B12 transporter (BtuFCD) and within the putative B12 biosynthesis 

pathway [111, 492]. Micronutrient uptake transporters such as CbiMNQO are encoded with a 

riboswitch to prevent build-up of their substrate within the cell, whichcan be toxic [494].  

CDR20291_0330 is the putative cobalt binding protein (CbiN) from CbiMNQO and we sought to 

characterise the role of this protein within the cell, specifically in terms of the requirements for cobalt 

and consequently B12 in C. difficile.  
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4.2. Bioinformatics 

When searching the amino acid sequence of CDR20291_0330 against other strains of C. difficile, this 

protein was found to be highly conserved and present in strains from different clades (Table 4.1).  

 

 

 

 

 

 

 

 

Table 4.1. Conservation of CDR20291_0330 amino acid sequence across C. difficile strains. The 
conservation of the CDR20291_0330 amino acid sequence across a number of C. difficile strains from 
diverse ribotypes was assessed using pBLAST searches with R20291 as the comparator sequence.  

 

Phyre2 analysis identified CDR20291_0330 as a putative membrane protein with a signal peptide (1 to 

21 amino acids) and single transmembrane domain. However, CbiN has previously been identified as 

harbouring two transmembrane domains flanking an extracytoplasmic loop [490]. This organisation 

was supported when the amino acid sequence was analysed using the transmembrane domain 

prediction software, TMHMM Server v. 2.0., which identified two transmembrane domains. As with 

the Phyre2 analysis, SignalP 5.0 also identified a signal peptide, belonging to the Sec pathway. For 

annotation of the CDR20291_0330 sequence with this domains, see Chapter 3, Figure 3.2.  

In addition to the presence of a B12 riboswitch, the annotation of CbiMNQO as a cobalt transporter is 

supported by the relatively high degree of sequence similarity between CDR20291_0330 and CbiN 

from S. typhimurium (92% query cover and 60% percentage identity) and R. capsulatus (query cover 

90% and percentage identity 49%) (Figure 4.2). As discussed above, both of these transporters have 

Strain Ribotype Percentage identity (%) 

R20291 027 100 

CD196 Historic 027 100 

630 012 96.8 

M120 078 96.8 

M68 017 96.8 

CD305 023 96.8 
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been demonstrated to be highly specific for cobalt uptake, and inactivation of CbiN abolished 

transport [491].  

 

 

 

 

 

 

 

Figure 4.2. Alignment of amino acid sequences of CbiN. The amino acid sequence of CDR20291_0330 
from C. difficile was aligned with the CbiN sequence from Salmonella typhimurium (92% query cover 
and 60% percentage identity) and Rhodobacter capsulatus (query cover 90% and percentage identity 
49%) using pBLAST.   

 

 Cobalt and B12 uptake in C. difficile  

As discussed, prokaryotes encode many transport mechanisms to ensure they maintain sufficient 

intracellular levels of B12 and cobalt, but no putative cobalt or B12 transporters from C. difficile have 

been characterised in vitro. Genes were investigated that have been annotated as cobalt or B12 

transport proteins in C. difficile, in addition to CbiMNQO, using pBLAST to analyse both the putative 

transporter and any associated genes (Table 4.2). Of note are two putative CorA transporters, which 

are typically associated with magnesium uptake, but have also been found to transport zinc and cobalt 

other bacteria [495]. Neither of these putative transporters were encoded with B12 riboswitches or 

genes relying on B12/cobalt to function.
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Table 4.2. Putative cobalt transporters in C. difficile. List of putative cobalt transporters in C. difficile, analysed using pBLAST. The presence of B12 riboswitches 
and B12-related genes was also investigated. The previously identified CbiMNQO transporter (CDR20291_0329-0332) is not included.  

Gene (630/R20291) Putative function Co-localisation B12 riboswitch? Comments 

CD0313/CDR20291_0317 

Cadmium translocating ATPase. 
Heavy metal domain, 
implicated in inorganic ion 
transport including cobalt, 
cadmium, lead, and zinc 

Encoded with CD0312, 
putative metalloregulator 
from the SmtB/ArsR family 

No  

CD0591/CDR20291_0516 
Heavy metal translocating 
ATPase 

Encoded with the hypothetical 
protein CD0592 

No  

CD00101-
102/CDR20291_99-100 

Putative ATPase and permease 
components of an ECF 
transporter 

None No 
No S unit or riboswitch could be 
identified 

CD0430-CD0431/not 
found in R20291 

CD430 and CD431 are putative 
cbiQ and cbiO components of 
an ECF transporter  
 

Encoded with a putative S unit 
(CD0429) and two predicted 
transcriptional regulators 
(CD0427 and CD0428) 

No 
No CbiN component identified, low 
homology of putative S unit with 
CbiM, could not be found in R20291 

CD1044/CDR20291_900 
HlyC/CorC family of 
transporters for metal ion 
uptake, including cobalt 

None No  

CD1831/CDR20291_1725 

Magnesium transporter within 
CorA family. CorA transporters 
are also associated with zinc 
and cobalt transport 
 

None No  

CD2122/ 
CDR20291_2029 

Magnesium transporter within 
CorA family. CorA transporters 
are also associated with zinc 
and cobalt transport 
 

None No  
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In relation to B12 uptake, the only probable B12 transporter is BtuFCD (CD2997-2999/CDR20291_2832-

2835). This is a well-established B12 transporter in other organisms but has not been investigated in C. 

difficile [486, 496, 497]. In the C. difficile genome it is encoded downstream of a B12 riboswitch [111, 

492]. Interestingly, both 630 and R20291 encode this transporter yet in R20291, there is a transposase 

insertion towards toward the 3’ of BtuC (CD2998/CDR20291_2833) which encodes the permease 

component (Figure 4.3). Therefore, whether BtuCDE is actually functional in R20291 is unknown. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Comparison of the putative BtuCDE B12 transporter from C. difficile 630 and R20291.   The 
putative BtuFCD transporter for uptake of vitamin B12 was identified in the genome of C. difficile strains 
630 and R20291. There is a transposase insertion (CDR20291_2834) within the BtuC gene in R20291 
(CDR20291_2833).   

 

4.3. Construction of a CDR20291_0330 gene deletion mutant   

The major function for cobalt within bacteria is for B12 synthesis. C. difficile encodes the anaerobic 

pathway for B12 synthesis, suggesting it is capable of de novo synthesis. Therefore, it was hypothesised 

that inactivation of the CbiMNQO transporter, the only putative cobalt transporter identified in C. 

difficile to date, would impact on B12 synthesis in C. difficile. The requirements for cobalt and B12 in C. 

difficile are unknown but interestingly, screening of a transposon library in C. difficile found 

A. 

B. 
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inactivation of cobT, a gene within the anaerobic synthesis pathway resulted in loss of colonisation in 

mice, suggesting this is an essential pathway for C. difficile survival in the gut [498].  

The loss of CbiN was hypothesised to result in loss of function of the transporter as as previous work 

in Salmonella typhimurium demonstrated loss of CbiN results in abolishment of transporter activity in 

vitro [491].  

To achieve this, CDR20291_0330 was deleted from the C. difficile chromosome using allele exchange 

mutagenesis, a technique to generate in-frame deletion mutants in C. difficile, which reduce the risk 

of polar effects resulting from insertional inactivation [439]. This utilises two homology arms (>1000 

bp) flanking the gene for deletion, which enable the homologous recombination events to occur 

(Figure 4.4). These were introduced into R20291 using pMTL82151, a replication defective “pseudo-

suicide” plasmid, which is only stable once integrated on the chromosome. Integration results in 

improved growth on thiamphenicol so larger colonies were selected for passage on non-selective agar 

to facilitate loss of the plasmid. This resulted in reversion to wild-type or a second cross over event 

leading to a gene deletion mutant which were differentiated by PCR.  

CDR20291_0330 is only 286 bp, therefore for screening purposes, primers flanking the gene rather 

than the entire homology region were used, so the size shift would be easily visible by gel 

electrophoresis. As can be seen in Figure 4.4, clones were isolated where their corresponding 

amplicon was smaller compared to that from wild-type R20291. These potential deletion mutants 

were confirmed by amplification and sequencing of the entire homology region.  
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Figure 4.4. Allele exchange mutagenesis of CDR20291_0330 in R20291. (A) Schematic of the allele 
exchange construct for generation of the CDR20291_0330 gene deletion mutant. This is annotated 
with the primers used for construction of the cassette and for screening to detect gene deletion 
mutants. (B) PCR screen of potential CDR20291_0330 gene deletion mutants using primers 
R20291_0330_MUT_f and R20291_0330_MUT_r. 1 to 7- individual clones from R20291, 8- wild-type 
R20291 gDNA, 9-dH2O.  The predicted size of amplicons with and without CDR20291_0330 are 610 bp 
and 367 bp, respectively.  
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 Growth kinetics in rich media 

To determine whether R20291Δ0330 had any growth impairments, OD595 readings were taken for 

R20291 wild-type and R20291Δ0330 when growing in rich media, BHI (Figure 4.5). There was no 

difference in growth rate between the two strains.  

 

 

 

 

 

Figure 4.5. Growth kinetics of R20291 and R20291Δ0330 in BHIS. R20291 and R20291Δ0330 were 

grown overnight in BHI then diluted into fresh BHI media to a starting OD595 0.05. OD readings were 

taken every hour for the first 8 hours then at 24 hours. Black- R20291 and grey- R20291Δ0330. Each 

culture was set up in duplicate and three independent replicates were performed. Error bars represent 

standard deviation.  

 Growth kinetics in minimal media  

It may be that in rich media, B12-dependent mechanisms are non-essential or that cobalt and B12 are 

freely available and the cell is capable of their uptake. To try and dissect this, the exact growth 

conditions were specified using C. difficile minimal media. Originally outlined by Karasawa et al. [32] 

and further modified to remove surplus ingredients by Cartman et al. [499], this media comprises the 

minimal components required for C. difficile growth and enables manipulation of the growth 

environment. Cobalt is provided in the form of cobalt chloride, but B12 was removed by Cartman et 

al., suggesting it is non-essential in this setting. However, the effect of removing both B12 and cobalt 

has not been examined. We hypothesised that in the wild-type, absence of B12 in the media would 

result in no growth, but this would be compensated by providing cobalt to enable C. difficile to 

synthesise its own B12. Furthermore, we hypothesised that in the mutant, the addition of cobalt would 

not enable growth due to the loss of function of the CbiMNQO transporter. Strains were inoculated 
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directly from plate cultures into minimal media containing either cobalt and B12, cobalt or B12 or 

neither. These were grown for 24 hours then diluted into fresh minimal media matching the overnight 

conditions, and growth rate measured every hour at OD595. Neither strain exhibited any differences in 

growth kinetics when comparing between growth media (Figure 4.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Growth kinetics of R20291 and R20291Δ0330 in minimal media. R20291 and 

R20291Δ0330 were grown for 24 hours in minimal media containing either cobalt and B12, cobalt or 

B12 or neither then diluted into fresh minimal media matching the overnight conditions to a starting 

OD595 0.05. OD readings were taken every hour for the first 8 hours then at 24 hours. Each culture was 

set up in duplicate and three independent replicates were performed. Error bars represent standard 

deviation. 
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4.4. Cobalt and B12 requirements in C. difficile  

In both rich and minimal media, where cobalt and B12 availability was controlled, no growth 

impairments were detected in either strain. Therefore, we aimed to identify conditions where B12 was 

essential, for example for a particular metabolic pathway. Once established, this could be used to 

assess cobalt and B12 dependency and any impact of inactivating CDR20291_0330. Previous work has 

identified genes in C. difficile that are predicted to encode for B12-dependent enzymes [483, 500], 

including MetH and EutBC. These genes in 630 and R20291 were assessed for co-localisation with a 

B12 riboswitch or B12/cobalt transporter and presence of a B12-independent isomer of the enzyme, 

which bacteria can utilise during B12 deficiency and are often coupled to B12 riboswitches [483, 492]. 

Genes involved in the synthesis of B12 were excluded.  

The putative enzyme required for the final stage of methionine synthesis, MetH 

(CD3596/CDR20291_3434) is not co-localised with a B12 transporter or riboswitch. However, C. difficile 

also encodes the B12-independent isomer of this enzyme- MetE (CD0130/CDR20291_0129), which we 

hypothesised would compensate for the lack of B12 if investigated in growth assays, resulting in no 

observable phenotype. The EutBC (CD1913-1914/CDR20291_1834-1835) enzyme is also not found 

with a B12 riboswitch or uptake system but no B12-independent isomer has been identified in C. difficile 

or other species [483]. The lack of a B12 independent isomer as well information on EutBC’s 

requirement for B12 in other species made this an interesting candidate for further work. EutBC 

encodes ethanolamine ammonia lyase, the enzyme responsible for breakdown of ethanolamine which 

can be used as a carbon and nitrogen source [501]. Ethanolamine utilisation was therefore selected 

for further work using investigations in minimal media growth assays, which can be manipulated to 

generate the desired conditions [32, 431].  

 Ethanolamine Utilisation 

Phosphotidylethanolamine is the principal bacterial phospholipid and a key component of the cell 

membrane. Many gut bacteria are capable of metabolising phosphotidylethanolamine, which releases 
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ethanolamine into the intestinal environment. Consequently, a number of enteric bacteria use 

ethanolamine as a carbon source, including Salmonella and Enterococcus [502]. 

C. difficile harbours a 20 gene locus predicted to encode the ethanolamine utilisation pathway [36, 

111, 502] (Figure 4.7), which is upregulated in the presence of ethanolamine [36]. C. difficile 630 can 

use ethanolamine as a carbon source in vitro, although current evidence is less conclusive for R20291. 

In Enterococcus, the eut operon is positively regulated following detection of ethanolamine by a two-

[503, 504] EutW, which have also been identified within the C. difficile eut operon- CD1910 and 

CD1911, respectively [36].  

The central enzyme for ethanolamine breakdown is the ethanolamine ammonia lyase (EutBC), which 

is B12-dependent. The eut locus is therefore often found downstream of a B12 riboswitch, but no 

putative riboswitch could be identified in C. difficile in this study or others [111].  The locus encodes a 

number of other genes, which includes those that form the bacterial microcompartment, within which 

ethanolamine is utilised [505].  

 

 

Figure 4.7. The ethanolamine utilisation (eut) locus in C. difficile. Schematic of the putative 
ethanolamine utilisation locus in C. difficile based on annotation and diagram by Nawrocki et al. [36] 
(2018 Society for Applied Microbiology and John Wiley & Sons Ltd). There are three predicted 
promoters, upstream of eutG, eutS, and eutA and a transcriptional terminator following eutW. Genes 
encoded within the locus vary in their predicted function and include; metabolic enzymes (blue), 
regulatory proteins (green), bacterial microcompartment units (yellow), ethanolamine transporter 
(purple) and a protein of unknown function (white).  

 

Due to the requirement for cobalt in B12 synthesis and the association between B12 and ethanolamine 

utilisation, this was selected as a suitable assay for screening cobalt/B12 dependent conditions in C. 

difficile. We hypothesised that absence of B12 would result in C. difficile being unable to utilise 

ethanolamine. Consequently, it was predicted that ethanolamine utilisation would be abolished for 

R20291Δ0330 if B12 was not provided, as this strain is hypothesised to not import cobalt into the cell, 
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preventing B12 synthesis. To begin with, growth kinetics were performed using R20291 and 

R20291Δ0330 with either glucose, ethanolamine or water as a no carbon control. Although no 

difference in OD between ethanolamine and water was identified by Nawrocki et al. when 

investigating R20291, the number of colony forming units (CFUs) was higher in ethanolamine, 

therefore both were measured here [36]. Cultures were grown overnight in BHIS broth, then diluted 

1:10 into fresh BHIS broth and grown until OD595 0.6. These were then diluted to OD595 0.1 in minimal 

media matching the final growth conditions and diluted 1:10 into the test flasks to obtain a starting 

OD595 0.01.  

Unlike Nawrocki et al. who observed differences in growth between glucose and ethanolamine within 

the first 12 hours [36], our study observed limited growth and therefore the total growth time was 

extended up to 72 hours, taking readings at 16, 20, 24, 40, 44, 48, 64, 68 and 72 hours. This enabled 

determination as to whether the time delay was due to C. difficile adapting to the change between 

rich and minimal media and/or using other preferred carbon sources before switching to the 

ethanolamine-dependent pathway. CFUs were taken at 16, 44 and 72 hours.   

Both R20291 and R20291Δ0330 had grown in glucose to a comparable level after 16 hours, but there 

was no increased growth in ethanolamine compared to the water only control at any time point 

(Figure 5.8). After 72 hours, the vegetative cell count was significantly higher in ethanolamine 

compared to the no carbon control for R20291, with the same comparison not significant in 

R20291Δ0330. However, in both strains the total number of CFUs appeared to be either steady or 

decreasing in ethanolamine and no carbon across the three time points, suggesting this may be a 

result of a faster reduction in viable C. difficile in the no carbon compared to ethanolamine, rather 

than growth in ethanolamine. Due to the lack of growth of the wild-type R20291 strain in 

ethanolamine, it was not possible to answer our hypothesis.  
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Figure 4.8. Growth kinetics of R20291 and R20291Δ0330 in ethanolamine. Strains were grown to OD 0.6 in rich media before inoculation into minimal media 
containing glucose, ethanolamine or water (no carbon control). OD595 readings were taken at 16, 20, 24, 40, 44, 48, 64, 68 and 72 hours. Colony forming units 
for the total cell and spore counts were also taken at 16, 44 and 72 hours.  Spore counts were incubated at 65oC for 20 mins before plating to remove 
vegetative cells then vegetative cell count was calculated by subtracting the spore count from the total cell count. (A) R20291 and (B) R20291Δ0330. 
Differences in CFU counts between strains was analysed for significance using a linear regression. * p>0.05, p>0.005, p>0.0005, NS- not significant.  Each 
culture was set up in duplicate and three independent replicates were performed. Error bars represent standard deviation.
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The same assay was repeated using 630Δerm, 630Δerm_1910::CT and 630Δerm_1911::CT. The latter 

strains harbour ClosTron insertions within EutV and EutW, respectively, which form the ethanolamine 

sensor (these strains were constructed by Dr Alexandra Faulds-Pain). Firstly, the growth of all strains 

was compared in BHI and found to be comparable, demonstrating these mutations do not impair 

growth in rich media (Figure 4.9).   

 

 

 

 

 

 

Figure 4.9. Growth kinetics of 630Δerm, 630Δerm_1910::CT and 630Δerm_1911::CT in BHIS. All 
strains were grown overnight in BHI then diluted into fresh BHI media to a starting OD595 0.05. OD 
readings were taken every hour for the first 8 hours then at 24 hours. Each culture was set up in 
duplicate and three independent replicates were performed. Error bars represent standard deviation. 

 
In the minimal media (Figure 4.10), all strains grew in glucose after 16 hours. There was no significant 

difference in total cell counts between strains in the glucose or no carbon conditions at any time point 

(Figure 4.11). At 16, 20 and 24 hours, growth in ethanolamine was comparable to that in no carbon 

for all strains. Following this, the OD and vegetative cell count slowly decreased until reaching a 

plateau, in glucose and the no carbon control.  

Interestingly, by 44 hours, the spore counts in ethanolamine were significantly higher than the no 

carbon control for 630Δerm and 630Δerm_1910::CT. By 72 hours, both the vegetative cell and spore 

count were significantly higher in ethanolamine compared to no carbon and this difference was also 

visible by OD, suggesting both of these strains were utilising ethanolamine. There was no significant 
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Figure 4.10. Growth kinetics of 630Δerm, 630Δerm_1910::CT and 630Δerm_1911::CT in ethanolamine. Strains were grown to OD 0.6 in rich media before 
inoculation into minimal media containing glucose, ethanolamine or water (no carbon control). OD595 readings were taken at 16, 20, 24, 40, 44, 48, 64, 68 and 
72 hours. Colony forming units for the total cell and spore counts were also taken at 16, 44 and 72 hours.  Spore counts were incubated at 65oC for 20 mins 
before plating to remove vegetative cells then vegetative cell count was calculated by subtracting the spore count from the total cell count. (A) 630Δerm, (B) 
630Δerm_1910::CT and (C) 630Δerm_1911::CT. Differences in CFU counts between strains was analysed for significance using a linear regression. * p>0.05, 
p>0.005, p>0.0005, NS- not significant.   Each culture was set up in duplicate and three independent replicates were performed. Error bars represent standard 
deviation.
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increase in OD, vegetative cell or spore count for 630Δerm_1911::CT in ethanolamine compared to no 

carbon. At 44 and 72 hours, growth in ethanolamine was significantly higher in 630Δerm and 630Δerm-

_1910::CT compared to 630Δerm_1911::CT (Figure 4.11). Collectively, this demonstrates that 

630Δerm can use ethanolamine as an energy source for growth and inactivation of 630Δerm_1911::CT 

only, abolishes this phenotype. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Colony forming units of 630Δerm, 630Δerm_1910::CT and 630Δerm_1911::CT when 
grown in glucose, ethanolamine and no carbon. Total cell counts of 630Δerm, 630Δerm_1910::CT and 
630Δerm_1911::CT when grown in glucose, ethanolamine or water (no carbon) at (A) 16 hours, (B) 44 
hours, (C) 72 hours. Differences in CFU counts between strains was analysed for significance using a 
linear regression. * p>0.05, p>0.005, p>0.0005, NS- not significant. Each culture was set up in duplicate 
and three independent replicates were performed. Error bars represent standard deviation. 
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 Cobalt requirements in ethanolamine utilisation  

To evaluate the B12 requirements of ethanolamine utilisation, the 630Δerm growth kinetics were 

repeated, with and without cobalt. As cobalt is only required at trace level by the cell, it was important 

to reduce the chance of carryover of cobalt already present within the cell or rich media. Therefore, 

the assay was performed as before, but for the steps using rich media, this was replaced with minimal 

media supplemented with glucose but cobalt was excluded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Growth kinetics of 630Δerm in glucose, ethanolamine or water, with and without 
cobalt. 630Δerm grown overnight in minimal media with glucose but no cobalt was subbed into fresh 
media and grown to OD 0.6 before inoculation into test minimal media containing glucose, 
ethanolamine or water (no carbon control), with and without cobalt. OD595 readings were taken at 16, 
20, 24, 40, 44, 48, 64, 68 and 72 hours. (A) 16 hours (B) 44 hours and (C) 72 hours. Differences in CFU 
counts between strains was analysed for significance using a Student’s t-test, NS- not significant. Each 
culture was set up in duplicate and two independent replicates were performed. Error bars represent 
standard deviation. 
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We hypothesised, that in the absence of cobalt and B12, C. difficile would not be able to utilise 

ethanolamine. However, there was no difference in growth in glucose between the plus and minus 

cobalt cultures. Interestingly, even by 72 hours, there was no growth in ethanolamine for strains 

growing with or without cobalt. This suggests that minimal carryover from the rich media in the 

previous experiments may have provided an essential factor that supported ethanolamine utilisation. 

Overall, due to the lack of growth in ethanolamine in both conditions, it was not possible to determine 

the cobalt and consequently B12 requirements. 
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4.5. Discussion 

 
This chapter aimed to investigate the role of CDR20291_0330, a putative cobalt transport protein 

(CbiN) [483], from the CbiMNQO ECF transporter, which mediates high affinity uptake of cobalt [490, 

491]. In pursuit of this, CDR20291_0330 was deleted from the chromosome using allele exchange 

mutagenesis, which enables removal of the target with minimal disruption to neighbouring genes 

[439]. It was also aimed to investigate cobalt and B12 requirements in C. difficile, an understudied area 

especially considering the importance of B12 in many cellular processes. C. difficile encodes a complete 

anaerobic B12 biosynthesis pathway, for which cobalt is an essential component [111, 481, 482]. 

Transcriptomics data suggests genes within the cbiMNQO operon are involved in the central 

metabolism pathways in C. difficile as they are downregulated in a Spo0A mutant (cbiM and cbiO) and 

under predicted negative regulation by CodY (cbiM), two major regulators of C. difficile [506, 507]. 

In both rich and minimal media, no growth defect was observed in R20291 wild-type or R20291∆0330 

when cobalt and/or B12 was removed, suggesting in these conditions it is non-essential. However, C. 

difficile encodes putative mechanisms for both B12 uptake and de novo synthesis, the latter of which 

constitutes a large locus that is likely to pose a metabolic burden so maintenance of this suggests B12 

is required by the bacteria [111, 483, 484]. To further examine this, the expression profiles of these 

transporters and synthesis enzymes could be monitored to determine when they are required and 

under what conditions. For those genes downstream of a B12 riboswitch, including the cbiMNQO 

operon and cbiP within the B12 synthesis pathway [111], these are likely to be regulated at the 

translational level, meaning transcriptomics would be less informative. Instead, a translational fusion 

could be employed, such as a chromosomal SNAP-tag or LOV domain, which will be translated with 

the gene product and provide a detectable marker [508-510]. Upon identification of expression 

conditions, spent growth media from C. difficile which lacked exogenous B12, but was cultured with 

and without cobalt could be assessed for the presence of C. difficile-synthesised B12, using high 

performance liquid chromatography or by using the growth of Lactobacillus leichmannii in the spent 
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culture media which is auxotrophic for B12 [511]. When testing R20291∆0330 in these conditions, it 

would be necessary to consider the activity of other putative cobalt transporters (Table 5.2), but this 

would only be relevant once a cobalt/B12 dependent condition had been defined. Alternatively, to 

investigate the activity of CDR20291_0330 more directly, ligand binding assays could be performed, 

using fluorescence spectrometry to measure binding affinity of the purified protein with cobalt and 

other such as nickel or iron [512].  

With an aim to provide a growth environment where cobalt/B12 is essential, ethanolamine utilisation 

was assayed. Ethanolamine breakdown is mediated by the B12-dependent ethanolamine ammonia 

lyase (EutBC) which is encoded within the putative ethanolamine utilisation operon (eut) in C. difficile. 

There are only two publications previously dedicated to ethanolamine utilisation in C. difficile. The 

first characterises the ethanolamine microcompartment within which it is hypothesised it is 

metabolised whereas the second focuses on growth of C. difficile in ethanolamine, the genes involved, 

and how this impacts virulence [36, 505]. Therefore, the latter publication was used as a starting point 

for our own growth assays.  

Nawrocki et al. demonstrated a biphasic growth curve for strain 630Δerm in minimal media, which 

they attributed to the differences in carbon utilisation- amino acid metabolism in the first instance 

followed by an additional growth phase relying on glucose or ethanolamine after ~ 4 and 10 hours, 

respectively [36]. No substantial growth was obtained in any condition within the standard 8 hour 

time period (data not shown) therefore the growth kinetics were extended with a final reading at 72 

hours. There was a ten-fold increase in OD (0.01 to 0.1) in the first 16 hours of growth in the no carbon 

control, which is likely a combination of carry-over from rich media and amino acid metabolism. By 16 

hours, the OD for growth in glucose was comparable to the maximum absorbency readings obtained 

in the previous publication.  

Regarding ethanolamine, growth was not detected by OD in 630∆erm until the 64-hour time point. 

Although this lag time is substantial, diauxic growth is not unusual in bacteria and can be related to 
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preferential metabolism of more available energy sources [513, 514]. Therefore, C. difficile may be 

depleting the different substrates available before switching to the ethanolamine-dependent lifestyle. 

This response is reflected by in vivo transcriptomic data, where increased expression of the eut 

operon, encoding ethanolamine utilisation, is not reported until 38 hours post infection, whereas 

glucose utilisation is believed to occur at ~14 hours [35]. The differences between our data and the 

previous study are surprising, as the assay set up was based on their published methods.  It may be 

that the cas-amino acid composition used here was richer and took longer to deplete, which delayed 

the switch to ethanolamine utilisation. Alternatively, it may be an outcome of differences in 

ethanolamine, as our study used liquid ethanolamine compared to ethanolamine hydrochloride in the 

previous study, which may be easier to metabolise.  

Growth of R20291 was not detected in ethanolamine by OD or CFU, therefore it was not possible to 

determine the impact of deleting CDR20291_0330 in this assay. Nawrocki et al. found the increased 

expression of the eut operon from basal level in the presence of ethanolamine was more pronounced 

in 630 compared to R20291 [36]. Therefore in this study, the eutVW genes encoding a two-component 

response regulator for detection of ethanolamine were compared for 630 and R20291, to see whether 

sequence differences could be impairing detection of ethanolamine, but the sequences were highly 

conserved across the two strains (data not shown).  

No ethanolamine utilisation was observed when 630Δerm was sub-cultured in minimal as opposed to 

rich media before inoculation of the test flasks, which prevented analysis of cobalt requirements in 

this process. This was interesting, as it suggests lack of a component required for ethanolamine 

utilisation that is carried over in sufficient amounts when inoculating from rich media. This could be 

further investigated by comparing the minimal media at inoculation, 44 and 72 hours between the 

rich and minimal inoculants using nuclear magnetic resonance, to compare the metabolite profile, 

including B12. B12 could also be spiked into the media to try and promote ethanolamine utilisation.  
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Two distinct mechanisms of regulating ethanolamine utilisation have been identified. 

Enterobacteriaceae, such as Salmonella Typhimurium, encode EutR, a constitutively expressed 

positive transcriptional regulator. This upregulates expression of the entire eut operon by binding a 

single promoter, but only in the presence of two ligands- ethanolamine and B12 [515]. Firmicutes (like 

C. difficile) lack the EutR regulator and instead encode the EutVW two-component regulatory system, 

as demonstrated in Enterococcus faecalis and Listeria monocytogenes, which encode very similar eut 

operons to C. difficile [503, 504, 516]. In the presence of ethanolamine, EutW autophosphorylates 

then goes onto phosphorylate the response regulator EutV. EutV binds RNA to interrupt 

transcriptional terminators and enable expression of the operon (Figure 4.13) [503, 504]. Unlike EutR, 

B12 does not directly interact with EutVW, but does maintain regulation over the eut operon, via a 

riboswitch. Although B12 riboswitches usually result in the termination of expression upon B12 binding, 

presence of B12 actually facilitates expression of the eut operon. This is through interaction with a non-

coding RNA, EutX, which binds and sequesters EutV, preventing induction of the operon. EutX 

harbours a B12 binding domain which when bound, results in transcriptional termination of EutX, 

producing a shorter fragment that can no longer bind EutV, allowing induction of the ethanolamine 

utilisation pathway (Figure 4.13) [504, 517, 518].  

As no B12 riboswitch has been identified within the C. difficile eut operon, it is possible B12 is not 

required for ethanolamine utilisation in C. difficile. This seems unlikely, as no B12-independent isomer 

has been identified for ethanolamine breakdown in C. difficile or other species, the locus still encodes 

EutT, which is required for processing of B12 into the active co-factor and very early research using 

Clostridial (species not specified) cell free extracts found a cobinamide co-enzyme was necessary for 

ethanolamine breakdown [111, 483, 492, 519]. 

Furthermore, the authors of a recent review into ethanolamine note how the riboswitch within the 

EutX RNA is dissimilar to other B12 riboswitches and therefore may not be identified using standard 

riboswitch identification techniques [504]. This also acts in trans, meaning it could be located 
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elsewhere on the genome [501]. Future work should look at identifying an ortholog of EutX in C. 

difficile in addition to monitoring expression of the eut operon in the presence of ethanolamine, plus 

and minus B12.  

 

 

 

 

 

 

Figure 4.13. Regulation of ethanolamine utilisation in Enterococcus faecalis. Regulation of the eut 
operon for ethanolamine utilisation in E. faecalis which requires both ethanolamine and B12. The 
histidine kinase sensor, EutW, autophosphorylates in the presence of ethanolamine and 
phosphorylates the response regulator, EutV. EutV has an RNA-binding domain which enables binding 
and disruption of transcriptional terminators, resulting in induction of the operon. However, in the 
absence of B12, EutV is sequestered by the small RNA, EutX (not shown), and is only released upon B12 
binding, which interrupts the EutV binding site. Image taken from Kaval and Garsin [501].  

 
Separate to the requirement for B12, inactivation of EutW (CD1911), but not EutV (CD1910) abolishes 

ethanolamine utilisation in C. difficile, suggesting EutV is dispensable in this process. El Papa and 

Perego noted that both EutV and EutW had RNA binding activity in vitro. RNA binding is the method 

of anti-termination used to enable expression of the eut operon [503]. In E. faecalis, inactivation of 

EutV abolished ethanolamine utilisation, although it is noteworthy that this is an insertional mutant 

and therefore may have influenced the activity of downstream genes [503]. The mutants used in our 

study were also generated using insertional inactivation and although not confirmed using 

complementation, the results suggests there were no polar effects on downstream genes. As the 

mutation in EutW, which is encoded downstream of EutV, displayed no growth with ethanolamine, 

this would also be expected in the EutV mutant, if its inactivation influenced expression of EutW. 

However, this is not the case, as the EutV mutant shows no difference from wild-type in ethanolamine 
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utilisation. Regarding EutW, Nawrocki et al., demonstrated two transcriptional units in the presence 

of ethanolamine in C. difficile, one of which ends after eutW [36]. Therefore, the genes downstream 

of this are under the control of a separate promoter and unlikely to be susceptible to polar effects.  

Alternatively, it may be that an orphan response regulator encoded elsewhere on the genome is able 

to compensate for the loss of EutV. Orphan response regulators are encoded without a histidine kinase 

partner and can regulate genes elsewhere on the genome. C. difficile encodes 51 response regulators 

and 5 of these are considered orphan kinases (a 6th has been identified as regulating lantibiotic 

resistance) [252]. To investigate whether these could be involved in ethanolamine regulation, the 

sequence of EutV could be compared to the sequences of these different orphan response regulators 

to see if they may also be involved. 

Limitations to this study which should be addressed with future work include the lack of 

complementation for CDR20291Δ0330, 630Δerm_eutV::CT and in particular, 630Δerm_eutW::CT, as 

this is the mutant where a different phenotype from the wild-type was observed. For the reasons 

previously discussed, polar effects on neighbouring genes were not predicted to have influenced the 

results described here, but it is still important to reintroduce the gene into the cell to confirm that the 

altered phenotype is a result of loss of the target gene, only. Another limitation regarding 

ethanolamine utilisation is the difficulty in recreating the in vivo gut environment within the 

laboratory. This includes the challenges of culturing C. difficile in minimal media, in replicating the 

dynamic environment of the gut within the laboratory and the possibility of carryover of compounds 

from starting cultures. There is media available designed to mimic the gut niche which could be an 

improvement on standard minimal media. A recent study investigating ethanolamine utilisation in 

uropathogenic E. coli did so using an artificial urine medium supplemented with ethanolamine [520]. 

However, here it is important to note that urine is usually a sterile environment, whereas the 

microbiome in the gut is constantly using and releasing many different metabolites.  
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There has been significant development in the use of substrate binding proteins as vaccine candidates. 

Antibodies raised against the methionine binding protein MetQ, from Neisseria gonorrhoeae are 

bactericidal and prevent gonococcal binding to epithelial cells in vitro [521] and immunisation of mice 

with recombinant SBP2 from Moraxella catarrhalis increased clearance of infection from the lung 

[522]. Immunising mice with PiuA and PiaA from Streptococcus pneumoniae increased survival upon 

challenge [523]. Interestingly, this was not a result of impairing the activity of these essential iron 

uptake components, but was in fact due to the elicited opsonophagocytic response, demonstrating 

how essentiality in the host is not necessarily a requirement for a good vaccine target [524]. PiuA has 

been included within PnuBioVax, an anti-S. pneumoniae vaccine which was recently demonstrated to 

be safe and immunogenic in Phase I clinical trials (NCT02572635) [525]. Also in clinical trials is the 

manganese binding protein, MntC from Staphylococcus aureus, which is currently in Phase II 

(NCT02388165) [526]. In relation to use of CDR20291_0330 in a vaccine, additional studies are 

required to confirm this proteins suitability for inclusion within a vaccine. Production of antibodies 

against this protein would enable probing of intact C. difficile cells to ensure the protein is expressed 

on the surface, or the different fractions of the C. difficile cell could be probed. 
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5. Characterisation of CDR20291_3343, a putative pilin protein  

5.1. Introduction 

Motility is a key process for many bacterial species. It can facilitate movement towards nutrient 

sources or away from noxious agents and environmental stressors, interactions between cells to 

aggregate and form biofilms and is an important virulence factor, particularly for colonisation of the 

host [184, 189, 527, 528].   

Bacteria employ a number of different mechanisms for motility. Although use and definition of the 

different motility terminology can vary, swimming and swarming are typically considered a product of 

the flagella, a whip-like surface structure that propels bacteria through their environment, via a motor 

rotating the flagella filament  [529]. The two mechanisms are differentiated depending on if the 

motility is through a medium (swimming) or on the surface (swarming) [530]. Flagella-independent 

motility is often attributed to the action of the type IV pili (T4P), hair-like appendages on the cell 

surface [204]. Rather than forceful propulsion of the bacteria through or on a medium, pili drag the 

bacteria across a surface by continuous assembly and disassembly of the polymerised filament, in a 

grappling hook mechanism known as twitching motility [531-533].  Gliding motility is also used to 

describe T4P-mediated motility, for example in Clostridium perfringens [534], but is also linked to non-

T4P actions such as focal adhesions or sliding due to bacterial division [530, 531].  

C. difficile motility is primarily dictated by the action of the peritrichous flagella decorating the cell 

surface [184, 187]. These are essential for movement through semi-solid agar, as movement is 

abolished upon inactivation of the flagella filament gene fliC, or removal of the whole flagella glycan 

(some mutants of this are still motile) [184, 185, 187]. C. difficile also encodes the hypothetical major 

(CDR20291_3340-3350) and minor (CDR20291_3153-3158) T4P locus which are thought to be core 

components of its genome [111, 205, 206]. These loci are predicted to encode major and minor pilins 

that form the pilus filament and the accessory components required for pilus assembly or retraction. 

Using microscopy, predicted T4P structures have been identified on the surface of wild-type C. difficile 
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in vitro [209, 211] which have been differentiated from flagella based on size and use of a flagella 

mutant as well as through use of immunogold staining to PilA1 and PilJ [195, 209, 211]. Furthermore, 

pili like structures have been identified by microscopy in hamster infection models [210].  

CDR20291_3343 is encoded within the predicted major T4P locus of C. difficile, and has been 

previously identified as a putative minor pilin protein (Figure 3.1a) [204, 207, 534]. At a predicted 57.7 

KDa, CDR20291_3343 is larger than most other pilins but still possesses the conserved N-terminal 

hydrophobic domain and predicted pre-pilin peptidase cleavage site (Figure 3.1b) [207].  

 

 

 

 

 

 

 
Figure 5.1. The C. difficile type 4 pili locus. (A) Schematic of the major type 4 pili locus in C. difficile 
strain R20291 [195]. The locus is preceded by a c-di-GMP dependent type II riboswitch (Cdi2_4) which 
controls its expression. Putative functions have been assigned to each gene within the locus including 
the major structural pilin proteins; pilA1, the ATPase, pilB1 and the predicted tip of the pilus, pilK. (B) 
Comparison of the N-terminal amino acid sequences from different C. difficile R20291 pilin proteins 
[207]. Conserved regions are shaded in grey, including the N-terminal hydrophobic region. The glycine 
residue in black is the pre-pilin peptidase cleavage site. At position +5 after this site, PilK lacks the 
conserved glutamic acid residue, predicted to be required for interaction with neighbouring pilins via 
salt bond formation. Images from a) Bordeleau et al. and b) adapted from Maldarelli et al. [195, 207] 
(by permission of Oxford University Press). 

 
Pilus assembly in C. difficile has not been characterised and T4P assembly is less well understood 

compared to Gram-negative systems. Based on the amino acid similarity to other T4P locus, it is 

predicted that the C. difficile putative T4P assembly follow the ATPase mediated route, wherein each 

pilin protein is actively secreted from the cell, in a tip to base manner, to form the polymerised 
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filament [535-537]. Pilins are suspected to interact via salt bridge formation between a conserved 

glutamic acid residue at +5 after the prepilin peptidase cleavage site and an N-terminal phenylalanine 

on a neighbouring pilin (Figure 5.1) [207]. Interestingly, this glutamic acid residue is absent in 

CDR20291_3343, replaced instead with a hydrophobic leucine residue, which presumably abolishes 

this interaction. This has resulted in CDR20291_3343 being assigned into the GspK family of proteins. 

GspK from the Enterotoxigenic E. coli type 2 secretion system (T2SS), which share amino acid similarity 

with T4P, is also large, lacks the conserved glutamic acid residue and forms the tip of the pseudopilin 

[207, 538, 539]. CDR20291_3343 has therefore been annotated as PilK, hypothesised to form the tip 

of the pilus. [204, 207].  

As a member of the major pili locus (Figure 5.1), pilK expression is upregulated by the secondary 

messenger cyclic diguanosine monophosphate (c-di-GMP), via a positive transcriptional type II 

riboswitch, Cdi2_4. Riboswitches are RNA elements within the 5’ untranslated region (UTR) of their 

target genes which, when bound by their effector, can promote or inhibit expression at the 

transcriptional or translational level. Cyclic-di-GMP is a central regulator of a number of key bacterial 

processes and in elevated concentrations is associated with promoting cell entry into the sessile 

lifestyle [196]. As such, elevated levels of c-di-GMP are associated with repression of the flagella and 

a reduction in related motility, whereas biofilm formation and pili production are upregulated [198]. 

Expression of pilK in strain 630 is higher in the presence of elevated levels of c-di-GMP and CDR20291-

_3343 expression is higher in plate and biofilm cultures compared to planktonic growth as well as in 

biofilm cultures [195, 212].  

Previous characterisation of the role of the C. difficile pili has identified a number of associated 

phenotypes, including mediating surface motility, auto-aggregation and biofilm formation and binding 

to human cells lines and colonisation [195, 208, 212, 213]. These investigations have primarily been 

conducted in strains 630 and R20291, using wild-type strains as well as those with inactivation of PilA1, 

the major structural subunit forming the polymerised filament and PilB1, the ATPase driving pilus 
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formation. Neither of these mutant strains produce T4P, as shown by transmission electron 

microscopy [195].  

CDR20291_3343 was found to be immunogenic in patients with CDI on a pilot study using a C. difficile 

specific pan-protein array (Chapter 3). A number of bacteria encode immunogenic pili, some of which 

have since been investigated as vaccine candidates [462, 463]. Therefore, this chapter aimed to 

further investigate the role of pili in C. difficile, specifically in relation to the role of CDR20291_3343 

within pili-attributed motility, by comparing individual contributions of flagella and pili within C. 

difficile motility.  

5.2. Bioinformatics 

The amino acid sequence of CDR20291_3343 was highly conserved across a diverse selection of C. 

difficile strains (Table 5.1). The comparison tool pBLAST revealed no putative conserved domains 

within the amino acid sequence of this gene, but as already discussed, CDR20291_3343 harbours the 

conserved N-terminus associated with pilin proteins [207].  

 

 

 

 

 

 

Table 5.1. Conservation of CDR20291_3343 amino acid sequence across C. difficile strains.  The 
conservation of the CDR20291_3343 amino acid sequence across a number of C. difficile strains from 
diverse ribotypes was compared using pBLAST searches with R20291 as the comparator sequence.  

 

 

 

 

Strain Ribotype Percentage Identity (%) 

R20291 027 100 

CD196 Historic 027 99.8 

630 012 99 

M120 078 94 

M68 017 97.6 

CD305 023 98 
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5.3. Construction of a CDR20291_3343 gene deletion mutant in R20291 and 

R20291_fliC::CT  

 

Previous work characterising the C. difficile pili-associated phenotype has been conducted in strains 

still harbouring their flagella [208]. Although increasing c-di-GMP levels required for pili expression 

should result in suppression of the flagella, there may be some residual activity, and removing the 

flagella altogether would aid in precise identification and be a more robust means of investigating 

pili and pili-associated phenotypes. To further dissect the contributions of each of these surface 

appendages on motility and other functions within the cell, in frame deletion mutants were 

constructed in this study, which lack flagella, pili or both (Table 5.2). It was hypothesised that loss of 

PilK could result in one of two phenotypes: either that PilK is required for pili length regulation and 

that a knockout would result in a hyper-extended pili without PilK present to act as a pilin cap [540]; 

or that PilK is essential for pilus assembly and knockout results in the loss of the pilus altogether. It 

was found that in a pilK mutant, the major structural pilin PilA1 can be detected in the cell but is no 

longer secreted as it is in the wild-type,  suggesting that the pilus isn’t assembled [541] (Neil 

Fairweather, personal communication). Therefore, throughout this study the PilK mutant has been 

treated as a pili deficient strain. 

[540][541] 
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Strain High level c-di-GMP Low level c-di-GMP 

 Flagella Pili Flagella Pili 

R20291 x 
✓  ✓  x 

R20291Δ3343 x x ✓  x 

R20291_fliC::CT x ✓  x x 

R20291Δ3343_fliC::CT x x x x 

 

Table 5.2. Predicted phenotype of flagella and pili inactivated strains, in the presence and absence 
of c-di-GMP. The influence of high or low-level c-di-GMP on expression of flagella and pili in four 
strains; wild-type R20291, R20291Δ3343 where no pili are expected to be assembled, R20291_fliC::CT 
where no flagella are produced and R20291Δ3343_fliC::CT, lacking both pili and flagella. 

 

To generate the desired strains, an allele exchange cassette was built targeting CDR20291_3343 

(Figure 5.2), to delete this gene from R20291 wild-type and R20291_fliC::CT. The latter strain does not 

produce flagella due to a ClosTron insertion within the flagellin gene, fliC [187]. The generation of the 

allele exchange mutants was performed as described in 4.3.2, including construction of the 3870 bp 

allele exchange cassette. Following transformation of R20291 and passage on selective and non-

selective media, the homology region from thiamphenicol sensitive colonies was amplified to screen 

for the loss of the 1539 bp region of CDR20291_3343 from both R20291 and R20291_fliC::CT (Figure 

5.2). It was not possible to amplify the entire homology region (2144 bp), in the potential mutants or 

wild-type control gDNA from R20291, therefore two products were generated instead, using one 

primer outside of the homology region (R20291_3343_MUTSEQ_f or R20291_3343_MUTSEQ_r) and 

a reverse primer adjacent to the deletion of CDR20291_3343 (R20291_3343_MUT_f and 

R20291_3343_MUT_r). Potential double crossovers and therefore gene deletion mutants were 

identified for both backgrounds and the PCR products were sequenced to confirm CDR20291_3343 

had been successfully deleted from the chromosome and no single nucleotide polymorphisms had 

been accrued in the amplified region in the process.  
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Figure 5.2. Allele exchange mutagenesis of CDR20291_3343 in R20291 and R20291_fliC::CT. (A) 
Schematic of the allele exchange construct for generation of the CDR20291_3343 gene deletion 
mutants. This is annotated with the primers used for screening to detect gene deletion mutants. (B) 
PCR screen of potential CDR20291_3343 gene deletion mutants using primers 
R20291_3343_MUTSEQ_f and R20291_3343_MUT_r. 1 to 6- individual clones from R20291, 7-11- 
individual clones from R20291_fliC::CT, 12- wild-type R20291 gDNA, 13-dH2O control.  The predicted 
size of amplicons with and without CDR20291_3343 are 3683 bp and 2184 bp, respectively. Clones 
from lanes 2, 3, 9 and 10 clones are predicted wild-type revertants with the remaining representing 
gene deletion mutants, which were confirmed with DNA sequencing.  

 

5.4. Selection of an expression system for c-di-GMP 

Pili expression is upregulated in the presence of c-di-GMP, therefore it is necessary to elevate the 

cellular levels of this secondary messenger for study. This was achieved using the dccA gene, which 

encodes a cyclic diguanylase, the enzyme responsible for synthesis of c-di-GMP. Although 15 genes 

encoding cyclic diguanylases have been predicted in C. difficile, previous work has demonstrated that 

expression of the dccA gene is sufficient to achieve high intracellular levels of c-di-GMP [198, 542]. 

Two plasmids have previously been constructed which encode dccA under control of either a 

constitutive Pcwp2 promoter (pECC12) or an anhydrotetracycline (Atc) inducible promoter, Ptet 

(pECC17). These were a kind gift from the Fairweather Laboratory [221]. Initially, the pECC12 plasmid 

for constitutive expression of c-di-GMP was preferentially used over the anhydrotetracycline (Atc) 

inducible promoter, as motility assays take a number of days and the ability to maintain induction for 

that length of time, was unknown.  
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 Swimming motility with constitutive expression of c-di-GMP 

In the presence of elevated levels of c-di-GMP, the flagella filament gene, fliC, is repressed, due to 

interaction of c-di-GMP with the type I  riboswitch upstream of fliC [198]. As the flagella are the driving 

force behind swimming motility, reduced expression of fliC results in loss of this phenotype [198]. To 

confirm expression of constitutive dccA resulted in the anticipated c-di-GMP induced effects on 

motility, assays were performed to monitor the swimming capabilities of different strains as a marker 

of flagella expression. Colonies taken from agar plates were inoculated into 0.3% minimal media agar 

using sterile cocktail sticks and incubated for 5 days (Figure 5.3).  

As previously reported, the flagella-negative strains, which harbour a ClosTron insertion within fliC did 

not move beyond the inoculation (stab) point, whereas R20291 and R20291Δ3343 demonstrated a 

halo swimming pattern. Surprisingly, constitutive c-di-GMP expression in R20291 and R20291Δ3343 

did not result in a reduction in swimming motility- in fact, both strains appeared to swim more when 

c-di-GMP was present. This experiment was terminated early due to this finding, as it was not in 

keeping with a reduction in expression of fliC that should be observed in the presence of c-di-GMP 

[198]. The swimming observed may have been due to condensation on the plates, or due to an unusual 

phenotype of the constitutively expressed c-di-GMP, which leads to artificially high levels of the 

messenger. Overall, it is clear these strains are still swimming in the presence of c-di-GMP, suggesting 

pECC12 is unsuitable for use.  
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Figure 5.3. Swimming motility with and without constitutive expression of c-di-GMP. Individual 
colonies were taken from plate cultures and stab inoculated into 0.3% minimal media agar plates then 
incubated at 37oC, anaerobically. Strains either contained no plasmid or pECC12, for constitutive 
expression of the dccA gene, leading to high levels of c-di-GMP within the cell. Each culture was set 
up in duplicate and the assay performed once.  

 

 Inducible control of c-di-GMP mediated motility 

To replace constitutive expression of c-di-GMP, the pECC17 plasmid was utilised, which encodes the 

dccA gene under control of the Atc-inducible promoter, Ptet. Swimming motility was assessed in 

R20291 carrying pECC17 or the empty vector, pASF085, in 0.3% minimal media agar plates (Figure 5.4) 

with a range of Atc concentrations to test induction of c-di-GMP at; 0, 25, 50, 100 or 250 ng/ml and 

15 µg/ml thiamphenicol (for plasmid maintenance). It was hypothesised that increasing the level of 

induction would result in a reduction in swimming motility in the wild-type strains due to an increase 

in the cellular level of c-di-GMP. Plates were incubated for 5 days, and the diameter measured at 5 

days to determine whether sufficient Atc would still be present to induce c-di-GMP expression, as 

measured by a reduction in swimming, compared to the empty vector control (pASF085).  

When carrying the empty vector (pASF085), there was no significant difference in swimming motility 

when comparing +/- Atc, until the Atc concentration reached 250 ng/ml (Figure 5.4). Here, swimming 

was significantly lower compared to in the absence of Atc (p<0.05), suggesting this concentration is 

toxic to the cell, or has a deleterious effect on growth.  Swimming motility was significantly reduced 
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in the presence of c-di-GMP, even in the lowest concentrations of Atc induction (25 ng/ml) (p<0.05), 

demonstrating flagella repression in these conditions. As hypothesised, swimming was significantly 

reduced in the presence of c-di-GMP (p<0.05) (Figure 5.4), and was almost completely abolished in 

concentrations of 50 ng/ml Atc. Further experiments were undertaken in a concentration of 25 ng/ml 

to minimise the deleterious effect that Atc can have on growth at high concentrations (Figure 5.4).  

 

Figure 5.4. Swimming motility with increasing concentrations of c-di-GMP. Individual colonies of C. 
difficile were used to inoculate the centre of 0.3% minimal media agar plates, supplemented with 0, 
25, 50, 100 or 250 ng/ml Atc and 15 µg/ml thiamphenicol. R20291 either carried the empty vector 
pASF085 or pECC17, for inducible expression of c-di-GMP. Plates were photographed after 5 days 
incubation and two perpendicular measurements were taken of the diameter. A linear regression was 
performed to assess any differences in swimming motility when c-di-GMP is induced, for each 
concentration of Atc compared to the empty vector control. (A) Photo of swimming motility of C. 
difficile R20291 after 5 days incubation, (B) Average diameter of each motility halo after 5 days growth. 
NS not significant, * p<0.01, **p<0.001, ***p<0.0001. Each culture was set up in duplicate with three 
independent replicates performed. Error bars represent standard deviation. 
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 Growth kinetics with Atc and c-di-GMP 

The swimming defect of R20291 in the presence of 250 ng/ml Atc, even without induction of c-di-

GMP, warranted growth assessment of R20291 and R20291_fliC::CT in the presence of 25 ng/ml Atc, 

to ensure this concentration of Atc does not have deleterious effects on the cell. This was performed 

using R20291 and R20291_fliC::CT harbouring either pASF085 or pECC17, to also test if c-di-GMP 

expression affected the growth rate (Figure 5.5). Strains were grown in BHIS with either 0 or 25 ng/ml 

Atc and 15 µg/ml thiamphenicol and OD595 readings taken every hour for the first 8 hours then after 

24 hours of growth.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Growth kinetics with anhydrotetracycline inducible c-di-GMP. R20291 and 
R20291_fliC::CT harbouring either pASF085 or pECC17 were grown overnight in BHIS then diluted to 
a starting OD595 0.05 in fresh BHIS supplemented with 0 or 25 ng/ml Atc and 15 µg/ml thiamphenicol. 
OD595 readings were taken every hour for the first 8 hours of growth then at 24 hours. (A) 0 ng/ml Atc 
and (B) 25 ng/ml Atc. Black solid line- R20291 + pASF085, grey solid line- R20291 + pECC17, black 
dashed line- R20291_fliC::CT + pASF085, R20291_fliC::CT + pECC17. Each culture was set up in 
duplicate with three independent replicates performed. Error bars represent standard deviation. 
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There was no difference when comparing the same strain in each of the four growth conditions. When 

comparing R20291 to R20291_fliC::CT, the latter demonstrated a reduced growth rate during 

exponential phase with and without Atc, but at 8 hours there was no difference in OD. The aflagellate 

strains appeared to clump more in the growth flasks, which may have interfered with the accuracy of 

cell density readings.   

5.5. Swimming motility 

Once the conditions for induction of c-di-GMP were established, swimming motility was assessed in 

all strains with and without induction of c-di-GMP. As swimming motility is a flagella-driven action, we 

hypothesised that only the absence of the flagella would lead to a reduction in swimming motility and 

there would be no difference between the PilK positive and negative strains (Figure 5.6). As previously 

described, a colony of each strain carrying either pASF085 or pECC17 was inoculated into 0.3% minimal 

media agar +/- 25 ng/ml Atc and containing 15 µg/ml thiamphenicol and incubated for 5 days.  

As expected, strains without flagella did not disperse beyond the inoculation point and swimming was 

significantly reduced in flagella-positive strains in the presence of c-di-GMP (Figure 5.6) There was no 

significant difference in swimming motility between R20291 and R20291Δ3343, suggesting pili do not 

influence this phenotype (Figure 5.6), and that this motility is driven by expression of the flagella locus 

mediated via the type I riboswitch in the presence of c-di-GMP.  
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Figure 5.6. Swimming motility in the presence of inducible c-di-GMP. Individual C. difficile colonies were inoculated into the centre of 0.3% minimal media 
agar plates, supplemented with 0 or 25 ng/ml Atc for induction of c-di-GMP and 15 µg/ml thiamphenicol. Each strain carried either the empty vector pASF085 
or pECC17, for Atc-mediated induction of c-di-GMP. Plates were photographed after 5 days incubation and two perpendicular measurements were taken of 
the diameter. A linear regression analysis was performed to assess any differences in swimming motility compared to the wild-type R20291. (A) Swimming 
motility with the empty vector pASF085, (B) swimming motility with pECC17, carrying Atc-inducible dccA for expression of c-di-GMP.  NS not significant, * 
p<0.01, **p<0.001, ***p<0.0001. Each culture was set up in duplicate with three independent replicates performed. Error bars represent standard deviation.
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5.6. Colony morphology 

 
Pili and flagella are both surface appendages and can direct movement of the cell, therefore it was 

interesting to see whether inactivation of either of these influenced colony morphologies. We 

hypothesised that in the presence of c-di-GMP, when pili expression is induced, cells would display a 

pili-mediated colony morphology which would be absent in the presumed pili-negative strain, 

R20291Δ3343. Strains carrying pASF085 or pECC17 were grown in BHIS supplemented with 15 µg/ml 

thiamphenicol to OD595 0.3 - 0.4, then diluted in PBS to ensure single colonies when plated on 1.8 % 

BHIS agar + 1 % glucose +/- 25 ng/ml Atc and 15 µg/ml thiamphenicol and incubated for 5 days (Figure 

5.7). 1.8% agar was selected as pili activity tends to increase with a harder surface [208]. The 

aflagellate strains displayed a typical C. difficile morphology in all conditions. In the presence of high-

level c-di-GMP only, R20291 and R20291Δ3343 displayed numerous fronds growing outwards from 

the centre colony (Figure 5.7). However, as this occurs in strains with and without PilK, it suggests this 

is not a pili-mediated phenotype, which may indicate that FliC plays a role in this extended colony 

morphology due the absence of this phenotype in the fliC mutants.  
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Figure 5.7. Colony morphology of C. difficile. Strains of C. difficile harbouring pili and flagella (R20291), 
either pili or flagella (R20291_fliC::CT or R20291Δ3343, respectively), or neither 
(R20291Δ3343_fliC::CT), were serially diluted then spread onto 1.8% BHIS agar plates supplemented 
with 15 µg/ml thiamphenicol and incubated for 5 days in the presence or absence of Atc for induction 
of c-di-GMP (pECC17) or with an empty vector (pASF085). Each culture was set up in duplicate with 
three independent replicates performed.  

 

5.7. Surface motility 

Both swarming and twitching motility enable bacteria to move across solid surfaces. While the former 

is attributed to the action of the flagella, twitching motility is associated with the pili, powered by their 

continuous assembly and disassembly. This has been demonstrated in many species, including C. 

difficile [208]. Surface hardness of the agar is believed to enable twitching motility, therefore 1.8% 

BHIS agar was used, based on previous work [208]. The assay was set up as outlined for colony 

morphology, but instead of plating dilutions, 5 µl of neat culture was spotted directly onto the surface 

of 1.8% agar with 15 µg/ml thiamphenicol, in quadruplicate. Two perpendicular measurements of the 

diameter of each growth spot were taken daily, for 5 days when plates were also photographed. It 
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was hypothesised that as pili are associated with surface motility, under c-di-GMP expression the 

bacteria would move outward from the centre spot of inoculation but this phenotype would be lost 

in the R20291Δ3343 mutant strain.  

Figure 5.8 presents the image of each growth spot and the total diameter reached after 5 days 

incubation. When carrying the empty vector pASF085, there was no significant difference between 

strains in the presence or absence of Atc. Upon c-di-GMP induction, the conditions under which 

flagella are down-regulated and pili are expressed, the motility radius for all strains increased in size, 

significantly (p<0.001). The flagella-positive strains dispersed significantly more than the aflagellate 

strains, and R20291 reached a larger total diameter than R20291Δ3343, although both displayed the 

frond phenotype as seen in the colony morphology assays (Figure 5.8).  

The aflagellate strains did disperse beyond the initial inoculation site more under c-di-GMP induction, 

but this is a much smaller, more uniform halo compared to the flagella positive strains. In addition, a 

similar pattern is seen in both R20291_fliC::CT and R20291Δ3343_fliC::CT, suggesting this may be a 

general cellular effect of c-di-GMP, rather than a specific effect mediated by fliC or pilK. As was 

observed with the colony morphologies (Figure 3.7), the flagella positive strains produced much larger 

and more irregular swarms under c-di-GMP induction compared to uniduced strains and induced 

strains without flagella (Figure 5.8).  

Overall, in the presence of c-di-GMP, surface motility was reduced in a PilK inactivated strain 

compared to the wild-type, but only in strains still harbouring an active flagella. Inactivation of the 

flagella showed the most substantial influence on this motility.  
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Figure 5.8. Surface motility of C. difficile. Strains of C. difficile harbouring pili and flagella (R20291), either pili or flagella (R20291_fliC::CT or R20291Δ3343, 
respectively), or neither (R20291Δ3343_fliC::CT), were spotted onto 1.8% BHIS agar plates with 15 µg/ml thiamphenicol and incubated for 5 days in the 
presence or absence of Atc for induction of c-di-GMP (pECC17) or with an empty vector (pASF085). Two measurements of the diameter of each inoculum 
spot were taken daily and plates photographed after 5 days. NS not significant, * p<0.01, **p<0.001, ***p<0.0001. Each culture was set up in duplicate with 
three independent replicates performed. Error bars represent standard deviation.  
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5.8. Discussion 

This chapter investigated the role of CDR20291_3343, a putative pilin protein predicted to form the 

tip of the pilus, PilK. CDR20291_3343 was investigated in relation to its role within the C. difficile T4P, 

assessed using motility assays in both flagella-positive and flagella-negative strains. To aid this, allele 

exchange mutagenesis was successfully applied to generate clean CDR20291_3343 deletion mutants 

in a R20291 wild-type and R20291_fliC::CT backbone.  

We found that in surface motility and colony morphology assays, under c-di-GMP induction, where 

flagella are downregulated and pili expression is induced, both R20291 and the pilK mutant, 

R20291Δ3343, produced frond like filaments, extending from the initial inoculation site (Figure 5.7 

and 5.8), a phenotype previously attributed to the action of the pili [208]. The diameter of the total 

growth site, including the fronds, was significantly larger compared to the same strains growing 

without c-di-GMP induction. This phenotype was previously observed in R20291 and attributed to 

pili-mediated motility due to the observation that induction of c-di-GMP leads to downregulation of 

flagella expression and induction of pili expression [198, 208]. However, the total motility on the 

surface of the agar for the flagella-negative strains did not increase significantly upon c-di-GMP 

induction, and they remained significantly smaller than the flagella-positive strains and the frond 

phenotype was absent (Figure 3.6). From these results, three potential mechanisms driving the 

surface motility phenotype were considered; i) the action of the pili, ii) the action of the flagella or 

iii) pili and flagella independent effect, of induction by c-di-GMP. 

If surface motility and frond formation in the presence of c-di-GMP were due solely to the action of 

the pili, then loss of surface motility would be expected in the pilK mutant (R20291∆3343 and 

R20291∆3343_fliC::CT), as the pilus should not be assembled in this mutant [541]. However, both 

R20291 and R20291∆3343 were able to move across the agar surface. These results indicate the 

phenotype seen here is likely to be independent of the pili. There was a small but significant reduction 

in motility in R20291∆3343 compared to wild-type R20291, however, it was still capable of movement 
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and produced the distinctive frond display. Although this suggests that the pili could still be functional 

in the absence of PilK, it may also be influenced by the variability within surface motility assays. It has 

previously been reported that the conditions for testing can influence this phenotype, as has been 

described for organisms such as Pseudomonas aeruginosa, where motility has been thoroughly 

investigated. The composition and hardness of the agar surface can influence results which therefore 

can provide room for error, particularly when measuring millimetre differences in motility [530, 543].  

It may be that PilK inactivation does not abolish pili formation in C. difficile, as this has not been 

confirmed using microscopy. This was attempted in this study by providing samples of each strain with 

and without c-di-GMP induction to Tony Fearns in the Gutierrez laboratory at the Francis Crick 

Institute for scanning electron microscopy, but no data had been obtained at the time of writing. Even 

so, the lack of secretion of the major pili structural subunit, PilA1, in a PilK mutant is highly suggestive 

of lack of pilus assembly [541]. This was demonstrated in strain 630 but the pili loci are highly 

conserved between 630 and R20291, albeit differentially responsive to c-di-GMP [208]. Furthermore, 

evidence that this is a pili-independent phenotype is provided in a recent thesis by Couchman, who 

could detect no difference in swarming motility between R20291 wild-type and a ClosTron PilB1 

mutant [541]. PilB1 is the ATPase driving assembly of the pili and in the mutant, pili cannot be detected 

on the surface of the cell via microscopy [208].  

Interestingly, both our results and those obtained by Couchman contradict the only published data on 

“pili-mediated” motility in C. difficile. Here, Purcell et al. also utilised ClosTron mutagenesis to 

inactivate PilB1 in R20291, but found in their strain, the surface motility phenotype was abolished, 

including in the presence of c-di-GMP [208]. Furthermore, where the authors demonstrate substantial 

surface motility in R20291 without c-di-GMP induction, we see very little expansion from the 

inoculation site without c-di-GMP induction (Figure 5.8). Couchman speculated that the insertional 

inactivation used to remove PilB1 activity in the published work may have inactivated other genes in 

the operon, as complementation of PilB1 was not demonstrated. Therefore, they speculate that 
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inactivation of PilB1 has disrupted genes required for functioning of the secondary pili gene cluster, 

which may be the true mediator of motility, but this has not been tested [541].  

Alternatively, is this simply a result of high-level expression of a prolific secondary messenger with 

multiple cellular targets? Overexpression of c-di-GMP can influence cellular morphology, with 

published microscopy identifying elongation and curling of cells [221]. However, if this were purely an 

effect of c-di-GMP on the cell, independent of flagella or pili, one may hypothesise this would be 

observed in flagella and non-flagella strains, alike.  

This study is the first to test surface motility of C. difficile flagella-negative strains. Aflagellate strains 

were found to be significantly less motile than strains harbouring their flagella and did not produce 

the filamentous fronds seen in the flagellate strains. If this phenotype were truly a result of the action 

of the flagella filament, then it would be present in low-level c-di-GMP (i.e. the empty vector with and 

without Atc and c-di-GMP but without induction), when the flagella are expressed and active. 

However, it is only found upon induction of c-di-GMP, conditions which downregulate the flagella, as 

demonstrated previously [198] and in the swimming assays in this study. Future work should 

determine fliC expression in the surface motility assay without and without c-di-GMP to confirm it is 

not being expressed.  

If not a direct result of the flagella filament, could this be related to regulation? The flagella operon in 

C. difficile does not just encode for expression and assembly of the flagella, it also can also mediate 

regulation of a number of cellular processes, most notably toxin expression. Toxin expression is 

positively regulated by the alternative sigma factor, SigD, which is encoded with the early stage flagella 

genes. SigD regulates expression of the late stage flagella genes, in addition to a number of other 

genes throughout the C. difficile genome [191]. Pili formation was demonstrated in a SigD mutant 

strain, but as the motility phenotype seen here is not believed to be pili-related, its activity cannot be 

ruled out [195]. However, a previous ClosTron insertion with FliC did not inactivate SigD, as toxin 

expression was unaffected, therefore it is likely SigD activity is not disrupted in our FliC mutant [544]. 
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Alternatively, is this a result specific to the inactivation of FliC? As mentioned, previous inactivation of 

FliC did not inactivate SigD, but did result in differential expression of 310 genes in vivo and 258 genes, 

in vitro, although only 36 of these were shared across the two groups. [544]. Further investigation of 

surface motility in C. difficile would also have to consider how PilB1 contributes to this, as surface 

motility was lost in a PilB1 ClosTron mutant [208]. 

Interestingly, during preparation of this discussion a publication was deposited on the pre-peer review 

site, BioRxiv, which identified a putative phosphorelay system, named the colony morphology 

regulators (cmr), involved in regulation of C. difficile motility [545]. This is composed of a histidine 

kinase (cmrS) and two response regulators (cmrT and cmrS), positively regulated by a c-di-GMP 

riboswitch and under additional control of an additional genetic switch which mediates phase 

variation. The authors related two colony morphologies to this system- rough and smooth. In the 

presence of c-di-GMP all colonies were of the rough phenotype, but in the absence of c-di-GMP, the 

genetic switch determined between the rough (ON) and smooth (OFF) morphologies. These are 

believed to be adaptations to the environment, as rough colonies were associated with the fronding 

phenotype in surface motility assays (although without induction of c-di-GMP) and the smooth 

colonies were isolated from the swimming agar [545]. This supports our findings of a difference in 

behaviour of our R20291 and R20291Δ3343 strains in swimming and surface motility assays, when 

both are under c-di-GMP induction.  

The cmr-mediated spreading of bacteria in the surface motility assays was suggested to be a result of 

bacterial chaining, as identified using scanning electron and light microscopy, although the exact 

targets of the response regulators is unknown and there may be multiple [545]. Importantly this 

appears to be a flagella and T4P independent phenotype, as rough colonies were produced upon c-di-

GMP induction in a SigD and PilB1 mutant. Furthermore, transcript levels of T4P and flagellum genes 

were not altered when the two response regulators CmrT and CmrR were expressed in trans [545].   
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This is interesting as the authors demonstrate surface motility of R20291 without c-di-GMP, which is 

lost in the PilB1 mutant. It therefore brings into question the exact contribution of pili and the cmr 

response regulator in this motility. Furthermore, in our results, we see no surface motility unless c-di-

GMP is induced and as mentioned there is no different between wild-type and the pili-negative strain. 

Finally, how do flagella relate to this? Our surface motility phenotype is completely absent in FliC 

negative strains, yet flagella are not believed to be regulated by cmr. The current study did not assess 

surface motility in the SigD mutant. It would interesting to further investigate the activity of cmr in the 

FliC mutant to see if rough and smooth colonies can be isolated, and the effect of over expression of 

the two response regulators on colony morphology and surface motility phenotypes.  

Irrespective of the mechanism(s) behind surface motility, it appears this is not a reliable or definitive 

measure of pili activity. A number of other C. difficile phenotypes have been associated with the pili, 

including aggregation, biofilm formation, adhesion to host cells, and in vivo colonisation [195, 208, 

212, 213]. Assessment of these mechanisms may provide further insight into the relationship between 

flagella and pili and any associated regulation in these phenotypes. The recent finding relating to a 

role for them in in vivo colonisation was interesting and is one of the strongest publications to date to 

link the C. difficile pili to an active role in virulence and colonisation of the host, rather than exclusively 

in vitro phenotypes [213].  

The lack of a reliable method of measuring motility was a limitation to this study as was the use of c-

di-GMP as a means of studying flagella and pili expression and their associated motility phenotypes. 

Although this is the standard means of such assessments of motility and is one of the regulatory 

mechanisms for these surface appendages in vivo, it is difficult to tease apart specific influence of the 

flagella and pili on motility when c-di-GMP has so many targets within the cell [202, 203]. Additionally, 

despite some preliminary evidence from other groups and ongoing work with a collaborator [541], it 

has not yet been possible to confirm CDR20291Δ3343 is a pili-negative strain. It would be interesting 

to repeat these assays using a PilA1 mutant, which is known to not produce pili [195] and see if the 
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surface motility phenotype is the same as seen here. Finally, as with the CDR20291Δ0330 work, these 

phenotypes have not been complemented. As there is a lack of resistance markers available for 

plasmid maintenance in C. difficile and a plasmid is already in use for expression of c-di-GMP, there 

are two options for construction of these complements. R20291_3343 could be reintroduced onto the 

genome using allele exchange mutagenesis and watermarked by changing the stop codon so the 

complement could be differentiated from the wild-type by sequencing. This would not be applicable 

for R20291_fliC::CT as this is a ClosTron mutant so instead the fliC gene could be cloned into the same 

plasmid as the dccA gene for c-di-GMP expression, under its native promoter. 

The whole pilus or different pilin components have been demonstrated to induce an immune response 

in mice for Neisseria meningitidis and P. aeruginosa, and an anti-pili vaccine is licensed for the animal 

pathogen Moraxella bovis [207]. As pili tend to be assembled with the hydrophobic N-terminal buried 

within the central helix, the exposed C-terminal domain is predicted to be the immunogenic portion 

[546].  

In the pan-protein array described in Chapter 3, CDR20291_3343 was found to be immunogenic in a 

pilot study. The follow up array found a higher response to the protein in healthy controls compared 

to those with CDI, although this was not significantly different. Individual pilins from C. difficile (PilK 

not tested) induced an immune response in the mouse model of CDI [207], and in a follow up study, 

three pilin proteins, PilA, PilJ and PilW were taken forward for challenge experiments to determine 

protective efficacy. However, in these experiments, only weak antibody responses were raised to 

these pili and no protection was demonstrated. As the authors were unable to replicate their own 

results in relation to antibody generation against the pilins, they suggest these results may be a result 

of the mouse model differing between the first and second studies. Furthermore, even the dmLT 

adjuvant didn’t induce an immune response in these experiments, which had been used successfully 

in previous mouse studies [546]. Therefore, the true immunogenic properties and vaccine potential 

of these pilins warrants further investigation. Additionally, reviews on the design of anti-C. difficile 
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vaccines have noted the likely need for a multi subunit approach, covering many surface antigens in 

addition to the toxin, rather than requiring on individual component [449].  
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6. Characterisation of CDR20291_0342, a putative permease protein 

6.1. Introduction 

ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins in prokaryotes. 

Through hydrolysis of ATP, they transport a variety of substrates across the lipid bilayer, both in and 

out of the cell. Their preferred substrates are diverse, as is their function, which includes but is not 

limited to; nutrient acquisition, antimicrobial resistance, export of virulence factors and trafficking of 

cell surface components [547]. The number of ABC transporters a bacterial genome encodes appears 

to correlate with both genome size and the environmental niche within which the bacteria resides 

[548].  

CDR20291_0342 has been annotated as the putative permease component of an ABC transporter 

[111], but information regarding this protein in the literature is limited. Forgetta et al. found 

CDR20291_0342 was one of the genes identified with a high SNP prevalence, which differentiated 

hypervirulent 027 isolates from other C. difficile strains, although the impact of this on the activity or 

putative function of the transporter was not determined [549]. Transcriptomic analysis of C. difficile 

identified that CDR20291_0342 was significantly downregulated during germination [506].   

This chapter aimed to characterise the role of CDR20291_0342 and its associated ABC transporter 

within C. difficile, using allele exchange mutagenesis to inactive the gene and a series of phenotyping 

assays to assess the impact of this gene’s inactivation.  
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6.2. Bioinformatic analysis of CDR20291_0342 

CDR20291_0342 is a predicted 212 KDa protein, conserved across a diverse range of C. difficile strains 

(Table 6.1). Amino acid sequence similarity analysis across a diverse selection of C. difficile strains was 

86%, slightly reduced compared to the level of conservation reported for CD20291_3343 and 

CDR20291_0330, where amino acid similarity was over 90% for all strains. This is likely a result of the 

high SNP prevalence within this gene, as discussed above [549]. Following on from this, the amino acid 

sequence of CDR20291_0342 from strains 630 and R20291 were aligned which showed the high SNP 

prevalence did introduce non-synonymous mutations, but none resulted in a stop codon and 

therefore these SNPs do not affect expression of the full protein (Appendix E). The CD305 genome was 

unavailable for the first analysis but when investigated at a later date, it was found CDR20291_0342 

and the two genes it is encoded with were absent from this genome, and from another ribotype 023 

strain. 

 

 

 

 

 

 

 

Table 6.1 Conservation of CDR20291_0342 amino acid sequence across C. difficile strains. The 
conservation of the CDR20291_0342 amino acid sequence across a number of C. difficile strains from 
diverse ribotypes was compared using pBLAST searches with the R20291 amino acid sequence as the 
comparator sequence. CDR20291_0342 and the two genes it is encoded with are absent from the 
ribotype 023 strain CD305.  

 

Phyre2 analysis identified 8 putative transmembrane domains within the protein, and it is encoded in 

the genome alongside a putative ATPase (CDR20291_0341), supporting its annotation as the 

permease component of an ABC transporter (Figure 6.1a and b). A third, hypothetical protein is 

Strain Ribotype Percentage identity (%) 

R20291 027 100 

CD196 Historic 027 100 

630 012 86 

M120 078 86 

M68 017 86 

CD305 023 - 
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encoded alongside these (CDR20291_0340), but analysis of the protein provided no indication as to 

its function or the potential role of the transporter.   

Analysing the amino acid sequence using pFam and Phyre2 corroborated the annotation of 

CDR20291_0342 as a permease. 21% of the whole protein was modelled with 99.2% confidence 

against the N-terminus of the LolE protein from Acinetobacter baumannii, with high amino acid 

similarity also found when modelled against MacB. LolE is the transmembrane component of the 

lipoprotein releasing system LolCDE, which traffics lipoproteins to the outer membrane in E. coli [550]. 

Bioinformatic analysis can help identify putative lipoproteins by screening for the consensus lipobox 

sequence within 40 residues of the N-terminus of the protein [551]. The amino acid sequence of 

theCDR20291_0340 hypothetical protein neighbouring CDR20291_0342 was analysed using The 

Database of Bacterial Lipoproteins (https://www.mrc-

lmb.cam.ac.uk/genomes/cgi/dolop/newlipo.cgi), but was not a predicted lipoprotein. 

The MacB transporter has been identified as a means of resistance to macrolides and antimicrobial 

peptides in a number of species, although it can export a range of compounds from the cell, including 

virulence factors [552, 553]. In addition to the MacB and LolE domains, pFam also highlighted a SalY 

domain, related to antimicrobial peptide (AMP) transport (Figure 6.1 c). Taken together, these results 

indicate the transporter may be involved in mediating efflux from the cell, for either lipoproteins, 

antibiotics or antimicrobial peptides.  
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Figure 6.1. Bioinformatic analysis of CDR20291_0342. (A) The position of the putative permease 
CDR20291_0342 in the R20291 genome, encoded with the other components of a predicted ABC 
transporter, including the putative ATPase, CDR20291_0341 and a hypothetical protein, 
CDR20291_0340. (B) A schematic of the organisation of CDR20291_0342 within the cell membrane, 
produced from Phyre analysis of the CDR20291_0342 amino acid sequence, revealing 8 putative 
transmembrane domains. (C) Analysis of CDR20291_0342 amino acid sequence using the pFam 
database, revealing regions of homology with domains of efflux transporters LolE and MacB.  

 

6.3. Construction of a CDR20291_0342 gene deletion mutant  

Deletion of CDR20291_0342 from the chromosome could aid understanding as removal of the 

permease component is hypothesised to inactivate the entire transporter. Allele exchange 

mutagenesis was used to delete CDR20291_0342 from the chromosome, as described in 4.3.2 and 

5.4.1 (Appendix B). Potential double cross over mutants were screened using primers flanking both 

the entire homology region (MUTSEQ_F and R) and the gene only (SEQ_F and R) (Figure 6.2). Four 

colonies generated amplicons matching wild-type R20291, suggesting wild-type revertants. Two 

amplicons were ~1.2 Kb smaller than the wild-type amplicon, indicating a gene deletion mutant, which 

was later confirmed with sequencing across the deletion.  
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Figure 6.2. Allele exchange mutagenesis of CDR20291_0342 in R20291. (A) Schematic of the allele 
exchange construct for generation of the CDR20291_0342 gene deletion mutant. This is annotated 
with the primers used for screening to detect gene deletion mutants. (B) PCR screen of potential 
CDR20291_0342 gene deletion mutants. Lanes 1 to 6- individual clones from R20291, 7- R20291 wild-
type, 8- water only, all screened using primers R20291_0342_MUTSEQ_f and 
R20291_0342_MUTSEQ_r. Lanes 9-16- individual clones from R20291, 15- R20291 wild-type, 16- 
water only, all screened using primers R20291_0342_SEQ_f and R20291_0342_SEQ_r (grey arrows). 
The predicted size of amplicons with and without CDR20291_0342 are 4800 bp and 2262 bp, 
respectively for the MUTSEQ primers and 3288 bp and 750 bp, respectively, for the SEQ primers. 
Clones from lanes 5 and 6 and 13 and 14 were suspected gene deletion mutants, which were 
confirmed by sequencing.  

 

6.4. Antimicrobial susceptibility 

 As the bioinformatic analysis identified domains relating to antimicrobial efflux, presumably for the 

purposes of resistance, it was hypothesised that CDR20291_0342 and its associated transporter could 

be an antimicrobial efflux pump. To investigate this, the sensitivity of R20291 and R20291Δ0342 

against the macrolide erythromycin, the lincosamide lincomycin and the cyclic peptide bacitracin were 

all investigated. These were chosen as the amino acid sequence CDR20291_0342 harboured amino 

acid similarity to the antimicrobial efflux pump MacB, which can export macrolides from the cell in 

other species [552]. Macrolide efflux pumps can often also transport lincosamides and therefore 

lincomycin was investigated. Finally, as a cyclic peptide bacitracin is sometimes classed as an 

antimicrobial peptide and was therefore investigated as CDR20291_0342 harbours a SalY domain 

which is annotated in pFam as being associated with antimicrobial peptide resistance (Figure 6.1). The 
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broth dilution method was used to determine the MIC of both strains against the three compounds, 

but no difference in MIC was found for any of the antimicrobials (Table 6.2) in either strain.   

 

Table 6.2. Antimicrobial susceptibility of R20291Δ0342. R20291 and R20291Δ0342 were tested for 
susceptibility to erythromycin, bacitracin and lincomycin using the broth dilution method. Strains were 
incubated in 24-well tissue culture plates containing 1 ml BHI broth supplemented with bacitracin and 
erythromycin at 512, 256 and 128 µg/ml and lincomycin at 40, 20 and 10 µg/ml. Pre-equilibrated 
plates were inoculated with a day culture of each strain to a starting OD595 0.003 and incubated for 16 
hours before the OD595 was taken for each well using a plate reader. Each concentration was tested in 
duplicate and three independent replicates were performed. 

 

6.5. Growth kinetics  

To determine whether loss of CDR20291_0342 influenced growth, both the mutant and wild-type 

were grown in BHI media and OD595 taken every hour for 8 hours then a final reading at 24 hours. 

There was no difference in growth rate between the two strains (Figure 6.3).  

 

 

 

 

 

 

 

Figure 6.3. Growth rate of R20291Δ0342 in rich media. R20291 and R20291Δ0342 were grown 
overnight in BHI broth then diluted to a starting OD595 0.05 in fresh media. Absorbance readings were 
taken every hour for the first 8 hours followed by a final 24 hour reading. Cultures were set up in 
duplicate and three independent replicates were performed. Error bars represent standard deviation. 

Strain Bacitracin Erythromycin Lincomycin 

R20291 >512 µg/ml > 512 µg/ml 20 µg/ml 

R20291Δ0342 >512 µg/ml > 512 µg/ml 20 µg/ml 
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6.6. Carbon utilisation 

 

 Phenotypic microarrays 

 
Where the role of a particular protein within the cell is not easily decipherable from bioinformatics 

analysis alone, large-scale screening methodologies can be of use, enabling rapid identification or 

exclusion of potential functions. Biolog Phenotypic Microarrays assays are an established 

methodology for high-throughput screening of a number of different growth conditions in a plate 

format, a much simpler set up than traditional growth kinetics [554], and have recently been 

optimised for the study of anaerobes.  

The Biolog assays were performed and analysed at The Wellcome Trust Sanger Institute by Dr Hilary 

Browne and Dr Kevin Vervier, respectively. Strains R20291 and R20291Δ0342 were grown with 95 

different carbon sources, broadly grouped into acids, amino acids and carbohydrates. Two other, 

unrelated strains were screened simultaneously- R20291∆0330 and R20291_2436::CT. Plates were 

inoculated with C. difficile overnight culture and incubated in sealed anaerobic bags within an 

OminoLog for automated cell density readings. A minimum of seven replicates were performed per 

strain and analysis by Dr Vervier allocated a growth/no growth outcome for each strain in every tested 

growth condition, based on OD readings. Tables 6.3, 6.4 and 6.5 detail growth outcomes in amino 

acids, acids and carbohydrates, respectively. Any carbon source where no growth was recorded for 

any strain was excluded.  

Although two versions of the wild-type R20291 strain were tested, these performed poorly in the 

assay, with strains failing to grow in the majority of tested carbon sources, including well established 

sugars such as glucose. Therefore, to try and extract any potential phenotypes for R20291Δ0342, all 

strains were compared to one another. It was noted that R20291Δ0342 did not grow with L-valine, 

aspartic acid plus L-valine or alpha-ketovaleric acid. Both R20291_2436::CT and R20291∆0330 grew 

with L-valine and these strains plus one of the wildtype R20291 isolates grew with L-valine and aspartic 
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acid and alpha-ketovaleric acid. As valine was central to all these compounds, growth of R20291 and 

R20291Δ0342 in L-valine was taken forward for further investigation. 

 Amino acids 

Carbon Source R20291 (1) R20291 (2) R20291_2436::CT R20291Δ0330 R20291Δ0342 No. strains 

Alaninamide - - + - - 1 

L-Alanine - + + + - 3 

L-Alanyl-L-glutamine - - + - - 1 

L-Alanyl-L-Histidine - - + - - 1 

L-Alanyl-L-Threonine - - + + - 2 

Glycyl-L-Aspartic Acid - - + - - 1 

Glycyl-L-Glutamine - + + - - 2 

Glycyl-L-Proline - - + - - 1 

L-Phenylalanine - - + - + 2 

L-Serine - - + + - 2 

L-Threonine - - + - - 1 

L-Valine - - + + - 2 

L-Valine plus L-
aspartic acid 

+ - + + - 3 

Deoxyadenosine - - + - - 1 

Inosine - - + - - 1 

Thymidine - - + - - 1 

Uridine - - + - - 1 

Thymidine 
monophosphate 

- - + - - 1 

Uridine-
Monophosphate 

- - + - - 1 

No. growth 
conditions (n=19) 

1 2 19 5 1  

 

Table 6.3. Amino acids utilisation in R20291 and R20291∆0342. Growth of R20291 and R20291∆0342 
compared to each other and two other strains; R20291∆0330 and R20291_2436::CT in the presence 
of different amino acids as carbon sources. This was performed using a Biolog Phenotypic Assay on an 
AN microplate. Green and plus indicates growth and red and minus indicates no growth. The last 
column indicates the total number of strains growing in each condition and the last row displays the 
number of growth conditions each strain grew in. Each strain was tested in seven independent assays.  
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Table 6.4. Acid utilisation in R20291 and R20291∆0342. Growth of R20291 and R20291∆0342 
compared to each other and two other strains; R20291∆0330 and R20291_2436::CT in the presence 
of different acids as carbon sources. This was performed using a Biolog Phenotypic Assay on an AN 
microplate. Green and plus indicates growth and red and minus indicates no growth. The last column 
indicates the total number of strains growing in each condition and the last row displays the number 
of growth conditions each strain grew in. Each strain was tested in seven independent assays.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Acids 

Carbon source R20291 (1) R20291 (2) R20291_2436::CT R20291Δ0330 R20291Δ0342 
No. 

strains 

Acetic Acid - - + - - 1 

Glyoxylic Acid - - + - - 1 

Itaconic Acid - - - + - 1 

alpha-Ketobutyric 
Acid 

- - + + - 2 

alpha-Ketovaleric 
Acid 

- + + + - 3 

DL-Lactic acid - - - + - 1 

L-Lactic Acid - + + + - 3 

Pyruvic Acid - - + - + 2 

Pyruvic Acid Methyl 
Ester 

- - + - - 1 

Succinic Acid - - + - - 1 

Succinic Acid Mono-
Methyl Ester 

- - + - + 2 

m-Tartaric Acid - - - + - 1 

No. growth 
conditions (n=12) 

0 2 9 6 2  
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 Carbohydrates 

  R20291 (1) R20291 (2) R20291_2436::CT R20291Δ0330 R20291Δ0342 No. strains 

D-Cellobiose - - + - - 1 

beta-Cyclodextrin - - - + - 1 

Dextrin - - + - - 1 

Dulcitol - + + - - 2 

D-Gluconic Acid - - + - - 1 

alpha-D-Glucose - - + - - 1 

D-Glucose6-Phosphate - + + + - 3 

Maltotriose - - + - - 1 

D-Mannose - - + - - 1 

3-Methyl-D-Glucose - - + + + 3 

alpha-Methyl-D-
Galactoside 

- - + - - 1 

beta-Methyl-D-
Glucoside 

- - + - - 1 

D-Trehalose - - + - - 1 

Turanose - - + - - 1 

No. growth conditions 
(n=14) 

0 2 13 3 1  

Table 6.5. Carbohydrate utilisation in R20291 and R20291∆0342. Growth of R20291 and 
R20291∆0342 compared to each other and two other strains; R20291∆0330 and R20291_2436::CT in 
the presence of different amino acids as carbon sources. This was performed using a Biolog Phenotypic 
Assay on an AN microplate. Green and plus indicates growth and red and minus indicates no growth. 
The last column indicates the total number of strains growing in each condition and the last row 
displays the number of growth conditions each strain grew in. Each strain was tested in seven 
independent assays.  

 

 Valine utilisation 

To further investigate the importance of valine in the growth of R20291 and any differences in 

R20291∆0342, a series of growth kinetics were conducted using the defined minimal media as 

described in 2.7.1.2. Both strains were grown with and without glucose with one of three amino acid 

preparations. In the strains tested, Karasawa et al. identified 11 amino acids required for optimal 

growth of C. difficile and 6 amino acids essential for growth; valine, proline, tryptophan, leucine, 

isoleucine and cysteine. Both of these amino acid preparations were tested in addition to the basic 6 

but with valine removed to confirm this was essential in R20291. Furthermore, it was hypothesised 

that if R20291 were able to grow in the 6 amino acid composition without glucose, i.e. using the amino 

acids as carbon sources only, that this growth would be impaired in the R20291∆0342 strain if valine 

utilisation were not possible.  
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Strains were inoculated directly from plate cultures into individual defined minimal media overnights, 

which matched the final growth conditions and incubated for 24 hours. Only the growth obtained in 

11 amino acids with glucose was sufficient for inoculation of the final growth assays, therefore this 

was used as the inoculant for all conditions. It is likely the drastic change in environment from a rich 

plate culture to very minimal nutrient broth did not facilitate growth in the other conditions in the 

overnight set up. OD595 readings were taken using a plate reader every hour for 8 hours then a final 

reading at 24 hours by removing 100 µl of culture for measurement. The results obtained from growth 

of both strains in all three amino acid set ups are detailed in Figure 6.4.  

Unsurprisingly, the maximum OD595 achieved decreased as the number of amino acids was reduced, 

and both strains exhibited poor growth without glucose. Interestingly, both strains appeared to be 

capable of growing without valine, suggesting this is not essential for growth of R20291. Finally, there 

was no difference in growth between the strains in any of the conditions, suggesting inactivation of 

CDR20291_0342 does not impact on growth in the conditions tested.   
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Figure 6.4. Growth kinetics of R20291 and R20291∆0342 with differing amino acid compositions. 
Three growth conditions were tested, with and without glucose, using 11, 6 or 5 amino acids, as 
described in the table next to each growth curve. Strains were incubated for 24 hours in defined media 
supplemented with the 11 amino acid composition and glucose, which was then used to inoculate the 

final growth conditions. 100 l of culture was removed every hour for 8 hours and at 24 hours to take 
an OD595 readings using a plate reader. Cultures were set up in quadruplicate and two independent 
replicates were performed. Error bars represent standard deviation.   
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6.7. Discussion 

This study aimed to characterise the role of the putative permease protein, CDR20291_0342, within 

C. difficile. This was identified in Chapter 3 as a potential vaccine candidate, as the protein array results 

revealed antibody responses to the protein were higher in healthy people compared to those with 

CDI. To investigate its function, the gene was successfully deleted from the chromosome of R20291 

using allele exchange mutagenesis. As this removed the permease component within a putative ABC 

transporter, it was hypothesised the activity of the transporter would also be abolished.  

The N-terminal portion of CDR20291_0342 was found to share high similarity with the N-terminal 

domains of LolE and MacB, components of export ABC transporters. The LolCDE transporter from E. 

coli is involved in sorting of lipoproteins to the outer membrane [550]. Lipoproteins can have a variety 

of potential roles in virulence, including mediating attachment to host cells. Indeed, the C. difficile 

lipoprotein CD0873 was found to be important for binding to Caco-2 cells in vitro [223, 555]. 

Lipoproteins harbour an N-terminal motif known as the lipobox [551]. No lipobox was identified for 

CDR20291_0340, therefore this line of enquiry was not pursued. 

MacB transporters have a number of functions, but were first identified as efflux transporters of 

macrolide antibiotics [553]. They have since been shown to pump out a variety of antimicrobials, 

including colisitin and bacitracin [556, 557]. Antimicrobial resistance (AMR) rates within C. difficile can 

vary depending on geographical location and ribotype prevalence [249]. For example, hypervirulent 

strains within the 027 ribotype harbour a mutation in DNA gyrase, which confers high-level 

fluoroquinolone resistance [123]. Strain 630 is highly resistance to erythromycin via the presence of 

two ermB genes on the Tn5398 transposon inserted on the chromosome [558-560]. These encode for 

methylases, which modify the macrolide binding site within the 23S rRNA, conferring resistance [561]. 

Interestingly, there are some high-level erythromycin resistance strains of C. difficile, such as R20291, 

which do not carry the ermB gene, and for which the origin of resistance has not been identified. This 
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suggests there are unidentified mechanisms of resistance mediating this phenotype [205]. As 

R20291_0342 shared similarity with the MacB transporter, the mutant and wild-type strains were 

investigated for sensitivity to the macrolide erythromycin and lincosamide lincomycin, however, no 

difference was found in MIC for either antibiotic. It is not uncommon for efflux pumps to increase the 

MIC to a particular antimicrobial rather than be the critical switch between susceptibility and 

resistance [562], and as erythromycin was resistant to the highest concentration tested (512 µg/ml) 

any smaller changes above that would not have been identified.  

No difference was found in susceptibility of R20291 and R20291∆0342 to the common antimicrobial 

peptide bacitracin. AMPs are abundant within the gut and can interrupt the integrity of the cell 

membrane, therefore bacteria require defence mechanisms for survival [563]. ABC transporters are a 

very common mechanism of AMP resistance in Gram-positive species and C. difficile encodes the cpr 

and cln operons for resistance to nisin and galidermin, and cathelicidin, respectively [253, 564]. 

However, it is unlikely this is an exhaustive list of AMP resistance mechanisms within C. difficile, as 

inactivation of the cpr operon did not completely abolish resistance to its associated AMPs. 

R20291∆0342 is a putative efflux transporter and has potential links to efflux of antimicrobials. 

Although there was no difference in bacitracin sensitivity between the wild-type and mutant strains, 

some AMP-resistance mechanisms require pre-conditioning with their related AMP before their 

activity can be detected in vitro, as was the case for the Cpr transporter [564]. This would be an 

interestingly line of investigation, where gene expression could also be monitored and the repertoire 

of AMPs screened expanded to include other AMPs common to the gut environment.  

Despite identification of conserved domains within CDR20291_0342, it may be that the orthologue is 

a product of similar physical functions i.e. efflux, and unrelated to the purpose of the transporter on 

which the protein was modelled. For example, Phyre2 modelled CDR20291_0342 against LolE with 

99.2% confidence, but this was only based on 21% of the protein. In these instances, where clues to 
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protein function are limited, high-throughput screening assays can be a valuable source of potential 

candidates for transport.  

Biolog Phenotypic Microarrays have been employed for many bacterial and fungal species and have 

enabled elucidation of nutritional and chemical phenomes [565-567]. Conditions required for 

different cellular pathways can also be screened, as was demonstrated for C. difficile toxin production 

[568]. Disappointingly, our R20291 strain performed poorly in this assay and didn’t grow in the 

majority of conditions tested. Previous work using the Biology Phenotypic Arrays to assess the growth 

of R20291 found this strain in fact had an expanded nutrient utilisation profile compared to other 

strains of C. difficile. This and other studies identified numerous conditions where R20291 was able to 

grow, which was not identified within our assays [38, 565]. The reason behind this poor growth is 

unknown. The other strains (mutants) also appeared to be growing weakly in these biological runs, 

with the exception of R20291_2436::CT which grew well in most conditions. On a technical note, it is 

my experience and others that the organism does not grow well in a 96-well plate format even in rich 

media, so this may have also influenced the Biolog results.  

Despite this, there were some compounds worth following up on, including  L-valine, L-valine plus 

aspartic acid and alpha-keto valeric acid which were unable to support growth of R20291∆0342. As 

these all had the common component of L-valine, the growth of R20291 and R20291∆0342 with and 

without valine was assessed to determine whether the Biolog results were a true phenotype. Previous 

studies have found C. difficile is auxotrophic for valine, along with five other amino acids (proline, 

cysteine, leucine, isoleucine and tryptophan) [32]. However, until now, this hasn’t been assessed for 

R20291. C. difficile strain R20291 was able to grow in minimal media with the 5 amino acids and the 

biggest impact on growth resulted from resulting from removal of glucose, rather than L-valine. 

Furthermore, no difference between the mutant and wild-type strain was found in any of the 

conditions tested. This indicates that the results from the Biolog were most likely due to inter-plate 

variation, rather than an observable phenotype.   
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Valine is a branched chain amino acid (BCAA) that is an important donor for Stickland fermentation, 

the major source of energy production within C. difficile. Both the valine synthesis pathway and BCAA 

transporter, BrnQ are regulated by CodY, a global regulator within C. difficile, which can bind valine 

directly to suppress transcription of the CodY regulon [507]. Considering the synthesis pathways 

available for valine in C. difficile and the multiple BCAAs that can be used in Stickland fermentation, it 

is slightly surprising that valine is an essential requirement in minimal media. Our results suggest valine 

is in fact not essential for growth of R20291. It may be that carry over from the overnight conditions 

provided adequate valine to support growth, although this is likely to only sustain initial growth (i.e. 

0-2 hours) and be insufficient for the full growth curve obtained. Even so, future work could look at 

removal of any residual media with washing of the pellet or further dilution of the primary cultures 

before inoculation of the test media. Pellet washing was not attempted in these experiments, as when 

trialled previously with minimal media experiments, growth was very slow and the bacteria did not 

demonstrate the typical lag, exponential and stationary growth phases, even in conditions that could 

support normal growth.  

As with the other proteins undergoing phenotypic characterisation, no complements were 

constructed for CDR20291_0342, although here there was less of a requirement as the phenotype of 

the mutant did not differ from wild-type in the conditions tested. The difficulties in working with 

minimal media and carryover were similar to those faced with the CDR20291_0330 growth 

experiments. The contribution of media carryover is important to identify in these experiments to see 

whether valine is truly unnecessary for growth or if the bacteria were relying on the small 

concentration likely to still be in the media. It could also be interesting to extend the growth time to 

see if there are any downstream differences in growth rate, as was seen for 630 when grown in 

ethanolamine. If it were possible to obtain gut filtrate, the growth and antimicrobial sensitivity assays 

could be repeated in these conditions to determine whether an environment more similar to the in 

vivo conditions highlights any differences. In relation to further characterisation of CDR20291_0342, 

as the role of this protein and its associated transporter within C. difficile remains unknown, future 
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experiments should focus on large scale screening methodologies. For example, transcriptomics 

comparing the mutant to wild-type R20291 could determine whether gene expression is altered when 

CDR20291_0342 is inactivated. Any patterns of differential expression obtained could then inform 

functions related to CDR20291_0342. Alternatively, adaptive transcriptomics could be used to 

monitor the gene expression of CDR20291_0342 under different conditions and/or over a period of 

time. For example, adaptive transcriptomics in a mouse model was used to investigate the virulence 

of an epidemic ribotype 027 strain [35].  

CDR20291_0342 was highlighted as a potential vaccine candidate as a higher sera IgG response in 

healthy controls compared to CDI patients was found in both the pan-protein array and using the 

purified protein in an ELISA (albeit not significantly higher for the ELISA). CDR20291_0342 was 

conserved across a number of clinically relevant strains except the ribotype 023 CD305. Although this 

could reduce vaccine coverage, it is unlikely that C. difficile vaccines of the future will be single 

component vaccines and instead will constitute multiple immunogenic components include anti-

colonisation factors and Toxins A and B. From a basic accessibility perspective, ABC transporters are 

encoded within the cell membrane, often with large extra cellular portions or exposed substrate 

binding components, which are therefore available for recognition by the immune system. 

Furthermore, a number of ABC transporters have been identified as immunogenic and assessed in 

vaccine trials [547]. This includes vaccines against Streptococcus pneumoniae, Mycobacterium 

tuberculosis, Moraxella catarrhalis and Yersinia pestis [547, 569, 570]. In relation to C. difficile, a study 

of immunoreactive cell surface proteins included an ABC transporter that was recognised by human 

sera [571], but no ABC transporter antigens have been evaluated in clinical trials, suggesting this is a 

potentially exciting and novel area.  
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7. Expressing the C. difficile flagella glycan in E. coli  

7.1. Introduction 

C. difficile vaccine development to date has primarily relied on the immunogenic properties of Toxins 

A and B, with all vaccines currently in clinical trials based on these components [375]. However, these 

trials have not led to the production of a licenced vaccine, therefore alternative approaches to C. 

difficile vaccine design is a current imperative. As described in Chapter 1 (section 1.6.3), a number of 

C. difficile antigens have been investigated as vaccine candidates, including spore coat proteins CdeM 

and CdeC, cell surface proteins SlpA and Cwp84 and the surface polysaccharides PS-I, PS-II and PS-III 

[235, 419, 421, 425]. The latter have been tested as glycoconjugates, a very effective vaccine design 

whereby polysaccharides are conjugated to proteins to stimulate a T-cell dependent immune 

response. leading to immunological memory, a process not possible with polysaccharide alone [324]. 

C. difficile PS-II has been chemically conjugated to the diphtheria toxin CRM197, the enterotoxigenic E. 

coli enterotoxin B subunit, and portions of Toxins A and B from C. difficile. Antibodies specific to PS-II 

are raised in mice, but the protective efficacy of this construct is yet to be demonstrated in challenge 

studies [234, 235, 238].  

The glycoconjugates described above were synthesised chemically, a multistep process requiring 

production and purification of the protein and glycan components separately, before they can be 

coupled together and then purified [572]. In more recent years, the development of bioconjugation 

has provided an alternative and in some ways, superior means of synthesising glycoconjugates, by 

exploiting the innate capacity of bacteria to build and conjugate complex glycans [341, 365, 367, 368]. 

Bacterial glycosylation systems can differ in a number of ways, including by which residues within the 

acceptor protein the glycan is attached to, either asparagine (N-linked) or serine/threonine (O-linked). 

Furthermore, these differ by where the glycan is synthesised, which can be directly on to the acceptor 

protein or first built on a lipid linker (e.g. UndPP) within the inner membrane before transfer to the 

acceptor protein by an oligosaccharyltransferase (OST) [335]. Transfer of bacterial glycosylation 
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systems into E. coli cells can result in an in vivo “vaccine factory”, as demonstrated at the basic 

research level, but also advanced to such a stage that vaccines prepared using this method are now in 

clinical trials [332, 370-372]. Bioconjugation offers a number of advantages over chemical conjugation, 

including ease and safety of working with E. coli cells over the native organism, improved isolation of 

fully synthesised, intact conjugates and fewer rounds of purification, meaning reduced cost of 

manufacture [333]. 

Although the term bioconjugation covers a number of methodologies, arguably the best 

characterised is the use of the OST PglB from the Campylobacter jejuni N-linked glycosylation 

pathway, in E. coli. The N-linked glycan from C. jejuni is first synthesised onto the UndPP lipid linker, 

on the cytoplasmic leaflet of the inner membrane. This is then translocated by a flippase enzyme to 

the periplasm. Here, it is recognised by the OST PglB, which attaches the glycan to the D-X-N-Y-S/T 

recognition sequence within a given acceptor protein [341, 348]. PglB can be expressed in E. coli and 

used to transfer a diverse range of glycan substrates to acceptor proteins [430]. In its simplest form, 

this can be achieved with co-expression of the acceptor protein, OST PglB and biosynthesis locus of 

the desired glycan in a suitable host cell, such as E. coli (Figure 7.1).  

Use of bioconjugation to build a C. difficile specific glycoconjugate offers many advantages over 

chemical conjugation [332, 333]. For example, a multi-component vaccine could be designed using an 

immunogenic surface antigen, such as one or more of those identified by the protein array, fused to 

domains of Toxins A and B conjugated to a C. difficile specific glycan. Previous work has demonstrated 

that recombinant Toxin B fragments chemically conjugated to C. difficile PS-II result in a Toxin B and 

PS-II specific antibody response in a mouse model [238].  
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Figure 7.1. Assembly of glycosylation machinery in E. coli. The OST PglB from C. jejuni can be 
expressed in E. coli and used to attach a broad range of glycans onto a specific acceptor protein. This 
can be achieved by plasmid-mediated expression of each of the three required components; PglB, 
the acceptor protein and the machinery for bulding the glycan, in a suitable host cell such as E. coli.  

 

The aim of this work was to develop the use of bioconjugation, namely the C. jejuni OST PglB in E. coli, 

to build a C. difficile-specific glycoconjugate.This would provide a novel mechanism for the synthesis 

of glycoconjugate vaccines for C. difficile. Furthermore, this would represent the first example of the 

functional transfer of C. difficile glycosylation enzymes into E. coli by combining O-linked and N-linked 

glycosylation systems to build glycan structures, which represents an important contribution to the 

bioconjugation toolbox.   
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7.2. Using bioconjugation to express the C. difficile flagella glycan  

 Glycan selection 

Interest in the C. difficile glycome has increased in recent years and consequently so has 

understanding of the different sugars within and on the cell surface (Introduction, section 1.3.4.2). 

This review was used to inform glycan selection for inclusion within the C. difficile-specific 

glycoconjugate in this study. It was essential that the native locus encoding glycan synthesis had 

been identified in C. difficile and ideally, characterised, in order to inform the role of enzyme(s) 

required for glycan synthesis. This then informed which genes were required for transfer into E. coli. 

Structural information about the C. difficile glycan was also essential to know what to screen for.  

The glycans decorating the C. difficile flagella have been resolved by mass spectrometry (MS) and 

nucleic magnetic resonance (NMR) and their glycosylation loci characterised in detail for ribotype 

012 (strain 630) and ribotype 027 (strain R20291) [184, 185, 187, 190]. A flagella glycan was 

therefore deemed the most appropriate substrate for this proof of concept study. The flagella 

glycans are O-linked, meaning they are attached to serine and threonine residues within FliC. The 

glycan structures have been resolved by NMR, and are shown in Figure 7.2. The flagella from strain 

630 is decorated with a N-acetyl-glucosamine (GlcNac) joined to a methylated threonine via a 

phosphodiester bond [184]. The flagella glycan from ribotype 027 is more intricate, with a GlcNac 

starting sugar followed by a methylated di-rhamnose and a terminal sulfonated peptidylamido 

glycan moiety [190]. As proof of principle, the first three sugars of the 027 strain glycan (Rha-2-α-

Rha3OMe-3-β-GlcNac-) were selected for transfer into E. coli and glycosylation of an acceptor 

protein. These precursor sugars (GlcNac and rhamnose) should all be readily available in E. coli and 

the glycan harbours an acetoamide group at the C2 position of the reducing end sugar (GlcNac), a 

structural requirement of PglB [364]. It was decided that to begin with the whole glycan wouldn’t be 

transferred due to the complexity of the terminal peptidylamido glycan moiety. Furthermore, the 
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addition of individual enzymes rather than the whole flagella glycosylation locus from C. difficile 

enables greater control and insight during cloning, optimisation of engineering and trouble shooting.   

 

 

 

 

 

 

 

 

Figure 7.2. The structure of C. difficile flagella glycans. The flagella glycan structure as resolved by 
nuclear magnetic resonance (NMR) imaging for (A) strain 630, from Faulds-Pain et al. [184] and (B) 
strain R20291, from Bouche et al. [190]. Above each glycan structure is a simplified schematic of the 
glycan organisation, modified from an image by Dr Alexandra Faulds-Pain; grey box- GlcNac, green 
triangle- rhamnose, red hexagon- peptidylamido glycan moiety, blue circle- phosphate group, purple 
diamond- threonine, black dot- methyl group.  
 

The flagella glycosylation locus begins with fliC, encoding the structural unit of the flagella filament, 

followed immediately downstream by the enzymes required for glycosylation [113, 184, 185] (Figure 

7.3). Glycosyltransferase 1 (GT1) adds the starting GlcNac sugar directly onto serine and threonine 

residues within FliC, followed by addition and methylation of the di-rhamnose by glycosyltransferase 

2 (GT2), encoded by CDR20291_0242. This enzyme is thought to be responsible for both glycosylation 

and methylation of the rhamnose sugars and harbours putative active sites for both functions present 

within its structure [187]. Only GT2 was transferred into E. coli for expression of the glycan, as 

described in the next section.  
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Figure 7.3. The flagella glycosylation locus from R20291. The organisation of the flagella glycosylation 
locus including; the flagella filament gene fliC, the glycosyltransferases GT1 and GT2, responsible for 
addition of the GlcNac and di-rhamnose onto FliC, respectively, an additional glycosyltransferase (GT3) 
and two open reading frames (ORF 5 and ORF 6) required for synthesis of the full glycan structure and 
flgB, which encodes the putative flagella basal body rod gene. Below is the numbering of the genes in 
C. difficile R20291 [113, 184, 187].  
 

 Adaptation of C. jejuni N-linked glycosylation 

The production of glycosylated protein using PglB involves the following three stages:  

1. Synthesis of the glycan in the cytoplasm on an undecaprenol pyrophosphate (UndPP) linker 

within the inner membrane 

2. Transfer of the synthesised glycan into the periplasm by a membrane bound flippase 

3. Periplasmic transfer of the glycan onto an acceptor protein by PglB 

Glycoconjugates previously synthesised using PglB and its associated N-linked glycosylation pathway 

tend to include glycans originating from organisms with complementary pathways of synthesis, 

facilitating their transfer into E. coli. For example, Francisella tularensis already encodes enzymes for 

synthesis of the glycan onto UndPP and for its transfer into the periplasm, enabling successful 

recombinant glycoconjugate vaccine synthesis [365, 573]. C. difficile is a Gram-positive organism, 

which lacks a periplasm, and therefore encodes neither of the enzymes described above (those 

mediating synthesis of the glycan onto UndPP and its transfer into the periplasm). Instead it is 

proposed to follow other mechanisms of flagella glycosylation and synthesise the glycan in the 

cytoplasm directly onto serine/threonine residues (O-linked) within FliC.  

In this proof of concept study, elements of the E. coli O-antigen locus were hijacked for synthesis of 

the C. difficile flagella glycan. The E. coli strain CLM24 does not build its native O-antigen (O16) (Figure 

7.4) due to insertional inactivation of wbbL (a gene necessary for synthesis) with an IS5 element [574]. 

  fliC                  GT1                             GT2                           GT3                   ORF 4       ORF 5       ORF 6          ORF 7               flgB                      

0240                0241                            0242                        0243                  0244        0245        0246             0247              0248 
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However, as the other genes in the loci are still present, they could be reappropriated. The first step 

requires the synthesis of the glycan onto UndPP in the inner membrane. As the O16 antigen and 

flagella glycan share the same starting sugar, GlcNac, the enzyme responsible for its placement on 

UndPP in E. coli, WecA, was selected as the starting enzyme for C. difficile flagella glycan synthesis. 

This replaces the native C. difficile enzyme, CDR20291_0241 (GT1), which adds GlcNac directly onto 

the flagellin subunit, FliC. Once UndPP-linked GlcNac was available, GT2 from C. difficile could be 

expressed for addition of the di-rhamnose. In relation to the transfer of the flagella glycan into the 

periplasm, E. coli encodes its own flippase, Wzx. The promiscuity of this flippase is under debate, but 

as both the E. coli O16 antigen and C. difficile flagella glycan begin with a GlcNac linked to L-rhamnose, 

it was proposed this level of similarity should be permissive for transport.  

 

 

 

 

 

 

 

 

 

Figure 7.4. Biosynthesis pathway of the E. coli O16 antigen. Pathway for synthesis of the E. coli O16 
antigen. This pathway is harboured by K-12 strains of E. coli (standard laboratory strains) but these do 
not produce their O-antigen due to a mutation in wbbL. Glycosyltransferases sequentially add 
individual sugars to UndPP within the inner membrane. The glycan is then transferred into the 
periplasm (Wzx), polymerised (Wzy), then ligated to Lipid A on the surface of the cell (WaaL). Image 
from Hong et al. [575]. 

 

Finally, the C. difficile flagella glycan is O-linked, meaning it is built directly onto serine and threonine 

residues within FliC, whereas PglB is an N-linked system and attaches glycans to asparagine residues 

within a D-X-N-Y-S/T recognition sequon. The C. difficile flagella glycan contains a GlcNac starting sugar 

which should be permissible for PglB, therefore the glycan should be transferred as long as a suitable 
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acceptable protein with a D-X-N-Y-S/T recognition site is provided (section 7.2.3).  The concept of 

different enzymes working cooperatively to synthesise a glycan structure has been reported 

previously, as when the C. jejuni heptasaccahride was expressed in a WecA-positive E. coli, structures 

were identified beginning with both bacillosamine, the native starting sugar, and GlcNac, due to the 

activity of WecA [576]. Figure 7.5 demonstrates the proposed bioconjugation pathway.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. Proposed pathway for the expression of the C. difficile flagella glycan in E. coli. The E. coli 
enzyme, WecA, adds GlcNac onto UndPP then the C. difficile GT2 (CDR20291_0242) builds the 
methylated di-rhamnose structure onto this. The E. coli flippase transfers the glycan into the periplasm 
where it can be recognised by C. jejuni PglB and conjugated to the D-X-N-Y-S/T recognition sequon 
within the acceptor protein.    
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 Acceptor protein design  

Once the desired glycan for synthesis was identified, it was necessary to select a suitable acceptor 

protein to receive the flagella glycan. The estimated size of the glycan when fully synthesised (Rha-2-

α-Rha3OMe-3-β-GlcNac-) is approximately 0.4 KDa, which would result in a minor change to the 

protein molecular weight and therefore difficult to resolve by SDS-PAGE. Gel-based assessment of 

changes to protein molecular weight is a useful indicator of whether glycosylation has occurred, 

providing a quick and easy screening method during optimisation. This is especially important 

considering the lack of antibodies and lectins to this structure and the more time consuming and 

expensive process of MS, using which isn’t feasible for assessing many different strains and growth 

conditions.   

To account for the anticipated minor change to protein mass upon glycosylation, a short reporter 

protein with multiple glycosylation sequons was deemed the ideal candidate for glycosylation. Minor 

size changes are easier to distinguish on smaller proteins and increasing the number of potential 

glycosylation sites, which should increase the number of glycans occupying the protein and therefore 

increase the total shift molecular weight (i.e. if all 7 potential sites were occupied with the 0.4 KDa 

glycan this would equate to a total 2.8 KDa size difference). At this stage the immunogenic properties 

of the protein were not a priority, as the aim of the work was to demonstrate functional transfer of C. 

difficile GT2 into E. coli and synthesis of the Rha-2-α-Rha3OMe-3-β-GlcNac- structure.  

The C. jejuni periplasmic lipoprotein, AcrA, is a well-studied and routinely utilised carrier protein in 

bioconjugation, with multiple glycosylation sequons [341, 430, 577]. At ~40 KDa, its size made it 

unsuitable for this work, as very small changes to protein mass by glycosylation with the flagella glycan 

would not be visible by SDS-PAGE. Therefore a truncated ~13 KDa fragment of the protein harbouring 

a single native glycosylation site was designed for use in this study. This fragment was derived from a 

publication identifying the smallest domain of AcrA that could be glycosylated by PglB, using different 

lengths of the coiled coil domain still flanked by the lipoyl region [348]. In addition to the native 
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glycosylation site, the  authors engineered two more glycosylation sequons into the coiled coil domain, 

by changing one residue per sequon at F115D and T145D. All three sites were demonstrated to be 

glycosylated with the C. jejuni heptasaccharide by PglB.  Therefore the region containing all these and 

the flanking lipoyl domain was selected as the acceptor. A fourth native glycosylation sequon also 

present in the sequence was excluded as its distance from other sequons meant accommodating it 

would result in a significant increase in protein size (Figure 7.6a). To further improve the opportunities 

for glycosylation, a “glycotag” was added to the C-terminus consisting of 4 glycosylation sites, 

including the optimal sequon DQNAT, separated by glycine-arginine-glycine linkers [578]. Glycotags 

are commonly employed in bioconjugation to improve glycosylation of the protein, particularly in the 

absence of native or easily engineered internal glycosylation sequons [576]. Finally, an N-terminal 

signal sequence from the E. coli DsbA protein was included for localisation to the periplasm where 

PglB functions and a C-terminal 6xHistag for purification (Figure 7.6b and c) [579, 580].  
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Figure 7.6. Design and sequence of the acceptor protein, AcrAtag. A short acceptor protein was 
designed for use in the glycosylation experiments, comprising a fragment of the C. jejuni periplasmic 
lipoprotein, AcrA with a four sequon glycotag. (A) Sequence alignment of full length AcrA and AcrAtag. 
The coloured regions represent the different protein domains; β barrel sandwich hybrid (grey), lipoyl 
domain (pink) and coiled coil domain (green) [348]. Arrows denote N-glycosylation sequons, either 
native (filled black), native but not used for AcrAtag (filled red) or engineered (empty). : defines 
residues mutated to reduce proteolytic cleavage. (B) Schematic of AcrAtag with N-terminal DsbA signal 
sequence for localisation to the periplasm, where PglB functions, the peptide sequence containing 
one native and two engineered glycosylation sequons (asterisks), the glycotag comprising four 
glycosylation sequons and a C-terminal 6xHis tag for nickel affinity purification. (C) Full sequence of 
AcrAtag; DsbA signal sequence (double underlined), N-glycosylation sequon (single underlined), 
glycosylated asparagine residue (arrow), mutated residue to generate another glycosylation sequon 
(bold), glycotag (italics), 6xHis tag (box).  
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7.3. Glycosylation trials using a multi-vector system  

 System design  

Initial glycosylation trials utilised a multi plasmid system for expression of the different components 

of the glycosylation pathway, including: the acceptor protein AcrAtag, the glycosyltransferase GT2, 

and the OST, PglB (Figure 7.1). This approach has previously been used to build glycoconjugates for C. 

jejuni, F. tularensis, Staphylococcus aureus and Burkholderia pseudomallei [365, 368, 369, 576].  E. coli 

strain CLM24 was selected as the expression host and is derived from the K-12 strain W3110, but lacks 

a functional WaaL ligase. WaaL traffics glycans from the periplasmic UndPP to Lipid A on the cell 

surface. Deletion of waaL  results in accumulation of UndPP-linked glycan in the periplasm [430]. The 

CLM24 strain used also harboured transposon-integrated pglB on the chromosome (CLM24 

cedA::pglB, referred to here as CLM24pglB, kindly provided by Dr Jon Cuccui, LSHTM, London, UK), 

under IPTG inducible expression. Chromosomal integration of pglB removes the need for a third 

plasmid in the system which reduces the burden of plasmid incompatibility when expressing multiple 

constructs within one cell and enables a wider variety of plasmids to be trialled for expression of GT2 

and AcrAtag.  

The pEXT series of plasmids were selected for expression of GT2 and AcrAtag (Figure 7.7). pEXT20, 21 

and 22 all express from a Ptac promoter, but differ in origin of replication and resistance cassette, 

meaning they can be stably maintained within the same cell [581]. They range in copy number from 

high (pEXT20) to low (pEXT21 and pEXT22), so plasmid selection can influence the concentration of 

the desired construct within the cell. As the ideal ratio of glycan to protein was not yet known, AcrAtag 

and GT2 were cloned into both pEXT20 and pEXT21, offering maximum flexibility during optimisation 

of protein expression and glycosylation. pEXT22 was not taken forward as both this plasmid and the 

CLM24pglB strain are kanamycin resistant.  
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Figure 7.7. Maps of the pEXT series of plasmids. Plasmids pEXT20 and pEXT21 were used for 
expression of the glycosyltransferase GT2 and acceptor protein AcrAtag. Expression is driven from a 
Ptac promoter in all plasmids but they differ by origin of replication and antibiotic resistance cassette, 
meaning they can co-express within the same cell. Image taken from Dykxhoorn et al. [581].  
 

 Confirming glycosylation of IPTG-inducible AcrAtag  

The gene encoding GT2, CDR20291_0242, was amplified from C. difficile genomic DNA and ligated into 

pEXT20 and pEXT21. The acceptor protein, AcrAtag, was synthesised as a G-block gene fragment 

(section 7.2.3) and  ligated into pEXT20 and pEXT21. Correct construction of all plasmids was 

confirmed with test digestion and sequencing.  

The AcrAtag protein harbours a C-terminal 6xHistag, which was used to confirm protein expression. 

GT2 was not constructed with a 6xHistag due to concerns of the tag interfering with enzyme function. 

CLM24pglB cells harbouring the pEXT20_AcrAtag construct were induced overnight at 37oC with 1 mM 

IPTG, harvested cells lysed in a ribolyser then the soluble protein fraction purified using nickel affinity 
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resin and visualised on an anti-His immunoblot (Figure 7.8). The predicted molecular weight of AcrAtag 

with a 6xHistag, but without the DsbA signal sequence (which is cleaved once the protein is localised 

to the periplasm) is ~17.27 KDa. The anti-His immunoblot detected a protein in the induced strain 

carrying pEXT20_AcrAtag, which was within the expected size range and absent from both the 

uninduced control and the induction of empty pEXT20, confirming expression of AcrAtag.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 7.8. Expression of the acceptor protein, AcrAtag. CLM24pglB cells harbouring pEXT20_AcrAtag 
or empty pEXT20 only were incubated overnight at 37oC with 1 mM IPTG and the nickel affinity purified 
soluble fraction was probed for the ~17.27 KDa AcrAtag on an anti-His immunoblot (red). I, induced, 
UI, uninduced.  
 
The functional transfer of the pgl locus encoding the C. jejuni heptasaccharide synthesis machinery, 

into E. coli and glycosylation of a chosen acceptor protein has been demonstrated previously [341]. 

This can be utilised as a useful indicator as to whether the protein of interest can be glycosylated and 

how many sequons are occupied, which in turn indicates the maximum size change to be expected 

when testing the C. difficile glycan. It also confirms the protein is being localised to the periplasm 
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where glycosylation occurs and is a permissible substrate for PglB. The pgl glycosylation locus encoded 

on pACYC (pACYCpglΔpglB) contains the complete machinery required for synthesis of the C. jejuni 

heptasaccharide (pglB is chromosomally integrated), including glycosyltransferases to build the glycan 

onto UndPP and a flippase for transport across the inner membrane.  

To confirm AcrAtag could be glycosylated, CLM24pglB or CLM24 cells carrying pEXT20_AcrAtag and 

the constitutively expressed pACYCpglΔpglB was induced overnight at 37oC or 30oC with 1 mM IPTG. 

Cells were harvested and lysed and proteins purified by nickel affinity chromatography then resolved 

by SDS-PAGE and probed by Western blot with anti-His antibody and SBA lectin. The 6XHistagged 

AcrAtag and galactose residues within the C. jejuni heptasaccharide were detected by anti-His 

antibody and the soy bean agglutinin (SBA) lectin, respectively (Figure 7.9 panel 1 and 2). It was 

hypothesised that when expressing AcrAtag in the presence of PglB and the C. jejuni heptsaccharide, 

a ladder of bands would be produced relating to occupation of each glycosylation site with glycan. 

Indeed, when expressed together, a laddering pattern of bands is produced, corresponding to 

unglycosylated material at the bottom, followed by an increasing number of glycosylation sites 

occupied by the ~1.2 KDa heptasaccharide, up to a maximum of 6, one fewer than the total number 

available. Only unglycosylated protein is present when the same constructs are expressed in CLM24 

cells without pglB on the chromosome and glycosylation appears to be more pronounced at 30oC over 

37oC (Figure 7.9).  

The uninduced control only relates to AcrAtag, as the C. jejuni glycosylation locus is under constitutive 

expression. Here, the banding pattern of glycosylation can still be detected, which is attributed to 

leaky expression of the acceptor protein, AcrAtag, as expression of the C. jejuni glycan locus alone 

does not result in any banding pattern (Figure 7.9, panel 3, lane 5). In the uninduced control, no 

unglycosylated protein was detectable by the anti-His antibody, suggesting less protein is favourable 

for glycosylation and results in a more efficient reaction, as the higher bands of glycosylation are 

comparable to induced conditions. This could also be due to the higher sensitivity of the SBA lectin 
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compared to the anti-His antibody (Figure 7.9). On a repeat expression test of the C. jejuni glycan and 

AcrAtag (Figure 7.9, panel 4), a banding pattern was produced which corresponds to all seven 

glycosylation sites being occupied, confirming all are available for occupancy and AcrAtag is an 

appropriate acceptor protein for use with PglB.  
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Figure 7.9. Glycosylation of IPTG-inducible AcrAtag with the C. jejuni heptasaccharide. To confirm AcrAtag could be glycosylated, the constitutive 
pACYCpglΔpglB construct, encoding the C. jejuni heptasaccharide locus was co-expressed with pEXT20_AcrAtag in CLM24pglB and CLM24 (no pglB) cells. 
These were incubated overnight at 37oC and 30oC, then induced with 1 mM IPTG: I, induced, UI, uninduced. AcrAtag was extracted and nickel affinity purified 
then detected by immunoblot using anti-His antibody to AcrAtag and soy bean agglutinin (SBA) lectin to the C. jejuni glycan. The first three panels present the 
immunoblot images with anti-His only (red), anti-glycan (anti-galactose) only (green) then the two overlaid. The last panel displays a repeat expression test. 
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 Screening for glycosylation with GT2 

After confirming AcrAtag is a functional acceptor protein for glycosylation by PglB, AcrAtag was co-

expressed with GT2 from C. difficle, from the pEXT21, to screen for glycosylation with the truncated 

C. difficile flagella glycan. CLM24pglB or CLM24 cells expressing AcrAtag (pEXT20) and the C. difficile 

GT2 (pEXT21) were induced overnight with 1 mM IPTG at 37oC or 30oC then processed as described 

above. Purified protein was probed with anti-His antibody only, there is no specific antibody against 

the C. difficle glycan (Rha-2-α-Rha3OMe-3-β-GlcNac). As can be seen in Figure 7.10, there is no 

discernible difference between the molecular weight of AcrAtag when expressed with GT2 in the 

presence or absence of PglB, suggesting glycosylation had not occurred. Indeed it is possible that the 

size shift is too slight to be visible on a gel (maximum 2.8 KDa), as even though the C. jejuni 

heptasaccharide occupied all potential sites, this was to varying degrees and the same phenotype may 

not be achieved across different glycans.  

In case this was an issue with the ratio of acceptor protein to glycan, the glycosylation trial was 

repeated, but with AcrAtag expressing from pEXT21 and GT2 from pEXT20. Although less AcrAtag 

protein would be expected from expression in pEXT21, due to a much lower copy number, no protein 

could be detected by anti-His immunoblot, indicating lack of AcrAtag expression. As this is the same 

backbone (pEXT21) expressing GT2 in the first experiments, it suggests GT2 was also not being 

expressed in the system, for an unknown reason (data not shown).  
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Figure 7.10. Expression of AcrAtag with C. difficile GT2. pEXT21_GT2, encoding the second 
glycosyltransferase from the R20291 flagella glycosylation locus was co-expressed with 
pEXT20_AcrAtag in CLM24pglB and CLM24 cells (no pglB). These were incubated overnight at 37oC 
and 30oC and induced with 1 mM IPTG; I, induced, UI, uninduced. AcrAtag was extracted and nickel 
affinity purified then detected by immunoblot using anti-His antibody to AcrAtag.  
 

7.4. Glycosylation trials using a single plasmid system  

 System design  

To overcome the difficulties in working with pEXT21, and the lack of protein/glycan expression an 

alternative system was adopted where AcrAtag and GT2 could be expressed from the same plasmid. 

This is advantageous as the acceptor protein and glycosyltransferase would be under the induction of 

different inducible promoters (IPTG and L-arabinose), meaning their expression could be 

independently controlled. Furthermore, expression from the L-arabinose promoter is easier to titrate,  

meaning the expression of its downstream gene(s) can be more tightly controlled. The dual expression 

plasmids, namely the pCH series, were constructed by Gibson assembly (Methods, section 2.4.6) using 

pEXT20 and pEC415, which share the same pBR322 origin of replication and ampicillin resistance 

AcrAtag 
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cassette [582]. Dr Ian Passmore designed the system of incorporating pEC415 and pEXT20 to build a 

dual expression plasmid, which I then adapted for incorporation of my constructs.  

All plasmids were constructed using Gibson assembly, amplifying the plasmid and insert fragments 

with complimentary overhangs to permit joining of the two constructs. This was firstly used to build 

pEXT20 and pEC415 harbouring either AcrAtag or GT2 which were then used in synthesis of the dual 

expression plasmids. The backbone of the pCH series of plasmids was a 3485 bp fragment of the 

backbone of pEXT20 (3913 bp), containing the pBR322 origin of replication, the lacI repressor gene, 

the ampicillin resistance cassette, the IPTG-inducible Ptac promoter for expression of AcrAtag or GT2 

but without tet gene, as tetracycline resistance was not required. In place of the tet gene, a 4176 bp 

fragment of pEC415 was inserted, containing the L-arabinose inducible PBad promoter, again 

controlling AcrAtag or GT2 and the araC gene, for activation of expression. Plasmids were built with 

L-arabinose inducible GT2 and IPTG inducible AcrAtag (pCH01) or in the opposite arrangement 

(pCH05) (Figure 7.11).  

In addition to building these plasmids with the standard GT2 construct used previously, a codon 

optimised version of GT2 was designed using the IDT Codon Optimisation tool and ordered for 

synthesis as a G-block. Codon usage differs between species and therefore some may be less well 

translated when expressed in the non-native strain, depending on the pool of tRNA available. By codon 

optimising the sequence for E. coli, protein expression can be improved. Multiple attempts were made 

to insert codon optimised GT2 into pEXT20 or pEC415 and many clones were obtained following 

ligation and transformation of Top10 cells. However, all clones harboured multiple SNPs or deletions 

within the coding region of GT2, suggesting codon optimised GT2 may be toxic to the cell, so this was 

not pursued.    
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Figure 7.11. Plasmid maps of pCH01 and pCH05. Schematic of the plasmid design for dual expression 
of GT2 (CDR20291_0242) and AcrAtag. The pBR322 origin of replication, ampicillin resistance cassette, 
lacI gene and IPTG inducible promoter all originate from pEXT20, whereas the L-arabinose inducible 
promoter and araC gene originate from pEC415. The table describes the inducer for each construct in 
plasmids pCH01 and pCH05.  
 

 Confirming glycosylation of L-arabinose-inducible AcrAtag  

Before testing of the dual plasmids was undertaken, it was first necessary to confirm expression and 

glycosylation of the L-arabinose inducible AcrAtag. pEC415_AcrAtag, which was constructed as an 

intermediate plasmid during generation of pCH05, was transformed into CLM24pglB and CLM24 cells 

harbouring pACYCpglΔpglB (Figure 7.12) then induced overnight at 37oC or 30o with 1 mM IPTG for 

induction of PglB and a range of L-arabinose concentrations (0.05, 0.1, 0.2, 0.4, 1%), to determine 

whether varying the amount of acceptor protein available could improve efficiency of the 

glycosylation reaction.  

As seen with pEXT20_AcrAtag, a ladder of eight bands corresponding to occupation of all seven 

glycosylation sites was identified (Figure 7.12). Interestingly, glycosylation was more pronounced with 



 
 

212 
 

an increase in AcrAtag and at 37oC over 30oC, the latter being the opposite finding compared to using 

pEXT20_AcrAtag (Figure 7.9). It is noteworthy that in this test, more protein appears to be available 

for glycosylation at 37oC, which could explain the improved glycosylation (Figure 7.12). In summary, 

AcrAtag expressing from a L-arabinose inducible promoter can be glycosylated and remains a suitable 

acceptor protein.  
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Figure 7.12. Glycosylation of L-arabinose-inducible AcrAtag with the C. jejuni heptasaccharide. To 
confirm AcrAtag could be glycosylated when expressed from an L-arabinose inducible promoter, the 
constitutive pACYCpglΔpglB construct, encoding the C. jejuni heptasaccharide locus was co-expressed 
with pEC415_AcrAtag in CLM24pglB and CLM24 cells. These were incubated overnight at 37oC and 
30oC and induced with 1 mM IPTG and a range of L-arabinose concentrations. AcrAtag was extracted 
and nickel affinity purified then detected by immunoblot using anti-His antibody to AcrAtag and SBA 
lectin to the glycan. The three panels present the immunoblot images with anti-His only (red), anti-
glycan only (green) then the two overlaid. When both AcrAtag and the C. jejuni heptasaccharide are 
expressed together in the presence of PglB, 7 bands are produced in addition to AcrAtag alone (~17.27 
KDa).  
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 Screening for glycosylation with dual expression pCH01 and pCH05 plasmids  

Following detection of AcrAtag glycosylated with the C. jejuni heptasaccharide using pEC415_AcrAtag, 

glycosylation was tested for using pCH01 and pCH05. Either pCH01 or pCH05 was transformed into 

CLM24pglB and CLM24 cells, which were induced overnight with 1 mM IPTG for PglB and GT2/AcrAtag 

induction and a range of L-arabinose concentrations (0.05, 0.1, 0.2, 0.4, 1%) for GT2/AcrAtag 

induction, at 37oC or 30oC. Cells were lysed and the soluble fraction nickel affinity purified then 

visualised on an anti-His immunoblot. This revealed no obvious shift in molecular weight of AcrAtag 

under any condition, suggesting glycosylation had not occurred (Figure 7.13).  

Additional His-reactive bands were detected above the band corresponding to AcrAtag alone, which 

can be indicative of glycosylation as seen with the C. jejuni heptasaccharide Figures 7.9 and 7.12). The 

shift in size of these bands is larger than the predicted size of the glycan, but this could be a result of 

polymerisation of the glycan by the native E. coli O-antigen polymerase, Wzy. However, after 

increasing the intensity of the green channel, the same banding pattern was identified in the PglB-

negative control, suggesting this is not a result of glycosylation and instead is likely oligomerisation of 

AcrAtag.  
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Figure 7.13. Expression of the pCH01 and pCH05 dual expression plasmids in the presence of PglB. To screen for glycosylation of AcrAtag when expressing 
from pCH01 or pCH05, plasmids were transformed into CLM24pglB or CLM24 cells and induced overnight at 37oC or 30oC with 1 mM IPTG and a range of L-
arabinose concentrations. AcrAtag was nickel affinity purified then detected by anti-His immunoblot (green). (A) Nickel affinity purified protein isolated after 
induction of pCH01 and (B) Nickel affinity purified protein isolated after induction of pCH05.  
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To confirm the absence of detectable glycosylation so far was not the result of lack of GT2 expression, 

the GT2 construct was built with an additional C-terminal 6XHistag. This was inserted into pEC415 

using Gibson assembly, transformed into CLM24pglB and CLM24 cells and induced overnight with 

0.05, 0.1, 0.2, 0.4 or 1% L-arabinose at 37oC and 30oC, with or without induction of PglB (1 mM IPTG) 

(Figure 7.14). Purified protein was visualised using an anti-His immunoblot which revealed a protein 

approximately 72 KDa in size, corresponding to the estimated size of GT2-His, confirming it is 

expressing in the presence and absence of PglB. Expression appears to be improved at 37oC compared 

with 30oC, although higher levels of the glycosyltransferase doesn’t necessarily equate to improved 

glycosylation. Expression is also increased in the absence of PglB, an unsurprising result considering 

the burden of PglB on the cell.  

  

 

 

 

 

 

 

 

 

 

 
Figure 7.14. Confirming the expression of GT2. pEC415_GT2-His harbouring a C-terminal 6XHistag 
was expressed overnight at 37oC and 30 oC with a range of L-arabinose concentrations. Protein was 
extracted and the soluble fraction nickel affinity purified before probing on an anti-His immunoblot.  
 
GT2 in the dual expression plasmids was replaced with the 6XHis-tagged construct to produce pCH03 

and pCH07, allowing the monitoring of GT2 expression throughout the different screening conditions. 

(Figure 7.15). As before, these were synthesised using Gibson assembly, amplifying GT2-His and the 

backbone of pCH01 and pCH05 without the GT2 construct, with complementary overhangs to enable 

ligation.  

-His 
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Figure 7.15. Plasmid maps of pCH03 and pCH07. Schematic of the plasmid design for dual expression 
of GT2-His (CDR20291_0242) and AcrAtag. The pBR322 origin of replication, ampicillin resistance 
cassette, lacI gene and IPTG inducible promoter all originate from pEXT20, whereas the L-arabinose 
inducible promoter and araC gene originate from pEC415. The table describes the inducer for each 
construct in plasmids pCH03 and pCH07.  
 
Testing conditions mirrored those used for pCH01 and pCH05 (Figure 7.13), using both CLM24pglB 

and CLM24 strains with induction at 37oC and 30oC and a titration of L-arabinose for AcrAtag induction. 

In order to improve purification of AcrAtag and only isolate protein available for glycosylation, 

periplasmic extractions were performed prior to nickel affinity purification. Here, periplasmic protein 

is released using a sucrose buffer with lysozyme while the inner membrane is left intact, meaning the 

cytoplasmic protein is not released. Following removal of the periplasmic fraction, the cytoplasmic 

protein was also extracted using freeze thaw cycles, which should contain GT2-His.   

No glycosylation was visible when GT2-His and AcrAtag were expressed from pCH03 or pCH07 (Figure 

7.16). Again, the additional bands above AcrAtag only were present in both CLM24pglB and CLM24 

lanes. There was some contamination of cytoplasmic protein, as demonstrated by the presence of an 

anti-His reactive band at ~ 70 KDa, the size of GT2. When the cytoplasmic fractions were probed on 

an anti-His immunoblot, for pCH07, GT2-His expression was confirmed in all test conditions, 
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suggesting expression of the glycosyltransferase was not the reason for lack of detectable 

glycosylation. Cytoplasmic fractions were not tested for pCH03 as GT2-His was clearly visible in the 

periplasmic fractions, likely due to contamination during processing.  
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Figure 7.16. Expression of the pCH03 and pCH07 dual expression plasmids in the presence of PglB. To screen for glycosylation of AcrAtag when expressing 
from pCH03 or pCH07, plasmids were transformed into CLM24pglB or CLM24 cells and induced overnight at 37oC and 30oC with 1 mM IPTG and a range of L-
arabinose concentrations. AcrAtag was isolated in periplasmic extractions and GT2-His in a cytoplasmic extraction (pCH07 only), then both nickel affinity 
purified and detected by anti-His immunoblot (green). (A) Nickel affinity purified protein isolated after induction of pCH03 and (B) Nickel affinity purified 
protein isolated after induction of pCH07.
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7.5. Glycosylation trials using an in vitro glycosylation system   

A recently published study demonstrated a method for in vitro protein glycosylation using a “one pot” 

system [583]. The system uses individual culture lysates harvested from an E. coli expressing the 

acceptor protein, E. coli expressing the glycan (which is built onto the lipid linker in the membrane) 

and E. coli expressing the OST (i.e. PglB). These are incubated together overnight before nickel affinity 

purifying the protein from the reaction and screening for glycosylation. By preparing the components 

for glycosylation separately, the ratio of glycan, acceptor protein and PglB can be more easily 

manipulated. This system also offered the possibility to overcome one of the major potential barriers 

of PglB-mediated production of the C. difficile glycan, the transfer of the glycan from the cytoplasm to 

the periplasm, as the promiscuity of the E. coli Wzx flippase is still not defined. It is assumed that PglB 

requires glycan built on UndPP but that this is not restricted by which leaflet of the inner membrane 

this is presented on, therefore removing the need for transfer to the periplasm. We therefore 

hypothesised that in vitro glycosylation could avoid the step of transferring the glycan into the 

periplasm, enabling glycosylation of AcrAtag with the truncated C. difficile flagella glycan. 

 Testing GT2 using in vitro glycosylation   

To confirm correct set up of the in vitro assay and glycosylation of AcrAtag in this system, both this 

protein and the Exotoxin A (ExoA) acceptor protein from Pseudomonas aeruginosa, containing nine 

glycosylation sequons, were incubated with lysate harbouring UndPP-linked C. jejuni heptasaccharide. 

Individual cell lysates containing PglB, C. heptasaccharide built onto UndPP and ExoA were provided 

by Dr Elizabeth Atkins. A 1 L culture of the acceptor protein (pEXT20_AcrAtag) in CLM24 cells was 

induced overnight with 1 mM IPTG at 37oC then washed with S30 buffer before lysing on the cell 

homogeniser. Lysates of the acceptor protein, C. jejuni heptsaccharide and PglB were incubated in S30 

buffer overnight at 30oC, then the protein nickel affinity purified before probing on an anti-His, SBA 

anti-galactose immunoblot (Figure 7.17). A single, ~90 KDa band was detected when ExoA and C. jejuni 
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heptasaccharide were incubated without PglB, with a strong anti-galactose signal produced when PglB 

was added into the reaction, demonstrating that glycosylation had occurred. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.17. In vitro glycosylation of ExoA and AcrAtag with the C. jejuni heptasaccharide. Lysates of 
the C. jejuni heptasaccharide, PglB, and acceptor proteins ExoA or AcrAtag were incubated together 
overnight at 30oC, then the nickel affinity purified protein probed on an anti-His (red), anti-galactose 
(green) immunoblot. (A) standard exposure, (B) increased exposure for the green channel.  
 

A single band at ~ 20 KDa was detected representing AcrAtag only, which increased to multiple bands 

when PglB was added. Glycosylation had occurred, demonstrated by the increased size of AcrAtag, 

but compared to in vivo, only glycosylation of four of the available seven available sites was detected 
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in vitro (Figure 7.17). This may be a result of insufficient glycan availability, as in the in vivo system the 

heptasaccharide is constitutively expressed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.18. In vitro glycosylation trials of AcrAtag with the C. difficile GT2. Lysates of CLM24 
harbouring GT2-His, PglB, and AcrAtag were incubated together overnight at 30oC, then the nickel 
affinity purified protein probed on an anti-His (green) immunoblot.  

Once the conditions for glycosylation had been established, the C. jejuni heptasaccharide was replaced 

with GT2-His. Between 200 and 300 µl of GT2-His donor was incubated with either 25, 50 or 100 µl of 

AcrAtag. As before, reactions were incubated overnight at 30oC, then the protein was nickel affinity 

purified and probed on an anti-His immunoblot (Figure 7.18). There was no difference in 

electrophoretic mobility of AcrAtag under any condition, suggesting glycosylation had not occurred. 

Only a faint band was detectable corresponding to GT2-His.  

Previous investigations with AcrAtag have detected additional His-reactive bands below the size of 

whole AcrAtag, attributed to proteolytic degradation of the protein. An additional band was also 
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detected here, more pronounced than previous assays which is assumedly also a result of proteolytic 

cleavage which have been enhanced in the upscaled set up and further incubation steps. Inclusion of 

a protease inhibitor in further experiments may limit this effect, although this would first have to be 

tested within the control assay to ensure protease inhibitor did not interfere with the in vitro 

glycosylation reaction using the C. jejuni glycan.  

7.6. The E. coli O13 antigen  

The lack of glycosylation detected so far necessitated the investigation of alternative mechanisms of 

expressing the truncated flagella glycan. One such option was the use of a glycan from a different 

species that shared structural similarity with the glycan of interest. Depending on similarity, this could 

then be expressed directly or further modified to achieve the desired structure. Furthermore, use of 

a complementary glycan with a native synthesis pathway, more compatible with PglB could also 

increase the chance of glycosylation.  

In the search for a suitable glycan, it was important to identify a structure with the correct linkage 

between the monosaccharides, as this stereochemistry can dictate antibody binding and reactivity. A 

number of L-rhamnose rich glycans were identified, such as from the Group A Streptococcus surface 

polysaccharide, but this lacked the required linkage [584]. Interestingly, the O-antigen of Shigella 

flexneri 2a harbours a GlcNac starting sugar followed by an L-rhamnose, attached via a β1-3 linkage, 

identical to the starting sugars of the R20291 flagella glycan (Figure 7.19). Although the next L-

rhamnose is attached by a second β1-3 linkage, this is attached to the subsequent L-rhamnose by a 

β1-2 linkage, also found in the R20291 glycan. Modification of the O-antigen synthesis locus, may 

enable production of the desired structure, including removal of the glucose moiety on the first L-

rhamnose, but first it was necessary to determine whether the acceptor protein (AcrAtag) could be 

glycosylated with the whole E. coli O13-antigen. 
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Figure 7.19. Glycan structures that share similarity with the truncated C. difficile flagella glycan. (A) 
NMR resolved structure of the structure of full length flagella glycan from C. difficile R20291, adapted 
from Bouche et al. [190], (B) organisation of the O-antigen from Shigella flexnerii serotype 2a, adapted 
from Perepelov et al. [585], (C) organisation of the E. coli O13-antigen [585] and (D) comparison of the 
loci encoding the S. flexnerii 2a O-antigen (F2a) and E. coli O13-antigen (O13), adapted from Liu et al. 
[586] (by permission of Oxford University Press).  

 

As a serious cause of diarrheal disease, S. flexnerii is a Category 2, Schedule 5 pathogen, requiring 

increased security measures in the laboratory. Fortunately, the E. coli O13 antigen harbours an 

identical O-antigen, in structure and synthesis locus and antibodies cross react against both O-antigens 

[587]. As this strain does not require the same security precautions, it was selected for glycosylation 

trials with AcrAtag.  
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 Glycosylation with the E. coli O13 antigen in vivo  

E. coli strain O13 was acquired from the Public Health England Culture Collection and transformed 

with pEXT21_pglB or pGVXN115, encoding a copy of PglB harbouring two amino acid alterations [588], 

rendering it inactive. Both pEXT20_AcrAtag and pEC415_AcrAtag (IPTG induced or L-arabinose 

induced, respectively) were trialled as the acceptor for glycosylation, for IPTG or L-arabinose induction 

of AcrAtag, respectively. Strains were induced overnight at 37oC or 30oC with 1 mM IPTG and 0.2% L-

arabinose, or a titration of L-arabinose for pEC415_AcrAtag. Cells were harvested and lysed, protein 

purified using nickel affinity chromatography then resolved using SDS-PAGE and probed on an anti-

His immunoblot (Figure 7.20). Using pEXT20_AcrAtag, it was not possible to detect glycosylation in 

any condition. At ~ 1.05 KDa, a single copy of the O13 antigen is much larger than the truncated flagella 

glycan (~0.4 KDa), meaning unglycoyslated and glycosylated species would be more easily 

distinguished by gel electrophoresis. Furthermore, if all seven glycosylation sequons were occupied, 

this could result in a total 7.399 KDa shift, in addition to potential polymerisation by the E. coli Wzy 

polymerase.  

In a second trial, using L-arabinose induced AcrAtag, a ladder of bands was produced above the 

unglycosylated AcrAtag when induced at 37oC with pEXT21_pglB. This was absent in the CLM24 trial 

and therefore indicates glycosylation had occurred. Furthermore, the 15 bands detectable above the 

unglycosylated AcrAtag, exceed the seven glycosylation sites available, suggesting polymerisation of 

the glycan. In relation to the trials performed at 30oC, the same laddering effect is absent, and again 

the suspected oligomerisation of AcrAtag was demonstrated in the presence and absence of PglB. 

There is a single band immediately above the unglycosylated AcrAtag, which potentially could be 

evidence of glycosylation as this is absent from the PglB-negative lane. 



 
 

226 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.20. Glycosylation of AcrAtag with the E. coli O13-antigen. AcrAtag was expressed in a strain of E. coli O13 with PglB or inactivated PglB at 37oC and 
30oC then the soluble protein fraction nickel affinity purified. Protein samples were probed on an anti-his immunoblot (green). (A) Expression of IPTG inducible 
AcrAtag with PglB in E. coli O13 and (B) expression of L- arabinose inducible AcrAtag with PglB in E. coli O13. 
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As demonstrated with the C. jejuni glycosylation trials, anti-glycan antibodies and lectin offer an 

additional means of confirming glycosylation and are often more sensitive to detecting glycosylated 

protein than anti-his antibody alone. An antibody specific for the S. flexnerii O-antigen, and 

consequently the E. coli O13 antigen was purchased, but unfortunately no reactivity was detected. 

This is likely due to low antibody concentrations as the antibody purchased was not optimised for use 

in immunoblotting. In summary, incubation of AcrAtag with PglB and the E. coli O13 antigen results in 

glycosylation and polymerisation.  

Although not possible within the time constraints of this work, the next steps would be to investigate 

mutagenesis of the O13-antigen synthesis loci from E. coli to generate a modified glycan to fully match 

the truncated C. difficile flagella glycan structure.  
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7.7. Discussion   

The work in this chapter aimed to utilise the recombinant PglB glycosylation pathway in E. coli to 

engineer a C. difficile specific glycoconjugate, the first example of bioconjugation with a C. difficile 

glycosyltransferase. Despite multiple attempts using a number of approaches, it was not possible to 

detect glycosylation of our targeted acceptor protein with the truncated C. difficile flagella glycan, via 

a recombinant C. difficile glycosyltransferase (GT2). This may be due to issues with detection of such 

a small glycan (only 0.4 KDa) or the lack of transfer of the glycan onto the AcrAtag carrier protein. To 

account for this, AcrAtag from the glycosylation trials using the dual expression system and in vitro 

glycosylation are being analysed by NMR, which is a much more sensitive means of glycan detection.  

The aims of this work were not only novel in relation to C. difficile, but also within the field of 

bioconjugation, in terms of building an O-linked glycan from a Gram-positive organism using an N-

linked system in a Gram-negative bacteria. These aims feed into ongoing research developing the 

bioconjugation “toolbox”, identifying novel enzymes and pathways and using unrelated enzymes 

together to expand the bioconjugation repertoire. For example, Hug et al. demonstrated the synthesis 

and conjugation of a human Lewis antigen in E. coli, using enzymes from Haemophilus influenzae and 

Helicobacter pylori [589]. Despite these successes, this remains a challenging research area, requiring 

optimisation and modification of glycosylation pathways and identification of new glycoengineering 

tools. Glycoengineering in E. coli is a technology in its infancy and all new attempts to couple and 

express different protein/glycan combinations add to the knowledge bank. This study designed, 

expressed and glycosylated a novel acceptor protein, AcrAtag, for use in glycosylation trials. Many 

common acceptors are between 40 and 70 KDa. Therefore, AcrAtag represented an alternative short 

reporter peptide that could be glycosylated at all seven sites and enable detection of modification 

with smaller glycans.  

In relation to production of the flagella glycan using bioconjugation, if it is confirmed by NMR that 

AcrAtag is not glycosylated, there are three possible stages which may have prevented synthesis. 
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Firstly, is the glycan being synthesised onto UndPP within the inner membrane? As C. difficile doesn’t 

encode the enzyme for this step, WecA from E. coli was used which transfers GlcNac to UndPP [575]. 

As GlcNac is also the starting sugar for the flagella glycan it was hypothesised that C. difficile GT2 would 

then build the rhamnose residues onto this GlcNac.  However, this requires GT2 to interact with a 

membrane-associated GlcNac residue, differing from its proposed native function of building the L-

rhamnose residues onto GlcNac conjugated to the flagella filament [335]. Glycan synthesis can require 

cooperative action of glycosyltransferases, meaning GT2 function may have been impaired without its 

native accompanying glycosyltransferases, or in the presence of the unfamiliar WecA. For example, 

the streptococcal virulence-associated protein, Fap1, is only decorated with its O-linked glycan upon 

interaction of two of the required glycosyltransferases [590]. In the absence of suitable methods to 

isolate UndPP-linked glycan still attached to the inner membrane, it is difficult to determine whether 

the glycan is being synthesised. However, no glycosylation was detected in the in vitro system either. 

This system is hypothesised to only require glycan built onto UndP, irrespective of its position in the 

cytoplasm or periplasm. Therefore, if glycosylation is not occurring, this suggests the glycan is not 

being built. It it also possible that glycan synthesis was inefficient and the levels of UndPP-linked glycan 

were too low to be available as a substrate for PglB. It was possible to glycosylate both AcrAtag and 

ExoA with the C. jejuni heptasaccharide, therefore it is possible that currently, the assay requires 

plenty of optimised acceptor protein and glycan for high-level glycosylation.  

The next step is whether the glycan is being translocated across the membrane. This is normally 

performed by a dedicated flippase enzyme, but as this is not required by the native pathway of glycan 

synthesis in C. difficile, it was necessary to reappropriate the E. coli O16-antigen flippase, Wzx, present 

in the strains of E.coli used in this study (CLM24). As the flagella glycan and O16 antigen share the 

same two starting sugars, albeit with different linkages, it was proposed that this would be a sufficient 

level of similarity for translocation. However, the promiscuity of Wzx in E. coli and other species is 

subject to debate. Early research demonstrated full complementation of WzxO16 with a variety of E. 

coli Wzx flippases, providing the native O-antigen shared the same starting sugar (GlcNac) as O16 
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[591]. However, further work found this transfer from the cytoplasm to the periplasm was only 

possible when Wzx was overexpressed from a plasmid. This was compensating for inefficient 

translocation compared to the native Wzx, as confirmed through chromosomal integration of the 

flippases [575]. The translocation rate was also improved if the target antigen starting sugars were 

shared between Wzx homologs.  

From a methodological stand point, overexpression of Wzx could be exploited to improve 

translocation and accordingly glycosylation, although the consequences of overexpression of a large 

membrane bound transporter on a cell already expressing an OST, glycosyltransferase and acceptor 

protein would have to be considered. Furthermore, understanding of the activity and specificity of 

Wzx is still limited and does not explain the activity of all Wzx homologs. For example, diverse antigens 

from Pseudomonas aeruginosa and Yersinia pseudotuberculosis all share the same Wzx [592, 593] and 

recent work building a human-like glycan (Man3GlcNAc2) in E. coli O16 did so without the provision 

of a specific flippase, suggesting this relied on WzxO16 [594]. A non-Wzx based mechanism of 

translocation could also be explored, such as the ABC transporter PglK from C. jejuni. This was 

demonstrated to almost fully complement the activity of two different E. coli Wzx flippases and 

transfer their corresponding glycans, suggesting promiscuity [359].  

 Glycosylation of AcrAtagwith the flagella glycan was also attempted using in vitro glycosylation but 

no glycosylation was detected. As discussed, it was hypothesised that this system could overcome the 

need for translocation of the glycan to the periplasm if PglB only requires UndPP-bound glycan, 

regardless of membrane orientation. However, the PglB-glycan interaction and the in vitro 

glycosylation method is not yet well enough understood to confirm this, meaning the translocation 

step could be essential for PglB recognition in the in vitro system. A way of evaluating this would be 

to set up an in vitro glycosylation reaction whereby ExoA is incubated with either C. jejuni 

heptasaccharide expressed from a wild-type pgl locus, or from a strain where the native flippase, PglK, 
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is inactivated so UndPP-linked glycan would be locked in the cytoplasmic leaflet of the inner 

membrane. 

Use of an E. coli O13-antigen, which shares structural similarity with the truncated flagella glycan 

offered a promising alternative approach of producing a C. difficile- specific glycoconjugate. 

Glycosylation of AcrAtag with the full O13-antigen structure was demonstrated, which provided a 

strong starting position for further modification of the locus to obtain the desired composition. The 

O-antigen locus of E. coli O13 has been identified and annotated, but the function of the individual 

glycosyltransferases have not yet been characterised. The number of sugars and linkages exceed the 

number of identified glycosyltransferases (two), suggesting these enzymes may perform multiple 

roles. Use of non-native glycans has been discussed previously, particularly using the pre-existing pool 

of diverse E. coli O-antigens. A combination of PglB with different E. coli O-antigens have been used 

to build glycoconjugates specific for the human blood group B antigen and the Vi antigen from 

Salmonella enterica serovar Typhi [595, 596]. The latter included manipulation of the encoding 

synthesis loci to obtain a structure that cross reacted with antibodies raised against the native glycan. 

On the other hand, Nishiuichi et al. demonstrated cross reactivity between the O-antigens of E. coli 

O157 and Citrobacter freundii and suggested use of the latter in production of an anti-O157 

glycoconjugate vaccine, which would avoid working directly with the pathogenic strain [597].  

The C. difficile flagella glycan was selected for use as a well characterised glycan for the purposes of 

proof of principle experiments rather than as a strong immunogenic candidate. The immunogenic 

properties of the glycan are unknown and flagella glycans can be associated with immune evasion, 

masking immunogenic epitopes on the flagella filament [339]. The exact immunogenic properties 

remain to be determined but it may be that the whole or a shorter fragment of the glycan is 

immunogenic, indeed L-rhamnose is typically immunogenic as it is not found in human glycans, which 

also reduces the chances of off-target effects [598].  
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The surface polysaccharide PS-II has already received attention for inclusion with an anti-C. difficile 

vaccine, and antibodies have been raised to the structure in vivo [234-237]. This anionic polymer has 

been found in all C. difficile strains investigated to date, and the structure has been solved [231, 233]. 

However, the enzymes responsible for each step of synthesis remain rather elusive, partially due to 

the detrimental effects on the cell when genes within the synthesis loci were deleted or knocked 

down, as is the case for PS-II [218]. Therefore, although interesting, this was an unsuitable target for 

study, based on current knowledge. Based on partial annotation of the putative synthesis locus, genes 

encoding homologs of UndPP and for translocation across the membrane have been identified [218], 

suggesting similarity with the N-linked glycosylation pathway using PglB. If it were possible to transfer 

this locus into E. coli for use with PglB, one stalling point could be the presence of a mannose at the 

reducing end of the glycan, a non-permissible substrate for PglB. However, specificity of this 

interaction is subject to debate, and the utilisation of modified PglB by structure guided directed 

evolution or use of PglB orthologs from different species may be able to overcome this in the future 

[332].   

The absence of a screening method for the glycan, such as a specific antibody was a limitation of this 

study. Although protein samples are currently under analysis by NMR, this is not a suitable method 

for screening for glycosylation for multiple different candidates from many different conditions. 

Regarding synthesis of the truncated flagella glycan from C. difficile, although it was possible to 

confirm C. difficile GT2 was being expressed in E. coli by anti-His Western blot, it was not possible to 

confirm whether the enzyme was active in the conditions for testing, either in the E. coli cell or the 

cell-free system. A means of answering this would be to use the native components from C. difficile 

within the cell-free system. As a panel of flagella mutants are already available for R20291, the lysate 

of a C. difficile strain expressing GT1 and GT2 but not FliC could be incubated in the cell-free system 

with recombinant FliC. If the native components are able to glycosylate the flagella protein then this 

could act as confirmation that the C. difficile glycosyltransferases are active.  
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There remains no licensed vaccine for C. difficile and the current toxin-based formulations have not 

yielded any success. A vaccine offers an effective control strategy for CDI, especially for at risk groups 

and glycoconjugate vaccines in particular have been highly successful in the control of a number of 

very problematic infections with over a billion doses used each year [332].  Despite the challenges 

described here, the rapid advances being made in the relatively new field of bioconjugation means 

future progress may enable the development of C. difficile- specific bioconjugation. It may be that 

identification of new technologies or enzymes allow this, such as the use of O-linking rather than N-

linking OSTs [599].  
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8. Discussion 

C. difficile can cause severe infections that are fatal for those at risk. Patterns of CDI have seen distinct 

changes over the past 40 years, including the emergence of hypervirulence and the associated 

epidemic in the mid-2000s through to the increase in community infections still seen today [69, 112, 

129, 131]. As a prominent nosocomial infection, CDI poses a significant financial burden on healthcare 

systems, and although this is difficult to quantify, one study reported CDI cost over $4.8 billion to US 

acute care facilities in 2008 [600]. Current treatment options are hampered by the high rates of 

recurrent infections and their inability to provide long-term protection from CDI [61, 62]. There are 

significant benefits to be gained from an effective C. difficile vaccine, particularly one that is able to 

prevent both infection and colonisation simultaneously. The colonisation aspect is very important as 

those who are asymptomatically colonised with C. difficile have been identified as a major source of 

C. difficile transmission, therefore targeting these people could result in a steep decrease in 

transmission [47, 51]. 

Vaccine development is complex and challenging. A prime example of this is the lack of a currently 

marketed C. difficile vaccine, despite a number of high-profile clinical trials [408-410]. Furthermore, 

no colonisation specific antigens are yet to reach Phase II or III clinical trials. This study aimed to use a 

large-scale protein array to identify immunogenic C. difficile proteins, that could be useful anti-

colonisation factors for a vaccine, then characterise a subset of these to further understand their role 

in the bacteria. Additionally, this study aimed to explore the development of glycoconjugate vaccines 

for C. difficile, which have received limited attention. Specifically, this focused on developing 

bioconjugation technology for the synthesis of a C. difficile specific glycoconjugate.  

8.1. Identifying novel immunogenic candidates from C. difficile  

A C. difficile specific pan-protein array was the starting point for identification of novel immunogenic 

protein candidates in C. difficile. A protein array of this scale is the first of its kind for C. difficile and 

enables proteome level analysis of the humoral immune response using patients with CDI and healthy 
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controls. In Chapter 3, the results from this array were utilised to identify protein candidates where a 

higher response was recorded in the healthy control group compared to those with CDI, which 

suggested a response to these proteins provided protection from infection. These antigens 

constituted a range of mainly surface proteins that were conserved across important clinical strains of 

C. difficile. 

Non-toxin antigens investigated so far tend to be well characterised surface proteins of C. difficile such 

as flagella or surface layer proteins [395, 417, 424, 425]. We identified seven potential vaccine 

candidates on the pan-protein array where a higher IgG response was found in the healthy control 

group compared to the CDI patients, suggesting that prior exposure had resulted in circulating 

protective antibodies. These proteins have not yet been investigated in C. difficile either in terms of 

their immunogenicity or function within the pathogen, which demonstrates the utility of the pan-

protein array in the identification of novel candidates. The reactivity of these antigens was confirmed 

using a specifically designed ELISA to minimise the cross reactivity to E. coli, which is also present in 

the human gut therefore there is likely to be substantial reactivity to this bacteria, especially 

considering the array proteins are printed within E. coli lysate [380]. Although samples are exposed to 

E. coli lysate prior to screening on the array, this is unlikely to remove all background. Therefore, by 

purifying these proteins it made it easier to detect any specific antibody responses without the 

interference of E. coli background. Of the three array proteins purified and analysed by ELISA, the 

mean signal intensity was higher in the CDH group for proteins CDR20291_0342 and CDR20291_2697 

compared to the CDI, albeit not significantly so. This is most likely due to the small sample size tested 

in the ELISA. As discussed in Chapter 3, the inclusion of these purified proteins in a down selected 

array will help further analyse their immunogenicity.  

Furthermore, previous studies have used ELISAs to analyse antibody content in sera from those 

convalescing from CDI [275, 470]. This could be explored further here, as the advantages with this 

study are that longitudinal samples will also be screened in this array, using these results in 
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combination with the available metadata, will enable comparison of antibody responses in recovered 

patients compared to those with continuous colonisation or those with recurrent CDI infections. 

Analysis of mucosal humoral immunity to CDI is limited [270, 274, 276, 427], which may in part be due 

to the ease in isolating blood samples as opposed to biopsies or intestinal lavage [399, 475, 476]. 

Faecal samples are a non-invasive means of analysing this response, but as seen with the protein array 

screening, cross-reactivity and high background of these samples can be problematic. Furthermore, 

concentration of antibody in the stool can be influenced by the size of sample and number of bowel 

movements [601]. ELISA based screening of stool samples has been previously achieved, using purified 

toxin antigens [274]. Using purified proteins like those produced in this study could be a means of 

analysing these stool samples, either in an ELISA or by printing the purified protein on an array, with 

reduced background due to the purification process removing most if not all of the E. coli 

contaminants.  

The antigens selected for investigation were found in different clinically relevant strains of C. difficile, 

which is important for vaccine coverage. Due to time constraints it wasn’t possible to take this further, 

but future work should focus on the safety and suitability of these potential vaccine candidates as well 

as their efficacy in vivo. Firstly, antibiotic use is a major risk factor for CDI, due to their devastating 

effects on the gut microbiome, so if CDI can be prevented when patients have been treated with 

antibiotics for an unrelated condition, this would improve clinical outcomes, prevent CDI and 

therefore prevent further antibiotic use. It would need to be determined whether there is any cross 

reactivity between these potential vaccine candidates and the healthy microbiota, including other 

Clostridial species, which could it could lead to unintended effects on the microbiome. To answer this, 

work in ongoing with the WTSI, to look for orthologs of the protein antigens discussed here within 

their database of sequenced strains of the gut microbiome. Furthermore, only one strain from each 

clade was available for analysis of protein conservation throughout C. difficile. Although the standard 

reference strains were used, there is still variation seen within clades and therefore future work should 

look at improving coverage of the different C. difficile strains investigated.  
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The second consideration is the interaction between the protein antigens and the antibodies that 

recognise them. Direct antibody/antigen interactions can be assessed using an immunofluorescence 

test [602]. However, it is not sufficient for the antigen to simply bind the protein, this must either 

prevent growth or result in an opsonophagocytic response, to clear the infection from the host [603]. 

The genes encoding the three proteins selected for in vitro characterisation, CDR20291_0330, 

CDR20291_3343 and CDR20291_0342 were all successfully deleted from the R20291 genome, 

suggesting these are not essential for survival of C. difficile, in the in vitro conditions tested. Instead, 

an opsonophagocytosis assay can be used to monitor antibody activity, an assay used routinely for 

evaluation of responses to pneumococcal vaccines, among others [604-606]. They could also be tested 

in a mouse model to determine whether they clear CDI or reduce the infective titre.  

Finally, and most importantly for any vaccine candidate, is analysis of the antigens of interest in vivo, 

which was not possible in this study due to time, funds and absence of testing facilities. Use of a 

hamster or mouse model offer their own individual benefits and can elucidate immune response to 

these antigens. A standard approach to begin with would test each antigen individually, starting with 

intra-peritoneal administration with an adjuvant, of which many are available including Alum or 

inactivated cholera toxin [395, 396, 420, 422, 425-427]. Following initial inoculation, two booster 

doses would be administered before antibiotic-induced gut dysbiosis and challenge with CDI. CDI 

results in acute infection in hamster models, therefore animal survival can be taken as a measure of 

protection. As hamsters are very sensitive to the C. difficile toxins, inactivated copies of Toxins A and 

B which have been previously utilised as vaccine candidates these should be co-administered with the 

antigens of interest. Alternatively, a number of mouse models are available that can enable the 

exploration of other measures of protection such as colonisation. This method of assessing in vivo 

immunogenicity and protection for antigens of interest has been widely used for the study of C. 

difficile antigens [238, 267, 390, 396]. Following on from this, for promising candidates, oral routes of 

administration could be investigated, as this is the natural route of infection for CDI. Different delivery 
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systems have been investigated such as pectin beads and expression on the surface of B. subtilis 

spores, the latter of which was particularly successful [268, 276, 422]. 

8.2. In vitro characterisation of novel candidates 

Three immunogenic array candidates were selected for further characterisation of their role within 

the cell; CDR20291_3343, the putative tip of the T4P, CDR20291_0330, a putative cobalt transport 

protein and CDR20291_0342, a putative ABC transporter. Characterisation and understanding of the 

role of a vaccine or drug target is an important aspect of its development. Other non-toxin C. difficile 

antigens investigated in previous studies have been functionally characterised, including in C. difficile 

FliC and SlpA [273, 447].  

Deletion of pilK (R20291Δ3343) was deemed to result in a pili-negative strain, as previous work  found 

PilA1 (the major pilin subunit) was not secreted in this mutant, suggesting lack of pilus assembly (Neil 

Fairweather, personal communication) [541]. In order to confirm this, work is ongoing with a 

collaborator at the Francis Crick Institute, using scanning electron microscopy to identify the pili on 

the surface of C. difficile. In future assays, ideally a pilA1 mutant would also be used as no pili are 

observed on the surface of C. difficile by microscopy in a pilA1 mutant [195].   

In this study, a panel of pili and/or flagella negative strains were constructed in R20291 to assess C. 

difficile motility in the presence and absence of c-di-GMP. In high c-di-GMP, fliC expression is 

repressed whereas pili expression is induced, via the action of c-di-GMP on riboswitches upstream of 

these loci [198]. This study found the pilK mutant was still capable of surface motility and in fact it was 

inactivation of the flagella that almost abolished this motility. A previous study found inactivation of 

the putative pili ATPase, pilB1, abolishes surface motility on agar, but this was conducted in a flagellate 

strain [208]. This suggests a role for FliC in surface motility, even though fliC is down-regulated in the 

presence of high-level c-di-GMP [198]. 

One issue in the assessment of pili phenotypes in C. difficile is the need for c-di-GMP to induce 

expression [195, 203]. This secondary messenger has multiple targets and therefore can have an 
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overwhelming effect on the cell, and the levels of c-di-GMP can influence the observed phenotypes 

[203]. Therefore, future work could investigate introducing an inducible promoter onto the 

chromosome before fliC and the pili locus to improve control and measure the effects of each in a 

more defined manner, without the need for c-di-GMP. Alternatively, pilK could be overexpressed in 

the the flic/pilK mutant strain constructed in this study. These approaches could also be expanded to 

include analysis of other pili and flagella related phenotypes, such as cell aggregation and biofilm 

formation [189, 195, 198, 212].  

The putative transporters CDR20291_0330 and CDR20291_0342 were also investigated for their role 

in C. difficile. In the conditions tested, it was not possible to determine a cobalt or B12 related 

phenotype in vitro for R20291Δ0330. In many bacterial species ethanolamine is used as a carbon 

source and is regulated by a B12 dependent riboswitch [501, 502]. Although we were unable to identify 

a B12 riboswitch upstream of or within the ethanolamine utilisation operon, to our knowledge, no B12 

independent ethanolamine utilisation pathways have been identified in bacteria [504].  Herein, 

studies with ethanolamine found regulation of this pathway may differ from that previously reported 

for another enteric Gram-positive pathogen, E. faecalis, as only the histidine kinase (EutW, CD1911) 

part of the two-component regulatory system was required for ethanolamine utilisation [503]. It was 

also found that growth in ethanolamine could not be detected until 64 hours into the growth kinetics, 

as opposed to 10 hours in a previous study of C. difficile [36].  

Regarding characterisation of CDR20291_0342, a Biolog assay found this strain did not grow on L-

valine, L-valine and aspartic acid and alpha-ketovaleric acid, but the wild-type did. To further 

investigate this, R20291 and R20291Δ0342 were grown in minimal media including six amino acids 

previously documented to be essential for C. difficile growth (valine, isoleucine, leucine, proline, 

cysteine and tryptophan) [32]. There was no difference in growth between the strains, but both strains 

still grew upon valine removal, suggesting this is not essential. [32]. Although the overnight cultures 
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used to inoculate the growth assays were also in minimal media, these contained valine to support 

the sufficient growth required to use this as an inoculant, therefore there is a chance for carry over.  

It would be prudent to investigate these mutants in a mouse model of CDI, to determine whether 

inactivation of these transporters impairs colonisation. Furthermore, this would also be beneficial 

from a nutritional requirement stand point, as it is very challenging to recreate the niche environment 

of the gut in vitro, particularly as culturing C. difficile in minimal media can be difficult. This would be 

particularly interesting for the CDR20291_0330 mutant, as previous work found a mutant of cobT, a 

component of the B12 biosynthesis pathway, was unable to colonise mice, suggesting it is essential for 

survival within the host [498]. B12 is also believed to be a very important vitamin for the gut 

microbiome, and 80% of sequenced species within this community utilise corrinoids (compound group 

including B12) [607, 608].  

8.3. Bioconjugation of a C. difficile-specific glycoconjugate 

Chapter 7 describes the investigation of bioconjugation technology as a means of producing a C. 

difficile specific glycoconjugate, using a truncated form of the flagella glycan from strain R20291. This 

involved a novel approach of combining enzymes from Gram-positive and Gram-negative bacteria to 

create a hybrid system to synthesise a native O-linked glycan using an N-linked glycosylation system.  

A short, novel acceptor protein, AcrAtag, was designed and shown to be glycosylated at all seven sites 

with the positive control, C. jejuni heptasaccharide in vitro. However, despite multiple attempts using 

a range of techniques, it was not possible to identify glycosylation of this acceptor protein with the 

desired trisaccharide from the C. difficile flagella glycan. Indeed, each trisaccharide would only result 

in a 0.4 KDa change in size to the protein, and therefore successful glycosylation of all seven sites 

would result in a 2.8 KDa size shift which may not be visible by SDS-PAGE and subsequent immunoblot. 

Furthermore, there was still a distinct band of unglycosylated AcrAtag in the glycosylation experiments 

with the C. jejuni heptsaccharide. Therefore, if only a small percentage of the total protein is being 

glycosylated, this would also make it difficult to resolve this difference. To account for this, work is 
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ongoing with a collaborator at Leiden University, to screen for the glycan addition using the much 

more sensitive method of nuclear magnetic resonance (NMR) imaging.  

Different techniques were applied to try and identify potential barriers to glycosylation such as 

transfer of the glycan from the cytoplasm to the periplasm using the E. coli flippase enzyme Wzx, the 

specificity of which is debatable [575, 591]. This transfer was not an issue for the C. jejuni glycan as it 

encodes its own specific flippase. The in vitro glycosylation approach was used as this is hypothesised 

to not require the translocation step and instead just needs glycan presented on a lipid-linked glycan 

(i.e. bound to UndPP) [583]. Again, glycosylation was not detected by SDS-PAGE and immunoblot, but 

herein we still have the issue of minimal size change, so this will also be screened by NMR as above. If 

glycosylation has not occurred, it is possible the glycan is not being synthesised. In vitro glycosylation 

is a relatively crude method so an alternative way to study glycan synthesis and glycosyltransferase 

interaction would be to purify the individual components required for glycosylation (PglB and each 

glycosyltransferase) then incubate these together in vitro [609, 610]. This would however require 

substantial optimisation to purify functional enzymes and identify appropriate buffers for their 

activity.  

The R20291 flagella glycan was selected for reconstitution in E. coli as it has been characterised in 

detail, meaning this understanding could inform selection of the enzymes to be used for 

bioconjugation [187]. These were proof of principle experiments to determine whether this hybrid 

glycosylation system could be developed. Glycosylation of bacterial flagella has been linked to immune 

evasion, by masking important immunogenic epitopes [339], suggesting this might not be useful as a 

vaccine candidate. However, Valiente et al. found no difference between TLR5 recognition of the 

flagella protein in the absence and presence of the glycan, suggesting it does not mask this epitope 

[187, 611]. Alternatively, Bouche et al. suggested immune evasion could be achieved by the terminal 

peptidylamido sugar moiety which is taurine-like, an amino sulfonic acid associated with immune 

evasion [190]. The terminal moiety was omitted in the proof of principal study. R20291 harbouring an 
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absent or truncated flagella glycan has not been studied in animal models, therefore although it is 

possible the flagella glycan is involved in immune evasion in C. difficile, this remains hypothetical [187, 

190]. Antibodies to the flagella filament proteins FliC and FliD were identified in 15/17 patients with 

CDI [612] while another study found antibody responses to FliC and FliD were higher in a control group 

compared to those with C. difficile associated disease [273].  

It may be that a portion of this glycan is immunogenic. For example, removal of the peptidylamido 

sugar terminus, would expose the GlcNac di-Rhamnose targeted in this study. Rhamnose is often 

immunogenic as it is a non-human glycan [598]. Mutants in the R20291 glycosylation pathway, leading 

to truncated glycans have already been constructed [187], but not tested in an animal model, 

therefore this is a promising next step. Use of a mouse model could aid understanding of virulence 

and colonisation of R20291 strains with truncated or absent glycans. Furthermore, Martin et al. used 

glycan arrays to screen sera from mice immunised with the full repeating unit from surface 

polysaccharide PS-I against different portions of this repeat unit, to identify the epitopes within this 

that are immunogenic and recognised in vivo [419]. A similar study could be conducted for the flagella 

glycan to determine, which portions if any, are recognised by the immune system. Regarding glycan 

arrays, this approach could be expanded for analysis of the C. difficile glycome, screening both full and 

truncated glycans and polysaccharides to identify immunogenic structures and epitopes. Combining 

this with the existing bank of patient samples already collected for the protein array could produce 

informative results.  

Although in this study it has not been possible to conclusively determine whether transfer of the 

glycan was successful, this does not mean it is an unachievable approach, especially considering this 

study was the first attempt at using bioconjugation with C. difficile. Bioconjugation is a large and 

rapidly advancing discipline, meaning new glycoengineering enzymes and techniques are continually 

being explored and developed. It would be interesting to use the results of a C. difficile glycan array 

to determine which glycans or polysaccharides would be useful for incorporation into a glycoconjugate 
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vaccine. Although OST (the enzyme that transfers the glycan to the acceptor protein) substrate 

specificity can be a stalling point in glycan transfer, this is the subject of ongoing investigation. Recent 

research has expanded the repertoire of glycans it is possible to transfer, through modification of 

existing OSTs to reduce specificity as well as identification of new OSTs with different specificities, 

such as those from deep sea vent bacteria [349, 350, 362, 613].  

8.4. Future work and final conclusions 

In addition to those described above, there are a number of areas for future work. For the protein 

array, the next steps should address those points raised in Chapter 3, including assessment of antibody 

functionality and characterisation of patient groups. As discussed, there are many factors influencing 

susceptibility to CDI other than antibody response. Over the course of this study, additional metadata 

has become available which is currently being processed, and will hopefully aid in understanding of 

co-morbidities and immune status of the patient. As anti-Toxin antibodies are correlated with 

exposure to C. difficile, anti-toxin response in each patient could be used as a marker of prior exposure 

to the pathogen. Regarding quality of the microbiome and its role in protection from CDI, the WTSI 

has sequenced the gut microbiome for a subset of patients using their faecal samples, so using this 

data can hopefully provide a picture of microbiome quality of the patient, which can then be linked 

back to the antibody response of the patient and their experience of CDI. Furthermore, as discussed, 

protein arrays use recombinantly expressed protein which may not fold to match the structure 

presented in vivo. As conformational epitopes are an important part of antigen recognition, flow 

cytometry could be used to monitor antibody binding to whole bacterial cells [614, 615]. 

Regarding those proteins taken forward for phenotypic characterisation in C. difficile, there are a 

number of avenues to pursue. Firstly, it would be prudent to whole genome sequence the three gene 

deletion mutants to ensure no other single nucleotide polymorphisms have been accrued during the 

mutagenesis process which may be influencing the phenotypes seen. For CDR20291_0330, it would 

be interesting to study cobalt and B12 uptake in C. difficile, which very little is known about. Flow 
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cytometry has previously been used to study the activity of bacterial multidrug efflux transporters in 

E. coli, Francisella tularensis and Burkholderia pseudomallei, [616, 617] so a similar approach could be 

applied for C. difficile, using labelled cobalt and B12. As discussed in Chapter 4, the environment of the 

gut is difficult to replicate in vitro and is subject to a whole host of other factors, particularly 

metabolism of nutrients by the microbiome. It would therefore be interesting to look at the 

metagenomics and metabolomics of ethanolamine utilisation by the gut microbiome, but data related 

to this is currently limited [618]. One recent study in weaned rats found administration of 

ethanolamine resulted in a shift in microbiome metabolism towards lipid and sugar biosynthesis and 

metabolism and altered the composition of the predominant species composing the microbiome 

[619]. For CDR20291_0342, inactivation of the gene encoding this protein did not appear to impact 

valine utilisation, therefore CDR20291_0342 and its associated transporter may have an alternative 

target. It would be interesting to assess the protein composition of the cell membrane in the mutant 

compared to the wild-type to determine whether another transporter is compensating for the loss of 

CDR20291_0342. This could also give an indication as to the function of CDR20291_0342. Bacterial 

transporters have a wide array of functions, meaning there are a lot of possible phenotypes that could 

be screened for. For example, Edwards et al. identified two permease proteins in C. difficile which 

inhibit sporulation [620]. There are a number of areas for future work regarding CDR20291_3343 and 

the role of the pili and flagella in surface motility, particularly as both the flagella and c-di-GMP are 

within complex regulatory networks. This could be further investigated by looking at RNA seq data 

with and without c-di-GMP induction, ideally using colonies from the surface motility plates, 

comparing those within the original spot of inoculant to those on the outer edge. This could aid in 

identifying which proteins are contributing to the surface motility phenotypes in the different 

conditions reported here. For example, it may be that flagella proteins are required for function of the 

pili but these are not expressed in the fliC mutant. To follow up on this, it would be interesting to 

investigating C. difficile strain M120, which lacks the F3 region of the flagella operon, including the 

regulator SigD [205, 621].  
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The longer-term objective of this work, would be to take the promising candidates from the pan-

protein array and fuse these to appropriate glycotag for bioconjugation with the desired glycan. This 

could use the binding protein CDR20291_0330, as a recent study demonstrated glycosylation of the 

streptococcal binding protein PiuA with the capsule 4 polysaccharide using bioconjugation resulted in 

protection in mice that was comparable to the commercially available vaccine [367]. Another 

alternative formula would be use of the binding domain of Toxin B, which can retain immunogenicity 

when fused [238, 578]. Further validation of the potential bioconjugation techniques evaluated here, 

provide an exciting concept for future vaccine designs.  

This study has used a combination of approaches to both expand our understanding of C. difficile 

biology and contribute to the ongoing development of a C. difficile vaccine. The results of a large-scale 

screen of the C. difficile proteome were used to identify immunogenic proteins for potential inclusion 

within a C. difficile vaccine. Characterisation of these in vitro has led to further understanding of both 

motility and nutritional metabolism of C. difficile. Finally, the use of bioconjugation was explored for 

the development of C. difficile glycoconjugate vaccines. 
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Appendices 

A. 
Table A1. Plasmids used in this study 

Plasmid Description Source 

pETM11 
Protein expression vector with T7 promoter and kanamycin 
resistance cassette and N-terminal 6XHistag with TEV 
cleavage site.  

[1] 

pETM11_0342 S1 pETM11 with residues 41-242 from CDR20291_0342 This study 

pETM11_0342 S3 pETM11 with residues 439-728 from CDR20291_0342 This study 

pETM11_3343 pETM11 with residues 34-479 from CDR20291_3343 This study 

pETM11_0330 pETM11 with residues 22-95 from CDR20291_0330 This study 

pETM11_3155 pETM11 with residues 34-56 from CDR20291_3155 This study 

pETM11_2253 pETM11 with residues 1-132 from CDR20291_2253 This study 

pETM11_2697 pETM11 with residues 43-209 from CDR20291_2697 This study 

pETM11_2640 pETM11 with residues 1-191 from CDR20291_2640 This study 

pMTL82151 
Replication-defective C. difficile vector with chloramphenicol 
resistance cassette and multiple cloning site (MCS).  

[2] 

pMTL82151_0342 
pMTL82151 vector harbouring allele exchange mutagenesis 
cassette for CDR20291_0330 between BamHI and HindIII  

This study 

pMTL82151_3343 
pMTL82151 vector harbouring allele exchange mutagenesis 
cassette for CDR20291_3343 between EcoRI and BamHI  

This study 

pMTL82151_0330 
pMTL82151 vector harbouring allele exchange mutagenesis 
cassette for CDR20291_0342 between EcoRI and XmaI  

This study  

pEXT20 
High copy number protein expression vector with ampicillin 
resistance cassette and Ptac promoter.  

[3] 

pEXT21 
Low copy number protein expression vector with 
spectinomycin resistance cassette and Ptac promoter. 

[3] 

pEXT21_pglB pEXT21 carrying full length PglB  [4] 

pGVXN115 pEXT21 carrying inactivated PglB GlycoVaxyn 

pACYCpglΔpglB  
pACYC carrying pgl glycosylation locus from Campylobacter 
jejuni with inactivated PglB 

[5] 

pEXT20_AcrAtag pEXT20 harbouring the acceptor protein AcrAtag This study 

pEXT20_GT2 pEXT20 harbouring CDR20291_0242 (GT2)  This study 

pEXT21_AcrAtag pEXT21 harbouring the acceptor protein AcrAtag This study 

pEXT21_GT2 pEXT21 harbouring CDR20291_0242 (GT2)  This study 

pEXT20_GT2-His 
pEXT20 harbouring CDR20291_0242 with C-terminal 
6XHistag (GT2-His) 

This study 

pEC415 
Ampicillin resistant with PBAD promoter and araC gene for L-
arabinose induction 

[6] 

pEC415_AcrAtag pEC415 harbouring the acceptor protein AcrAtag This study 

pEC415_GT2 pEC415 harbouring CDR20291_0242 (GT2) This study 

pEC415_GT2-His 
pEC415 harbouring CDR20291_0242 with C-terminal 
6XHistag (GT2-His) 

This study 
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pCH plasmids 
Backbone of pEXT20 with PBAD promoter and araC gene from 
pEC415, enabling dual expression of constructs under IPTG 
and L-arabinose induction 

This study 

pCH01 AcrAtag under Ptac promoter and GT2 under PBAD promoter  This study 

pCH03 
AcrAtag under Ptac promoter and GT2-his under PBAD 

promoter  
This study 

pCH05 GT2 under Ptac promoter and AcrAtag under PBAD promoter  This study 

pCH07 
GT2-His under Ptac promoter and AcrAtag-His under PBAD 

promoter  
This study 

pECC12 
Chloramphenicol resistant, constitutive expression of the 
diguanylate cyclase dccA 

[7] 

pECC17 
Chloramphenicol resistant, inducible expression of the 
diguanylate cyclase dccA, under control of Ptac promoter 

[7] 

pASF085 Empty plasmid version of pECC17 
Neil 
Fairweather 
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Table A2. Oligonucleotides used in this study.  
 

 Primer Name Sequence  

Construction of plasmids for expression of recombinant C. difficile proteins in E. coli 

PAC_R20291_3155_F TACGGGGTCTCCCATGTACAGCAAAGTACAGGAGTC 

PAC_R20291_3155_R TCGAAGAATTCTTACTTGGGGTAAAACTGCTTTG  

PAC_R20291_0342S1_F TACGGGGTCTCCCATGCGCAGCGCTCAACAAGCCGA 

PAC_R20291_0342S1_R TCGAAGAATTCTTAGGAGTTGTCCAACGTACCGT  

PAC_R20291_0342S3_F TACGGGGTCTCCCATGGACATCCAGAATAAGAACGG 

PAC_R20291_0342S3_R TCGAAGAATTCTTAACGAGCGGTCATTTTATCAA  

PAC_R20291_0330_F  TACGGGGTCTCCCATGATCTTCCCCCTGTTAGTAAA 

PAC_R20291_0330_R TCGAAGAATTCTTAACTGCGCTTCCCCTTTTGAA 

PAC_R20291_2253_F TACGGGGTCTCCCATGTTGAAAAAAATCGTCAT 

PAC_R20291_2253_R TCGAAGAATTCTTAGCAGCATTTATCCATGTCTT 

PAC_R20291_2697_GibF GGTGCTCGAGTTACGACGCAAAGTCCTC 

PAC_R20291_2697_GibR GGGCGCCATGTCTAAAGTAGTATCTGCGTC 

pETM11_2697_f CTACTTTAGACATGGCGCCCTGAAAATAAAG 

pETM11_2697_r TGCGTCGTAACTCGAGCACCACCACCAC 

PAC_R20291_2640_GibF GCTCGAGTTAAACTTTAGCCTTTAATTTGCCTAAAACC 

PAC_R20291_2640_GibR GGGCGCCATGTTCAAGCGCTACGCCGAAAAAATG 

pETM11_2640_f AGCGCTTGAACATGGCGCCCTGAAAATAAAG 

pETM11_2640_r GGCTAAAGTTTAACTCGAGCACCACCAC 

PAC_R20291_3343_GibF GCTCGAGTTAGTTTACTTTCTTGTAGGAGCTAATG 

PAC_R20291_3343_GibR GGGCGCCATGAACCAAATCGCGAATCGC 

pETM11_3343_f CGATTTGGTTCATGGCGCCCTGAAAATAAAG 

pETM11_3343_r GAAAGTAAACTAACTCGAGCACCACCAC 

T7_promoter TAATACGACTCACTATAGGG 

T7_terminator  GCTAGTTATTGCTCAGCGG 

Construction of plasmids for allele exchange mutagenesis 

R20291_3343_HA1_F TTGACGGAATTCGGTCTTACTTTATTAGAAGT 

R20291_3343_HA1_R TTAGTTTACTTTTTTGTATGATTTATTCCACTTCCTCAA 

R20291_3343_HA2_F TTGAGGAAGTGGAATAAATCATACAAAAAAGTAAACTAA 

R20291_3343_HA2_R CCGATTGGATCCCAGTACACCTACTAAGTGCC 

R20291_0330_HA1_F TATGGCGGATCCAGAAATTTTCACAGAAAAGG 

R20291_0330_HA1_R TTAACTTCTCTTTCCTTTTTGCGTCTTTGTTTTAGCACTCAT 

R20291_0330_HA2_F ATGAGTGCTAAAACAAAGACGCAAAAAGGAAAGAGAAGTTAA 

R20291_0330_HA2_R ACGGTAAAGCTTATTCCATTAACAGCTACTAG 

R20291_0342_HA1_F TTGACGGAATTCCGTCACTATTTACAAGTATA 

R20291_0342_HA1_R TGTAATGTTTATAGCTTCAACTATTTTTAAATTATCTTTCAT 

R20291_0342_HA2_F ATGAAAGATAATTTAAAAATAGTTGAAGCTATAAACATTACA 

R20291_0342_HA2_R CCGATTCCCGGGATCCACTTCAAAGTTGGCAA 

R20291_0342_SEQ_F ATATCCTAAACTTAATTGTA 

R20291_0342_SEQ_R GAATTAGGTTATACTGTTGA 

R20291_3343_MUT_F GAGAAGAGATAATCTATAAT 
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R20291_3343_MUT_R CCTATTAGTATTACATCTGG 

R20291_0330_MUT_F GAGTGATGGCTTCAGCAATT 

R20291_0330_MUT_R ACACAAACAACTAGAATACT 

M13_f TGTAAAACGACGGCCAGT 

M13_r CAGGAAACAGCTATGACC 

 Construction of plasmids for bioconjugation 

acrAtag_f TGATTGAATTCGCATGAAAAAAATCTGGTTAGC 

acrAtag_r TGATTAAGCTTTTAGTGGTGGTGAT 

R20291_0242_F TTGACGGAATTCATGAATACACCAATAGTGGT 

R20291_0242_R ACGGTAGAGCTCTTATTCATATCTCTTCCCCT 

pEXTseq_f GGTATGGCTGTGCAGGTCGT 

pEXTseq_r GCTTAATTTGATGCCTGGCA 

pEC415_0242_f GATATGAATAAGAATTCTTGAAGACGAAAGG 

pEC415_0242_r  GTGTATTCATTATGTTATTCCTCCTTATTTAAAATG 

0242_pEC415_f GAATAACATAATGAATACACCAATAGTGGTTA 

0242_pEC415_r TCAAGAATTCTTATTCATATCTCTTCCCCTC 

pEC415_acrAtag_f CCACCACTAAGAATTCTTGAAGACGAAAGG 

pEC415_acrAtag_r AGATTTTTTTCATTATGTTATTCCTCCTTATTTAAAATG 

acrAtag_pEC415_f GAATAACATAATGAAAAAAATCTGGTTAGCTT 

acrAtag_pEC415_r TCAAGAATTCTTAGTGGTGGTGATGGTG 

pEC415_0242tag_f GAACGGGAGTCCAAAAATTGAGCTCG 

pEC415_0242tag_r GTAAATGCATTTCTGTGTGAGCAAAAAC 

pEXT20_0242tag_f TCACACAGAAATGCATTTACGTTGACAC 

pEXT20_0242tag_r CAATTTTTGGACTCCCGTTCTGGATAA 

pEC415_0242his_f CCACCACTAAGAATTCTTGAAGACGAAAGG 

pEC415_0242his_r GTGTATTCATTATGTTATTCCTCCTTATTTAAAATG 

0242his_pEC415_f GAATAACATAATGAATACACCAATAGTGGTTAATG 

0242his_pEC415_r TCAAGAATTCTTAGTGGTGGTGATGGTG 

0242hisgib_f AACAGAATTCATGAATACACCAATAGTGGTTAATGAAAAAT 

0242hisgib_r GCCCGCCCCCTTCATATCTCTTCCCCTCAATAAAATAAAG 

pEXT20hisgib_f GAGATATGAAGGGGGCGGGCATCACCAT 

pEXT20hisgib_r GTGTATTCATGAATTCTGTTTCCTGTGTGAAATTGTTATCCG 

pEC415screen_f GTCGAGCTAGTAAAAGCATT 

pEC415screen_r ATAGGCGTATCACGAGG 
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B. 
Plasmid Construction 

 

i. Plasmid construction for expression of C. difficile recombinant proteins in E. coli  

The DNA sequence encoding each C. difficile protein selected for recombinant expression in E. coli 

was firstly codon optimised for E. coli using the IDT Codon Optimisation Tool 

(https://www.idtdna.com/CodonOpt), then ordered for synthesis as gBlock gene fragments. Regions 

of each protein selected for expression were cloned into the pETM11 plasmid using two different 

strategies.  

pETM11_0342S1, pETM11_0342S3, pETM11_0330 and pETM11_3155 were built using 

restriction/ligation cloning. pETM11 encodes an N-terminal his-tag followed by a TEV cleavage site 

and NcoI recognition site for insertion of the coding sequence. However, inserting the coding 

sequence into this site would result in a frame shift, meaning the correct protein would not be 

expressed. To overcome this, the sequence encoding for the region of the protein to be expressed 

was amplified from the gBlocks using primers PAC_R20291_name of protein, which contained a 5’ 

restriction sites, BsaI on the forward primer and XhoI on the reverse. BsaI is a type II endonuclease 

which cuts downstream of its recognition site so the cutting site was designed to leave an overhang 

complimentary to pETM11 following digestion with NcoI but which would result in loss of the final 

guanidine nucleotide of the NcoI recognition sequence, meaning the coding sequence would be in 

frame. pETM11 was digested with NcoI and XhoI then ligated with the respective insert. Following 

ligation, transformation into electro-competent Top10 cells and plated on LB agar supplemented 

with kanamycin (to select for pETM11). Plasmids were checked by colony PCR using the T7 promoter 

and terminator primers flanking the insertion site and test digest with XbaI and XhoI, then confirmed 

with DNA sequencing, again using the T7 primers.  
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pETM11_2640, pETM11_2697 and pETM11_3343 were built using Gibson assembly, as described in 

Methods, section 2.4.6. The backbone of pETM11 was amplified to include complimentary 

overhangs to 2640, 2697 or 3343, using primers pETM11_name of protein. Protein sequences were 

amplified to include complimentary overhangs to pETM11, using primers  PAC_R20291_name of 

protein_Gib. Amplified sequons were then joined as described in Methods section 2.4.6 and 

screened for insertion of the insert using PCR with the T7 primers followed by DNA sequencing with 

the T7 primers.   

ii. Plasmid construction for allele exchange mutagenesis 

pMTL82151_3343, pMTL82151_0330 and pMTL82151_0342 were constructed using restriction 

ligation. SOE PCR was used to generate DNA constructs comprising two ~1200 bp DNA regions 

homologous to those flanking the gene for deletion, with 42 bp of the original gene remaining and 

restriction sites at the 5’ and 3’. Construction of the allele exchange cassette Initially required 

amplification of the two homology arms using primers HA1_F and HA1_R or HA2_F and HA2_R (each 

of these is preceded by R20291_name of construct) with 21 bp of the beginning or the end of the 

gene for deletion incorporated, respectively. HA1_R and HA2_F primers contain overhangs 

complimentary to the other primer, so amplification of both products using HA1_F and HA2_R 

generates one construct with both regions of homology and 42 bp of the gene for deletion. These 

joined constructs were amplified with restriction digest sites for cloning into pMTL82151. 

pMTL82151 was digested with restriction enzymes matching those for digestion of the insert which 

were; EcoRI and BamHI for 3343, EcoRI and XmaI for 0342 and BamHI and XmaI for 0330. Following 

ligation, transformation and selection on Lb chloramphenicol plates and plasmid isolation all 

plasmids were screened by PCR using with MUTSEQ_f and MUTSEQ_r, which cover the whole 

construct, including homology arms, or SEQ_F or SEQ_R which flank the gene for deletion (each of 

these primers is preceded with R20291_name of construct). Potential gene deletion mutants were 

confirmed by DNA sequencing with M13_F and M13_R. Additional information about the screening 

for each construct is provided in the Chapters 4, 5 and 6.  
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iii. Plasmid construction for bioconjugation 

Glycosyltransferase 2. 

For expression of the C. difficile flagella glycosyltransferase 2 (GT2) in E. coli, the gene encoding this 

protein, CDR20291_0242, was amplified from C. difficile gDNA using primers R20291_0242_F and R 

These primers added EcoRI and SacI restriction sites to the 5’ and 3’ of the GT2 sequence, 

respectively so these could be cloned into the pEXT20 and pEXT21 vectors which share the same 

multiple cloning site (MCS), using restriction/ligation cloning. Plasmids were screened for the GT2 

insert using test digestion with EcoRI and SacI and sequencing with primers pEXTseq_F and 

pEXTseq_R.  

Acceptor protein.  

For expression of the acceptor protein AcrAtag, this was first ordered for synthesis as a gBlock then 

amplified with primers acrAtag_F and acrAtag_R These primers added EcoRI and HindIII restriction 

sites to the 5’ and 3’ of the GT2 sequence, respectively so these could be cloned into the pEXT20 and 

pEXT21 vectors which share the same multiple cloning site (MCS), using restriction/ligation cloning. 

Plasmids were screened for the GT2 insert using DNA sequencing with primers pEXTseq_F and 

pEXTseq_R. 

Dual expression plasmids.  

For construction of one plasmid expressing both the acceptor protein acrAtag and GT2 (pCH01, 

pCH03, pCH05 and pCH07), Gibson assembly was utilised for all plasmids (Methods, section 2.4.6). 

Codon optimised R20291_0242 was ordered for gBlock synthesis with a C-terminal 6XHistag. 0242, 

0242His and AcrAtag were inserted into pEXT20 and pEC415 before synthesis of the dual expression 

plasmid (AcrAtag and GT2 were already inserted into pEXT20, as described above). For insertion of 

0242 into pEC415, the insert was amplified with 0242_pEC415_f and 0242_pEC415_r and the 

plasmid amplified with pEC415_0242_f and pEC415_0242_r. For insertion of 0242his into pEC415, 

the insert was amplified with 0242his_pEC415_f and 0242his_pEC415_r and the plasmid amplified 
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with pEC415_0242his_f and pEC415_0242his_r. For insertion of 0242his into pEXT20, the insert was 

amplified with 0242hisgib_f and 0242hisgib_r and the plasmid amplified with pEXT20hisgib_f and 

pEXT20hisgib_r. For insertion of AcrAtag into pEC415, the insert was amplified with 

acrAtag_pEC415_f and acrAtag_pEC415_r and the plasmid amplified with pEC415_acrAtag_f and 

pEC415_acrAtag_r. All constructed plasmids were screened using DNA sequencing with primers 

pEXTseq_f and r for pEXT and pEC415screen_f and r for pEC415. The same primers were used for 

synthesis of pCH01, pCH03, pCH05 and pCH07. For pCH01, pEXT20_acrAtag was amplified with 

pEXT20_0242tag_f and r and pEC415_GT2 was amplified with pEC415_0242his_f. For pCH03, 

pEXT20_acrAtag was amplified with pEXT20_0242tag_f and r and pEC415_GT2-His was amplified 

with pEC415_0242his_f. For pCH05, pEXT20_GT2 was amplified with pEXT20_0242tag_f and r and 

pEC415_AcrAtag was amplified with pEC415_0242his_f. For pCH07, pEXT20_GT2-His was amplified 

with pEXT20_0242tag_f and r and pEC415_AcrAtag was amplified with pEC415_0242his_f. All 

plasmids were synthesised using Gibson assembly (Methods, 2.4.6).  
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C.  
Ethics approval awarded to University of Liverpool for collection of patient samples, and 

ethical approval letter to work on the samples at LSHTM.  
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D.  
Table D1. Results of the C. difficile specific pan-protein array pilot study. IgG responses of patients 

with severe (CDP) or mild CDI (CDN) CDI, patients with diarrhoea but presumed negative for 

diarrhoea (CDA, also referred to as CDU), healthy controls (GCRC).  

ID 
Avg CDA 
plasma 

baseline 

Avg CDP 
plasma 

baseline 

Avg CDN 
+ CDP 

plasma 
baseline 

Avg CDN + 
CDP all 

P CDA vs 
CDN+CDP 

all 

P CDA vs 
CDN + CDP 

plasma 
baseline 

P CDA vs 
CDP 

plasma 
baseline 

P GCRC 
vs CDN + 
CDP all 

CDR20291_0227 6144.904 7236.992 6444.779 8808.842 0.134563 0.8774 0.65397 1.37 e-09 

CDR20291_0253 2929.519 2061.185 2496.648 3776.027 0.628835 0.810764 0.63782 0.000107 

CDR20291_0297-s5 7514.212 5416.108 5630.54 7427.788 0.976856 0.551462 0.506568 6.83 e-06 

CDR20291_0330 458.9038 1382.569 2772.714 3655.602 4.31 e-06 0.016092 0.271572 0.22 e-10 

CDR20291_0337 2076.827 2530.531 2399.714 3292.967 0.265747 0.836679 0.850785 3.75 e-06 

CDR20291_0342 659.9808 2764.108 3076.801 3434.668 3.53 e-07 0.014683 0.024184 0.953175 

CDR20291_0351 1633.673 2923.377 2898.214 3508.464 0.065406 0.413163 0.580447 5.51 e-06 

CD0386-s3 5907.519 2197.108 4876.366 6174.393 0.913644 0.694244 0.15155 0.003545 

CDM120_0411 6452.135 6202.415 6078.844 6051.099 0.697008 0.737936 0.8369999 0.003055 

CDR20291_0424 4223.288 1355.338 2288.17 3073.255 0.326864 0.12365 0.021706 4.25 e-08 

CDR20291_0516 2917.673 1994.031 2409.388 3376.512 0.694831 0.687362 0.520863 1.8 e-05 

CDR20291_0561 3170.212 1868.492 2552.279 3181.422 0.991648 0.597553 0.270667 0.000121 

CDR20291_0575 3173.596 3245.031 3541.214 4594.399 0.539788 0.915216 0.817912 1.82 e-06 

CDR20291_0582-s5 3259.058 1317.415 2338.018 3520.512 0.830152 0.49249 0.157111 0.007659 

CDR20291_0584-s2 3080.673 1362.454 2117.083 3148.56 0.952295 0.427461 0.17608 0.001936 

CDR20291_0584-s6 4192.904 1865.608 2741.583 3513.89 0.468682 0.159364 0.33205 0.045754 

CDR20291_0671 7803.442 5364.492 5843.779 7404.087 0.880914 0.49509 0.423467 1.95 e-05 

CDR20291_0971 2889.75 152.9923 1573.257 3117.86 0.844591 0.301737 0.22826 0.635679 

CDR20291_1023 2831.981 5391.492 4488.931 4886.165 0.116289 0.3752 0.357941 0.00016 

CDR20291_1276 4511.135 2272.8 2184.54 3101.213 0.586.213 0.381.1789 0.429434 5.75 e-05 

CDR20291_1282 1863.058 1239.377 2103.714 3128.021 0.263601 0.260274 0.608231 0.007803 

CDR20291_1360 771.9038 2335.954 2186.779 3610.375 0.01167 0.318176 0.518304 0.020121 

CDR20291_1379 3532.904 2166.762 2574.844 3345.399 0.836152 0.349673 0.252066 1.31 e-07 

CDR20291_1383 3075.212 1249.108 1966.757 3479.704 0.750299 0.401788 0.187119 1.11 e-09 

CDR20291_1391 7328.596 4229.838 4721.105 6269.56 0.758529 0.47506 0.444531 3.05 e-07 

CDR20291_1409 3447.365 3263.069 3800.974 4776.315 0.145891 0.729741 0.877919 0.12296 

CDR20291_1480 3543.288 1820.723 2121.192 3241.225 0.80299 0.27311 0.215 5.21 e-08 

CDR20291_1491 7783.135 4243.877 5230.214 7022.201 0.850555 0.546081 0.434268 0.01379 

CDR20291_1529 3914.442 1434.223 2123.931 3673.027 0.853136 0.191493 0.080964 1.61 e-06 

CDR20291_1569 43011.06 40223.95 41127.87 42080.46 0.636248 0.408221 0.273375 2.00 e-13 

CDR20291_1606 4439.288 2406.838 2895.561 3543.28 0.397861 0.10936 0.109474 1.23 e-11 

CDR20291_1795-s2 1838.904 1016.915 1817.474 3141.896 0.087277 0.98245 0.370239 0.00483 

CDR20291_1795-s6 5702.058 2109.646 2619.279 4068.674 0.398846 0.134849 0.088068 4.17 e-05 

CDR20291_1802 3245.058 1508.492 2361.388 3369.626 0.934291 0.5739 0.281065 2.43 e-10 

CDR20291_1825 3255.288 4164.377 3484.431 4587.728 0.175933 0.880246 0.71088 0.000144 

CDR20291_1911 3982.058 1915.454 2622.279 3232.003 0.274367 0.077412 0.015258 0.015406 

CDR20291_1931 3499.827 3099.8 2953.757 3539.728 0.980218 0.788819 0.88748 6.62 e-07 

CDR20291_1985 6583.904 4359.915 1964.322 3656.74 0.14877 0.032321 0.016669 0.000684 

CDR20291_2034 4106.596 2666.569 3491.388 4562.985 0.765295 0.715413 0.383649 0.002388 

CDR20291_2174-s2 3335.212 1987.3 3050.779 4360.165 0.401495 0.833523 0.32286 1.21 e-05 

CDR20291_2178 4605.904 2574.069 3280.061 3378.979 0.452697 0.283085 0.140074 1.14 e-10 

CDR20291_2226 7194.519 2036.3 2512.301 4198.506 0.169586 0.046612 0.026392 0.212682 

CD2293 2598.904 4675.685 3889.214 4586.692 0.067664 0.346958 0.313845 0.001408 

CDR20291_2298 3888.981 1306.954 2407.54 3471.901 0.855278 0.531547 0.273618 0.002115 

CDR20291_2346 3103.058 2668.762 3238.061 4003.345 0.471989 0.922956 0.796855 1.36 e-10 

CDR20291_2345 4741.288 2634.377 2728.974 3419.087 0.429258 0.251236 0.258885 2.97 e-05 

CDR20291_2359 4090.288 1968.8 2709.931 3439.069 0.542547 0.235962 0.086836 0.005127 

CDR20291_2503 20811.13 19762.15 20058.26 20183.22 0.600999 0.571591 0.468663 1.1 e-05 

CDR20291_2559 5183.904 7958.492 6889.17 7913.967 0.178063 0.477314 0.375692 0.000797 

CDR20291_2653 3186.212 1511.108 1746.822 3330.105 0.920003 0.321351 0.265558 0.000113 

CDR20291_2660 2751.288 1562.415 2300.474 3185.973 0.6830392 0.704769 0.33489 7.44 e-09 

CDR20291_2671 8171.135 1630.492 4392.627 5547.075 1.571289 0.431691 0.170442 0.000565 

CDR20291_2686-s2 5702.827 2572.069 3650.996 5261.842 0.888845 0.53332 0.343185 5.83 e-08 

CDR20291_2687 4635.519 1652.992 2284.431 3294.105 0.364527 0.130176 0.066246 0.023405 

CDR20291_2700 4204.058 2040.185 2499.692 3081.961 0.295762 0.139928 0.085553 00000166 
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CDR20291_2744 1472.981 2868.992 3654.344 4075.393 0.010575 0.198603 0.57161 7.69 e-07 

CDR20291_2805 3266.904 1532.992 2705.496 4153.47 0.610615 0.758221 0.331671 1.85 e-11 

CDR20291_2873 4931.135 2154.146 2755.888 3221.369 0.179694 0.104482 0.048627 0.427101 

CDR20291_2903 2773.981 2059.915 2341.344 3068.434 0.782354 0.711357 0.59073 3.05 e-09 

CDR20291_2971 3595.442 2070.262 2644.409 3504.548 0.937897 0.451552 0.274288 0.000286 

CDR20291_3061 3625.058 1781.685 3191.127 4477.345 0.599553 0.806212 0.276782 2.85 e-05 

CDR20291_3081 3296.365 2960.223 2221.627 3288.285 0.997177 0.644664 0.890525 5.31 e-05 

CDR20291_3279 2315.365 3092.262 2644.148 4125.728 0.079993 0.782977 0.6503 6.96 e-09 

CDR20291_3280 5422.673 2042.608 2205.496 3188.111 0.187998 0.069511 0.065385 2.4 e-05 

CDR20291_3328 4986.288 3789.3 3462.409 4095.003 0.6715 0.516457 0.634058 5.61 e-09 

CDR20291_3334 4317.288 1884.223 2604.17 3440.213 0.375513 0.119303 0.032547 0.00015 

CDR20291_3335 3464.519 1915.877 2444.235 3220.632 0.850218 0.457725 0.298 1.16 e-06 

CDR20291_3343 1416.75 1385.108 2500.801 3287.446 0.006311 0.195467 0.964582 0.010197 

CDR20291_3468 2586.596 2496.415 2554.083 3881.039 0.315473 0.793494 0.80625 0.000415 

CDR20291_3498 4548.442 2225.877 2958.996 3973.919 0.723494 0.351677 0.192918 1.55 e-08 

CDR20291_3504 3814.365 2317.415 2595.974 3219.644 0.637533 0.373492 0.305057 1.39 e-05 
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E.  
Alignment of CDR20291_0342 amino acid sequence from C. difficile strains 630 and R20291. Amino 

acid sequence of CDR20291_0342 from R20291 was aligned against CDR20291_0342 from strain 630 

using pBLAST.  
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F.  

Repeat glycosylation test of transfer of the E. coli O13-antigen onto AcrAtag. E. coli O13 cells 

harbouring pEC415_AcrAtag and pEXT21_pglB were induced at 37oC overnight with 1 mM IPTG and 

0.2% L-arabinose. Cells were lysed and protein was nickel affinity purified before resolving on an 

SDS-PAGE gel then probing on an anti-His immunoblot. (1) Uninduced, (2) Induced with L-arabinose 

and IPTG (3) Induced (inactivated copy of PglB).  
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Antimicrobial Resistance and Immunisation 

 

Antimicrobial resistance (AMR) is an urgent 
global health threat that, if left unchecked, 
could account for an estimated 10 million 
deaths per year by 2050.1 Immunisation is one 
potential way of reducing AMR. This POSTnote 
describes the role for immunisation in tackling 
AMR, both globally and in the UK, the use of 
existing vaccines and how vaccine 
development aligns with public health priorities. 

 
Overview 

 Antimicrobial resistance (AMR) has reached 

a point where some infections may become 

untreatable.  

 Immunisation is one strategy to tackle AMR, 

by decreasing rates of infection and thereby 

antibiotic use and preventing the 

development of resistant infections.  

 The World Health Organization has 

developed a list of pathogens where AMR is 

of most concern and new antibiotics are 

needed; there is no equivalent for vaccines.  

 Quantifying the impact of immunisation on 

AMR and incorporating this into calculating 

the cost-effectiveness of vaccines is still an 

area of ongoing research.   

 Using immunisation to tackle AMR depends 

on wider use and increased uptake of 

existing vaccines, and increasing the 

development of new ones. 

 

Background 
Antimicrobial drugs kill or inhibit the growth of microbes (for 

example, bacteria, viruses and fungi). Microbes adapt by 

developing or acquiring traits that make them resistant to 

these drugs. This process is accelerated by widespread 

(including inappropriate) use of antimicrobials in humans 

and animals.2,3 When resistance occurs in microbes capable 

of causing disease (pathogens), treatment options become 

limited. There are ~700,000 deaths globally every year from 

drug-resistant infections.4 AMR poses a significant health 

and economic burden, and is a priority for the UN General 

Assembly.5 Plans to tackle AMR recognise the need for 

multiple approaches, including immunisation and improved 

sanitation, but the focus has tended to be on more careful 

use of existing drugs and the development of new ones.4-8 

In 2014, the UK Government commissioned the (O’Neill) 

Review on AMR, to assess the global burden of resistance 

and make recommendations. It concluded that vaccines 

have been overlooked as a tool to reduce AMR and should 

be an investment focus.9 

Immunisation as an AMR intervention  
Immunisation confers protection from infection by 

introducing a non-harmful form or component of the 

pathogen in a vaccine. The body develops an immune 

response (such as antibodies) without disease. For many 

vaccines, high uptake in a population generates herd 

immunity. Non-immunised people are indirectly protected by 

being surrounded by immunised people who do not transmit 

the infection.10 Some bacteria are naturally carried in or on 

the body, and often beneficially, but can be transmitted to 

and lead to disease in susceptible people.11 Immunisation 

can prevent carriage, thereby reducing transmission to non-

immunised people.12 Mass immunisation programmes save 

~2.5 million lives a year, globally.13  

Immunisation can reduce the AMR burden through two main 

mechanisms. Firstly, it prevents infections (including 

resistant ones), disease and deaths, and negates the need 

for expensive, more complex drugs to treat resistant 

infections.14,15 Secondly, preventing infection avoids the 

need for treatment, so antimicrobial use is reduced, in 

humans and animals.16-18 One study estimated increasing 

uptake of the pneumococcal conjugate vaccine (PCV) could 

reduce antibiotic (antimicrobials for bacteria) use for 

pneumococcal pneumonia in children aged under 5 years by 

47%.19 Antibiotic use is linked to the development of AMR; 

as use decreases, so too the pressure for resistance to 

develop in the pathogen.2,20,21 

Vaccines offer long-term protection from infection in contrast 

to antibiotics, and many vaccines still effective today were 
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introduced decades ago.22 However, if a pathogen 

undergoes high rates of mutation, the vaccine will need to 

be changed, such as for influenza.23 Furthermore, if a 

vaccine only covers some strains of a pathogen, infections 

caused by other strains can occur or increase.24,25  

Priority Infections  
The World Health Organization (WHO) and the US Centers 

for Disease Control and Prevention (CDC) have priority lists 

of bacterial pathogens of most concern, due to risk of 

resistance (Box 1).26,27 The O’Neill Review identified key 

contexts where immunisation could reduce AMR. This 

includes vaccinating against: infections acquired in hospital 

or the community; viral infections, for which antibiotics are 

ineffective but may be prescribed for symptoms of, or to 

prevent (secondary) bacterial infections.9   

Box 1. Antibiotic Resistant Priority Pathogens  
There is no specific list of the most important resistant pathogens for 
the UK but lists have been developed by CDC and WHO, focusing on 
bacteria. Many pathogens are on both lists and categorised by threat 
level; the most urgent/critical threats are described here. In 2013, 
CDC identified the most urgent threats for the US as Clostridium 
difficile, carbapenem-resistant Enterobacteriaceae and Neisseria 
gonorrhoeae.27 In 2017, WHO identified pathogens for which research 
and development of new antibiotics was most needed (Mycobacterium 
tuberculosis has a dedicated programme). Critical threats include:26 
 Acinetobacter baumannii that are resistant to carbapenem drugs 
 Pseudomonas aeruginosa that are carbapenem-resistant 
 Enterobacteriaceae that are carbapenem-resistant and/or resistant 

to 3rd generation cephalosporin drugs.  
 Carbapenem resistance is an issue as this is a “last resort” class of 

antibiotic, used for treatment when other options have failed.28 
There are no licensed vaccines for any of the pathogens listed 
above, although some are currently in development.29 

The Global Context  

The burden of disease and AMR varies considerably across 

the world. Many serious infections disproportionally affect 

low- and middle-income countries (LMICs).30-32 HIV, 

tuberculosis and malaria are the “big three” infections, so-

called because of the health burden they pose. Resistance 

is an issue for treatment of all three.33-36 Vaccine 

development for each is ongoing; there is no HIV vaccine 

and the major vaccine in development for malaria and the 

only available vaccine for tuberculosis provide a sub-optimal 

level of protection.29,37,38  

There are a number of infections where new vaccines or 

increased uptake of existing ones could reduce mortality 

and/or antibiotic use, such as those caused by group A 

streptococci, pneumococci, influenza and respiratory 

syncytial virus (RSV).19,39-43 In 2016, there was an outbreak 

of typhoid fever in Pakistan, resistant to multiple 

antibiotics.44 A new typhoid vaccine has been 

recommended, with higher efficacy than previous 

vaccines.45-47 

The UK Context 

Many infections that present a global problem are also an 

issue in the UK. Vaccines could be a useful tool in 

managing infections where antibiotic treatment is 

undermined by resistance, such as gonorrhoea (Box 2). 

Cases of gonorrhoea have increased since 2008 and many 

antibiotics are no longer recommended for routine use due 

to the emergence of resistance. A recent case of 

gonorrhoea in the UK was resistant to both current primary 

recommended treatments.51,48-50  

Box 2. Gonorrhoea 
Gonorrhoea is a common bacterial sexually transmitted infection and 
can result in infertility if left untreated. Antibiotic treatment options are 
limited by high levels of AMR.51,52 There is no vaccine currently 
available.29 Data from New Zealand show that a vaccine against 
meningitis B had an estimated 31% efficacy against gonorrhoea. The 
bacteria causing meningitis B and gonorrhoea are related. This has 
led to suggestions of optimising the next generation of this vaccine to 
prevent gonorrhoea.53 In 2015, the UK became the first country to 
offer routine meningitis B immunisation, using a vaccine which shares 
a component with the vaccine used in New Zealand.54   

 
Healthcare-associated infections (HCAIs) 

HCAIs incur significant costs to the NHS and can result in 

severe outcomes, such as blood-stream infections (BSIs).55-

57 Clostridium difficile and methicillin-resistant 

Staphylococcus aureus (MRSA) infections remain a burden 

in healthcare settings, but have decreased substantially in 

recent years (due to better infection prevention and control, 

and reduced prescribing). Between 2007/08 and 2017/18, 

there was a 76.1% decrease in C. difficile infections and 

81% decrease in MRSA BSIs.58 Another cause of HCAIs are 

the “Gram-negative” class of bacteria, where resistance is 

significant.55,59 Most Gram-negative BSIs are caused by 

Escherichia coli, Klebsiella and Pseudomonas aeruginosa.55 

Almost half of E. coli-BSIs are resistant to co-amoxiclav, a 

routinely used antibiotic, and resistance to carbapenem 

antibiotics (Box 1) is low but increasing annually.55 The 

Government has a target to reduce the incidence of Gram-

negative BSIs by 50% by 2021, through improved infection 

prevention and control.55  

There are no licensed vaccines for any of these infections.29 

It is suggested that these vaccines could be targeted to 

people with an increased risk of infection, such as those 

with planned surgical procedures.9,60,61 Vaccines are in 

development for MRSA and C. difficile and three E. coli 

vaccines are in early trials, but there are no candidates in 

trials for P. aeruginosa or Klebsiella.29 Although Gram-

negative bacteria can cause serious infections at certain 

sites in the body, many normally live in the gut of healthy 

people.62-64 It is unclear how immunisation would impact gut 

bacteria and consequently overall health.11,65 

Viral infections  

Lack of rapid diagnostics for use at the time of consultation 

means many antibiotics are prescribed on the basis of 

symptoms alone, which can be caused by multiple 

pathogens, for example for respiratory tract infections 

(RTIs).66-68 This can lead to unnecessary antibiotic use for 

RTIs caused by viruses that can resolve without antibiotic 

treatment, but which are prescribed due to the risk of 

bacterial infection, particularly in children and the elderly.69-

73 Vaccinating against common viral causes of RTIs, such 

as influenza virus, can reduce antibiotic use and acquisition 

of secondary bacterial infections.17,74,75 RSV is the most 
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common cause of acute lower respiratory tract infections in 

children under 5 years of age globally and is an issue for 

adults with other conditions and/or lowered immune 

systems.76,77 There is no licensed vaccine but there are 

many vaccine candidates in different stages of clinical 

trials.78-80   

The influenza vaccine is offered to all over 65s, at-risk 

groups (including pregnant women), and more recently to 

children, to provide protection from infection and to 

decrease transmission from children to vulnerable older 

individuals.81 Vaccine uptake in the UK varies between 

groups but is high (>70%) for over 65s.82 Variations in the 

circulating strains causing infections each season can lead 

to mismatches, where the available vaccine does not fully 

target the current strain. There is ongoing research in 

developing a vaccine that covers all strains, to reduce 

influenza infections83-86 and with further benefits of reduced 

antibiotic use and secondary ear infections.87-89 Population-

wide influenza vaccination in Ontario was associated with a 

64% decrease in influenza-associated respiratory antibiotic 

prescriptions.17 Research by Public Health England (PHE) is 

assessing any changes in antibiotic prescribing and 

secondary lower respiratory tract infections in the context of 

the influenza immunisation programme in England.90 

 

Decisions about Vaccine Use  
There are two main approaches to reducing AMR using 

immunisation: maximising the utility of existing vaccines by 

ensuring good uptake and offering them more widely as  

appropriate, and making decisions about which vaccines 

should be developed and introduced and when and where 

to use them most efficiently.9 Decisions about choices for 

national immunisation programmes vary between countries 

due to vaccine availability and affordability, disease risk, 

vaccine efficacy and different frameworks for advice.91,92  

 

Measuring the Impact of Vaccines on AMR  

Vaccines may have several direct and indirect effects on 

AMR:93 

 preventing disease and deaths   

 reducing the progression to and severity of disease 

 reducing transmission of infection between people 

 reducing antibiotic use and pressure for resistance 

 reducing GP visits and hospital stays. 

Monitoring and quantifying the effects of immunisation on 

AMR and assigning economic benefit to these outcomes is 

challenging and requires surveillance data and complex 

analysis (Box 3).7,93,94 The committee that advises the UK 

Government on vaccination considers AMR in its decision-

making process insofar as it is able, based on the evidence 

(Box 4).95 

Surveillance and Data Collection 

Understanding disease burden and the proportion that is 

resistant is important in informing design and use of AMR 

interventions, including vaccines.4,96-98 The UK has 

Box 3. Mathematical Modelling and Cost-Effectiveness Analysis  
Mathematical modelling of the impact of a vaccine on a target 
population and cost-effectiveness evaluations are an important part of 
decision-making about vaccines in the UK. This is a statutory 
requirement before a vaccine can be recommended to Ministers.92 
Modelling of immunisation and AMR is a useful tool to increase 
understanding and predict impact but its utility in informing public 
health strategies is restricted by the complexity in modelling this 
relationship.93 For example, although antibiotic use has accelerated 
development of AMR, this can vary depending on the drug, pathogen 
and host setting.94 Furthermore, antibiotic use can also pressure the 
bacteria carried in the body of healthy people to develop resistance.99 
Existing studies aiming to model AMR in the context of immunisation 
are restricted to pneumococcal and S. aureus infections.93 

 

separate surveillance systems to monitor disease and 

AMR.55,100 Some lower income countries, in which AMR has 

a disproportionate impact, do not have the capacity for 

detailed surveillance, which limits understanding.101,102 

Programmes to increase surveillance in these regions 

include The Fleming Fund and the WHO Global AMR 

Surveillance System.103,104 Monitoring antibiotic use is one 

way to quantify the impact of immunisation on AMR but this 

is complex.105-108 The Wellcome Trust has commissioned a 

review of studies on immunisation and antibiotic use. It is 

also encouraging data collection about antibiotic use during 

clinical trials and post-vaccine roll out studies.109 

Box 4. Scientific Advice to the UK Government on Immunisation 
The Government amends the national immunisation schedule on the 
advice of the Joint Committee on Vaccination and Immunisation 
(JCVI). Decision making is informed by a range of evidence including 
disease burden, vaccine availability, safety and efficacy and cost-
effectiveness. The AMR burden for an infection is considered where 
possible. This is limited by the complex challenges in quantifying the 
impact of vaccination on the AMR burden and assigning economic 
benefit to this impact. Researchers are developing models to predict 
these complex effects. The JCVI has identified two infections for which 
vaccines are unavailable but could be beneficial and cost-effective, 
RSV and Group B Streptococcus (GBS).95,110 These could also be 
beneficial from an AMR standpoint as both infections lead to 
potentially avoidable antibiotic use. Antibiotics are ineffective against 
RSV but may still be prescribed, including for secondary bacterial 
infections.41 For GBS, there are global differences in screening 
practices and antibiotic use.111-113 

 

Utility of Existing Vaccines 

The O’Neill Review recommended wider use of existing 

vaccines, such as those for pneumococcal infections.9 After 

the pneumococcal conjugate vaccine (PCV) was introduced 

in the UK in 2006, the incidence of disease across all age 

groups caused by types (“serotypes”) contained in the 

vaccine fell by 97% by 2016, and infections resistant to a 

certain class of antibiotics (macrolides) also decreased (Box 

5).25,114 Reduced prevalence of drug-resistant infections and 

antibiotic use through immunisation depends on achieving 

good vaccine uptake. There are major global disparities in 

uptake, as a consequence of supply and affordability, 

weaknesses in health systems and public attitudes.115,116  
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Box 5. Pneumococcal Conjugate Vaccine (PCV) 
Streptococcus pneumoniae can cause severe disease, including 
meningitis, septicaemia and pneumonia, with under 5 year-olds and 
the elderly most at risk.117 There are >100 identified serotypes that 
vary in their prevalence, drug-resistance and ability to cause disease 

118,119 PCV7, a vaccine covering 7 serotypes, has been linked to 
reduced antibiotic use and resistant infections in some regions.120-122 
A reduction in vaccine-targeted serotypes was followed by an increase 
in disease caused by other serotypes, known as serotype 
replacement.25 New vaccines are required to cover serotypes arising 
through this process, for example PCV13 is now used in many 
countries, including the UK.25,117 

 
The Global Context 

The effectiveness of national immunisation programmes 

relies on high vaccine uptake in the target populations.10,123 

However, many countries do not have the infrastructure or 

means to achieve this. For example, the WHO estimates 

that global coverage of PCV for children under 5 is 42%.124  

Gavi is a public-private partnership that aims to increase 

vaccine coverage in the world’s poorest countries.125 Gavi’s 

portfolio contains 11 vaccines,126 and they estimate that 

their provision of Haemophilus influenzae type b, 

pneumococcal and meningococcal vaccines between 2001 

and 2030, could mean that 500 million doses of antibiotics 

would not be used. AMR is a recent addition to Gavi’s 

vaccine investment decision criteria.127 

The UK Context 

The UK has one of the most comprehensive immunisation 

schedules and high uptake.128 There are still inequalities in 

uptake in certain socioeconomic and ethnic groups, but PHE 

and NHS England are working to reduce them.129,130 Public 

perceptions of vaccination also influence uptake and can 

lead to increases in vaccine-preventable infections.131,132 

Survey data from 2016 showed that 94% of parents in 

England had confidence in the immunisation programme.133 

This high level of confidence is not reflected worldwide, 

including some high income European countries.134  

Developing New Vaccines   
Vaccine development requires advanced technologies, is 

expensive, time-consuming and subject to high attrition, so 

companies require markets to make research and 

development (R&D) commercially viable.9,135-136 There are a 

number of vaccines in development for pathogens on the 

WHO and CDC lists (Box 1), but some vaccines may be 

less attractive as they offer lower returns, such as those 

targeting diseases that mainly affect LMICs.29,137,138 A key 

question is how to stimulate and prioritise the development 

of new vaccines in the context of AMR. The O’Neill review 

highlighted the need to support early research and maintain 

a viable market.9 However, the majority of funding for new 

AMR products (excluding direct industry investment) targets 

development of new antibiotics.139 Several government 

AMR initiatives are ongoing, including vaccine development 

(Box 6). Other proposed methods to encourage 

development include product development partnerships, 

market entry rewards and tax credits. 4,40,140 

Vaccine Development and Public Health Priorities  

Where collections of symptoms could be caused by several 

different pathogens (such as RTIs), vaccinating against 

many of these (such as influenza and RSV) could have a 

greater impact on antibiotic use, by preventing infection and 

reducing the need for medical intervention.77,40,141 It has 

been suggested that future research could focus on 

developing vaccines that preferentially target resistant 

pathogens or are against HCAIs.7,40,61,142 As HCAIs are 

more likely to affect certain groups, vaccinating the whole 

population may not be appropriate.9,143 However: 

 unwell or elderly people may not be able to develop a 

protective immune response after vaccination9,143  

 identifying the target population risks missing people61  

 for those entering hospitals in an emergency, there may 

not be time to be vaccinated and generate immunity, 

although treatments (monoclonal antibodies) that confer 

immediate, short-term immunity are being developed.145  

Public Health Priorities  

Guidance on public health priorities can inform research and 

help manufacturers understand potential markets.146 For 

example, target product profiles that outline what is 

expected from a vaccine can bring stakeholders together 

and coordinate development.147,148 The Wellcome Trust has 

commissioned work to assess vaccine development for all 

pathogens on the WHO priority pathogen list, including:109   

 R&D pipeline - past failures, existing efforts and need  

 market analysis - sizing calculations and target population  

 payers - who would pay or support access to vaccines 

 barriers - commercial, clinical trials and delivery   

 benefits for each pathogen and any cross-protection.  

Vaccine Development 

Various initiatives can support the pre-clinical development 

of promising vaccine candidates; CARB-X is a public-private 

partnership funding development of antimicrobial products 

for priority pathogens (Box 1).149 The UK government 

funded BactiVac Network aims to accelerate development of 

anti-bacterial vaccines for LMICs and covers UK needs 

following investment from the Industry Strategy Challenge 

Fund.150 The planned UK National Vaccine Development 

and Manufacturing Centre aims to support later stages of 

development.151 Medicines regulators such as the European 

Medicines Agency are co-operating with other bodies to 

discuss vaccine regulation in the context of AMR.152  

Box 6. Government AMR Strategies and Immunisation 
The Department of Health and Social Care (DHSC) leads the 5-Year 
AMR Strategy which includes increasing uptake of immunisation and 
investment in new vaccines.153 The £50 million Global AMR Innovation 
Fund - set up in response to the O’Neill review - funds R&D in 
underinvested areas.154 This focuses on LMICs and includes the 
development of alternatives to antibiotics, such as vaccines, with 
investment in CARB-X.155 Innovate UK works with GAMRIF and 
conducts other AMR and vaccine work.151 The Department for 
International Development contributes to the UK AMR Strategy and is 
the biggest contributor to Gavi.156 The AMR Funders Forum includes 
research councils, government and charities and coordinates UK AMR 
research. This includes vaccine development and work to identify 
which interventions will have the most impact in different settings.157 
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