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Abstract
This paper describes methodology for analyzing data from cluster randomized
trials with count outcomes, taking indirect effects as well spatial effects into
account. Indirect effects are modeled using a novel application of a measure of
depth within the intervention arm. Both direct and indirect effects can be esti-
mated accurately even when the proposed model is misspecified. We use spatial
regressionmodels with Gaussian random effects, where the individual outcomes
have distributions overdispersedwith respect to the Poisson, and the correspond-
ing direct and indirect effects have a marginal interpretation. To avoid spatial
confounding, we use orthogonal regression, in which random effects represent
spatial dependence using a homoscedastic and dimensionally reducedmodifica-
tion of the intrinsic conditional autoregression model. We illustrate the method-
ology using spatial data from a pair-matched cluster randomized trial against the
dengue mosquito vector Aedes aegypti, done in Trujillo, Venezuela.
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1 INTRODUCTION

A cluster randomized trial (CRT) is an experiment in
which groups, rather than individuals, are randomized
(Hayes and Moulton, 2009). The clusters are usually
defined geographically (eg, houses or communities) or
institutionally (eg, health facilities or schools). One reason
for randomizing by cluster is to achieve a mass or indirect
effect (Halloran and Struchiner, 2009), which we take to
mean an effect exerted by the intervention on individuals
who do not receive it. Another reason is to reduce contam-
ination, that is, some individuals in the control arm receiv-
ing an intervention intended for the other arm (Hayes
and Moulton, 2009): this is not addressed in the current
paper.
We identify indirect effects resulting from proximity

between clusters, whichwe call spillover indirect effects.We
use the term “spillover” to refer to between-cluster effects.

Others have used this term more generally, to include
within-cluster effects, such as those of the interventions on
nonparticipants (Benjamin-Chung et al., 2017). Moreover,
the terms interference, and indirect effects, have been used
as synonyms for spillover (VanderWeele et al., 2012; Perez-
Heydrich et al., 2014), that is, more generally than used
here. Vanderweele et al. (2013) consider spillover effects to
be components of indirect effects, which is more similar
to the terminology used here, although they use a causal
inference framework that is not explicitly spatial. CRTs
can be used to estimate certain indirect effects, for exam-
ple, vaccine herd protection (Longini et al., 1998), and this
is more accurate when the clusters are independent, that
is, in the absence of “spillover” as defined in the current
paper. At the same time, measurement of spillover effects,
in the current sense, is important for some classes of inter-
vention, and is a specific objective of some trials (Hawley
et al., 2003; McCall, 2011).

Biometrics. 2020;1–16. © 2020 The International Biometric Society 1wileyonlinelibrary.com/journal/biom

https://orcid.org/0000-0001-9718-5256
https://orcid.org/0000-0002-6707-7876
mailto:neal.alexander@lshtm.ac.uk
https://wileyonlinelibrary.com/journal/biom
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fbiom.13316&domain=pdf&date_stamp=2020-07-02


2 ANAYA-IZQUIERDO and ALEXANDER

We also discuss another type of spillover effect. Inde-
pendence of the clusters may be violated if they are not
sufficiently separated, analogous to agricultural interplot
interference (Besag and Kempton, 1986). Ideally, between-
cluster independence would be achieved by having suffi-
ciently distant clusters. For example, McCann et al. (2018)
propose a selectionmethod for candidate clusters thatmin-
imizes cross-cluster effects (they use the term contamina-
tion for such effects, a definition that is more general than
the one stated above). However, it is not always feasible to
guarantee that the clusters are independent for practical
purposes, yet frequently no allowance is made for this in
analysis (Jarvis et al., 2017).
We discuss two types of possible dependence: intraclus-

ter correlation (Hayes and Moulton, 2009) and depen-
dence between individual outcomes in different clusters.
We call this last type spillover dependence. This dependence
is assumed to exist prior to the intervention and may arise
from: (a) the spatial configuration of the individuals in the
trial, (b) contact patterns of infectious diseases and (c) indi-
viduals belonging to more than one cluster either sequen-
tially or simultaneously (Silcocks and Kendrick, 2010).
For two-arm CRTs with a count outcome, we propose

spatial regression methods to identify, and adjust for, both
types of spillover effect, while incorporating the cluster-
randomized design. Spillover indirect effects are addressed
via an individual-level covariate that measures the degree
of surroundedness of individuals in either arm to others
in the intervention arm. The estimates of the intervention
effects, and of the spillover indirect effects, have simple
interpretations in terms of marginal expectations and they
are well defined even when the proposed model does not
hold. Spillover dependence is addressed via spatially cor-
related random effects.

2 METHODOLOGY

2.1 The proposed individual-level model

When individual level count data are available, generalized
linear Poisson models with random effects are commonly
used to analyze CRTs, with one random effect per cluster
(Hayes and Moulton, 2009). Suppose there are 𝑞 clusters
and a total of 𝑛 individuals in the trial. The count out-
comes are denoted by 𝑌1, 𝑌2, … , 𝑌𝑛 and the correspond-
ing denominators by 𝐿1, … , 𝐿𝑛, while 𝒄𝑇 = (𝑐1, … , 𝑐𝑛) is the
vector of cluster random effects (𝒄𝑇 denotes the transpose
of 𝒄). In this paper, we assume that each outcome is asso-
ciated with a single geographical point location and that
such information is available. We use 𝒔𝑇 = (𝑠1, 𝑠2, … , 𝑠𝑛),
a vector of spatially correlated random effects, to model
geographical dependence. Conditionally on the random

effects, 𝑌1,… , 𝑌𝑛 are assumed independent with Poisson
distribution and conditional means given by

𝐸(𝑌𝑖 ∣ 𝒄, 𝒔) = 𝐿𝑖 exp{𝛼 + 𝛽 𝑡𝑖 + 𝜂 𝑑𝑖 𝑡𝑖+ 𝛾 𝑑𝑖 (1 − 𝑡𝑖) + 𝑐𝑖 + 𝑠𝑖}. (1)

The binary variable 𝑡𝑖 indicates whether individual 𝑖 is
in a control or intervention cluster (𝑡𝑖 = 0, 1, respectively).
The variable 𝑑𝑖 and its interaction with 𝑡𝑖 are introduced to
model spillover indirect effects (Section 2.3). The standard
regression model for CRTs with count outcomes (Clark
and Bachmann, 2010) corresponds to the case where
there are no spillover indirect effects (𝛾 = 𝜂 = 0) and
also no geographical dependence (𝜎2𝑠 = 0 so that 𝑠𝑖 ≡ 0),
namely

𝐸(𝑌𝑖 ∣ 𝒄) = 𝐿𝑖 exp (𝛼0 + 𝜏0 𝑡𝑖 + 𝑐𝑖), (2)

where the 0 subscripts are introduced to distinguish the
parameters from those in (1). We will call Equation (1)
the extended model. We use 𝑁𝑚(𝟎,𝑸) to denote the mul-
tivariate normal distribution of dimension 𝑚 with zero
mean vector and covariance matrix 𝑸, and 𝑰𝑚 denotes the
identity matrix of dimension 𝑚 ×𝑚. We assume the clus-
ter random effects vector 𝒄 has the form 𝒁𝑐 𝒂, where 𝒂 ∼𝑁𝑞(𝟎, 𝜎2𝑐 𝑰𝑞) and the cluster design matrix 𝒁𝑐 contains 𝑞
cluster-level covariates, where the 𝑙th covariate is a vec-
tor with 1s in entries corresponding to individuals in clus-
ter 𝑙, and 0s elsewhere. To model the geographical depen-
dence, we restrict the spatial random effects to have linear
form, namely 𝒔 = 𝒁𝑠 𝒃, where 𝒁𝑠 is a known matrix with𝑘 columns that takes into account the spatial structure
and 𝒃 ∼ 𝑁𝑘(𝟎, 𝜎2𝑠 𝑰𝑘). The linear form assumption, and the
choice of 𝑘 (the number of columns of𝒁𝑠), are discussed in
Sections 2.4.3 and 2.4.4.
Let 𝑿 denote the fixed effects design matrix of the

extended model (1). Then the linear predictor can be
written in vector form as 𝑿𝜽 + 𝒁𝑐 𝒂 + 𝒁𝑠 𝒃, where 𝜽 =(𝛼, 𝛽, 𝜂, 𝛾)𝑇 . We restrict the spatial design matrix 𝒁𝑠 to sat-
isfy the condition 𝑿𝑇𝒁𝑠 = 𝟎 so its columns are orthogonal
to those of𝑿. The orthogonality between fixed and random
effects designmatrices is required to avoid so-called spatial
confounding that is discussed in Section 2.4.1.

2.1.1 Marginal interpretation

By integrating out all the random effects, the extended
model (1) can also be thought of as a marginal probability
model, known as the multivariate Poisson-lognormal dis-
tribution (Aitchison andHo, 1989). There is no closed-form
expression for the density but the marginal means can be
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expressed as

𝐸(𝑌𝑖) = 𝐿𝑖 exp {𝛼 + 𝛽 𝑡𝑖 + 𝜂 𝑑𝑖 𝑡𝑖 + 𝛾 𝑑𝑖 (1 − 𝑡𝑖) + 𝑉𝑖2 },
(3)

where we define 𝑉𝑖 ∶= Var(𝑐𝑖 + 𝑠𝑖) = 𝜎2𝑐 + 𝜎2𝑠 𝒛𝑇𝑖 𝒛𝑖 and 𝒛𝑖
is the 𝑖th row of 𝒁𝑠. The standard model can also be seen
as a marginal model but where 𝑉𝑖 = Var(𝑐𝑖) = 𝜎2𝑐 does not
depend on 𝑖. The marginal variance of the extended model
is Var(𝑌𝑖) = 𝐸(𝑌𝑖)[1 + 𝐸(𝑌𝑖){exp (𝑉𝑖) − 1}] which shows
that the marginal distribution of 𝑌𝑖 is overdispersed with
respect to the Poisson.

2.2 Intervention effects

In this section, we identify different ways to quantify the
effect of the intervention in the population. Their use will
depend on the aims of the particular cluster randomized
trial.We emphasize that all the intervention effects defined
in the following sections (eg, 2.2.1, 2.2.2, and 2.3) aremean-
ingful irrespective of any underlying assumed model. This
is because they are defined in terms of marginal expecta-
tions of the outcome variable 𝑌𝑖 . In particular, these inter-
vention effects are meaningful even when the extended
model does not hold.

2.2.1 Pairwise intervention effect

We define the individual-level pairwise intervention effect
as

Pint𝑖𝑗 ∶= log {𝐸 (𝑌𝑖∕𝐿𝑖) ∕𝐸 (𝑌𝑗∕𝐿𝑗)} , (4)

where 𝑖 and 𝑗 correspond to individuals in the intervention
and control arm, respectively. In particular, for the stan-
dardmodel (2)wehave thatPint𝑖𝑗 = 𝜏0 for all 𝑖, 𝑗. However,
for the extended model, Pint𝑖𝑗 = 𝛽 + 𝜂 𝑑𝑖 − 𝛾 𝑑𝑗 + (𝑉𝑖 −𝑉𝑗)∕2, which varies over (𝑖, 𝑗). Specifically, there is depen-
dence on (𝑑𝑖, 𝑑𝑗) as well as on (𝑉𝑖, 𝑉𝑗).
2.2.2 Total intervention effect

Let 𝐶1 and 𝐶0 be the set of indices of individuals in
the intervention and control arms, respectively, and let𝐿+𝑚 = ∑𝑖∈𝐶𝑚 𝐿𝑖 for 𝑚 = 0, 1. The total intervention effect is
defined as

Tint ∶= log ⎧⎨⎩
∑𝑖∈𝐶1 𝐸(𝑌𝑖)∕𝐿+1∑𝑗∈𝐶0 𝐸(𝑌𝑗)∕𝐿+0

⎫⎬⎭ , (5)

that is, the logarithm of the ratio between the expected raw
rates in the intervention and control arm. There are alter-
native choices for a total intervention effect (see Chapter
10 of Hayes and Moulton, 2009 and the discussion section
in this paper) and we do not evaluate them in this paper.
For the extendedmodel (1) the total intervention effectTint
can be written as

𝛽 + 𝜅(𝜂, 𝛾, 𝜎2𝑠 ), (6)

which from now on we denote by 𝜏, and where
𝜅(𝜂, 𝛾, 𝜎2𝑠 ) = log ⎡⎢⎣

∑𝑖∈𝐶1 𝐿𝑖 exp{𝜂 𝑑𝑖 + (𝜎2𝑠 ∕2) 𝒛𝑇𝑖 𝒛𝑖}/𝐿+1∑𝑗∈𝐶0 𝐿𝑗 exp{𝛾 𝑑𝑗 + (𝜎2𝑠 ∕2) 𝒛𝑇𝑗 𝒛𝑗}/𝐿+0 ⎤⎥⎦,
(7)

which does not depend on 𝜎2𝑐 as it cancels in (7). Based
on its factorization in Equation (6), we can interpret 𝜏 as
the sum of two terms: 𝛽, the direct contribution of each
intervention and individual; and 𝜅, the contribution of all
the indirect effects. In Section 2.3.4, we show that 𝛽 and 𝜅
keep the same interpretations outside the extendedmodel.
Under the standard model 𝜅(𝜂, 𝛾, 𝜎2𝑠 ) ≡ 0 and therefore
Tint = 𝜏0 is the total intervention effect. This highlights the
fact that, perhaps contrary to intuition, the parameter 𝛽,
when the extended model holds, has a different interpre-
tation to that of 𝜏0 when the standard model holds, both
being the multipliers of the intervention variable 𝑡𝑖 in each
case. As opposed to the pairwise intervention effect Pint𝑖𝑗
that in general depends of the chosen pair (𝑖, 𝑗), we empha-
size the statistical inference regarding the total interven-
tion effect Tint, which is a single quantity and is mean-
ingful even under misspecification of either the standard
or extended model. Estimates of Tint under the standard
model are simply estimates of 𝜏0 while, under the extended
model, they are estimates of 𝜏, constructed using expres-
sions (6) and (7). We describe our estimation procedures
in Section 3.

2.2.3 The constant variance property

A special case of the total and pairwise intervention effects
in the extended model arises when the variances Var(𝑠𝑖) =𝜎2𝑠 𝒛𝑇𝑖 𝒛𝑖 do not depend on 𝑖. In this situation, both the total
intervention effect parameter 𝜏 and all the pairwise inter-
vention effects depend only on fixed effects 𝛽, 𝜂, and 𝛾 and
not on any variance component 𝜎2𝑐 or 𝜎2𝑠 . This motivates
the following definition:
Definition: The constant variance (CV) property A

model of the form (1) has the constant variance property
when the spatial variance Var(𝑠𝑖) does not depend on 𝑖.
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A sufficient condition for this property is that the rows
of the spatial design matrix 𝒁𝑠 have unit norm, that is,𝒛𝑇𝑖 𝒛𝑖 = 1 for all 𝑖. Henceforth, we further restrict our pro-
posed extendedmodel (1) so that the rows of spatial design
matrix 𝒁𝑠 have unit norm and therefore the parameter 𝜅 in
(7) only depends on 𝜂 and 𝛾 and simplifies to

𝜅(𝜂, 𝛾) = log ⎧⎨⎩
∑𝑖∈𝐶1 𝐿𝑖 exp(𝜂 𝑑𝑖)∕𝐿+1∑𝑗∈𝐶0 𝐿𝑗 exp(𝛾 𝑑𝑗)∕𝐿+0

⎫⎬⎭ , (8)

In Section 2.4.2, we describe an algorithm to make the
unit norm restriction on the rows of 𝒁𝑠 consistent with the
orthogonality condition on its columns.

2.3 Spillover indirect effects

CRTs usually include a small number of clusters (perhaps
around 20 or 30) and the allocation may be geographically
imbalanced in the sense of special spatial configurations.
Moreover, some trials have clusters that abut each other,
for example, divided by only a narrow street. We are inter-
ested in quantifying the indirect effect that such configura-
tions may exert on trial outcomes. Here the question arises
of whether intervention locations exert any indirect effect
only on control locations, or also on fellow intervention
locations. For generality, we allow the effects of interven-
tion locations to differ according to the arm of the nearby
locations, and hence define:
Contralateral spillover indirect effect: An interven-

tion effect exerted on individuals in the control arm via
nearby individuals in the intervention arm;
Ipsilateral spillover indirect effect: An intervention

effect exerted on individuals in the intervention arm, accen-
tuated via nearby individuals that are also in the interven-
tion arm.
To represent these types of indirect effects in the

extended model (1), we need a measure 𝑑𝑖 of the degree
of closeness or surroundedness that each individual spa-
tial location has, with respect to intervention individuals.
Two such measures are described next.

2.3.1 Measures of surroundedness

As a measure of surroundedness, we could use the linear
distance from an individual (in either arm) to the closest
of those in the intervention arm. However, this does not
capture a possible mass effect exerted by, for example,
multiple individuals in the intervention arm surrounding
one in the control arm. Hence we propose that any sur-
roundedness variable 𝑑𝑖 should be defined as the number

of intervention individuals who, in some sense, are around
the individual 𝑖.
For example, we can use the number of individuals

within a specified radius who are in the intervention arm
(henceforth the disc measure). We also propose depth
(Tukey, 1975) as a measure that does not require a radius
to be specified. In general, depth measures the spatial cen-
trality of one point relative to a given set of others. To
our knowledge, statistical depth has only been used as a
measure of multivariate location, so its use in the context
of spatial indirect effects is novel. Here we will assume
only two dimensions are relevant and work in the plane,
using Tukey’s half space depth: rotating a doubly infinite
line through a spatial location of interest, and monitoring
the number of spatial locations on each side of it, Tukey’s half
space depth of the index location is the smallest count occur-
ring on either side as the line is rotated through 180◦. This
can be computed using the algorithm of Rousseauw and
Ruts (1996). For an individual in the control arm, depth is
computedwith respect to the set of all intervention individ-
uals. For an individual in the intervention arm, the depth
is computed with respect to the set of intervention individ-
uals excluding itself. Either of these proposed measures of
surroundedness is included in the model as a fixed effect.
We elaborate further on these measures in the context of
specific geographical configurations used in the simula-
tions in Section 4.

2.3.2 Pairwise spillover indirect effects

The pairwise spillover indirect effect is exerted by sur-
rounding individuals, acting on the expected individual
marginal rates of the outcomes. Although such an effect
may be exerted across arms (contralateral), the gradient
is defined with reference to individuals in the same arm.
So, letting 𝑖 and 𝑗 be such individuals (𝑡𝑖 = 𝑡𝑗) for which𝑑𝑖 − 𝑑𝑗 = 1, then the pairwise spillover indirect effect is
defined as

Sind𝑖𝑗 ∶= log {𝐸 (𝑌𝑖∕𝐿𝑖) ∕𝐸 (𝑌𝑗∕𝐿𝑗)} . (9)

For clarity, we define Sind0𝑖𝑗 as the pairwise spillover indi-
rect effect for pairs of individuals in the control arm
and Sind1𝑖𝑗 as the pairwise spillover indirect effect for
pairs of individuals in the intervention arm. Under the
extended model, and assuming the CV property, we can
write Sind0𝑖𝑗 = 𝛾 and Sind1𝑖𝑗 = 𝜂 so they do not depend
on the particular pair of individuals selected, but only on
whether the individuals are both in the control or both
in the intervention arm. For each extra surrounding indi-
vidual in the intervention arm, individual 𝑖’s expected rate
changes by a factor of exp(𝛾) if 𝑖 is in the control arm, and
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by exp(𝜂) if in the intervention arm. In this way, 𝛾 then rep-
resents the pairwise contralateral spillover indirect effect,
and 𝜂 the pairwise ipsilateral spillover indirect effect.
2.3.3 Total spillover indirect effects

Let 𝑛1 and 𝑛0 be the number of individuals in the interven-
tion and control arms, respectively. To define a total con-
tralateral indirect effect, we first note that we can assume
that the values of the surroundedness variable for individ-
uals in the control arm satisfy 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛0 . This is
always possible via relabeling of the indices in𝐶0. The total
contralateral indirect effect (due to the surroundedness 𝑑)
can then be defined as

Tind0 ∶ = 2𝑛0(𝑛0 − 1) ∑
{(𝑖,𝑗)∈𝐶0 ∶ 𝑗<𝑖} log {𝐸(𝑌𝑖∕𝐿𝑖)∕𝐸(𝑌𝑗∕𝐿𝑗)}= Sind0, (10)

that is, the average of all pairwise contralateral indirect
effects. The ordering restriction on the surroundedness
variable is imposed to be able to interpret this effect as the
average effect that increasing the surroundedness variable
has on individual rates. The total ipsilateral indirect effect
Tind1 can be defined in a similar fashion. In the extended
model, the total contralateral and ipisilateral indirect equal𝛾 Δ̄0 and 𝜂 Δ̄1, respectively, where

Δ̄0 = 2𝑛0(𝑛0 − 1) ∑
{(𝑖,𝑗)∈𝐶0 ∶ 𝑗<𝑖}(𝑑𝑖 − 𝑑𝑗),

Δ̄1 = 2𝑛1(𝑛1 − 1) ∑
{(𝑖,𝑗)∈𝐶1 ∶ 𝑗<𝑖}(𝑑𝑖 − 𝑑𝑗), (11)

so they are simple multiples of 𝛾 and 𝜂, respectively, with
corresponding factors equal to the average pairwise dif-
ference of the surroundedness variable in the control and
intervention arm, respectively. In this way, we can inter-
pret total contralateral and ipsilateral effects geometrically
where, for example, the effect of 10 extra surrounding
intervention individuals reduce the individual expected
response by a factor of exp(10𝛾) for individuals in the con-
trol arm.

2.3.4 Total residual indirect effect

In this section, we give interpretations to the parameters 𝛽,𝜅, and 𝛼 in the extendedmodel (1) that are valid evenwhen
this model does not hold. Any proposed measure of sur-
roundedness will be a discrete variable that allows individ-
uals to be defined as isolated (from the intervention arm) if

𝑑𝑖 = 0. Let 𝐼1 and 𝐼0 denote the set of indices corresponding
to isolated individuals in the intervention and control arm,
respectively.We nowdefine the total intervention effect for
isolated individuals:

Tiso ∶= log ⎧⎨⎩
∑𝑖∈𝐼1 𝐸(𝑌𝑖)∕𝐼+1∑𝑗∈𝐼0 𝐸(𝑌𝑗)∕𝐼+0

⎫⎬⎭ , (12)

where 𝐼+𝑚 = ∑𝑖∈𝐼𝑚 𝐿𝑖 for𝑚 = 0, 1, that is, the logarithm of
the ratio between the expected rate of isolated individuals
in the intervention arm and the expected rate of isolated
individuals in the control arm. In the extended model,
the total intervention effect for isolated individuals equals𝛽. We can now give an interpretation to the parameter 𝜅
defined in (8) that is well defined outside the extended
model.We define the total residual indirect effectTred sim-
ply as the difference between the total intervention effect
Tint and the total intervention effect for isolated individu-
als Tiso, that is

Tred ∶= Tint − Tiso

= log⎡⎢⎢⎣
⎧⎨⎩
∑𝑖∈𝐶1 𝐸(𝑌𝑖)∕𝐿+1∑𝑗∈𝐶0 𝐸(𝑌𝑗)∕𝐿+0

⎫⎬⎭
/⎧⎨⎩

∑𝑖∈𝐼1 𝐸(𝑌𝑖)∕𝐼+1∑𝑗∈𝐼0 𝐸(𝑌𝑗)∕𝐼+0
⎫⎬⎭
⎤⎥⎥⎦ .
(13)

Evidently, in the extendedmodel, the total residual indi-
rect effect Tred is simply given by 𝜅, since 𝜅 = 𝜏 − 𝛽.
Expression (13) reveals the intuitive fact that the difference
between a total effect (Tint) and a pure effect (Tiso) is a
measure of indirect effect. In practice, however, it is possi-
ble that there are no isolated individuals in either the inter-
vention or the control arm, that is, either 𝐼1 = ∅ or 𝐼0 = ∅.
In that case, as there is no information in the data to esti-
mate these effects without an assumed model, we say that
the Tiso and the Tred are not estimable. Finally, we define
the total average expected count for control isolated indi-
viduals as

𝑇𝐶0 = ∑
𝑖∈𝐼0 𝐸(𝑌𝑖)∕𝐼+0 . (14)

This quantity is equal to exp(𝛼) in the extendedmodel, andexp(𝛼0) in the standard model.
2.4 Spatial modeling

The main reason to incorporate spatial dependence in our
extended model is that the randomization units (clusters)
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of many trials are defined geographically. In the CRT set-
ting, the main interest is in the estimation of direct and
indirect effects of the intervention, with spatial depen-
dence being of interest insofar as it affects such estima-
tion. Technically, the spatial randomeffects vector 𝒔 is used
to implement a smoother, with the shrinkage estimates of
the fixed effects (𝛼, 𝛽, 𝜂, 𝛾) being interpreted accordingly
(see Hodges, 2013, Chapter 10). For this reason, we focus
the specification of the spatial dependence within the con-
strained setting that we have adopted. In this setting, 𝒔 =𝒁𝑠𝒃 and𝒁𝑠 is amatrix to be specified that should satisfy the
CV property and should be orthogonal to the fixed effect
design matrix 𝑿 in order to avoid the so-called spatial con-
founding that is described next.

2.4.1 Spatial confounding

Adding spatially correlated random effects such as 𝒔 in
the extended model (1) can induce bias in the estimations,
and artificially inflate the variances, of the fixed effects
of interest (𝛼, 𝛽, 𝜂, and 𝛾) (Reich et al., 2006; Hodges and
Reich, 2010) directly or through the estimation of any of
the total effects defined in Sections 2.2.2 and 2.3.3. One rea-
sonable procedure is to retain only random effects that are
orthogonal to the fixed effects matrix 𝑿. Specifically, let𝑹𝑇 = (𝑌1∕𝐿1, … , 𝑌𝑛∕𝐿𝑛) be the random vector of individ-
ual rates, then the extendedmodel (1) can bewritten in vec-
tor form as log{𝐸(𝑹|𝒂, 𝒃)} = 𝑿𝜽 + 𝒁𝑐 𝒂 + 𝑯 𝒃, where the𝑛 × 4 design matrix 𝑿 is assumed to have rank 4, and𝑯 is
a proposed spatial design 𝑛 × 𝑘 matrix, which we assume
has rank 𝑘 < 𝑛 − 4. Spatial confounding happens when
the spatial random effects variance 𝜎2𝑠 is large with respect
to the residual variation of the model (Hodges and Reich,
2010) and, at the same time, the eigenvectors of𝑯𝑯𝑇 (the
covariancematrix of𝑯𝒃) associatedwith the largest eigen-
values, are strongly correlated with 𝑿.
Following Hughes and Haran, 2013, there exist orthog-

onal matrices 𝑲 and 𝑳 of dimension 𝑛 × 4 and 𝑛 × (𝑛 −4), respectively, such that 𝑰𝑛 = 𝑲𝑲𝑇 + 𝑳𝑳𝑇 . Then we can
write 𝑿𝜽 + 𝒁𝑐 𝒂 + 𝑯 𝒃 = 𝑿𝜽 + 𝑲𝒃1 + 𝒁𝑐 𝒂 + 𝑳𝒃2, where𝒃1 = 𝑲𝑇𝑯𝒃 and 𝒃2 = 𝑳𝑇𝑯𝒃. The spatial confounding
comes from the fact that 𝑲 and 𝑿 span the same column
space. We follow the procedure of Reich et al. (2006) who
suggests deleting the random effect term 𝑲 𝒃1 altogether
from the model in order to avoid spatial confounding.
The surviving term is 𝑳𝒃2 = 𝑳𝑳𝑇𝑯𝒃 ∼ 𝑁𝑛(𝟎, 𝚺𝑠), where
the covariancematrix𝚺𝑠 = 𝑳𝑳𝑇𝑯𝑯𝑇𝑳𝑳𝑇 is rank deficient,
with rank equal tomin(𝑘, 𝑛 − 4) = 𝑘.We let𝒁𝑠 be the𝑛 × 𝑘
matrix, with the eigenvectors of𝚺𝑠 associatedwith nonzero
eigenvalues, and normalized so that each eigenvector has
norm equal to its corresponding eigenvalue. This implies
that the constructed𝒁𝑠 has the same dimensions as the ini-

tial 𝑯, and 𝑳𝒃2 has the same distribution as 𝒁𝑠𝒃, where𝒃 ∼ 𝑁𝑘(𝟎, 𝜎2𝑠 𝑰𝑘). It is easy to show that we can take the
eigenvectors of 𝚺𝑠 to be orthogonal to 𝑿, implying that
the constructed 𝒁𝑠 satisfies the orthogonality condition𝒁𝑇𝒔 𝑿 = 𝟎.
We note that the presence of an intercept term in the

extended model means that the spatial random effect vec-
tor 𝒔 = 𝒁𝑠𝒃, constructed above, satisfies the sum-to-zero
condition:

∑𝑛𝑖=1 𝑠𝑖 = 𝒔𝑇𝟏𝑛 = 𝒃𝑇𝒁𝑇𝑠 𝟏 = 0. The orthogonal-
ization implicitly assumes that most of the variability in
the outcomes is due to the covariates and not the random
effects, so that the latter merely introduce spatial correla-
tion between the outcomes.We should therefore expect the
point estimates of the fixed effects under the orthogonal-
ized model to be similar to those under the simpler model
with no random effects at all (Reich et al., 2006).

2.4.2 Construction of orthogonalized
models with the CV property

There is a compromise between the column orthogonal-
ity condition on 𝒁𝑠 and the unit-norm condition on its
rows (the CV property, Section 2.2.3). We provide a sim-
ple algorithm to transform an arbitrary 𝑛 × 𝑘 matrix 𝑯
into a matrix 𝒁𝑠 of the same dimensions that satisfies
both conditions and which is close to the original 𝑯.
First, a spatial random effects vector of the form 𝒔 = 𝑯0 𝒃
has the CV property if the rows of 𝑯0 are of unit length
so that the diagonal of the covariance matrix Var(𝒔) =𝜎2𝑠 𝑯0𝑯𝑇0 has all entries equal to 1. Transforming 𝑯0 to𝑯1 = {diag(𝑯0𝑯𝑇0 )}−1∕2𝑯0 ensures that the resulting vec-
tor 𝒔 = 𝑯1𝒃 has the CV property. Now, for the orthogo-
nalization, we proceed as in Section 2.4.1 by construct-
ing 𝑯2 with the normalized eigenvectors of the matrix𝑳𝑳𝑇𝑯1𝑯𝑇1 𝑳𝑳𝑇 . The algorithm consists in repeating, in
turn, the transformations to theCVproperty and to orthog-
onality, and stops when the maximum absolute angle dif-
ference (to 90◦) is within a predefined small tolerance.
This is an iterative projection algorithm (Bauschke and
Borwein, 1996) that targets the intersection between two
sets so that if the two sets have nonzero intersection,
the iteration converges linearly with the total number of
individuals 𝑛.
2.4.3 Choice of the spatial design matrix

There are random effect spatial models available that
already have the required linear structure 𝒔 = 𝑯𝒃, such
as the one proposed by Silcocks and Kendrick (2010) that
addresses the situation of membership of multiple clus-
ters. However, here we are largely motivated by trials that
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randomize geographically (eg, houses based on their loca-
tion) in which single cluster membership can be assumed.
Other powerful and widely available spatial modeling
strategies such as geostatistical modeling (Diggle and
Ribeiro, 2007) for georeferenced data and intrinsic con-
ditional autoregressive (ICAR) models for aereal data,
need to be adjusted to satisfy our random effects specific
structure.
ICAR models (Reich et al., 2006) use only the spa-

tial neighborhood information in an 𝑛 × 𝑛 adjacency
matrix 𝑨. If the corresponding set of neighbors forms one
connected component, then we can write 𝒔 = 1√𝑛𝟏𝑛 𝑣 +𝑯icar𝒘, where 𝒘 ∼ 𝑁𝑛−1(𝟎, 𝜎2𝑠 𝑰𝑛−1) and 𝑣 = ∑𝑛𝑖=1 𝑠𝑖 has
a flat improper distribution. The matrix𝑯icar is of dimen-
sion 𝑛 × (𝑛 − 1) and its columns are the eigenvectors of𝑸 = diag(𝑨𝟏𝑛) − 𝑨 that are associated with positive eigen-
values and also normalized so that their length equals the
reciprocal of its corresponding eigenvalue. All the columns
in𝑯icar are orthogonal to 𝟏𝑛, so imposing the sum-to-zero
constraint

∑𝑛𝑖=1 𝑠𝑖 = 0 yields the proper model with linear
form 𝒔 = 𝑯icar𝒘. This is equivalent to removing the spa-
tial confounding with respect to only the intercept fixed
effect 𝛼.
Under the sum-to-zero constraint, it is easy to show that

the variances of 𝒔 = 𝑯icar𝒘 are not constant as a function
of 𝑖 so that the ICAR specification above does not have
the CV property. After enforcing this property using the
algorithm in Section 2.4.2, the resulting random effect is
no longer ICAR. Geostatistical models, conversely, natu-
rally satisfy the CV property and can be written in the form𝒔 = 𝑯geo 𝒃 (Lindgren et al., 2011), but the orthogonality
condition needs to be enforced. Furthermore, the covari-
ance matrix in geostatistical models depends on 𝜎2𝑠 as well
as a scale and a smoothness parameters so, unless those
extra parameters are known, the algorithm in Section 2.4.2
cannot be used and further modification is needed (see
Hodges and Reich, 2010, for a related discussion).

2.4.4 Dimension reduction
in the spatial model

Wenowdiscuss the choice of the number of columns of the
spatial designmatrix. The number of columns in a selected𝑯 can be substantially reduced by discarding columns
in the span of 𝑯 that give rise to negative dependence
when there is no interest in modeling this (Hughes and
Haran, 2013), as is the case in many CRT applications. The
choice is guided by the spectrum of the modified Moran’s
operator 𝑷⟂𝑨𝑷⟂ (Hughes and Haran, 2013), where 𝑨 is
the adjacency matrix of the neighborhood structure and𝑷⟂ is the projector matrix onto the space orthogonal to

the column span of 𝑿. Moran’s operator 𝑷⟂𝑨𝑷⟂ appears
in the numerator of a generalized form of Moran’s 𝐼
statistic : 𝐼𝑨(𝒔) ∝ (𝒔𝑇𝑷⟂𝑨𝑷⟂𝒔)∕(𝒔𝑇𝑷⟂𝒔) . The standardized
spectrumofMoran’s operator comprises all possible values
of 𝐼𝑨(𝒔), and the eigenvectors comprise all possible mutu-
ally distinct patterns of spatial dependence. Positive (nega-
tive) eigenvalues correspond to varying degrees of positive
(negative) spatial dependence. If positive spatial correla-
tion is of interest, then we can further restrict the spatial
design matrix 𝒁𝑠 to have the additional property that the
diagonal elements of 𝒁𝑇𝑠 (𝑷⟂𝑨𝑷⟂)𝒁𝑠 are all positive. This
can lead to a substantial reduction on the original num-
ber of columns (Hughes and Haran, 2013). In this way,
an initial matrix 𝑯 can be transformed to a matrix with
the desired three properties, using a modified version of
the algorithm in Section 2.4.2 where the orthogonaliza-
tion steps are followed by column selection where only
columns that give rise to positive spatial dependence are
selected. This last step preserves orthogonality.
In summary, we propose that, in the absence of a spe-

cific spatial design, one should start with𝑯ICAR and trans-
form it, using the iterative procedure described above, into
a column-reduced matrix that satisfies both the CV and
orthogonality properties. As shown by Hughes and Haran
(2013), the resulting models are attractive for spatial mod-
eling, for example, in retaining only positive spatial associ-
ations and also with smooth patterns of spatial variation at
various scales. As we assume point spatial data are avail-
able for each individual, we define the neigborhood struc-
ture from the corresponding Voronoi tessellation (Bivand
et al., 2008). This partitions the continuous plane into a
set of regions called tiles where each tile is a convex poly-
gon, defined as the subset of the plane for which the given
location is closer than any other. We propose to use queen
type neighbors instead of rook type (Bivand et al., 2008) as
the former are more consistent with our definition of sur-
roundedness.

3 STATISTICAL INFERENCE

To fit the extended model (1) to a given dataset, we use
Bayesian inference for generalized linear mixed models as
described in Fong et al. (2010) and, more specifically, inte-
grated nested Laplace approximations (INLA; Rue et al.,
2009), which is an efficient alternative to MCMC in our
our situation of only two hyperparameters (𝜎2𝑐 and 𝜎2𝑠 ).
For the fixed effects, we assign a flat improper prior for
the intercept 𝛼 and independent 𝑁1(0, 0.001) priors for𝛽, 𝜂, and 𝛾. For the random effect standard deviations𝜎𝑐 and 𝜎𝑠, we use independent exponential priors. These
areweakly informative priors (called penalized complexity
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priors, Simpson et al., 2017) that favor the standard model
in order to avoid fitting artificial spatial and cluster depen-
dence. This is in contrast to commonly used Gamma pri-
ors for the precisions (1∕𝜎2𝑐 and 1∕𝜎2𝑠 ) that do not allow
very small values of the standard deviations and therefore
can cause overfitting. Following Simpson et al. (2017), the
penalty is given by themagnitude of themarginal standard
deviation of the random effect, that is, after integrating out
the prior.
INLA naturally produces marginal posterior densities

for the fixed effects, which, in turn, implies marginal pos-
teriors for the total contralateral and ipsilateral indirect
effects that depend only on 𝛾 and 𝜂, respectively. To com-
pute marginal posteriors of the total intervention effect 𝜏
and the total residual indirect effect 𝜅, which are nonlinear
functions of 𝛽, 𝜂, and 𝛾, we use the Monte Carlo sampling
procedure implemented in the INLA package in R (The
R-INLA Project, 2019). This generates independent sam-
ples from the joint posterior of the fixed effects (based on a
Gaussian approximation) so that we can apply Equations
(6) and (8) to obtain samples from the marginal posteriors
of 𝜏 and 𝜅. The approximation is particularly good in our
case as neither 𝜏 nor 𝜅 depends functionally on the hyper-
parameters 𝜎2𝑐 or 𝜎2𝑠 .
4 SIMULATION STUDY

We performed a simulation study in order to evaluate the
operating characteristics of our method. We performed six
sets of simulations: one for each measure of surround-
edness described in Section 2.3.1 (disc and depth, each
included as a fixed effect) and one for each of three spa-
tial configurations. In line with similar simulation stud-
ies (Paciorek, 2010; Hughes and Haran, 2013), we assume
the spatial configuration of the trial is a unit square grid
in which each square represents an individual and groups
of squares represent clusters. Moreover, we use square
clusters so that the neighborhood structure is obvious. In
order to prevent artifactual behavior of the depth being
induced by the regular grid layout of the square centroids
(Rousseauw and Ruts, 1996), we perturbed the individual
centroids slightly.
We use a completely balanced design with 18 clusters

in each arm and with nine individuals per cluster giving
a total of 324 individuals. The three cluster configurations
shown in Figure 1 were chosen to illustrate different pat-
terns of surroundedness, rather than being “typical” spa-
tial randomizations (although, as discussed in Section 6,
this notion is not trivial to define).
With the aim of assessing the robustness of the pro-

posed method, the generating model was not the extended
model. However, an intervention effect and indirect effects

were present (details are in the Supporting Information
section). Within each set, two models were fit: the full
extended model (1), and the standard model (2). The lat-
ter was introduced to measure the influence of ignoring
spillover indirect effects when they are present in the data.
In this situation, as discussed in Section 2.2.2, estimates of
the parameter 𝜏0 in the standard model are actually esti-
mating the total intervention effect Tint. Results for the
discmeasure of surroundedness are shown in Figure 2. For
the three configurations, in terms of the posterior median,
themethodwas able to correctly estimate the target param-
eters (thick vertical line): the total intervention effect Tint
(when using the standard or extendedmodel) and the total
contralateral and ipisilateral indirect effects (Tind0 and
Tind1, respectively). However, for the Ring configuration,
there seem to be a small bias in estimating Tint for the
extended model that is corrected by using depth instead
of the disc measure of surroundedness (corresponding his-
tograms are in the Supporting Information section). This
reflects the clear differences in values for both measures
of surroundedness as shown in Figure 1. The only small
bias that remains, when using both measures of surround-
edness, is when estimating the total contralateral indi-
rect effect Tind0. Other differences not shown by the his-
tograms are structural and are related to estimating other
parameters such as the total residual indirect effect (Tred)
and the total intervention effect for isolated individuals
(Tiso). When using the disc measure, there were no iso-
lated individuals in the intervention arm in the three con-
figurations considered. As described in Section 2.3.4, this
means that Tred and Tiso are not estimable and there-
fore the corresponding estimates of the parameters 𝜅 and𝛽 are still well defined but are estimating a different pop-
ulation parameter. This was not the case for the depth,
as some individuals are defined as isolated under this
measure.
In further simulations, we allowed the cluster sizes to

vary, in terms of both numbers of individuals and spatial
area. The conclusions remained the same, with no indica-
tion that this variation induced bias in the results.

5 APPLICATION: TRUJILLO TRIAL

In this section, we apply the above methods to a CRT of
interventions against Aedesmosquitoes, which are vectors
of dengue and Zika viruses. In Trujillo, Venezuela, Kroeger
et al. (2006) randomized pairs of clusters of households to
a package of window curtains and water container covers
treated with insecticide, or to control (no intervention). A
total of 18 clusters were defined geographically and pair-
matched in a semi-quantitative manner, based primarily
on baseline indices of infestation of water containers by



ANAYA-IZQUIERDO and ALEXANDER 9

F IGURE 1 Three configurations used in the simulation study (leftmost column of three panels), and the depth and disc measures of
surroundedness (middle and right columns, respectively). In the left column, the first configuration (top), which we call Ring, the control
clusters (white) are almost completely surrounded by the intervention ones (gray). In the second configuration (middle), called Crater, control
clusters are again contiguous, but tending to lie on one side of the space, with the interventions clusters on the other. In the third configuration
(bottom), called Chessboard, control and intervention clusters alternate regularly over the study region. The middle column shows values of the
depth measure of surroundedness. Darker values show higher values. The right column shows values of the disc measure, that is, number of
individuals in the intervention arm who lie within a radius of each individual. Here the radius is set at 0.12, the study area having unit side.
Again, darker values show higher values

mosquito larvae and pupae, but also on residential condi-
tions such as the size and density of houses. The pairing,
together with the randomizationwithin each pair, agglom-
erated the clusters into two contiguous regions per arm,
with one control region being interdigitatedwith one inter-
vention region. Point geo-reference information was avail-
able for each house site (latitude and longitude) and this
was used to construct the corresponding Voronoi tessela-
tion (Figure 3).
The primary outcome was the number of containers

per house that were positive for immature stages of the
mosquito. The house in this trial corresponds to the more
general term “individual” as used in the current paper.
When this outcome is aggregated, for example, to the clus-

ter level, and expressed per 100 houses, this is called the
Breteau index. The flight range of Aedes mosquitoes is in
the hundreds of meters (Honório et al., 2003), which is
the same order of magnitude as the size of the area of the
current trial. Daily human movements within urban areas
are likely to be larger, and relevant for dengue transmis-
sion (Stoddard et al., 2013). Hence people may be infected
outside the study area, but such outcomes were not end-
points for the current trial. The final entomological survey
was done 12 months after the interventions were imple-
mented. The original report analyzed the cluster-level
changes in Breteau index from baseline to the final survey,
and found no significant difference between control and
intervention arms (Kroeger et al., 2006).
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F IGURE 2 Simulation results. Histograms of posterior medians from 1000 independent replicates. Top, middle, and bottom rows corre-
spond to Ring, Crater, and Chessboard configurations (see Figure 1), respectively, and all for disc measure of surroundedness (𝑟 = 0.12). Thick
vertical lines indicate population (target) parameters values

In a post hoc analysis, the original report found some
evidence of a contralateral spillover indirect effect, in
that initially positive houses (ie, with immature mosquito
stages) in the control arm within 50 m of the nearest inter-
vention house were 3.5 times as likely to be free of vectors
thanmore distant initially positive control houses 1 month
after the intervention, although this difference was not sta-
tistically significant (Kroeger et al., 2006).
The current re-analysis again uses the final survey

data that included data from 702 house sites. Another

independent random effect was included in the extended
model (1) to account for the cluster pairing. For prior
sensitivity, we tried three different priors for the standard
deviation of the spatial random effects 𝜎𝑠. The priors
were set such that the corresponding marginal standard
deviations were 0.3, 0.05, and 0.01, which corresponds to
weak, medium, and strong penalties to the spatial model
as compared to the model with no spatial random effects.
For the cluster and pairing random effects, we only used
(independent) priors with weak penalty as this reflects
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F IGURE 3 Voronoi tesselation of the Trujillo trial, with each tile representing a house site. Also shown are the choropleth maps of the
depth (left) and disc (right) measures of surroundedness. Intervention regions are those inside the thick black boundary

the prior belief, in cluster randomized trials, that there
is dependence within clusters and, for this particular
trial, dependence within pairs. To obtain the posterior of
the total intervention effect 𝜏, as described in Section 3,
we draw an independent sample of size 10 000 form the
corresponding posterior marginals. All the orthogonalized
models, as described in Section 2.4.4, were constructed
by transforming the full ICAR design matrix derived from
the neighborhood structure of the Voronoi tesselation.
Figure 4 shows 95% posterior density intervals (quantile

based) of the exponential of the total intervention effect
(Tint), fitting the data with the standard model (2), the
standard model (2) but with orthogonal spatial random
effects and with the extendedmodel (1) with the depth and
disc measures of surroundedness (the latter with radius
200 m and both for the three levels of prior information).
All the posterior intervals, apart from the standard model,
cross the null value of 1, with medians on the beneficial
side. Spatial dependence seems to be important. As pointed
out in Section 2.4.1, orthogonalization only intends to

increase the estimated variance of the fixed effects with-
out major changes in the point estimates. In the extended
model, most of the extra estimated variability is attributed
to the added covariates (the surroundedness measure to
model indirect effects), which are ignored in the stan-
dardmodels. Including indirect effects (ie, generalizing the
standardmodel into the extended one) makes the intervals
slightly wider when using the depth measure and much
wider when using the disc measure of surroundedness. In
other words, the difference in interval length implies, in
this case, a strong indication of the presence of disc indi-
rect effects but a weak indication of the presence of depth
indirect effects.
The difference in interval length between extended

depth and disc models is mainly due to the nature of the
surroundedness measure itself. As shown in Figure 3, the
range of values of the disc measure are comparable to
those of the depth measure, but are spread more widely
across the central part of the Trujillo area. In these terms,
this area of the trial resembles the Crater configuration in



12 ANAYA-IZQUIERDO and ALEXANDER

F IGURE 4 Note that 95% posterior density intervals for the exponential of the total intervention effect (Tint) in models fitted to data from
the Trujillo trial. The points are the posterior medians. The upper three intervals are from models with the disc measure of surroundedness
(radius 200 m), and the middle three for models with depth. Each measure was fitted with priors with strong, medium, or weak penalties. The
bottom two intervals are from the standard model with and without spatial dependence

Figure 1. As opposed to the models with depth measure,
the effect of the prior penalty seems to be larger in the
models with the disc measure, in which a stronger penalty
implies a wider posterior interval for the total intervention
effect.
Overall, in terms of posterior probability, it is clear that

models with the depth measure provide stronger poste-
rior evidence of a beneficial effect of the intervention as
a whole.
Figures 5 and 6 show 95% posterior intervals for the pair-

wise contralateral and ipsilateral effects, Sind0𝑖𝑗 and Sind1𝑖𝑗 ,
respectively, and for the same depth and disc models. As
mentioned above, there is strong posterior evidence, in par-
ticular from the disc model, of an ipsilateral effect, that is,
of locations in the intervention arm benefiting from being
surrounded by other intervention locations, whichwas not
a conclusion of the original analysis.

6 DISCUSSION

Geographically demarcated clusters are the most common
choice for cluster-randomized trials (Hayes and Moulton,
2009). At the design stage, the clusters should ideally be
sufficiently far apart to render spatial correlation negli-
gible, as required by the standard analytic assumption of
between-cluster independence. However, this may well
be impractical, because the scale of spatial correlation
can be up to tens of kilometers (Alexander et al., 2003;
Clemens et al., 2006) and, in fact, may well be unknown
at the design stage. Spatial aspects have been largely
overlooked in the analysis of CRTs, beyond some incom-
plete ad hoc approaches (Benjamin-Chung et al., 2017;
Jarvis et al., 2017).
We have distinguished two possible consequences of

spatial proximity in a CRT. Spillover dependence refers
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F IGURE 5 Posterior 95% intervals for the exponential of the pairwise contralateral effect, for different models fitted to data from the
Trujillo trial. The upper three intervals are from models with the disc measure of surroundedness (radius 200 m), and the lower three for
models with depth. Each measure was fitted with strong, medium, or weak prior distributions

to between-cluster dependence in individual outcomes,
and spillover indirect effects increase or decrease the inter-
vention effect, depending on the degree of surrounded-
ness of individuals by other individuals in the interven-
tion arm. We propose a new spatial regression model that
incorporates both these phenomena, and whose interven-
tion effects have a marginal interpretation (as opposed to
being cluster-specific), as well as being well defined even
when the proposed model is misspecified. We estimate,
and adjust for, spillover indirect effects via a novel appli-
cation of the statistical concept of depth (Tukey, 1975),
and also using a simple measure of surroundedness based
on the number of intervention individuals within a cer-
tain radius. The framework assumes spatial point data,
although both surroundedness measures proposed can
also be defined for areal data. For example, provided the
centroids are good representatives of each area, for exam-
ple, each lies within the area to it refers, we can use them

to compute either of the two surroundedness measures.
Minor modifications would also be required (eg, defining
balls instead of discs and planes instead of lines) to define
surroundedness in three-dimensional space (ie, including
elevation).
Themethodology proposed can be easily adapted to deal

with total intervention effects defined in a different man-
ner. For example, we can define the total intervention
effect as a weighted average of expected rates at the clus-
ter level (Hayes and Moulton, 2009) or as a simple aver-
age of all the pairwise intervention effects. However, the
latter case would give unduly importance to large pairwise
intervention effects that is not usually the objective in clus-
ter randomized trials. CRT researchers would define total
effects in such away that, even though there are a few large
pairwise effects, the intervention may still be considered
effective as long as the total effects are small. Intervention
effects may also be defined as geometrical averages instead
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F IGURE 6 Posterior 95% intervals for the exponential of the pairwise ipsilateral effect, for different models fitted to data from the Trujillo
trial. Labeling is as for Figure 5

of traditional arithmetic averages (see Hayes andMoulton,
2009, p.152).
In the Trujillo trial, there is some evidence that locations

benefited indirectly from surrounding locations receiving
the intervention. Despite being randomized, the clusters
in each arm are distributed in just two contiguous regions.
Restricted randomization could be used to achieve an
allocation that addresses this or other concerns (see
McCann et al. (2018) for one such proposed method). An
alternative criterion could relate to geographical balance,
in the intuitive sense of avoiding large contiguous regions
of clusters from a single arm, although this notion may
be hard to quantify. For example, despite lying in few
contiguous regions, 17 of the 18 Trujillo clusters border
at least one in the opposite arm. One approach may be
to impose a minimum proportion of between-cluster
boundaries that separate clusters in different arms, hence
tending to reduce the size of contiguous single-arm
regions.

We hope these methods will prove useful in those tri-
als in which spatial correlation is inherent. Such analy-
ses would provide more robust estimates of intervention
effects, as well as quantifying the contribution of indirect
effects, which are likely to be of interest when deciding
whether to implement interventions at full scale.
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