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Abstract

Background Surgical interventions allow for tailoring of treatment to individual
patients and implementation may vary with surgeon and healthcare provider.
In addition, in clinical trials assessing two competing surgical interventions the
treatments may be accompanied by co-interventions.

Aims This study explores the use of causal mediation analysis to (1) delineate the
treatment effect that results directly from the surgical intervention under study and
the indirect effect acting through a co-intervention and (2) to evaluate the benefit of
the surgical intervention if either everybody in the trial population received the co-
intervention or nobody received it.

Methods Within a counterfactual framework, relevant direct and indirect effects
of a surgical intervention are estimated adjusted for confounding via parametric
regression models, for the situation where both mediator and outcome are binary,
with baseline stratification factors included as fixed effects and surgeons as random
intercepts. The causal difference in probability of a successful outcome (estimand
of interest) is calculated using Monte Carlo simulation with bootstrapping for
confidence intervals. Packages for estimation within standard statistical software
are reviewed briefly. A step by step application of methods is illustrated using the
Amaze randomised trial of ablation as an adjunct to cardiac surgery in patients with
irregular heart rhythm, with a co-intervention (removal of the left atrial appendage)
administered to a subset of participants at the surgeon’s discretion. The primary
outcome was return to normal heart rhythm at one year post surgery.

Results In Amaze 17% (95% Cl: 6%, 28%) more patients in the active arm had
a successful outcome, but there was a large difference between active and control
arms in the proportion of patients who received the co-intervention (55% and 30%
respectively). Causal mediation analysis suggested that around 1% of the treatment
effect was attributable to the co-intervention (16% natural direct effect). The controlled
direct effect ranged from 18% (6%, 30%) if the co-intervention were mandated, to
14% (2%, 25%) if it were prohibited. Including age as a moderator of the mediation
effects showed that the natural direct effect of ablation appeared to decrease with
age.

Conclusions Causal mediation analysis is a useful quantitative tool to explore
mediating effects of co-interventions in surgical trials. In Amaze, investigators could
be reassured that the effect of the active treatment, not explainable by differential use
of the co-intervention, was significant across analyses.
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Introduction

Large traditional Randomized Controlled Trials (RCTs) of drug therapies, with
rigorously controlled design, influence clinical practice (see, for example Pocock).!
However, they may lack generalisability to the intended setting and for trials of surgical
techniques, a degree of flexibility is required.”**

RCTs in surgery are increasingly used in a range of disease populations, including
cancer, orthopedic and cardiac patients.” ®” These trials often adopt pragmatic designs to
reflect the intervention as performed in clinical practice. During trial design, decisions
are made about the inclusion and level of standardisation of each stage of the procedure,
rather than imposing a strictly standardised protocol.® The technically demanding nature
of surgery, requirements of individual patients and unexpected adverse events result
in flexibility of delivery. A related issue is the use of co-interventions alongside or
subsequent to the surgery under investigation which, although not part of the intervention,
may impact outcomes and mediate the treatment effect.

In RCTs, primary analysis typically assesses effectiveness of the whole surgical
procedure in the Intention to Treat population. However, there may be interest in
exploring contributions to the overall treatment effect of intervention components,
patient characteristics, surgeons or co-interventions. Some variables are effect modifiers,
modelled as fixed effects and interactions, others are not of interest themselves,
but introduce some dependency (clustering) between trial participants. For example,
outcomes for cardiac surgeons are clustered, even after adjusting for patient

characteristics and may be analysed as random effects.’'?!! An analogous situation
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exists in psychology where clustering of patient outcomes by therapist is expected. !>
Co-interventions are not part of the intervention package but may affect trial results,
especially if they are not applied consistently across trial arms. Co-interventions may
mediate the effect of the intervention so that secondary analysis could explore the extent
to which the surgery acts directly on the outcome and indirectly via the co-intervention.
Furthermore, policy makers may be interested in the direct effect of the surgery if
(hypothetically) either all or no patients receive the co-intervention.

Causal mediation analysis has been used extensively to explore how complex
interventions work in other contexts, notably in psychotherapy, where the mediated
(indirect) effect of treatment is usually the focus. '? In contrast, for surgical trials interest
centres on direct effects of the intervention; the co-intervention is a nuisance mediator
and we wish to exclude its effect. Rigorous statistical methods for assessing causal
relationships have been developed, but uncertainty remains on when they are relevant in
this setting; applications to real trials would help to clarify their usefulness. In the surgical
trials literature, few studies have considered mediation in trial analysis and none where
both mediator and outcome are binary, or where clustering of outcomes is apparent.'* '

The focus of this paper is primarily on defining relevant causal estimands in surgical
trials, specifying statistical approaches for estimating these and being clear about the
assumptions made when doing so. Methods are illustrated using the Amaze heart surgery
trial.” 1

We provide background, methods and assumptions for causal mediation methods
based on counterfactual arguments, and an overview of resources for implementation
of methods in standard statistical software in (Section Methods).These are applied to the
Amaze trial which motivated this work in Section Results, conclusions and discussion is

provided in Conclusions.

Methods

Mediation analysis aims to explain treatment mechanisms by partitioning the total effect
of an intervention on an outcome into direct effects and indirect effects which act via a
mediator (see, for example, MacKinnon and figure 1).'> What distinguishes a mediator
from a moderator is that it occurs after randomisation and lies on the causal pathway
between intervention and outcome.'” A major difficulty in this context is the presence
of unexplained confounding of the mediator-outcome path which, if ignored, results in
biased estimates of direct and indirect effects of the intervention.
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Since the landmark publications of Baron and Kenny and Robins and Greenland, use
of mediation analysis has increased substantially.'® ! There is extensive literature on
mediation in RCTs of psychotherapy, but from a targeted literature search there has been
little uptake in the analysis of mechanisms in surgical trials. '

Early publications focussed on the case where either mediator or outcome were
continuous random variables and based analyses on linear models.'® ! Subsequent
developments provided more general methods, including conditions for identifiability of
estimands.’’?! Methods for more complex situations are being developed with recent
literature considering multiple mediators and repeated exposures (interventions) with
repeated mediators.>?>* 2* Moreover, methods have been developed within the Bayesian
paradigm.?® In this study, we focus on a single (binary) mediator and a single (binary)
outcome, where the main estimand of interest is the direct difference between trial arms
in the probabilities of a successful outcome, that is not due to confounding by a nuisance
mediator. Several authors provided methods for estimation of effects when both mediator
and outcome are binary so that new methods for our case are not required.’® In this
context, we briefly review the framework and conditions required to estimate causal

estimands of interest in the presence of a single mediator.

Potential outcomes, natural direct, natural indierct and controlled
direct effects

In the counterfactual approach a number of potential outcomes may be considered,
depending on the treatment (surgery) and mediator (co-intervention) levels.?’ We denote
the potential outcome for participant i,7 = 1,...,n, who received treatment ¢ € (0, 1)
and mediator m € (0, 1) by Y; (¢, m). The potential mediator for patient 7 under treatment
t is expressed as M;(t). In our case, for each trial arm there are two potential values for
the mediator, M;(1) and M;(0), resulting in four potential outcomes (two treatment arms
x two mediator levels); only one of these is observed for each participant, so that there is
one factual and three counterfactual outcomes. For a patient to be eligible for mediation
analysis, all four must be possible (theoretically). In practice this assumption is difficult
to assess from trial data alone unless suitability for the mediator irrespective of treatment
arm is recorded prospectively or available from operative notes, and must be evaluated in
discussion with participating surgeons

The total causal effect of the treatment on patient ¢’s outcome is defined as
Yi(1, M;(1)) — Y;(0, M;(0)). The trial analysis focusses on the total average causal
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intervention effect:

B[Yi(1, M;(1)) - Y;(0, M;(0))].

Since treatment allocation is independent of potential outcomes in RCTs
(Y;(1),Y;(0) L T;), the total average causal effect of the intervention can be identified

using the data from each trial arm.

Following Imai, we provide expressions for natural direct, natural indirect and total
effects for a patient 4 in Table 1.%! The natural indirect effect 0;(¢) represents change
in the outcome if the mediator for patient ¢ was changed from its value for the
intervention arm (M (1)) to its value in the control arm (M;(0)), whilst holding treatment
arm constant at t, for t = 0,1. The natural direct effect (;(¢) represents the effect of
intervention ¢ on outcome, holding the mediator at the level realized under ¢. Because
our chosen estimand is the difference in probability of successful outcomes between trial
arms, these two expressions can be combined to obtain the total natural effect for patient
1. Note that this would not be the case had we chosen the relative risk or odds ratio as the

estimand.

For probability-difference estimands, natural direct and indirect effects from the trial
are defined as the expectation of patient-specific effects over trial participants. Note that
causal effects are defined at a given reference level for the mediator, often set to the level
observed in the control arm or intervention arm or the average of the two (see table 1).
All these causal mediation estimands can be estimated from trial results provided that

identifiability assumptions hold (see below).

In some applications, interest centres on estimating either the contribution of the
mediator to the total effect, or, as in our example, the causal direct effect after taking
the mediator into account. Some mediators can be considered manipulable in that their

application could be controlled (at least in theory).”®

For example, surgeons and policy
makers may be interested in the the effect of the intervention if the co-intervention
(mediator) were either mandated or prohibited. This (hypothetical) question can be
addressed by re-estimating effects with the mediator level set to 1 (or 0) for all cases (see

Table 1 for notation).?’

Fundamental to the potential outcomes approach is the stable unit treatment value

assumption, which has two parts.? First, it assumes no interference between patients, in
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that potential outcomes for a patient, are not affected by treatments that other patients
receive. Second, it assumes consistency in that there are no versions of the treatment that
can lead to different potential outcomes.

Additional assumptions are required in order to identify, and interpret causally,
mediation effects.

Imai and colleagues show that average causal mediation effects are identifiable in
general (without other distributional assumptions) providing the key assumption of

Sequential Ignorability holds.>' This assumption requires two conditions,

L Yi(t,m), M;(t) L T;| X,
given baseline variables and other confounders (including random effects),
treatment assignment is independent of potential outcomes and mediators,

2. Yi(t,m) L M;(t)|T; = ¢,X,,
given observed treatment, baseline variables and other confounders (including

random effects), the mediator assignment is independent of potential outcomes.

The first condition is justifiable in RCTs since random allocation is independent of sub-
sequent events, including mediators and outcome measurements. Randomisation protects
intervention-mediator and intervention-outcome relationships from confounders. The
second condition is difficult to justify and not testable from observed data. Randomisation
does not protect the mediator-outcome relationship from confounding because those
with high observed mediator levels can differ from those with low values on prognostic
variables. Because bias due to unmeasured confounding cannot be excluded in general,
it is important to conduct sensitivity analysis to assess this assumption.

Sequential Ignorability is also required for causal interpretation of controlled direct
effects, as is the assumption that all patients have the potential to receive all treatments
and mediator levels. Controlled effects estimation also requires that the mediator is

manipulable.

Resources for estimation of direct and indirect effects

Natural direct and indirect effects can be estimated in standard statistical software. We
describe commonly cited examples, although contributions continue to be published. The
user-friendly mediation package in R uses Monte Carlo simulation to estimate direct and
indirect effects on the additive scale for continuous and binary mediator and outcome
variables, and includes both parametric and non-parametric error options. *> This package

accommodates intervention-mediator interaction, random effects and sensitivity analysis
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for unobserved confounders, although sensitivity analysis when both mediator and
outcome are binary is not incorporated. It provides estimates of difference in proportions
estimands but not odds ratio estimands. A limited version of this package for parametric
estimation is programmed in Stata.’® Other R packages are available for multiple
mediators (mma) and for estimands on odds ratio scale (medflex).>**

Alternative Stata packages are available for parametric estimation (paramed), for
binary outcomes with multiple mediators (LDEcomp) and for estimating marginal
distributions for time-varying exposure (intervention) and covariates (gformula).*®3’3®
The gformula package allows continuous and binary mediators and outcomes,
intervention-mediator interactions and options for missing data; gformula is also
available as a SAS macro. A fully parametric procedure for mediation analysis is available
in both SAS and SPSS (CAUSALMED).*

For analysts with a thorough understanding of do-calculus and directed acyclic graphs,

Tikka and Karvanen contributed the R package causaleffect.*’

Results

The Amaze cardiac surgical trial assessed whether ablation during heart surgery returns
the heart to normal sinus rhythm in patients with a documented history of rapid or
irregular heart rhythm.” '® This multi-centre, Phase III, pragmatic RCT randomised 352
patients to ablation plus planned surgery, or planned surgery alone (control arm). The
primary outcome was sinus rhythm restoration at one year post-surgery (binary outcome).

In 280 trial patients with valid primary outcome, 84/137 (61.3%) ablation and 67/143
(46.9%) control patients returned to sinus rhythm. Of 151 patients with a successful
outcome at one year, 84 (56%) were in the ablation arm, 48 (32%) were in sinus rthythm
during a baseline electrocardiograph despite having a history of atrial fibrillation and
mean (SD) age was 70.5 (8.0) years. Of 129 patients with an unsuccessful outcome, 53
(41%) were in the ablation arm, 8 (6%) were in sinus rhythm at baseline and mean (SD)
age was 73.6 (7.0) years.

The original trial analysis using mixed effects logistic regression, including baseline
fixed effects (heart rhythm at baseline, patient age and cardiac operation type) and
surgeon random effects are in Table 2 (results for operation type suppressed for
simplicity). The odds of successful outcome were higher in the ablation arm, for younger
patients and for those in sinus rhythm at baseline. Adjusting for fixed effects, 8.4% of
the remaining variation in outcomes was due to surgeon effects. We used Monte Carlo
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simulation to obtain our chosen estimand (difference in proportion of patients in normal
heart rhythm at one year), estimated to be 0.17 (0.06, 0.28); that is, 17% more ablation
patients returned to sinus rhythm than did control patients. Note that this is a marginal
estimand, as opposed to the odds ratio for ablation which is conditional on other variables
in the parametric model.

The heart contains a sac called the left atrial appendage (LAA) in which blood clots
can form. Although not a component of routine cardiac surgery or ablation, some patients
had the LAA removed during surgery (97 (55.1%) of 176 patients who had ablation and
53 (30.1%) of 176 control patients). The difference in the probability of LAA removal
between trial arms raised concerns that some of the observed total effect of ablation may
have resulted from this co-intervention.

Using the potential outcomes framework, we explored the relative size of the direct
effects of ablation on the probability of returning to sinus thythm and an indirect effect
acting through LAA removal, see figure 1. In particular, it is important to ensure that a
significant proportion of the treatment effect resulted directly from ablation.

In addition to Intention To Treat analysis, we explore questions such as:

e How much of the intervention effect acts as a direct effect of ablation, rather than
through removal of the LAA?

o What would the effect of ablation be if no patient in the target population (or all
patients) had the LAA removed?

e Does the direct effect of ablation vary between patients and how?

Natural direct, natural indirect and controlled direct effects in the
Amacze trial

Although our estimand of interest is the difference between trial arms in probability
of sinus rhythm restoration, in keeping with the original modelling approach we used
mixed effects logistic regression models to describe the relationships between outcomes,
mediators and treatment, adjusting for confounders. Two additional parametric models
are required for this purpose, the mediator model and the outcome model. Our mediator

model was,

logit(p(M;|T;, X, vs,) = ap + an T + aQTXi + vs,
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where for patient ¢ =1,...,n, T; and M, represent treatment assignment and
observed LAA removal status respectively, X; represents baseline covariates and v,
surgeon random effects, with vy, | T}, X; ~ N(0,02).

The outcome model was,

logit(p(Y; = 1T;, M, X;,us,)) = 0o + 01 T; + 02 M; + 03(T x M); + 01 X; + us,

where Y; is the binary outcome, (T x M); denotes the interaction between treatment
and mediator and u,,|T;, M;, X; ~ N(0,02) for surgeon effects. This differs from the
overall trial analysis by adjustment for LAA removal and its interaction with treatment.

Estimation of the natural direct effect of ablation on return to sinus rhythm and the
natural indirect effect of ablation via removal of the LAA can be estimated from these
equations using either approximate methods or by Monte Carlo simulation.

Table 2 summarises the outcome model results alongside the original trial analysis. The
coefficient for ablation decreased substantially when LAA removal and its interaction
were included in the model; the (control group) mediator was associated with a small,
non-significant increase in the odds of a successful outcome. Older patients were less
likely to have a successful outcome, while those in sinus rhythm at baseline had much
greater chance of returning to sinus rhythm.

Table 3 shows that removal of the LAA was strongly associated with intervention
(ablation) and age, with older patients less likely to have the LAA removed. The Intra-
Cluster Correlation coefficient was very high (56%), suggesting that individual surgeons
had strong preferences for removal (or not) of the LAA. All analyses use complete
cases only and, according to the sequential ignorability assumption, we assume that age,
baseline sinus rhythm, operation type and surgeon comprise all important confounding
variables for the LAA-outcome association.

How much of the intervention effect acts as a direct effect of ablation, rather than
through the removal of the LAA?

To address this question, we used the R package mediation, since mediator and
outcome are binary, it allows random effects models and estimates the difference in
probability of success, our chosen estimand.*> To estimate the probabilities of success,
first 2000 potential mediators for each treatment arm were simulated from the logistic
model for mediator; then, conditional on each treatment X simulated-moderator pair,
potential outcomes were simulated from the logistic model for outcome. Probabilities
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of success for each treatment were estimated from these simulated samples. The non-
parametric (Bootstrap) option was used for inference (see Appendix for details of the
algorithm).

Total effect of ablation on probability of return to sinus rhythm was 0.17 (0.06,
0.27); that is, 17% more ablation patients than controls returned to sinus rhythm, (95%
confidence interval: 6%, 27%). Figure 2 shows that, when LAA removal is averaged over
intervention and control arm levels, about 1% (-2%, 4%) of the effect of ablation acts
via removal of LAA, with 16% (5%, 26%) a direct effect of ablation. Results are similar
when the reference level for LAA removal is set at either intervention or control arm
levels.

Alternative parametric models for surgeon effects, lack of interaction between ablation
and LAA removal, software packages and choice of parametric and non-parametric
confidence intervals showed very similar results. In all models the natural direct effect
was statistically significant” at the 1% level, so that the trial conclusions were confirmed.

What would be the effect of ablation if no patient in the target population (or all
patients) had the LAA removed?

Setting the mediator level to 0 (1) for all cases and estimating controlled effects, the
difference in the percentage of patients with a successful outcome due to ablation was
14% (2%, 25%) if nobody had the LA A removed, and 18% (6%, 30%) if everyone had the
LAA removed. LAA removal may have a small but important impact on the effectiveness
of ablation.

These results hold if all variables affecting the decision to remove the LAA have been
adjusted for; in reality, there may be systematic selection of patients for LAA removal
and some unmeasured confounding.

Does the direct effect of ablation vary between patients and how?

Model results and clinical colleagues suggested that LAA removal and return to sinus
rhythm are age-related. The moderating effect of age on total and mediated effects was
explored, by including age and its interactions with ablation and LAA removal in the
parametric models. The results in figure 3 suggest that the direct (and total) effects

decrease with age, but there is little evidence that mediation is associated with age.

Sensitivity analysis

Assessing sensitivity of results to unobserved confounding is important. For continuous
mediator and outcome, sensitivity is assessed through correlation between residual errors
from mediator and outcome models, which is zero if sequential ignorability holds.?' If
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plausible correlation levels substantially change estimates of direct and indirect effects,
uncontrolled confounding may be distorting true causal effects. The same approach can
be used, if only one of mediator and outcome is continuous and the other binary (probit
analysis).?! 3?

Vansteelandt provided methods to address unmeasured covariates when both mediator
and outcome are binary, based on three parameters.*'

Define U to be a continuous measure encapsulating all unobserved confounders, scaled
to have variance 1, and 3 the log(odds ratio) of U on outcome Y, conditional on 7" and M.
To express how strongly U is associated with the mediator, define two further sensitivity

parameters Ao and \; such that

E{UIM =1,T=t)— E(UM =0,T =t) = Ao + Ait

That is, Ag represents the association between U and M in the control arm and \; the
additional association due to the intervention.

To explore sensitivity to unexplained confounding, 3, A\g and A; must be varied, with
0 representing no unexplained confounding and £1 large effects. In our analysis we
address the question,

How large do the parameters 3, \g and \1 have to be so that the mediation effect
increases and the causal direct effect shrinks to zero?

The mediation package in R was augmented to include sensitivity analysis when both
mediator and outcome are binary (code available from authors).

A contour plot of natural direct effect for ablation by 5 and )\, (A1 set to 0 throughout),
is provided in the Appendix. The direct effect of ablation was significant at the 5% level

unless either,

1. unexplained confounding had odds ratio for successful outcome of 2, and the
confounder had expected value 0.5 standard deviations lower in patients with LAA
removal, or

2. the unexplained confounding had odds ratio for successful outcome of < 0.5, and
the confounder has expected value 0.5 standard deviations lower in patients with
LAA intact.

Therefore, unless unobserved confounding is strongly associated with both outcome
and mediation, and acts in opposite directions, conclusions are unchanged. Neither

scenario seems plausible.
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Conclusions

Mediation analysis is a useful tool to investigate questions of interest in RCTs provided
key assumptions hold.?° Its use has been established in psychotherapy and other mental
health trials but is uncommon in surgery. >’

In Amaze, treatment success was observed in 17% more ablation patients than controls
and, despite the strong association between ablation and LAA removal, the treatment
effect was largely directly attributable to ablation. Although exploration of mediation
effects could be limited by the size of the trial, this was not an issue in Amaze. In
all models, the direct effect of ablation was significant (p<0.01), even in a model
that prohibited removal of the LAA. Sensitivity analysis suggested that unexplained
confounding would have to be implausibly strong to conclude otherwise. Policy makers,
surgeons and patients can be confident that ablation is effective in restoring sinus rhythm
at one year, whatever the surgeon’s preference for the co-intervention.

In Amaze 20% of patients did not have the primary outcome data, mostly due
to death or measurement device failure. Since the proportion of missing cases was
balanced in the two arms and missingness was unlikely to depend on intervention or
mediator, complete case analyses were used. However, multiple imputation or inverse
probably weighting methods for missing data could be incorporated into the analysis
with additional programming.

Methodology for pragmatic trials of complex interventions has extended the use of
RCTs for interventions like surgery. Flexibility in intervention delivery confers external
validity and relevance of trial results, but introduces treatment heterogeneity. If there is
too little control of treatment delivery, results are difficult to interpret and unlikely to be
accepted by surgeons or policy makers. Therefore, detailed description of the substantive
components of intervention and control, and monitoring of adherence to these protocols
are crucial.®#> Co-interventions should be considered at the design stage, with conditions
for their use documented; additional baseline variables affecting the mediator-outcome
relationship should be collected and included in analyses, to justify the assumption of
sequential ignorability.

Causal mediation methods available in standard software cover a wide range of
analyses, although assumptions must be considered carefully. Methods for multiple
mediators, longitudinal outcomes, multiple treatments over time and time-to-event
outcomes need further development.

Mediation analysis provides useful insights in trials of surgery that may lead to
co-interventions and allows assessment of the potential size of their impact. Such
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quantitative assessments are a useful addition to qualitative process evaluations in
RCTs.*
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Appendix

Estimation in the Amaze trial

For Amaze, we used the R package mediation, since mediator and outcome are binary,
it allows random effects models and estimates the difference in probability of success. >
The non-parametric (Bootstrap) option was used for inference.

Following Imai,”' the algorithm took the following steps,

1. Sample n patients with replacement from trial dataset.

2. Using this sample fit the mediator model adjusted for baseline covariates.

3. Fit the outcome model including intervention, mediator, their interaction and
confounders.

4. With the intervention set at t = 0 and ¢ = 1 separately, simulate potential mediator
values M;(0) and M;(1), fori = 1,...,n from mediator model.

5. For each potential mediator, sample a single potential outcome Y; (¢, M;(0)) and
Y;(t, M;(1)) from the outcome model, for t = 0, 1.
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6. From these n x 4 potential outcomes sampled, calculate the total, direct and
indirect effects (differences in probabilities) and averaged over all patients (see
Table 1).

7. Repeat the above J times (2000 in the Amaze example) in order to compute

summary statistics and non-parametric confidence intervals.

In the fully parametric version of this algorithm, mediator and outcome models are
fitted to trial data, with estimated parameters &, 6 each assumed to have multivariate
normal distributions. Values of « and 6 are sampled from the fitted models, potential
mediator and outcome samples are then generated conditional on « and 6 and the
algorithm follows the same steps as the non-parametric version thereafter.

Sensitivity analysis results

In sensitivity analysis, total, natural direct and natural indirect effects were re-
estimated for a range of values for 3, the log(odds ratio) of the effect of unexplained
confounders U (scaled to have variance 1) on the outcome Y and A, the mean difference
in U between mediated and non-mediated patients in the control arm. We set \; to zero
in all analyses, since it is unlikely that confounding associated with the mediator differs
between treatment arms in our example.

Figure 4 is a contour plot of the estimated natural direct effect (average mediator level)
for values of 5 and A ranging from -1 to 1. The difference in probability of success
between the two arms remains above 0.1 (10%) unless [ and \y have opposite signs and

are large. For example, this estimand only falls below 0.1 if,

1. the effect of the unexplained confounder on outcome is close to one (odds ratio 2)
and has expected value at least 0.5 standard deviations lower in the LAA patients,
or

2. the effect of the unexplained confounder on outcome is close to minus one (odds
ratio < 0.5) and has expected value at least 0.5 standard deviations lower in the
non-LAA patients.

Moreover, the estimated difference in probability of success is significant at (at least) the
5% level for all other scenarios. For example, for the natural indirect effect of ablation
to be overestimated by an amount that would change the conclusion, we would have
to omit highly effective confounders that also have much higher levels in the non-LAA
patients. The existence of such a confounder that is either unknown to investigators, or

not considered important enough to measure and adjust for in analysis seems implausible
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in a RCT. Therefore, conclusions concerning the effectiveness of ablation are unchanged

for all plausible scenarios.
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Table 1. Definitions of natural direct, natural indirect, total and controlled direct effects for an

individual patient ¢

Algebraic specification

Definition

Natural indirect effect for the intervention

3:(0) = Y;(0, M;(1)) — Y;(0, M;(0)) | and control arms and their average
di(ax) = (8;(1) + 6;(0))/2 acting through the mediator

¢i(0) =Yi(1, M;(0)) — Y;(0, M;(0)) | Natural direct effect of treatment
¢G(1) =Yi(1, M;(1)) — Y;(0, M;(1)) | fixing the mediator at the

Cilax) = (G(1) + ¢:(0))/2 control, intervention or average level

The total natural effect (TE)

Controlled direct effect of treatment if mediator

is mandated or prohibited

a* denotes the average of the two treatment arms as the reference
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Table 2. Estimated odds ratios for return to sinus rhythm at one year using data from the
Amaze trial (results for operation type are suppressed)

Original trial analysis

Outcome model for mediation

Ablation-LAA interaction

Baseline sinus rhythm

Age in years

Variable Odds ratio (95% CI) QOdds ratio (95% CI)
Ablation 243 (1.40,4.21) 1.59 (0.76, 3.32)
LAA removal 0.75(0.30, 1.84)

8.31 (3.42, 20.20)
0.96 (0.92, 1.00)

2.57 (0.78, 8.44)
8.58 (3.50, 21.06)

0.96 (0.92, 1.00)

ICC(surgeon)*

0.084

0.102

* ICC(surgeon) is the Intra-Cluster Correlation Coefficient due to surgeon random effects on the log-odds

scale, calculated as the proportion of total variation attributed to variation between surgeons. Level 1

residual variance is 02 =
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2 = 72 /3 using the latent variable formulation of the logistic regression model.
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Table 3. Estimated odds ratios for LAA removal for
the mediator model using data from the Amaze trial
(results for operation type suppressed)

Variable Odds ratio (95% CI)
Ablation 4.78 (2.65, 8.64)
Baseline sinus rhythm 0.51(0.23, 1.16)
Age in years 0.94 (0.90, 0.99)
ICC(surgeon) 0.56

* ICC(surgeon) is the Intra-Cluster Correlation Coefficient
due to surgeon random effects on the log-odds scale,
calculated as the proportion of total variation attributed
to variation between surgeons. Level 1 residual variance
is 02 = w2 /3 using the latent variable formulation of

the logistic regression model.
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Figure 1. Simple causal graph for the Amaze trial assuming no confounding

Prepared using sagej.cls



Sharples, et al

23

Total Effect | |

NDE(average) | ]
NDE(0) e e :

NDE(1) bl

NIE(average) bt
NIEQ©Q) | t------ e

NIE(L) O

T T T T T T T
-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Difference in success probability

Figure 2. Total effect (TE), natural direct effects (NDE) and natural indirect effects (NIE) of
ablation on return to normal heart rhythm (with mediator at the level of control arm (0),
intervention arm (1) and the average)
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Figure 3. Estimated natural direct effect (left) and natural indirect effect(right), with 95%
confidence intervals, as a function of patient age (SR=Sinus Rhythm, vertical line at mean
age of trial sample 71.9 years)
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Figure 4. Contour plot of natural direct effect (average level of mediator) for the difference in
probability of a successful outcome in the Amaze trial for varying values for 3, the log odds
ratio of the confounder on probability of success, and Ao, the difference in mean confounder
between mediated and non-mediated patients, with A\, set to zero
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