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`All models are wrong, but some are useful.'

George Box



Abstract

Cancer survival is a key metric for monitoring improvement in awareness, early diagnosis

and access to e�ective treatments for cancer patients. For the majority of cancers, survival

has been increasing for a number of decades, as a result of successful health policies and

the availability of more e�ective treatment. Nevertheless, there is an unavoidable delay

between policy implementation and impact. In parallel, the measure of survival requires

follow-up information, adding to the delay in quantifying health bene�ts. Predictions of

cancer survival for cohorts of patients most recently diagnosed could help �ll the gap in

our knowledge of the likely e�ects of cancer policies.

In this thesis, I modelled the excess hazard of death as a function of predictors available

in linked cancer registry data in the UK. These include age, stage and year of diagnosis,

levels of deprivation, type of diagnosis, and access to curative treatment. In such contexts,

selecting the form of the model, the predictors, the shape of their e�ects, and potential

interactive e�ects is challenging. Several model selection strategies are compared and their

performance assessed in simulations. I provide practical guidelines for the modelling of the

excess hazard of death, in particular in relation to cancer lethality, model complexity and

impact of model mis-speci�cation.

Besides, these multi-variable regression models o�er opportunities for predicting cancer-

related death rate, for cohorts of patients most recently diagnosed, and for whom follow-up

is not yet available. Along with model selection algorithms, I explore strategies based on

information criteria and model averaging. Inference is therefore conditional on a pool of

models of equivalent support, rather than a uniquely selected model. Advantages include

absence of multiple testing, and allowance for model selection uncertainty in inference.

Finally, a measure of explained variation, RE, is extended to the relative survival data

setting. It is part of the model validation toolkit, and can provide estimates of how much

variation in excess mortality due to cancer is explained by the models, and the variables

that compose them.

There are several methodological assets from the work presented here. First, excess hazard

model selection is well formalised. Furthermore, the way RE is adapted to the relative

survival data setting will most certainly nurture ideas for the adaptation of other validation

tools, commonly used in prognosis research. Lastly, multi-model inference using model

averaging is paving the way for the utilisation of ensemble learning in the prediction of

excess hazard of death due to cancer.

Scenario modelling is a public health application that naturally follows the work done in

this PhD thesis. With well-crafted set of predictive models, simulated scenarios can be

designed to identify areas for improvement in policy, prevention or treatment. Those

generating largest increase in survival can lead to actual recommendations.

Methodological advances and public health go hand in hand here. This work emphasises

the importance of developing, assessing, and validating excess hazard models. It o�ers a

toolkit so that accurate survival predictions help design e�ective policies.
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Glossary

Background (population, expected) mortality: levels of mortality that would be expected

in the cancer patient population, if cancer was not a�ecting mortality patterns. Background

mortality is estimated based on what is observed in the general population from which

cancer patients come from (from population life tables).

Cause-speci�c setting: data setting in which cause of death is available.

Censoring: censoring happens when there is loss to follow-up (see below) at a given date

before the outcome can be observed. It could be administrative censoring which happens

at a set date, when the survival time of patients still alive (in the risk set) is truncated

and their vital status is `alive'. Other types and times of censoring re�ects emigration, or

losses of information.

Competing risks: death may happen as a consequence of various causes. Cancer sur-

vival analyses correspond to estimating survival from cancer; other causes of death act as

competing risks, and censor patients' survival time.

Excess (cancer) mortality: mortality in excess of the population levels of mortality (due

to cancer).

Life tables: tables of mortality rates de�ned for the population from which cancer patients

are drawn. They are de�ned by calendar year, single years of age, and sex at minima, and

other factors that can be available in the population �le and cancer patient data.

Loss to follow-up: this happens when a patient's record is incomplete, that is when the

actual length of survival and survival status are unknown.

Net survival: survival from cancer in the hypothetical situation in which cancer patients

are immune to other causes of death.

Non-parametric: there is no shape imposed on the relationship between explanatory fac-

tors and outcomes.

1



Glossary 2

Parametric: parameters are estimated from the data to de�ne the relationship between

explanatory factors and outcomes.

Prediction: estimation of cancer patient outcomes further away from their diagnosis than

the data available for model-building.

In-sample predictions: predictions of cancer outcomes for values of variables who are

available in the sample of patients on whom the e�ects are modelled.

Out-of-sample predictions: Predictions of cancer outcomes for values of variable not

observed in the sample of patients on whom the e�ects are modelled. For instance it could

be for patients diagnosed in an age group that is not represented at all in the data used

for model-building.

Range observed Predictions

Variables available: in-sample out-of-sample

Age at diagnosis

(years)

15-85 15-85 <15 or >90

Year of diagnosis 2005-2010 2005-2010 2011+

Stage at diagnosis I-IV I-IV NA

Deprivation quintile 1 to 5 1 to 5 NA

Follow up (years) 0-6 years after

diagnosis

0-6 years after

diagnosis

>6 years after

diagnosis

Projection: estimation of cancer patient outcomes for patients that did not contribute to

model building. This is a speci�c case of out-of-sample prediction, in relation to year of

diagnosis.

Follow up Model-based predictions

Cohorts 2005 2006 2007 2008 2009 2010 2011

2005 0/1 1/2 2/3 3/4 4/5 5/6

2006 0/1 1/2 2/3 3/4 4/5 5/6

2007 0/1 1/2 2/3 3/4 4/5 5/6

2008 0/1 1/2 2/3 3/4 4/5 5/6

2009 0/1 1/2 2/3 3/4 4/5 4/5

2010 0/1 1/2 2/3 3/4 3/4 4/5

2011 Model-based projections 0/1 1/2 2/3 3/4 4/5

Relative survival setting: data setting in which cause of death is unavailable.



Introduction

Rationale

Long-standing population-based cancer registries operate in many countries in the world. [1]

Their resources may vary depending on the local context, but they usually collect a minimal

well-standardised set of data in order to provide accurate estimates of cancer incidence in

a clearly de�ned population. Information on follow-up and date of death are collected in

order to estimate survival.

The quantity of data it is now possible to collect, store and use has increased dramatically.

In England, beyond the data collected by cancer registries, detailed information on patient,

tumour, and management for cancer patients can be obtained from primary care (such

as in the Clinical Practice Research Datalink), secondary care (such as in the Hospital

Episode Statistics data), clinical audits (such as National Bowel Cancer Audit, and the

Lung Cancer Audit) and Multi-Disciplinary Teams, administrative data sources such as

insurance claims and imaging or pathological laboratory information (such as the Systemic

Anti-Cancer Therapy or Diagnostic Imaging Dataset). This increasingly detailed amount of

information can help deepen the understanding of complex pathways to diagnosis, disease

progression, clinical management, and ultimately, survival.

Cancer survival estimates are calculated at a given time t, most often expressed in years.

Cancer survival measures the probability that patients with a given cancer will survive be-

yond t, derived from the observed proportion of patients who do survive beyond t. These

estimates are of interest to a wide range of actors including patients, clinicians, insurance

companies, policy-makers, and the public. All parties need these �gures for di�erent pur-

poses, and the presentation of these estimates sometimes needs to be adapted to their

requirements for optimal interpretability. [2, 3]

For the bene�t of the cancer patients as a whole, a better comprehension of the mecha-

nisms driving the levels of and trends in cancer survival is essential. Such understanding

is mainly derived from statistical models aimed at representing complex interactions in a

3



Introduction. 4

simple framework. These models are the basis for population-based outcome predictions.

Cancer survival is a key measure for monitoring the impact of health policies in the pop-

ulation. It can be derived from modelling the e�ects of predictors on cancer mortality.

These predictors are collected primarily by cancer registries, but estimating the e�ects of

additional, potentially prognostic variables provides further insights into the mechanisms

underlying patterns of survival. Statistical tools are available for complex modelling of the

e�ect of individual factors on cancer mortality, as well as user-friendly statistical pack-

ages. [4�9]

The Calman-Hine report, published in 1995, [10] set out to improve outcomes and re-

duce inequalities in cancer care. Since then, the succession of health plans in England

shows a focus on improving the performance and equity of the health care system. Studies

that analysed the impact of the �rst comprehensive policy on cancer services were mostly

published a decade later, [11�13] highlighting the unavoidable time-lag between implemen-

tation and assessment. In that timeframe, the NHS Cancer Plan had been introduced in

2000 [14] and further policy documents followed. [15, 16] Health-policy makers are eager

to see the impact and evaluate the e�ectiveness of newly introduced strategies. Unfor-

tunately, the nature of survival itself means that it takes many years to gather follow-up

information in order to produce meaningful and reliable estimates. Although guidelines are

often implemented based on an estimated predicted impact, their perceived and genuine

e�ects remain uncertain until they can be evaluated. Furthermore the real-world e�ects of

policies are impacted by the health system complexity. Such e�ects are often unpredictable

before implementation.[17] Prediction of survival is aimed at answering these questions in

a more timely fashion. By prediction of survival, we mean the estimation of survival for

patients only very recently diagnosed, or the estimation of long-term survival for patients

who were diagnosed some years ago but for whom we do not yet have information on their

longer-term follow-up.

Thus, there is a need to consider and develop methodology for the prediction of cancer

survival, at a population level. The main goal of this thesis is to progress the methodology

for predictions and projections of cancer survival for the population as a whole, in contrast

to individual prediction models. In this work, the unit of prediction is the population. The

population may include only patients with given characteristics (such as a given stage, or

age group) or may be an entire cohort of patients diagnosed in a given time and place.

In contrast with prediction, projection of cancer survival refers to estimates for cohorts

of patients who have yet to be diagnosed. These cohorts can be fully hypothetical (sce-

narios), or refer to patients who have already been diagnosed, but for whom no follow-up

information is yet available.
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Statistical models utilise patient data to estimate the average e�ects of predictors. Out-

comes, such as the mortality hazard, are predicted for individual patients, but can also be

transformed and averaged to provide population-based predictions and projections of net

survival, marginal e�ects and crude mortality.

This work stands at the cross road between three di�erent �elds: overall prognosis, prog-

nostic factors and prognostic models, as highlighted in the PROGRESS framework. [18�20]

The focus of `overall prognosis' research is in the description of actual observed outcomes.

The identi�cation of prognostic factors in�uencing outcomes is next. Prognostic modelling

is concerned with individual predictions from these models, built on sample of patients.

There is much emphasis on developing individual prediction models in a context in which

targeted therapies and individual treatment are being o�ered. Several authors provide

guidelines for adequate development and validation of prognostic models to guarantee they

are appropriate and useful to guide the clinical and patient decision-making process. [18�23]

Due to the population-based nature of this work, we are concerned with overall prognosis

and average outcomes, for a population. We claim such outcomes are best estimated via

multi-variable models. These models are also key to make projections for groups of patients

for whom follow up information is not yet available. Therefore, we borrow tools from all

three �elds in order to propose a methodology suitable to our context of population-based

predictions of cancer survival. Such tools include parametric modelling and algorithms for

model selection and explained variation. Additionally we evaluate predictions from multi-

model inference based on model selection using information criteria. We judge the quality

of predictions for groups of patients de�ned by their shared characteristics.
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Aims

1 To provide guidelines for the selection of multivariable excess hazard models in the

context of descriptive epidemiology.

2 To contribute to research in statistical methods for the evaluation and validation of

multivariable predictive excess hazard models.

3 To investigate the use of multi-model inference for the prediction and projection of

cancer survival based on multivariable excess hazard models.

Objectives

1a Describe model selection strategies in the context of excess hazard models and exem-

plify their use in the estimation of cancer survival.

1b Perform model-selection for the estimation of cancer survival from multivariable excess

hazard models.

1c Conduct multivariable exploratory analyses of the e�ect of predictors such as age,

deprivation, stage, treatment, and screening, where available, on the estimation of

cancer survival.

2a Adapt a measure of explained variation to the context of excess hazard regression

models.

2b Apply measures of explained variation to multivariable excess hazard models.

3a Develop excess hazard model selection based on Information Criteria.

3b Implement model averaging techniques for the estimation of excess hazard.

3c Predict survival for patients recently diagnosed using multi-model inference.



Setting: Estimating cancer survival

using population-based registry data

1 Introduction

The aim of this chapter is to introduce the speci�c context of modelling cancer survival

from observational population-based cancer data. Opportunities and challenges of this

setting are discussed, for example the large amount of population-based (+) data available

(+), lack of patients' selection (+/-), missing information (-), and presence of competing

risks (-).

I use data on cancer patients � the unit of information is any man or woman with a

diagnosis of cancer; collected in registries � routine collection of information on patients;

at population level � the conclusions from the analyses will apply to all people living in a

de�ned territory.

2 Population-based cancer surveillance

2.1 Cancer registration

Many countries bene�t from cancer registration systems, at regional or national level.

Population-based cancer registries cover the population of a clearly de�ned geographical

area and register all incident cases of cancer that arise within it. A minimum set of variables

is required so that age-speci�c cancer incidence patterns can be studied. These include

patient (date of birth, sex and a unique identi�cation number) and tumour factors (date of

diagnosis, cancer site, behaviour code and a unique identi�cation number). High-quality,

un-interrupted registration enables valid and accurate surveillance.

7
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In the UK, survival is among the key metrics which can be estimated using registry data.

Cancer registries ordinarily obtain information on each patients' vital status through link-

age with national mortality records. Additional variables may also be collected and allow

detailed analyses of cancer incidence and survival by patient socio-demographic (for exam-

ple, sub-region, place of birth, ethnicity) or tumour (for example, grade, laterality, stage

at diagnosis) characteristics. When the registry collects clinical information or if the data

sets are linked to specialised clinical registration systems, further analyses evaluating the

impact of treatment can be performed.

Cancer registries use the International Classi�cation of Diseases [24] to register and code

tumours to a speci�c anatomical sub-site. The tumour is classi�ed according to how it

looks under a microscope: its type of cells (morphology) and whether its behaviour is

benign, in-situ or malignant. Together these characteristics can be used to de�ne groups

of patients with similar disease. The proportion of patients with microscopic veri�cation

within a population-based registry tends to be reported as a marker of the quality and

thoroughness of the registration system. Ordinarily only patients with malignant cells are

analysed. Nonetheless, the proportions of patients diagnosed with benign/in-situ disease

may be reported as an indication of diagnostic intensity and coverage of the cancer registry.

2.2 Date of diagnosis

The date of diagnosis is a key variable in cancer registration. Firstly, it provides the context

around the cancer diagnosis. This is also known as the cohort e�ect, which regroups the

e�ects of di�erences in intensity or availability of tools for diagnostic investigations, di�er-

ential availability of screening tests, varying coding practices, etc. Secondly, it determines

which cohort a patient belongs, and for whom speci�c characteristics may be explored, and

survival may be estimated. Lastly, survival analyses can only be done when time zero is

clearly speci�ed, marking the start of follow-up. Date of diagnosis is unknown for patients

whose record is initiated from a death record mentioning cancer and for whom no further

information is ever found; these patients cannot be included in survival analyses.

Two standards are established for the registration of the date of diagnosis: (a) IARC (In-

ternational Association for Research on Cancer) working group [25] and (b) SEER (Surveil-

lance Epidemiology and End Results) rules. [26] The date of diagnosis following the IARC

rules is the date of the histological diagnosis or the actual date (not result) of biopsy.

SEER rules take �rst date between clinical assessment or the date the histological report

is issued. For both sets of rules they recommend using the treatment date if a patient

receives it before de�nitive diagnosis or if it leads to a diagnosis.
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2.3 Cancer incidence, survival and mortality

This thesis focuses on the prediction of cancer survival. However, survival, incidence and

mortality are inter-dependent and must be considered alongside each other (see Figure 1).

The study of survival cannot be done in isolation and must be understood in the context

of �uctuating incidence and mortality patterns.

Both cancer incidence and mortality are functions of the characteristics of the general pop-

ulation: cancer incidence reports the number of new cases of cancer and cancer mortality

reports the proportion of people who die from cancer, in a population of a speci�c time

and place. Although they refer to a given (possibly current) year, they result from past

exposures to carcinogens, past and present participation in screening practices (incidence)

or e�ectiveness of treatment and prompt cancer diagnosis (mortality). In contrast, cancer

survival reports the proportion of patients diagnosed in a well-de�ned time and place, who

survived their disease at given milestone dates, commonly 1, 5 or 10 years after diagnosis.

The combination of all three measures represent a comprehensive picture of the cancer

burden. [27] They inform on the management of cancer, by studying its causes and out-

comes, and how these change through time or are a�ected by varying public health policies.

Thus, the study of survival cannot be performed in isolation and must be understood in

the context of �uctuating incidence and mortality patterns.

Since survival is intertwined with incidence and mortality, future trends in survival must be

considered in the context of current and likely future levels of incidence and mortality. For

prediction of cancer survival, we assume the composition of cohorts of patients is known.

It means patients have already been diagnosed with the disease, possibly recently, and their

diagnosis, along with socio-demographic and clinical information, are documented in the

cancer registration data. Due to their recent diagnosis and lack of follow-up information,

only little is known on their survival pattern, and certainly nothing is known on their long-

term prognosis. Prediction of survival refers to the estimation of the proportion of patients

who survive until a given time, further away from diagnosis than what has been observed.

Incidence is therefore known, or controlled, in this context.

In the context of projection of cancer survival, the actual cancer incidence, i.e. the cohorts

of cancer patients diagnosed at a future date, may or may not have been observed yet and

their survival is similarly unknown. When incidence is not yet known or recorded, di�erent

scenarios can be envisaged:
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(a) Changes in incidence which are the results of public health policies: These would

in�uence the overall distribution of patient and/or tumour characteristics, but the

e�ects of the predictors on survival would remain unchanged.

(b) Changes in the e�ects of predictors on cancer survival: We assume the composition

of the cohorts remains unchanged.

2.4 Follow-up information

The analysis of cancer survival relies on the ability of cancer registration systems to follow-

up patients, in order to assess their vital status after diagnosis or regularly link their cancer

records with national death records. The date of last known vital status needs to be

available to derive the length of follow-up for every patient. Follow-up of cancer patients

is achieved in one of two di�erent ways: passive or active.

In a passive follow-up setting, patients are assumed to be alive until evidence to the contrary

is acquired, normally when a routinely collected death record is linked to their cancer record.

Patients' follow-up time can also be censored if they make the national statistics o�ce

aware of their emigration. The caveats of such a follow-up assessment is that some patients

may become `immortals', when their emigration status is not known, or where there are

linkage inaccuracies. Linkage to additional datasets, such as general practice registration

data minimises such issues. Additionally, cancer registries can receive information from a

death with underlying cause �agged as cancer but for whom no tumour record is (yet)

held on the system. This record is termed a death certi�cate initiated (DCI) registration.

If no further information on the cancer is ever found, it turns into a death certi�cate

only (DCO) record because no other information on the tumour is held in the registration

system. DCOs must be �agged so they do not contribute to survival analyses since their

follow-up time is e�ectively unknown.

Active follow-up is when researchers actively seek information on the vital status of patients

in their registry, through for example primary or secondary healthcare providers, or via the

city of residence using direct correspondence to assess the vital status of each patient.

This second follow-up technique is very labour intensive, and is typically done only for

small datasets, in settings with poor national registration systems or when linkage between

administrative datasets is prohibited.
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2.5 Data preparation for survival analyses

Following detailed quality control rules for assessing cancer registration records de�ned by

IARC, patients with incomplete key information or incongruous records such as incomplete

dates or sex/site contradictions are �rst excluded from the data. [28, 29] These procedures

ascertain that incomplete, incoherent and ineligible records are excluded. The necessary

additional information on length of follow-up for survival analysis means further data quality

checks are done before one can produce cancer survival �gures. [30] These include checking

records for invalid sequences of dates, unknown vital status, or DCO registrations which

cannot be utilised in survival analysis since exact survival time between cancer diagnosis

and end of follow-up is not known.

3 Estimation of cancer survival

3.1 Di�erent measures for di�erent purposes

Population-based cohorts of cancer patients o�er an opportunity to estimate the cancer

burden in the population, and look at its trends over time. Both the motives for performing

survival analyses and the end users of the estimates (policy-makers, patients, or clinicians)

determine which measure is most appropriate. [2]

Several questions of interest can be asked and each measure answer a speci�c question: [2]

� What is the survival of cancer patients?

This would be best addressed by the estimation of overall survival : the probability

that cancer patients live beyond pre-de�ned milestones.

Overall survival is estimated non-parametrically, using Kaplan Meier survival curves, [31]

semi-parametrically, with the Cox model [32] or fully parametrically, using standard

distributions such as Weibull.

� What is the probability that cancer patients die of their cancer? Or of other causes?

This is re�ected in crude mortality : the proportions of deaths, in cancer patients,

that are due to cancer, accounting for the competing risks of other causes, or due

to other causes of death accounting for the competing risks of death from cancer.

� What is the cancer survival of cancer patients?

Here the interest is in the proportion of patients who survive their cancer. To measure

the impact of cancer alone on patients' survival, we need to remove the e�ect that

competing risks have on survival. This is net survival.
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Both crude mortality and net survival can be estimated with the cancer registration

data, the next sections highlight how this can be best done.

3.2 Competing risks

Within cancer registry, routine death certi�cation is the source of information for the date

and cause of death of patients who have died. Patients may die of their cancer, or of

causes other than their cancer, such as consequences of their cancer treatment, or any

other cause possibly unrelated to cancer. When studying cancer survival, we are usually

most interested in survival from cancer alone and all other possible causes of death thus

act as competing risks for cancer death. Cancer survival can be estimated through net

survival, assuming patients can only die of cancer. In reality, it is impossible to observe a

cancer survival time for patients who die of causes other than cancer, as the competing

event is preventing the observation of the event of interest. Two complications follow:

1. How do we assess if the event of interest was observed or not?

2. How do we include information from patients whose event of interest cannot be

observed because of competing risks such as deaths due to other causes?

In randomised clinical trials, the �rst question is addressed by strict protocols to standardise

the collection and recording of patient-related information, including the identi�cation of

their cause of death. By doing so, uncertainty about what constitutes an event of interest

is minimised. In routine death certi�cation, there are international rules for recording and

coding cause(s) of death on death certi�cates applied globally. Nonetheless, there are

still wide temporal, geographical and inter-personal variability in the routine registration of

cause of death. This means that over time and between regions, cause of death as reported

on the death certi�cates may not be comparable. More importantly, it may also be di�cult

to separate deaths that have occurred as a consequence of cancer, directly or indirectly.

For these reasons, within population-based analyses of cancer survival, it is challenging to

assess whether the event of interest is observed or not.

To answer the second question, one needs to adjust the analyses for the imbalance be-

tween the `surviving' cohort and the cohort of patients entering the analyses at diagnosis

(time zero). Patients who die throughout the follow-up, of causes other than cancer, are

not necessarily similar to other patients in the cohort. Indeed, patients who survive all

competing risks of death are more likely to be younger, �tter, have less co-morbidities

and less aggressive tumours. The information brought by patients who eventually do not

survive competing risks of death needs to be accounted for in the calculation of cancer
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survival since the characteristics associated with that censoring (mortality from competing

risks) are also associated with cancer survival, and as such, censoring is informative. [33]

The methods presented below (section 3.5) account for informative censoring and provide

unbiased estimates.

3.3 Net survival and excess hazard

Net survival refers to the cancer survival that a cohort of cancer patients experience.

The cohort of patients may be de�ned based on when patients were diagnosed (calendar

time), where they were diagnosed (region), their sex, age at diagnosis, ethnicity, or tumour

characteristics such as site (anatomical), type (cancer cells) or stage at diagnosis. Cancer

survival measured for the cohort re�ects what the survival of cancer patients would be,

if cancer patients could only die of their cancer. The measure of net survival is derived

purposefully to isolate the e�ect of cancer on survival, over and above competing risks. It

is not observed in practice. Free from the impact of competing risks, net survival enables

fair comparisons of survival for di�erent groups of cancer patients, without being a�ected

by di�erences in mortality due to other causes.

Net survival for the cohort is a cumulative measure estimated at all times after diagnosis

as long as there is information for that time point, that is, patients alive as well as events

occurring (deaths). By contrast the excess hazard is the cancer mortality hazard, measured

at a given time t. It is an instantaneous measure calculated for each individual patient in

the cohort. It represents the likelihood for the patient to die of their cancer at time t.

The measures described here re�ect population cancer survival and individual cancer mor-

tality respectively. Their accurate estimation relies on the separation of the risks of death

competing with the risk of dying from cancer.

3.4 Data settings

Depending on the type of information available, there are two di�erent data settings: (a)

the cause-speci�c setting, in which reliable information on the cause of death is available,

and (b) the relative survival setting, in which cause of death information is not reliably

available. Net survival and excess hazard of death from cancer can be estimated in both

data settings.

The context of population-based cancer registry data is the perfect example of a relative

survival data setting in which, in order to estimate cancer survival, the competing risks of

death (i.e. of the causes of death other than cancer) are most commonly estimated using



Setting. Estimating cancer survival using population-based registry data 15

risks of death derived from the population from which the cancer patients are drawn. It is

also possible to use the information contained in the underlying cause of death available on

death certi�cates in order to attempt to tease out which are deaths due to cancer. This

corresponds to the estimation of net survival in a cause-speci�c data setting framework. [34,

35] Quality, accuracy and reliability of cause of death is paramount for the estimation of

net survival in the cause speci�c setting. [36]

3.5 Life tables

De�nition

In the relative survival data setting, life tables are crucial to the estimation of net survival.

Population life tables are estimated from the general population from which cancer patients

are drawn. They provide estimates of all-cause mortality for each patient at the end of their

follow-up (Figure 2). This adjustment must be made in order to isolate the cancer-speci�c

excess mortality and derive an estimation of net survival.

At the time of their last known vital status, demographic information of the patients is

used to determine their expected mortality rates. These expected population mortality

rates are used in survival models to adjust the observed (all-cause, overall, �O)) mortality

for mortality due to other causes (non-cancer, background, expected, population, �P ).

The most common assumption is that all-cause mortality is the sum of the mortality due

to cancer (excess, �E) and due to other causes for each patient i. This is the additive

model: �Oi(t) = �Ei(t) + �P i(t).

Population tables of mortality rates, or risks of dying in yearly intervals, life tables, are

de�ned by sex, single years of age, and calendar year, at minima. They are the basis

for the calculation of life expectancy at birth. They represent patterns of mortality for

all living in a de�ned geographical area. Life expectancy at birth varies between regions

of a country, but also between deprivation groups and/or ethnic groups. [37] When such

detailed information on deprivation levels and ethnicity is available on both population and

death counts, as well as on the cancer registry data, life tables further de�ned according

to the levels of these socio-demographic variables can be generated. [37�40] This allows

taking those variations into account in the estimation of the background mortality, and

not attribute them to variations in cancer care and survival (Figure 2). In multivariable

modelling of cancer survival the e�ect of socio-economic deprivation is estimated, and as

such, adjusting for all-cause mortality strati�ed by deprivation quintile is relevant.
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Figure 2: Estimates of mortality rates, by single year of age, and sex (male � blue,

female � pink) and for most (dashes) and least (plain) deprived quintiles of the English

population in 2011

Constructing life table

Life tables can be constructed where unavailable. [38, 39, 41] This can be done from

raw counts of deaths and population, ideally by single year of age, and any other variable

that strongly in�uences population mortality. It may be that background mortality is `mis-

matched' to that of the patients, i.e. it does not correspond to the true force of mortality

that the patient would experience in the absence of cancer. The mismatch can re�ect a

lack of strati�cation of the background mortality, or that the cancer patients have speci�c

characteristics that di�erentiate them from the general population. Depending on the di-

rection of the mismatch (under or over-estimation of background mortality), it leads to a

biased estimation of excess mortality. For instance, socio-economic di�erences in cancer

survival are increased when variations in background mortality by social deprivation are not

considered.

After calculating raw mortality rates, we may get variability due to scarce number of

events in small groups of the population, in each calendar year and age. Various methods

are available to introduce stability and one can smooth mortality rates so that mortality

patterns are not �uctuating too much between ages or calendar years. [42]
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3.6 Statistical methods for estimating net survival

As already stated, net survival is not directly observable: it is the survival that would be

observed if patients could only die from their cancer. In addition to the notations of the

three types of hazard (�O, �P , �E) given above, we de�ne the following notations:

SO(t) is the overall survival for the cohort (all patients), at time t. It is an estimate of the

proportion of patients still alive at t.

SE(t) is the net survival for the cohort at t, and SEi(t) is the individual net survival value

for patient i at time t. It is the probability that patient i survives their disease longer than

time t, given their prognostic factors Xi : SEi(t)=p(TEi > tjXi). TEi is patient i cancer

related survival time.

The relation that links hazard and survival, namely SO(t) = exp (�
∫ t
0 �O(u)du) in classical

survival analyses, remains valid in the excess hazard setting, for each patient i: SEi(t) =

exp (�
∫ t
0 �Ei(u)du).

�Ei(t) is the individual excess hazard of death for patient i at time t.

At any time t, the net survival of a group of N patients is the average of the individual net

survival probabilities for patients in that group:

SE(t) =
1
N

∑N
i=1 SEi(t).

Estimating net survival: Non-parametric approach

Similar to the Kaplan Meier estimation of overall survival, [31] there is a non-parametric

estimator of net survival. [33] At each event time, the net survival for each patient i in the

cohort is estimated using their observed mortality in relation to their expected mortality as

determined by the life tables.

The non-parametric Pohar-Perme estimator of individual cumulative excess hazard (and

population net survival) is the estimator of choice. [33] It accounts for informative censoring

relative to the presence of competing risks of death (i.e. withdrawal of patients from the

cohort, due to other causes), using the inverse probability of censoring as weights. Indeed,

each patient's contributions to the overall measure of survival is weighted by the inverse

of their individual expected survival probabilities derived from population life tables, SP i .

From the additive model assumption, we have �Ei(t) = �Oi(t) � �P i(t). �Oi(t) is esti-

mated as the ratio of the number of observed events dN(t), in a small interval dt, over

the number of patients at risk at the start of the interval, Y (t). We weight all of its

components: �O(t) =
dNw (t)
Y w (t) with Y w (t) =

∑N
i=1

Yi (t)
SP i (t)

and dNw (t) =
∑N

i=1
dNi (t)
SP i (t)

.

Similarly, the population hazards �P i , estimated from population life tables, is corrected

for informative censoring as follows: �P (t) =
∑N

i=1 Y
w
i (t)�P i (t)dt

Y w (t) .
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The Pohar-Perme estimator estimates the cumulative excess hazard of death and is de�ned

by:

�̂Ei(t) =

∫ t

0

dNw (u)

Y w (u)
du �

∫ t

0

∑N
i=1 Y

w
i (u)d�P i(u)

Y w (u)
du: (1)

Net survival for a given patient i is such that ŜEi(t) = exp(��̂Ei(t)). We estimate net

survival for the entire cohort of patients by taking the average of each individual's value:

ŜE(t) =
1
Nt

∑Nt

i=1 exp(��̂Ei(t)). Nt is the number of patients in the risk set at time t.

Net survival can be estimated for the entire cohort of patients, or for more homogeneous

groups of patients sharing speci�c characteristic(s) such as the type or severity (stage)

of disease with which they were diagnosed, the age at which they were diagnosed, their

ethnicity, and so on and so forth. One aspect of non-parametric estimation is that the

e�ects that such predictors may have on cancer survival or mortality cannot be estimated,

since their values stratify the analyses.

Furthermore, stratifying may lead to sparse data and estimates with large variance due to

lack of information. As with all non-parametric estimators, the measure of net survival is

sensitive to the sparsity of events in the data. As the number of events decrease, each

event that occurs carries a lot of weight as each represents a larger share of the data, and

therefore each event has a larger in�uence on the estimates. Lastly, with the correction for

informative censoring using inverse probability of censoring weights (probability to survive

beyond time t), each event is weighted to represent patients in the cohort who died of

causes other than cancer: the higher the probability of dying of other causes, the larger

the weights (for example amongst older patients). [43]

Estimating net survival: Regression models

In contrast to non-parametric estimation, excess hazard regression models estimate the

e�ects of individual predictors, such as age at diagnosis, sex, ethnic group, ecological or

personal deprivation (possibly stratifying the life tables), and tumour factors such as stage

at diagnosis, on the excess hazard of death.

Like non-parametric estimation, excess hazard regression models adjust for background

mortality by linking estimates of all-cause mortality (life tables) to the patients' records at

their time of death or censoring.

Model-based individual net survival estimates, ŜEi(t) are obtained for all patients at each

time t throughout follow-up regardless their at-risk status and possible censoring. Overall

net survival for the cohort is a simple average of these individual estimates, at each time

t. This is fundamentally di�erent from the non-parametric approach in which ŜEi(t) could

only be estimated for patients alive at time t.
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In an excess hazard model, the excess hazard of death is a function of the e�ect of time

since diagnosis t, as well as of the e�ects of potential prognostic factors X. The most

common form for the excess hazard model is multiplicative:

�E(t) = �0;E(t) � exp(f (X; t; �))

�0;E(t) is the baseline excess hazard that is estimated at each time since diagnosis, and

at the reference values of all predictors. f can be a �exible function of time t, X, vector

of predictors and � their corresponding parameters. Di�erent parameterisations exist for

the modelling of the baseline excess hazard and for the relationship between predictors and

excess hazard.

Modelling the baseline excess hazard of death

The baseline excess hazard represents the change in cancer-related mortality through

follow-up time, at the reference values of the predictors. One can impose a standard

distribution (such as Poisson, Weibull, log-logistic) on the baseline excess hazard (�0;E).

The parameters de�ning the standard distributions are estimated by maximum likelihood

using the data. Alternatively, for more �exibility in the baseline excess hazard, one can

estimate the parameters of fully �exible functions entirely derived from the observed data

points, such as fractional polynomials, [44] restricted cubic splines, [45�47] B-splines [6]

or penalised tensor splines. [5] Fluctuation of the baseline excess hazard with time needs

to be modelled with care.

Modelling continuous and time-dependent e�ects on the excess hazard

Let us take the example of the e�ect of age at diagnosis on lung cancer mortality to

illustrate the choices available for the parameterisation of the e�ect of a continuous variable

on excess hazard. Figure 3(a)-3(c) illustrates di�erent shapes for the e�ect of age at

diagnosis on cancer mortality based on di�erent parameterisations of age:

� A linear e�ect of age � a linear e�ect implies that one parameter, exp(�) is enough

to characterise the relationship between age and cancer mortality, for all ages and

at all times: in Figure 3(a), there is a 1.2-fold increase in excess mortality with a

10-year increase in age.

� A non-linear e�ect of age � a non-linear e�ect tries to capture a more complex rela-

tionship between age and mortality. Depending on the complexity of the association

between age and mortality, it may be monotonically increasing or decreasing, or have

a bell shape. In Figure 3(b), the e�ect of aging on mortality for ages below 50 is

reduced, but increased for ages above 65: the hazard ratio for a 10-year increase

between ages 72 and 82 is increased to 1.3.
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� A time-dependent e�ect � a time-dependent e�ect is simply an interaction between

the main e�ect (age at diagnosis for example) and follow-up time. In Figure 3(c), an

additional time-dependent e�ect reveals how the e�ect of age at diagnosis, at all ages,

is stronger 1 month after diagnosis, but milder 12 months after diagnosis. Time-

dependent e�ects may be estimated for continuous and categorical variables alike.

When dummy variables are considered for the modelling of a categorical variable,

either each individual dummy variable or all of them can be treated as time dependent.

(a) (b)

(c)

Figure 3: Varying shapes for the age e�ect, based on varying assumptions
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Modelling interactions between covariates

An interaction is modelled when there is evidence that the e�ect of a variable on excess

mortality is modi�ed by the values of another variable. Time-dependent e�ects are special

case of interactions whereby the e�ects of a variable are modi�ed through follow-up time.

It is common practice to create dummy variables for interactions, ahead of model �tting.

Interactive e�ects can be �xed in time (Figure 4(a)) or time-dependent, in addition to their

main e�ects (Figure 4(b)).

(a)

(b)

Figure 4: Interactions between the e�ects of age and stage at diagnosis

3.7 Assumptions

When estimating cancer survival from population-based cancer registry data in the relative

survival data setting, we make four assumptions:
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1 Independent survival times: we expect that the survival time Ti for patient i will not

in�uence the survival time Tj of patient j.

This is a very common assumption that one can �nd in many statistical applications,

including the overall survival �eld, implying that two records are independent.

2 Non-informative administrative censoring.

The administrative end of follow-up is the date at which we freeze the database

and assume all patients whose vital status is not known are censored alive. Non-

informative administrative censoring means that patients or tumour characteristics

are not predictive of administrative censoring.

An example of informative administrative censoring would be when patients are cen-

sored alive at their latest visit to hospital, representing their latest contact with

the health system. Patients with better health would have shorter follow-up times.

Indeed, healthier patients, who do not need to attend hospital as often as sicker

patients, would be censored earlier.

3 Time to death due to cancer, TE , and due to other causes, TP , are independent given

the knowledge of the demographic variables stratifying the life tables.

In practical terms, we assume that the knowledge of factors such as age, sex, depri-

vation, ethnicity, region of residence, removes the association between time to death

due to cancer and due to other causes. This is true for most cancers. Exceptions

exist for speci�c cancers, such a lung cancer, for which a given patient character-

istic, such as smoking, will impact both time to death from cancer and from other

causes. [48]

4 Mortality from causes other than cancer is accurately estimated by the life tables, for

the population from which cancer patients come from.

Population life tables are the means by which we adjust the overall survival for the

impact of causes of death other than cancer. They provide estimates of death rates

measured for the population from which cancer patients come from, therefore sharing

characteristics such as region of residence, level of deprivation, ethnicity, sex, age and

calendar year of death. This assumption holds for as long as cancer patients are not

a selected group.

Alternatively, modelling the excess hazard of death gives unbiased estimates of individual

excess hazards and individual net survival providing an additional two assumptions are met:

5 The e�ect of life-table variables are included in the excess hazard model.
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The variables stratifying the life tables are generally chosen based on their availability

in both the cancer and population data. These variables are key predictors of overall

mortality. To adjust for informative censoring, life-table variables need to be included

in the excess hazard model. [49]

6 Regression models are correctly speci�ed and contain a meaningful set of variables.

Similar to all forms of regression models, failing to adjust for meaningful predictors

of the outcomes, or confounders of the associations between other variables and the

outcome will lead to biased estimates of associations and outcomes. Additionally the

relationship between each variable and the outcome must be appropriately modelled.

4 Summary

On the one hand, non-parametric estimators of survival are not designed to provide a

measure of e�ect of any predictors in the dataset, but rather estimate net survival by

levels of each factor of interest. They are arithmetic calculations using information directly

available or added to the cancer registry data such as latest vital status, exact date of

death, and expected survival (or background mortality) at time of death.

On the other hand, regression models have been developed to understand the associations

between predictors and outcomes. They require further assumptions in order to get a

simpli�ed, yet plausible, overview of the reality.

In the context of predictions of survival, we wish to estimate what survival would be for

patients outside of the sample of observations available or for whom follow-up has not yet

been observed. It may be for other cohorts of patients altogether, or for patients with some

characteristics that are not available in the sample. In any case, it would be for unobserved

data. The fundamental underlying assumption is that informed predictions of what survival

may be for patients outside of the cohort can be made by understanding existing variations

in cancer survival. These variations in survival are estimated through the modelling of the

excess hazard of death, best achieved using regression models.

In the following chapters, excess hazard models are considered for the estimation of sur-

vival for cohorts of cancer patients. We �rst concentrate on model speci�cation for the

estimation of cancer survival (Chapter 1). Next, we explore the available tools necessary

to distinguish models in their capacity to predict survival (Chapter 2). Last, we introduce

algorithms to choose a set of models that yield good predictions of the patient's cancer

survival, for patients outside of the cohort of patients available (Chapter 3).
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5 My contributions to the �eld

I have conducted and been involved in life table methodology in the past few years. We

developed methodology to smooth mortality rates derived from sparse data. That method-

ology enabled us to generate life tables for people of South Asian origin, living in the UK,

and by deprivation groups in Portugal. To be useful to cancer survival research, both cancer

records and life tables need to be strati�ed by the same variables.

Construction of South Asian-speci�c life tables

Maringe C, Li R, Mangtani P, Coleman MP, Rachet B. Cancer survival di�erences be-

tween South Asians and non-South Asians of England in 1986-2004, accounting for age

at diagnosis and deprivation. Br J Cancer. 2015;113(1):173-81.

Parametric smoothing of raw estimates of mortality

Rachet B, Maringe C, Woods LM, Ellis L, Spika D, Allemani C. Multivariable �exible

modelling for estimating complete, smoothed life tables for sub-national populations. BMC

Public Health. 2015;15:1240.

Life tables by deprivation in Portugal

Antunes L, Mendonça D, Ribeiro AI, Maringe C, Rachet B. Deprivation-speci�c life tables

using multivariable �exible modelling � trends from 2000�2002 to 2010�2012, Portugal.

BMC Public Health. 2019;19(1):276.

Correction for mis-matched life tables

Rubio FJ, Rachet B, Giorgi R, Maringe C, Belot A. On models for the estimation of the

excess mortality hazard in case of insu�ciently strati�ed life tables. Biostatistics. 2019.



Chapter 1

Excess hazard model selection

1.1 Introduction

1.1.1 Statistical models

The primary purpose of a model is to represent schematically existing and often com-

plex relationships between di�erent components. A statistical model estimates the data-

generation process in the population whose observations come from and form a sample

of. Assumptions are made to help simplify the structure that speci�es the relationships

between predictors and outcome(s). Predictors are independent variables or inputs, such

that no other variables available determine their values. Outcome variables, or outputs,

are dependent on the values taken by the predictor variables. Statistical models may be

developed with di�erent aims in mind, [50] (1) a descriptive purpose: understanding asso-

ciation(s) between factors, (2) an explanatory purpose to identify causal relationship(s) or

(3) a predictive purpose aiming at extrapolating the mechanisms observed in the sample

to other samples, outside the data used for estimating the parameters of the model.

Descriptive models aim to reduce the complex reality to a set of associations between

predictors and outcome. These models o�er a simpli�ed description of existing associations

and help understanding of complex mechanisms.

Explanatory models aim to draw causal associations between independent variables and

outcomes. One needs a measure of one targeted association of interest, while adjusting

for all possible confounders. Explanatory models aim at reducing bias in the estimation of

the causal contrast of interest.

Predictive models aim to learn from the existing associations observed in a dataset, to

transpose those to another sample of observations, or to the same data but beyond the

25
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period of analysis. The model-based parameters are used to predict the outcome for units

of analyses that did not contribute to their estimation. Predictive models aim at reducing

an overall prediction error.

The general structure of any type of models is usually based on subject-knowledge or

derived from the data. The parameters are estimated from the data. Shape and form of

e�ects of continuous variables can be tested on the data or imposed given prior knowledge.

In the literature, predictions from models can appear under the following terms: extrapola-

tion, out-of-sample projection or forecast. Predictions from a model refer to the estimation

of the outcome for covariate patterns that were not necessarily in the training sample. Clin-

ical scores for example refer to predictions although their estimates refer to patients that

could have been part of the original sample. These scores give clinicians a tool to commu-

nicate their likely outcomes to new patients. In the context of this work, prediction refers

to estimating the outcome for values outside the range of values observed in the sample of

observations used in model �t. Mainly, we focus on extrapolating calendar and/or follow-up

time.

1.1.2 Does a generating model exist?

The `two cultures' in statistical modelling highlighted by Breiman [51] still represent two

forms of modelling conceptions. The data culture �nds its roots in the idea that a statistical

model � one that one could potentially de�ne � is at the origin of any phenomenon. It

means that a set of variables and a unique relationship between them explain what is

observed. It also �ows that one can aim for estimating what this actual model is.

The algorithmic culture claims that the data mechanisms are unknown, and a `true' model

does not exist or is too complex to be de�ned. Within this culture, the goal of statistical

modelling is to be able to connect independent variables with outcomes, but without using

a (single) statistical model, or any well-de�ned parametric association. This is where

supervised algorithms and machine learning have originated.

In parallel with this distinction between the two cultures, is the distinction between

1. Uniqueness of the generating model, or models that carry similar evidence: are we

ready to assume the information available to us is enough to decide on a regression

model most likely to have generated the data (data culture)?

2. Accuracy of estimations and simplicity or interpretability: are we most interested in

the mechanisms and relationships between variables and outcomes (data culture)?
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Or would we be more interested in the values of the predicted outcomes (algorithmic

culture)?

3. Data reduction: are we facing an overload of variables in comparison to the number

of records available? Do we need to reduce the size of the information or make sense

of the main interactions (algorithmic culture)?

Mostly, we remain in the data culture, whereby we rely on well-de�ned regression model(s)

with explicit estimated parameters to summarise the complex web of information between

reasonably small sets of predictors and cancer survival. We embrace the challenges posed

by the search for an appropriate model: we compare several approaches to model selection

and their in�uence on outcome; we study and derive new tools for qualifying the predictive

accuracy of a given model; for prediction, we do not discard regression models of equivalent

evidence.

In the algorithmic culture, the functional form of e�ects and parameters would not be

explicit. The estimation of the outcome of interest, such as the contrast or association of

interest, is the only output reported. The estimated contrast can be the result of many

di�erent algorithms (regression models, classi�cation algorithms, etc.), whose estimates

are averaged together. [52]

1.1.3 Modelling cancer survival

Understanding prognosis of cancer patients is key, crucially to patients themselves, but also

to clinicians and for public health monitoring and evaluation. Beyond individual patient

prognosis, the e�ects predictors have on cancer mortality may highlight inequalities or

unforeseen negative interactions between speci�c factors, at population level.

Describing survival patterns using non-parametric approaches, as described in Setting, is

a �rst and necessary step. Often these descriptive �gures are available through time and

help highlight trends and patterns in cancer survival. [53, 54] From these �gures, one can

draw hypotheses as to what could drive the observed changes in survival. Nonetheless,

hypotheses can only be tested through regression modelling since these models estimate

the e�ects of speci�c predictors on trends and patterns, while adjusting for the potential

confounding e�ects of other factors.

Nonetheless, it is worth mentioning that modelling cancer mortality comes at the cost of

additional assumptions that may not always be explicitly stated. Such assumptions can be

grouped into the following categories:
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1. Distributional: there is a distribution or class of distributions assumed for modelling

changes in baseline (excess) hazard of death through follow-up time.

2. Forms of e�ect: a-priori e�ects of continuous variables on the outcome may be

assumed, such as step, linear or non-linear e�ects.

3. E�ect modi�ers: it is possible to allow for interactions between variables.

4. Time-dependence: it is possible to allow for time-dependence of the e�ect of some

variables on the hazard of death.

With the expansion of computer programs to implement ever more complex excess hazard

models [6, 46, 55�59] in standard softwares, [7, 8, 60, 61] many applications use �exible

parametric models in the literature. [62�69] We witness a shift in presentation from cancer

survival �gures reported for entire cohorts of patients at given times after diagnosis, to

graphs of excess hazard of death in continuous time relative to speci�c characteristics of

individuals. The shift from modelling e�ects of predictors in follow-up time intervals to

modelling these in continuous time allows for less stringent assumptions, and a better ad-

justment for the e�ect modi�cation of time. Despite increased complexity in the modelling

of the excess hazard of death, not much attention was devoted to best practice in relation

to model building. The impact of some features of the models have been reviewed [70�72]

but there is no work on the best approach to building an acceptable descriptive excess

hazard model and no recommendation on how models may be selected.

We aim to make a contribution in this area, at a time when routine, systematic and struc-

tured investigation of possible excess hazard regression models is key. Indeed, population-

based datasets on cancer registrations, such as in England, are becoming richer through

better completeness of key variables, or routine linkage to other nation-wide datasets from

primary and secondary care. The e�ects of the predictors of cancer mortality � sometimes

newly available � need to be appropriately modelled.

We selected two model selection algorithms and we aim to review if and how their use

in�uence the estimation of cancer survival, and lead to better description of the mechanisms

underlying cancer mortality.

1.2 Variable and model selection

There are many ways one can choose to screen through possible models. The main groups

of techniques for model and variable selection are listed in Table 1.1, with their aim and

whether they could be easily implemented in excess hazard modelling. Reviews of these
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methods are available. [73, 74] Such reviews tend to highlight modelling di�culties and

point to pragmatic solutions; no such recommendations exist yet for excess hazard regres-

sion models.

1.2.1 Variable selection: selection of predictors

In many �elds where the number of variables examined is very large (such as genetic

studies looking at genome associations), the topic of variable selection in model building

is extremely relevant. The rational for selecting variables is that a limited number of

observations or records can only inform on the e�ects of a reasonable number of variables

on the outcome. Excess hazard regression models rely on the estimation of parameters (i)

to characterise the relationship between explanatory variables and outcomes, and (ii) to

estimate the baseline excess hazard. There are various event-per-variable recommendations

proposed in the literature, based on empirical and simulated work, and depending on the

modelling purpose. [75, 76] These range between 10 and 25 events per parameter to

be estimated. [77, 78] The topic is also relevant in the competing risks framework where

numbers of events (of interest) per parameters estimated in�uence estimations. [79] Excess

hazard models are part of the competing risk framework, which means that among all events

observed, only deaths from cancer bring information.

1.2.2 Model selection: selection of the form of e�ects of predictors

In contrast to variable selection, in which the only concern is whether a variable should

be included in a model or not, model selection is about investigations around the most

likely functional forms for the e�ects of continuous factors. In the context of time-to-

event data, model selection is also concerned with estimating the baseline hazard of death

through time and with identifying which e�ects are time-varying and how best to model

these. The strategies for variable or model selection are the same, except that one tests

more complex models including interactions, non-linear and time-dependent e�ects on the

available data.

1.2.3 Introduction to strategies for the selection of relevant e�ects of pre-

dictors

First and foremost, background knowledge of the �eld as well as a careful and clear de�ni-

tion of the aims of the modelling exercise are necessary before thinking of model selection
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tools and strategies. [76] Indeed the selection of the best strategy for variable and model

selection will depend on the reasons why a regression model is developed in the �rst place.

Some strategies (Table 1.1) aim at reducing the number of predictors or simplifying the

e�ects of these variables on the outcome in the model (sequential algorithms, information

theory, e�ect size). Others, such as shrinkage methods (penalized regression and the

least absolute shrinkage and selection operator (LASSO)), control how large coe�cients

grow by specifying a shrinkage parameter that control the amount of regularization. That

parameter is chosen using cross-validation. [80] To the best of our knowledge, LASSO has

not been implemented in excess hazard regression modelling, but regression models using

penalised splines (tensor product) have. [5, 56]

Automated approaches, such as iterative model selection, running through potential models

in a logical order, such as backward, forward or stepwise, are based on likelihood ratio tests.

Provided models are nested, the likelihoods of two consecutive models are compared using

a �2 distribution with d degrees of freedom. d is the di�erence in number of parameters

between the two models being compared. The model with the largest likelihood is favoured.

A small ratio of likelihoods, therefore close to 0, shows strong evidence against the simpler

model, meaning it is not likely that it generated the data. Alternatively if the ratio is close

to 1, both models are equally likely to have generated the data and there is no evidence

against, or to reject, the simpler model. In the context of variable selection, the di�erence

between two models is the presence of a parameter � for the e�ect of the variable of

interest on the outcome. In the context of model selection, the di�erences between two

models can be di�erent parameterisations of a continuous variable. Such models may thus

not be nested, and likelihood ratio tests are not valid in such situation.

When models are non-nested, calculating and comparing information criteria between mod-

els is possible. Some of these criteria aim to approximate the Kullback-Liebler distance, a

measure of closeness (or distance) between two distributions. [81] Laud and Ibrahim [82]

proposed a general form of information criteria for the selection of variables:

IC(a) = I � a � (km0 � km)

I is the likelihood ratio statistics, and km0 and km the number of parameters estimated in

models m0 and m, respectively. Di�erent values of a refer to di�erent criteria such as Box

and Kanemasu (a = 1), the Bayes factor (a = 3=2), Akaike (or AIC, a = 2), Schwarz (or

BIC, a = log(N)), San Martini and Spezzaferri (a = log(Ncb), c = 2N��1 � exp ( �N )� 1,

b = 2
km0�km

).
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If a � 1, simpler models are favoured over complex models, a desirable property for pre-

dictions. The value of some criteria (such as Schwarz, San Martini and Spezzaferri above)

are also penalised by the number of subjects N in the analyses. The value of the criteria

re�ects the distance between two probability distributions or models. It represents how

much information is lost when a given model is used over the true (unknown) model. The

selected model will be the model that yields the smallest criteria, that is, smallest distance.

The overall aim of model selection is to �nd a model that is the best possible approximation

of the data generation process. When the aim of modelling is to describe, measure and

quantify patterns, the chosen models need to be simple and interpretable. Restricted

availability of data, coding of variables, sample size, completeness of records, assumptions

made, necessity for variable and model selection, will all have an impact on the choice of

�nal model. Many assumptions are made throughout the model building exercise so that it

is both attractive, useful and manageable. [83] Although these assumptions are tested on

the data, the �nal estimates that one given model produces carry more uncertainty than it

seems or as expressed by the variance estimated around its parameters. Indeed, once the

�nal model is selected, it is generally accepted as the model that generated the data, and

the uncertainty related to model selection is not re�ected in the �nal model estimates or

inference. [84]

Cross-validation and bootstrap methods can be used for variable selection or act as a

validation for the selected model. By testing models on di�erent portions of the data, there

is stronger evidence for speci�c e�ects of the predictors on outcomes. Cross-validation

and bootstrap can also act as sensitivity analyses following any of the methods mentioned

above. The test error between the predicted model outcomes and the observed outcomes,

measured on test samples, is closer to the true prediction error than the training (or in-

sample or apparent) error, measured on the original data. The di�erence between the test

error and the training error is the optimism. The optimism re�ects how much better a

model predicts the outcome on the data it is trained than on an independent sample. A

nice feature of the Akaike information criterion (AIC) is that it embeds an estimation of

the test error, through estimating the optimism and adding it to the training error. [85]

1.3 Algorithms for functional form selection

We have introduced the concepts of variable and model selection. We insisted that a

model aims to remain interpretable and yet be a true re�ection of associations between

predictors, in the descriptive modelling framework. Mis-specifying the functional form of a

predictor may have an impact on the selection of its other functional forms, or of the e�ects
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of other variables' functional forms: this is called self-confounding and confounding. [86]

Hierarchical algorithms have been set up, looping through each variable in an iterative way,

to ensure the e�ects selected are correct, independently of the e�ects of other variables.

We focus on the following two algorithms, developed speci�cally for time-to-event models,

and based on di�erent approaches to model selection, within the spectrum of signi�cance

testing: the �rst algorithm or class of algorithms, developed by Royston and Sauerbrei, is

based on forward selection; [87�89] the second algorithm, o�ered by Wynant and Abra-

hamowicz, [90] is based on backward selection. Both algorithms are described in details

below, before their comparison in the simulation study presented in BMC Methods in Med-

ical Research. [91]

1.3.1 Royston and Sauerbrei algorithm

After describing fractional polynomials, [44] a class of polynomials diverse enough to rep-

resent a wide variety of �exible functions, Royston and Sauerbrei developed a series of

algorithms speci�cally for the optimal selection of fractional polynomials in multi-variable

model building. [76] Firstly, the close-test procedure concentrates on the selection of the

most appropriate degree of freedom for the polynomials. Then, they further extend to re-

stricted cubic splines, [88] to survival models in which time-varying e�ects are tested, [92]

and to interactions between covariates. [87]

These algorithms are neat proposals testing for complex e�ects of predictor variables, in

the presence of other covariates. The initial function selection strategy, the closed-test

procedure for function selection, is based on forward selection. The few steps are given

below, using restricted cubic splines of a continuous variable x :

1 Choose the most complex splines function of a continuous variable x permitted, say

with m knots, m + 1 degrees of freedom (dfs). m = 0 is the linear function. The

positions of knots are chosen based on subject-matter knowledge or by default (such

as centiles of the distribution).

2 The �rst model �tted is the null model, Mnull : a model that excludes the continuous

variable x .

3 Then, the model with the most complex splines function of x , Mm is �tted.

4 Mm is compared to Mnull , using a �2 test with m + 1 dfs. The signi�cance level � is

�xed a-priori.

5 If the test is non-signi�cant, x has no e�ect and is excluded.
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6 Otherwise, Mm is tested against a model with a linear e�ect of x , and so on until all

models with less knots than Mm are ruled out.

In the presence of many continuous factors, each are investigated in turn, from most to

least signi�cant (when evaluated in a model with only linear proportional e�ects). It means

the overall model building algorithm combines as many closed-test procedures as necessary

given the number of continuous factors. Binary or categorical factors are also considered

for inclusion in the model, and the overall signi�cance of their dummy variables is tested.

With time-to-event data, further models are tested for support from the data, speci�-

cally looking at time-varying e�ects. [92] In the Royston and Sauerbrei framework, time-

dependent e�ects are considered as would interactions be considered, although there is

an extra step relative to event-distribution. The tests for non-proportionality are there-

fore done in two steps, and only once the form of the main e�ect of each predictor is

established. First, the follow-up time is truncated at the mean time to death, and the

variable selection procedure described above is performed again on that selected subset of

patients. The purpose of this step is to check that no variable with short-term e�ect only

is forgotten. Second, using a stepwise forward approach, each variable in turn is tested for

time-varying e�ect, at the pre-speci�ed signi�cance level �TV , possibly di�erent to �.

Royston and Sauerbrei propose the MFPIgen algorithm that includes testing for interac-

tion, [87, 93] which we also applied on excess hazard models. That algorithm is devised

for general interactive e�ects between two predictors x1 and x2, possibly both continuous.

The following steps are applied:

1 Apply the algorithm above for the selection of main e�ects, forcing factors x1 and x2

into the model.

2 Calculate the multiplicative e�ects between the forms selected for x1 and x2, leading to

k interaction terms.

3 Fit �nal selected model with the k interaction terms included, and test for these com-

paring the likelihood ratio to a �2 with k degrees of freedom. Perform a joint test

of all dummy variables.

4 Check interactions by looking at e�ects in subgroups, and contrasting with the non-

parametric estimates.

5 When more than one interaction is tested, a forward stepwise procedure is used for

testing each interaction term in turn.
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We adapted this algorithm to the excess hazard model, such that the signi�cance level for

testing Mm vs. M0 for life table variables was set to � = 1, to take account of informative

censoring. We also adapted it to include tests for interactions between categorical (e.g.

stage at diagnosis) and continuous (e.g. age and year of diagnosis) variables. [91]

1.3.2 Wynant and Abrahamowicz algorithm

In the time-to-event �eld, Abrahamowicz and colleagues have been advocating and de-

signing model selection strategies that assess simultaneously non-linear and time-varying

e�ects: the three-step iterative conditional estimation. [86, 90, 94] The hierarchical method

for testing these e�ects simultaneously was tested on a �exible extension of the Estève

model for excess hazards. [58, 59] The rational for this strategy is that mis-modelling one

of the functional forms impacts the modelling of the other forms of the same e�ect and

of other e�ects. [86] A formal algorithm, based on an iterative backward elimination pro-

cedure, was proposed and compared to simpler, non-iterative approaches in Wynant and

Abrahamowicz. [90]

The strategy is based on sequential likelihood ratio tests, to identify the e�ect that has

least support from the data:

1 Fit the most complex model expected,MC , i.e. including all possible (or permitted, based

on subject-matter knowledge) non-linear and time-varying e�ects. The likelihood of

the model is kept in memory.

2 Each e�ect (non-linearity, non-proportionality, overall) is then removed, one at a time,

and the likelihood of the models �tted are kept in memory.

3 Perform likelihood ratio tests for each sub-model in comparison to the original model,

MC .

4 Discard the e�ect that leads to the highest p-value above the signi�cance level, �. This

de�nes the new most complex model, MC .

The algorithm stops when all e�ects yield p-values below �.

We adapted this algorithm to excess hazard modelling, such that the main e�ect of life

table variables are not tested for possible exclusion. We also incorporated interactive e�ects

between some of the predictors, and tested for these in the same way that the algorithm

tests for non-linearity or time-varying e�ects. [91]

In the following published journal article we compare both approaches and provide practical

guidance for researchers looking to model cancer (or indeed any disease) survival in the
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relative survival data setting for dealing with competing risks. Linear vs. non-linear e�ects

of continuous variables, time-dependent e�ects, and interactions between predictors are

investigated.

1.4 Comparison of model-building strategies for excess hazard

regression models in the context of cancer epidemiology,

Maringe et al., BMC Medical Research Methodology
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Abstract

Background: Large and complex population-based cancer data are becoming broadly available, thanks to
purposeful linkage between cancer registry data and health electronic records. Aiming at understanding the
explanatory power of factors on cancer survival, the modelling and selection of variables need to be understood
and exploited properly for improving model-based estimates of cancer survival.

Method: We assess the performances of well-known model selection strategies developed by Royston and
Sauerbrei and Wynant and Abrahamowicz that we adapt to the relative survival data setting and to test for
interaction terms.

Results: We apply these to all male patients diagnosed with lung cancer in England in 2012 (N = 15,688), and
followed-up until 31/12/2015. We model the effects of age at diagnosis, tumour stage, deprivation, comorbidity and
emergency presentation, as well as interactions between age and all of the above. Given the size of the dataset, all
model selection strategies favoured virtually the same model, except for a non-linear effect of age at diagnosis
selected by the backward-based selection strategies (versus a linear effect selected otherwise).

Conclusion: The results from extensive simulations evaluating varying model complexity and sample sizes provide
guidelines on a model selection strategy in the context of excess hazard modelling.

Keywords: Excess hazard models, Interactions, Non-linearity, Non-proportionality, Variable selection

Background
Population-based cancer datasets have become richer in
recent years. Improved completeness of key variables
and additional information from linkages with other
datasets (secondary care management data, specialised
registry data, treatment data) have both contributed to
enhance the quality and utility of data. Furthermore,
longstanding datasets make possible the analysis of long-
term trends and survival probabilities can be estimated
further away from the date of diagnosis.
Analysis of population-based cancer survival has greatly

benefitted from this data enrichment. However, when
modelling the effect of covariates on survival, special care
should be taken when assuming or relaxing assumptions

of a linear effect or an effect constant in time (the propor-
tional hazards -PH- assumption). Thus, a modelling strat-
egy is required. Aside from the time-to-event setting,
many strategies are developed for variable selection and
tests for non-linearity of continuous variables, traditionally
based on backward, forward or stepwise algorithms. In the
time-to-event field in general, and in population-based
cancer survival analyses in particular, less attention has
been devoted on the selection of the functional form of
predictor variables [1, 2]. Indeed, the effects of variables
are commonly assumed linear and constant in time, as-
sumptions likely violated for many predictors of cancer
survival, especially with long-term follow-up.
Machine learning algorithms have focussed on vari-

ables selection in scenarios where tens or thousands of
variables are available [3]. These methods mainly focus
on factor analysis and random survival forests [4]. In the
context of population-based data, the number of
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variables remains low or moderate, but the functional
forms of their effects (non-linear and/or time-
dependent), as well as their possible interactions need to
be carefully examined. Model building fits within three
different purposes: descriptive, explanatory and predict-
ive [5]. Our aim here is to describe, measure and quan-
tify accurately the effects of relevant (active) variables
while excluding spurious effects.
Some authors [6–8] have shown the importance of

taking account as well as testing both non-linearity and
time-dependency of effects simultaneously, when model-
ling time-to-event data, in order to get accurate model-
based estimates of survival.
We identify two model-building strategies, developed

relatively recently, that offer a systematic and compre-
hensive approach to the selection of predictors’ effects
for survival data. One is devised by Sauerbrei and col-
leagues using fractional polynomials (MFPT) [9] and fur-
ther adapted for restricted cubic splines (MVRS) [10]
and for the inclusion of interactions (MFPI and MFPI-
gen) [11, 12]. The second one is proposed by Wynant
and Abrahamowicz [13], and will be referred to as
W&A. These strategies are formulated and tested in the
general time-to-event context, in which overall mortality
patterns are modelled. Aiming to identify predictors of
cancer survival, we focus here on modelling the excess
hazard, which is the main quantity of interest in
population-based cancer studies [14–16].
Our first aim is to compare and illustrate the use of

these model-building strategies (namely MVRS, W&A),
in the context of excess hazard regression models. We
also propose an extension of those two strategies
(called adapted MVRS, aMVRS and adapted W&A,
aW&A) for handling interactions between prognostic
factors, and compare them to MFPIgen, intended for
use with observational data. The performance of these
strategies is evaluated in a simulation study mimicking
the cancer survival experience of 2000 lung cancer pa-
tients diagnosed in 2012 and followed up to the 31/12/
2015. We model the effects of explanatory factors on
lung cancer survival for the whole cohort of patients di-
agnosed with lung cancer in 2012. We provide some
guidelines over variable and effect selection, based on
the simulations.

Methods

a. The study context: modelling excess mortality

Our focus is on the excess mortality hazard and the
corresponding net survival. The excess mortality hazard
is the hazard experienced by cancer patients over and
above their background (i.e. expected) mortality hazard
due to causes other than the cancer under study. Net

survival is derived from the excess hazard and represents
the survival experienced by cancer patients under the as-
sumption that they could only die from cancer [17]. Net
survival therefore does not depend on the other causes
of death, and it is of interest for comparison purposes
between countries or periods within a country [18]. In
the absence of reliable information on the cause of
death, the expected mortality is estimated by the mortal-
ity observed in the general population from which pa-
tients come from (aka relative survival setting). These
life tables are typically defined by age, sex, calendar
period, but can also include additional variables such as
socio-economic status and ethnicity. Net survival can be
estimated non-parametrically [17] or through semipara-
metric [19] or fully parametric [20–24] excess hazard
regression models. Parametric and nonparametric ap-
proaches have their own advantages and disadvantages.
For the latter, when net survival needs to be estimated
in sub-groups, it reduces precision and may lead to un-
stable estimates. Although there is no assumption rela-
tive to the functional forms of effects of variables, these
effects cannot be estimated directly. Furthermore, the
consistent estimator of net survival proposed by Pohar-
Perme and colleagues [17] is unconstrained and thus
may show a non-decreasing behaviour in the tails, violat-
ing the basic assumptions of survival models. For para-
metric approaches, the challenges include (a) proper
modelling of the baseline excess hazard function, (b) in-
clusion of potential time-dependent effect of categorical
factors, (c) potential non-linear and time-dependent ef-
fects of the continuous variables as well as (d) interac-
tions between prognosis factors.
Here, we will use flexible regression models with re-

stricted cubic splines functions for modelling non-linear
and time-dependent effects on the log excess hazard
scale [23, 25]. The effects of the variables that define the
life tables need to be included in the modelling of the
excess hazard to produce consistent net survival esti-
mates [17, 20]. Thus, at individual level, the excess mor-
tality hazard λE(t, x) is linked to the overall λ(t, x) and
expected (population) mortality hazards λP(a + t, y + t, z)
as follows:

λ t; xð Þ ¼ λE t; xð Þ þ λP aþ t; yþ t; zð Þ;

where z is a subset of the set of variables x, correspond-
ing to the variables defining the life tables, in addition to
age a + t and year y + t (a and y being the age at and year
of diagnosis, respectively). The population mortality haz-
ard is considered to be known, and we are interested in
estimating λE(t, x) at time t after diagnosis.
In a general form, the excess hazard regression models

considered in our work could be written as follows with
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two prognostic variables x1, continuous, and x2, categor-
ical (with J categories, j = 1, …, J):

λE t; xð Þ ¼ λ0 tð Þ exp β1 tð Þ� f x1ð Þ þ
XJ

j¼2

β2; j tð Þ�I x2¼ jf g

 !
;

where λ0(t) is the baseline excess hazard (defined by
using a spline function on the log scale), f(x1) = α1x1 if x1
is modelled with a linear (L) effect, and f a spline func-
tion of x1 if x1 is modelled with a non-linear (NL) ef-
fect; β1(t) and β2, j(t) are spline functions of t if x1 and x2
are modelled with time-dependent (TD) effects (the
more complicated case), or β1(t) = β1 and β2, j(t) = β2, j,
j = 1, …, J if not (i.e. PH, the simplest case). For the cat-
egorical variable x2, we considered a “joint” parameter-
isation of its effect: either all J − 1 dummy variables are
time-dependent, or none. To simplify notation later, we
define β2ðtÞ�gðx2Þ ¼

P J
j¼2 β2; jðtÞ�Ifx2¼ jg ; lastly Ifx2¼ jg

defines an indicator variable (equal to 1 when x2 = j, 0
otherwise).

b. Model selection strategies

The MVRS strategy
MVRS is based on an iterative forward selection of vari-
ables and increasingly complex functional forms of ef-
fects [10]. The model-building proceeds in three steps:
(a) the first step focusses on the presence of a variable’s
effect, and its possible non-linearity in the case of con-
tinuous predictors, while assuming proportionality of
hazards for all variables. The iterative process loops
through all variables from most to least significant, until
no effect is removed or added. (b) In the second step,
non-proportionality of hazards is explored by restricting
the follow-up time to the time until the median time of
observed events on which step (a) is performed and add-
itional effects may be retained. (c) The third step con-
sists of testing the non-proportionality of all effects
selected in (a) and (b) in a forward stepwise fashion. The
likelihood ratio test is used for evaluating significant ef-
fects, with a pre-fixed significance level (usually 5%).

The W&A strategy
W&A advocate for the use of an iterative backward
elimination of non-significant non-linear and time-
dependent effects [13]. From the most complex model,
including all possible non-linear and time-dependent ef-
fects, each non-linear and time-dependent effect is
tested in turn using likelihood ratio test, and the effect
corresponding to the highest p-value (above 5%) is re-
moved. From this new model, we test again each
remaining non-linear and time-dependent effect in turn,
and repeat those steps until all effects kept are

significant. The final model is found when all tests yield
p-values under 5%.
There are several structural differences in the ap-

proaches described above. Firstly, W&A advocates for
simultaneous tests of non-linear and time-dependent ef-
fects, and the effects are removed one by one, starting
from the smallest. By contrast, the MVRS strategy estab-
lishes a hierarchy and investigates possible non-linear ef-
fects prior to testing time-dependency of the selected
effects. The simultaneous tests of effects in W&A may
influence subsequent selections of non-linear and/or
time-dependent effects. In MVRS, the selection of non-
linear effects occurs in the first step, which may well in-
fluence the later selection of time-dependent effects, but
the selection of time-dependent effects will not affect re-
tention of non-linear effects. Secondly, the initial models
considered are different and lead to backward (in the
case of W&A) or forward (MVRS) selection of variables.

Strategies in the relative survival setting
In both strategies, the main life table variables (age, sex,
year and deprivation) are forced into the models, as recom-
mended for excess hazard regression modelling [14, 17, 20].
For the non-life table variables linearity and time-
dependency and overall effects are tested so the variables
could be completely removed from the set of predictors.

Extensions of the strategies for testing for interactions
The authors of MVRS also consider interactions be-
tween variables retained, once the main effects have
been selected [11]. MFPI and MFPIgen are defined to
consider categorical-by-continuous interactions and
continuous-by-continuous interactions respectively, even
though (from our understanding) they do not test for
non-proportionality of the interaction terms [9].
We propose to adapt the original W&A and MVRS

strategies to include tests for the form and presence of
interactions in the same fashion that they already test
for the functional form and inclusion of each variable.
There are three types of possible interactions: between

two continuous variables, between a continuous and a
categorical variable, and between two categorical vari-
ables. We focus on continuous–by-categorical inter-
action, and the strategies will need to test whether or
not the interaction is needed and if it is time-dependent.
The general form of the excess hazard model is as fol-

lows, with x1 continuous and x2 categorical (with J cat-
egories j = 1, …, J):

λE t; x1; x2ð Þ ¼ λ0 tð Þ exp�β1 tð Þ� f x1ð Þ þ β2 tð Þ�g x2ð Þ

þβ3 tð Þ� f x1ð Þ�g x2ð ÞÞ;

with all functions as defined above.
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The adapted version of MVRS, aMVRS, tests for each
interaction in the three steps presented earlier: (a) joint
test of the interaction factors, i.e. test for β3 = 0; (b) In
the restricted follow-up time (until the median time of
observed events) significance test for β3 = 0; (c) If β3 ≠ 0
in either (a) or (b), test time-dependence of the inter-
action, i.e. β3(t) = β3.
The adapted version of the W&A algorithm, aW&A,

tests for each interaction in the same way it tests for the
effects of main variables: it first tests for time-dependent
effect of the interaction, i.e. β3(t) = β3, and then, if a
time-fixed effect is favoured, it tests for the main effect
of the interaction β3 = 0.
The MFPIgen algorithm only considers interactions in

a final step, after selecting the main effects of variables
in the usual steps (a)-(c). It tests for β3 = 0. In all algo-
rithms the forms of the interactions, f and g are defined
by the form of the main variables x1 and x2 as they are
modelled when the interaction is considered.
In the case of interactions with categorical variables, the

presence of the interaction could be tested in two different
ways: overall (called joint test [26]), or each level of the
interaction separately. Here we only test the interactions
as one effect, such that all factors relating to one inter-
action would be removed/included when testing for their
inclusion. In the algorithms, the user specifies which inter-
action terms are worth investigating. Specific significance
levels for the tests related to interactions may be chosen
as in MVRS. Additional file 1 details how the algorithms
are adapted to testing for interactions.

c. Simulation of biologically plausible lung cancer
survival data

Data generation and simulations design
We use the observed survival time and vital status of the full
cohort of lung cancer patients (N = 17,597), evaluated on the
31st December 2015, to obtain the regression coefficients of
an excess hazard regression model. The large sample size en-
ables detection and precise estimation of small effects. These
coefficients are used for simulating cancer survival times, as
detailed in formulas (A)-(D) below. From this excess hazard
regression model, the cancer survival time Tc is generated
using the inverse transform method [27, 28].
For the data design, we randomly extract 2000 men diag-

nosed with lung cancer in England in 2012 from the Eng-
lish population-based cancer registry, among those with
valid information on stage at diagnosis. We kept the infor-
mation on their age at diagnosis (continuous variable), their
level of deprivation (categorical variable with 5 levels of in-
creasing deprivation measured by the income domain of
the Index of Multiple Deprivation [29]), and their stage of
cancer at diagnosis (categorical variable with 4 levels of

increasing severity based on the Tumour, Nodes, Metastasis
classification [30]). The relatively small sample size for
population-based data will enable us to test the practical
performances of the algorithm in a setting with low censor-
ing rate (15%) but small number of patients (relative to
standard population studies). We repeated this for a larger
sample of 5000 cancer patients to study the sensitivity of
the model selection strategies on the number of events. By
default, all results are presented for the samples of 2000 pa-
tients, except when clearly mentioned.
We devise four simulation scenarios, representing increas-

ingly complex excess hazard regression models (see Box 1):

(A)Model with linear and proportional effect of age,
and proportional effects of stage and deprivation,
without interaction

λE t; age; stage; depð Þ ¼ λ0 ln tð Þð Þ� exp

α�ageþ
X

i¼2:4
βi�Istage¼i þ

X
j¼2:5

γ j�Idep¼ j

� �
:

(B) Model with linear and proportional effect of age,
and proportional effect of stage, deprivation and an
interaction between age and stage

λE t; age; stage; depð Þ ¼ λ0 ln tð Þð Þ� exp

ðα�ageþ
X

i¼2:4
βi�Istage¼i þ

X
j¼2:5

γ j�Idep¼ j

þ
X

k¼2:4
αk�age�Istage¼kÞ:

(C)Model with non-linear and time-dependent effects
of age, time-dependent effects of stage, and propor-
tional effects of deprivation, without interaction

λE t; age; stage; depð Þ ¼ λ0 ln tð Þð Þ� exp�
αþ α�� ln tð Þð Þ� f ageð Þ þ

X
i¼2:4

βi þ β�i � ln tð Þ� ��Istage¼i

þ
X

j¼2:5
γ j�Idep¼ jÞ:

(D)Model with non-linear and time-dependent effects
of age, time-dependent effects of stage, proportional
effects of deprivation and a proportional interaction
between age and stage

λE t; age; stage; depð Þ ¼ λ0 ln tð Þð Þ
� exp

�
αþ α�� ln tð Þð Þ� f ageð Þ þ

X
i¼2:4

βi þ β�i � ln tð Þ� ��Istage¼i þ
X

j¼2:5
γ j�Idep¼ j

þ
X

k¼2:4
f ageð Þ�Istage¼kÞ:

In the formulas above, associated to scenarios A-D, f
denotes a restricted cubic splines function with 2 de-
grees of freedom, i.e. 1 internal knot placed at the
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median age of the patients’ cohort, λ0(ln(t)) is a re-
stricted cubic spline function of time, with up to 3 de-
grees of freedom, i.e. 2 internal knots placed at the
tertiles of the distribution of times to death.
Time to death from other causes Tp is generated as-

suming a piecewise exponential hazard obtained from
general population life tables detailed by month of age,
sex, calendar month and deprivation level [20]. The cen-
soring time C is evaluated on 31/12/2015. The final ob-
served follow-up time for each individual is defined as
T = min (Tc, Tp, C), with the corresponding vital status
indicator δ (i.e., δ = 0 for censored observations and δ =
1 for death).
For each scenario (A-D), we simulate 250 datasets, and

we utilise the survsim command in Stata [28] for
simulating cancer survival times in the scenarios de-
scribed above. Close to 90% of patients die in the first
four years after diagnosis, classifying lung cancer in the
poor-prognosis cancers with low censoring rate.

Analysis of simulated data
The classical algorithms, W&A and MVRS, are run on
scenarios A and C, while the algorithms extended to
testing for interactions, aW&A and aMVRS, are run on
scenarios B and D. MFPIgen is also tested on scenarios
B and D. All excess hazard regression models are fitted
using the strcs command in Stata [25], as described in
section 2.a.

d. Indicators used for comparing the model-building
strategies

One additional binary variable not contained in the life
tables and absent from the original simulation models is
added when testing the model-building strategies. For
each scenario, we compare the models selected by each
strategy to the original effects used in the simulation
with the following indicators.
Firstly, we summarise the proportions of models that

select each variable with their non-linear or time-
dependent effects for each algorithm. We also study the
confounding and self-confounding effects: the impact of
mis-specifying one of the components (TD, NL, interac-
tions) of the functional form of a covariable on its other

components or on the selection of such components for
other variables. We also calculate the proportion of se-
lected models that contain or are exactly the simulated
models for each strategy.
Furthermore we provide sensitivity (true positive) and

specificity (true negative) values, as defined below, look-
ing at the number of correctly selected effects and the
number of correctly unselected effects over the number
of active and inactive effects [31]. Both sensitivity and
specificity tend to reach 1 for a good estimator:

Se ¼ #correctly selected effects
#active effects

Sp ¼ #correctly unselected effects
#inactive effects

Then, for each model building strategy we plot the
average of the 250 stage-specific cohort net survival
curves and compare them to the true net survival curve.
We quantify this comparison by calculating the propor-
tion of the Area Between Curves through time, pABC-
time [32]. pABCtime represents the area between each
individual net survival curve (or the average of the 250
net survival curves) and the true generating net survival
curve (the reference function). It is expressed as a pro-
portion of the area under the true net survival curve
(area under the reference function). A pABCtime of 0 %
means that the cohort net survival estimates under in-
vestigation are in perfect agreement with the true initial
observed effect.
For any function f, let us assume that the true generat-

ing function f � and the estimated function f̂ cross at
time t∗, ABCtime is defined as

ABCtime ¼
Z t�

0
f � uð Þdu−

Z t�

0
f̂ uð Þdu

����
����þ

Z T

t�
f � uð Þdu−

Z T

t�
f̂ uð Þdu

����
����;

and pABCtime as

pABCtime ¼
R t�
0 f � uð Þdu− R t�0 f̂ uð Þdu

��� ���þ R T
t� f � uð Þdu− R Tt� f̂ uð Þdu

��� ���R T
0 f � uð Þdu

:

pABCtime is also calculated for the excess hazard
curves estimated for given patients’ factors and for the
effects of age, deprivation, and stage comparing the pos-
sibly time-dependent estimated HR curves to the origin-

ally simulated HR. In such instances, f̂ represent the

excess hazard, f̂ ðuÞ ¼ λEðu; age; stage; depÞ or excess

hazard ratio, f̂ ðuÞ ¼ expðβ̂ðuÞÞ.
We also provide bias of effects, at specific time points

tk, which are the average bias over all samples (M = 250)
between the estimated (possibly time-dependent) effects
of age, stage and deprivation and their simulated effects.

Box 1 Summary of the effects simulated

Age Stage Deprivation Age*Stage

A L-PH PH PH –

B L-PH PH PH PH

C NL-TD TD PH –

D NL-TD TD PH NL-PH

L Linear, NL Non-linear, TD Time dependent, PH Proportional hazards
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We specify monthly tk, from diagnosis through to the
end of follow-up (4 years):

bias dβ tkð Þ
� �

¼ 1
M

XM

k¼1
β tkð Þ−dβ tkð Þ
� �

:

e. Application

We apply the five model-selection strategies (MVRS,
W&A, MFPIgen, aMVRS, and aW&A) to our full cohort
of 15,688 men diagnosed with non-small cell lung cancer
in 2012 in England and followed-up until 31/12/2015.
All patients had a minimum potential follow-up of 3
years. Patient’s information on age, deprivation, survival
time and vital status is enhanced by information on
stage at diagnosis [33] coded using the TNM system (I-
IV), emergency route to diagnosis (binary variable) [34],
comorbidity status defined after ascertainment of hos-
pital episodes in the 6 months to 6 years prior to diagno-
sis (binary variable) [35]. The model building strategies
test the main effects as well as interactions between age
at diagnosis and all other covariates.
All model building strategies yield very similar models

(Table 1): no main effect is removed, time-dependent ef-
fects of stage, comorbidity and emergency presentation
are kept, and when tested, interactions between age and
comorbidity is removed by the MVRS algorithm and age
and comorbidity and age and emergency presentation by
the aW&A and MFPIgen algorithms. Non-linear time-
dependent effects of age are retained by the W&A and
aW&A algorithms in comparison to linear time
dependent effects of age retained in all other model se-
lection algorithms.
Figure 1 illustrates the impact the different selected in-

teractions and linearity/non-linearity of age have on the
estimated net survival probabilities for two patients, aged

60 and 80 respectively with the values of other variables
set (i.e. stage III, non-emergency presentation, no comor-
bidity, least deprived). The curves for W&A and MVRS
overlap. The selection of interactions in the model im-
pacts the estimated individual excess hazard and cancer
survival: there are smaller differences in excess hazard be-
tween patients aged 60 and 80 when no interactions are
modelled, compared to when interactions are considered.
We super-imposed the non-parametric estimator of net
survival (red curves) estimated for the 165 patients aged
]50–70[ years (mean age 64) and the 130 patients aged
]75–85[ years at diagnosis (mean age 79), with non-
emergency presentation, stage III disease and from the
least deprived group of the population. The non-
parametric net survival estimates are generally lower than
all model-based estimates from 1 year (age 80) and 2.5
years (age 60) after diagnosis. At the start of follow-up, the
non-parametric estimates tend to resemble the model-
based estimates without interaction terms.
These differences at individual level do not however

impact the overall cohort estimate of net survival as
shown by the hardly distinguishable curves in Fig. 2,
similar to the non-parametric estimator of net survival.

Results
The four simulated scenarios represent increasingly
complex but realistic excess hazard models, derived from
observed records of lung cancer patients. To assess how
realistic these scenarios are, we compare the model-
based cohort estimates of net survival (using the model
used for each simulated scenario) to the non-parametric
Pohar-Perme estimates (Additional file 2) on the ori-
ginal, observed data. All scenarios show reasonable
stage-specific cohort net survival estimates. Scenarios A
and B under-estimate net survival until 12–24months
for patients diagnosed at stages I-III because of the

Table 1 Statistically significant effects of selected prognostic factors identified with each of the five alternative model-building strategies

Variables aMVRS MVRSa aW&A W&Aa MFPIgenb

Age L-TD L-TD NL-TD NL-TD L-TD

Stage TD TD TD TD TD

Deprivation PH PH PH PH PH

Comorbidity TD TD TD TD TD

Emergency diagnosis TD TD TD TD TD

Age*Stage PH – PH – PH

Age*Deprivation PH – PH – PH

Age*Comorbidity – –

Age*Emergency diagnosis PH – –

L Linear, NL Non-linear, TD Time dependent, PH Proportional hazard
aInteractive effects not tested
bMain effects from MVRS strategy before testing for interaction
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simple effects modelled. Scenarios C and D include non-
proportional effects of the main factors and estimate
stage-specific cohort net survival very neatly. The char-
acteristics of the patients used in the simulations are
presented in Additional file 3. Patients in stage IV com-
prise half of the sample. There is a decreasing average
age with increasing stage at diagnosis. The distribution
of patients by deprivation group is skewed towards more
deprived groups, and a third of the patients have the
trait of the extra binary variable.

(a) Performances of the model-building strategies in
selecting variables and their effects

Original algorithms – scenarios A and C (no interaction)
In scenario (A), both algorithms led to almost identical
selection of effects (Fig. 3, Table 2). The only difference
is the higher proportion of time-dependent effects of
the extra variable, 5.6% vs. 0.8%, selected with W&A
compared to MVRS. In scenario (C), albeit small there
are more differences in the effects selected between

Fig. 1 Excess hazard and survival curves estimated for two patients1 aged 60 and 80 years at diagnosis: impact of model selection.
1patient with the following characteristics: stage III, non-emergency presentation, no comorbidity, least deprived. Plain red curves show the non-
parametric estimator of net survival for patient aged 50–70 (upper curve) or 75–85 (lower curve) years at diagnosis

Fig. 2 Net survival for the cohort of 15,688 men with lung cancer
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MVRS and W&A. W&A tends to (rightly) select more
models that include time-dependent effects of stage
(100% vs. 96.8%) and age (40.4% vs. 36.4%). Non-linear
effects of age are more often selected by MVRS (45.2%)
than by W&A (34.4%). Overall, the effect of stage is al-
ways rightly kept in the final selected models, by all al-
gorithms, and the extra binary variable appears
(wrongly) in only 7.2–8.8% of models (Fig. 3, Additional
file 4).

All selected models contain the true simulated model
for scenario A but the proportions drop to 69.6%
(MVRS) and 70.4% (W&A) of models that are the exact
simulated model. Similarly in the slightly more complex
scenario (C), 10.8% of models contain, and 8.8% of
models are, the true model using MVRS model selection,
vs. 6.0 and 5.2% of W&A models, respectively (Table 2).
This drop in proportions between scenarios A and C re-
flects the high proportion of models with a time

Fig. 3 Variables and effects (linear/non-linear, proportional/time-dependent) selected: scenarios A and C, samples of 2000 (plain line) and 5000
(dashed line) patients
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dependent effect of linear age, in other words the low
proportion of models with a time-dependent effect of
non-linear age. This is explained by the small sample
size and the relatively small magnitude of the non-linear
and time-dependent effects of age (Additional file 5).
Higher number of lung cancer patients leads to higher
proportions of selected models that contain or are
exactly the generated model (Table 2) due to higher pro-
portions of models capturing the non-linearity and time-
dependency of age (Fig. 3).

Sensitivity and specificity are high for scenario A, and
are not impacted by an increasing sample size. They are
relatively high for scenario C, with a slight increase in
sensitivity (0.74 to 0.78–0.80) with an increasing sample
size (Table 2).

Algorithms adapted to models with interactions –
scenarios B and D
The adapted (aMVRS, aW&A) and MFPIgen algorithms
correctly keep the main effects in the final models

Table 2 Summary of models and variables selected by each algorithm, on 250 samples of N = 2000 and N = 5000 patients: scenarios A-D

N = 2000

Overall model Sensitivity Specificity

Contained Correctly selected Almost correctly selected* mean min max mean min max

A p (%) 95% CI** p (%) 95% CI** p (%) 95% CI**

MVRS 100.0 100 100 69.6 64.0 75.2 0.97 0.67 1.00 0.89 0.75 0.92

W&A 100.0 100 100 70.4 64.8 76.0 0.98 0.67 1.00 0.89 0.67 0.92

C

MVRS 10.8 7.0 14.6 8.8 5.3 12.3 82.8 78.2 87.4 0.74 0.60 0.80 0.88 0.70 0.90

W&A 6.0 3.1 8.9 5.2 2.5 7.9 91.6 88.2 95.0 0.74 0.60 0.80 0.88 0.60 0.90

B

aMVRS 35.6 29.8 41.5 14.4 10.1 18.7 53.6 47.5 59.7 0.80 0.50 1.00 0.85 0.45 0.91

MFPIgen 29.6 24.0 35.2 14.4 10.1 18.7 66.8 61.1 72.6 0.81 0.50 1.00 0.88 0.64 0.91

aW&A 35.2 29.4 41.0 14.8 10.5 19.1 45.2 39.1 51.3 0.79 0.50 1.00 0.84 0.36 0.91

D

aMVRS 2.4 0.5 4.3 1.6 0.1 3.1 16.0 11.5 20.5 0.56 0.50 0.83 0.80 0.33 0.89

MFPIgen 3.2 1.1 5.4 2.8 0.8 4.8 36.8 30.9 42.7 0.59 0.50 0.83 0.85 0.56 0.89

aW&A 4.8 2.2 7.4 1.6 0.1 3.1 23.2 18.1 28.4 0.57 0.50 0.83 0.75 0.22 0.89

N = 5000

Overall model Sensitivity Specificity

Contained Correctly selected Almost correctly selected* mean min max mean min max

A p (%) 95% CI** p (%) 95% CI** p (%) 95% CI**

MVRS 100.0 100 100 56.4 50.4 62.5 0.97 0.67 1.00 0.88 0.67 0.92

W&A 100.0 100 100 68.0 62.3 73.7 0.97 0.67 1.00 0.89 0.67 0.92

C

MVRS 46.0 39.9 52.1 40.8 34.8 46.8 78.8 73.8 83.8 0.78 0.60 0.80 0.88 0.60 0.90

W&A 29.2 23.7 34.8 26.0 20.7 31.4 87.6 83.6 91.6 0.80 0.60 0.80 0.88 0.60 0.90

B

aMVRS 67.9 62.2 73.6 37.3 31.5 43.3 55.8 49.7 61.9 0.80 0.50 1.00 0.87 0.64 0.91

MFPIgen 28.0 22.5 33.5 14.4 10.1 18.7 65.6 59.8 71.4 0.87 0.50 1.00 0.85 0.36 0.91

aW&A 69.2 63.6 74.8 37.6 31.7 43.5 55.6 49.5 61.7 0.86 0.50 1.00 0.82 0.09 0.91

D

aMVRS 34.4 28.6 40.2 13.6 9.4 17.8 24.8 19.5 30.1 0.66 0.33 0.83 0.79 0.33 0.89

MFPIgen 28.0 22.5 33.5 18.4 13.7 23.1 35.6 29.8 41.5 0.69 0.50 0.83 0.84 0.56 0.89

aW&A 22.0 17.0 27.1 13.6 9.4 17.8 34.8 29.0 40.6 0.65 0.50 0.83 0.73 0.00 0.89

* model C: relaxed NL and TD of age; B: relaxed interaction age*stage; D: relaxed NL and TD of age

** formula for the 95% confidence intervals, with z = 1.96 and w = 250:
p̂þ z2

2w
1þz2

w

� z
1þz2

w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1−p̂Þ

w þ z2
4w2

q
, using the Wilson approximation [36]
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(Fig. 4). 28% of models selected using aW&A identify
the non-linearity of age in D, whereas 34–40% of the
aMVRS and MFPIgen algorithms retain the non-
linearity of age. The aW&A algorithm tends to keep
higher proportions of time-dependent effects of
deprivation, of the binary variable and of interactions
than the other two algorithms. aMVRS and aW&A also
lead to 10–21% of interactions wrongly selected. The
proportions of the interaction age-stage rightly kept are
at or just over 30% for scenario B and up to 71%
(aW&A) for scenario D. The MFPIgen algorithm is able
to keep in valid interaction in 29.6% (B) and 50.8% (D)
of the final models while spurious interactions are
rejected in over 94% of final models.
Non-linearity and time-dependency of age in scenario D

are retained in just over a quarter of models selected by
aW&A, 6–20% less than the proportions of models se-
lected by aMVRS and MFPIgen that contain these charac-
teristics of age. Increased sample size to N = 5000 is
beneficial for raising the detection of the age-stage inter-
action in B for aMVRS (68.3%) and aW&A (69.2%), and

raising detection of non-linearity and time-dependency of
age in D for all three algorithms (Fig. 4).
The proportions of models that contain the true gen-

erating model lie between 29.6% (MFPIgen) and just
over 35% (aMVRS and aW&A) for scenario B, and be-
tween 2.4% (aMVRS) and 4.8% (aW&A) for scenario D.
For scenario B, those proportions correspond to the
proportion of models with an age by stage interaction,
and therefore increase with increasing sample size for
aMVRS (74.5% for B and 43.5% for D when N = 5000)
and aW&A (72.3% for B and 17.4% for D when N =
5000). For scenario D, this is the proportion of models
with an interaction between a non-linear effect of age
and stage. Only 14.4–14.8% (scenario B) and 1.6–2.8%
(scenario D) are the exact simulated models. These
proportions increase to 16–36.8% (scenario D) when
small effects are not considered, due to the relatively
small sample size, or when the sample size is increased
to 5000.
Sensitivity and specificity are around and over 0.8 for

scenario B and are stable to increased sample size.

Fig. 4 Variables and effects (linear/non-linear, proportional/time-dependent) selected: scenarios B and D, samples of 2000 (plain line) and 5000
(dashed line) patients

Maringe et al. BMC Medical Research Methodology          (2019) 19:210 Page 10 of 18



Sensitivity is just over 0.5, and specificity between 0.75
and 0.85 for scenario D, with slight improvement in sen-
sitivity with increased sample size (Table 2).

Impact of mis-selection of effects on other effects
In scenario (A) and (C), W&A seems to suffer more from
confounding and self-confounding (Additional file 4). For
example, when the extra binary variable is selected in (C),
the proportion of models with time-dependent effects of
deprivation and/or age are hardly changed with MVRS, but
they increase with W&A to 16.7% (+ 12.3%) and
55.6% (+ 15.2%) respectively. (Additional file 4).
There are hardly any confounding or self-confounding

effects in the MFPIgen algorithm. Mis-specification of
time-dependent effects only has minimal confounding
impact on the other effects selected using the aMVRS al-
gorithm. This is due to the two-step structure of the al-
gorithm (Additional file 4).
In the aW&A algorithm, selection of complex forms

(e.g. time-dependent effect of a variable) results on the se-
lection of more complex effects of some other factors or
additional selection of interaction terms (Additional file 4).

(b) Accuracy of the non-linear and time-dependent
effects estimated

Original algorithms – scenarios A and C (no interaction)
Figure 5 presents the effects estimated by the models se-
lected following the MVRS or W&A algorithms together
with their averaged effects (black line) compared to the
true generating effect (red line). All sample sizes are
N = 2000 patients.
Although there are varied sizes of effect estimated as

shown by the width of the boxes (effects estimated as
fixed in time) and the varied shapes of the individual ef-
fects, grey curves (time-dependent effects estimated), the
average effects generally agree with the generating effects
for all strategies, and lead to comparable estimated ef-
fects for MVRS and W&A. For both strategies, the ef-
fects of age are well captured for scenario (A) and (C):
pABCtime values are 0.3% (A), 0.3% (C, MVRS) and
0.2% (C, W&A), Table 3.
The mixture of time-fixed and time-dependent effects

of stage estimated in the selected models for scenario
(A) leads to a very good estimation of the average effect
compared to the generated effect for both strategies.
Note the graphs present log hazard ratios for better il-
lustrating the differences, but pABCtime values are cal-
culated on the areas between the hazard ratio curves.
pABCtime values for the hazard ratios are very similar
between algorithms, highest for stage IV (2.5%), inter-
mediate for stage II (2.2–2.4%) and lowest for stage III
(1.7%). In scenario (C) all estimated effects are time-
dependent, and most shapes agree with the original

effect. pABCtime values are slightly lower for the W&A
algorithm compared to MVRS: 2.3% vs. 2.4% at stage II
vs. I, 0.9% vs. 1.2% at stage III vs. I, and 1.8% vs. 2.1% at
stage IV vs. I.
The effects of deprivation are well estimated by all

models selected by all algorithms: pABCtime is below
1.2% for all deprivation categories, and in both scenarios
A and C.
More complex effects of the extra binary variables are

captured by W&A, in both (A) and (C) leading to
slightly higher pABCtime values: 0.6% vs. 0.3% (A) and
0.12% vs. 0.08% (C).

Algorithms adapted to models with interactions –
scenarios B and D
Figure 6 displays the effects estimated by the selected
models (250 grey curves) following the aMVRS, MFPI-
gen and aW&A algorithms together with their averaged
effects (black line) compared to the true generating ef-
fect (red line). The effects of age are now split by stage
at diagnosis, since an interaction age-stage is simulated.
For all selected models, the average HRs for age seem

to generally underestimate the simulated effects for
stages I-II, in scenario B and D. These are reflected by
larger stage-specific pABCtime values for age: 2.4–5.9%
(stages I-II) versus 0.01%-2.2 (stages III-IV, Table 3).
The time-dependency of age, simulated in scenario D, is
not very strong, hence the many models that selected a
time-fixed effect for age. Graphs of the non-linear effects
of age at given times after diagnosis are presented in
Additional file 5.
The effects of stage, deprivation (Fig. 6) and the add-

itional binary variable (Additional file 6) are well repro-
duced by the average effects obtained from the selected
models. The pABCtime values can hardly distinguish be-
tween the performance of the model-selection algo-
rithms (Table 3). The complexity of models selected by
the aW&A algorithm does not impact the overall mea-
sures of effects and their adequacy to describe the true
generating effects. Indeed, none of the modelled time-
dependent effects are strong, but the results presented
here shed some light in terms of the sensitivity of the
different model selection tools.

(c) Estimation of the cohort net survival

For all model-building strategies, the estimated stage-
specific cohort net survival curves lie around the original
estimated cohort net survival curves, for all subgroups
defined by stage at diagnosis for scenarios A-D (Fig. 1).
All pABCtime values are below 1.7% (Table 3).
The outcome of choice – net survival – is well repro-

duced by models selected by each strategy and provides
reassurance that the experience of cancer survival for
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the cohort is well captured by the models. pABCtime
values calculated using the non-parametric estimator of
net survival provides 0.3–8% higher values than for the
model-based survival curves (Additional file 7).
The bias reflects the varying amount of mis-

specification for each of the three algorithms. For

example, higher proportions of time-dependent effect of
the binary variables using W&A and aW&A lead to
higher standardised bias for that variable and that algo-
rithm (Additional file 8). The minimum in the time-
varying bias is reached at around 6months after diagno-
sis for all effects, when most time-dependent effects

Fig. 5 Generating (red line), estimated (grey lines - time varying, box-plot - time fixed) and averaged (black dashed line) hazard ratio for age,
stage, and deprivation: scenario A and C
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cross the true effect. At that point, the value reached re-
flects the amount of bias due to the estimated fixed
effects.

Discussion
Motivated by the growing access to data on explana-
tory factors of cancer survival, we compared the prac-
tical use of several model selection strategies. We
adapted well-recognised algorithms to the context of
excess hazard models, including extensions to deal
with 2-way interactions. Simulations, based on ob-
served realistic scenarios, showed the ability of all
strategies to yield proper estimation of the cohort net
survival curve despite varying forms of the retained
and estimated effects.

Several aspects of model selection deserve further dis-
cussion. Additionally, we aim to provide some guidelines
for variable selection in the context of cancer survival
epidemiology.

Subject matter knowledge
A breadth of modelling strategies exists, but very few
strategies have been compared as highlighted by STRA
TOS Topic Group 2 [37]. We aimed here to look at the
impact that model selection strategies may have on in-
ference based on the final selected model. Subject matter
knowledge is needed all through model building, such as
in decisions relative to the selection of the variables that
will be tested, and the allowed forms of these variables
[38], as well as how strict we are on keeping/dropping a
variable or functional form. In observational studies, we

Table 3 pABCtime between the mean of the individual effects or cohort net survival estimated using the selected models and the
true generating effects/cohort net survival, by scenario (A-D), and model selection strategy

Cohort net survival Stage A B C D HR age Stage A B C D

MVRS / aMVRS I 1.67% 1.62% 0.79% 1.09% MVRS / aMVRS I 0.34% 2.43% 0.35% 4.40%

II 0.94% 1.60% 0.99% 1.10% II 3.56% 5.86%

III 0.56% 0.53% 0.16% 1.37% III 0.01% 0.73%

IV 0.36% 0.36% 0.11% 0.31% IV 0.13% 2.15%

W&A / aW&A I 0.05% 1.63% 0.04% 0.89% W&A / aW&A I 0.33% 2.35% 0.23% 2.88%

II 0.20% 1.60% 0.01% 1.00% II 3.45% 4.13%

III 0.06% 0.54% 0.94% 1.18% III 0.02% 0.61%

IV 0.13% 0.37% 0.68% 0.08% IV 0.12% 1.26%

MFPIgen I 0.09% 0.08% MFPIgen I 2.55% 2.73%

II 0.13% 1.11% II 3.76% 3.92%

III 1.18% 0.99% III 0.01% 0.63%

IV 0.21% 0.71% IV 0.06% 1.86%

HR stage Stage A B C D HR deprivation Deprivation A B C D

MVRS / aMVRS I MVRS / aMVRS 2 1.20% 0.03% 0.34% 1.38%

II 2.25% 3.30% 2.44% 1.01% 3 0.23% 0.03% 0.39% 0.75%

III 1.71% 1.75% 1.20% 2.96% 4 0.93% 0.40% 0.21% 1.24%

IV 2.49% 1.93% 2.15% 5.49% 5 0.13% 0.26% 0.53% 1.36%

W&A / aW&A I W&A / aW&A 2 1.20% 0.02% 0.26% 1.20%

II 2.35% 3.36% 2.32% 1.71% 3 0.27% 0.01% 0.35% 0.57%

III 1.66% 1.86% 0.85% 3.42% 4 0.95% 0.23% 0.12% 0.84%

IV 2.52% 2.08% 1.80% 5.24% 5 0.13% 0.50% 0.28% 1.20%

MFPIgen I MFPIgen 2 0.03% 1.81%

II 3.25% 1.39% 3 0.02% 1.02%

III 1.67% 3.36% 4 0.44% 1.11%

IV 1.83% 5.37% 5 0.23% 1.38%

HR comorbidity A B C D

MVRS / aMVRS 0.31% 0.22% 0.08% 0.18%

W&A / aW&A 0.59% 0.34% 0.12% 0.12%

MFPIgen 0.36% 0.17%
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acknowledge it is almost impossible to state all aspects
of a model ahead of data exploration, and model selec-
tion remains necessary. In our comparison, we concen-
trate on the model-building algorithms per se and
assume both benefited from a similar amount of subject
matter knowledge.

Time-dependent effects
A time-dependent effect is modelled if the effect of a
variable, measured at diagnosis, varies with time since
diagnosis, i.e. that effect is not constant with follow-up
time. In the context of cancer survival, most factors such
as stage at diagnosis, deprivation, emergency presentation

Fig. 6 Generating (red line), estimated (grey lines if estimated as time varying, or in the box-plot if estimated as time fixed) and averaged (black
dashed line) hazard ratio for age, stage, and deprivation: scenario B and D
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[39] tend to have strong effects in the months that follow
the diagnosis, and these effects are likely to reduce or dis-
appear as time passes [39]. When testing time-
dependency of different factors, a long enough follow-up,
as well as enough information are required to detect time-
dependency.

Non-linear effects
Additionally, in order to properly assess non-linearity of
the effect of a specific variable, such as age, there needs
to be enough information on that variable about its own
effect on the time to event: e.g. patients’ age need to
cover a reasonable range of all possible ages, rather than
be grouped in a small part of the age distribution.

Censoring and lethality of cancer (number of events)
Lung cancer data contain relatively high proportions of
events (80% 4 years after diagnosis) compared to other
cancers that do not experience such high lethality. Model
building strategies and variable selections are highly sensi-
tive both to the number of events and levels of censoring.
This is due to the rapidly increasing complexity of the
models tested, especially when the backward-based W&A
and aW&A are run. For example, in the context of lung
cancer, there was non-convergence of the Stata algorithms
in around 10% of the samples. Changing the starting
values or running initial univariate selections did not help
in reaching convergence.
It has recently been shown that 40–50 events per vari-

able are necessary to ensure accurate estimation of coeffi-
cients [40] in the competing risk setting. In the most
complex models (fitted on lung cancer) which include all
interactions and time-dependent effects, i.e. 48 parame-
ters, there was an average of 36 events per parameters in a
sample of 2000 patients. When these model-building
strategies were run on cancers with lower lethality, such
as laryngeal cancer, with 60% censoring at 5 years, the al-
gorithms did not converge for a larger proportion of sam-
ples, up to 20% (results not shown). In addition, after
convergence, some estimated hazard ratios were unbeliev-
ably large: there was an average of only 16 events per pa-
rameters (N = 2000 patients) for the most complex
models fitted on laryngeal cancer data.
In the relative survival data setting, a competing risk

framework, competing deaths (i.e. from other causes, pro-
vided by general population life tables) are subtracted
from observed events (death from any cause). This re-
duces further the power for detecting and retaining effects.
This is not so problematic when studying lung cancer as
95% of deaths are due to lung cancer [39], i.e. 1675 lung
cancer deaths among the 1765 deaths in the 2000 data
samples, leading to 34 events per parameter. Less lethal
cancers will see the actual numbers of cancer-related

deaths be a smaller proportion of all deaths, leading to
smaller number of events per variable.
Prior to running any model building strategies, we rec-

ommend that the censoring rate and the number of events
are carefully examined in relation to the complexity of the
models fitted. Further clinical considerations and back-
ground knowledge are helpful prior to variable selection
to ensure significance tests are used with sparsity.

Sample size, model complexity
The W&A strategies tend to favour time-dependent ef-
fects and interactions, leading to complex models. This is
due to the backward selection of effects. Model misspecifi-
cation of some variables leads to self-confounding and
confounding, which would provide wrong inference on
the effects of some variables. On the other hand, the
MVRS strategy leads to simpler models with additional
variables wrongly selected in about 5% of models overall.
However, in three out of four scenarios (B, C and D), all
model selection strategies select models containing the
true models in a relatively poor proportion (always below
15%). This is largely due to the size of the effects that the
algorithms were trying to capture and the number of pa-
tients included in the analyses, 2000. Indeed, some effects
such as non-linearity or non-proportionality of age could
not be retrieved in the final selected models, due to lack of
power. Releasing one or several of these small effects
translates in larger proportions of models that nearly con-
tain the generating models. More importantly, increasing
the sample size to 5000 patients leads to improved detec-
tion power and higher selection proportions of the true
generating model.
The adapted MVRS and W&A algorithms testing for in-

teractions show similar properties as the original algo-
rithms for the selection of linear/non-linear and time-
dependent main effects. They show equivalent results to
the MFPIgen strategy for the selection of interaction terms.
Investigating the effect of many variables of known

prognostic value in a large population-based cohort of
lung cancer patients, all model-building strategies lead
to similar selection of effects. As expected W&A and
aW&A only differed from R&S and aR&S in the shape
of the effect of age, which has virtually no impact on
cohort-wide net survival estimates.
Although the model-building strategies may not tend

to select the same final models, and the proportion of
models that do select the true generating model vary
with the sample size, the number of events and the size
of the effects, there is no impact on the estimation of co-
hort net survival, by stage at diagnosis. Estimation of co-
hort net survival can best be done non-parametrically as
there is no assumption on the form of the association
between the exposure variables and survival time. We
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show that on average the model-based estimates are
equivalent to the non-parametric estimates of net sur-
vival. When non-parametric estimates of cohort survival
can be produced, it is good practice to use them to val-
idate model-based estimates.
The variables whose effects are tested in the models,

are only mildly correlated with a coefficient of correl-
ation below 0.2. Another challenge in modelling non-
linear effects of a variable is the potential collinearity of
some spline basis (such as cubic splines). A possible so-
lution for this, adopted here, consists of orthogonalizing
the splines basis. However, high correlation between two
variables may have a negative effect on the model selec-
tion strategies studied here as they are based on stepwise
methods and are thus dependent on the order of testing.

Epidemiological aim of models
The ultimate aim of building exploratory models in our
context is to describe variables effects on the survival ex-
perience of a cohort of cancer patients. In the simula-
tions, the large variety of models selected by the
different model-building strategies leads to varying esti-
mations of main effects and varying levels of individual
excess hazard and net survival estimates, which has im-
plications in terms of epidemiological interpretation.
Nonetheless all generated effects are well captured by
the variable selection strategies, whatever their complex-
ity. This is verified graphically and looking at the area
between each estimated effect and the generated effect.
Forward-based model building strategies tend to

favour simpler models, which may be a useful feature in
contexts with less information (e.g. low EVP, or high
censoring, or relatively small sample sizes) in order to
avoid inclusion of spurious effects. Conversely,
backward-based strategies tend favour more complex
models, which may be useful to detect small effects in
cases with larger samples and low censoring. Nonethe-
less, the comparison of the final models selected with
different strategies may be useful in order to assess any
differences on the corresponding net survival curves,
and to identify potential reasons for these differences (if
any) based on our previous discussion.
The strategies presented here are based on likelihood ra-

tio tests performed in a hierarchical order. Thus, they rely
on significance testing and, consequently, are prone to
multiple testing as well as Type I and Type II errors.
Nonetheless, all strategies let the user decide what signifi-
cance level should be used for the selection of effect. We
use here the conventional 5%, and test for the impact of
keeping the main effects in. One could consider choosing
more conservative thresholds [41] and evaluating the im-
pact of varying thresholds on the models selected.
Model building strategy is in line with the ‘data model-

ling culture’ and is based on the idea that a true model

generating the data does exist [42]. Although not all im-
portant variables may be available, or the true model is
likely to not be among the considered models, the aim is
to get as close as possible to this true model by including
the relevant variables and by flexibly modelling the effect
of the available ones. Shrinkage techniques (LASSO [43],
Ridge, Elastic Nets [44]) could be considered, but these
methods are not yet available in our relative survival con-
text. Still in the machine learning field, methodological de-
velopments are of great interest. For example, model
averaging [45] and more generally ensemble learning tech-
niques [46] are possible avenues though interpretability of
the results can be challenging, hence more appropriate
outside of the descriptive modelling field.
Model selection approaches based on Information

Criteria [45] (e.g. AIC and BIC) or cross-validation of the
selected models, instead of likelihood ratio testing, could
prove useful for selecting the proper functional forms of ef-
fects. In the context of prediction, one tends to select and
use a simple model in order not to over fit the training data
[47]. Following work on the topic of predictions would in-
volve additional statistical measures for assessing predictive
accuracy of the selected model for a given strategy. Mea-
sures such as discrimination and calibration would then be
useful [48, 49]. However, in this work, which was mainly
exploratory rather than predictive, all strategies lead to
similar model-based estimates of net survival.
Large datasets and information on many factors are

motivations for using complex excess hazard models.
Model selection methods are essential to make sure all
models are considered in a systematic fashion. Nonethe-
less, several aspects of the data (such as sample size, cen-
soring, NL and TD effects) and the models (such as
complexity, assumptions) deserve full consideration
ahead of model selection.
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1.5 Discussion

To my knowledge, this is the �rst independent comparison of the performances of two

model-building algorithms and their adaptations to deal with the selection of interactions,

in the context of excess hazard regression models. We aimed to compare the selection pro-

cesses in their abilities to select predictors, their functional form, potential time-dependent

e�ects and interactions, when modelling their e�ects on the excess hazard of death.

In the article, we provide guidance for the modelling of excess hazard of death, and for the

best use of the data and model selection tools. This is a �rst step towards the selection

of models relevant for the prediction and projection of cancer survival.

The application presented in the paper shows minimal impact of model-selection algorithm

on the �nal e�ects selected. Indeed the �nal model selected by each algorithm were almost

identical, with a selection of time-dependent e�ects for all variables, excluding deprivation.

There were slight discrepancies in the selection of interactions.

This exploration of the model selection algorithms presents some limitations that would

deserve further investigation. These include (i) we tested only one spline function of each

continuous variable with 3dfs and did not test for simpler non-linear e�ects; (ii) time-

varying e�ects are only tested as interactions between each variable and the logarithm

of time since diagnosis: these e�ects could be more complex; (iii) we only considered

interactions between a categorical and a continuous variable.

The next steps would be to explore the robustness of the model selection. For instance, we

could compare the e�ects selected to those that would be selected in bootstrap samples of

the data. Then we could also check the need for interactions by comparing the estimated

parametric net survival curves to the non-parametric Pohar-Perme estimators. Our aim is

to have interpretable models, to tease out the associations of interest. Generalisability is

also of interest, which means we are less concerned with missing weaker e�ects, possible

artefact to the data. Chapter 3 presents how we have extended this framework to the

prediction of cancer survival.

1.6 My other contributions to the topic

I have had other exposure to excess hazard model building � and adopted a di�erent

approach �, especially while analysing and contrasting stage-speci�c cancer survival in six

high-income countries, as part of the International Cancer Benchmarking Partnership. [95]

At the time, we performed model selection from a set of pre-speci�ed models chosen
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based on background knowledge and data availability. Such an approach was also adopted

by the SUDCAN partnership, [96] when estimating survival for all cancers in England and

Wales, [97] and when looking at variations in access to surgery for patients with colorectal

cancer in four high-income countries. [98]

Maringe C, Walters S, Butler J, Coleman MP, Hacker N, Hanna L, et al. Stage at diag-
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Chapter 2

Tools for evaluating predictions

2.1 Introduction

We have seen in the previous Chapters that non-parametric and parametric estimates of net

survival can be derived from population-based cancer registrations (see Setting). Chapter 1

re�ects on practical and algorithmic aspects relative to the choice of models and functional

forms for the e�ects of explanatory factors on the excess hazard of death. These models

may be used to make prediction of survival.

Indeed, long-term cancer survival for patients most recently diagnosed with cancer and

for whom follow-up is not yet recorded or available cannot be estimated directly from

their data. We will assume that information on historic cohorts of cancer patients are

available and can bring useful information for estimating survival for more recent cohorts.

For example, the e�ect of their socio-demographic and tumour characteristics on their

excess hazard of death informs predictions of excess hazard for newly-diagnosed patients.

We rely on �exible regression models to synthesise past associations between prognostic

factors and outcome, and to predict future outcomes.

In this Chapter we detail the statistical tools available to characterise the overall perfor-

mance, validity and accuracy of predictions. We focus on the tools developed for, or

adapted to, the time-to-event and competing risks settings. We present a measure of ex-

plained variation for excess hazard modelling. Finally, we discuss how other standard tools

are and could be modi�ed to accommodate the speci�cities of the relative survival data

setting.

59
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2.1.1 Prediction models around us

There are areas where predictions are key: weather forecast, �nance and economy such

as stock market prediction or economic growth. Prediction models are also popular in

demography, where population growth is of interest. [99�101] Actually it extends to areas

such as bacteriology, ethnology, zoology, [102] or medicine where `populations' refer to

bacteria, social groups, animals, or the interest is in the future incidence of disease or

the speed of tumour growth. The general public is used to predictions of life expectancy

from life tables. [103, 104] In the medical setting, predictions of incidence and mortality

patterns [105, 106] are useful for healthcare planning purposes. Additionally the creation

of risk scores (or scoring rules) [107, 108] for developing a disease or a complication are

often proposed to identify early high-risk patients or as an aid for diagnosis. The three

main approaches to forecasting described in Chambers [109] are still relevant: qualitative

techniques, time series analysis and projection and causal models.

Many scoring rules have been developed to aid clinical decision. [110] Despite their popu-

larity among researchers, these rules are not used routinely by clinicians for a number of

reasons, including: poor generalisability, requirement of a complex data collection, absence

of guidelines on their use. Guidelines have been published to foster a transparent reporting

of multivariable prediction models, to minimise risks of bias and maximise clinical interest

and use. [22, 23, 111]

2.1.2 Time-to-event data

Survival models di�er from other forms of regression models since the outcome is the

knowledge of two variables, length of follow-up (T ) and vital status at the end of the

follow up (�). Due to the presence of a time dimension, there is both loss to follow-up and

censoring (C). This means that for some patients the event of interest is not observed

during the follow-up time, hence the time to event will be unknown. Survival models make

use of all records, including censored ones, to estimate the association of prognostic factors

(X) with the outcome.

Although loosely referred to as `survival models', most models are �tted on the hazard

scale. [32] In other words, the association between prognostic factors and the rate of

occurrence of an event in the sample is modelled through follow-up time: �(T jX) =

f (t; X). Hazard-based regression models process raw information on patients' survival

time and vital status to estimate a �uctuating hazard function with time. Other models

exist such as accelerated failure time models, on the survival scale, [112] or the general

hazard model. [113]
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In the context of survival data for patients diagnosed with a given disease, predictions from

survival models can be sought to create a risk score for new patients. Patients are classi�ed

given their baseline socio-demographic, or disease-related characteristics and a survival

probability is derived based on their risk score. Risk-score development provides clinical aid

to decision making and helps in communicating their prognosis to patients. These types of

predictions are in-sample predictions (see Glossary), as patients characteristics are within

the range of values used for training the model. Besides such predictions tend to be made

for patients with speci�c characteristics, and as such represent individual predictions.

We aim to perform out-of-sample prediction of cohort survival, in other words allowing

prediction of cancer survival for patients (and groups of patients) who do not contribute to

model building. We will explore if and how the assessment tools developed in the context of

in-sample prediction may be useful for devising the best predictive model or set of models,

given our data. [114]

There are tools for the assessment of prognostic models in the context of time-to-event

data. [114�124] Such tools have often been adapted from the general linear regression

framework to account for censoring that comes with following patients through time.

Time is a key feature that in�uences the prognostic ability of a model, such as �uctuating

performance at di�erent times after the start of follow up.

2.1.3 Survival models: what can be predicted?

Due to data complexity, there are several quantities that can be predicted from survival

models. These include (a) individual probabilities that the event occurs at a given time,

(b) individual probabilities that the event occurs before a given time, or (c) prediction of

individual survival times. One can also measure (d) the instantaneous or (e) cumulative

force of mortality at given times or its �uctuations through time. Finally, (f) the ratio or

(g) di�erences in hazard or survival values can also be estimated at di�erent times after

diagnosis. Quantities (a) and (b) are de�ned on the probability scale, while (c) is on the

time scale, and (d) and (e) are on the hazard scale.

Predictions of remaining survival time are often a source of interest in patients with terminal

disease and their carers. Nonetheless it was shown by Henderson and colleagues that these

point estimates of time carry poor predictive capability; [122] this is widely quoted and

recognised. [116, 119] They acknowledge the interest in survival time prediction, especially

in communication to patients, but insist they are provided with a measure of con�dence in

the values, and further cautionary words. A measure of the model's overall performance

can provide such caution.
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There are not many tools for checking the accuracy of predictions developed in the speci�c

context of excess hazard models in the relative survival data setting. Contrary to other

�elds, in which outcomes are fairly well de�ned (binary outcomes: occurrence of a disease,

relapse, death. . . ; continuous outcomes: costs, score . . . ), there are multiple quantities

of interest in survival analyses, depending on the research question or the audience. [2]

Therefore, one needs to choose the quantities of interest as well as a most appropriate

measure of predictive accuracy. Di�erent statistical measures of predictive accuracy show

complementary facets of the quality of predictions. We aim to highlight in this Chapter if

and how the tools developed in the overall survival context could be used in the relative

survival data setting.

2.1.4 Prediction and projection from multi-variable models

Prediction and projection �ow naturally from multivariable modelling. Providing one is clear

on the assumptions behind the estimations of association and trends (see Chapter 1), it is

computationally easy to extrapolate the identi�ed trends and use the estimated parame-

ters to (i) predict longer-term outcomes for patients whose early follow-up contributed to

model-building or (ii) project patient outcomes for those who did not contribute to model

building at all.

In this Chapter, we leave aside the complexities of model selection: we assume a series

of models have been evaluated, and a speci�c model is considered �t for predicting the

outcome of interest. We are interested in the evaluation of the predictions from the

selected model. Identifying a �nal model is a topic that is covered in depth in Chapters 1

and 3.

2.2 Evaluation of predictive models

Predictive performance measures are typically presented in the following categories, [110,

125] and are commonly used for the evaluation of risk prediction models: [126�128]

Overall performance: it estimates the distance between observed and predicted outcomes,

using loss functions such as the Brier score. Measures of explained variation are other types

of overall performance measures. They quantify the amount of variation in outcomes

explained by the prognostic variables that constitute the model. The most famous of

these measures is the coe�cient of determination, R2, de�ned in linear regression. Many

statistics have been proposed in the survival analysis �eld to provide a tool equivalent to

the R2. [129, 130]
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Calibration: it assesses the ability of the model to predict accurately the absolute risk for

groups of patients. Measures of calibration such as the calibration plot, and general good-

ness of �t statistics, evaluate the agreement between observed outcomes and predictions.

Discrimination: the discrimination measures highlight the ability of the model to separate

observations into risk groups that is to rank individuals from low to high risk. These

include sensitivity and speci�city, the Area Under the receiver operating Curve (AUC), and

the concordance statistic (c-index).

These statistics were developed outside of the time-to-event context, and some have been

adapted to deal with censoring and sometimes competing risks setting. There is general

agreement on the di�culties of making predictions in the survival �eld, [131, 132] mostly

relative to: inadequate models, sampling variability, lack of explanatory power of the survival

model, problems extrapolating to new data. [132]

In the �eld of survival analyses, despite wide use of prognostic classi�cation models, they

have `rarely [been] subjected to a rigorous examination of their adequacy' highlighted Graf

et al in 1999, [116] and then Schoop et al in 2008 stated �there exist[ed] as yet no standard

approach to assess the predictive accuracy of [survival] models�. [119] This is in stark

contrast with the well-established measures used in binary or continuous outcomes setting.

There are however recent reviews to address the issue of lack of reporting on the quality

of prediction models and model-based predictions. [22, 111] Additionally a speci�c topic

group on `Evaluating diagnostic tests and prediction models' (topic group 6) is part of the

STraTOS initiative. [133, 134] In the relative survival data setting, the use of excess hazard

models is expanding, but very few manuscripts mention model selection, model testing and

model performance. Nonetheless, `rigorous examination' is still key, as the statements

highlighted above also apply to the context of disease-speci�c survival models. I brie�y

review how measures of model evaluation have overcome the challenges of the competing

risks framework. Then I open the discussion to ideas on how to adapt to the challenges of

the relative survival data setting.

2.3 Measures of overall performance

Overall performance measures aim at summarising the distance between the predicted and

observed outcomes, typically using loss functions. Measures of explained variation also

provide an indication of the overall explanatory power of a model. In linear regression, loss

functions correspond to the error or residuals. For the evaluation of survival models they

should be adapted to the predicted outcome of interest:
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`If one is interested in estimating the hazard, the loss function should ideally involve the

hazard; if interest is in the survival function, the loss function should involve the survival

function.' [52]

The down sides of relying on a loss function to characterise the predictive accuracy of

models include: (1) censored observations complicate the calculations of the loss functions,

although some corrections may be used [116, 118] and (2) they are outcome-dependent.

Given the di�erent outputs available from survival models, many loss functions have been

proposed. We will concentrate here on describing in details the Brier score, as it has been

adapted to accommodate for time-to-event data, as well as the competing risks setting

through the prediction error.

Let us introduce two patients, A and B with a description of what happens to them post-

diagnosis (Figure 2.1). Patient A experiences the event of interest at time tA and B survives

beyond the end of follow up tf inal and is therefore censored alive at tf inal . For X = A or

B, let us suppose we also have T̂X , their predicted survival time and ŜX(t
�) their predicted

probability to survive beyond t�, such that t� � tf inal . We de�ne YX(t) = 1TX>t , the

at-risk indicator for patient X, and dNX(t) = 1TX=t an indicator that the event for patient

X happens at time t. Figure 2.1 contrasts the predicted survival curves throughout follow

up for patients A and B (plain lines), together with what was actually observed for these

patients in the form of their at-risk indicator YX (dashed lines).

Figure 2.1: Observed and estimated survival functions for �ctive patients A and B
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2.3.1 The Brier score

The Brier score is a loss function, based on a quadratic loss contrasting observed and

predicted outcomes. In survival, the Brier score contrasts the values of YX and ŜX .

Original score

The Brier score [135] is a measure of the expected loss in using the predicted outcome

values in lieu of the observed outcome. It is calculated as a mean square error between

observed and predicted outcomes. The decision space for the Brier score is between 0 and

1. Values closer to zero re�ect smaller error and better overall performance.

The formula of the Brier score for a sample of N observations is

BS(t) =
1

N

N∑
i=1

(
Yi(t)� Ŝi(t)

)2
: (2.1)

Time-to-event data

Due to possible censoring of the follow-up time, not all Y (t) may be observed and a

weighting is proposed [116] assuming that censored patients can be adequately represented

by patients with complete information. The weights assigned to fully observed patients are

given by the pooled Kaplan Meier estimator, Ĝ(t) = p̂(C > t) of the censoring event, C:

BS(t) =
1

N

N∑
i=1

[
1( ~Ti�t;�i=1)

Ĝ( ~Ti)

(
Yi(t)� Ŝi(t)

)2
+
1~Ti�t

Ĝ(t)

(
Yi(t)� Ŝi(t)

)2]
: (2.2)

where ~T = min(T; C) with C the censoring time, and � = 0 or 1 the censoring indicator

with � = 1 for uncensored (fully observed) patients.

In 2.2 we see the contribution that patients who experience the event prior to t (1~Ti�t;�i=1
=

1) make to the Brier score:
(
0� Ŝi(t)

)2
. This is weighted by the inverse of the probability

to be uncensored by the time of event ~Ti . The contribution of patients still in the risk

set at time t, (1~Ti�t
= 1) is

(
1� Ŝi(t)

)2
, weighted by the inverse of the probability to

be uncensored at the horizon time t. For both weights, if the probability of no censoring

beyond ~Ti or t is high, the weights tend to 1; if it is low, meaning many have been censored

prior to ~Ti or t, the weight is over 1. Censored patients prior to time t only contribute to

the calculation of BS(t) through the weights, as both 1~Ti�t
= 0 and 1~Ti�t;�i=1

= 0 for

them.

Since BS(t) is function of t, integrated versions of the Brier score can be calculated at

any time t� when there are patients at risk:
∫ t�
0 BS(t)dt.
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The closer the BS(t) is to zero the better the prognostic accuracy of the model on which

it is based. Further research demonstrated the consistency of this mean-squared error of

prediction. [118] Adaptations of the Brier score to deal with time-dependent covariates rep-

resenting updated information through follow-up time are also proposed using conditioning

on patients still at risk at the time at which the updated information is available. [119, 136]

Extension to competing-risks models

Since the relative survival data setting is part of the competing risks setting, we further

focus here on developments of the Brier score (or prediction error) to deal with competing

risks, proposed by Schoop et al. [137] They consider two competing events, and assume

one is interested in the prediction error for one of these events, say event 1. To that end,

they modify equation 2.1, for the Brier score, to that of a prediction error (PE), such that

we now look at the individual probabilities of experiencing the event of interest by time t:

p(Ti � t; �1i = 1), rather than the event free survival time p(Ti > t).

PE(t) =
1

N

N∑
i=1

[
1(Ti�t;�

1
i
=1) � �̂1i (tjZi)

]2
: (2.3)

Where �̂1i (tjZi) = p̂(Ti � t; �1i = 1)) is the predicted cumulative incidence function for

event 1, and 1(Ti�t;�
1
i
=1) is the indicator variable that event 1 happens before time t, for

patient i with covariables Zi .

Due to censoring, Schoop et al. propose to weight the score by the individual probabilities

to be a complete case, that is uncensored by time t: either have experienced any type of

event before t, 1( ~Ti�t;�1i =1 or �2
i
=1), or still be at risk of an event at t, 1( ~Ti�t). [137] This

corresponds to the same weights as those de�ned above and introduced in equation 2.2.

A consistent estimator for the prediction error is therefore de�ned as

PE(t) =
1

N

N∑
i=1

[
1( ~Ti�t;�

1
i
=1) � �̂1i (tjZi)

]2
� w1(t; ~Ti ; �i ; Ĝ(t); Zi): (2.4)

with w1(t; ~Ti ; �i ; Ĝ(t); Zi) =
1( ~Ti�t;�i 6=0)

Ĝ( ~Ti jZi )
+

1~Ti�t

Ĝ(tjZi )
.

More recently, Wu and Li propose another weighted estimator for the Brier score, in the

context of censored time-to-event competing risks analyses. [138] Using information from

uncensored records at a given time t, a case status is imputed to censored patients weighted

by the conditional probability of being a case by time t. Such weights require the estimation

of cumulative incidence function and survival probabilities from all at risk at t. These

weights are also proposed for estimating sensitivity and speci�city for the ROC curves.
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2.3.2 Explained variation

Measures of explained variation report the amount of variation in the outcome explained

by the modelling of the explanatory factors. The squared coe�cient of correlation, R2, is

the measure of explained variation most frequently used in general linear models. There

are a range of measures of explained variation proposed in the survival setting. [129] The

properties of such measures have been assessed in the speci�c context of time-to-event

data, such as their performance under the e�ect of censoring, their interpretation, and their

dependence on transformation of timescale. [129] The proportion of variation in survival

explained by a model complements the information derived from the parameter estimates

and their associated p-values in understanding the relative importance of the factors in

explaining the levels of survival. It is recommended to provide a measure of explained

variation, along with model-based measures of e�ects and p-values. Such a measure will

show how much (or often how little) predictive value a model has, despite sometimes highly

signi�cant prognostic factors. [129]

A little like the numerous loss functions available, there are many views on what should be

the relevant characteristics of a measure of explained variation. Hence many measures of

explained variation, �tting with sets of desirable criteria exist. Schemper and Stare [129]

classify the measures based on three de�nitions of the R2 in linear regression. They com-

pare the properties of the measures, in particular how the measures react to administrative

censoring at end of follow-up t�, and to transformations of time. Independence of the

measure of explained variation to administrative censoring is only possible if one assumes

that a model observed on time [0; t�] is valid beyond t�, implying extrapolation of the

model. [139] Such measures are grouped in three classes in Choodari-Oskooei [140, 141]:

explained variation, explained randomness and predictive accuracy. In this section we con-

centrate on explained variation measures, indicating how much variation in the outcome is

explained by a set of explanatory variables. Explained randomness refers to the precision

with which we estimate the underlying process that generated the data. [141] Predictive

accuracy correspond to measures of loss, akin to the Brier score, detailed in section 2.3.1.

All three of these classes of statistics are informative in the context of cancer survival. The

concept of explained variation seems particularly informative as a measure of how well one

might expect to predict cancer survival in future cohorts of patients.

Stare et al. [142] proposed a measure of explained variation, RE, to satisfy a list of criteria

that none of the existing measures were ful�lling. These criteria aim to make this measure

useful for models with time-varying or time-dependent covariates and e�ects, for parametric

and semi-parametric models, and which have an interpretation independent of the model

�tted. [142] The new proposal is based on ranks. At each time of event, all predicted risk
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scores are ranked, and the rank of the patient who fails is compared to the average rank of

patients still at risk (the null model, i.e. a rank that corresponds to no information on who

is most at risk). The information provided by the model (the distance between predicted

and null model ranks) is then divided by the overall distance that needs to be explained

(the distance between the null model rank and the observed rank, 1). That proposal is

intuitive, and easily estimated and interpreted. Its values range between -1 and 1, with 0

being `no variation in ranks is explained by the model'. The properties of RE make it a

perfect candidate to be adapted to competing risks models in which a speci�c event might

be of interest (see section 2.6.1).

2.4 Calibration

Calibration refers to the agreement between predicted and observed outcomes for di�erent

groups of the entire cohort. Such agreement is more likely when the sample of data are

large enough for variable and model selection, and over-�tting is contained. We describe

below some of the tools to assess the agreement between observed and predicted outcomes,

internally and on external datasets.

Figure 2.2: Calibration plot of actual observed outcomes vs. predicted outcomes for a

hypothetical model
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2.4.1 The Calibration plot

Checking the calibration of a model gives insights on whether a given prognosis model is

also �t and consistent when run on another set of data. For example, the calibration plot

graphically compares predicted and observed outcomes and provides tools for recalibrating

the model to the new data available. Perfect calibration is found when all data points lie

on the �rst diagonal. The calibration plot provide measures of apparent calibration when

it is done on the data on which the model's parameters are estimated.

In the time-to-event context, the calibration plot is presented at a time horizon, and pre-

dicted survival probabilities can be compared to observed survival probabilities for di�erent

groups of patients. The groups must be de�ned in such a way that the estimation of

survival is robust.

A regression line through the scattered values of the calibration plot can be estimated:

i its intercept will re�ect the systematic bias when making predictions in a new sample

(calibration-in-the-large). It represents the systematic di�erence between the mean

of the predicted outcomes and the mean of the observed outcomes, in the new data;

In the training data, as well as in bootstrap samples of that data, there should be

perfect correspondence between the average of the predicted and observed outcomes,

by construction. [143]

ii the slope of the regression line between predictions and observations should approach 1

to suggest perfect calibration. [144]

In the training data we expect the slope to be 1. At internal validation, if the slope is

smaller than 1, it shows the amount of shrinkage required for the model parameters

to be better calibrated to new patients.

2.4.2 The Wally plot

The Wally plot is another type of calibration plot. It stems from the following de�nition

of calibration: a model is well calibrated if, among all subjects with a predicted risk of x%

at a given time t, we �nd x% of them who experience the event, based on the law of

large numbers. [145] The Wally plot was �rst proposed to check the �t of linear regression

models to assess calibration, while ruling out random sampling as a cause of mediocre

calibration.

Similarly to the calibration plot, it makes sense to construct the Wally plot on a sample

of patients who did not contribute to estimating the parameters of the risk prediction
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model. Patients are split in G risk groups of approximately equal sample sizes. For any

given risk group, two bars are plotted contrasting the observed proportions of patients

who experienced the event of interest (the y-axis of the calibration plot), those for whom

�i = 1, to the predicted risk, �̂i , as de�ned from the model-based predictions (the x-axis

of the calibration plot). For all group g of size Ng with g = 1:::G, we have:

Obsg(t) =
1
Ng

∑Ng

i=1 �i(t)

and

P redg(t) =
1
Ng

∑Ng

i=1 �̂i(t).

Blanche et al. [145] suggest inverse-probability-of-censoring weighting to deal with right

censoring, with weights calculated as the inverse of the Kaplan-Meier estimate of the cen-

soring survival function. The plot is related to the Hosmer-Lemeshow test for a departure

from the calibration assumption using a chi-square distribution. [146] That test was re-

cently criticised on the basis that `it is based on arti�cially grouping patients into risk strata,

gives a P value that is uninformative with respect to the type and extent of miscalibration,

and su�ers from low statistical power'. [147]

With the Wally plot, a visual inspection of the discrepancy between the bars informs the

assessment of calibration for the speci�c risk prediction model and data. To ease the deci-

sion relative to the quality of calibration, Blanche et al. propose to create a series of such

calibration plots, obtained from similar data simulated under the calibration assumption.

All graphs displayed together in random order form the Wally plot. If the `real' graph does

not stand out, it re�ects good calibration of the model to the data.

2.5 Discrimination

Measuring discriminative ability corresponds to determining the capacity for a multivariable

model as a whole, or additional predictors in a model, to separate observations into well-

de�ned risk groups. We borrow tools from the framework of binary responses, in which a

test (positive or negative) has to inform on disease status (case or control).

2.5.1 Sensitivity and Speci�city

These measures are well de�ned in the framework of binary response models (such as

logistic and probit regressions) and are used to qualify the ability of a test (such as a

clinical test or tool, a regression model, physical examination. . . ) to correctly identify
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cases and controls. Tests and disease status are both performed and contrasted at a given

point in time. Sensitivity (Se) measures the capacity, for a given test M, and a chosen

threshold c , to classify a case as a case, while speci�city (Sp) indicates how well that test

at that threshold classi�es a control as such.

Nonetheless disease status and disease outcomes are time-dependent. It naturally �ows

that it would be of interest to assess how well a prognostic marker,M, measured at baseline

� cancer diagnosis in our setting �, can di�erentiate patients based on their predicted

outcomes at a given point in time, during the available follow-up.

If D(t) is the disease status of a given patient at time t, Heagerty et al [148] proposed the

following de�nitions of time-varying sensitivity and speci�city measures, for given thresh-

olds c :

se(c; t) = p(M > c jD(t) = 1)

sp(c; t) = p(M < c jD(t) = 0)

These proposals are extended with `incident/cumulative sensitivity' and `static/dynamic

speci�city' measures, [149] which re�ect how cases and controls may be considered through

time. Cases can be de�ned as incident, when subject i is a case at the only time t such that

Ti = t, or cases are cumulative, when we consider subject i a case at all times t that verify

Ti � t. Similarly controls can be static, such that they contain subjects with a survival

time longer than a pre-de�ned time t�, or dynamic, and de�ned at each time t, as subjects

with Ti � t. The de�nitions, with corresponding sensitivity and speci�city, are summarised

in table 2.1, and illustrated in Figure 2.3 for the �ctive patients A (case) and B (control).

Table 2.1: Measures of sensitivity and speci�city for time-to-event data with censoring

Cases Measures of sensitivity

Incident Ti = t; dN�
i (t) = 1 ISe(c; t) = p(Mi > c jTi = t)

Cumulative Ti � t; N�
i (t) = 1 CSe(c; t) = p(Mi > c jTi � t)

Controls Measures of speci�city

Static Ti > t�; t� f ixed DSp(c; t) = p(Mi � c jTi > t�)

Dynamic Ti > t;8t DSp(c; t) = p(Mi � c jTi > t)

We de�ne Mi = XT
i �, the outcome of the prognostic model we aim to evaluate, dN�

i (t) =

N�
i (t)�N�

i (t�) = 1Ti=t is the counting process, and c the threshold for deciding on vital

status. With the formulation of incident cases and dynamic controls, models that allow

for e�ects of longitudinal variables and time-varying factors can be analysed and assessed.

Using these de�nitions, the interest can be in correct classi�cation of patients still at risk
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at a horizon time t, using updated markers, measured later than at time 0 in the follow-

up. [149] Alternatively, cumulative cases and dynamic controls are appropriate to evaluate

the prediction accuracy of a marker measured at baseline to distinguish between subjects

who experience an event before t and those who do not, and therefore de�ne the high-risk

population. The estimation of the sensitivity and speci�city involve estimation of the joint

distribution of the marker and the survival. This is estimated using non-parametric nearest

neighbour estimation techniques. [148, 149] The basic principles are that the estimations

are done based on a set of subjects with the closest value of the marker.

There are variations of these time-varying measures of sensitivity and speci�city �t for the

competing risks setting. [150] In that setting, when Ti = t or dN�
i (t) = 1 we need to

specify further what the cause of failure j is, such that, for instance Ise(c; t) = p(Mi >

c jdN�
i (t) = 1; � = j).

Components of the measures of sensitivity and speci�city above are estimated using Kaplan

Meier [148] or Nearest Neighbour Estimation. [138, 148, 150, 151]

Figure 2.3: Example of sensitivity and speci�city for patients A and B.

CPD stands for crude probability of death, [2] a quantity of interest from excess hazard

models introduced in Chapter 1, that could be used as a marker.
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2.5.2 The ROC plot

The ROC (Receiver Operating Curve) curve is the plot of the sensitivity (true positive rate)

against the false positive rate, i.e. 1-speci�city with di�erent levels of the cut-o�s de�ning

the groups (Figure 2.4). On the plot is also displayed the 45-degree line, corresponding to

no discriminative ability of the model. Any line above the �rst diagonal indicates increasing

discrimination, with 1 re�ecting a model that perfectly discriminates cases from controls.

The ROC curve informs on the prognostic potential of a model. [149] It can also be useful

to compare the discriminatory power of di�erent models.

In the time-to-event �eld, we brie�y saw in 2.5.1 that new de�nitions of sensitivity and

speci�city measures, and subsequent ROC curve, stem from (1) di�erent de�nitions of

cases and controls, (2) when and how often the risk score is measured, (3) inclusion of

time varying e�ects, or (4) presence of censoring or competing events. [152]

Figure 2.4: ROC plot for 4 hypothetical prediction models

2.5.3 Area Under the Curve and C-statistic

Measuring the area under the ROC curve (AUC) summarises the information contained in

the shape of the curve into a single number. AUC is also referred to as the C-statistic

or the C-index, its generalisation to survival data. [75] The AUC represents a measure of

concordance between the disease or survival status and the marker or risk score derived

from a model. [149] It represents the probability that the risk score of a randomly selected
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case (or patient who experiences the event of interest) is higher than the risk score for a

randomly selected control (or surviving patient).

On one hand the ROC can be the basis for the calculation of the AUC, using standard

numerical integration. On the other hand one can look at the proportion of pairs for which

the risk score of the subject that failed is higher than the risk score of the subject still at

risk (C-index). The estimation and interpretation of the C-index was �rst extended from

the logistic regression models to survival models by Pencina and d'Agostino. [153] For two

patients i and j for whom their actual survival times Ti and Tj are as such that Ti 6= Tj , and

either both or at least one of them experience the event of interest before the end of follow

up, we can write �C probability of concordant pairs, and �D, probability of discordant pairs

as follow:

�C = p
(
Ti < Tj and T̂i < T̂j or Ti > Tj and T̂i > T̂j

)
�D = p

(
Ti < Tj and T̂i > T̂j or Ti > Tj and T̂i < T̂j

)
T̂i and T̂j are the predicted survival times, estimated as the expected mean survival time.

The proportion of concordant pairs is then de�ned as C = �C=(�C + �D).

The C-index is a measure of how well a risk prediction model discriminates between groups

of patients de�ned by their outcome (deceased/alive). However such a measure cannot

describe how well a given model is at predicting individual risks.

In the competing risks setting, Wolbers et al [154] propose a cause-speci�c concordance

index, based on the cumulative incidence function of the event of interest, and related

to the time-varying AUC introduced above. [150, 155] Similarly to other measures, they

o�er an inverse-probability-of-censoring weighting to account for right censoring. The

proposed measure C1(t) correctly ranks events of interest (events of type 1) up to time t,

and discriminate them from competing events (events of other type). C1(t) is de�ned as

follows: C1(t) = p
(
M(t; Xi) > M(t; Xj)j�i = 1 and Ti < t and (Ti < Tj or �j = 2)

)

2.6 Validation measures in the relative survival data setting

In this section, we present ideas for extending some of these measures into the relative

survival data setting. The speci�cities of that setting mean that one cannot use these

statistics directly, despite their corrections and weights o�ered for dealing with competing

risks. We focus on extending a measure of overall performance, RE, given its broader

application, even outside the �eld of prediction. This measure also complements the

information provided by model parameters and their p-values. The original intention was
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also to use the measure of explained variation as a tool for model selection for prediction.

Nonetheless, due to its insensitivity to parametrisation (see details in the manuscript in

2.6.1), we realise it will not be directly useful for model selection.

As possible extensions of this work, we believe the approach adopted for the RE could be

useful for adapting other statistical tools such as the Brier score, or measures of sensitivity

and speci�city to the relative survival setting. These adapted measures would characterise

further the predictive properties of excess hazard models. We present avenues for further

research on this topic in subsections 2.6.2-2.6.4.

2.6.1 Explained variation of excess hazard models, Maringe et al., Statistics

in Medicine, 2017
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The availability of longstanding collection of detailed cancer patient information

makes multivariable modelling of cancer‐specific hazard of death appealing. We

propose to report variation in survival explained by each variable that consti-

tutes these models. We adapted the ranks explained (RE) measure to the relative

survival data setting, ie, when competing risks of death are accounted for

through life tables from the general population. RE is calculated at each event

time. We introduce weights for each death reflecting its probability to be a can-

cer death. RE varies between −1 and +1 and can be reported at given times in

the follow‐up and as a time‐varying measure from diagnosis onward.We present

an application for patients diagnosed with colon or lung cancer in England. The

RE measure shows reasonable properties and is comparable in both relative and

cause‐specific settings. One year after diagnosis, RE for the most complex excess

hazard models reaches 0.56, 95% CI: 0.54 to 0.58 (0.58 95% CI: 0.56–0.60) and

0.69, 95% CI: 0.68 to 0.70 (0.67, 95% CI: 0.66–0.69) for lung and colon cancer

men (women), respectively. Stage at diagnosis accounts for 12.4% (10.8%) of

the overall variation in survival among lung cancer patients whereas it carries

61.8% (53.5%) of the survival variation in colon cancer patients. Variables other

than performance status for lung cancer (10%) contribute very little to the over-

all explained variation. The proportion of the variation in survival explained by

key prognostic factors is a crucial information toward understanding the mech-

anisms underpinning cancer survival. The time‐varying RE provides insights

into patterns of influence for strong predictors.

KEYWORDS

excess hazard models, explained variation

1 | INTRODUCTION

Complex, multivariable modelling of time‐to‐event data is easily accessible through user‐friendly specific commands in
common statistical software.1-4 In such models, the effects of prognostic factors on hazard of death are modelled and
estimated. Possible non‐linearity and time dependence of their effects can be incorporated. The model gives the usual
estimates of effect and P‐values, but often the estimation of survival for the cohort is the metric of choice.

Datasets in population‐based research contain information on virtually all patients in a given area or country for a
given period of time: it can represent such large numbers that statistical significance does not bring much information
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on the relative importance of prognostic factors. A measure of explained variation does not aim at providing information
on how well a model fits the data at hand but provides information on how much of the variation in survival between
records is explained by the model, and hence by the prognostic factors that compose the model.

Although survival models do not carry good prediction properties, there is a number of measures proposed for evalu-
ating their prognostic characteristics5 by ways of measures of prediction accuracy,6 discrimination potential,7 and the pro-
portion of variation explained.8 Most measures have been designed in the context of the Cox model,9 widely used in
traditional survival analyses or clinical trials. However, when focussing on survival from a disease, eg, cancer, survival
analysis needs to account for competing risks of death. In the population‐based cancer survival context, the exact cause
of death of patients is unknown or considered unreliable. In this context, we rely on the relative survival data setting,
in which the hazard of death from the cancer, or excess hazard, is estimated by comparing the overall mortality of the can-
cer patients to their expected mortality provided by life tables built for the general population from which the cancer
patients come.10 The effects of explanatory variables on the excess hazard can be modelled using various excess hazard
models.3,11 Net survival, the survival of the cohort of cancer patients, cancer being the only cause of death, can be derived
from suchmodels, providing these are well specified. The assumption of informative censoring is replaced by amore plau-
sible assumption of independence of the forces of mortality, providing the effects of the variables stratifying the life tables,
such as sex, age, region, deprivation, and ethnicity, are adjusted for in the model.12

In this paper, we adapt a measure of explained variation, ranks explained (RE),13 to the context of excess hazard
models in the relative survival data setting. We address challenges related to the specificities of that setting and the excess
hazard modelling, while the interpretation of the adapted RE is kept as simple as with the original RE measure. This is
exemplified by an extensive illustration using population‐based cancer registry data on patients diagnosed with colon or
lung cancer in England.

The next section summarises the characteristics of the measure of explained variation, RE, then presents the excess
hazard models and how RE was adapted to the relative survival data setting. In a third section, we describe the design of
our simulation‐based analyses aimed at exploring the features of RE. The following section presents an application based
on colon and lung cancer patients in England. The discussion wraps up the main advantages and limitations of the mea-
sure proposed.

2 | METHODS

2.1 | The RE measure in the overall survival setting

The RE measure, standing for “ranks explained”, was introduced by Stare et al.13 It aims at providing a measure of the
variation in the ranks observed in survival‐time data explained by a given model. It can be viewed as a generalisation of
the C‐index.14 It satisfies the following list of criteria:

(1) Applicability to multiple end‐point survival
(2) Facility to incorporate time‐varying and/or dynamic covariates and/or time‐dependent effects
(3) Model‐free interpretation on a well‐understood scale, to allow comparison between non‐nested models
(4) Applicability to both parametric and semiparametric models
(5) Consistency under general independent censoring mechanisms, including intermittent missingness and delayed

entry or truncation

Some of these points, particularly (2), (3), and (5), make the measure appealing to the excess hazard context.
Technically, the sum of the variation in ranks, explained by the model is compared with the sum of the total

variation in ranks there is to explain. The “unit” is the rank that each record is given at each failure time ti, ie,
the predicted position at which the record under observation will fail among all observations that have yet to fail
(observations in the risk set Ri). The total variation is viewed as the difference between the ranks allocated under
a “null model” (ri,null), and the ranks allocated under a “perfect model” (ri,perfect), ie, the record that fails is always
given rank 1:

ri;null ¼ k þ 1ð Þ
2

∀k ∈ Ri; i:e: tk > ti

ri;perfect ¼ 1:
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We define the “null model” as a model in which all records that have not yet failed are given the same mean rank: it
corresponds to a scenario in which one would lack information regarding the expected time to failure of the individuals
in the risk set, and all individuals would therefore have the same probability to fail next.

The variation that is explained by a proposed model is the difference between the ranks allocated under a “null
model” and the ranks that are allocated under the proposed model (ri,model).

ri;model ¼ 1þ∑k∈Ri
lλk tið Þ>λi tið Þ

Where λk tið Þ and λi tið Þ are the hazards for patients k and i, respectively, at patient's i time of failure ti.

The final statistic sums these differences over all individual failure times so that the statistic is defined, in the case of
single‐event survival data by:

RE ¼ ∑i ri;null− ri;model
� �

∑i ri;null− ri;perfect
� � : (1)

Through censoring patients leave the cohort. In order for those who stay in the cohort to be representative of those
who left, we weight records that are more likely to have missing observed failure time. Typically, the weights are the

reverse Kaplan Meier estimates (
1
cGit

), in the case of survival data with right censoring.5,15 The delta method is also used

to provide a formulation for the variance of RE. Full details can be found in Stare et al.13

RE ¼
∑i ∫

τ
0
1
cGit

* ri;null tð Þ− ri;model tð Þ
� �

dNi tð Þ

∑i ∫
τ
0
1
cGit

* ri;null tð Þ− ri;perfect tð Þ
� �

dNi tð Þ
(2)

In Equations 1 and 2, the sum is by default over all observations N that fail in the sample. It is also of interest to
estimate instantaneous measures of explained variation, termed local RE, for which the sum is made over the x records
that fail around each successive observed failure times throughout the entire follow‐up. The value of x depends on the
cancer, but the illustrations presented here used a window of 20 failures.

localRE ¼
∑i ∫

tþx=2
t−x=2

1
cGit

* ri;null tð Þ− ri;model tð Þ
� �

dNi tð Þ

∑i ∫
tþx=2
t−x=2

1
cGit

* ri;null tð Þ− ri;perfect tð Þ
� �

dNi tð Þ
(3)

2.2 | The excess hazard model

Net survival is the survival that would be observed in our population of cancer patients, had cancer been the only
possible cause of death.16 Net survival can be estimated in the cause‐specific setting or in the relative survival setting.
The main difference between the 2 settings is the knowledge of the cause of death.

In the cause‐specific setting, the exact cause of death is known, and the failure indicator reflects whether the patient
dies from his/her cancer (failure is coded 1), did not die (failure is 0), or died from a cause other than cancer (failure is 0
or 2). It is straightforward to adapt RE to cause‐specific survival models: the only difference is that RE is evaluated at
each cancer death rather than each death (see Figure 1A).

In the relative survival setting, cause of death is not available or not deemed reliable; therefore, population life tables
are used in the modelling of excess mortality to adjust for mortality due to other causes, also termed expected or back-
ground mortality. Population life‐tables reflect the pattern of survival of the general population, from which the cancer
patients are drawn. In population‐based cancer survival, the relative survival setting is the setting of choice for the esti-
mation of net survival through excess hazard modelling.

We aim that RE gives a measure of how much of the cancer survival variation observed between individuals is
explained by a specific excess hazard model: we remove the impact of other causes and isolate the effects of potential
additional variables on cancer mortality.
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2.3 | RE measured from an excess hazard model

(a) Weights

In the same way that consistent estimators of net survival can be obtained in both relative survival and cause‐specific
settings, we want RE calculated in both settings to agree. In the cause‐specific setting, RE is evaluated only at times of
cancer deaths (Figure 1A). By contrast, the relative survival setting uses all failure times regardless the cause of death
(Figure 1B) for which RE needs to be adjusted (Figure 1C).

Therefore, we propose to weight each event time with quantities reflecting the probability that the event is happening
due to the cause of interest at the time considered. We therefore consider

wi ¼ p dNEi tð Þ ¼ 1j dNi tð Þ ¼ 1ð Þ (4)

where NEi tð Þ is the counting process associated with the cause of interest, and Ni(t) is the all‐cause counting process.
We define the weights as the ratio of the excess mortality due to cancer λE, over the sum of the excess and expected

(population, λP) mortality.17 Both hazards are estimated at the time of death.

wi ¼ w tið Þ ¼ λEi tið Þ
λEi tið Þ þ λPi tið Þ (5)

Take the practical example of the cause‐specific setting: if we were to use weights, differences in ranks would be eval-
uated at times at which patients are censored due to death from other causes, but their weight, hence contribution,
would be 0, because the probability that the event is a cancer death is null. To mirror this in the relative survival setting,
weights would tend to 0 when the probability of cancer death is highly unlikely, and weights would tend to 1 when the
probability of cancer death is highly likely.

We want to show that the total number of cancer events can be estimated by the sum of weights wi. By law of total
probabilities, we have

p dNEi tð Þ ¼ 1ð Þ ¼ p dNEi tð Þ ¼ 1j dNi tð Þ ¼ 1ð Þ * p dNi tð Þ ¼ 1ð Þ þ p dNEi tð Þ ¼ 1j dNi tð Þ ¼ 0ð Þ * p dNi tð Þ ¼ 0ð Þ (6)

FIGURE 1 Calculation of RE in different settings (A) Cancer‐specific setting (B) Relative survival setting (C) Proposed approach:

Weighting in the relative survival setting. ◯ time of cancer death; X time of non‐cancer death; | time of censoring; rM: Rank as estimated

from the model‐derived hazard of death; r0: Average rank of the records in the risk set; rP: 1; wi: probability of cancer death [Colour figure can

be viewed at wileyonlinelibrary.com]
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Because p dNEi tð Þ ¼ 1j dNi tð Þ ¼ 0ð Þ ¼ 0, and dN variables are binomial variables, if one sums Equation 6 over
individuals and event times, after changing the order of summation and expectation, one gets:

E ∑n
i¼1∑tkdNEi tkð Þ

� �
¼ E ∑n

i¼1∑tkwi*dNi tkð Þ
� �

(7)

Given that dNi(tk) = 1 if and only if ti = tk, Equation 7 can be written as follows:

E ∑n
i¼1∑tkdNEi tkð Þ

� �
¼ ∑n

i¼1wi (8)

The total number of cancer events can thus be estimated by the sum of weights: depending on the quality of the
approximation of the expected mortality hazard by the general population life tables and the excess hazard model to esti-
mate cancer‐specific mortality, the sum of weights will approach the number of cancer deaths.

We define RE for excess hazard models, REw, as follows:

REw ¼
∑i ∫

τ
0
witcGit

* ri;null tð Þ− ri;model tð Þ
� �

dNi tð Þ

∑i ∫
τ
0
witcGit

* ri;null tð Þ− ri;perfect tð Þ
� �

dNi tð Þ
(9)

(b) Null models

In order to adapt RE to the relative survival setting, we kept the null model defined in Stare et al13 and presented in
Section 2.1 above; additionally the use of weights reflects the probability that an event is the event of interest.

Nonetheless, alternative null models have been considered, which assume some features of the excess hazard
model a “given”. For instance, we tested a null model that conveyed the life table information. The “null” rank (ri,null)
attributed to each patient at each event time ti was derived from decreasing expected (population) mortality rates
measured at ti.

ri;null ¼ rank λPi tið Þð Þ

It meant that for RE to be large, the effects of variables such as age, present in both the population life tables and the
excess (cancer) hazard model, would need to have a different effect on the expected hazard and on the excess hazard. For
example, age has a strong effect on both the expected mortality and the excess mortality; hence, both ri,null and ri,model,
respectively, are close to 1 for most patients i. Therefore, the individual difference ri,null – ri,model will be slightly positive
only when ri,null > ri,model, ie, when the effect of age on the expected hazard is smaller than the effect of age on excess
mortality. A large βage in the excess hazard model can therefore lead to a small overall RE: a result that is hard to
interpret. Similarly, because some factors can cease to be discriminant for cancer survival years after diagnosis, the indi-
vidual differences ri,null – ri,model become very negative so the local RE and even the overall RE could reach very negative
values.

We also tested a null model that integrated the additive structure of the overall mortality into excess and expected
hazards.

ri;null ¼ rank λPi tið Þ þ λ0 tið Þð Þ

Nonetheless, defining a model which only contained that structure with no further assumption was challenging, and
was confusing the interpretation of RE.

We believe the null model presented and used in Stare et al13 in conjunction with our weighing remains the most
relevant approach for the adaptation of the original RE to excess hazard models. Hence, ri,null represents the mean rank
of all observations in the risk set at time ti, reflecting a complete absence of knowledge on what observation will fail next.
In this way, RE estimated through cause‐specific or relative survival settings using weights will have the same
interpretation.

Several outputs can be defined from the explained variation measure:

(a) Time‐varying REw, REw(t):
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a. it is considered as a function of follow‐up time and reports the values of REw cumulated up to given times
b. REw is the cumulative measure calculated over the entire follow‐up.

This is the main measure together with its variance or confidence interval.

(b) Local REw, an instantaneous measure of REw, measured using events happening between 2 pre‐defined times,
possibly moving through the follow‐up.

This measure is exploratory, designed to investigate further specific explained variation patterns. It is advised to
report smoothed curves of the local instantaneous REw values and time‐varying REw(t).

3 | SIMULATIONS

We performed simulation studies to understand the properties of REw defined in the context of excess hazard models.
The simulations also demonstrate the characteristics of REw such as the information it brings over the usual model out-
puts and how sensitive REw is to model mis‐specification.

3.1 | Simulation strategy

(a) Data

We used information on 5809 breast (women) and 2418 lung (men and women) cancer patients diagnosed in
England in 2000 with a valid stage at diagnosis. The potential maximum follow‐up was 8 years for each patient, to the
31st December 2007, and information on their age, deprivation status, and stage at diagnosis was available. Due to
passive follow‐up, no censoring happens prior to the end of follow‐up. Breast and lung cancers were chosen for their
differing death patterns: 93% of lung cancer patients vs 30% of breast cancer patients die in the 8 years following
diagnosis, and cancer deaths account for nearly 95% and around 60% of all deaths in lung and breast cancer respectively.

(b) Expected survival times

Expected survival times were simulated by extracting expected mortality rates, λP, from sex‐specific, age‐specific,
year‐specific, and deprivation‐specific life tables, defined at each month of age and every calendar month. Moving
forward, at each anniversary day of diagnosis, patient records were merged to these life tables in order to get a
patient‐specific expected mortality rate λP for that exact day. The survival time u, simulated for each patient from an
exponential distribution with mean λP, was compared with 1 month to determine the expected survival time: if u was
always greater than 1, the patient over‐lived every month and was still alive at the end of the 8‐year follow up. The failure
indicator equals to 1 when the subject dies (whatever the cause) or 0 otherwise.

(c) Parameters of the simulations

Fully parametric models were fitted on the log cumulative hazard scale1,11 to model the excess hazard of death using
the STATA command, stpm2. Model‐based information, such as the parameters of the baseline log‐cumulative excess
hazard, and the estimated effect parameters, was used to simulate a thousand survival times (outcome) for each of the
5809 breast and 2418 lung cancer patients. We kept the original values of the patients' sex, age, deprivation, and stage
at diagnosis (observed covariate distribution). The aim of these simulations is that the simulated survival times resemble
realistically observed survival patterns (see annex).

(d) Cancer survival times

We designed 2 simulation scenarios: a simple one, S1 only containing linear proportional effects of age at diagnosis,
and a more complex scenario, S2, with non‐proportional and non‐linear effects of age, and non‐proportional effects of
categorical stage and deprivation (see Box A).
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Survival times for S1 were simulated according to the following function for the log cumulative excess hazard:

ln HS1 t; ageð Þð Þ ¼ ln H0 tð Þð Þ þ βage * age

with ln(H0(t)) = s(ln(t); γ), s being a non‐orthogonalised restricted cubic splines function of ln(t), with up to 3 degrees of
freedom, placed at tertiles of the distribution of times.

Survival times for S2 were simulated according to the following function for the log cumulative excess hazard:

ln HS2 t; age; stage; deprivationð Þð Þ ¼ ln H0 tð Þð Þ þ f age ageð Þ * 1þ ln tð Þð Þ þ ∑
i¼2;3;4

ðβstagei * stagei þ αstagei * ln tð Þ * stageiÞ
þ ∑

i¼2;3;4;5
ðβdepi* depi þ αdepi * ln tð Þ * depiÞ

with ln(H0(t)) = s(ln(t); γ), s being a non‐orthogonalised, restricted cubic splines function of ln(t) with up to 3 degrees of
freedom, placed at tertiles of the distribution of times.

A general algorithm involving numerical integration and root‐finding techniques generated the cancer‐specific sur-
vival times from these complex parametric distributions.18 We used the survsim command implemented in STATA.19

Overall survival time is the minimum between cancer‐specific survival times, as simulated in S1 or S2, expected sur-
vival times derived from population life tables and the maximum follow‐up time (8 years). From each simulated dataset,
we retained the simulated expected, cancer and overall survival times, and the corresponding vital status indicators.

To make sure our simulated excess hazard and survival curves are realistic, we compared them to the original real‐
life hazard and survival curves (Figure 1 in Annex). More details are provided in the tables of bias and coverage (Annex)
for both scenarios S1 and S2.

Because the process that generated the survival times is known, it is straightforward to assess the properties of REw
calculated in several different estimation models. The estimation models M1 and M2 are well‐specified as they include
the same variable structure and form of effects than the simulation scenarios S1 and S2, respectively. The other models
M3 to M10 are mis‐specified because simulation and estimation models differ (see Box A).

We expect 1000 simulated datasets to be sufficient to offer a good overview of the properties of REw. All models were
fitted on each of the 1000 simulated datasets for S1 and S2, and REw, REw(t), and local REw were calculated and their
values retained for the assessment of their properties.

Excess hazard models and cause‐specific hazard models both estimate the same quantity: an estimate of net survival
can be derived from both strategies when cause of death is reliably known. Similar agreement is therefore expected
between the values of RE measured in cause‐specific and REw in relative survival settings.

3.2 | REw—Weighting system

Each individual contribution to REw was weighted by the probability that the event represents a death from cancer. The
sum of these weights over all patients who died is an estimate of the number of cancer deaths in the population. Figure 2
compares the actual number of cancer deaths to the sum of weights, for each of the 2 simulation scenarios S1 and S2 for
breast and lung cancers.

Over the 8 years of follow‐up, there were on average 1070 breast cancer deaths among the breast cancer patients, ie,
18.4% of patients with breast cancer representing around 60% of deaths; and on average 2159 lung cancer deaths in
patients with lung cancer, ie, 90% of patients representing 95% of deaths. Over the 1000 datasets simulated in each of
the 2 scenarios, the sum of the weights, used in the calculation of REw, agreed with the actual number of cancer deaths,
used in the cause‐specific setting (Figure 2).

The agreement between REw values obtained from relative and RE in cause‐specific approaches was nearly perfect,
both in simulation scenarios S1 and S2 for breast and lung cancers, and at 1, 5 and 8 years after diagnosis (Figure 3). The
larger variability observed in the breast cancer plots was expected and shows the greater instability of the excess hazard
models due to the smaller portion that the breast cancer deaths represents among all deaths in that population (60%),
contrasting with the burden of lung cancer deaths in lung cancer patients (95%).

We explored a critical scenario in which cancer mortality is very low compared with all‐cause mortality: we selected
stage I to II breast cancer patients aged 70 to 99 years at diagnosis. In that sample, REw was still behaving properly
despite weights that were slightly over‐estimated. That over‐estimation can have an increasing or decreasing impact
on REw depending on the directions of the effects of factors included in both the life table and the excess hazard model.
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Box A. Simulation and estimation scenarios

S1 Simulation scenario 1, linear proportional effect of age at diagnosis
M1 Linear proportional effect of age
M3 Linear non‐proportional effect of age
M4 Non‐linear proportional effect of age
M5 Non‐linear non‐proportional effect of age

S2 Simulation scenario 2, non‐linear non‐proportional effect of age, non‐proportional effects of
categorical stage and deprivation

M2 Non‐linear non‐proportional effect of age, non‐proportional effects of categorical stage and deprivation
M6 Non‐linear non‐proportional effect of age, non‐proportional effect of categorical deprivation
M7 Non‐linear non‐proportional effect of age, non‐proportional effect of categorical stage
M8 Linear proportional effect of age, categorical stage and deprivation
M9 Non‐linear non‐proportional effect of age, proportional effect of categorical stage, non‐proportional effect

of categorical deprivation
M10 Non‐linear non‐proportional effect of age, non‐proportional effect of categorical stage, proportional effect

of categorical deprivation

FIGURE 2 Sum of weights and actual number of cancer deaths, for each of a 1000 simulated datasets, by cancer and simulation scenario.

S1: Simulation scenario 1, linear proportional effect of age at diagnosis; S2: Simulation scenario 2, non‐linear non‐proportional effect of age,

non‐proportional effects of categorical stage and deprivation [Colour figure can be viewed at wileyonlinelibrary.com]
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It is good practice to report the estimated number of cancer deaths, and their proportion among all deaths, as esti-
mated by the sum of weights, so the interpretation of the outputs is given the required caution. Some degree of instability
in the estimates of effects is indeed expected in excess hazard models where there is a low proportion of cancer deaths
among all deaths.17 REw is based on the excess hazard model and therefore suffers twice (through weighting and rank-
ing of events) in such situations. In practice, we follow the recommendation from Sasieni that excess hazard model is
best used when the proportion of death due to the disease of interest is between 30% and 90%.20

3.3 | REw—Properties

Mis‐specifying the form of the effects of the main prognostic factors hardly affected REw. In simulation scenario S1 (sim-
ple linear proportional effect of age), the over‐parameterisation of age in the modelling, by inclusion of non‐linear and/or
non‐proportional effects of age (models M3‐M5), did not alter REw: median REw, at 0.035 (breast) and 0.095 (lung) with
model M1, increased to 0.037 to 0.043 (breast) and remained unchanged for lung (Figure 4).

The impact of stage, a strong predictor of survival, on REw is obvious when stage was omitted in the modelling (M6)
while it was present in the simulation scenario (S2): median REw decreased from 0.600 (M2) to 0.213 (M6) for breast, and
from 0.421 (M2) to 0.126 (M6) for lung (Figure 4). All other types of model mis‐specification, such as omitting depriva-
tion (M7), or omitting/including non‐linearity or non‐proportionality of age, deprivation or stage (M8‐M10), did not have
any strong impact on REw: for both breast and lung cancers, the largest differences in median REw occurred with under‐
parameterisation of stage, ie, lack of non‐proportionality of the effect (M8, M9), and still showed a difference in median
REw as small as 0.02 or less.

REw is robust to model mis‐specification because the ranking of the individual hazards is unaffected by estimated
changes in the strength of the effects only. M6, in which the effect of stage is ignored, shows greater impact on REw
due to large changes in the ranking of observations.

The local REw was calculated using 20 events around each index event. This choice resulted in windows of varying
lengths: stable at around 25 days all through the follow‐up for breast cancer patients, whereas it started at less than
20 days for the first year of lung cancer follow‐up, and then gradually increased to 450 days beyond 7 years. Indeed, over
75% of deaths occurred in the year following the lung cancer diagnosis, although it takes 5 years to observe 75% of deaths
for breast cancer patients.

There was little variation between the 1000 local REw curves when simulation and estimation models coincided, ie,
M1 in S1 and M2 in S2 (Figure 5). The general patterns of local REw seen in well‐specified models were however pre-
served for mis‐specified estimation models. In the simple scenario S1, local REw remained relatively constant with time
since diagnosis for all models. For the more complex simulation scenario S2, the local REw curves decreased with time
for all models. We further explored that decrease in local REw to understand what effect it reflected. We looked at sim-
ulated data following 2 additional scenarios, S3 and S4: S3 included linear proportional effects of age, and proportional
effects of categorical deprivation and stage at diagnosis, while S4 included non‐linear and non‐proportional effects of age,

FIGURE 3 Comparison of RE obtained in cause‐specific and relative survival settings, by cancer and simulation scenario
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and non‐proportional effects of categorical deprivation. While the local REw curves also decreased in simulation sce-
nario S4, they remained constant in S3 indicating that non‐proportional effects of age and other factors, rather than
the adjustment for stage, triggered a decreasing local REw in S2.

The weighting initially proposed in Stare et al takes good account of random censoring through time. However, in the
event that some cohorts of patients are all censored at a fixed date, such as due to administrative censoring when
performing a complete study design, this weighting was not sufficient to cope for such large amount of censored
information, often tied. We advise to break ties by simply adding or subtracting a small fraction of time to the survival
times that tie. It will then prevent the spurious increasing REw emanating from large proportions of patients censored at
similar times after diagnosis. Without this correction, local and overall REw will also converge to 1 from the time heavy
censoring starts occurring. For users analysing a cohort study design, it is advised to measure the cumulative REw right
before the administrative censoring happens.

4 | APPLICATION: COMPLEX MULTIVARIABLE MODELLING

Given the availability of potential predictors of cancer survival in England, we selected patients diagnosed with colon
cancer in 2011 to 2013 (n = 9300) or non‐small cell lung cancer in 2012 (n = 5958), with follow‐up until the end of
2014. We selected a 25% random sample of patients with valid information on sex, age at diagnosis, deprivation, stage
at diagnosis, major surgical treatment, and comorbidity (Charlson index, CCI) for all patients and additional information
on performance status and route to diagnosis for lung cancer patients only (Table 1).

The initial parametric log‐cumulative excess hazard models, stratified by sex, included age at diagnosis and depriva-
tion, and expected hazards were provided by life tables defined by sex, single year of age, and deprivation. We aimed to
measure the explained variation of the increasingly more complex models to reflect the explained variation of each factor
successively added into the models.

The sum of the weights derived for the calculation of REw quantified the proportion of cancer deaths among all
deaths. Of the 40.6% (42.0%) colon cancer patients dying through the follow‐up, we estimated that 79.0% (83.4%) died

FIGURE 4 REw measured at 5 years, using different well‐specified (M1, M2, plain lines) and mis‐specified (M3‐M10) models, by cancer

and simulation scenario. S1: Simulation scenario 1, linear proportional effect of age at diagnosis; M1: Linear proportional effect of age

(plain line across M3‐M5); M3: Linear non‐proportional effect of age; M4: Non‐linear proportional effect of age; M5: Non‐linear non‐

proportional effect of age; S2: Simulation scenario 2, non‐linear non‐proportional effect of age, non‐proportional effects of categorical stage

and deprivation (plain line across M6‐M10); M2: Non‐linear non‐proportional effect of age, non‐proportional effects of categorical stage and

deprivation; M6: Non‐linear non‐proportional effect of age, non‐proportional effect of categorical deprivation; M7: Non‐linear non‐

proportional effect of age, non‐proportional effect of categorical stage; M8: Linear proportional effect of age, categorical stage and deprivation;

M9: Non‐linear non‐proportional effect of age, proportional effect of categorical stage, non‐proportional effect of categorical deprivation; M10:

Non‐linear non‐proportional effect of age, non‐proportional effect of categorical stage, proportional effect of categorical deprivation
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of cancer in men (women); and of the 86.4% (81.3%) of dead men (women) lung cancer patients, 94.3% (95.0%) died of
their cancer.

Table 2 shows that REw reached 0.22 (95%CI: 0.16–0.28) (REw = 0.26, 95%CI: 0.20–0.31) in men (women) with colon
cancer, and 0.14 (95%CI: 0.11–0.17) (REw = 0.16, 95%CI: 0.12–0.19) in men (women) with lung cancer at 12 months after
diagnosis, for models adjusted for age and deprivation only, ie, the baseline model. Full adjustment for all available
covariables increased REw to 0.69 (95% CI: 0.67–0.70) (REw = 0.67, 95%CI: 0.66–0.69) in men (women) with colon can-
cer and 0.56 (95%CI: 0.54–0.58) (REw = 0.58, 95%CI: 0.56–0.60) in men (women) with lung cancer. Stage accounted for
most of the increase in colon cancer, explaining 61.8% (53.5%) in men (women) of the explained variation of the full
model, and increasing the baseline REw by over 150%. In lung cancer, performance status and stage showed the largest
increase in REw, from the minimum initial model: around 200%, with an absolute change in REw of 0.29 (0.30) and 0.28
(0.29) in men (women) respectively; but in a full model, their respective shares represented 12.4% (10.8%) and 10.5%
(7.4%) in men (women), suggesting correlation between variables such as treatment and stage, or emergency presenta-
tion and stage.

We then measured time‐varying REw at 1 month and every 3 months following diagnosis, up to 3 years (Figures 6A
and 7A). In colon cancer patients, there is a clear distinction between models that do and do not contain stage at diag-
nosis. In models excluding stage, REw(t) was stable from 12 months after a sharp decrease in the first 6 months and
then slight decrease until the 12th month (Figure 6A). The local REw showed evidence that at 2 years after diagnosis,
models that contained the surgical treatment variable, without stage at diagnosis, displayed an increased local REw
(Figure 6B).

In lung cancer models, the time‐varying REw increased from the baseline age and deprivation model with any addi-
tional variable: REw(t) was stable after a slight decrease until 3 months, mostly in women, and in models adjusted for
emergency presentation (from over 0.5 in women to less than 0.4, Figure 7A). Additionally, the curves reflecting pres-
ence of stage and performance status reflect perfectly the large contribution of performance status at the start of the fol-
low‐up, and the constant contribution of stage. The patterns of the local REw curves are suggestive of a late treatment

FIGURE 5 Local REw measured up to 5 years, for different well‐specified (M1, M2) and mis‐specified models (M3‐M5 and M6‐M10): breast

and lung cancers. S1: Simulation scenario 1, linear proportional effect of age at diagnosis; M1: Linear proportional effect of age; M3: Linear

non‐proportional effect of age; M4: Non‐linear proportional effect of age; M5: Non‐linear non‐proportional effect of age; S2: Simulation

scenario 2, non‐linear non‐proportional effect of age, non‐proportional effects of categorical stage and deprivation; M2: Non‐linear non‐

proportional effect of age, non‐proportional effects of categorical stage and deprivation; M6: Non‐linear non‐proportional effect of age, non‐

proportional effect of categorical deprivation; M7: Non‐linear non‐proportional effect of age, non‐proportional effect of categorical stage; M8:

Linear proportional effect of age, categorical stage and deprivation; M9: Non‐linear non‐proportional effect of age, proportional effect of

categorical stage, non‐proportional effect of categorical deprivation; M10: Non‐linear non‐proportional effect of age, non‐proportional effect of

categorical stage, proportional effect of categorical deprivation
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TABLE 1 Number and proportion of patients, by stage at diagnosis and each of the main explanatory factors: Lung cancer patients diag-

nosed in 2012, colon cancer patients diagnosed in 2011 to 2013 in England

Non‐Small Cell Lung Cancer

Men Women

Stage I Stage II Stage III Stage IV Total Stage I Stage II Stage III Stage IV Total

Age at diagnosis
Mean (sd) 72.8 (10) 72.9 (10.2) 72.1 (10.06) 72.3 (10.4) 72.6 (10.7) 72.6 (11) 72.1 (10.5) 72.2 (11.1)

Treatment No. % No. % No. % No. % No. % No. % No. % No. % No. % No. %

No major surgical
treatment

223 44.2 149 52.3 753 89.1 1658 99.0 2783 84.1 214 44.7 123 52.1 528 89.0 1327 98.9 2192 82.7

Major surgical
treatment

281 55.8 136 47.7 92 10.9 16 1.0 525 15.9 265 55.3 113 47.9 65 11.0 15 1.1 458 17.3

Emergency presentation
No 425 84.3 237 83.2 657 77.8 1016 60.7 2335 70.6 367 76.6 186 78.8 452 76.2 767 57.2 1772 66.9

Yes 79 15.7 48 16.8 188 22.2 658 39.3 973 29.4 112 23.4 50 21.2 141 23.8 575 42.8 878 33.1

Performance status
High—0 168 33.3 87 30.5 201 23.8 230 13.7 686 20.7 138 28.8 66 28.0 122 20.6 177 13.2 503 19.0

1 186 36.9 114 40.0 321 38.0 521 31.1 1142 34.5 171 35.7 86 36.4 220 37.1 435 32.4 912 34.4

2 83 16.5 47 16.5 147 17.4 388 23.2 665 20.1 77 16.1 48 20.3 108 18.2 268 20.0 501 18.9

3 51 10.1 27 9.5 121 14.3 370 22.1 569 17.2 63 13.2 29 12.3 115 19.4 306 22.8 513 19.4

4 7 1.4 3 1.1 36 4.3 126 7.5 172 5.2 12 2.5 3 1.3 20 3.4 124 9.2 159 6.0

Low—5 9 1.8 7 2.5 19 2.2 39 2.3 74 2.2 18 3.8 4 1.7 8 1.3 32 2.4 62 2.3

Deprivation quintile
Least deprived 81 16.1 35 12.3 107 12.7 241 14.4 464 14.0 54 11.3 32 13.6 74 12.5 165 12.3 325 12.3

2 84 16.7 51 17.9 139 16.4 269 16.1 543 16.4 85 17.7 39 16.5 93 15.7 194 14.5 411 15.5

3 93 18.5 56 19.6 161 19.1 355 21.2 665 20.1 83 17.3 50 21.2 130 21.9 264 19.7 527 19.9

4 100 19.8 70 24.6 224 26.5 365 21.8 759 22.9 119 24.8 50 21.2 141 23.8 367 27.3 677 25.5

Most deprived 146 29.0 73 25.6 214 25.3 444 26.5 877 26.5 138 28.8 65 27.5 155 26.1 352 26.2 710 26.8

Charlson comorbidity score
None—0 256 50.8 165 57.9 524 62.0 1054 63.0 1999 60.4 251 52.4 136 57.6 373 62.9 917 68.3 1677 63.3

1 113 22.4 52 18.2 141 16.7 295 17.6 601 18.2 127 26.5 55 23.3 107 18.0 218 16.2 507 19.1

2 54 10.7 37 13.0 83 9.8 169 10.1 343 10.4 47 9.8 28 11.9 56 9.4 98 7.3 229 8.6

>2 81 16.1 31 11.0 97 11.3 156 9.4 365 11.0 54 11.2 17 7.2 57 9.6 109 7.9 237 8.9

Total 504 100.0 285 100.0 845 100.0 1674 100.0 3308 100.0 479 100.0 236 100.0 593 100.0 1342 100.0 2650 100.0

Colon cancer

Men Women

Stage I Stage II Stage III Stage IV Total Stage I Stage II Stage III Stage IV Total

Age at diagnosis
Mean (sd) 70.9 (11.2) 72.5 (11.6) 69.8 (12.6) 72.0 (12) 70.5 (13.3) 73.8 (12) 72.1 (12.7) 71.9 (13.7)

Treatment No. % No. % No. % No. % No. % No. % No. % No. % No. % No. %

No major surgical
treatment

31 4.7 41 2.8 59 4.5 393 25.4 524 10.6 27 4.9 49 3.7 68 6.0 404 30.1 548 12.6

Major emergency
surgery

33 5.0 264 18.2 268 20.6 258 16.7 823 16.6 35 6.3 258 19.7 283 24.8 241 17.9 817 18.8

Major elective
surgery

421 64.4 1028 71.0 845 64.9 321 20.8 2615 52.8 377 67.8 914 69.7 680 59.7 256 19.1 2227 51.2

Minor surgery 169 25.8 115 7.9 131 10.1 573 37.1 988 20.0 117 21.0 91 6.9 108 9.5 442 32.9 758 17.4

Deprivation quintile
Least deprived 140 21.4 318 22.0 290 22.3 331 21.4 1079 21.8 131 23.6 304 23.2 291 25.5 262 19.5 988 22.7

2 154 23.5 325 22.4 307 23.6 343 22.2 1129 22.8 118 21.2 290 22.1 247 21.7 293 21.8 948 21.8

3 150 22.9 318 22.0 266 20.4 329 21.3 1063 21.5 121 21.8 270 20.6 215 18.9 280 20.8 886 20.4

4 117 17.9 269 18.6 251 19.3 321 20.8 958 19.4 114 20.5 238 18.1 205 18.0 301 22.4 858 19.7

Most deprived 93 14.2 218 15.1 189 14.5 221 14.3 721 14.6 72 12.9 210 16.0 181 15.9 207 15.4 670 15.4

Charlson comorbidity score
None ‐ 0 477 72.9 1061 73.3 1015 77.9 1146 74.2 3699 74.7 440 79.1 1037 79.0 923 81.0 1076 80.1 3476 79.9

1 78 11.9 194 13.4 122 9.4 179 11.6 573 11.6 65 11.7 142 10.8 106 9.3 139 10.3 452 10.4

2 49 7.5 108 7.5 91 7.0 116 7.5 364 7.4 31 5.6 78 5.9 62 5.4 66 4.9 237 5.4

>2 50 7.7 85 5.8 75 5.8 104 6.8 314 6.3 20 3.7 55 4.3 48 4.3 62 4.6 185 4.3

Total 654 100.0 1448 100.0 1303 100.0 1545 100.0 4950 100.0 556 100.0 1312 100.0 1139 100.0 1343 100.0 4350 100.0
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TABLE 2 Multivariable model: Explained variation (REw) measured at 12 months after diagnosis, for overall models and individual

variables

Changea in REw

Inclusionb Exclusionb

REw at 12 months
(95% CI)

Difference
in REw

Proportion
of Initial
Model (%)

Difference
in REw

Proportion
of Full
Model (%)

Colon cancer

Men

Initial model: Age, deprivation 0.221 (0.160; 0.282)

Age, deprivation, stage 0.671 (0.657; 0.686) 0.450 203.5 0.427 61.8

Age, deprivation, treatmentc 0.251 (0.195; 0.307) 0.030 13.5 0.016 2.4

Age, deprivation, Charlson
Comorbidty index (CCI)

0.232 (0.171; 0.292) 0.010 4.7 0.003 0.4

Full model: Age, deprivation, stage,
treatment, CCI

0.690 (0.676; 0.704)

Women

Initial model: Age, deprivation 0.256 (0.198; 0.314)

Age, deprivation, stage 0.660 (0.644; 0.675) 0.403 157.5 0.359 53.5

Age, deprivation, treatmentc 0.290 (0.241; 0.340) 0.034 13.4 0.010 1.4

Age, deprivation, Charlson
Comorbidity index (CCI)

0.271 (0.214; 0.329) 0.015 6.0 0.002 0.3

Full model: Age, deprivation, stage,
treatment, CCI

0.671 (0.656; 0.686)

Non‐small cell lung cancer

Men

Initial model: Age, deprivation 0.141 (0.112; 0.171)

Age, deprivation, stage 0.422 (0.403; 0.441) 0.280 198.5 0.058 10.5
Age, deprivation, treatmentd 0.257 (0.235; 0.280) 0.116 81.9 0.003 0.6
Age, deprivation, Charlson
Comorbidity index (CCI)

0.141 (0.111; 0.170) −0.001 −0.5 0.000 0.1

Age, deprivation, performance
status (PS)

0.434 (0.409; 0.459) 0.293 207.3 0.069 12.4

Age, deprivation, presentation
(EP vs non‐EP)

0.325 (0.295; 0.354) 0.183 129.8 0.013 2.4

Full model: Age, deprivation, stage,
treatment, CCI, PS, presentation

0.558 (0.539; 0.576)

Women

Initial model: Age, deprivation 0.155 (0.120; 0.191)

Age, deprivation, stage 0.442 (0.421; 0.463) 0.287 185.1 0.043 7.4
Age, deprivation, treatmentd 0.299 (0.274; 0.324) 0.144 92.8 0.006 1.0
Age, deprivation, Charlson
Comorbidity index (CCI)

0.157 (0.121; 0.192) 0.002 1.0 −0.001 −0.2

Age, deprivation, performance
status (PS)

0.455 (0.427; 0.484) 0.300 193.6 0.063 10.8

Age, deprivation, presentation
(EP vs non‐EP)

0.352 (0.318; 0.387) 0.197 127.2 0.020 3.4

Full model: Age, deprivation, stage, treatment,
CCI, PS, presentation

0.584 (0.564;0.604)
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effect: generally decreasing over time for models including emergency presentation or performance status but increasing
for the model including surgical treatment information (Figure 7B).

By definition of the local REw, the shapes of the smoothed curves are only slightly influenced by the number of
events included in the windows around each index event. For both colon and lung cancers, including 10 events on either
side of the index event resulted in windows of times varying between a day and 50 days for lung cancer or between a day
and over 75 days for colon cancer in the 3 years of follow‐up. The degree of smoothing will also likely impact the shape of
the local REw curves. Furthermore, the cumulative nature of the overall and time‐varying REw means that they are
likely impacted by the high proportions of death happening at the beginning of the follow up: 50% of all deaths occurred
by the 3rd and 9th months of follow‐up in lung and colon cancer, respectively, explaining why REw(t) was mostly flat
beyond these times.

5 | DISCUSSION

We presented here an adaptation of the RE measure for event history data to excess hazard modelling. We offer a new
tool to quantify the variation in disease‐specific outcome explained by the available predictive factors. In this context,
REw can be measured at given time points following diagnosis and plotted as a function of time. Additional exploratory
insight is provided by a “local REw”, calculated using a window of events around each event time. That function of time
can be very unstable, and the smoothed curve is useful to look at the general trend in the variation in RE by the model.
Although dependent on death patterns, these time‐varying versions of REw help understand better when specific factors
have strongest impact on survival.

The differences between local REw and REw(t) curves can be seen similarly to the differences between hazard and
cumulative hazard curves. The cumulative hazard curve is a cumulative measure, whereby hardly affected by local
effects seen in the instantaneous hazard curve. REw(t) is the cumulative REw, heavily impacted by the first few months
following the diagnosis, where most cancer‐related deaths occur. If one is interested in changes in explained variation
due to, say late treatment effects or changes in the composition of the cohort of patients (younger ages, fewer late stage
patients, fitter patients…), the local REw will provide such information. Furthermore, in the context of dynamic data and
dynamic models, local REw will be providing the necessary time‐varying measure of explained variation.

Furthermore, local REw and REw(t) are informative for comparison between studies, or when varying follow‐up
times are available, because the overall measure REw will vary with the available follow‐up.21

Further research in the number of events to include in the calculation of the local REw show very little variation in
the smoothed functions. Only the heights of the spikes seen in the un‐smoothed local REw curves are affected, and hence
the tail of the smoothed curve, where the number of events is more scarce. We advise researchers to use 20 events, as a
default size, and depending on the cancer lethality, check for the impact of using much smaller (say 4–10 events) or
much larger (30–40 events) number of events. The local REw curve will, to some extent, depend on the number of events
as well as the amount of smoothing applied.

The weighting system proposed here for the relative survival setting keeps the simplicity and the intuition of the orig-
inal RE used in the overall and cause‐specific settings. It also retains the original RE measure's properties such as model‐
free interpretation. Furthermore, the weighted measure REw in the relative survival setting is equivalent to RE in the
cause‐specific setting.

Multidimensional models defined on the log or log‐cumulative hazard scales can now be routinely used to estimate
excess hazard from cancer.3,11 These models often include complex non‐linear and non‐proportional effects of a variety
of factors that may impact levels of survival. Therefore, the regression coefficients are not straightforward to interpret,

Modelled effects: Age: non‐linear and non‐proportional, Deprivation: categorical, non‐proportional, Stage: categorical, non‐proportional, Treatment: categorical,
non‐proportional, CCI: linear, non‐proportional, Performance status: categorical, Presentation binary: emergency presentation (EP) versus non‐emergency.
aChange is measured as the arithmetic difference between the initial (inclusion) or full (exclusion) model REw and the model that includes the specific variable.
That difference is expressed as a proportion of the initial (inclusion) or full (exclusion) model.
bInclusion: change in REw with the addition of the index variable to a model including age and deprivation. Exclusion: change in Rew with the removal of the
index variable from the full model.
cThe variable “treatment” represents major surgical resection.
dThe variable “treatment” represents both treatment and the route to diagnosis: 1—no treatment, 2—emergency major surgery, 3—elective major surgery, 4—
minor surgery.

Notes to Table 2
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and strong predictors are often hard to pin down. We propose to look at differences in REw between models to quantify
the proportion of variation explained by a given factor. Our illustration shows that for lung cancer patients, performance
status explained the largest amount of variation in survival between patients, particularly in the early months following
diagnosis. Performance status, although well‐known and discussed in Multi‐Disciplinary Team meetings, is rarely
accounted for in epidemiology, mainly because of its unavailability in the routine cancer registration datasets. Such high
explanatory power for that variable could trigger its availability at least in specialised cancer registry datasets.

Low proportions of explained variation for single covariable in the full model, whereas each additional variable adds,
individually, a lot to the explained variation of the baseline model, indicate high correlation between factors. It could
reflect a high adherence to guidelines such that whole groups of patients got administered the same treatment, or were
diagnosed via a given ideal route.

Despite the measure being dependent on the excess hazard model through the weighting and through the ranking of
observations, REw proved a great stability to model specification. REw was largely insensitive to over‐parameterisation
or under‐parameterisation of the variables used in the simulation model. Non‐linear or non‐proportional effects,
although they may reflect better the reality of the estimated disease‐specific survival, will not impact dramatically the
order at which patients will experience the event of interest.

FIGURE 6 Multivariable models: (A) explained variation measured at 1 month and every 3 months after diagnosis, (B) smoothed local RE

up to 3 years after diagnosis, for models adjusted for the effects of age and deprivation, and stage, and treatment. Colon cancer patients

diagnosed in 2011 to 2013, selected for their valid stage at diagnosis: 4950 men and 4350 women the curve for comorbidity is not presented

here as it is undistinguishable from the age and deprivation model

Notes: (1) RE(t) and local RE can have values between −1 and +1 (2) Cumulative RE, RE(t) is calculated at month 1, 3, 6…36 after diagnosis

(3) Local RE is calculated using information from 10 events on either side of the index event. The smoothed (lowess with mean smoother)

curve is presented here
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REw, like RE, is not exact. Small sample sizes or low number of deaths due to the disease of interest will increase
variability around the estimated REw. Therefore, we advise users to report the variance or confidence interval obtained
around the estimated REw. Similar to RE, REw estimates may be biased for a factor with a small effect.13 However, the
bias will become negligible as the sample size increases.

Further developments will include testing the REw on dynamic models that include time‐varying variables,22 and
in hierarchical models.2 The variation explained by these models may be greater, because they allow the effect of
time‐varying variables to be modelled and, hence, measures of prognostic factors that are updated over time since the
cancer diagnosis.
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FIGURE 7 Multivariable models: (A) explained variation measured at 1 month and every 3 months after diagnosis, (B) smoothed local RE up

to 3 years after diagnosis, for models adjusted for the effects of age and deprivation, and stage, treatment, performance status, and emergency

presentation. Non‐small cell lung cancer patients diagnosed in 2012, selected for their valid stage and performance status at diagnosis: 3308 men

and 2650 women. The curve for comorbidity is not presented here as it is undistinguishable from the age and deprivation model

Notes: (1) RE(t) and local RE can have values between −1 and +1 (2) Cumulative RE, RE(t) is calculated at month 1, 3, 6…36 after diagnosis

(3) Local RE is calculated using information from 10 events on either side of the index event. The smoothed (lowess with mean smoother)

curve is presented here
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2.6.2 The Brier score

In this section, we lay out the theory and initial ideas for the adaptation of the Brier

score to the relative survival data setting. The suggestion stems from the prediction error

introduced by Schoop et al. [137] and presented in equation 2.4 in section (2.3.1). We

de�ne Z�
i � Zi a subset of the variables de�ning the life tables.

In the relative survival data setting,

1 The prediction �1(tjZi) would be estimated from an excess hazard model as the crude

probability of cancer death, CPD.

2 1( ~Ti�t)
would need to be used in lieu of 1( ~Ti�t;�1i =1)

given we do not know what cause

contributed to observing an event.

We therefore need to add to the informative censoring weights w1 a component that

re�ects the mixtures of deaths included in 1( ~Ti�t). Similarly to what was proposed for RE,

the weights could be derived from the estimated individual excess hazards, such that it is

the ratio of the excess hazard over the overall hazard, as estimated by the model and the

life tables (population) hazards: w2(t; Zi) =
�E;i (t;Zi )

�E;i (t;Zi )+�P;i (t;Z
�
i
) .

Therefore we would have the following time-varying prediction error in the context of excess

hazard modelling:

PE(t) =
1

N

N∑
i=1

[
1( ~Ti�t;�i=1)

� ^CPD
1
i (tjZi)

]2
� w1(t; ~Ti ; �i ; Ĝ(t); Zi) � w

2(t; Zi): (2.5)

2.6.3 The ROC curve

Lorent et al. [156] propose an adaptation of the time-dependent ROC curve for censored

survival data to the net survival context. The measures of sensitivity and speci�city are

modi�ed such that the estimation of the joint distribution of survival and the marker is

replaced by an estimation of the joint distribution of net survival and the marker. The

estimation method proposed is that of nearest neighbour estimation, relying on patients

with similar marker values to inform on the survival probabilities.

Although this method is in-keeping with the proposals reviewed brie�y here, it could be

argued that the choice of marker could be improved. It is understood that the authors

investigate the predictive capacity of a marker, de�ned broadly for overall survival, to

predict disease-speci�c mortality. This could be replaced with a marker speci�cally de�ned

for prediction of disease mortality, such as derived from an excess hazard model.
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2.6.4 Sensitivity and Speci�city measures

Similarly to section 2.6.2, we look here at how measures of sensitivity and speci�city could

be estimated in the relative survival data setting. We start by looking at the original

description of the measures, in the binary response setting.

Classic binary response setting

The true positive rate or sensitivity is de�ned as Se = Number true positive
Number disease positive and the true

negative rate or speci�city is de�ned as Sp = Number true negative
Number disease negative .

Figure 2.5: Sensitivity and speci�city: binary outcome

Time-to-event setting

In the time-to-event setting, one repeats such classi�cation, for given times t after diagno-

sis, and we compare the patients still at risk of the event, and those not at risk anymore.

If there is censoring, then some patients may truly `not be at risk' of the event anymore

at time t, although they have not yet experienced the event itself prior to time t, due to

censoring.

In this case, for some of these subjects, there is a mismatch for some patients between

what the test results (low score � low probability to have experienced the event already)

and the reality (not at risk). When this happens, Heagerty et al. [148] o�er estimators

that rely on non-parametric nearest neighbour estimation of the bivariate distribution of the

time-to-event and marker processes, needed for the estimation of sensitivity and speci�city.
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Figure 2.6: Sensitivity and speci�city: time-to-event outcome

Relative survival data setting

In this setting, the group of patients observed not to be at risk of the event at time t

is composed of: (i) Patients who experienced the event of interest prior to time t; (ii)

Patients who were censored prior to time t; (iii) Patients who died of causes other than

the cause of interest prior to time t.

In excess hazard models, we model the hazard of dying from the cause of interest, say

cancer. Hence, a given patient's test marker may be high, if and only if the patient had

a high probability of dying from cancer between diagnosis and time t. Therefore patients

who died of other causes prior to time t may have a low test marker. Some patients may

be at high risk of both types of death (cancer and other causes) and will therefore have a

high test result, and not be at risk anymore.

I propose to weight each observations in the `not at risk' group of patients, such that their

contribution is not full but represent the probability that their observed event is the event

of interest (weights proposed for RE). In some ways, we simply modify the number of

observed events, to account for competing risks of death. If we denote by wi =
�E;i

�E;i+�P;i
the

probability that the event observed in patient i is the event of interest, we de�ne sensitivity

as: Sew =
∑N

i=1 wi�1Ti<t;Mi>c∑N
i�1 wi�1Ti<t

and I do not think we would need to modify the measure of

speci�city. In the case of additional censoring, speci�c further corrections will need to apply

too.
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Figure 2.7: Sensitivity and speci�city: time-to-event outcome, relative survival data setting

2.7 Conclusion

All measures covered in this Chapter aim at evaluating the prognostic characteristics of

statistical models. They all carry complementary speci�c properties, akin to the di�er-

ent characteristics of explained variation, explained randomness and predictive accuracy,

discussed in Choodari-Oskooei. [140, 141] Although measures of calibration and discrimina-

tion are typically useful for statistical models aimed at producing individual predictions, they

could still be useful for population-based predictions. Calibration, sensitivity and speci�city

can be assessed for groups of patients, sharing speci�c characteristics. These measures

would be relevant when measured in the sample of patients that trained the models, as well

as on new cohorts of patients for whom survival is predicted. In a similar way, measures of

predictive accuracy [140, 141] can be used for comparing predicted and observed outcomes

in groups of patients de�ned by similar characteristics.

No speci�c measure had yet been developed or adapted to the context of the relative

survival data setting. Of all measures presented in this Chapter, REw is the �rst measure

that is readily accessible for use in the relative survival data setting. Although based on

individual rankings at each time of event, this measure re�ects the accuracy of model-based

prediction at cohort level, or for a group of patients we are interested in.

Explained randomness measures are based on entropy, as is the Akaike Information Criteria

(AIC). They are an indication of how precisely a model reproduces the patterns observed.

In the next chapter we will use AIC to aid model-selection for the prediction of survival.

2.8 Further contribution to the topic

Stata program for cross-validated AUC
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Luque-Fernandez MA, Redondo-Sánchez D, Maringe C. cvauroc: Command to compute

cross-validated area under the curve for ROC analysis after predictive modeling for binary

outcomes. The Stata Journal. 2019; 19(3):615-25



Chapter 3

Population-based predictions of

cancer survival

3.1 Introduction

In this Chapter, we aim to select models for the prediction of cancer survival. The work

presented here builds on previous Chapters. Firstly, it shows how the algorithms presented

in Chapter 1 are adapted for the speci�c purpose of prediction. We also measure the

variation in outcomes explained by the selected model(s) using REw , developed and de�ned

in Chapter 2.

As described in Burnham and Anderson [157] (page 284), there are usually three di�erent

ways to pursue model selection:

1. Tests of hypotheses

2. Optimisation of small selection criteria

3. Ad-hoc methods

Chapter 1 describe in details two classes of algorithms based on hypothesis testing using

likelihood ratio tests. These algorithms are adapted to excess hazard models. In this Chap-

ter, we aim to investigate how model selection based on the optimisation of Information

Criteria (IC) provides a relevant framework when prediction of survival is intended.

As highlighted in a commentary by A.E. Raftery, [158] the tests of hypotheses such as

likelihood ratio tests are ill-de�ned for model selection, especially in large samples. Tests

will detect discrepancies between the model and the data, rather than express how close a

100
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model is to the data: the larger the sample, the easier it is to detect (small) discrepancies. In

the context of the analysis of population-based cancer survival, datasets may be large, and

as seen in Chapter 1, most selected models tend to be complex. This is one reason why we

now turn to the use of information criteria, and speci�cally the Akaike Information Criterion

(AIC) [159] and the Bayesian Information Criterion (BIC). [160]

We start by describing the Kullback-Leibler distance, a measure that compares the distance

between two probability distributions. We then de�ne the AIC as an estimator of the

relative Kullback-Leibler distance, and the BIC. We present how we adapted the Royston

and Sauerbrei algorithm to model-selection using information criteria and how we make

multi-model inference from the selected models.

3.2 Information criteria

The Kullback-Leibler (K-L) distance is a directed measure of information, or di�erence

between two distributions. We assume that we are trying to approximate the true distribu-

tion f with a probability distribution function g. The K-L distance provides an idea of how

much information is lost when g is used instead of f . Its calculation relies on the fact that

f is fully speci�ed and the parameters � of the distribution function g are fully known. As

such, it cannot be used if one tries to approximate an unknown distribution. It is a directed

distance, meaning that the information we lose when we use g instead of f is not the same

as the information lost when we approximate g by f : this is seen in the asymmetry of the

formula below for the K-L distance:

I(f ; g) =

∫
f (X)log

(
f (X)

g(Xj�)

)
dx (3.1)

One can rearrange the above formula to

I(f ; g) =

∫
f (X)log (f (X)) dx �

∫
f (X)log (g(Xj�)) dx (3.2)

and

I(f ; g) = Ef [log(f (X))]� Ef [log(g(Xj�))] (3.3)

Ef [log(f (X))] is only dependent on the true probability distribution f that we are trying

to approximate. Whatever the function g, Ef [log(f (X))] is constant, and the value of

I(f ; g) will vary according to values of �Ef [log(g(Xj�))]. This part of the equation is the

relative K-L distance between f and g, see Burnham and Anderson [157] (page 58). Some

considerations to keep in mind, in relation to the relative distance:
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(a) It lacks a true zero: the minimum value for the relative distance is obtained when

�Ef [log(g(Xj�))] reaches Ef [log(f (X))].

(b) Whatever the sample size N of X, a given di�erence between two relative distances

will have the same meaning.

The vector of parameters �0 that minimise the K-L distance between f and g, depend on

f , g and the sample of data available, X.

3.2.1 AIC

In the discussion above on the Kullback-Leibler distance and its simpli�cation to the relative

K-L distance, we assume known both f and g and their parameters. There is a true

value of parameters �0 for model g that minimise the relative distance, for a given g. In

reality, we do not know what the parameters �0 of g are, and these must be estimated

from the data X. This is often done by maximum likelihood estimation, and �̂ are the

parameters that maximise the likelihood, given the chosen relationship between explanatory

and outcome variables. Since only �̂ can be estimated from the data, we de�ne the expected

estimated K-L distance: EY EX

[
log

(
g(Xj�̂(Y ))

)]
. [157] X and Y are random samples of

the explanatory and outcome variables, respectively.

Akaike demonstrated that estimating the expected estimated K-L distance with the log-

likelihood, logL, is systematically biased, and that bias is approximately p, the number of

parameters in g. There is the following relation between the relative expected estimated

K-L distance and the maximised log-likelihood: [159]

logL
(
�̂jX
)
� p = Constant � Êf

[
log

(
g(Xj�̂)

)]
(3.4)

From that relationship he de�ned the AIC, as follows: [159]

AIC = �2 � logL
(
�̂jX
)
+ 2 � p (3.5)

As seen for the relative K-L distance, it is not the absolute value of AIC that matters

but its relative value when compared to other AICs. The addition of known parameters

will decrease the AIC, but any additional parameter that needs to be estimated from the

data will incur a penalty on the AIC (p becomes p + 1). When the addition of parameters

in g induces very little knowledge on the unknown data generating mechanism f , there

is over-�tting to the sample of data X and the AIC values begin to increase again. The

increase in the likelihood does not compensate for the increase in p. The sample size N
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of the data X limits the number of e�ects that can be estimated reliably and hence the

capacity to reach the true generating distribution.

3.2.2 BIC

BIC stems from the Bayesian framework, although it remains valid beyond the Bayesian

context. Along with other criteria, the BIC was developed with the a-priori idea that a true

model exists. [160] It rests on several further assumptions: (1) the true model is contained

in the pool of models tested, (2) the dimension (p) of that true model is relatively low

(e.g. 1 to 5), and (3) that dimension is �xed and does not increase with increasing sample

size. BIC was developed for prediction rather than to get a better understanding of the

mechanisms under study. It is not an estimator of relative K-L distance. [157]

BIC is an approximation of the Bayes Factor, when the prior distribution of the parameters

is the uniform distribution. The Bayes Factor is a ratio of likelihoods: the likelihood under

the null hypothesis over the likelihood under the alternative hypothesis. The formula for

the BIC is as follows:

BIC = �2 � logL
(
�̂jX
)
+ p � log(N) (3.6)

The philosophies behind AIC and BIC diverge when we consider that the sample size N

of the data X could increase. In the AIC philosophy, the true generating mechanism can

be estimated with a larger number of parameters, when the sample size increases; in the

BIC philosophy the true generating mechanism is set, whatever the information avail-

able. [160] When N is large, the target models are therefore di�erent, when using AIC or

BIC.

Burnham and Anderson [157] (section 6.4.5) show that AIC can be justi�ed as a Bayesian

model selection criterion, with a di�erent set of prior probability distributions on the model

set, rather than the uninformative uniform priors used by BIC. The prior distributions

corresponding to the AIC are dependent on both N and p.

Bayesian model averaging aims to account for model selection uncertainty, by using the

posterior probability of each model, given the data, as a weight in the estimation of the

quantity of interest. A similar approach is proposed using AIC-weights for model averag-

ing. [157]
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3.3 Model selection using information criteria

As reported in Chapter 1, background knowledge is of paramount importance for selecting

models, variables, and functional forms of e�ects. That knowledge will be used to code and

make an initial selection of variables, to de�ne the types of models, to deal with missing

information when necessary, and to de�ne what e�ects are allowed in the automatized

model selection.

These initial steps and decisions remain in the context of prediction. First and foremost,

background knowledge of both cohorts, (i) the cohort used for model building, and (ii)

the cohort on which predictions are made, is crucial. For instance, there may be potential

di�erences in the coding of variables, or in missingness mechanisms.

A second step is to make sure the data at hand provide enough information to estimate

and summarise overall patterns of cancer survival, and that these can be con�dently ex-

trapolated to cohorts of patients that did not contribute to model building.

Next, one needs to decide on a modelling strategy. We present here an adaptation of

a forward stepwise algorithm, originally proposed by Royston and Sauerbrei, [88, 89, 93]

introduced and adapted to the relative survival data setting in Chapter 1. Rather than

using likelihood ratio tests to select speci�c functional forms, interactions and presence of

variables, we compare candidate models based on the values of their AICs or BICs. The

model selection becomes a longer process, but the e�ects are selected in a hierarchical

fashion.

3.4 Multi-model inference

Breiman [161] highlighted the `quiet scandal' that ignores model-based uncertainty in in-

ference when assuming that the selected model is the only one ever considered. When

inference derives from regression models, there are many ways variables and e�ects are

screened and selected, from background knowledge to speci�c algorithms. Such selection

leads to models being discarded, and one �nal model to be selected as the model from

which inference is derived. Inference is then derived as if we had come to the one selected

model with certainty. Furthermore, it is not guaranteed that post-model selection inference

tools such as p-values and 95% con�dence intervals are valid: this has been recognised in

the literature for many years (see list of the relevant literature in Berk et al. [162]. Several

valid estimates of the standard errors, after any model selection techniques, may they be

algorithmic, based on background knowledge of the �eld, informal, or ad-hoc, have been
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proposed [162�165] and the research area is very active. Implementation of model averag-

ing addresses that issue: [166] In multi-model inference, the focus turns to selecting (1) a

set of models that will contribute to the estimations, and (2) the best way to estimate the

weights each model parameter should be given when the models are pooled.

The AIC is used in Burnham and Anderson [157] to illustrate the use of multi-model in-

ference. The idea behind multi-model inference is that the results of all models bearing

equivalent support from the data are used in post-estimation of the quantities of inter-

est. Averaging is the mean by which the model's parameters are combined.

The distance between the AIC values of two models are used to decide whether a model

is close enough to the best performing model to be part of the multi-model inference. The

best performing model is the model with the smallest of all AICs. As an analogy to the

likelihood of parameters � given a set of data X and a model m, each model m is given a

likelihood `m that it generated the data, given the data. This is calculated as the exponential

of minus half the di�erence between the model's AIC, AICm, and the minimum AIC, AIC0:

`m (mjX) = exp

(
�
1

2
4m

)
(3.7)

where 4m = AICm � AIC0.

The likelihood of the best model, that is the model with the minimum AIC, is 1, since

40 = 0 for that model. Several di�erent models may have equivalently high likelihood to be

K-L best model and there is no statistical reason to favour one over another. Therefore all

M-best models are given weights, wm; m = 1 : M. These are calculated as the ratio between

the likelihood of a model `m over the sum of the likelihoods of all models contributing to

the model-averaged estimates:

wm =
exp

(
�1

24m

)∑
k=1:M exp

(
�1

24k

) (3.8)

Using the weights wm and each of the M-best models' parameters �̂1 : : : �̂M , we de�ne the

model-averaged parameters as � =
∑

k=1:M wk � �̂k . Model averaging means that the �nal,

model-averaged, parameters used for inference correspond to the average of the parameters

estimated for several models �tted on the same data and equally likely to have generated

the data. [167]

Typically a model m is considered K-L best models when its AICm is within 2 of AIC0,

that is 4m � 2. Multi-model inference using BIC values is identical, and restricts to most

likely models, given the data.
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In survival analysis and in complex generalised linear model settings, Burnham and Ander-

son [157] (p. 153) advise to combine the �nal outputs, such as the hazard at given times

in the follow up, rather than the parameter estimates. They state:

`While it is often appropriate to average slope parameters in linear regression models,

structural parameters in non-linear models should not be averaged'.

We consider that the baseline excess hazard and the e�ect of follow-up time are struc-

tural parameters. Therefore we proceed to model-average the predicted response, such as

the excess hazard of death at given times, for given patient's characteristics. Uncertainty

around model selection is taken into account in the �nal estimated functions via the cal-

culation of the unconditional variance of the quantity of interest de�ned in Burnham and

Anderson, [157] page 162.

v̂ ar
(
�
)
=

{ M∑
m=1

wm �

√
v̂ ar

(
�̂m
)
+ (�̂m � �)2

}2

(3.9)

3.5 Multi-model inference for the prediction of cancer survival:

manuscript in revision with Statistical Methods in Medical

Research

In the following manuscript, in revision with Statistical Methods in Medical Research, we

introduce the following concepts, novel to the �eld of modelling cancer survival:

� AIC- and BIC-model selection

� Multi-model inference

� Model-based prediction of cancer survival

The methods and rational for all three aspects are described in detail. Empirical data using

historical cohorts of patients are used for a demonstration of their practical use.
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Prediction of cancer survival for cohorts
of patients most recently diagnosed
using multi-model inference

Camille Maringe , Aur�elien Belot and Bernard Rachet

Abstract

Despite a large choice of models, functional forms and types of effects, the selection of excess hazard models for prediction

of population cancer survival is not widespread in the literature. We propose multi-model inference based on excess hazard

model(s) selected using Akaike information criteria or Bayesian or Schwarz information criteria for prediction and projec-

tion of cancer survival. We evaluate the properties of this approach using empirical data of patients diagnosed with breast,

colon or lung cancer in 1990–2011. We artificially censor the data on 31 December 2010 and predict five-year survival for

the 2010 and 2011 cohorts. We compare these predictions to the observed five-year cohort estimates of cancer survival

and contrast them to predictions from an a priori selected simple model, and from the period approach. We illustrate the

approach by replicating it for cohorts of patients for which stage at diagnosis and other important prognosis factors are

available. We find that model-averaged predictions and projections of survival have close to minimal differences with the

Pohar-Perme estimation of survival in many instances, particularly in subgroups of the population. Advantages of

information-criterion based model selection include (i) transparent model-building strategy, (ii) accounting for model selec-

tion uncertainty, (iii) no a priori assumption for effects, and (iv) projections for patients outside of the sample.

Keywords

Cancer survival, prediction, projection, multi-model inference, Akaike information criteria, Bayesian or Schwarz

information criteria

1 Introduction

Cancer survival is a public health measure that complements the reporting of incidence, prevalence and mortal-
ity.1 Projections of incidence and mortality figures are common practice.2–5 These trends are often extrapolated to
get estimates of the future burden of cancer for planning purposes, or based on scenarios reflecting the likely effect
of new screening strategies, or changes in the distributions of risk factors.6–8

Survival models do not show good predictive performances.9,10 This may be one of the reasons why prediction
and projection of survival are, by far, less routinely made.

While prognosis research is focused on individual risk prediction scores,11,12 we are interested here in predicting
cancer survival for cohorts of patients as a whole or by reasonably large sub-groups, and we refer to these as
population predictions. In that context, accurate individual-level predictions are less crucial since we intend to
produce marginal estimates of survival. Many different survival models may be fitted to the data, and we focus
here on regression models assuming multiplicative effects of explanatory variables on the hazard of death.
A specificity of survival analysis is that the effects of variables may vary through follow-up time (time-dependent
effect) and selecting the right effects can then be challenging. Background knowledge and model selection algo-
rithms help narrow down the choice of models to the most appropriate one(s).13
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When considered, model selection tends to be based on likelihood ratio tests,14–16 using usually backward or
forward selection strategy (or a combination of both). A single model is therefore selected as the best fit for the
data or for subsequent prediction. We see two drawbacks to such approach. First, it means discarding effects that
may have been equally likely to those selected. Second, once a model is chosen, no uncertainty relative to the
selection is pertained to the model-based estimates and post-model selection inference.17,18 In the context of
prediction, we believe it is critical to consider that there may be several models equally likely to have generated
the data. This is the philosophy of Bayesian model selection19 and multi-model inference also described by
Burnham and Anderson.20 Lastly, hypothesis testing may perform poorly when using observational data,20 as
they are designed to detect discrepancies between the model and the data, rather than express how close a model is
to the data: the larger the sample, the easier it is to detect (small) discrepancies.21

The Akaike Information Criteria (AIC)22 is a likelihood-based measure that estimates the expected relative
distance between the fitted model and the unknown true mechanism. AIC values can be compared between
different, non-necessarily nested, models. Contrasting AIC values asymptotically coincides with generalised
leave-one-out cross-validation.23 The Bayesian or Schwarz Information Criteria (BIC) is an estimator of the
Bayes Factor, aiming to quantify the evidence for one model against another.24

This article is organised as follows: the next section introduces the cancer registry data linked to electronic
health records. The following section discusses the setting of relative survival for the estimation of cancer net
survival,25 the multi-model inference and the prediction tools used to assess the accuracy of the predicted esti-
mates of net survival. Then, we present results on a historical, low-resolution, data setting for the prediction and
projection of five-year survival for patients most recently diagnosed, to highlight the properties of the method. An
application follows, based on more recent, high-resolution data including information on stage at diagnosis: a
setting that motivates multivariable modelling and multi-model inference. The discussion highlights the advan-
tages of multi-model inference and potential extensions conclude the manuscript.

2 Material

We use data of the population-based cancer registry of England. Virtually all cancer cases diagnosed in England are
registered. Quality controls are performed at the time of registration, and prior to data analysis26 to ensure there are no
duplicate registrations and the sequence of dates (birth, diagnosis, latest vital status) is logical, among other checks.

We analyse records of adult patients (15–99 years) diagnosed with malignant lung cancer (men only, ICD-9:
162, ICD-10: C33-C34), breast cancer (women, ICD-9: 174, ICD-10: C50) or colon cancer (men only, ICD-9: 153,
ICD-10: C18) in 1990 through to 2011. We define patients’ information on socio-economic status based on their
postcode of residence using the Townsend27 and the income domain of the Index for Multiple Deprivation28,29

scores for the years 1990–2000 and 2001–2011, respectively. Both scores are ecological and based upon responses
to census questions relative to income and wealth, by small areas (Enumeration Districts until 2000 and Lower
Super Output Areas from 2001). The areas are grouped by quintiles of area-level deprivation distribution,
according to their score, from least (quintile 1) to most (quintile 5) deprived.

The latest vital status of patients is obtained from linking the cancer registrations to the mortality databases
maintained by the Office for National Statistics. A vital status indicator is assigned to all patients together with a
date of last known vital status, or death where appropriate. Patients are followed up until 31 December 2015.

Stage at diagnosis is one of the most important predictors of survival. It is based on the T (tumour size), N
(lymph node involvement) and M (metastatic or not) components of the TNM stage at diagnosis classification.30

Until recently, its recording, through combining information from pathology laboratories, hospital records, and
Multidisciplinary Team records, was not complete or accurate for many cancers in population-based cancer
registry data in England. High proportions of missing information on stage at diagnosis make it difficult to
study its effect on survival through time.31

3 Methods

3.1 Scenarios studied

3.1.1 Low-resolution data setting: empirical evaluation of the properties of multi-model inference

We focus here on the cancers of colon (men), lung (men), and breast (women). First, we artificially restrict the
follow-up to 31 December 2010. To compare the impact that varying numbers of cohorts have on the accuracy of
the predictions, we run several model selections on cohorts of patients diagnosed in 1990–2010, or 1995–2010, or

2 Statistical Methods in Medical Research 0(0)



2000–2010, or 2005–2010. We predict excess hazard and five-year cancer survival for patients diagnosed in 2010,

patients for whom only the first year of follow-up contributed to the model selection. We also project excess

hazard and five-year cancer survival for patients diagnosed in 2011.
Since follow-up beyond 31 December 2010 is neither used in the estimation of the regression parameters nor in

model selection, we are able to contrast the predicted five-year survival of these patients to their actual survival as

observed until 31 December 2015 by group of patients and overall. Similarly, patients diagnosed in 2011 do not

contribute to the modelling at all. Nonetheless we compare the results of their projections to their five-year

survival as observed until 31 December 2015. Figure 1 summarizes how the data are used in this low-

resolution data setting, highlighting what is supposed known and unknown, and the cohorts of patients used

in model selection.

3.1.2 High-resolution data setting: illustration

We identify groups of patients for whom the proportion of missing stage at diagnosis is the lowest. For lung

cancer, we select patients who were diagnosed at ages 50–74 between 2008 and 2012, and living in the East and

North East of England (missing stage up to 14%).32 For breast cancer, we analyse patients diagnosed at ages 50–

84 in 2005–2011, living in the West Midlands (stage missing up to 12%).33,34 For those two groups of patients, we

can develop prediction models that include stage at diagnosis, as well as an indicator of mode of presentation

(emergency for lung cancer, screening for breast cancer) and performance status (lung cancer). We predict lung

and breast cancer survival up to four years after diagnosis for patients diagnosed in 2010 or 2011, for whom only

the first year after diagnosis contributes to model selection and estimation of effects, and project cancer survival

for patients diagnosed in 2011 and 2012.

3.2 Net survival

We aim to answer the following question: “What is the predicted cancer survival of cancer patients?” We focus on

net survival, which measures survival among a defined cohort of cancer patients under the assumption that they

only die of the studied cancer. This marginal survival measure is therefore independent of the deaths from other

causes. Thus, this is the quantity of interest when aiming to compare cancer survival between countries and over

time. Despite international classification, the determination of the cause of death is not standardised enough

through time, or between registrars, for the cause of death to be used in our analyses. Hence, we aim to estimate

cancer (net) survival in the relative survival setting using excess hazard models.35,36 Several forms of models exist

Figure 1. Structure of the data as used in the low-resolution data setting.

Maringe et al. 3



exhibiting different ways of modelling the baseline excess hazard of death, and interactions with follow-up

time.37–45

The main assumption of excess hazard models is that the observed mortality of the cohort of patients (k) is the
sum of two forces of mortality: the excess mortality hazard (kE), assumed to be the mortality hazard directly or

indirectly due to cancer, and the expected or other causes mortality hazard, which is considered to be well

approximated by the general population mortality hazard (kP).
46,47

kðt; xÞ ¼ kE ðt; xÞ þ kP ðaþ t; yþ t; zÞ

The cancer mortality hazard, kE, at time t for given patient’s covariates x, such as age at diagnosis (a) and

calendar year of diagnosis (y), is what we need to estimate. We derive mortality due to causes other than cancer at

time t by population tables of mortality, defined for the population from which cancer patients come from, i.e.

with similar features (age at time t: aþ t, calendar year at time t: yþ t, sex, levels of deprivation, geographical area

of residence, ethnicity when possible, etc., summarised in z, a subset of patient’s covariates x).
First, we use the non-parametric Pohar-Perme (PP) estimator,48 a consistent estimator of net survival, to obtain

cancer survival for patients diagnosed in 2010 with follow-up until 2015. That estimator relies on the observed and

expected proportions of patients still alive at each time of event. Patients may die of other causes, thus preventing

their cancer survival time to be observed. The cohort of patients therefore changes structurally throughout follow-

up time and is not representative of the original cohort of patients. An inverse-probability-of-censoring weighting

is applied to adjust for this informative censoring, so that the contribution of each patient to the estimator is

weighted by the inverse of the probability that the patient is expected to survive until each time of event (using

population tables of mortality). The period approach PP estimator is also used to predict survival for patients

diagnosed in 2010, using information from patients diagnosed in previous cohorts, alive in 2010, with potential

follow-up until 31 December 2010 (‘period approach’).49 The period approach derives survival in a similar fashion

to life expectation.
Second, we use flexible, multivariable models, to estimate excess mortality hazard kEðt; xÞ, individual (SE;i t; xð Þ)

and cohort (SEðtÞ) net survival.50 The logarithm of the baseline excess hazard is modelled using restricted cubic

spline functions, with three degrees of freedom, that is two internal knots (located at the tertiles of the event time

distribution) and two boundary knots

logðk0 tð ÞÞ ¼ c0 þ c1B1ðtÞ þ c2B2ðtÞ þ c3B3ðtÞ

where the spline basis functions Bi tð Þ; i ¼ 1;2; 3; are derived from the knots.51

Time-dependent effect of each variable is included using an interaction between each variable and the loga-

rithm of time since diagnosis. As an example, the equation of the model is as follows, given two prognostic

variables x1, continuous, and x2, categorical (with J categories, j ¼ 1; . . . J)

kE t; xð Þ ¼ k0 tð Þ�exp b1ðtÞ�fðx1Þ þ
XJ
j¼2

b2;jðtÞ�Ix2¼j

0@ 1A
where f x1ð Þ ¼ x1 if the effect of x1 on the logarithm of excess mortality is linear, and f x1ð Þ is a spline function

when the effect of x1 is not linear, while b1 tð Þ ¼ b1 if the effect of x1 is proportional, and b1 tð Þ ¼ b1�logðtÞ if not;
the same applies to b2;jðtÞ.

We use the Stata commands stns52 to implement the PP cohort and period approaches, and strcs53 for fitting

the flexible parametric models.

3.3 Model selection

We present two specific model-selection algorithms here, but wish to highlight that any other sound algorithm

could be used. We adapt mfpigen, the model-selection algorithm designed by Royston and Sauerbrei, including

tests for interactions,54 and our adaptation of mvrs14 for interactions13 using the Akaike information criteria

(AIC)22 and the Bayesian Information Criteria (BIC).55 AIC is one of the criteria designed to express the ‘distance’
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between two models,20 that is an estimate of the distance between our model and the model that did generate the
data. AIC is defined from the log-likelihood of the model, L and its number of parameters, p.

The log-likelihood of the excess hazard models fitted here is

L bjx; di; tið Þ ¼
XN
i¼1

dilog kP ti; zð Þ þ kE ti; b; xð Þ� �þ log SEðtiÞ
� �

such that

AIC ¼ �2�L bjx; di; tið Þ þ 2�p

AIC can be shown to be equivalent to a likelihood ratio test multiplied by a constant, meaning that there is an
associated positive probability (p-value) that it rejects the null hypothesis, when it is true. That p-value is 0.157
when models are nested and differing by 1df.56,57

BIC comes from a consistent class of criteria. It does not estimate the distance between the true model and the
model under consideration, but aims to consistently point to the true model even when sample size increases, if the
true model is part of the models considered. Its value varies with the number of parameters p and the number
of events d.

BIC ¼ �2�L bjx; di; tið Þ þ p�logðdÞ

The Royston and Sauerbrei algorithm is a succession of likelihood ratio tests comparing two models at a time
in a logical sequential order. The algorithm starts by fitting the simplest model to the data, using linear and
proportional effects of all variables. Starting with the most significant effect (i.e. lowest p-value), more complex
versions of the effects of each variable are tested, one at a time, such as non-linearity and time-dependency.

Our adaptation follows the same logical steps, but the models’ AICs or BICs are compared, two at a time. If the
lowest criterion is over two digits away from the larger criterion, the model pertaining to the larger criterion is
discarded. If both models have criteria within two of each other, both models are kept, and more complex models
derived from each of these are further compared. A rational for the choice of a difference of 2 is provided in
section 3.4 using evidence ratios.

The original Royston and Sauerbrei algorithm yields one single model, from which all inference about measure
of effects, associations, and outcome prediction is derived. Our proposed algorithm based on Information criteria
leads to the selection of several models, which are equally likely to have generated the data, given their AIC or
BIC are within 2 digits of the minimum AIC.

3.4 Multi-model inference (model averaging)

In the following, XIC is used to stand for AIC or BIC, interchangeably. From the multiple models selected (i.e.
models having similar support from the data), say M, we need to combine the M estimates to obtain one estimate
of the excess hazard from which we derive the cohort cancer survival. Since the models are selected using XIC,
each has a known XIC from which we derive XIC-weights as follows:

Let us define the model with lowest XIC (XICmin) as mmin. We define the distance between mmin and any other
model m, Dm ¼ XICm � XICmin, and the likelihood of model m given the data is M mjxð Þ ¼ exp � 1

2 �Dm

� �
.20

The weights wm of each of the M models m reflect how much evidence there is for model m being the actual
model that generated the data. Weights are defined such that they sum to 1,

PM
m¼1 wm ¼ 1

wm ¼ M mjxð ÞPM
m¼1 M mjxð Þ

‘Evidence ratios’ for a model m versus model n are defined as the ratio of their weights wm and wn, as

e m; nð Þ ¼ wm

wn
¼ exp � 1

2 �Dm

� �
exp � 1

2 �Dn

� �

Maringe et al. 5



If we suppose model m is the model with minimum XIC, we have

e m; nð Þ ¼ 1

exp � 1
2 �Dn

� � ¼ exp
1

2
�Dn

� �

Therefore, we see exponential increase in evidence for the model with minimal XIC with increased distance to

that XIC. The evidence ratio between models m and n is 2.7 if Dn ¼ 2 (and 7.4 and 54.6 when Dn ¼ 4 or 8,

respectively). This is a rational for selecting models with XIC within two digits of the minimum XIC, where the

evidence for m versus n is not so strong.
Given the potential complexity of the effects on the excess mortality hazard, we average the quantity modelled

rather than the parameter estimates.20 This is specifically advised in Burnham and Anderson: “Structural param-

eters in non-linear models should not be averaged” and model averaging should rather be done on “the predicted

expected response variable ÊðyÞ”.20 Therefore, the XIC-weights are used to combine the model-based individual

excess hazards estimated at each time t after diagnosis. Borrowing from the reasoning of both the algorithmic

model-selection16,58 and the multi-model inference literature, we follow the steps below to combine the model-

based estimates into a model-averaged estimate:

a. Run XIC-based algorithm (e.g. mfpigen or the adapted mvrs)
b. Isolate the M best models
c. Calculate the XIC-weights, wm, for each model m; ðm ¼ 1; . . . ;MÞ
d. From the estimated parameters, derive the excess mortality hazards, at pre-defined times t after diagnosis (e.g.

monthly) for each model m: k̂i;mðtÞ for each individual i with covariates xi in the data.
e. Calculate the model-average excess mortality hazard (for patient i) at each pre-defined time t, such that

k̂i;MA tð Þ ¼
XM

m¼1
wm�k̂i;m tð Þ

The model-average cumulative excess hazard, K̂i;MA may easily be obtained as well

K̂i;MA tð Þ ¼
XM

m¼1
wm�K̂i;m tð Þ

f. If the quantity of interest is cohort net survival, we first calculate individual model-averaged net survival,

Ŝi;MA tð Þ ¼ expð�K̂i;MAðtÞÞ at each time t. Then, we estimate cohort net survival by averaging the individual

net survival values, ŜMA tð Þ ¼ 1
N

PN
i¼1 Ŝi;MAðtÞ at time t.

The unconditional variance estimator of the model-averaged estimate is derived in Burnham and Anderson

(pp.158–164)20 and follows earlier work presented in Buckland et al.17 We adapted this derivation to our setting

where we averaged the predicted expected response variable (i.e. the excess mortality hazards). The variance

estimator for the model-averaged outcome combines the XIC-weights, wm, and the estimated variances of each

individual model estimates, cvarðk̂i;mðtÞÞ, such that

cvar k̂i;MA tð Þ
� 	

¼
XM
m¼1

wm�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðk̂i;mðtÞÞ þ k̂i;mðtÞ � k̂i;MA tð Þ

� 	2
r( )2

This estimator has components of within-variation (cvarðk̂i;mðtÞÞ) and between variation k̂i;mðtÞ � k̂i;MA tð Þ
� 	2

,

thus quantifying the uncertainty with regards to model selection. This unconditional variance

estimator assumes perfect pairwise correlation between k̂i;mðtÞ � k̂i;MA tð Þ and k̂i;n tð Þ � k̂i;MA tð Þ, as derived

from models m and n. This leads to a conservative variance estimate, i.e. the estimated variance tends to

be too large.17

6 Statistical Methods in Medical Research 0(0)



3.5 Checking predictions

After selecting a (or a set of) best model(s), predicting our outcome of interest, and averaging the outcomes, we are

interested in quantifying the distance between these estimates and the observed cancer survival of the patients.

Since we have follow-up information until 31 December 2015, we estimate net survival of patients diagnosed in

2010 and 2011 using the PP non-parametric estimator of cancer survival (see point 3.2. above).
We aim to compare our predictions to what will be estimated in the future, given the data available then. We

recognise that the PP estimator of survival, often used for policy making and planning, is a consistent estimator of
net survival, but cannot be regarded as the ‘truth’.

To quantify the difference between the population-based prediction using our model-average estimate and the

PP net survival estimates, we define the Root Mean Integrated Square Difference (RMISD) of prediction. This

measure contrasts the predicted survival to the estimated PP survival and we approximate this quantity using G

groups defined by age group and deprivation quintile (low-resolution data) or by age group, stage and deprivation

(high-resolution data)

RMISD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

G

XG

g¼1

Z
ðŜg uð Þ � SgðuÞÞ2du

s

Sg is the non-parametric PP estimate of cancer survival for group g, while Ŝg is the prediction of survival for

the same group of patients using (i) model-averaging, or (ii) a simple model or (iii) the period approach. The

integral is approximated using the Gauss-Legendre quadrature with 20 nodes. We choose to calculate RMISD for
survival measured at one and five years after diagnosis.

4 Results

4.1 Low-resolution data setting: empirical evaluation of the properties of multi-model

inference

4.1.1 Description of the data

Between 1990 and 2010, there were an average of 18,233 and 8,636 men diagnosed with lung and colon cancer,

respectively, and 32,493 women diagnosed with breast cancer, every year. The number of cancer patients was
multiplied by at least 1.5 for breast (women) and colon (men), but slightly decreased for lung cancer (men). Five-

year net survival increased for all cancers between 1990 and 2010, with the largest increase for lung cancer, from

5.3% in 1990 to 9.0% in 2010 (online Appendix Table 1).

4.1.2 Model selection

The functional forms of the selected variables are displayed in Table 1 (columns 1-4), along with the XIC of the

selected model(s) (column 5), the XIC-distance to the model with the closest XIC (column 7), and where appro-

priate, XIC-weights (column 6). Adding earlier cohorts to patients diagnosed in 2005–2010 hardly change the

functional form selected for the effects of age, year of diagnosis or deprivation, as well as their interactions,

especially when using the mfpigen algorithm with AIC, or when using BIC (with either algorithm). More complex

models (including time-dependent effects of the interaction between age and deprivation) are selected by our

adapted algorithm using AIC: these include time-dependent age-deprivation interactions (breast cancer) and age-

deprivation and year-deprivation interactions (lung cancer). With BIC selection, there is almost no difference in
the complexity of the models selected by mfpigen and our adapted algorithm: the models selected are identical for

colon and lung cancers, and the only selected interactions differ for breast cancer. To contrast with the models

selected, we also apply a simple model with all variables modelled with a linear (when continuous), proportional

hazard effect on excess mortality, in each of the four cohorts of patients. The XIC values of these simple models

(Table 1) are constantly higher than that of the selected models except for the AIC values of the lung cancer

models selected by our adapted algorithm.

4.1.3 Root mean integrated square difference for the prediction of net survival

Root mean integrated square difference (RMISD) is measured throughout the first five years after diagnosis. By

group defined by age and deprivation level, we calculated Integrated Square Differences (ISD) (see formula of the

Maringe et al. 7
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RMISD in section 3.5.) between model-averaged net survival estimates and the PP estimates using known follow-

up until 31 December 2015 for patients diagnosed in 2010 (Figure 2 for the cohorts 1990–2010 and 2005–2010, and

online Appendix Figure 1 for all four cohorts), and for patients diagnosed in 2011 (online Appendix Figure 2).
Breast cancer: All ISDs are very small, and largest differences are seen for the oldest age-group when survival is

predicted by the simple model. Similar observations can be made for the projection of survival for patients

diagnosed in 2011, not included in model selection (online Appendix Figure 2). The more recent the cohorts of

patients, the better the estimates of survival: ISDs are smaller when using 2005–2010 cohorts only versus 1990–

2010 cohorts.
Colon cancer: Simple models lead to high ISD for different age and deprivation groups, such as patients aged

15–54 years in the most deprived group and 45–54 years in deprivation quintile 4. Except for patients aged 15–44

in the least deprived group, 2010-period approach estimates show low ISD. ISD values remain stable and low,

whatever the number of cohorts used in multivariable model-averaged prediction of survival (online Appendix

Figure 1). ISDs for patients aged 15–44 and 45–54 years are slightly higher when the models are used for pro-

jection of survival for patients diagnosed in 2011.
Lung cancer: Except for patients aged 15–44, in deprivation quintile 4, for whom model-averaged ISD is large,

model-averaged ISD are generally lower than ISD derived from the simple model, and smaller or similar to most

of the 2010-period ISDs. Model-averaged predictions for patients aged 15–44, in deprivation quintile 3 and

diagnosed in 2011 show very high ISD. Such large ISDs are also observed, but to a lesser extent, for simple

model estimates (online Appendix Figure 2).
The highlighted patterns in ISD, for all three cancers, are observed for (i) AIC (triangular shapes) and BIC

(circular shapes) selected models, and following (ii) model selection using mfpigen (hollow red symbols) and our

adapted algorithm (full red symbols).
By averaging the ISD values displayed in Figure 1 and online Appendix Figures 1 and 2, the RMISD values

summarise the overall differences in the survival curves (Table 1). For all cancers, model-averaged estimates of

survival lead to the smallest RMISD, in comparison to using pre-defined simple models (Table 1). Nonetheless,

there are differences between cancers: for breast cancer, there is a small advantage in restricting the model

selection and estimation to the cohorts of patients diagnosed in the last five years, while for patients diagnosed

with colon or lung cancer, longer time-trends yield better estimates of survival for patients for whom follow-up is

Figure 2. Integrated Square Difference (ISD) between NS predicted by each AIC or BIC model-averaged, simple models, and the
period approach, compared to the PP cohort survival for patients diagnosed in 2010, by age group, deprivation from 1990 to 2010 and
from 2005 to 2010 cohorts of patients used in model selection.
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not yet available. The simple models yield the highest RMISD values, for each cancer and each cohort, except for

lung cancer when using the AIC-based multi-model inference from the adapted mvrs. (Table 1)
Figure 3 shows what the actual differences are on the overall cohort net survival curves, contrasting cancer

survival estimated from the simple model, and from model-averaged selection, to the 2010-cohort approach. The

differences between the model-averaged estimates of survival up to five years are tiny when contrasting AIC and

BIC selection, adapted mvrs or mfpigen algorithm. Nonetheless, they do reflect the conclusions from RMISD:

additional cohorts of patients are necessary for a better prediction of lung cancer survival. Net survival estimated

from model selection and when necessary, model averaging, are closer to the PP estimates than estimates from

simple models.

4.2 High-resolution data setting: illustration

This illustration rests on richer datasets to allow inclusion of the effects of potentially key prognostic factors such

as stage at diagnosis, mode of presentation (emergency presentation for lung cancer, screening for breast cancer)

and performance status (lung cancer) on the excess hazard.

Figure 3. Net survival curves: comparison between the PP estimates and estimates from 1990 to 2010 and from 2005 to 2010
cohorts of patients used in model-averaging from AIC and BIC model selection.
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For both cancers, between 1 and 10 models have similar support from the data, given their AIC, but only one

model given its BIC, when restricting to models with BICs within two of each other: we report the effects

estimated, the AIC or BIC and corresponding weights in Table 2. The models selected to model breast cancer

survival have AIC weights between 16.1% and 42.3% (adapted mvrs) and between 6.6% and 17.8% (mfpigen); the

models selected to model lung cancer survival have AIC weights between 11.6% and 29.4% (adapted mvrs). The

selected models with the highest AICs are only just over two units away from the next model: 2.2 for breast (both

algorithms) and lung (mfpigen), but 316.3 units away for lung (adapted R&S). The effects of deprivation (PH) and

stage (TD) for breast cancer, and the effects of stage (TD), performance status (TD), emergency presentation

(TD), and an interaction between age and deprivation for lung cancer, are selected in all models.
Model-averaged estimates of the excess hazard are presented in online Appendix Figure 3, highlighting differ-

ences between these and those estimated by simple models, especially for stage IV with larger excess hazard

estimated with the simple models.
There is very little difference between the AIC (mfpigen and adapted mvrs) and BIC model-averaged survival

curves for patients diagnosed with breast or lung cancer (Figure 4). Survival estimated from the simple model,

although modelling the effects of all variables, does differ for both cancers, especially at stages IV (breast) and II

and III (lung).
The confidence intervals around the net survival curves highlight uncertainty related to data sparsity but also

model selection.

5 Discussion

We contrast the predictions and projections of cancer survival derived from a model-averaged approach and (i)

a-priory simple model and (ii) non-parametric period approach. We use an algorithm for model selection that has

been used in cancer epidemiology,13 for scanning methodically through the possible effects of independent factors

on the excess hazard of death, merely to illustrate the multi-model inference in cancer survival. Indeed, any other

algorithm based on screening through possible effects could have been adapted to the information criteria par-

adigm. We implement the model averaging methodology for the selection of the best model(s)20 using AIC and

BIC as selection criteria. We show the lethality and the rate of improvement of cancer survival determine how

many past cohorts of patients are needed to predict and project survival with best accuracy. We also show that

allowing for multi-model estimation of cancer survival generally results in restricted mean integrated square

differences as good as or better than the non-parametric period approach. In some cases, despite larger AICs

Figure 3. Continued
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or BICs, simple models produced accurate predictions, similar to model-averaged predictions, but projections

from these models do not estimate cancer survival as well.
There are many advantages to estimating survival using IC-based model selection and multi-model inference.

(1) Transparent model building strategy: the algorithm walks through the effects of variables in a hierarchical and

systematic fashion. (2) Uncertainty relative to model selection is taken into account in the variance of the esti-

mated outcomes. (3) There is no assumption that an effect is simple, without checking it can or needs to be

simple. (4) Projections for patients outside of the training sample are possible, which is not possible using period

approach.
The results show that for breast cancer patients, only patients diagnosed in the five years prior to the year for

which we need to make five-year survival predictions are needed to produce accurate predictions and projections.

This can be explained by survival increasing at constant pace of about 3–8% per five years in the last 20 years. By

contrast, for lung and colon cancers, cancer survival increased irregularly in the last 20 years: close to 30%

increase in five-year lung cancer survival between 2005 and 2010, but no increase between 1990 and 1995 and

similarly, 12% increase in colon cancer survival between 2005 and 2010 but only 3% between 2000 and 2005.

More cohorts of patients are needed to predict and project five-year survival accurately, due to these irregular

trends in survival. These considerations need to be borne in mind when using the most recent cohorts for the

prediction of cancer survival.
Bayesian, cross-validation and bootstrap-based approaches are also likely to perform well in excess hazard

model selection. Nonetheless these carry high computational demands. BIC readily links with Bayesian model

averaging and is asymptotically consistent in estimating the true generating model.59 Despite AIC asymptotically

equivalent to cross-validation,23 and therefore a tool of choice for model selection in the context of prediction, it

tends to overestimate the dimension of the true model.59 Furthermore, multi-model inference has theoretical and

practical advantages, particularly for predictions.20 [AQ1] These include: (1) taking into account uncertainty in

model selection, leading to more robust results as they do not necessarily depend upon a particular model; (2)

choosing to average models that have AIC within two of the minimum AIC should help keep the number of

considered models reasonable; (3) model averaging avoids one to have to defend the choice of model, it makes

convincing stakeholders from different backgrounds and highlighting the robustness of the results easier.60 We

recognise the limitation that model uncertainty remains conditional on the model set, as all models come from a

unique model set.61 Other approaches which have proved useful for predictions would broaden the model sets

considered (e.g. LASSO, Random Survival Forest) and could provide interesting research developments but

would need to be adapted to the relative survival data setting.
We focus here on predicting and projecting five-year net survival, as most events happen in the short term

following a cancer diagnosis, certainly for colon and lung cancers. By contrast, breast cancer patients experience

long-term excess mortality. Therefore, we performed additional analyses for the prediction of 10-year breast

cancer survival. We found that a model-averaged 10-year survival prediction leads to a smaller difference than

from a simple model or from a non-parametric period approach (data not shown).
Using empirical data in the low-resolution setting, we can only compare our predictions and projections to the

consistent non-parametric PP estimates of cancer survival, for patients diagnosed in a given year. We acknowledge

that these remain estimates of survival, rather than the “truth”, but we argue that they will be what is produced

when the follow-up information becomes available, to contrast trends in cancer outcomes.62–64 Nonetheless, both

Figure 4. Up to four-year net survival for patients diagnosed with breast or lung cancer by age and stage for patients in the third
deprivation quintile.
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non-parametric and parametric outcomes are estimating the same quantity since the models are adjusting for the
variables that constitute the strata of the PP estimates.

However, in the application, due to data sparsity by strata defined by the values of the variables adjusted for in
the models, it was not possible to compare the model-averaged estimates of net survival to the PP. Indeed, when
the PP is not stratified by the same prognostic factors, it is not estimating the same quantity as the model-based
estimates. The results of the high-resolution setting are presented to motivate the use of multi-model inference for
the prediction and projection of cancer survival. The differences between predictions derived from a simple model
versus IC-based approach, however, highlight that it would be relevant to conduct such comparison in a larger
population in which variables such as stage at diagnosis, mode of presentation and performance status are
available.

Multi-model inference, as presented here, allows model parameters to remain the raw information for the
estimation of each model’s outcome of interest. Such outcomes are then averaged, and interpretation of the
predictions can only be made on the outcome. Multi-model inference increases the ability to perform better
predictions while retaining interpretability of the averaged outcomes.61,65 It seems to be a good compromise
between best-model selection strategy (high interpretability but poor predictions) and ensemble learning strategy
(high predictions but poor interpretability). For patients and their carers, prediction of the remaining survival
time represents their main interest. However, this point estimate of time carries poor predictive capability.9 Hence,
much of the literature focuses on prediction of survival probabilities, at individual or population level. In the field
of prognosis research at individual level, there is a growing emphasis on improving the quality of published risk
scores so they are useful to individual patient prognosis.12

Here, we aim to predict and project population-based levels of survival, rather than individual cancer survival
predictions. It is the reason why we do not rely on standard loss functions, or usual measures of discrimination
and calibration. It is still important to gather accurate information on the main prognostic factors, and make sure
models are correctly specified since correct model specification and availability of individual patient characteristics
improve prediction. All of this is exemplified in both scenarios here, low- and high-resolution data settings, in
which complex prognosis models are compared.

6 Conclusion

We recommend that, given a set of variables that may influence levels of cancer mortality, possible excess hazard
models should be assessed systematically. We encourage analysts to consider that a model may not be singled out
as the best model. Model averaging using Kullback-Leibler distance such as AIC, or Bayesian principles such as
BIC, allows users to consider several equivalent models and effects, and to take account of the uncertainty relative
to model selection in the estimation of the variance of the outcomes. Prediction and projection of cancer survival
can best be done using such carefully selected parametric models.
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3.6 Model averaging: on what scale should we average?

As highlighted in section 3.4, the modelling of excess hazard of death leads to averag-

ing model outcomes rather than model parameters. In the manuscript of section 3.5, we

concentrate on averaging the individual excess hazard of death. This outcome measure is

the natural outcome of excess hazard models. Excess mortality is a key measure of the

burden of cancer on mortality at given times after follow up, directly extracted from the

excess hazard models. It helps interpret trends and patterns of its survival counterpart:

the estimates of net survival which are often used for tracking progress of cancer control

through time. Both these measures are calculated in the hypothetical setting in which there

is no competing burden of other causes of death, and therefore make the assumption that

patients are immune to other causes of death. Individual excess mortality values repre-

sent an elementary component from which one can also derive crude probability of cancer

death. [2]

There are many possible ways of reporting and communicating predictions from excess

hazard models, and the choice for one or the other mostly depends on what the intended

audience may be. [2] There is no theoretical reasons for model-averaging the excess hazard

of death, as a substitution for other quantities. Indeed other quantities of interest can be

averaged directly: this section highlights on-going work aiming to describe the steps leading

to averaging other such quantities directly from the excess hazard models.

Let us de�ne the following notations, needed in the subsequent paragraphs:

�mEi(t) is the excess hazard of death for patient i estimated at time t by model m.

�Ei(t) is the model-averaged excess hazard of death for patient i estimated at time t.

SE(t) is the cohort net survival estimated at time t, from the individual SEi(t).

Sm
Ei(t) is the net survival for patient i estimated at time t by model m.

SEi(t) is the model-averaged net survival for patient i estimated at time t.

SE(t) is the cohort net survival estimated at time t, from the model-averaged SEi(t).

CPD(t) is the crude probability of death at time t, also known as the cumulative incidence

function in the classical competing risks setting. An individual crude probability of

death measure, CPDi(t), can be calculated, as well as one coming from a speci�c

model m, CPDm
i (t). The cohort model-averaged crude probability of cancer death

is denoted CPD(t).
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The data introduced in the high-resolution setting of the manuscript in section 3.5 is used in

the following sub-sections to illustrate the model averaging principles on other scales. These

data refer to patients diagnosed with lung cancer, at ages 50-74 years between 2008 and

2012, and living in the East and North East of England and patients diagnosed with breast

cancer, at ages 50-84 years in 2005-2011, living in the West Midlands. The variables

available for prediction include age at diagnosis, deprivation, stage at diagnosis, as well

as an indicator of mode of presentation (emergency for lung cancer, screening for breast

cancer) and performance status (lung cancer).

3.6.1 Averaging on the excess hazard scale

In the manuscript (section 3.5), we predict individual excess hazard for each patient i at

each time of interest t, by each selected model m: �mEi(t). Given the weights wm for each

model m, m = 1 : M, we apply the formula for model averaging these estimates, such

that:

�Ei(t) =
∑

m=1:M

wm � �
m
Ei(t) (3.10)

Given the relationship between excess hazard and net survival at individual level, the indi-

vidual net survival estimates for each patient i at each time t are obtained such that:

SEi(t) = exp

(
�

∫
�Ei(u)du

)
and the cohort net survival are

SE(t) =
1

N

∑
i=1:N

SEi(t)

By re-arranging the expression of SEi(t) we get an expression of these values from the

original model-based values of individual net survival Sm
Ei(t):

SEi(t) =exp

(
�

∫ t

0

M∑
m=1

wm � �
m
Ei(u)du

)

=
∏

m=1:M

exp

(
�

∫ t

0
wm � �

m
Ei(u)du

)

=
∏

m=1:M

exp

(
�

∫ t

0
�mEi(u)du

)wm

=
∏

m=1:M

Sm
Ei(t)

wm
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SE(t) =
1

N

∑
i=1:N

( ∏
m=1:M

Sm
Ei(t)

wm

)
(3.11)

In the context of averaging on the excess hazard, model-averaged cohort net survival are

the average (over individuals) of the product of each model-based individual net survival

to the power of their respective weight wm.

3.6.2 Averaging on the net survival scale

Net survival is a probability, it is therefore conceptually easier to apprehend model averaging

since values are bounded between 0 and 1. It is equivalent to take the average of individual

net survival values, or the average of the cohort net survival directly. It corresponds to

taking the average of a weighted sum, or the weighted sum of an average.

We predict individual net survival for each patient i at each time of interest t, by each

selected model m : Sm
Ei(t). The formula for model averaging these estimates from M

models, each with an IC-weight wm is simply:

SEi(t) =
∑

m=1:M

wm � S
m
Ei(t) (3.12)

We can then derive cohort (or sub-group) net survival estimates such that:

SE(t) =
1

N

∑
i=1:N

SEi(t) =
1

N

∑
i=1:N

∑
m=1:M

wm � S
m
Ei(t) (3.13)

From the unconditional variance estimator proposed by Burnham and Anderson [157]

(page 162), the formula for the variance of SEi(t) is given by

v̂ ar
(
SEi(t)

)
=

{ M∑
m=1

wm �

√
v̂ ar

(
Sm
Ei(t)

)
+
(
Sm
Ei(t)� SEi(t)

)2}2

(3.14)

v̂ ar
(
Sm
Ei(t)

)
is obtained using the Delta method and the variance of the cohort net survival

estimate:

v̂ ar

(
SE(t)

)
= v̂ ar

(
1

N

∑
i=1:N

SEi(t)

)
=

1

N2

∑
i=1:N

v̂ ar
(
SEi(t)

)
(3.15)

We provide in table 3.1 the Restricted Mean Integrated Square Di�erences (RMISD) when

model-averaging is performed on the excess hazard scale (formula (1)), compared to model-

averaging of the net survival values directly (formula (2)). Using the high-resolution data,
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Table 1 shows there is virtually no di�erence between the �nal estimated net survival

curves. The di�erences between the estimated curves and the Pohar Perme (PP) are

identical to the third digit place, whatever the size of the groups (split by age group,

deprivation quintile and stage at diagnosis or deprivation and stage, or only deprivation

quintiles). The corresponding net survival curves by age group, deprivation quintiles and

stage are identical.

RMISD are calculated as the average ISD measured in each group de�ned by age, depri-

vation and stage, or deprivation and stage, or deprivation alone. Reducing the number of

groups on which integrated square di�erences (ISD) are compared increases the sample

size for each group, and therefore the stability of the PP cohort estimates (the standard

to which all other estimation is compared).

3.6.3 Averaging on the crude probability of death scale

Crude probabilities of cancer death, also known as cumulative incidence function, report

the probabilities of dying of cancer, in the presence of competing mortality due to causes of

death other than cancer. [2] This is a measure de�ned in the `real world' in which patients

may experience other causes of death. Crude probabilities of death from cancer are most

commonly calculated using the formula 3.16, at individual level CPDi , and then for the

cohort CPD as the average of all individual CPDi :

CPDi(t) =

∫ t

0
SOi(u) � �Ei(u)du (3.16)

CPD(t) =
1

N

N∑
i=1

CPDi(t) =
1

N

N∑
i=1

∫ t

0
SOi(u) � �Ei(u)du (3.17)

Where SOi is the overall survival and �Ei is the excess hazard for patient i . It makes sense

that, for individual i , their probability of dying of cancer at time t is function of surviving

all causes of death until t, and the hazard of dying from cancer at t. The crude probability

is a cumulative function of time.

Given we do not observe much or any follow-up for the patients for whom we would like

to predict a crude probability of death value, we cannot estimate their overall survival

probabilities or excess hazard of death from their own data. �Ei is estimated following

model selection and model-averaging as seen in formula 3.10. Similar to modelling excess

hazard, we perform model selection and model-averaging of overall survival to estimate

SOi . We detail the required steps:
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(i) Model selection for the estimation of overall survival using information criteria

(ii) Predict overall survival, by patient characteristics, from each of the models selected

(iii) Derive model-averaged individual survival SOi(t), using weights based on the infor-

mation criteria chosen

(iv) Proceed to the calculation of the model-averaged CPDi , using the model-averaged

overall survival:

Using multi-model inference, we propose to use the model-averaged individual excess hazard

�Ei(t) as an estimator of �Ei and SOi(t) an estimator of SOi(t).

CPDi(t) =

∫ t

0
SOi(u) � �Ei(u)du =

∫ t

0
SOi(u) �

∑
m=1:M

wm � �
m
Ei(u)du (3.18)

And

CPD(t) =
1

N

N∑
i=1

CPDi(t) =
1

N

N∑
i=1

∫ t

0
SOi(u) �

∑
m=1:M

wm � �
m
Ei(u)du (3.19)

In summary,

CPD(t) =
1

N

N∑
i=1

M∑
m=1

wm �

∫ t

0
SOi(u) � �

m
Ei(u)du (3.20)

Throughout the �rst four years of follow-up, we contrast the model-averaged crude prob-

ability of death curves, based on the two model selection algorithms presented in the

manuscript in section 3.5, to the simple model's (blue line).

Figure 3.1: Crude probability of death as estimated from a simple model, or from

multi-model inference.
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The values obtained with the model-averaged estimates of CPD are as expected for these

cancers, given the restriction to the 50-85 years and 50-75 years at diagnosis for breast

and lung cancer, respectively (Figure 3.1). These graphs should be completed with the

actual estimated crude probability of death, to check the accuracy of the model-based

predictions.

3.7 Averaging measures of explained variation

In this section, we provide a taste for how we could apprehend validation of multi-model

inference. Chapter 2 provides a review of measures that are used for evaluating the quality

of model-based predictions. There, we also describe how we adapt a measure of explained

variation to the context of modelling the excess hazard of death, using weights, de�ned

as the probability that, given a patient's death, it is due to cancer. Here, we would like to

provide a model-averaged version of that measure of explained variation.

From each selected model we can calculate the variation in outcome that is explained by

the model. The measure of explained variation is based on ranks, de�ned by individually

predicted values of excess hazard measured at each time of event for each patient i still at

risk. In this context, one needs to average the individual excess hazard values. Since we

average the models' outcomes into one �nal multi-model outcome, it is of interest to study

what is the variation explained by that speci�c combination of models. We followed the

steps below to average the excess hazard estimates, and measure the explained variation

of the model-averaged excess hazards:

1. Identify the M models that are AIC-equivalent, and all equally susceptible to have

generated the data.

For each time of event t� until end of follow up:

1. Predict the individual excess hazard �mEi from each model m.

2. Average the values of �mEi to obtain a model-average estimate of the individual excess

hazards, �Ei .

3. Rank the individual �Ei and compare the ranks to the rank from null and perfect

models, as described in Chapter 2.

The measure of explained variation, REw , is calculated cumulatively from diagnosis, until

the end of follow-up; this is REw(t). A time varying measure, the local REw , can also be

derived using the information of 20 event times around each index time.
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We compare below the values of explained variation for each selected model m, the model-

averaged (both algorithms as described in 3.5) and the simple model. The simple model

only contains linear and proportional e�ects of each of the prognostic factors on the excess

hazard of death (see manuscript in section 3.5). The explained variation is calculated for the

cohort of patients that only contributed up-to a year of follow-up to model-selection. We

are therefore in the context of explained variation for the prediction of survival.

The explained variation of the breast cancer models are incredibly high (Figure 3.2). This

is almost certainly due to the large selection of variables available, including stage at

diagnosis and mode of presentation, which are very strong prognostic factors and will

determine treatment strategies and ultimately survival. We notice the increase in explained

variation following model-averaging (darker shades). Both the RE(t) and local REw decline

throughout the four years of follow-up.

As seen in the application of the manuscript presented in Chapter 2 (section 2.6.1), ex-

plained variation for the cohort of lung cancer patients is around 50% with a steep decline

in the �rst eighteen months and then a stable level of explained variation, due to the

cumulative nature of RE(t) (Figure 3.3). The local RE, measured using a window of 20

events around each event, is steeply decreasing too with very little variation explained by the

model-averaged e�ects beyond 24 months. Simple and two individual models selected using

the adapted R&S show local REw below 0 after 18 months. Higher explained variation is

seen for model-averaging.

Figure 3.2: Time-varying and local REw, patients diagnosed with breast cancer in 2010
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Figure 3.3: Time-varying and local REw, patients diagnosed with lung cancer in 2011

3.8 Discussion

In this Chapter, we explore the concept of multi-model inference for better prediction

and projection of cancer survival. We aim to show the bene�ts of information criteria-

based model selection, and of model averaging. We show good performance of multi-

model inference, when compared to using a unique simple model for the prediction and

projection of cancer survival. This is true in both a low- and high-resolution setting, that

is for restricted or unrestricted availability of variables.

Additionally, we provide formulas for the model-averaging of di�erent quantities of interest,

such as net survival, crude probability of death and explained variation. The choice of

quantity to be averaged may be driven by the main reported outcome. That choice can

also be driven by the common denominator to all other measures (the individual excess

hazard).

Furthermore, we combine models from the same class of models, given our choice of

algorithm for model selection. The same strategy could be envisaged for averaging results

from models arising from di�erent model structure. We expand this point further in the

discussion Chapter.
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The work presented in this Chapter is o�ering many avenues for further research. Nonethe-

less, it is important to note that it is based on empirical evaluation of performances. As

such, it relies on several strong assumptions, including:

(i) The non-parametric Pohar Perme estimator is considered to represent the true value of

cancer survival. We recognise that this is a particularly strong assumption, however we

acknowledge that the following statement holds true in practice: the Pohar Perme

estimator is the estimator of choice when describing levels of survival in a given

area. Therefore estimated levels of survival tend to be compared to the Pohar Perme

estimator.

(ii) Excess hazard models estimate the same quantities as Pohar Perme, even when these

are not using the same set of predictors.

We acknowledge that a series of simulations should complete the observations made

here. Since with simulations, we would (1) know what the true distribution of future events

is and how best to reproduce it, (2) be able to look at longer-term predictions, (3) be able

to compare projections for cohort of patients further away from the training cohorts, (4)

not need to assume (i) and (ii).



Discussion

This work was conducted in the context of persisting socio-economic inequalities in cancer

survival in England despite inequalities being a public health priority within almost all recent

policy initiatives for cancer diagnosis and treatment. Survival is a key metric for the

evaluation of the performance of health system in relation to cancer. However, the very

nature of survival means that there is a temporal gap between the data available and the

cohorts of recently diagnosed patients. In order to o�er more timely prognostic information

about future cohorts of cancer patients, I aimed to evaluate and improve the methodology

available for the prediction and projection of cancer survival.

Following their cancer diagnosis, patients receive information on the likely course of their

disease from di�erent sources:

i Clinicians who may provide a prognosis based on their experience and knowledge in addi-

tion to their intuition;

ii Patients themselves and their peers who might o�er an evaluation of the course of their

disease based on similarities with acquaintances, or case-stories;

iii Statistical models based on the in�uence of speci�c factors upon various outcomes

including recurrence, disease progression or death, derived from cohorts of patients

diagnosed in the past.

However di�erent these sources are, the validity of their predictions relies on their ability

to identify correctly recurring patterns and associations. In this thesis, excess hazard

regression models for the prediction of cancer survival for populations of newly diagnosed

patients have been described. I have explored two areas where additional research was

needed, in order to develop the available methodology for the prediction and projection of

cancer survival (i) model selection and (ii) model validation. The ideas developed within

this thesis are novel and pave the way for future development, assessment, validation of

and prediction from excess hazard regression models.

137
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1 Excess hazard model selection

In Chapter 1, I focus on specifying the most appropriate functional forms of e�ects for key

predictors of cancer survival. This is achieved through model selection algorithms. Given

that linked cancer registration datasets gather large collection of patient-level information,

there are many variables available and many complex associations which could potentially

be modelled. Selecting the correct model is therefore challenging but crucial for correct

inference.

I concentrate on two speci�c algorithms for model selection, both of which were developed

in the context of multivariable model-building and time-to-event data. [88, 90] Their un-

derlying philosophy di�ers in that they employ backward and forward selection strategies,

but they also di�er in terms of their views on simultaneous testing of non-linear and non-

proportional e�ects. The structure of each model selection algorithm is set. Nonetheless

the selection of e�ects is data driven.

Because survival patterns can be complex, detailed guidelines on model selection within

the context of multi-variable excess hazard modelling has great potential bene�t for health

data analysts, epidemiologists and policy makers. In the population-based cancer survival

setting, the number of potential explanatory variables remains low, but the shape of their

e�ects may be complex, including non linearity and non proportionality. The selection of

e�ects may be based on the literature, re�ecting a range of expected and plausible e�ects.

Algorithms are helpful tools to screen through the range of e�ects that one wishes to

consider. Nonetheless, although rigorous algorithms for model selection are presented,

there remains potential issues of model misspeci�cation. These can arise for a number

of reasons including: (i) assumptions made in the context of a speci�c model set are not

veri�ed in the data; (ii) outliers or clusters of data may distort the parameter estimates;

(iii) important explanatory variables are not available; (iv) functional forms are misspeci�ed;

(v) missing information. Sensitivity analyses may be conducted to study the impact that

unmeasured confounders, or missing information have on model speci�cation. There are

two potential extensions of my work which could widen its scope and use in practice.

1.1 Missing data

The �rst of these is the application of model-selection algorithms in the context of vari-

ables with missing information. The decision not to consider missing data is one of the

main limitations of this work. Observational data often carry non-negligible proportions of

missing information for key predictors. [168] In this thesis the analyses are restricted to

cohorts of patients with least missing information on stage at diagnosis and performance
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status (< 15%). These relatively small proportions mean we could exclude the records

with missing information from the analysis.

A common situation is where information is missing at random. That is the distribution of

missing data can be described by the fully-observed variables available in the dataset, in-

cluding the outcome of interest. In such instances, multiple imputation by chained equation

(MICE) can be used to avoid biases and loss in e�ciency that occur when using complete-

case analysis. [169�172] MICE involves creating k completed copies of the datasets, with

separate sets of imputed data for records with missing values. The imputation model must

be compatible with the analysis (`substantive') model, for unbiased estimation of the re-

gression coe�cients. This is challenging when the substantive model is not yet de�ned at

the time of imputation.

The excess hazard regression setting within which we perform model selection is at the

crossroads between two active research areas in missing data methodology: (a) imputation

when the e�ects are complex (non-linear), or involved in interactions; (b) non-standard

distributions for the substantive model, such as the Cox model. Several methods and

ideas for accounting for missing data in these settings have been proposed, tested and

evaluated on real data. Some of these examine variable selection, [173] some the selection

of functional forms of e�ects, [174, 175] and others time-dependent e�ects. [176] I list

below some of their suggestions, with their limitations.

i Imputation of missing data assuming the most complex substantive model. [172]

Limitations of this approach are: (1) the most complex model may not be appropriate

for the data, (2) all other substantive model tested after imputation need to be nested

in the most complex model.

ii Variable selection done on the complete-case dataset only.

The main limit here is a lack of e�ciency, and risk of bias since data are likely not

missing completely at random.

iii Variable selection on a single imputation.

Estimated standard errors are too small since the imputed dataset is assumed to be

observed, no account is taken of additional uncertainty.

iv Algorithm for variable selection applied to all k imputed datasets, combining their es-

timated parameters using the Rubin's rules and using the Wald test to test for the

e�ects of each variable. [173]

This is a very computer intensive approach. The following simpli�cation is o�ered:

variable selection on all imputed data selecting either predictors that appear in any of

the selected models, or only predictors that appear in all/half or more of the models.
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v Variable selection on stacked imputed data.

This approach uses weights to correct standard errors that would otherwise be too

small, due to the larger sample size.

Aside from multiple imputation, one could consider inverse probability weighting (IPW)

as an alternative to deal with missing information. Here, each complete record would be

weighted by the inverse of the probability of having no missing data based on their individual

characteristics. These records would therefore be up- or down-weighted depending on the

proportions of patients with similar characteristics and for whom missing data is present.

A weighted model selection would then follow. Intuitively, this appears less disruptive to

use such an approach to account for missing data in excess hazard model selection, and

circumvent the issues raised above. However, there are two methodological considerations

to bear in mind with IPW: (1) weighted regression methods are generally ine�cient, leading

to large con�dence intervals, and (2) the uncertainty in the estimation of weights needs

to be taken into account in the model selection.

To address the problem of missing data in excess hazard model selection, none of the

directions discussed here can be readily implemented. As a �rst methodological step, one

could compare the performance of a relatively simple suggestion for imputation (ii or iii

above) to a more complex one or to IPW.

1.2 Synergy with penalized regression

When studying cancer survival, the minimum set of information includes the type of cancer,

sex of the patient, the age at cancer diagnosis, and the follow-up time elapsed since cancer

diagnosis. Traditionally, most analyses are strati�ed by cancer site and sex. For each

combination, follow-up time and age are strong predictors of overall and cancer survival.

`Data simpli�cation' is sometimes performed, when the number of explanatory variables

is reasonable and relatively simple e�ects are expected, based on background knowledge

or limitations of the data. [62�65, 96, 98] The main limitation of such an approach is

potential mispeci�cation. This may result from incorrect underlying assumptions about the

e�ect of interest or as a consequence of other mispeci�ed e�ects. [86] In order to minimise

mispeci�cation and maximise correct inference, I demonstrate in Chapter 1 the importance

of a systematic model screening strategy being adopted alongside background knowledge,

particularly when sample size allows. I provide useful practical guidance for such model

selection, [91] bearing in mind that the more explanatory variables there are, the more

complex models become and the higher the chances of mis-speci�cation, if such careful

model selection is not adopted.
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Penalised regression splines stem from a very di�erent philosophy to model building. It is

in stark contrast with selection of functional forms of e�ects, since there is no selection

per se.

The tensor product, [177] a multidimensional penalised spline function, was recently adapted

to the context of cancer survival. [5, 56] The baseline hazard, non-linear and time-dependent

e�ects, and interactions between continuous explanatory variables are modelled with �ex-

ibility via tensor products. These are products of unidimensional spline functions, such

that the coe�cient(s) for one variable are varying according to values of other variable(s).

For some given dimension of the marginal spline bases, smoothing parameters need to be

estimated rather than the functional forms. Even if one needs to specify the number of

knots and their locations, these have less in�uence in a penalized than in an un-penalized

context.

This strategy does not constrain the forms of continuous e�ects, and non-linearity, non-

proportionality and interactions are speci�ed all at once. The only constraints are the

smoothing parameters (as many as there are variables) that control the �exibility of the

estimated curve/plane. The method reaches its limits when the number of continuous

explanatory variables exceeds four. This is due to the exponential growth in number of

parameters. For example, if we modelled 3 variables with splines with 5 bases, the number

of parameters to be estimated would be 53 = 125 and with 4 or 5 variables, it would reach

54 = 625 and 55 = 3; 125 parameters, respectively. To reduce the number of parameters,

one strategy would be to select di�ering levels of complexity (dimension) for the splines.

Variable selection becomes necessary for situations with over four predictors (including

follow-up time).

Since tensor products and smoothing techniques lead naturally to prediction, [178] a further

extension would be to study model-building algorithms in combination with using tensor

products. All continuous predictors would bene�t from being modelled with more �exibility,

whether or not the data requires such �exibility. The smoothing parameter would then

rectify over-parameterisation and avoid un-desirable over-�t. One could exploit the results

of model-building strategies, ahead of using tensor products for inference: the degree of

�exibility (dimension of the splines) in the tensor product regression could be based on the

selected functional form of each predictor. For instance, continuous variables selected with

a linear e�ect could be modelled with splines of lower dimension than those retained in the

�nal model(s) with more complex non-linear e�ects.

I believe the strengths of the tensor product are the weaknesses of traditional regression

models and vice versa. Borrowing from both sets of tools would allow better inference,

especially for prediction, free from model mispeci�cation.
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2 Model validation: explained variation

The key achievement of Chapter 2 is the extension of a measure of explained variation to

the context of net survival in the relative survival data setting, by ways of weights applied

to all records. The weights re�ect the probability that the observed event is an event of

interest (here, death due to the cancer under study).

The biggest driver for the methodological developments presented in this thesis is the avail-

ability of large and richer datasets than was previously available. Among other predictors,

it is now possible within UK data to measure the prevalence of comorbidities at the time of

cancer diagnosis. [179] I will use the example of comorbidities as an example of application

of the measure of explained variation. Presence of pre-existing comorbidities can signif-

icantly in�uence timely presentation for cancer diagnosis [180] and access to treatment,

and ultimately survival. Understanding how the patterns of these comorbidities impact

cancer survival is of great interest to clinicians and public health specialists, especially in

an ageing multi-morbid population. Selection of the most relevant comorbidities, and their

potential interactions require that a suitably simple strategy is in place. Given the large

datasets and the potential challenge of multiple testing, distinguishing which comorbidities

are most predictive of survival is likely to be much better achieved through measures of

explained variation than current methods.

Chapter 2 also focusses on the machinery available for validating predictive models. There

exist a large number of tools, mostly used for individual prediction models. [18�20] These

can be divided into three main groups, based on what they assess: overall performance,

calibration and discrimination. I review below two possible extensions of Chapter 2 together

with their clinical and public health bene�ts.

Alongside the development of REw , I provide some thoughts on how the weights intro-

duced could be used to adapt the Brier score and the ROC curve to the relative survival

data setting. Combining these weights and time-varying ROC curves would enable the

validation of markers derived from excess hazard models at di�erent times after diagnosis.

These future developments would be bene�cial, especially in a context where medicine

with targeted immunotherapy treatments for speci�c tumour and patient's characteristics

become more widely available. Individual patients' predictions would become key in such a

context and the validity of these predictions could only be assessed with standard calibration

and discrimination measures adapted to the relative survival data setting.

Frailty models can also be �tted in the relative survival data setting. [57] These models

account for individuals being clustered within health providers (region, hospital), and thus

not independent anymore. A random e�ect that measures the between-cluster variability is



Discussion. 143

estimated. As yet, in the relative survival data setting, there is no speci�c tool that informs

the analyst how important it is to take account of that variability. Explained variation could

be a useful quantity to characterise the importance of accounting for frailty, as is currently

advocated in `standard' survival analysis. [181] Measuring REw in excess hazard models

with random e�ects would be a further extension of this thesis. Comparing REw derived

from a standard excess hazard model to REw derived from a frailty model would provide

the proportion of variation explained by taking account of the clustered nature of the data.

3 Prediction of cancer survival: multi-model inference

Model-based predictions and projections are the focus of Chapter 3, in which I propose

the implementation of multi-model inference. This approach is based on the belief that

some models may receive equivalent support from the data, and selecting a unique one

would be restrictive and possibly misleading for prediction. [157] Model selection is based

on information criteria, therefore enabling inference to be made from models without using

multiple testing.

The application of multi-model inference presented in Chapter 3 remains within the data

culture [51] in which relationships between variables are simpli�ed and speci�ed through

regression models, reliant on the data meeting the speci�c assumptions of the models. I use

multi-model averaging, borrowed from the Bayesian framework [166] and the Information

Theoretic approach, [157] to avoid relying on a single model for predictions. I present

model-averaged individual excess hazard of death as it represents the natural output from

the models. Besides, it is the common denominator for the derivation of other model

outcomes. However, I also brie�y consider averaging measures of net survival and crude

probability of death as well as explained variation. This o�ers an advantage whereby the

outcome of interest can be estimated from each selected model and averaged directly using

weights (derived, for instance, from the AIC).

3.1 Ensemble learning

The methodology introduced in Chapter 3 is a �rst building block for addressing formally

prediction and projection of cancer survival. In that Chapter, the focus is on model aver-

aging within given iterative algorithms for model selection. However, one does not need

to restrict oneself, and can also average the outcomes of models selected by di�erent al-

gorithms. Furthermore, although my regression models are all �tted on the logarithm of

the excess hazard scale, other types of scales and models could be included and their AICs

contrasted.
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More widely, the philosophy of multi-model inference and the idea of using `best' models

from di�erent algorithms bring us closer to the philosophy of ensemble learning. Among

others, the stacked generalisation (or stacking) and the super learner are ensemble al-

gorithms in which the predicted outcomes from classi�cation schemes or any regression

models are combined together, in such a way that their predictions minimise a pre-de�ned

error. [182] In the machine learning �eld, one approach to making predictions, away from

the regression models used in this work, would be with random survival forests. [183] This

is an appealing ensemble learning method drawing from the random forest classi�cation

scheme, described by Breiman. [184] After adaptation to the relative survival setting, this

approach could be used to predict cancer survival for patients diagnosed in newer cohorts,

without making any parametric assumptions.

Such a variety of modelling approaches pull together increases predictive ability but simulta-

neously makes interpretation di�cult or impossible. This is because the model parameters

are not the key outcomes, but merely considered a nuisance. [185] In contrast, our approach

aims to maintain interpretation while improving prediction. Interpretation is a feature that

is key to this work, to help design public health interventions.

3.2 Enhanced survival predictions using dynamic variables

In all data analysed as part of this thesis, we access a rich collection of variables, especially

for patients diagnosed in the most recent years. Nonetheless, one restriction consists in

their values being only de�ned and available at the time of diagnosis. Looking at the time

varying values of REw, we see that they decrease with follow-up time as the values of the

predictors become less relevant to the current prognosis of surviving patients. Updating

the status of variables such as stage, treatment, and performance status during follow-up

would greatly bene�t the predictive power of the models and the proportion of variation in

outcome explained. Some updated information could be available from Hospital Episode

Statistics (HES) datasets in which access and use of secondary care services are recorded

for all patients at every hospital visit, pre- and post-diagnosis. This database is already

the source of information on emergency admissions, [186] comorbidities, [179] and surgical

treatment. [98] Updated treatment information could also be available from the Systemic

Anticancer Therapy (SACT) data.

Possible models that accommodate dynamic variables include delayed entry models, Cox

regression models with time-updated information, and the landmark prediction model. [187]

Such a modelling structure allows estimations to be updated given the values of other

covariates at any time before the estimation horizon. Estimations are performed on the

patients for whom information is available. In the context of prediction for other cohorts of



Discussion. 145

patients, both frameworks would need to be extended to predictions outside of the study

sample, or at horizons beyond what is observed for some patients.

4 Application: relevance for public health

This work is highly applicable to health services planning and provision and in policy im-

plementation and assessment. Historically, the period approach has been used for the

estimation of survival for patients for whom follow-up is not yet available. [188] This ap-

proach derives cancer survival in a similar fashion to life expectation and utilises only the

survival experience of the patients alive in the most recent calendar period. [188, 189]

Our approach uses multivariable regression models to predict cancer survival for cohorts of

patients most recently diagnosed and utilises all the available data. Predictions of survival

for an entire cohort, are valuable for public health purposes because they provide an early

appreciation of the e�ects of public health interventions on survival. Such a preview is

valuable for the continued assessment of the e�ects of interventions.

Ahead of their implementation, interventions could also be assessed based on �ctional and

simulated scenarios. Modelling �ctitious changes in the incident patient population or in

the e�ects of prognostic factors could enable one to foresee what might be likely outcomes

of potential interventions that would have led to these changes. Such knowledge can help

design interventions that are most likely to maximise patient bene�t. This scenario-based

approach is a logical next step to this work. One possible way of designing these scenarios

follows the steps detailed below:

1 Based on the data available, models would be selected for the prediction of cancer

survival, for patients most recently diagnosed, as described in this thesis.

2 Scenarios that may re�ect changes in the general population (such as ageing) or e�ects

of cancer-speci�c interventions (such as earlier diagnosis, access to surgery for elderly

patients) would be designed.

3 Values of predictors would be modi�ed for the patients diagnosed in the most recent

cohort, according to these scenarios.

4 Step (3) would be repeated several times to account for uncertainty, leading to several

scenario-based datasets.

5 The model(s)'s parameters estimated in (1) would be used to predict and project survival

for the arti�cial cohorts obtained in (4).
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For increased relevance to the public health context, the e�ects of variables re�ecting the

environment of the patients (hospital characteristics, conditions in which care is received,

social support etc.) could be modelled, in addition to patient and tumour factors typically

available from cancer registry data linked to other healthcare datasets. The bene�ts of

some speci�c interventions may `simply' be seen on survival, but could also be on complex

contrasts. As an example, one might want to reduce inequalities in cancer survival. In this

scenario it would be useful to make sure one knows what the baseline inequalities are, in

order to assess progress against that benchmark.

In this thesis, the terms prediction and projection are used for a very speci�c context and

purpose, that of a public health setting, in which policy and planning are being constantly

assessed and monitored. Nonetheless, the ideas developed could certainly be bene�cial

to other settings: individual prognosis in the clinical context and causal inference in the

epidemiological context, where predictions are a necessary preliminary step, ahead of the

estimation of causal contrasts. [185, 190]

5 Conclusion

Health systems are complex networks which involve patient attitudes and behaviours, avail-

ability of care and social support, accessible equipment, streamlined communication be-

tween healthcare practitioners, e�cient informatics system, so on and so forth. Unex-

pected side e�ects of health interventions can be seen in the system, although they orig-

inally aimed at improving health outcomes. The e�ects of such interventions should be

routinely assessed, ideally before implementation, and then monitored to ensure uninter-

rupted e�ciency. The methodology developed and proposed in this thesis adds to the tools

available to make such assessment and monitoring possible when the outcome of interest

is cancer survival.
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