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ABSTRACT 
 
Neonates, particularly those born preterm (PTB) and low birthweight (LBW), are especially 

susceptible to bacterial infections that cause an estimated 225,000 deaths annually. Iron is a 

vital substrate for the most common organisms causing septicaemia. Full-term babies elicit an 

immediate post-natal hypoferremia assumed to have evolved as an innate defence. This 

thesis aimed to test whether preterm and low birthweight newborns are capable of a similar 

response.  

 

A longitudinal observational study was conducted in 430 hospital-delivered Gambian babies. 

Demographic, anthropometric and haematological data were collected from 152 babies who 

were either PTB (between ≥32-<37 weeks gestational age) and/or LBW (<2500g) (PTB/LBW) 

and 278 full-term, normal-weight babies (FTB/NBW). Blood was sampled from the umbilical 

cord and matched venous blood samples from all neonates between 6-24 hours after delivery. 

An additional matched venous blood sample was taken from all full-term, normal birth weight 

newborns between 24-192 hours of life. In both FTB/NBW and PTB/LBW neonates, serum 

iron decreased 3-fold compared to umbilical blood concentrations within 12h of delivery 

(23·3±0·35 vs 7·5±0·22 ng/ml, P<0.001, n=425). Hepcidin levels doubled (27·0±0·96 vs 

52·9±1·63 ng/ml, P<0·001, n=425). In FTB/NBW neonates, a steady increase in serum iron 

and TSAT follows (to 16.5±3.9µmol/L and 36.7±9.2% respectively by 136-192hrs post-

delivery), even in the presence of relatively high serum hepcidin levels (45.2±19.1ng/ml) 

suggestive of hepcidin resistance possibly caused by iron saturation of macrophages.  

 

Our findings confirm that a very rapid hypoferremia occurs in the early hours of post-natal life 

with evidence that it is mediated by an increase in hepcidin. The strength and consistency of 

this effect in all neonates indicates that it may have evolved as an innate immune response 

designed to protect newborns from bacterial septicaemia. 



 

 7 

TABLE OF CONTENTS 

 

STATEMENT OF OWN WORK ............................................................................................... 2 
ACKNOWLEDGEMENTS ....................................................................................................... 3 
ABSTRACT ............................................................................................................................. 6 
TABLE OF CONTENTS .......................................................................................................... 7 
LIST OF TABLES .................................................................................................................. 10 
LIST OF FIGURES ................................................................................................................ 11 
ABBREVIATIONS ................................................................................................................. 12 
GLOSSARY OF KEY TERMS ............................................................................................... 16 
Chapter 1 – Background to Thesis .................................................................................... 18 

1.1 Introduction and Rationale ....................................................................................... 19 
1.1.1 Why study neonatal iron metabolism? ............................................................................... 19 
1.1.2 What has previous work by our group provided towards the field? .................................... 20 

1.2 PhD Aims and Objectives ......................................................................................... 22 
1.3 PhD Outline ................................................................................................................ 23 
1.4 Candidate’s Involvement ........................................................................................... 25 
1.5 PhD Publications ....................................................................................................... 27 
1.6 PhD Timeframe ........................................................................................................... 30 
1.7 Funding ....................................................................................................................... 30 
1.8 Ethics .......................................................................................................................... 30 
1.9 Background ................................................................................................................ 31 

1.9.1 Ending Preventable Neonatal Mortality .............................................................................. 31 
1.9.2 Neonatal Mortality in Low- and Middle-Income Countries (LMICs) .................................... 32 
1.9.3 Neonatal Mortality in The Gambia ...................................................................................... 34 
1.9.4 Maternal and Newborn Care at Kanifing General Hospital ................................................ 36 
1.9.5 Contribution of Neonatal Infections .................................................................................... 37 
1.9.6 Diagnosis and Treatment of Neonatal Sepsis .................................................................... 39 
1.9.7 The Threat of Antimicrobial-Resistant Infections ............................................................... 41 
1.9.8 Interventions to Combat Neonatal Infections ..................................................................... 42 
1.9.9 Transition to Extrauterine Life ............................................................................................ 44 
1.9.10 Immune Responses of the Neonate ................................................................................. 45 
1.9.11 Iron in Infection and Immunity .......................................................................................... 47 
1.9.12 Dysregulation of Iron Homeostasis .................................................................................. 50 
1.9.13 Pre-Analytical Effects on Hepcidin Measurement ............................................................ 51 

1.10 References ................................................................................................................ 53 
Chapter 2 – PhD Study Setting ........................................................................................... 75 

2.1 PhD Study Setting ...................................................................................................... 76 
2.1.1 The Republic of The Gambia ............................................................................................. 76 
2.1.2 Kanifing Municipality .......................................................................................................... 77 
2.1.3 Study Sites: Kanifing General Hospital, The Gambia ........................................................ 77 
2.1.4 Study Sites: Community Visits (West Coast Region) ......................................................... 81 
2.1.5 Study Sites: Laboratory Work (Kanifing General Hospital and MRCG Keneba Laboratory)
 .................................................................................................................................................... 82 



 

 8 

2.2 References .................................................................................................................. 84 
Chapter 3 - Hepcidin, serum iron and transferrin saturation in full term and premature 
infants during the first month of life: A review of existing evidence in humans 
(Review) ................................................................................................................................ 85 

3.1 ABSTRACT ................................................................................................................. 91 
3.2 INTRODUCTION ......................................................................................................... 92 
3.3 METHODS ................................................................................................................... 95 
3.4 RESULTS .................................................................................................................... 97 
3.5 DISCUSSION ............................................................................................................... 99 
3.6 REFERENCES .......................................................................................................... 103 
3.7 SUPPLEMENTARY MATERIAL ............................................................................... 141 

Chapter 4 - Neonatal iron distribution and infection susceptibility in full term, preterm 
and low birthweight babies in urban Gambia: study protocol for an observational 
study (Methodology) ......................................................................................................... 142 
Chapter 5 – Early postnatal hypoferremia in low birthweight and preterm babies: A 
prospective cohort study in hospital-delivered Gambian neonates (Main Paper) ...... 160 

5.1 ABSTRACT ............................................................................................................... 167 
5.2 INTRODUCTION ....................................................................................................... 169 
5.3 PARTICIPANTS AND METHODS ............................................................................. 170 
5.4 RESULTS .................................................................................................................. 175 
5.5 DISCUSSION ............................................................................................................. 177 
5.6 REFERENCES .......................................................................................................... 184 
5.7 SUPPLEMENTARY MATERIAL ............................................................................... 199 

Chapter 6 – Iron homeostasis in full term, normal birthweight Gambian neonates over 
the first week of life (FTB/NBW Paper) ............................................................................ 215 

6.1 ABSTRACT ............................................................................................................... 220 
6.2 INTRODUCTION ....................................................................................................... 221 
6.3 SUBJECTS AND METHODS .................................................................................... 223 
6.4 RESULTS .................................................................................................................. 227 
6.5 DISCUSSION ............................................................................................................. 229 
6.6 REFERENCES .......................................................................................................... 234 

Chapter 7 - Discussion ...................................................................................................... 257 
7.1 A Review of the NeoInnate Study ........................................................................... 258 

7.1.1 NeoInnate Study: Where Did It Begin? (Chapter 1) ......................................................... 258 
7.1.2 A Review of Iron Homeostasis Over the First Month of Life (Chapter 3) ......................... 259 
7.1.3 Early Postnatal Hypoferremia in Low Birthweight and Preterm Babies (Chapter 5) ........ 260 
7.1.4 Iron Homeostasis in Full Term, Normal Birthweight Gambian Neonates Over The First 
Week of Life (Chapter 6) ........................................................................................................... 262 

7.2 NeoInnate Study: Study Design, Issues Faced and Learning Points for the 
Future .............................................................................................................................. 263 
7.3 Recommendations For Future Research ............................................................... 267 

7.3.1 Role of the Placenta in Maternal-Fetal Iron Transfer ....................................................... 267 



 

 9 

7.3.2 Potential Triggers of Early Postnatal Hypoferremia ......................................................... 268 
7.3.3 Harnessing Iron to Fight Infections .................................................................................. 274 
7.3.4 Hepcidin Agonists as Hypoferremic Therapies ................................................................ 278 
7.3.5 Hepcidin-Resistance ........................................................................................................ 280 

7.4 Conclusions ............................................................................................................. 283 
7.5 References ................................................................................................................ 284 

ANNEXES ........................................................................................................................... 297 
ANNEX 1.11 Collaborators and field team details and contributions ....................... 298 
ANNEX 1.12 PhD Timeline ............................................................................................. 301 
ANNEX 1.13 MRCG Scientific Coordinating Committee Ethics Letter ...................... 302 
ANNEX 1.14 The Gambia Government/MRC Joint Ethics Committee Letter ........... 303 
ANNEX 1.15 London School of Hygiene & Tropical Medicine Ethics Letter ............ 304 
ANNEX 1.16 Oral iron acutely elevates bacterial growth in human serum (FeVir 
Study) .............................................................................................................................. 305 
ANNEX 3.8 New Ballard Score Sheet (Gestational Aging) ......................................... 314 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 10 

LIST OF TABLES 
 

Table 1.1 Health-related statistics for The Gambia..…………….…….………………………..36 

Table 1.2 Iron sources of neonatal sepsis causing bacteria………….………………………..48 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Not including tables in submitted publications.  



 

 11 

LIST OF FIGURES 
 

Figure 1.1 PhD study logo (NeoInnate Study)………………………………………...…………22 

Figure 1.2 PhD conceptional framework………………………………………………………….23 

Figure 1.3 Global distribution of newborn death by cause.....………………………...………..31 

Figure 1.4 Distribution of newborn deaths by cause in The Gambia…………………...……..35 

Figure 1.5 Overview of innate immune deficiencies of preterm and low birthweight babies..46 

Figure 1.6 The host-pathogen battle of iron.…………....………………...……………………..48 

Figure 1.7 Hepcidin-induced iron homeostasis…………………………………………...……..49 

Figure 1.8 The sequestration of iron and its moieties………...........…………………………..50 

Figure 2.1 Map of The Gambia..………………………………………………………..…………76 

Figure 2.2 Map of Kanifing…………………………………………………………………...…….77 

Figure 2.3 Kanifing General Hospital Maternity Ward.…………………………….……………78 

Figure 2.4 Community study visits to the homes of recruited newborns………………..…….81 

Figure 2.5 Community study visits involved a complete review of systems....…………….…82 

Figure 2.6 Laboratory bench-top work during PhD study……………………........……………83 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Not including figures in submitted publications.  



 

 12 

ABBREVIATIONS 
 

AGA Appropriate for Gestational Age 

AGP Alpha 1-Acid Glycoprotein 

ANOVA Analysis Of Variance 

APP Antimicrobial Protein and Peptides 

BCG Bacillus Calmette–Guérin 

BMGF Bill & Melinda Gates Foundation 

BMP6 Bone Morphogenetic Protein 6 

CDA Cord Arterial Blood 

CDV Cord Venous Blood 

CI Confidence Interval 

CRE Carbapenem-Resistant Enterobacteriaceae 

CRF Case Report Form 

CRP C-Reactive Protein 

CSF Cerebrospinal Fluid 

CT Scan Computerized Tomography Scan 

CyTOF Cytometry by Time Of Flight 

DC Dendritic Cells 

DFID Department for International Development 

DHS Demographic and Health Survey 

DMT-1 Divalent Metal Transporter 1 

ECOWAS Economic Community of West African States 

eCRF Electronic Case Report Form 

EDTA Ethylenediaminetetraacetic Acid 

EFSTH Edward Francis Small Teaching Hospital 

EGF Epidermal Growth Factor 



 

 13 

EIA Enzyme Immunoassay 

ELISA Enzyme-Linked Immunosorbent Assays 

EONS Early-Onset Neonatal Sepsis 

EPO Erythropoietin 

ESBL Extended Spectrum Beta-Lactamases 

FTB Full-Term Birth 

G-CSF Granulocyte-Colony Stimulating Factor 

G6PD Glucose-6-Phosphate Dehydrogenase 

GBS Group B Streptococci  

GCP Good Clinical Practice 

GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor  

HGF Hepatocyte Growth Factor 

HICs High Income Countries 

HIV Human Immunodeficiency Virus 

ID Identification 

IDE Integrated Development Environment 

IGF-1 Insulin-Iike Growth Factor-1 

IgG Immunoglobulin G  

IL-22 Interleukin 22 

IL-6 Interleukin 6 

IM Intramuscular 

IMCI Integrated Management of Childhood Illness 

IQR Interquartile Range 

IV Intravenous  

KGH Kanifing General Hospital 

KMC Kangaroo Mother Care 

LBW Low Birth Weight 



 

 14 

LMICs Low- and Middle-Income Countries 

LONS Late-Onset Neonatal Sepsis 

LPS Lipopolysaccharide  

LSHTM London School of Hygiene and Tropical Medicine 

MCEE Maternal Child Epidemiology Estimation 

MDA Mass Drug Administration  

MDG Millennium Development Goal 

MHC Major Histocompatibility Complex 

MRC Medical Research Council 

MRCG  Medical Research Council Unit The Gambia at LSHTM 

mRNA Messenger RNA 

MRSA Methicillin-resistant Staphylococcus aureus 

MS Mass Spectrometry 

NBS New Ballard Score 

NBW Normal Birthweight 

NDM-1 New Delhi Metallo-Beta-Lactamase 1 

NETs Neutrophil Extracellular Traps 

NGAL Neutrophil Gelatinase-Associated Lipocalin (NGAL) 

NGO Non-Governmental Organizations  

NHNES National Health and Nutrition Examination Survey 

NK cells Natural Killer Cells 

OD Optical Density 

PDGF-BB Platelet-Derived Growth Factor - BB 

PhD Doctor of Philosophy 

PI Principal Investigator 

PTB Preterm Birth 

ROS  Reactive Oxygen Species 



 

 15 

SBA Skilled Birth Attendant  

SCC  Scientific Coordinating Committee 

SD Standard Deviation 

SGA Small for Gestational Age 

siRNA Small interfering RNA 

SOP Standard Operating Procedure 

SSPs Study Specific Protocols 

STAT3 Signal Transducer and Activator of Transcription 3 

sTfR Soluble Transferrin Receptor 

TB Tuberculosis 

TFR1 Transferrin Receptor 1 

TIBC Total Iron-Binding Capacity 

TLR Toll-Like Receptor 

TSAT Transferrin Saturation 

UIBC Unbound Iron-Binding Capacity 

V1 Venous Bleed 1 

V2 Venous Bleed 2 

V3 Venous Bleed 3 

V4 Venous Bleed 4 

VLBW Very Low Birthweight 

VPTB Very Preterm Birth 

WBC White Blood Cell 

WHO World Health Organisation 

YICSS Young Infants Clinical Signs Studies 

 
 
 
 
 
 



 

 16 

GLOSSARY OF KEY TERMS 
 

Hypoferremia: A deficiency of iron in the blood. 

 

Nutritional immunity: To prevent infection from pathogenic organisms 

by restricting access to essential metals. 

 

Neonatal sepsis: A type of infection in neonates that specifically 

refers to the presence of bacteria in the blood 

stream (due to meningitis, pneumonia, 

pyelonephritis or gastroenteritis) in the setting 

of fever. Early-onset (appearing 0-3 days of life) 

and late-onset (appearing >4 days of life) are 

further levels of categorisation.  

 

Bacteriostatic: Substance or process that reversibly inhibits 

growth or reproduction of bacteria. Different 

from bactericidal (capable of killing bacteria 

outright). 

 

Hepcidin: A 25-amino acid peptide (HAMP gene) 

exclusively synthesized by the liver that is the 

main regulator of systemic iron metabolism. Its 

primary role is to inhibit iron efflux into the blood 

by binding to the transmembrane protein, 

ferroportin. 
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Transferrin saturation: The percentage of transferrin molecules that 

are bound to two iron ions in the ferric form 

(Fe3+). This is a ratio of serum iron 

concentration and the total iron-binding capacity 

(TIBC) expressed as a percentage.  

 

TIBC (total iron-binding capacity): An indirect measure of the amount of total 

serum transferrin (apotransferrin, 

monotransferrin, diferric transferrin) 

concentration in the circulation.  

 

Post-natal: The period immediately after the birth of a child.  

 

Preterm birth: Babies born alive before 37 weeks of 

pregnancy are completed. Sub-categories 

included extremely preterm (<28 weeks), very 

preterm (28-32 weeks) and moderate to late 

preterm (32-37 weeks).  

 

Low birthweight: Babies born with a birth weight of <2500g. 
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Chapter 1 – Background to Thesis 
 

 

Summary of Chapter 

 

In this chapter, I briefly introduce the background information and rationale to this thesis. 

This involves discussing the previous work completed by the HYPO-G Study at MRCG Unit 

The Gambia by lead investigator Dr Sarah Prentice, which laid the foundations for this 

further research. I then define the aims, objectives and structure of my research degree. 

Additionally, I describe the role I played in all aspects of the study, with further information 

on the research degree timeline. Funding and the subsequent publications produced are 

also detailed. This chapter then reviews the high-level background literature to this thesis, 

including research into neonatal mortality linked to infection, the transition to extrauterine life 

and the role iron plays in infectious disease. 
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1.1 Introduction and Rationale 

 

1.1.1 Why study neonatal iron metabolism? 

 

Neonatal sepsis is the third highest cause of death globally, accounting for 225,000 deaths 

each year.1 Neonatal infections cause an estimated 23% of all neonatal deaths, with 

neonatal sepsis alone accounting for 15%. The increasing global threat of antimicrobial 

resistance will no doubt exacerbate these figures in the future.2 

 

Humans undergo the most complex physiological adaption in their life during the transition 

from a semi-allogeneic, protected foetal setting to a microbe-rich extrauterine environment.3,4 

The initial mass bacterial colonisation of mucosa in the digestive, respiratory, urogenital 

tracts, as well as the skin5,6 occurs during the very early neonatal period and can positively 

affect gut maturation,7 metabolic homeostasis and immune function8–10 in early life and 

beyond. Early-onset neonatal sepsis (EONS) occurs in <72 hours of life, with most causative 

pathogens being transmitted vertically from mother to infant before or during delivery.11  

 

Iron is a cofactor in numerous metabolic pathways that are critical for the human host as well 

as most pathogens, making it an important mineral in the host-pathogen battle for 

resources.12 Therefore, systemic iron distribution is usually strictly regulated.13 The 

assimilation of iron from its human host via a plethora of molecular mechanisms (e.g. iron 

transporters and siderophores14), results in increased growth15 and virulence16 of many 

human pathogens. For example, individuals with chronically high iron states (e.g. 

hemochromatosis), not only have increased free radical redox damage,17 but an enhanced 

risk of infection, especially from iron-dependent species of bacteria.18,19  
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The hormone hepcidin is the primary regulator of iron homeostasis.20 Host inflammatory 

mediators, IL-6,21 IL-2222 and IFN-α,23 have been observed to increase the transcription of 

hepcidin through several Toll-like receptor (TLR) ligands24 and STAT3 signalling.25,26 

Hepcidin binds to the transmembrane protein ferroportin in macrophages, hepatocytes and 

enterocytes, resulting in its internalization and degradation.27–29 Consequently, enteric 

absorption from dietary iron is reduced, and iron is sequestered in macrophages, which 

causes a reduction in the extracellular iron concentration. Research carried out in animal 

models has shown that when the innate immune system is activated, it elicits a hypoferremic 

response which then limits the risk and severity of bacterial infections.30–32 

 

Previous research by our group has suggested that the hepcidin concentration in full-term 

neonates increases over the first hours of life, which is linked to a significant reduction in 

serum iron and transferrin saturation over a similar time period.33 Nevertheless, an accurate 

and reliable representation of iron homeostasis in all neonates (in particular preterm and/or 

low birthweight) is still lacking. The process of reviewing this mechanism between multiple 

studies was previously made harder by the lack of inter-assay standardisation of hepcidin 

ELISA assays until the recent research conducted by Van der Vorm et al.34  

 

1.1.2 What has previous work by our group provided towards the field? 

 

Before the start of this research degree, previous research conducted at MRC Unit The 

Gambia showed the presence of hepcidin-mediated neonatal hypoferremia in vaginally-

delivered healthy full-term neonates in rural Kiang Keneba.33 This proof-of-concept 

observational study observed the following key learning points: 

 

• Normal healthy term neonates display a rapid suppression of serum iron and TSAT 

within the first 6-12 hours post-partum.  
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• This response is thought to last for 2-3 days, followed by a slow increase up to 92 

hours.  

• There is a strong negative correlation between hepcidin and serum iron during this 

period, suggesting that hepcidin regulates this response through the redistribution of 

iron into circulating macrophages. 

• These findings were correlated to levels of IL-6, suggesting that inflammatory 

stimulation of hepcidin is in part, the driving mechanism of systemic hypoferremia.  

• Growth rates of the ex vivo micro cultured neonatal sepsis causing bacteria 

Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae and 

Streptococcus agalactiae were significantly lower in neonate venous serum (6-24 hr 

time period) as compared to cord serum. 

• Each organism’s growth rates was significantly associated with TSAT level in the 

serum.  

 

To conclude, the evidence to date suggests that neonatal hypoferremia takes place 

immediately post-partum in healthy term neonates, but there is limited research into the 

effects of gestational age and birthweight on this method of protection.33 Our research group 

pilot data suggests this change in iron distribution could provide a bacteriostatic method of 

protection to neonates in the first hours of life, when immune defences are immature.33 The 

rationale to conduct my research was to confirm this earlier discovery of acute neonatal 

hypoferremia in full-term neonates in another population, and to test whether preterm (PTB) 

and/or low birthweight (LBW) infants are equally effective in sequestering iron away from the 

bloodstream. If this was not the case, we aimed to describe the proportion of such babies 

that may show ineffective or blunted hypoferremia.  
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1.2 PhD Aims and Objectives 
 

 

Figure 1.1 PhD study logo (NeoInnate Study). 

 

Overall Aim:  To characterise the effects that gestational age and birthweight have 

on iron distribution immediately after birth and during the first week of 

life in healthy Gambian neonates.  

 

Specific Objectives:  

 

• Conduct a comprehensive review of hepcidin, serum iron and TSAT concentration in 

neonates in umbilical cord and venous blood (up to 1 month of age).  

 

• Characterise iron metabolism in full-term, preterm and low birthweight neonates at 

birth and during the first 24 hours of life. Do premature and/or low birthweight 

neonates have a defect in their ability to sequester iron at 6-24 hours after birth in 

comparison to full-term newborns with normal birthweight? 

 

• Describe how concentrations of hepcidin, serum iron and TSAT change in full-term 

neonates (only) at birth and during the first seven days of life. 

 

Fe
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The PhD conceptional framework is displayed in Figure 1.2. This PhD is split into 

preparation (A) and observation (B) phases. B is itself divided into two sections, with Part B1 

focussing on a comparison of iron homeostasis in first hours of life between full-term, normal 

birthweight (FTB+NBW) neonates and preterm (PTB) and/or low birthweight (LBW) 

neonates. Part B2 focuses on iron and infection parameters in FTB+NBW neonates after the 

first week of life only. 

 

 

Figure 1.2 PhD conceptional framework. 

 

1.3 PhD Outline 

 

This thesis is formatted in a research paper style in accordance with the London School of 

Hygiene & Tropical Medicine write-up regulations. The manuscripts and published articles 

are included without any adaption for this thesis. As a result, repetition is common between 

chapters in regard to materials and methods. This has been reduced with the production of a 

protocol paper (Chapter 4). If supplementary material is part of the manuscripts or 

publications, it has been added at the end of the chapter. Each chapter begins with a 

summary page outlining the content of each chapter.  
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This thesis contains seven chapters, one of which is a published protocol paper (Chapter 4), 

one is a published original research publication (Chapter 5) and two submitted manuscripts 

(Chapter 3 and 6). An outline of all the chapters is as follows: 

 

Chapter 1: An introduction to the thesis content and structure, with detailed information on 

the PhD aims, objectives, rationale, candidate involvement, publications and timeframe.  

 

Chapter 2: An introduction to the study setting at Kanifing General Hospital and the 

surrounding communities.  

 

Chapter 3: A prepared (submitted) manuscript containing a literature review of the 

concentrations of hepcidin, serum iron and TSAT in newborn blood in the first weeks of life.  

 

Chapter 4: A published research article containing the methodology of all study methods 

involved in the production of the two original articles (Chapters 5 & 6). It should be noted 

that it was not possible to complete secondary objective (III) in this publication (e.g. ex vivo 

bacterial growth in neonatal serum) due to the lack of adequate blood sample volumes from 

the initial blood draws.   

 

Chapter 5: A published research article comparing the concentrations of hepcidin, serum 

iron and TSAT in full-term, normal birthweight newborns against preterm and/or low 

birthweight neonates in the first hours of life.  

 

Chapter 6: A prepared (submitted) manuscript describing concentrations of hepcidin, serum 

iron and TSAT in full term, normal birthweight newborns during the first week of life only. 
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Chapter 7: A final discussion chapter to highlight the overall study findings, limitations of this 

thesis and reflection on what future research should be conducted in the field of neonatal 

iron homeostasis and beyond.  

 

1.4 Candidate’s Involvement  

 

The original idea of assessing iron and inflammation makers in newborns at birth and shortly 

afterwards in order to assess if hypoferremia was present came from Dr Sarah Prentice, Dr 

Carla Cerami (Higher Scientific Officer for MRC Unit The Gambia) and Professor Andrew 

Prentice (Nutrition Theme Leader for MRC Unit The Gambia). Dr Carla Cerami obtained the 

funding from the Bill and Melinda Gates Foundation. I assisted in completing the narrative 

and budget components of the grant (OPP1152353). I worked closely with Dr Carla Cerami 

(primary supervisor) to develop and implement this observational study and received 

technical support from Professor Andrew Prentice (secondary supervisor).  

 

As seen in Chapter 3, I was responsible for searching the literature, analysing data and 

formulating the first draft of the narrative review. Dr Carla Cerami and Professor Andrew 

Prentice (co-authors) supervised me and provided technical support and feedback during 

the production of the review.  

 

The methodology of the NeoInnate Study (Chapter 4) was prepared predominantly from 

pilot research conducted by Dr Sarah Prentice and Professor Andrew Prentice. Dr Carla 

Cerami and I adapted previous study procedures and protocols to fit with a change in the 

study setting. Dr Ousman Jarjou and the nursing team provided clinical insight into the 

development of study-specific protocols (SPPs). Mr Bakary Sonko oversaw the development 

of data handling and management, ensuring all aspects followed MRCG data management 
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policies. Dr Nuradin Ibahim Mohammed provided statistical oversight to ensure the study 

was adequately powered for our formal analysis.  

 

My role during the NeoInnate Study was a PhD student, along with co-investigator and 

project manager. I assisted in the writing of the funding application and regular reports to the 

Bill and Melinda Gates Foundation (BMGF). I assisted in the production of a study budget, 

monitored spending and procurement/logistics daily. I developed all clinical, data and 

laboratory study-specific protocols (SSPs). I orchestrated the renovation of a new study-

specific laboratory at Kanifing General Hospital (with the help of construction workers, 

labours and senior hospital staff). I assisted in the production of a successful ethics 

application to MRCG at LSHTM Scientific Coordinating Committee, MRCG at 

LSHTM/Gambian Government Joint Ethics Committee and London School of Hygiene and 

Tropical Medicine Ethics Committee, alongside assisting with the formal registration of the 

study at ClinicalTrials.gov. I actively supported the communication between Kanifing General 

Hospital and the NeoInnate study team, holding regular meetings with senior hospital 

administration. I worked with a team of MRCG at LSHTM staff to arrange a study-specific 

open day at Kanifing General Hospital, working with hospital administration, local media, 

international and local non-governmental organisations (NGOs), religious leaders, national 

and local government and the local population of Kanifing. Furthermore, I aided the 

assembly of a study team consisting of a research clinician, eight clinical nurses, ten 

laboratory technicians and two international students by shortlisting candidates, helping 

conduct interviews and working closely with the Human Resources Department (MRCG at 

LSHTM). I coordinated the fulfilment of daily project administration and laboratory 

management (staff appraisal, organising subject community visits, producing staff rotas, and 

running laboratory controls). I conducted regular shift work at the NeoInnate laboratory, 

completing primary laboratory analysis and supporting the study nurse team. I developed 

and verified all electronic data records on the study-specific REDCap (Research Electronic 

Data Capture) database, executing data curation and management leading to formal 
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statistical analysis in collaboration with study team members (Dr Carla Cerami and Prof 

Andrew Prentice) and the study statistician (Dr Nuradin Ibrahim Mohammed). Additionally, I 

conducted all secondary biochemical processes, sample handling and analysis (ELISA and 

biochemistry analysis). I provided regular training days to Kanifing General Hospital and 

NeoInnate Study staff on study procedures, theory and protocols. This work led me to the 

scientific writing of the manuscripts seen in Chapters 5 and 6.  

 

While here, I summarised my contribution to the contents of this thesis, it is essential to note 

that this study was designed, conducted and analysed in a collaborative approach. I have 

provided the names and roles of everyone involved in these areas in Annex 1.11. 

 

1.5 PhD Publications 

 

Published Papers: 

 

• Cross JH, Jarjou O, Mohammed NI, et al. Neonatal iron distribution and infection 

susceptibility in full term, preterm and low birthweight babies in urban Gambia: study 

protocol for an observational study. Gates Open Res 2019;3:1469. (Chapter 4) 

 

• Cross JH, Jarjou O, Mohammed NI, et al. Early postnatal hypoferremia in low 

birthweight and preterm babies. EBioMedicine 2020;52;102613. (Chapter 5) 

 

Re-Submitted Manuscript: 

 

• Cross JH, Prentice AM, Cerami C. Hepcidin, serum iron and transferrin saturation in 

full term and premature infants during the first month of life: A review of existing 

evidence in humans. Current Developments in Nutrition (re-submitted) (Chapter 3) 
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• Cross JH, Jarjou O, Mohammed NI, et al. Iron homeostasis in full term, normal 

birthweight Gambian neonates over the first week of life. American Journal of Clinical 

Nutrition (re-submitted) (Chapter 6) 

 

Poster Presentations: 

 

• Iron and Infection: Neonatal Iron Transition (NeoInnate Study – Prospective). Cross 

JH, Jarjou O, Touray BJB, Prentice AM, Cerami C. Presented at MRC Unit The 

Gambia 70th Anniversary Symposium: 27-29th November 2017. 

 

• Iron and Infection: Neonatal Iron Transition (NeoInnate Study – Prospective). Cross 

JH, Jarjou O, Touray BJB, Prentice AM, Cerami C. Presented at MRC Scientific 

Advisory Board Meeting 2016, MRC Keneba, The Gambia. 

 

• Iron and Infection: Neonatal Iron Transition (NeoInnate Study – Prospective). Cross 

JH, Jarjou O, Touray BJB, Prentice AM, Cerami C. Presented at IUIS-FAIS-

ImmunoGambia 2016, MRCG at LSHTM, The Gambia. 

 

• Iron and Infection: Neonatal Iron Transition. Cross JH, Prentice AM, Cerami C. 

Presented at MRC Festival - Show Case, June 2016, MRC Fajara, The Gambia.  

 

Conference Talks: 

 

• MRC International Nutrition Group. 24th April 2019. Neonatal Iron Transition - 

NeoInnate Study. 
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• MRC Unit The Gambia – Nutrition Retreat Presentation. 21st February 2018. Iron and 

Infection: Neonatal Iron Transition (NeoInnate Study). 

 

• London School of Hygiene and Tropical Medicine – M. Phil. / Ph.D. Upgrading 

Seminar. 30th September 2017. Iron and Infection: Neonatal Iron Transition 

(NeoInnate Study). 

 

• MRC Unit The Gambia / MRC International Nutrition Group (Unit Wide). 22nd 

September 2017. Iron and Infection: Neonatal Iron Transition (NeoInnate Study – 

Prospective). 

 

• MRC Scientific Advisory Board Meeting (10 Minute Elevator Talks). 30th March 2016. 

Iron and Infection: Neonatal Iron Transition (NeoInnate Study – Prospective). 

 

• MRC Unit The Gambia – Nutrition Retreat Presentation. 3rd March 2016. Iron and 

Infection: Neonatal Iron Transition (NeoInnate Study – Prospective). 

 

There was one other paper that I was involved in as part of my laboratory work at MRC Unit 

The Gambia at LSHTM during my PhD registration. This was in the same field (iron 

homeostasis) as my thesis, but was unrelated to my PhD research:  

 

• Bah A, Muhammad AK, Wegmüller R, Verhoef H, Goheen MM, Sanyang S, Danso 

E, Sise EA, Pasricha SRS, Armitage AE, Drakesmith H, Cross JH, Moore SE, 

Cerami C, Prentice AM. Hepcidin-guided screen-and-treat interventions against iron 

deficiency anaemia in pregnancy: a randomised controlled trial in Gambian women. 

Lancet Glob Heal 2019;7:e1564–74 
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1.6 PhD Timeframe 

 

The PhD registration period ran from 28th September 2015 until 31st December 2019. A 

Gantt Chart of all PhD and study activities can be observed in Annex 1.12.  

 

1.7 Funding 

 

The research was undertaken with a research grant provided by the Bill & Melinda Gates 

Foundation (OPP1152353), under principal investigator Dr Carla Cerami (primary 

supervisor). The funding agency had no role in the design and conduct of the study and did 

not have any in the collection, management, analyses or interpretation of the data nor in the 

preparation, review, or approval of the manuscripts. This research grant was used to pay for 

all my costs, including my travel and PhD stipend. The Nutrition Theme of the MRC Unit The 

Gambia at LSHTM are supported by core funding MC-A760-5QX00 to the MRC Unit The 

Gambia/MRC International Nutrition Group by the UK MRC and the UK Department for the 

International Development (DFID) under the MRC/DFID Concordat agreement. 

 

1.8 Ethics  

 

This study has been approved by The Gambia Government/MRC Joint Ethics Committee 

(no. SCC1525) (Annex 1.13-1.14) and Ethics Committee of London School of Hygiene and 

Tropical Medicine (LSHTM) (ref no. 14316) (Annex 1.15). This study was registered with 

clinicaltrials.gov (NCT03353051) on 27th November 2017.  
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1.9 Background 

 

1.9.1 Ending Preventable Neonatal Mortality  

 

Since the formation of the World Health Organisation (WHO) Millennium Development Goal 

4, significant progress in under-5 child survival has been made over the last two decades.35 

Neonatal deaths have decreased from 5 million (1990) to 2.5 million (2019).35 Despite this, 

nearly two million of these newborns die in their first week of life,36 with 24-45% of all 

neonatal deaths occurring in the first 24 hours of life.37 With the substantial reduction in 

under-5 mortality rates occurring mostly in the older cohort, a more significant proportion of 

under-5 deaths now occur in the neonatal period. This has been estimated as an increase 

from 40% in 1990 to 47% globally in 2019.35  

 

With the creation of the Sustainable Development Goal 3.2 in 2015, health professionals, 

academics and policymakers are aiming to end preventable deaths of all children under the 

age of five by 2030.38 Part of this is a target for all countries to reduce their neonatal 

mortality rate to <12 per 1000 live births. Emphasis has also been placed on the ongoing 

major global health challenge of high rates of stillbirth. It is estimated that a similar number 

of babies are dying each year before delivery (e.g. 2-3 million).39 
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Figure 1.3 Global distribution of newborn death by cause. Source: Levels & Trends in Child 

Mortality, WHO and Maternal and Child Epidemiology Estimation Group (MCEE) interim 

estimates produced in September 2019.35  

 

Preterm birth, intrapartum-related complications and infections (including sepsis and 

pneumonia) are the most common causes of neonatal death.35 Many of these deaths are 

due to gaps in the continuum of pre- and post-natal care.40 This includes pre-pregnancy, 

antenatal, intrapartum, delivery, postpartum, and postnatal periods for both the mother and 

her newborn.  

 

1.9.2 Neonatal Mortality in Low- and Middle-Income Countries (LMICs) 

 

Analysis of global neonatal mortality rates has highlighted substantial disparities at a country 

and regional level. Almost 99% of all neonatal deaths occur in low- and middle-income 

countries.37 In particular, the geographical region of Sub-Saharan Africa is struggling to stem 

the tide, with the highest neonatal mortality rate globally of 28 per 1000 births (2018).41 This 

suggests that African newborns are nearly nine times more likely to die in the first month of 

life than a child born in a high-income country.41 An extreme example of how much work 

remains to be done over the next decade is that some regional neonatal death rates in 

LMICs reach close to 46 deaths per 1000 births.38 

 

Simple interventions related to antenatal care, education, nutrition, and maternal health can 

all help reduce the prevalence of preterm and low birthweight newborns. One of the most 

effective is the low-cost mass drug distribution of oral iron and folic acid supplementation to 

pregnant women during pregnancy.42 This has been shown to reduce the risk of maternal 

iron deficiency and anaemia at term in the mother, leading to a reduced risk of delivering a 

preterm and/or low birthweight neonate. 
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Antenatal care is critical for reducing adverse outcomes in mother and baby. The WHO 

currently recommend that mothers receive a minimum of eight antenatal care contact visits 

during their pregnancy.43 However, only 65% of pregnant mothers in the world achieve four 

visits before delivery.44 This is significantly worse in LMICs.45 Moreover, this analysis does 

not take into account the skill level of the healthcare provider or the quality of the antenatal 

care received. The lack of pregnancy-related healthcare education and the high burden of 

adverse pregnancy and newborn outcomes in LMICs, results in mothers not seeking medical 

care when necessary. This can apply to both the onset of labour and newborn illness. The 

lack of regular attendance to antenatal care contact visits can also result in issues relating to 

micronutrient supplementation, hypertension, immunisations, sexual health screening, and 

acquiring insecticide-treated mosquito nets. Barriers to these interventions may include 

physical, financial and cultural aspects.46 

 

WHO guidelines support the delivery of a baby by a skilled birth attendant (SBA) at a health 

facility.47 Unlike previously, high proportions of deliveries in HICs and LMICs now take place 

in healthcare facilities.48,49 The reason for this recommendation was to offer the opportunity 

to deliver in a safe and clean environment, while providing skilled, good quality essential 

newborn and maternal care. This policy was designed to allow for the identification of high-

risk neonates and promotes their management quickly and effectively. However in LMICs, 

this has often resulted in more pregnant mothers delivering in unhygienic hospitals with 

inadequate health infrastructure or technology.50–52 The upsurge in healthcare facility 

deliveries has also increased the risk of newborns and mothers acquiring hospital-

associated infections, which commonly possess antimicrobial-resistance mechanisms.53 

This is made worse by the fact that many maternity and neonatal wards lack a continuous 

water supply, basic resuscitation equipment, resources for hand hygiene and waste 

disposal.53,54 Similarly, the ratio of skilled healthcare professionals to the number of beds is 

often far lower than recommended by the WHO.54 This situation is deteriorating in public 

hospitals in LMICs faster than anywhere else in the world due to staff attrition to different 
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countries or to newly established private healthcare facilities.55 This results in services being 

overstretched, leading to a reduced quality of care. Mothers as a result may then feel less 

inclined to remain in the delivery facility for the recommended 24 hours after birth. Ironically, 

this is the period in which most maternal and neonatal complications present.56 Studies also 

suggest that many newborns born in LMICs struggle to receive thermal protection 

immediately after delivery (e.g. kangaroo mother care (KMC)57), hygienic umbilical cord 

care58 or early and exclusive breastfeeding.59 All of these interventions are associated with a 

reduced risk of infection-related deaths in the newborn.60–62  

 

However, high-quality data are required to better understand the fundamental issues 

affecting newborns and their ability to survive and thrive. Analysis of global mortality rates 

and their causes has shown that both are influenced by inadequate coverage and poor 

quality of data.63 This can result in the misdirection of funds, resulting in inappropriate or 

weak interventions. Birth registration is a fundamental human right and is vital to economic, 

social and health planning, yet birth registration is at a prevalence of just 46% in sub-

Saharan Africa64. The lack of registered births, deaths, and accurate birthweight and delivery 

records may result in a misunderstanding of the true scale of the issue relating to neonatal 

mortality. Now there is greater advocacy to collect accurate, timely and disaggregated 

newborn data from LMICs, which can be used to support evidence-based decision-making, 

programming and planning.36,37,65 

 

1.9.3 Neonatal Mortality in The Gambia 

 

The Gambia has achieved the Millennium Development Goals of improving the under-5 

mortality rate, immunisation coverage, the proportion of the population using an improved 

drinking water source, primary schools enrolment and reduction in malaria disease burden 

by the 2015 deadline.66 Much less progress has been made in the reduction of neonatal 
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mortality rates. National neonatal death levels, as a proportion of under-5 deaths, have 

increased from 31% in 1990 to 45% in 2017.67 Like many other LMICs, preterm birth, 

intrapartum complications and sepsis are responsible for nearly three quarters of all 

newborn deaths (Figure 1.4). On this record, it is unlikely The Gambia can meet its 

Sustainable Development Goal 3.2 for neonatal mortality by 2030 unless vast and effective 

interventions are put into practice. 

 

 

Figure 1.4 Distribution of newborn deaths by cause in The Gambia. Source: Estimates 

generated by the WHO and Maternal and Child Epidemiology Estimation Group (MCEE) 

2018 (http://data.unicef.org).68  

 

Issues that face neonatal healthcare in The Gambia are similar to those in other LMICs. 

High levels of poverty, along with a shortage of adequately trained staff and a significant 

urban bias (66%) in the distribution of the workforce are amongst the issues.69 In general, 

Gambian healthcare system suffers from a limited amount of medical supplies and a lack of 

durable infrastructure and technology.70 The proportions of birth registration, skilled birth 

attendants present at delivery, postnatal care for newborns and exclusive breastfeeding 

proportions show that reasonable improvements can be easily made (Table 1.1).  
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Maternal and Neonatal Health-Related Statistics Value 

Total Births Per Year (000): 81 (2016) 

Total Under-5 Population (000): 360 (2016) 

Birth Registration (%): 72% (2013) 

Total Maternal Deaths Per Year: 590 (2015) 

Neonatal Mortality Rate (per 1000 live births) 22 (2013) 

Total Stillbirth Rate (per 1000 total births): 24 (2015) 

Neonatal Deaths Per Year (as % of all <5 deaths): 45% (2015) 

Total Under-5 Deaths Pear Year (000): 5 (2016) 

Skilled Birth Attendant (%): 57% (2013) 

Postnatal Care for Neonates (%): 6% (2013) 

Exclusive Breastfeeding (%): 47% (2013) 

Antenatal Care, 4+ Visits (%): 78% (2013) 

Low Birthweight Prevalence (%): 10% (2010) 

Iron/Folic Acid Supplementation During Pregnancy (%): 45% (2013) 

Physician Density (per 1000 population) 0.11 (2015) 

Nurse and Midwife Density (per 1000 population) 1.62 (2015) 

Table 1.1 Health-related statistics for The Gambia. Source: Countdown to 2030, Maternal, 

Newborn and Child Survival, Healthy Newborn Network.67 

 
1.9.4 Maternal and Newborn Care at Kanifing General Hospital 

 

Annually, Kanifing General Hospital (KGH) provides antenatal care to 500–700 pregnant 

mothers (unpublished hospital data, 2017), with many presenting very late in their 

pregnancy. This is thought to be due to pregnant mothers failing to see the advantages 

gained by early uptake of antenatal care. It is viewed as a curative rather than preventative 

measure.71 Local healthcare centres report that few mothers meet the new requirement for 

eight antenatal visits, with close to half receiving the old requirement of four antenatal 

visits.72 This significantly differs from the data produced by a Gambian demographic health 

survey (DHS).70  
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Antenatal care at Kanifing General Hospital is provided by a group of dedicated, skilled and 

experienced nurses and midwives. However, as in other hospitals in LMICs, barriers to their 

care remain. Blood pressure monitoring, urine sampling, blood sampling, tetanus protection, 

iron supplementation, fetal monitoring and health education are seven routine components 

of antenatal care that are available at Kanifing General Hospital. Nonetheless, it is rare for 

all to be available at one antenatal visit. Critical for detecting pre-eclampsia, the lack of back 

up or charged (i.e. lack of electrical supply) electrical blood pressure monitors results in 

blood pressure measures being missed. Similarly, due to the lack of full blood count 

laboratory supplies and broken haemoglobinometers, many weeks’ worth of haemoglobin 

measurements can be lost. This increases the risk of maternal anaemia not being 

diagnosed, and subsequently could led to increases rates of stillbirths, low birth weight and 

preterm babies.73 During the initiation of this study, it also became apparent that only one 

Pinard horn for fetal monitoring was available throughout the whole hospital. 

 

The total number of births at Kanifing General Hospital equals close to 3500–4500 per year 

(based on hospital data from 2014-2015, unpublished). This is 5-6-fold higher than the 

number receiving antenatal care at the hospital. The percentage of these that are live, low 

birth weight neonates (<2.5kg) is approximately 10% (based on hospital data from 2014-

2015, unpublished). Further details relating to delivery care at Kanifing General Hospital can 

be seen in Section 2.1.3.  

 

1.9.5 Contribution of Neonatal Infections 

 

Neonatal sepsis is the third highest cause of death globally, accounting for 225,000 deaths 

each year.1 This results in neonatal infections (e.g. bacterial sepsis, meningitis, pneumonia, 

and tetanus) causing an estimated 23% of all neonatal deaths. Neonatal sepsis alone 

accounts for 15% of these deaths,36 with the majority occurring in Sub-Saharan Africa.74 



 

 38 

Intrauterine and neonatal infections do not just cause death, but also can result in 

substantial long-term multisystem morbidity, affecting not just the individual but the local 

community as well as national productivity.75,76 

 

Early-onset neonatal sepsis (EONS) is defined as bacteraemia or bacterial meningitis 

occurring within <72 hours of life, with most causative pathogens being transmitted vertically 

from mother to infant before or during delivery.77 Maternal chorioamnionitis, prematurity, fetal 

distress (i.e. fetal tachycardia or passage of meconium), prolonged rupture of membranes 

and maternal colonisation with group B streptococcus (GBS) are all deemed influential risk 

factors.77 Quite different to this is late-onset neonatal sepsis, which occurs after this point 

(>72 hours), with transmission often occurring horizontally from the surrounding delivery 

environment.78 As a result, many of the causative microorganisms are nosocomially derived.  

 

In a recent highly informative review conducted by Okomo et al.,79 it is suggested that 

aetiology data of neonatal infections in sub-Saharan Africa is of poor quality with 

publications rarely using the STROBE-NI reporting guidelines. Studies that solely observe 

the epidemiology of neonatal infections in Gambian newborns are lacking. This is despite a 

high burden of infectious disease in this population and region. In 1999, Mulholland et al. 

suggested that the most important causes of serious, very young infant infections were 

Streptococcus pneumoniae, Staphylococcus aureus, and Salmonella spp.80 New data 

analysis by Okomo et al. now suggests that Staphylococcus aureus, Klebsiella spp. and 

Escherichia coli are the most common causes of bacteraemia and sepsis in African 

newborns.79 This change in aetiology over the last twenty years is thought to be due 

advances in delivery and newborn care along with the introduction of several new vaccines 

(e.g. Pneumococcal conjugate vaccines and Haemophilus influenza type b).81 Though not 

given directly to the newborn, Okomo et al. speculates that both vaccines have reduced the 

transmission of pathogenic isolates in the community. Subsequently, herd immunity could be 
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affecting the colonisation rates and densities of these and other species of pathogenic and 

commensal bacteria in the newborn. 

 

Part of the reason why S. aureus is found to be a predominant cause of neonatal sepsis in 

developing countries is believed to be due to its ability to colonise the skin of newborns, 

mothers and caregivers.82,83 However, care must be taken with interpreting its apparent high 

prevalence, as inadequate site sterilisation when blood cultures are taken may also lead to 

increased rates of false detection.84 Confirmed S. aureus sepsis is strongly associated with 

higher mortality rates as compared to other bacterial pathogens. This is partly due to 

metastatic complications in disease progression85 and its strong association with sepsis in 

low birthweight newborns.86  

 

Enterobacteriaceae such E. coli and Klebsiella spp. are widespread in the maternal genital 

tract, and hence neonates acquire these isolates commonly via their gastrointestinal or 

respiratory tracts during delivery.87 Okomo et al. observed Klebsiella spp. to be the second 

leading cause of neonatal infections in their study.81 A potential reason for this may be its 

strong association to nosocomial settings,88 the capacity to produce biofilms89 and its ability 

to display multidrug-resistant phenotypes by producing extended-spectrum β-lactamases 

(ESBLs) or carbapenemases.90 With regards to E. coli, strains that commonly cause 

neonatal sepsis often express plasmids, which are essential in processes such as iron 

acquisition and virulence.91 Interestingly, E. coli and Klebsiella strains are associated with 

risk factors such as prematurity and very low birthweight.90  

 

1.9.6 Diagnosis and Treatment of Neonatal Sepsis 

 

Diagnosis of neonatal sepsis remains difficult, partly as there is no accepted definition. 

Identification with high accuracy and specificity is a challenge not only in developing 
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countries but even in well-equipped tertiary healthcare facilities in HIC settings.92 Blood 

cultures are the gold standard for the diagnosis of neonatal sepsis. Because of economic, 

logistical and infrastructure-related restrictions, developing countries face multiple 

challenges when implementing blood culture-based diagnostic testing. Microbiological 

identification of a pathogen isolated from blood cultures has high specificity, but sensitivity is 

low. This is supported by the Aetiology of Neonatal Infections in South Asia (ANISA) study,93 

conducted in Bangladesh, India, and Pakistan. This was designed to investigate the 

incidence of possible severe bacterial infection (pSBI) episodes in the first two months of life 

and estimate the proportions of bacterial and viral causes. This large study implemented the 

use of the latest metagenomic approaches, and still only detected 28% of all causative 

organisms of pSBI. Reasons for low sensitivity of microbiological identification include the 

collection of small neonatal blood volumes, the presence of low or intermittent isolate 

concentrations and maternal intrapartum antibiotic exposure.94 In order to combat this issue, 

the WHO launched the Integrated Management of Childhood Illness (IMCI) algorithm as part 

of the WHO Young Infants Clinical Signs Studies (YICSS).95 This has led to the production 

of a seven clinical signs diagnosis to use when laboratory services are not available. This 

clinical algorithm is associated with 85% sensitivity and 75% specificity for severe bacterial 

infection in the first week of life.96 Other investigations that are thought to assist in the 

diagnosis if appropriate include full blood count, chest radiograph, CRP measurement, CSF 

or skin swabs.97  

 

The WHO Integrated Management of Childhood Illness (IMCI) policy suggests that 

prophylactic intramuscular (IM) or intravenous (IV) ampicillin and gentamicin should be given 

to neonates with documented risk factors for neonatal sepsis.98 WHO recommends that this 

should continue for two days following which the neonate should be reassessed. In LMIC 

settings, however, the use of parenteral therapies in newborns may be limited by the 

availability of inpatient neonatal care, transportation to healthcare facilities, economic and 
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social factors.99 New interventions to prevent severe neonatal infections are required and 

are of great interest to the maternal and newborn research community.  

 

1.9.7 The Threat of Antimicrobial-Resistant Infections 

 

It has been estimated that the number of people who will die as a result of antibiotic-resistant 

infections will rise from 700,000 to 10 million each year by 2050.100 Antibiotic resistance is a 

major global health threat, with nearly half of the pathogens that cause severe neonatal 

bacterial infections worldwide reported to be resistant to the first-line (ampicillin or penicillin, 

and gentamicin) and second-line (third-generation cephalosporins) WHO-recommended 

treatments.101 Laxminarayan et al. produced estimates suggest 30% of all neonatal deaths 

can be attributable to multidrug-resistant pathogens.102 A disproportionate number of these 

deaths occur in developing countries, and the rates are increasing. In particular, a small 

group of studies conducted in Sub-Saharan Africa show a high prevalence of resistance to 

recommended empirical therapies to neonatal sepsis.103,104  

 

In developing countries, gram-negative bacteria have frequently been reported as the cause 

of neonatal sepsis.79 This is a worrying trend, with many gram-negative bacteria intrinsically 

resistant to many antibiotics, along with the ability to transfer genetic material of new 

resistance mechanisms between species.105 Klebsiella spp. and E. coli can both can carry 

extended-spectrum beta-lactamase (ESBL) producing plasmids, enabling them to become 

resistant to a wide variety of penicillin and cephalosporin antibiotics.106 In this scenario, 

carbapenems are the last remaining treatment option,106 however, the availability of second-

line antibiotics in developing counties is known to be poor.107 K. pneumoniae is also the 

leading cause of infections caused by carbapenem-resistant bacteria worldwide.108 The 

acquisition of an enzyme called New Delhi metallo-beta-lactamase (NDM-1) is a significant 

reason for this.109 Bacteria with this genetic element can cause disease with increased 
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morbidity and mortality,110 especially in preterm newborns.111 Previous authors have 

commented that strains harbouring these antimicrobial-resistant components are a massive 

threat to neonatal units, particularly in LMIC hospitals as neonates are subjected to poor 

infection control and high antimicrobial exposure.112  

 

With regards to S. aureus antimicrobial resistance, methicillin-resistant Staphylococcus 

aureus (MRSA) infections have now spread worldwide,113 with some of the fastest rates of 

the increase occurring in community settings.114 The WHO now reports that in some 

locations of Africa, 80% of S. aureus infection are caused by MRSA.115 Nevertheless, 

optimism remains, with MRSA still remaining sensitive to glycopeptides such as vancomycin 

and teicoplanin, and other antibiotics like linezolid, tigecycline, and daptomycin.114 However, 

many of these drug options are expensive, regularly unavailable in LMICs and have potent 

side-effects on newborns.98 

 

1.9.8 Interventions to Combat Neonatal Infections  

 

Staphylococcus aureus, Klebsiella spp., and Escherichia coli are all pathogens associated 

with poor hygiene in hospital environments, suggesting that new interventions are required 

in sub-Saharan hospitals to increase infection control from surfaces, hands and water.  

One such intervention is the use of a bundle of hygiene-based interventions for a hospital 

maternity ward. A study that implemented such a bundle provided enhanced infection 

prevention and control training, clean delivery kits (e.g. a blade, cord thread, antiseptics), 

text message reminders, alcohol hand rub, timed environmental cleaning and the 

introduction of bathing babies >1.5 kg with 2% chlorhexidine gluconate.116 This study 

subsequently observed reductions in sepsis and death rates in hospitalised neonates in a 

high-risk setting in a developing country. These kinds of interventions offer simplicity and 
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reasonable levels of sustainability, with the production of standardised protocols helping to 

improve aseptic practices in the delivery rooms and neonatal units.  

 

A further intervention toward the prevention of neonatal sepsis in LMICs is the use of oral 

azithromycin given to the mother during labour.117 Azithromycin is a macrolide antibiotic that 

has a broad antimicrobial activity. Azithromycin has also been found to reduce the proportion 

of low birthweight births by a quarter, when given intrapartum to the mother for the last few 

months of pregnancy.118 Equally, it has been able to reduce overall under-5 mortality when 

given in the form of a mass drug administration trial.119 More recent studies have shown that 

azithromycin during labour can significantly reduce bacterial carriage (e.g. mainly S. aureus, 

GBS and S. pneumoniae) both in the mother and her newborn.117 This suggests that it halts 

the vertical transmission of neonatal sepsis-causing organisms from mother to child and 

hence may lower their risk of neonatal sepsis, pneumonia and meningitis. It is now believed 

that this simple one dose intervention could dramatically improve neonatal mortality in 

LMICs. However, questions remain about the effect MDA of antibiotics will have on the 

levels of antimicrobial resistance in the mother, newborn and the broader community.120  

Symbiotics are a combination of probiotics and prebiotics; the latter is added to promote 

growth and sustain the colonisation of the probiotic bacterial strain. Studies looking at the 

effects of symbiotics, prebiotics and probiotics have grown more popular over recent years. 

This is primarily due to the naive immune system of the neonate and the undeveloped 

gastrointestinal microbiome making it easier to establish probiotic strains.121 One of the main 

successes of this area of study is the use of probiotics to reduce the incidence and severity 

of necrotising enterocolitis in premature infants.122,123 Now, research suggests that 

symbiotics can be used to reduce neonatal sepsis mortality rates in LMICs.124,125 One of the 

most prominent studies using symbiotics, is the one conducted by Panigrahi et al.126 This 

was a randomised, double-blind, placebo-controlled oral symbiotic trial of Lactobacillus 

plantarum plus fructo-oligosaccharide in India. This study identified that a single symbiotic 

preparation was protective against neonatal sepsis and death in the first week of life. This is 



 

 44 

an exciting finding, that may relate to the findings of our study, as Lactobacillus plantarum is 

an organism that does not require iron for growth, and instead uses manganese in many of 

its metalloenzymes.127 The establishment of Lactobacillus plantarum colonisation at birth 

could be out competing pathogenic species (i.e. that require iron) for space and niches, due 

to the hypoferremic conditions. Panigrahi et al. believe that these findings suggest that this 

cost-effective method could be used in developing countries to reduce the rates of neonatal 

sepsis.126  

 

1.9.9 Transition to Extrauterine Life  

 

The higher rates of mortality relating to severe bacterial infections in newborns are 

suggested to be partially due to the immense physiological and immunological strain on the 

neonate in the first few days of life. The transition from fetal to extrauterine life leads to all 

organ systems being involved in major instantaneous adaptions to respiratory exchange, 

cardiovascular flow, endocrine function, haematological maturation, substrate metabolism 

and thermogenesis.128  

 

Though the sterile womb paradigm versus in utero colonisation hypothesis continues to 

divide,129,130 childbirth is still characterised by a neonate descending from a semi-allogeneic, 

protected environment to one that is far more abundant in a diverse array of microbes. This 

is the initial focal point of mass bacterial colonisation of the skin and gastrointestinal tract of 

the neonate, resulting in changes to nutritional and immunological functions in early life and 

beyond.5,6 

 

Regarding iron homeostasis, as seen in our study, increases in newborn haematocrit and 

haemoglobin occur within the first hours post-delivery. This is likely due to post-delivery 

dehydration, as well as vasomotor instability and venous pooling.131 Similarly, serum ferritin 
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levels increase due to the physiological haemolysis of fetal red blood cells, which contain 

ferritin in high concentrations.132 This process leads to fetal haemoglobin recycling into the 

adult form to aid respiratory exchange in the extrauterine environment.133 A frequent side-

effect of this red cell turnover is hyperbilirubinemia (i.e. physiological or idiopathic jaundice), 

which is a common clinical issue in most (60-80%) neonates in the first weeks of life.134 

 

1.9.10 Immune Responses of the Neonate  

 

Neonates are also partly hindered by possessing a functionally immature and developing 

immune system. The broad-range killing capacity of the innate immune system consists of 

granulocytes, antigen-presenting cells, NK cells and γδ-T cells.135 Neutrophils are the 

predominant cell type of the innate immune system, with their role being to engulf and 

degrade pathogens during infection. Nevertheless, neonatal neutrophils at birth can be 

measured as low as 1.5 × 109 cells/L blood, compared to 4.4 × 109 cells/L in adults.136 

Neonatal neutrophils also possess qualitative deficiencies in respect to low levels of 

expression of TLR4 (critical for IL-6 expression), cell surface L-selectin, Mac-1 (critical for 

transmigration) and neutrophil extracellular traps (NETs).137,138 These deficiencies are even 

more pronounced in preterm neonates. Similarly, DC cells, γδ-T cells and monocytes are 

also all in low concentrations in the neonate and exhibit low expression levels of MHC-II, 

CD80, CD86, CD40 and ICAM-115. This is thought to inhibit their ability to activate antigen-

specific B and T cell populations.136  

 

The immune system of premature neonates is further underdeveloped when compared to 

full-term newborns (Figure 1.5). Antimicrobial proteins and peptides (APPs) are released to 

destroy pathogens by iron-binding, enzymatic destruction, zinc deprivation and membrane 

pore formation. Such proteins and peptides are secreted into the vernix caseosa found 

coating the skin, respiratory and gastrointestinal tracts of newborn babies.139 However, the 
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production of APPs and vernix caseosa is positively correlated with gestational age,140 

potentially leading to early preterms being at higher risk of infection. Preterms also start life 

with a lower endowment of antigen-specific IgG than full-term neonates, resulting in reduced 

opsonisation and phagocytosis. This is due to IgG being transferred across the placenta 

from the maternal circulation in large amounts after 32 weeks of gestation.140 In full-term 

neonates, the complement pathways (classical, alternative and lectin) are generally similar 

to adult levels, this aids the destruction of bacterial cells. However, these pathways are also 

all immature in preterm neonates.141 

 

 

Figure 1.5 An overview of innate immune deficiencies of preterm and low birthweight 

babies. Adapted from Melville et al.140 

 

Immunological deficiencies in neonates (exaggerated in low birthweight and preterm babies) 

no doubt reflect in the typical clinical presentation of neonatal sepsis. This presentation is 
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often rapid in progression, with many nonspecific clinical signs.97 This is further confirmed by 

unusual haematological laboratory results coming from newborn blood samples.142 Our 

study experienced such results, with even healthy newborns found to have increased white 

blood cell counts from cord and venous samples; though we suspect that this might be an 

artefact of nucleated red blood cells being identified as granulocytes.  

 

1.9.11 Iron in Infection and Immunity  

 

Iron is a cofactor in numerous metabolic pathways that are critical for the human host. 

Transition metals (e.g. Fe, Cu and Mg) are commonly built-in to metalloenzymes, storage 

proteins and transcription factors.143 This results in children and pregnant woman requiring 

adequate iron stores for growth and development. The lack of such stores leads to iron 

deficiency and anaemia, which subsequently negatively affects the immune response to 

infection.144 However, the catalytic action of these metals also potentiates their toxicity when 

in high concentrations (i.e. equalling tissue damage and inflammation), so the levels of these 

metals must be well regulated.145 The mechanisms that regulate the toxicity of free transition 

metals in the body, additionally function as a countermeasure against local pathogens 

(Figure 1.6).143 This is seen clinically with individuals suffering from high iron states (e.g. 

haemochromatosis), not only resulting in free radical redox damage but also an enhanced 

risk of infection from iron-dependent species of bacteria.18,19 This host-pathogen battle for 

resources is due to iron also being a vital commodity for growth, replication and virulence of 

most pathogenic microorganisms. Subsequently, pathogens have evolved counteractions to 

the host's iron-restriction mechanisms and assimilate iron from their human host.146  
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Figure 1.6 The host-pathogen battle of iron.  

 

Neonatal sepsis-causing bacterial pathogens can produce a plethora of molecular 

mechanisms such as siderophores and iron-specific channels (Table 1.2). These iron 

acquisition genes are frequently concentrated on high pathogenicity islands.147 

 

Substrate Staphylococcus 
aureus 

Escherichia  
coli 

Streptococcus 
pneumoniae 

Klebsiella 
pneumoniae 

Streptococcus 
agalactiae 

Haem YES 
148,149,150 

YES 
151,152,153 

YES 
154,155,156 ? YES 

157 

Haemoglobin YES 
158,159,160 

YES 
151,152,161 

YES 
154,155,156 

YES 
147 ? 

Haem-
Haemopexin 

NO 
159 ? ? ? ? 

Haemoglobin-
Haptoglobin 

YES 
162,163 

? 
164 ? YES 

147 ? 

Transferrin YES 
165,166 

YES 
146,167,168,169 

NO 
154,155,170 

YES 
171,172,173,174 

? 
175 

Direct 
Transferrin 

YES 
176,177 ?178 ? ? ? 

Lactoferrin ? 
179,180 

? 
178 

NO 
154,155,170 

YES 
147 ? 

Ferric Iron YES 
181,146 

YES 
182 

YES 
183,184 

YES 
171,172,173 ? 

Ferrous Iron ? 
185 

YES 
186,187,188 

YES 
183 

YES 
189,190 

YES 
191 

Ferritin  ? YES 
192 ? ? ? 

NTBI YES 
193 

YES 
194,195 ? ? ? 
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Table 1.2 Iron sources of neonatal sepsis causing bacteria. Source: Adapted from Andrews 

et al.196  

 

In 2000-2001, three independent research groups discovered the hormone hepcidin.197–199 

Hepcidin is now understood to be the master regulator of human iron homeostasis, and 

consequently iron-restriction.200 Host inflammatory mediators, IL-621, IL-2222 and Type 1 

interferon23 increase transcription of hepcidin in the liver through several toll-like receptor 

(TLR) ligands24 and STAT3 signalling.24,25 This results in the internalization of the 

transmembrane protein ferroportin in macrophages and enterocytes. This leads to the 

breakdown of ferroportin in the lysosome. Consequently, enteric absorption of dietary iron is 

reduced, and sequestration of iron in macrophages causes a decrease in systemic iron 

concentration in the circulation.201 In neonates, due to the relatively small amounts of iron 

absorbed enterically, iron restriction mainly takes place in circulating macrophages. Hepcidin 

synthesis is also known to be controlled by high iron stores, hypoxia, and erythropoiesis 

(Figure 1.7).200  

 

 

Figure 1.7 Hepcidin-induced iron homeostasis. Source: Adapted from Ganz et al.200 
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The human host also produces many host chaperone molecules such as transferrin, 

lactoferrin, haptoglobin, hemopexin (Figure 1.8) to limit the acquisition of iron and its 

moieties (haem and haemoglobin), thus making iron harder to sequester from the human 

host.202 

 

 

Figure 1.8 The sequestration of iron and its moieties. Source: Adapted from Parrow et al.202 

 

1.9.12 Dysregulation of Iron Homeostasis 

 

For the reasons stated above, iron homeostasis needs to be maintained at all times. Iron 

supplementation is widely regarded as one of the most critical public health interventions in 

low and middle incoming countries, reducing the morbidity and mortality linked to iron 

deficiency and anaemia.42 However, reports have suggested that iron supplementation in 

areas with high burdens of infectious disease can increase the risk of severe bacteria 

morbidity and mortality.203 We suggest that a study conducted by our team (and led by the 

candidate) partly explains the mechanism. In the previous FeVir study,204 we collected the 

blood of 48 adult male Gambian subjects immediately before and four hours after taking 400 

mg ferrous sulphate orally. We then performed full blood counts and analysis of serum 

biochemical parameters, including serum iron, transferrin, ferritin, and transferrin saturation 

(TSAT). Additionally, we inoculated these paired serum samples with different sepsis 

causing organisms such as Staphylococcus aureus, Staphylococcus epidermidis, 

Salmonella enterica serovar Typhimurium and Escherichia coli in an ex vivo bacterial growth 

assay. This study concluded that ex vivo bacterial growth over twelve hours (36h for Y. 
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enterocolitica) was significantly increased by supplemental iron and strongly correlated with 

TSAT and serum iron concentration (Annex 1.16).  

 

A clinical study by Barry et al. showed similar results in a different context.205 Barry et al. 

discovered that Polynesian neonates were twenty-fold more likely to have neonatal sepsis 

compared to European neonates. This research uncovered that this was due to 

intramuscular iron dextran injections given to the neonate if they were thought to be 

anaemic. Barry et al. also described that there was not only a difference in the incidence of 

sepsis and mortality between those given iron dextran injections but additionally, a 

difference in the type of causative organism. Further data showed that iron dextran had 

impaired the nutritional immunity of the newborns and changed the causative organism from 

S. aureus to E. coli. This finding associates closely with the differences in growth seen 

between S. aureus and E. coli isolates in response to TSAT level seen in our previous FeVir 

study.204 

 

Both the ex vivo and in vivo studies suggest that lower iron concentrations in the blood are 

vital to limit the growth of bacteria and severity of sepsis caused by common neonatal 

sepsis-causing pathogens. 

 

1.9.13 Pre-Analytical Effects on Hepcidin Measurement 

 

As hepcidin is the master regulator of iron homeostasis, its measurement can be crucial to 

the diagnosis of several iron-related disorders. However, its accurate measurement is 

complicated. Hepcidin is at the centre of the iron, infection and inflammation axis.206 

Significant increases in hepcidin concentration occur in response to iron administration 

and/or inflammatory stimuli. Subsequently, this can cause several clinical conditions and 

treatments to confound systemic hepcidin measurements. This is observed for chronic 
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kidney disease (increase),207 erythrocyte transfusions (increase),208 alcohol abuse 

(decrease)209 and chronic hepatitis C viral infection (decrease)210 all having an effect. These 

observations result in the need for a detailed medical history to be collected when 

researching the molecular mechanisms related to iron homeostasis in the human host. 

 

Serum hepcidin concentrations also vary significantly between healthy subjects, as 

evidenced by the published reference ranges.211,212 Itkonen et al. noted that reference values 

for adult females (18–50 yrs) ranged between 0.4–9.2 nmol/L, 0.7–16.8 nmol/L for females 

>50 yrs and for adult males (≥ 18 yrs) between 1.1–15.6 nmol/L.212 These results suggest 

lower hepcidin levels are observed in pre-menopausal women, as well as a significant 

difference between sexes (i.e. higher concentrations in men). In-subject variation is also 

detected, with fasting and diurnal rhythm both found to play a role.213,214 This is seen with 

serum hepcidin concentrations being found to be lowest in the early morning, increase over 

the day, followed by a return to more moderate levels by evening. 

 

Further complications of measuring hepcidin concentration in human urine, serum and 

plasma come from laboratory-based issues. Of the two main methods of measuring 

hepcidin, mass spectrometry-based methods (MS) are expensive but are accurate, more 

reproducible and measure only the native complete form of hepcidin, hepcidin-25.215 

Enzyme-linked immunosorbent assay-based methods (ELISA) are more cost-effective; 

however, these methods additionally measure the other isoforms of hepcidin, hepcidin-20 

and hepcidin-22.215 The effect of these different test attributes on the clinical diagnosis of 

iron-related disorders is still unclear. The measurement of hepcidin by ELISA-based 

methods is further hindered by hepcidin being a relatively small size (i.e. 25 amino acids) 

with few antigenic epitopes.216 Antibody generation required for the production of the ELISA-

based method is hampered by the high degree of genetic conservation between animal 

species, making it a challenge to produce viable antibodies from exposure to the protein in 



 

 53 

the host animal.217 Production of synthetic alternatives is also challenging due to hepcidin's 

complex hairpin-like conformation with four disulphide bonds.218 

 

An essential aspect of the laboratory handling process of samples requiring serum hepcidin 

measurement is the monitoring of freeze-thaw cycles. Serum hepcidin is reported to only 

remain stable for two to four freeze-thaw cycles, dependent on the analysis method.219,220 

Additionally, Itkonen et al. has noted that hepcidin concentration starts to decrease after 24-

48 hours storage at room temperature, six days at 4°C, 42 days at −20°C, and over two 

years at −80°C.212 This is not bettered by hepcidin's ability to aggregate and adhere to 

plastic laboratory test tubes and pipette tips.221 

 

Previously, the analysis of hepcidin concentration has been hindered by the lack of a 

commutable calibrator, a reference material, and a reference method.221 Subsequently, 

analysis of serum hepcidin levels from various publications share correlation; however, 

absolute values regularly vary considerably between the ELISA test kits used (Chapter 3) 

This is observed with low values being associated with the use of DRG ELISA kits, and high 

values linked with the use of Intrinsic Lifesciences and Bachem ELISA kits. To combat this 

Van der Vorm et al. produced a commutable candidate reference material that was a native, 

lyophilized plasma with cyrolyoprotectant.34 This material was refined and is now freely 

available for purchase.222 However, this product was not available at the time of laboratory 

analysis during this study. 
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Chapter 2 – PhD Study Setting 
 

 
 
Summary of Chapter 

 

This chapter provides a brief geographical and economic overview of the Kanifing region 

and The Gambia as a whole. This is then followed by a description of the work environment 

at the study hospital, Kanifing General Hospital. Lastly, I describe the environment in which 

community visits take place around the Kanifing and Kombo regions, in the homes of study 

participants. All ethical, political and logistical issues faced in each of the study settings are 

detailed.  
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2.1 PhD Study Setting 

 

2.1.1 The Republic of The Gambia 
 

The Republic of The Gambia is the smallest mainland African nation, formed around the 

River Gambia. As part of West Africa, it is surrounded by Senegal and has a population of 

2.3 million people (2018).1 The population is growing at a rate of approximately 2.9% per 

year (2018).2 Islam is practised by 95% of the country’s population, with twelve main ethnic 

groups, the largest of which are Mandinka and Fula.3 The Gambia has a market-based 

economy, focused around tourism and traditional subsistence agriculture.3 

Figure 2.1 Map of The Gambia. Arrow shows study site location at Kanifing General 

Hospital. Source: © OpenStreetMap contributors. 

A countrywide political problem faced by the study was the removal of the previous 

President of The Gambia, Yahya Abdul-Aziz Jemus Junkung Jammeh. The Gambia 

experienced a contested election in December 2016, which provoked a constitutional crisis. 

The situation was resolved by military intervention from the neighbouring countries from the 

Economic Community of West African States (ECOWAS). The new Gambian president was 

inaugurated towards the end of January 2017, but even after the inauguration, the Gambian 

government and society were in a state of flux and political uncertainty. This affected the 
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timing of three aspects of the study, including ethical approvals, community sensitisation, 

and study initiation. 

 

2.1.2 Kanifing Municipality 

 

The Kanifing region is made up predominately of the large town, Serrekunda. Kanifing 

region is a peri-urban area with a population of around 370,0004 and is 10 km to the 

southwest of the capital, Banjul. Serrekunda was initially made up of nine villages that have 

merged into a sprawling urban area. 

 
2.1.3 Study Sites: Kanifing General Hospital, The Gambia 

 

Figure 2.2 Map of Kanifing, The Gambia. Source: © OpenStreetMap contributors. 
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Kanifing General Hospital, located in the Kanifing district, is one of six general hospitals in 

The Gambia. It is a public, government-run facility that first opened in 2010. Named initially 

Serrekunda General Hospital (SGH) it contains approximately 130 beds, with services and 

units such as an accident and emergency unit, out-patient unit, CT scanning department, 

maternity, antenatal and paediatric units. Recent investment has led to the formation of a 

small neonatal care unit. Complex clinical cases are commonly referred to The Edward 

Francis Small Teaching Hospital (EFSTH) in Banjul, as it is the only tertiary government 

referral hospital.3 Seven paediatricians staff the maternity and paediatric wards, along with 

sixteen senior nurses/midwives. During the study period, usually, there were four to six 

trained nurses working in the maternity ward during the day shift, with an equal number of 

nurse attendants. Staffing levels would commonly reduce during the night shift. Previously, 

the hospital has experienced periodic shortages of medicines, supplies, staff, electricity and 

water. 
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Figure 2.3 Kanifing General Hospital Maternity Ward. NeoInnate study team recruiting (top 

left), cord bleeding (top right), electronic data collecting (bottom left) at Kanifing General 

Hospital Maternity Ward (bottom right). Note: all imaged individuals have provided 

photographic consent. 

 
Annually, Kanifing General Hospital (KGH) provides antenatal care to 500–700 pregnant 

mothers (unpublished - hospital data). Mothers receiving antenatal care at other local 

primary health-care facilities increase the total number of births at the hospital to 3500–4500 

per year (unpublished - hospital data). The percentage of these that are live, low birthweight 

neonates (<2.5kg) is approximately 10% (hospital data 2016-2018, unpublished). During the 

study period, rates of stillbirth were at times poorly documented by hospital maternity ward 

staff, as seen in other institutions in low- and middle-income countries (LMICs).5  

 

The maternity ward was split into two large wards, with one being used for pre- and post-

delivery mothers and their neonates. There was also an adjacent eight-bed open-plan 

delivery ward. The delivery ward used a single partially broken neonatal resuscitator, which 

was commonly occupied by multiple neonates (1-3) at peak admission periods. The delivery 

ward also possessed limited respiratory support in the form of a single electrical oxygen 

concentrator. Thanks to the help from MRCG at LSHTM, both issues were overcome quickly 

in order to ensure service quality greatly improved. Other barriers to care included the lack 

of implementing Kangaroo mother care (KMC) in the hospital at the beginning of the study. 

As a result of a local implementation study, we were able to train several doctors and senior 

nurses on the care protocols. Infection control was also deemed to be poor quality in the 

maternity ward during the initiation of the study. As a result, we ensured new cleaning 

equipment was available on a monthly basis, in addition to investment into new waste 

systems, weighing scale, delivery equipment, storage devices and worktables. 
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A study-specific issue we experienced at Kanifing General Hospital was that mothers who 

delivered at the hospital were not always receiving antenatal care at the same health facility. 

At the beginning of the study, this resulted in many newborns being missed to recruitment. 

Anecdotal evidence suggested that mothers who were approached at antenatal visits at 

Kanifing General Hospital were often choosing to deliver at home or a primary level 

healthcare facility. Subsequently, our study team worked with local midwives and nurses to 

ensure mothers were informed of the benefits and risks associated with delivery at Kanifing 

General Hospital and being part of the NeoInnate Study. Furthermore, we also produced an 

additional recruitment route to ensure mothers receiving antenatal care outside the hospital 

could equally have their newborn recruited to the NeoInnate Study. This was a two-stage 

process, in which on arrival to the maternity ward if the mother was found to be capable, she 

would consent to the collection and storage of cord blood in the maternity ward. After a few 

hours, and when the mother was deemed to be in the right frame of mind after the delivery 

process, she was asked as to whether the cord blood sample and her neonate could be full 

recruited into the study. If at this point, the mother refused to give consent, the cord blood 

sample and her data were removed from the fridge and study server, respectively. This 

aspect of the study protocol required high-quality consent training focused on detailed 

discussions concerning different scenarios with the study staff.  
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2.1.4 Study Sites: Community Visits (West Coast Region) 

 

Figure 2.4 Community study visits to the homes of recruited newborns. Note: all imaged 

individuals have provided photographic consent. 

 

Neonates were visited at their home address between 24-192 hours post-delivery. Neonates 

originated from a wide area of villages across the Kombo region, the closest of which was 

from fifty metres away from the hospital, with the furthest coming from Faraba Banta (41.2 

km away). Gambian homes were generally made of concrete with open windows and tin 

rooftops. Occupancies were shared between large family groups, as is common in the 

region. At each visit, a physical examination of the neonate was completed, followed by the 

collection of a venous blood sample, if the neonate was born full-term, normal birthweight. 

For further details of community visit protocols, see Chapter 4.6 
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Figure 2.5 Community study visits involved a complete review of systems and the collection 

of neonatal vital signs data. Note: all imaged individuals have provided photographic 

consent.  

 
2.1.5 Study Sites: Laboratory Work (Kanifing General Hospital and MRCG 

Keneba Laboratory) 

 

During the study site setup process, we became aware that laboratory facilities on-site at the 

hospital would be required. Kanifing General Hospital provided our study team with a 

disused storeroom, which we converted into a study-specific laboratory. This fully functioning 

laboratory contained temperature control, UPS, internet, refrigeration, locked storage and 

sample processing equipment (i.e. centrifuge, full blood count machine, sample rollers, 

pipettes). Twelve Kanifing General Hospital and three MRCG laboratory technicians 
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provided round-the-clock laboratory service. This design ensured the implementation of the 

study led to direct capacity building in the hospital. Full haematological analyses, serum 

separation and sample storage were performed in this laboratory. On completing the sample 

collection phase of the NeoInnate Study, samples were transported to MRCG Keneba field 

station (Kiang region) on dry ice. Secondary laboratory analysis including glucose-6-

phosphate dehydrogenase deficiency testing (G6PD), biochemical analysis (serum ferritin, 

serum iron, unbound iron-binding capacity (UIBC), soluble transferrin receptor (sTfR), 

transferrin, C-reactive protein (CRP), haptoglobin, and alpha-1-acid glycoprotein (AGP)) and 

hepcidin ELISA testing were performed on a batch basis by two study staff members.   

Figure 2.6 Laboratory bench-top work during PhD study. Primary sample processing was 

completed in a purpose-built renovated laboratory at Kanifing General Hospital for 

NeoInnate study (right). MRC Keneba Microbiology Laboratory (bottom left) was the location 

for secondary sample processing (hepcidin ELISA - top left) and analysis. 
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Chapter 3 - Hepcidin, serum iron and transferrin saturation in full 
term and premature infants during the first month of life: A review 
of existing evidence in humans (Review) 
 
 

Summary of Chapter 

 

BACKGROUND: Iron sequestration is a fundamental aspect of innate immunity. Evidence 

suggests that neonates actively regulate their iron distribution at birth and in early postnatal 

life, in order to sequester iron away from microbial pathogens. 

 

OBJECTIVE: To review existing evidence of serum iron, transferrin saturation and hepcidin 

levels in full-term and premature infants during the first month of life. 

 

METHODS: We reviewed literature retrieved from PubMed and Ovid Medline containing 

data on umbilical cord and venous blood concentrations of hepcidin, serum iron and 

transferrin saturation in human neonates from 0-1 month of age. After the standardisation of 

the hepcidin values based on inter-assay cross-calibration studies, weighted mean averages 

were produced for cord and venous blood using available data. Similar weighted means 

were produced for serum iron and TSAT. 

  

RESULTS: Data from 59 studies were used to create reference ranges for full-term 

neonates over the first month of life. In full-term neonates, venous blood hepcidin increases 

2-3-fold over the first month of life (to reach 61.1 ng/mL; CI: 20.1-102.0 ng/mL) compared to 

umbilical cord blood (29.7 ng/mL; CI: 21.1-38.3 ng/mL). Cord blood has high levels of serum 

iron (28.5 μmol/L; CI: 26.0-31.1 μmol/L) and TSAT (51.7%; CI: 46.5-56.9%). Following a 

short-lived immediate postnatal hypoferremia, iron and TSAT rebounded to approximately 
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half the levels in the cord by the end of the first month. There was insufficient data to 

formulate reference ranges for preterm babies.  

 

CONCLUSION: Evidence shows that full-term neonates experience an early postnatal 

hypoferremia as an innate immune defence, probably mediated by hepcidin. It is unclear 

whether preterm babies are able to elicit the same defence.  
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3.1 ABSTRACT 

 

BACKGROUND: Iron sequestration is a fundamental aspect of innate immunity. Evidence 

suggests that neonates actively regulate their iron distribution at birth and in early postnatal 

life, in order to sequester iron away from microbial pathogens. 

OBJECTIVE: To review existing evidence of serum iron, transferrin saturation and hepcidin 

levels in full-term and premature infants during the first month of life. 

METHODS: We reviewed literature retrieved from PubMed and Ovid Medline containing 

data on umbilical cord and venous blood concentrations of hepcidin, serum iron and 

transferrin saturation in human neonates from 0-1 month of age. After the standardisation of 

the hepcidin values based on inter-assay cross-calibration studies, weighted mean averages 

were produced for cord and venous blood using available data. Similar weighted means 

were produced for serum iron and TSAT. 

RESULTS: Data from 59 studies were used to create reference ranges for full-term 

neonates over the first month of life. In full-term neonates, venous blood hepcidin increases 

2-3-fold over the first month of life (to reach 61.1 ng/mL; CI: 20.1-102.0 ng/mL) compared to 

umbilical cord blood (29.7 ng/mL; CI: 21.1-38.3 ng/mL). Cord blood has high levels of serum 

iron (28.5 μmol/L; CI: 26.0-31.1 μmol/L) and TSAT (51.7%; CI: 46.5-56.9%). Following a 

short-lived immediate postnatal hypoferremia, iron and TSAT rebounded to approximately 

half the levels in the cord by the end of the first month. There was insufficient data to 

formulate reference ranges for preterm babies. 

CONCLUSION: Evidence shows that full-term neonates experience an early postnatal 

hypoferremia as an innate immune defence, probably mediated by hepcidin. It is unclear 

whether preterm babies are able to elicit the same defence. 

WORD COUNT ABSTRACT: 260/300 

KEYWORDS: Nutritional immunity, host-pathogen interaction, hepcidin, neonates, 

hypoferremia, transferrin, serum iron 



 

 92 

3.2 INTRODUCTION 

 

Iron homeostasis during pregnancy 

Three important mediators of hepcidin synthesis: iron status, inflammation, and 

erythropoiesis, are all altered during pregnancy.1–4 Iron demand on the mother increases 

significantly to support expanded maternal erythropoiesis and iron requirements of the 

growing fetus.5–9 During pregnancy, the placenta transfers ~270mg of iron from the mother 

to the fetus via the placenta.10,11  Syncytiotrophoblasts in the placental villi take up 

transferrin-bound iron from the maternal circulation by endocytosis via transferrin receptor 1 

(TFR1) (Figure 1).12–14 As reviewed in Fisher et al.,15 iron is released from TFR1 and 

transferred from clathrin-coated vesicles into the syncytiotrophoblast cytoplasm by DMT-1,16 

Zrt/Irt-like protein ZIP8,17 and ZIP14,18 collectively. Ferroportin transports iron out of 

placental syncytiotrophoblasts, and then ceruloplasmin, hephaestin, and zyklopen may all 

play a role19–21 in helping the iron pass through the endothelium to reach the fetal circulation 

and bind to fetal transferrin.13 

 

Maternal control of fetal and early neonatal iron metabolism 

Increases in maternal and fetal iron absorption occur in the second and third trimester,22,23 

when maternal hepcidin decreases to trigger increased duodenal iron absorption,24 splenic 

macrophage iron recycling, and the release of maternal hepatic iron stores.25–27 The 

resulting increased circulating maternal iron is then freely available for transfer to the fetus. 

Factors that are thought to contribute to maternal hepcidin suppression in the second and 

third trimester include maternal iron deficiency, erythropoiesis in the mother or fetus,27 

oestrogen,28 and progesterone receptor membrane component-1.29 Conflicting evidence now 

exists as to whether pregnancy-induced plasma dilution may also play a role.15,30 
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Fetal control of fetal and early neonatal iron metabolism 

Eighty percent of all the iron transferred from the mother to the fetus occurs in the last 

trimester.31 An illustration of the fetal demand for iron (amounting to 1.6-2.0 mg/kg per day32) 

is that umbilical cord blood contains a higher serum iron concentration than in the maternal 

circulation and at delivery babies have higher total body iron per kilo than that measured in 

their mothers or in healthy adults.33–44 This pattern is seen even in anaemic mothers and 

their babies.32,43,45,46 The relative roles of maternal and fetal hepcidin levels in controlling 

placental iron transport are unclear and may change during the course of 

gestation.25,26,30,42,45,47–55 As iron becomes more available in the last months of pregnancy, 

the fetus synthesizes hepcidin probably to control the rate of placental iron transfer and 

thereby to protect itself from iron-overload.15,30,56 Evidence showing the importance of fetal 

hepcidin includes: 1) umbilical cord hepcidin concentrations at birth are higher than maternal 

levels before and during delivery26,44,57–60 and 2) in pregnancies with multiple gestations, 

differences in cord hepcidin between siblings explained a greater fraction of variability in 

cord hemoglobin, serum ferritin, sTfR, and EPO than maternal hepcidin levels.49  

 

Placental control of fetal and early neonatal iron metabolism 

The placenta may also independently regulate iron transfer to the fetus in some scenarios.61  

A reduction of ferroportin expression on the apical fetal-facing membrane of placental 

syncytiotrophoblasts during maternal iron deficiency, in addition to increased expression of 

TFR1 on the maternal-facing side supports this hypothesis.30 Sangkhae et al. propose that 

during maternal iron deficiency, iron is held in the placenta to ensure that its metabolic 

homeostasis is maintained. Placental protein synthesis and critical transfer mechanisms can 

then continue, ensuring the more detrimental condition of placental dysfunction does not 

occur. These findings were observed in murine and in vivo human trophoblast models, but 

not in respect to the human pregnancies analysed.30 
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Impact of labour and delivery on hepcidin 

Childbirth is an intensely stressful event. Inflammatory pathways (including IL-6) are induced 

at the onset of human labor, even in the absence of intrauterine infection.62–69 Initiating 

stimuli for IL-6 production and release could involve the endocrine events of labor,68–70 

mechanical distension of the membranes and cervix (smooth muscle),62,70–73 placental 

hypoxia and/or hypo-perfusion,70,74 fetal hypoxia-acidemia,75 pain 76 or exposure to infective 

agents.67,69,70,77 The production of IL-6 leads to an increase in hepcidin levels along with a 

massive influx of immune cells (predominantly neutrophils) into the cervix, decidua, 

myometrium, chorioamnionic membranes and amniotic fluid.68,78 This further exacerbates the 

rise in IL-6 and other cytokines.76,79 The increase in post-delivery maternal hepcidin 

concentrations is larger with caesarean section deliveries (5.5-fold increase) as compared to 

standard vaginal deliveries (3-fold increase).80 This is most likely due to the surgical 

procedure and the subsequent inflammation. Similar increases in serum hepcidin are seen 

postoperatively during other abdominal surgeries.81 The effect of this maternal rise in 

hepcidin before, during and immediately after childbirth on the late fetal/early neonatal iron 

status is unknown, though like IL-6,82 hepcidin is not thought to cross the placenta.83  

 

Effects of infection on neonatal serum hepcidin levels 

Intra-amniotic infections can cause an increase in fetal hepcidin.84 Multiple studies have 

documented an association between chorioamnionitis, perinatal acidosis and neonatal 

sepsis with high umbilical cord hepcidin concentrations.84–89 For example, an extremely high 

cord concentration (437.6 ng/mL) was found in a neonate with confirmed Enterococcus 

faecalis early-onset sepsis.87 Similarly, very-low birth weight, premature neonates with late-

onset culture-confirmed sepsis, exhibit elevated levels of hepcidin.90 Nevertheless, despite 

the well-documented regulatory pathways of infection and inflammation on iron regulation, it 

is important to note that multiple publications have shown a lack of correlation between 

hepcidin, IL-6 and CRP in sick neonates.87,91 This is likely due to differences in the 
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biochemical kinetics of these molecules. IL-6 concentrations spike very early in the course of 

perinatal infection, whereas the rise of CRP is delayed.  

 

Standardising hepcidin measurements 

Multiple assays, including mass spectrometry (MS) and immunochemistry ELISA methods, 

are available to quantify hepcidin in various body fluids (urine, serum and plasma).92 

However, in the studies included in this review, none of these methods are calibrated using 

the same standards and, as a result, there are significant differences in hepcidin values 

between studies.93,94  

  

In 2016, Van der Vorm et al. harmonized many of the available hepcidin ELISA assays using 

native, lyophilized plasma with cyrolyoprotectant as a commutable candidate reference 

material.93 Linear equations were formulated to standardize the hepcidin assays.93 These 

equations can now be used to conduct post-hoc standardization of non-calibrated test 

results, aiding the retrospective comparison of data from previous publications. We have 

used these equations in this review to generate standardized hepcidin values 

(Supplementary Table 1). The production of standardized reference material, which was 

refined in 2019, is available for purchase allowing hepcidin measurements to be 

standardized in all laboratories.94 

   

3.3 METHODS 

 

In March 2019, we reviewed the literature searching two databases: PubMed and Ovid 

Medline with no restrictions on language or the year of publication. The original search was 

for human studies only. Corresponding authors of extracted publications were not contacted. 

One individual carried out the inclusion/exclusion process of the retrieved studies, and there 

was no assessment of bias or the quality of studies as seen in a systematic review process. 
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Table 1 displays the search strategy used. Figure 2 shows the flow diagram of the literature 

search. The search generated publications containing data on cord and venous 

concentrations of hepcidin, serum iron and transferrin saturation in the neonatal period. 

Studies that analyzed healthy neonates were included. Mean, median or range of the 

gestational age of the study population was a requirement for inclusion. Neonates >37 

weeks at delivery were regarded as full-term neonates (FTB). Studies or study groups with a 

gestational <37 weeks were classed as premature (PTB) neonates. Retrieved publications 

had to report a mean time of bleed 0-720 hours post-delivery to be analysed. Mean (SD or 

95% CI), or median (range, IQR, or 95% CI) data were extracted from the included 

publications. Studies reporting mean (95% CI) were included in the calculation of weighted 

means (95% CI) and the associated Figures 2-5. Reference ranges for adults and children 

were presented for comparison.95,96 Many retrieved publications did not stratify results by 

birthweight; as a result, this variable was not recorded in Tables 2-4. Publications were not 

stratified by sample type (serum or plasma) due to the overall lack of studies. If multiple 

publications on the same study population were retrieved, only one was included in the 

analysis. This was the case with Ervasti et al.97,98 and Sweet et al.,99 as previously 

mentioned in Lorenz et al.100  

  

The standardization of hepcidin values using different ELISA assays was performed using 

the slopes and intercepts from Van der Vorm et al.93 This was performed for studies that 

used ELISA test kits from DRG (hepcidin-25 (human) EIA Kit, DRG, USA), Bachem 

(hepcidin-25 EIA Kit, Bachem, USA) and Intrinsic Lifesciences (Intrinsic Hepcidin ELISA Kit, 

Intrinsic Lifesciences, USA). It was not possible to standardize hepcidin values acquired 

using the ELISA from Hangzhou Eastbiopharm (Hangzhou Eastbiopharm Co. Ltd. 

Hangzhou, Zhejiang, China) and mass spectroscopy (MCProt Biotechnology, Kanazawa, 

Japan), used in Basu et al.52 and Ichinomiya et al.,85 respectively. Prohepcidin was not 

included in the analysis as it is a poor proxy for biochemically active hepcidin-25.101–106 
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The software Stata IC version 15 (StataCorp LP, College Station, Texas, USA) and R (R: A 

Language and Environment for Statistical Computing, R Foundation for Statistical 

Computing, 2020, https://www.R-project.org) were used to analyse data. To calculate the 

confidence interval (CI) around the weighted mean, the weighted variance was calculated 

using the wtd.var function from the R package Hmisc. The standard error derived from this 

weighted variance was then used to calculate the t-statistic (i.e. weighted mean divided by 

weighted standard error), from which the 95% CI was derived. GraphPad Prism version 8 

(GraphPad Software, San Diego, California, USA) software was used to produce the 

graphical representation of the results. 

 

3.4 RESULTS  

 

The initial search of two electronic databases for three different iron markers yielded 13,931 

publications. After the exclusion of duplicated studies and selection criteria filtering, 20 

publications were included in the analysis for hepcidin, 23 publications for TSAT and 51 

publications for serum iron. Many of these studies were found to contain information on 

multiple parameters of interest. Overall, we identified 59 publications containing data on 

hepcidin, serum iron or TSAT in FTB neonates. Sixteen publications were found to contain 

data on PTB neonates.  

  

In publications detailing the effects of cord clamping interventions, all retrieved cord blood 

values were from groups that underwent 60 seconds of delayed cord clamping. This is 

consistent with current WHO policy.107 Cord blood weighted mean values are generated 

in Tables 2-7, and are represented by a dashed line in Figures 3-5 and a (95% CI) 

in Figures 6-8. 
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Hepcidin 

Standardized weighted mean umbilical cord blood hepcidin levels were higher in FTB 

neonates (29.7 ng/mL; CI: 21.1-38.3 ng/mL) vs PTB neonates (8.4 ng/mL; CI: 2.0-14.7 

ng/mL) (Figure 3A and 3B and Tables 2 and 3). Full-term cord blood hepcidin levels were 

2-fold higher than in adult male (13.1 ng/mL; CI: 1.4-43.2 ng/mL) and female (10.6 ng/mL; 

CI: 1.4-43 ng/mL) references ranges (Table 2). FTB standardized venous hepcidin levels 

increased (61.1 ng/mL; CI: 20.1-102.0 ng/mL) over the first four days of life (Figure 6A). 

This trend is unclear for PTB neonates due to the lack of studies. (Table 3 and Figure 6B). 

No studies were retrieved that assessed post-delivery venous blood samples >77 hours in 

FTB or >168 hours in PTB. 

 

TSAT 

The weighted mean TSAT in cord blood was higher in FTB neonates (51.7%; CI: 46.5-

56.9%) compared to PTB neonates (36.5%; CI: 0.8-72.1%) (Tables 4 and 5 and Figure 4). 

Cord blood TSAT in FTB neonates was double the reference levels found in adults (23.5%; 

CI: 12-38.8%) and children aged 1-5 years (19.4%; CI: 8.2-32.9%) (Table 4). The weighted 

mean average of TSAT decreased 2-fold from cord blood to venous blood in FTB neonates 

(down to 25.2%; CI: 20.1-30.3%) (Figure 7A). This hypoferremic response in FTB neonates 

was followed by a steady increase from 21.8% (CI: 18.8-24.7%) to 44.2% (CI: 32.1-

57.8%). No trend was identifiable in PTB neonates due to the lack of data (Table 

5 and Figure 7B).  

  

Serum Iron 

Unlike TSAT values, serum iron levels in cord blood were higher in PTB (46.8 μmol/L; CI: 

29.7-63.8 μmol/L) neonates compared to FTB neonates (28.5 μmol/L; CI: 26.0-31.1 μmol/L) 

(Figure 5). Like TSAT, a similar 2-fold decrease in the weighted mean average of venous 

blood compared to cord blood is seen in FTB (13.8 μmol/L; CI: 10.8-16.9 μmol/L) (Table 6), 

and PTB neonates (16.2 μmol/L; CI: 15.3-17.0 μmol/L) (Table 7). Figure 8 suggests that 
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after the initial reduction (in the first 48 hours of life), levels of serum iron remain consistent 

over the first month of life in PTB (B) and FTB neonates (A). Serum iron was lowest 

between 0-48 hours post-delivery (Table 6 and Table 7). 

 

3.5 DISCUSSION  

  

Standardization of hepcidin 

To our knowledge, this is the first review to retrospectively compare serum hepcidin 

concentrations between studies, using post-hoc standardized values to produce calculated 

weighted mean averages in umbilical cord and venous blood. Pre-standardized hepcidin 

values in cord and peripheral blood share good correlation between methods. However, 

absolute values vary considerably between the ELISA test kits used (Table 2-3). A trend of 

low values is associated with the use of DRG ELISA kits, and high values linked with the use 

of Intrinsic Lifesciences and Bachem ELISA kits.  

  

Hypoferremia in FTB neonates 

The weighted mean average for cord blood hepcidin was calculated using data from 11 

studies. Almost all included studies reported a mean value between 11-41ng/mL, apart from 

Kulik-Rechberger et al. This study reported a much higher cord blood hepcidin value 

(67.9ng/mL; CI: 59.3-76.5ng/mL) as seen in Figure 3A. In addition, this study also recorded 

higher hepcidin levels in venous samples collected at 72 hours (92.9ng/mL; CI: 83.3-

102.3ng/mL),26 compared to those collected by Prentice et al. at 77 hours (55.6ng/mL; CI: 

47.1-65.5ng/mL).108 

 

When all the data are reviewed together (Figure 6A), hepcidin increases from within the first 

2-11 hours of life108 and then continues to increase up to 82 hours post-delivery. At all times 

the hepcidin levels are much higher than those recorded in adults. This excess hepcidin 
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production may provide a quick, comprehensive and relatively long-lasting (0-3 days) 

hypoferremic response to aid protection during this vulnerable period108. After the first few 

days, TSAT gradually increases as do serum iron levels, eventually reaching a plateau at 

approximately 1 month of age.  

  

Iron metabolism biomarker data gaps in first month of life in full-term babies 

Gaps in the time course of the concentration of hepcidin, TSAT and serum iron in the first 

month of life in full-term neonates still exist. This hinders our understanding of neonatal iron 

metabolism, particularly because hepcidin, TSAT and serum iron are transient and dynamic 

iron parameters. At the point in which hypoferremia is believed to be maximal, publications 

detailing the concentration in early (<12 hours) venous samples are lacking in both groups 

(FTB n=2, PTB n=1). Further research at this time point is required to fully elicit the strength 

and consistency of this response, as well as understanding the process in greater detail.  

 

Lack of data on preterm neonates during the first 24 hours 

After analysis of the current literature, the extent of the role that hypoferremia plays in 

neonates with a gestational age less than 37 weeks is still unclear. This is primarily due to 

the limited number of publications documenting hepcidin (n=5), TSAT (n=6) and serum iron 

(n=13) in the first month of life in preterm neonates. The variability between the studies is 

vast and further complicated by the complex, intensive and inconsistent care of premature 

neonates worldwide.  

 

Data analysis of the retrieved publications suggests that preterm neonates have lower cord 

hepcidin than in full-term neonates, infants and healthy adults. Weighted cord mean values 

are 3-fold higher in full-term (29.7ng/mL; CI: 21.1-38.3ng/mL) neonates compared to preterm 

(8.4ng/mL; CI: 2.0-14.7ng/mL) neonates. We speculate that this could be due to very early 

preterm neonates (<30 weeks’ gestation) possessing circulatory monocytes with decreased 

surface expression of TLR4, lower mRNA expression of TLR4 and reduced cytokine 
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production.109 An effect on the production of IL-6 at delivery, might then lead to a reduced 

ability to stimulate hepcidin expression as suggested in full-term babies.  

  

Our analysis proposes that peripheral venous hepcidin values in preterm neonates increase 

to 44ng/mL at 168 hours. However, decreases in TSAT between the cord and venous 

samples are not observed (36.5% to 45.6%). We propose that this is due to a lack of data on 

TSAT levels in preterm neonates over the first hours of life, potentially due to the complex 

ethical questions around bleeding preterm neonates so early in postnatal life. This results in 

the collection of skewed data, focusing only on later time points in the first month of life.  

 

Limitations  

The aim of this review was to evaluate our current knowledge on neonatal iron homeostasis 

in preterm and full-term neonates. As a result of the dearth of publications detailing the 

parameters of interest during this period, our review has several limitations. Firstly, many 

studies do not stratify their study groups by gestational age (preterm: <37 weeks, full term: 

>37 weeks). Subsequently, we have had to assign each study group or population by the 

mean gestational age. This will result in a reduction of any natural variation potentially 

caused by gestational age between the reviewed populations. This is also the case with 

respect to birth weight.  

 

Similarly, the studies on preterm neonates are made up of multiple small sample size 

subgroups with different gestational ages. Due to the lack of preterm studies, we have had 

to combine these study groups to formulate weighted means and figures. This in itself, could 

distort the impact of gestational age on our results, since data from the very early preterm 

newborns is combined with that from the late preterm neonates.  
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The retrieval of gestational age was a crucial aspect of the search strategy; however, few 

studies document the method used. There are large differences in the accuracy of different 

techniques.110  

  

Post-hoc standardization of different hepcidin ELISA kits has, to our knowledge, never been 

completed before with retrospective data. However, care should be given to the accuracy of 

the standardized values, as standardization was only possible for DRG, Bachem and 

Intrinsic Lifesciences ELISA test kits. Studies that used alternative methods111 were not 

included in summary statistics.  

  

An essential criterion of inclusion in this publication was that all neonatal data came from 

healthy newborns. However, documentation of labor practices and postnatal care, along with 

postnatal medication lack detail in the publications retrieved. Vaginal delivery is commonly 

referred to as the method of delivery; however, the use of inflammation-inducing forceps or 

vacuum delivery is not widely reported.  

 

Conclusion 

Currently available data suggests that hepcidin, serum iron and TSAT levels for adults and 

infants are much lower than those found in cord blood and venous blood from neonates 

during the first month of life. We have strengthened the evidence that full-term neonates 

possess the ability to produce a hepcidin-mediated hypoferremic response post-delivery. 

Whether this mechanism is found in PTB neonates is still unclear. This is predominately due 

to the lack of studies on healthy preterm neonates during the first hours of life. If premature 

or low birthweight neonates are unable to mount a hypoferremic response, this could 

enhance their risk of early neonatal infections. Conversely, if the hypoferremic response is 

seen in both preterm and full-term neonates, it will further support the hypothesis that 

regulation of iron distribution plays a fundamental role as an innate mechanism of protection 

against infection. 
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In summary, serum hepcidin is likely triggered by the inflammatory effect of labor and 

delivery. We suggest that this intrinsic mechanism of protection protects newborns with 

immature immune systems to transition from a semi-allogeneic, protected fetal setting to a 

microbe-rich extrauterine environment.112,113 Hepcidin-induced hypoferremia then potentially 

provides a broad action innate bacteriostatic action to invading micro-organisms, when 

physiological adaption to postnatal life is so critical for survival.  
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TABLE LEGENDS: 

 

Table 1: Literature Search Strategy. Searches conducted via PubMed and Ovid Medline. 

 

Table 2: Hepcidin (ng/mL) in full-term newborns over the neonatal period. Values from 

Basu et al111 were not standardized because the study used the Hangzhou Eastbiopharm 

ELISA, which was not part of the Van der Vorm et al. analysis.93 Extracted standard 

deviations were converted to 95% confidence intervals. Median (IQR or 95% CI) were not 

included in weighted means. Reference ranges were obtained from Hepcidin Analysis 

(Radboundumc).96 

 

Table 3: Hepcidin (ng/mL) in preterm newborns over the neonatal period. Ichinomiya et 

al85 was not standardized because the study used a mass spectrometry based method that 

was not part of the Van der Vorm et al. analysis.93 Extracted standard deviations were 

converted to 95% confidence intervals. Median (IQR or 95% CI) were not included in 

weighted means. Reference ranges were obtained from Hepcidin Analysis 

(Radboundumc).96  

 

Table 4: Transferrin saturation (%) in full-term newborns over the neonatal period. 

Extracted standard deviations were converted to 95% confidence intervals. Median (IQR or 

95% CI) were not included in weighted means. Reference ranges are taken from the 

National Health and Nutrition Examination Survey, 1999–2000.114 

 

Table 5: Transferrin saturation (%) in preterm newborns over the neonatal period. 

Extracted standard deviations were converted to 95% confidence intervals. Median (IQR or 

95% CI) were not included in weighted means. AGA groupa and SGA groupb can be 

identified in Figure 3B using the superscripted letters. Reference ranges were obtained from 

the National Health and Nutrition Examination Survey, 1999–2000.114 
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Table 6: Serum iron (μmol/L) in full-term newborns over the neonatal period. Extracted 

standard deviations were converted to 95% confidence intervals. Median (IQR or 95% CI) 

were not included in weighted means. Reference ranges are generated from the National 

Health and Nutrition Examination Survey, 1999–2000.114 

 

Table 7: Serum iron (μmol/L) in preterm newborns over the neonatal period. Extracted 

standard deviations were converted to 95% confidence intervals. Median (IQR or 95% CI) 

were not included in weighted means. AGA groupc, SGA groupd, 30-36 wksg and 24-29 wksh 

can be identified in Figure 4B using the superscripted letters. Ru et al, 2018115 is referenced 

as e . Ru et al, 2018116 is referenced as f . Reference ranges are generated from the National 

Health and Nutrition Examination Survey, 1999–2000.114 

 

TABLES: 

 

Table 1: Literature Search Strategy 

Parameter Database Search Strategy 

Hepcidin 

Ovid 
Medline 

(Human) AND (neonate OR neonates OR infant OR infants OR 
baby OR babies OR cord OR "umbilical cord".mp.) AND (hepcidin 
OR prohepcidin.mp.) 

PubMed 
(Human) AND (neonate OR neonates OR infant OR infants OR 
baby OR babies OR cord OR "umbilical cord") AND (hepcidin OR 
prohepcidin) 

TSAT 

Ovid 
Medline 

(Human) AND (neonate OR neonates OR infant OR infants OR 
baby OR babies OR cord OR "umbilical cord".mp.) AND 
("transferrin saturation" OR TSAT.mp.) 

PubMed 
(Human) AND (neonate OR neonates OR infant OR infants OR 
baby OR babies OR cord OR "umbilical cord") AND ("transferrin 
saturation" OR TSAT) 

Serum 
Iron 

Ovid 
Medline 

(Human) AND (neonate OR neonates OR infant OR infants OR 
baby OR babies OR cord OR "umbilical cord".mp.) AND ("serum 
iron" OR iron.mp.) 

PubMed 
(Human) AND (neonate OR neonates OR infant OR infants OR 
baby OR babies OR cord OR "umbilical cord") AND ("serum iron" 
OR iron) 
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Table 2: Hepcidin concentration (ng/mL) in full-term newborns over the neonatal period. 

Reference Year Location n Test Type Type of Sample 
Hepcidin (ng/mL) Standardized Hepcidin (ng/mL) 

Mean (95% CI) Median (IQR or 95% CI) Mean (95% CI) Median (IQR or 95% CI) 

Armitage et al. (VPM) 2019 The Gambia 114 ELISA (Bachem) Cord (Plasma)  46.0 (31.3-55.1)  29.4 (20-35.2) 

Armitage et al. (VA) 2019 The Gambia 193 ELISA (Bachem) Cord (Plasma)  41.9 (26.3-56.6)  26.8 (16.8-36.1) 

Basu et al. 2015 India 15 ELISA (Hangzhou 
Eastbiopharm) Cord (Serum) 124.0 (115-133)  N/A  

Briana et al. 2013 Greece 104 ELISA (DRG) Cord (Serum)  17.85 (4.75-69.2)  24.1 (3.1-44.2) 

Cao et al. 2014 USA 57 ELISA (Intrinsic) Cord (Serum) 131.8 (109-155)  41.7 (34.5-48.9)  

Cao et al. 2016 USA 98 ELISA (Intrinsic) Cord (Serum) 121.5 (105-138)  38.3 (33.2-43.6)  

Delaney et al. 2019 USA 108 ELISA (Intrinsic) Cord (Serum) 92.13 (91.9-92.3)  29.2 (29.1-29.2)  

Dosch et al. 2016 USA 47 ELISA (DRG) Cord (Plasma) 13.4 (11.7-15.1)  17.8 (15.4-20.2)  

Garcia-Valdes et al. 2015 Spain 52 ELISA (DRG) Cord (Serum) 18.01 (15.1-20.9)  24.3 (20.2-28.4)  

Hoppe et al. 2018 Sweden 15 ELISA (Bachem) Cord (Serum)  30.5 (21.7-38.8)  19.5 (13.9-24.8) 
Kulik-Rechberger et 
al. 2016 Poland 44 ELISA (DRG) Cord (Serum) 48.98 (42.9-55.1)  67.9 (59.3-76.5)  

   44  Venous - 72 hours (Serum) 66.79 (60-73.5)  92.9 (83.3-102.3)  

Lee et al. 2016 USA 104 ELISA (Intrinsic) Cord (Serum) 87.4 (74.4-103)  27.7 (23.6-32.6)  

Lorenz et al. 2014 Germany 100 ELISA (Intrinsic) Cord (Plasma)  103.9 (61.4-149.2)  32.9 (19.6-47.1) 

Prentice et al. 2019 The Gambia 81 ELISA (Bachem) Cord (Serum) 43.8 (36.8-52.3)  27.9 (23.5-33.4)  

   53  Venous - 6 hours (2-11) (Serum) 79.4 (68.1-92.4)  50.7 (43.5-58.9)  

   21  Venous - 29 hours (26-34) (Serum) 45.9 (36.5-57.8)  29.3 (23.3-36.9)  

   33  Venous - 77 hours (74-82) (Serum) 87.1 (73.8-102.7)  55.6 (47.1-65.5)  

Rehu et al. 2010 Finland 116 ELISA (Intrinsic) Cord (Serum) 71.6 (60.8-84.4)  22.8 (19.4-26.77)  

Ru et al. 2018 USA 50 ELISA (Bachem) Cord (Serum) 17 (12-24.2)  10.9 (7.7-15.5)  

Slomka et al. 2013 Poland 54 ELISA (DRG) Cord (Serum)  18.50 (2.75-35.13)  25 (2.8-48.4) 

Young et al. 2011 USA 19 ELISA (Intrinsic) Cord (Serum) 61.0 (26.4-95.6)  19.4 (8.6-30.3)  

Weighted Mean (Cord)     73.2 (48.1-98.3) N/A 29.7 (21.1-38.3) N/A 



 

 120 

Weighted Mean (Venous)     72.7 (48.3-97.2) N/A 61.1 (20.1-102.0) N/A 

Adults (Median (95% CI))     Men: 13.1 (1.4-43.2) ng/mL | Women: 10.6 (1.4-43) ng/mL (hepcidinanalysis.com, 2019) 

Infants (Median (95% CI))     11.9 (3.3-37.7) ng/mL (hepcidinanalysis.com, 2019) 
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Table 3: Hepcidin concentration (ng/mL) in preterm newborns over the neonatal period. 

Reference Year Location n Test Type Type of Sample Study Group 
Hepcidin (ng/mL) Standardized Hepcidin (ng/mL) 

Mean (95% CI) Median (IQR or 95% CI) Mean (95% CI) Median (IQR or 95% CI) 

Delaney et al. 2019 USA 126 ELISA (Bachem) Cord (Serum)  13.78 (13.6-14)  8.8 (8.7-9)  

Ichinomiya et al. 2017 Japan 92 Mass Spec (MCProt) Cord (Serum)   7.3 (2.85-16.38)  N/A 

Lorenz et al. 2014 Germany 40 ELISA (Intrinsic) Cord (Plasma) 24-29 wks  26.9 (13.5-63.1)  8.7 (4.5-20.1) 

   81 ELISA (Intrinsic) Cord (Plasma) 30-36 wks  45.9 (24.7-74.5)  14.7 (8.0-23.7) 

Ru et al. 2018 USA 92 ELISA (Bachem) Cord (Serum)  12.1 (9.2-15.7)  7.8 (5.9-10.1)  

Uijterschout et al. 2015 Netherlands 85 ELISA (Bachem) Venous - 168 hours (Serum)  69.6 (14.6-180.1)  44.4 (9.4-114.8)  

Weighted Mean (Cord)      13.1 (2.4-23.7) N/A 8.4 (2.0-14.7) N/A 

Weighted Mean (Venous)      69.6 (14.6-180.1) N/A 44.4 (9.4-114.8) N/A 

Adults (Median (95% CI))      Men: 13.1 (1.4-43.2) ng/mL | Women: 10.6 (1.4-43) ng/mL (hepcidinanalysis.com, 2019) 

Infants (Median (95% CI))      11.9 (3.3-37.7) ng/mL (hepcidinanalysis.com, 2019) 
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Table 4: Transferrin saturation (%) in full-term newborns over the neonatal period. 

Reference Year Location n Type of Sample 
TSAT (%) 

Mean (95% CI) Median (IQR or 95% CI or Range) 

Al-Tawil et al. 2012 Egypt 90 Venous - 24 hours 25 (24.6-25.4)  

Ali et al. 2016 USA 64 Cord 59.2 (53.9-64.5)  

Anderson et al. 2011 Sweden 162 Venous - 48 hours 23 (21.9-24.1)  

Balogh et al. 2007 Hungary 20 Cord  60.5 (14-90) 

   20 Venous - 39 hours (18-114)  22.5 (11-42) 

Basu et al. 2015 India 15 Cord 61.8 (54.7-68.9)  

El-Farrash et al. 2012 Egypt 30 Cord 49.5 (42.5-56.5)  

Ervasti et al. 2007 Finland 199 Cord 55 (52.4-57.6)  

Haga et al. 1980 Norway 21 Cord 55 (33.8-76.2)  

Kalem et al. 2019 Turkey 380 Cord 55.87 (54.8-56.9)  

Kelly et al. 1978 Scotland 115 Cord 58.8 (55.6-62)  

Kitajima et al. 2010 Japan 8 Cord  15.1 (8.3-27.5) 

   8 Venous - 720 hours  44.2 (32.1-57.8) 

Kleven et al. 2007 USA 26 Cord 42 (32.4-51.6)  

Mashako et al. 1991 DRC 166 Cord 32.3 (30.1-34.5)  

Milman et al. 1987 Denmark 74 Cord  48 (32-71) 

   47 Venous - 120 hours  33 (21-48) 

Prentice et al. 2019 The Gambia 81 Cord 47.6 (43.7-51.5)  

   53 Venous - 6 hours (2-11) 24.4 (21.2-27.6)  

   21 Venous - 29 hours (26-34) 21.8 (18.8-24.7)  

   33 Venous - 77 hours (74-82) 30.9 (26.9-34.8)  

Puolakka et al. 1980 Finland 47 Cord 53 (49-57)  

Rehu et al. 2010 Finland 116 Cord 50.6 (44.5-57.5)  

Rois et al. 1975 USA 26 Cord 61.2 (55.9-66.5)  
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Slomka et al. 2013 Poland 49 Cord  58.1 (51.7-73.6) 

Yamada et al. 2014 Brazil 21 Cord 47.7 (40.2-55.2)  

   21 Venous - 720 hours 39.8 (34.7-44.9)  

Weighted Mean (Cord)    51.7 (46.5-56.9) N/A 

Weighted Mean (Venous)    25.2 (20.1-30.3) N/A 

Adults (Median (95% CI))    23.5 (12-38.8) % (10-90th percentiles) - NHNES 

Infants (Median (95% CI))    19.4 (8.2-32.9) % (10-90th percentiles) - NHNES 
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Table 5: Transferrin saturation (%) in preterm newborns over the neonatal period. 

Reference Year Location n Type of Sample Study Group 
TSAT (%) 

Mean (95% CI) Median (IQR or 95% CI or Range) 

Celik et al. 2015 Turkey 42 Venous - 648 hours (288-1872)  46.5 (41.2-51.8)  

Haga et al. 1980 Norway 23 Cord AGA Groupa 48 (39.8-56.2)  

   6 Cord SGA Groupb 41 (23.4-58.6)  

Ichinomiya et al. 2017 Japan 92 Cord   87.2 (68.3-100) 

Kitajima et al. 2010 Japan 13 Cord   64.3 (15.8-88.9) 

   13 Venous - 720 hours   33.2 (17.1-79.5) 

Lackmann et al. 1998 Germany 15 Venous (<1 hour) <32 wks  39 (5-83) 

   22 Venous (<1 hour) 33-34 wks  36 (7-87) 

   26 Venous (<1 hour) 35-36 wks  31 (13-60) 

Yamada et al. 2014 Brazil 25 Cord  24.8 (18.5-31.1)  

   25 Venous - 720 hours  44.1 (37.3-50.9)  

Weighted Mean (Cord)     36.5 (0.8-72.1) N/A 

Weighted Mean (Venous)     45.6 (30.4-60.9) N/A 

Adults (Median (95% CI))     23.5 (12-38.8) % (10-90th percentiles) - NHNES 

Infants (Median (95% CI))     19.4 (8.2-32.9) % (10-90th percentiles) - NHNES 
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Table 6: Serum iron concentration (μmol/L) in full-term newborns over the neonatal period. 

Reference Year Location n Type of Sample 
Serum Iron (μmol/L) 

Mean (95% CI or Range) Median (IQR or 95% CI or Range) 

Ahlsten et al. 1989 Sweden 20 Cord 38 (34.9-41.1)  

Ali et al. 2016 USA 64 Cord 26.8 (24.4-29.2)  

Amarnath et al. 1989 USA 15 Cord 24.1 (21-27.2)  

Anderson et al. 2011 Sweden 162 Venous - 48 hours 9.9 (9.5-10.3)  

Armitage et al. (VA) 2019 The Gambia 193 Cord  18.8 (15.4-22.3) 

Armitage et al. (VPM) 2019 The Gambia 114 Cord  16.0 (12.7-18.7) 

Awadallah et al. 2004 Jordan 92 Cord 20.7 (20.1-21.3)  

Balogh et al. 2007 Hungary 20 Cord  25.5 (8-43) 

   20 Venous - 39 hours (18-114)  9.5 (5-20) 

Bastida et al. 2000 Spain 70 Cord 41.5 (38.3-44.7)  

Basu et al. 2016 India 15 Cord 23.8 (22.2-25.4)  

Basu et al. 2015 India 142 Cord 26.5 (25.5-27.5)  

Bermudez et al. 2015 Spain 30 Cord 6.26 (5.37-7.15)  

Briana et al. 2013 Greece 104 Cord 24.14 (22.4-25.9)  

Busarira et al. 2019 Libya 126 Cord 23.69 (23.5-23.9)  

Cao et al. 2016 USA 68 Cord 39.73 (35-44.4)  

Chong et al. 1984 UK 20 Cord 41.1 (29.6-52.6)  

Delaney et al. 2019 USA 108 Cord 40.8 (37.3-44.3)  

El-Farrash et al. 2012 Egypt 30 Cord 28.29 (25.6-31)  

Ertekin et al. 2015 Turkey 76 Cord 26.1 (24.1-28.1)  

Ervasti et al. 2007 Finland 199 Cord 27.4 (26.3-28.5)  

Gruccio et al. 2014 Argentina 99 Cord 27.03 (25.7-28.4)  

Haga et al. 1980 Norway 21 Cord 27.1 (24.2-30)  

Kelly et al. 1978 Scotland 115 Cord 27.0 (25.6-28.4)  
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Kleven et al. 2007 USA 26 Cord 44.1 (32.2-56)  

Kocylowski et al. 2017 Poland 64 Cord 35.1 (33.2-37)  

Lao et al. 1991 Hong Kong 77 Cord 35.8 (32.7--38.9)  

Lee et al. 2006 South Korea 19 Cord 31.3 (28.4-34.2)  

Lee et al. 2016 USA 104 Cord 35.4 (32-39.2)  

Mezdoud et al. 2017 Algeria 97 Cord 20.1 (19-21.3)  

Milman et al. 1987 Denmark 74 Cord  28 (19-39) 

   47 Venous - 120 hours  19 (13-31) 

Mukhopadhyay et al. 2011 India 50 Cord 29 (25.8-32.2)  

Murata et al. 1989 Japan 45 Cord 28.5 (26.7-30.3)  

Oliveria et al. 2014 Brazil 144 Cord 24.6 (23.5-25.7)  

Ozkiraz et al. 2011 Turkey 16 Venous - 216 hours (96-336) 16.4 (13.8-19)  

Patidar et al. 2013 India 50 Venous - 8 hours (1-23) 19.4 (17.2-21.6)  

Prentice et al. 2019 The Gambia 81 Cord 24.7 (22.5-26.9)  

   53 Venous - 6 hours (2-11) 13.6 (12.0-15.2)  

   21 Venous - 29 hours (26-34) 11.6 (10.1-13.1)  

   33 Venous - 77 hours (74-82) 14.5 (13.1-16.0)  

Puolakka et al. 1980 Finland 47 Cord 28.8 (26.2-31.4)  

Rois et al. 1975 USA 26 Cord 6.19 (6.18-6.20)  

Ru et al. 2018 USA 49 Cord 48.3 (39.3-59.1)  

Slomka et al. 2013 Poland 49 Cord 22.4 (20.5-24.3)  

Sweet et al. 2001 UK 68 Cord 26 (24.2-27.8)  

Szabo et al. 2001 Hungary 10 Cord 23.2 (16.3-30.1)  

   10 Venous - 47 hours 7.2 (6.15-8.25)  

Tiker et al. 2006 Turkey 16 Venous - 209 hours (96-288) 19.9 (12.7-28.4)  

Tsuzuki et al. 2013 Japan 30 Cord 31.1 (27.3-34.9)  

   30 Venous - 120 hours 19.5 (16.4-22.6)  

Yamada et al. 2014 Brazil 21 Cord 23.9 (19.4-28.4)  
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   21 Venous - 720 hours 16.7 (14.9-18.5)  

Yapakci et al. 2009 Turkey 16 Venous - 211 hours (±46) 19.9 (17.9-21.9)  

Weighted Mean (Cord)    28.5 (26.0-31.1) N/A 

Weighted Mean (Venous)    13.8 (10.8-16.9) N/A 

Adults (Median (95% CI))    15.2 (8.1-24.5) μmol/L (10-90th percentiles) - NHNES 

Infants (Median (95% CI))    12.5 (5.5-20.6) μmol/L (10-90th percentiles) - NHNES 
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Table 7: Serum iron concentration (μmol/L) in preterm newborns over the neonatal period. 

Reference Year Location n Type of Sample (Cord or Venous) Study Group 
Serum Iron (μmol/L) 

Mean (95% CI or Range) Median (IQR or 95% CI) 

Celik et al. 2015 Turkey 42 Venous - 648 hours (288-1872)  15.6 (13.3-17.9)  

Delaney et al. 2019 USA 126 Cord  53.1 (49.8-56.4)  

Haga et al. 1980 Norway 24 Cord AGA Groupc 16.8 (13.2-20.4)  

   7 Cord SGA Groupd 18.3 (11.2-25.4)  

Ichinomiya et al. 2017 Japan 92 Cord   23.27 (15.2-32.4) 

Lackmann et al. 1998 Germany 15 Venous - <1 hour <32 wks  14 (2-41) 

   22 Venous - <1 hour 33-34 wks  12 (2-32) 

   26 Venous - <1 hour 35-36 wks  15 (6-28) 

Ru et al. 2018 USA 91 Cord e 73.4 (57.3-93.1)  

Ru et al. 2018 USA 140 Cord f 53.7 (50.1-60.8)  

Schiza et al. 2007 Greece 181 Venous - 336 hours  16.1 (15.5-16.7)  

Sweet et al. 2001 UK 50 Cord 30-36 wksg 20.8 (18.4-23.2)  

   26 Cord 24-29 wksh 17.4 (13.3-21.5)  

Tiker et al. 2006 Turkey 14 Venous - 67 hours (24-144) 26-32 wks 15.81 (4.83-33.48)  

   12 Venous - 65 hours (24-96) 33-36 wks 19.26 (6.8-39.2)  

Tsuzuki et al. 2013 Japan 14 Cord  27.5 (21.9-33.1)  

    Venous - 120 hours  16.47 (13.1-19.8)  

Yamada et al. 2014 Brazil 25 Cord  8.8 (6.97-10.6)  

    Venous - 720 hours  15.54 (14.1-17)  

Yapakci et al. 2009 Turkey 17 Venous - 336 hours (96-720)  17.22 (14.2-20.3)  

Weighted Mean (Cord)     46.8 (29.7-63.8) N/A 

Weighted Mean (Venous)     16.2 (15.3-17.0) N/A 
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Adults (Median (95% CI))     15.2 (8.1-24.5) μmol/L (10-90th percentiles) - NHNES 

Infants (Median (95% CI))     12.5 (5.5-20.6) μmol/L (10-90th percentiles) - NHNES 
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FIGURE LEGENDS 

 

Figure 1: Placental iron transfer between mother and fetus. Fe2+ = ferrous iron, Fe3+ = ferric iron, Tf = transferrin, Apo-Tf = unsaturated 

transferrin, Fetal Tf = fetal-derived transferrin, NTBI = non-transferrin bound iron. Syncytiotrophoblasts in the placental villi take up transferrin-

bound iron from the maternal circulation by endocytosis via transferrin receptor 1 (TFR1). Iron is released from TFR1 in acidified endosomes 

and transferred into the syncytiotrophoblast cytoplasm by DMT-1, Zrt/Irt-like protein ZIP8, and ZIP14, collectively. Ferroportin transports iron 

out of placental syncytiotrophoblasts, and then ceruloplasmin, hephaestin, and zyklopen oxidise Fe2+ to Fe3+ helping it pass through the 

endothelium to reach the fetal circulation. It is still unclear as to whether newly transported iron enters the fetal circulation as NTBI or bound to 

fetal transferrin. Fetal-derived hepcidin is believed to regulate ferroportin expression on the fetal basal-side of placental 

syncytiotrophoblasts.13,117 Maternal-derived hepcidin is believed to play a role in regulating TFR1 expression on the maternal-side of the 

placental syncytiotrophoblasts118. This figure is adapted from Sangkhae and Nemeth et al, 2018.119 

 

Figure 2: Flow diagram of the literature search and selection criteria. Retrieving publications on hepcidin, TSAT or serum iron in neonates 

over the first month of life.  

 

Figure 3: Hepcidin (ng/mL) in cord blood: (A) full term neonates, (B) preterm neonates. Standardized means from each publication are 

plotted with error bars showing 95% confidence intervals. Dashed line shows the weighted mean of all publications found in the figure. Median 

values were not included in this figure.  
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Figure 4: Transferrin saturation (%) in cord blood: (A) full term neonates, (B) preterm neonates. Means from each publication are plotted 

with error bars showing 95% confidence intervals. Dashed line shows the weighted mean of all publications found in the figure. a shows Haga et 

al, AGA group.120 b shows Haga et al SGA group.120 Median values were not included in this figure.  

 

Figure 5: Serum iron (μmol/L) in cord blood: (A) full term neonates, (B) preterm neonates. Means from each publication are plotted with 

error bars showing 95% confidence intervals. Dashed line shows the weighted mean of all publications found in the figure. c shows AGA 

neonates in Haga et al.120 d shows SGA neonates in Haga et al.120 Ru et al, 2018115 is referenced as e. Ru et al, 2018116 is referenced as f. g 

shows 30-36 wks neonates in Sweet et al.121 h shows 24-29 wks neonates in Sweet et al.121 Median values were not included in this figure.  

 

Figure 6: Hepcidin (ng/mL) over the neonatal period: (A) full term neonates, a shows the weighted mean (95%CI) for all studies seen in 

Figure 2A. b, c and e shows Prentice et al.108 d shows Kulik-Rechberger et al.26 (B) preterm neonates, a shows the weighted mean (95%CI) for 

all studies seen in Figure 2B. b shows Uijterschout et al.122 

 

Figure 7: Transferrin saturation (%) over the neonatal period: (A) full term neonates, a shows the weighted mean (95%CI) for all studies 

seen in Figure 3A. b shows Prentice et al.108 c shows Al-Tawil et al.123 d shows Prentice et al.108 e shows Balogh et al.101 f shows Anderson et 

al.124 g shows Prentice et al.108 h shows Milman et al.40 i shows Kitajima et al.125 j shows Yamada et al.126 (B) preterm neonates, a shows the 
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weighted mean (95%CI) for all studies seen in Figure 3B. b shows Lackmann et al.127 c shows Celik et al.128 d shows Yamada et al.126 e shows 

Kitajima et al.125 All values are mean (95%CI), unless marked with ° median (range) and • median (95%CI). Lackmann et al, 1998 (b) data from 

the three study groups (<32 wks, 33-34 wks and 35-36 wks) was averaged as all groups are classed as PTB neonates and are bled at the 

same time of life.127 

 

Figure 8: Serum iron (μmol/L) over the neonatal period: (A) full term neonates, a shows the weighted mean (95%CI) for all studies seen in 

Figure 2A. b shows Prentice et al.108 c shows Patidar et al.129 d shows Prentice et al.108 e shows Balogh et al.101 f shows Szabo et al.130 g 

shows Anderson et al.124 h shows Prentice et al.108 i shows Milman et al.40 j shows Tsuzuki et al.131 k shows Tiker et al.132 l shows Yapakci et 

al.133 µ shows Ozkiraz et al.134 n shows Yamada et al.126 (B) preterm neonates, a shows the weighted mean (95%CI) for all studies seen in 

Figure 2B. b shows Lackmann et al.127 c shows Tiker et al.132 d shows Tiker et al.132 e shows Tsuzuki et al.131 f shows Schiza et al.135 g shows 

Yapakci et al.133 h shows Celik et al.128 i shows Yamada et al.126 All values are mean (95%CI), unless marked with * mean (range), ° median 

(range) and • median (95%CI). Lackmann et al, 1998 (b) data from the three study groups (<32 wks, 33-34 wks and 35-36 wks) was averaged 

as all groups are classed as PTB neonates and are bled at the same time of life.127 
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Figure 1: Placental iron transfer between mother and fetus 
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Figure 2: Flow diagram of the literature search. 
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Figure 3: Standardized hepcidin concentration (ng/mL) in cord blood. 
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Figure 4: Transferrin saturation (%) in cord blood. 
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Figure 5: Serum iron concentration (μmol/L) in cord blood 
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Figure 6: Hepcidin concentration (ng/mL) over the neonatal period  
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Figure 7: Transferrin saturation (%) over the neonatal period 
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Figure 8: Serum iron concentration (μmol/L) over the neonatal period 
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3.7 SUPPLEMENTARY MATERIAL 
 

SUPPLEMENTARY METHODS 

Supplementary Table 1 - Post-hoc hepcidin standardisation 

Test ID  Kit Slope (95% CI)  Intercept (95% CI) 
IC-4 Bachem Hepcidin-25 1.569 (1.523-1.614) -0.10 (-1.95 to 1.85) 
IC-5 Instrinsic Lifesciences Hepcidin IDx 3.184 (3.086-3.281) -0.85 (-2.91 to 1.21) 
IC-6 DRG Hepcidin-25 0.711 (0.674-0.748) 0.73 (-0.05 to 1.52) 

 

Supplementary Table 1: Previously documented regression relationships used to conduct 

post-hoc hepcidin standardisation. These regression relationships were extract from Table 2 

of van der Vorm et al.1  

 

SUPPLEMENTARY REFERENCES 

1. van der Vorm LN, Hendriks JCM, Laarakkers CM, Klaver S, et al. Toward Worldwide 

Hepcidin Assay Harmonization: Identification of a Commutable Secondary Reference 
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Chapter 4 - Neonatal iron distribution and infection susceptibility in 
full term, preterm and low birthweight babies in urban Gambia: 
study protocol for an observational study (Methodology) 
 
 

Summary of Chapter 

 

BACKGROUND: Neonatal infection is the third largest cause of death in children under-five 

worldwide. Nutritional immunity is the process by which the host innate immune system 

limits nutrient availability to invading organisms. Iron is an essential micronutrient for both 

microbial pathogens and their mammalian hosts. Changes in iron availability and distribution 

have significant effects on pathogen virulence and on the immune response to infection. Our 

previously published data shows that, during the first 24 hours of life, full-term neonates 

have reduced overall serum iron. Transferrin saturation decreases rapidly from 45% in cord 

blood to ~20% by six hours post-delivery. 

 

METHODS: To study neonatal nutritional immunity and its role in neonatal susceptibility to 

infection, we will conduct an observational study on 300 full-term normal birthweight 

(FTB+NBW), 50 preterm normal birthweight (PTB+NBW), 50 preterm low birthweight 

(PTB+LBW) and 50 full-term low birthweight (FTB+LBW), vaginally-delivered neonates born 

at Kanifing General Hospital, The Gambia. We will characterize and quantify iron-related 

nutritional immunity during the early neonatal period and use ex vivo sentinel bacterial 

growth assays to assess how differences in serum iron affect bacterial growth. Blood 

samples will be collected from the umbilical cord (arterial and venous) and at serial time 

points from the neonates over the first week of life. 

 

DISCUSSION: Currently, little is known about nutritional immunity in neonates. In this study, 

we will increase understanding of how nutritional immunity may protect neonates from 
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infection during the first critical days of life by limiting the pathogenicity and virulence of 

neonatal sepsis causing organisms by reducing the availability of iron. Additionally, we will 

investigate the hypothesis that this protective mechanism may not be activated in preterm 

and low birthweight neonates, potentially putting these babies at an enhanced risk of 

neonatal infection. 

 

*NOTE: The secondary study objective (III) of assessing the bacterial growth of common 

neonatal pathogens in neonatal sera was not achieved due to the lack of sufficient blood 

sample volume.  
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Abbreviations
PTB = Preterm birth

FTB = Fullterm birth

LBW = Low birthweight

NBW = Normal birthweight

WHO = World Health Organisation

TSAT = Transferrin saturation

MDG = Millennium development goal

GBS = Group B Streptococci 

EONS = Early onset neonatal sepsis

YICSS = Young Infants Clinical Signs Studies

KGH = Kanifing General Hospital

MRCG = Medical Research Council Unit The Gambia at LSHTM

KMC = Kanifing Municipal Council

UIBC = Unbound iron-binding capacity

IL6 = Interleukin 6

IL22 = Interleukin 22

sTfR = Soluble transferrin receptor

CRP = C-reactive protein

AGP = Alpha 1-acid glycoprotein

HIV = Human immunodeficiency virus

TB = Tuberculosis

EDTA = Ethylenediaminetetraacetic acid

V1 = Venous bleed 1

V2 = Venous bleed 2

IM = Intramuscular

ELISA = Enzyme-linked immunosorbent assay

ID = Identification

CRF = Case report form

eCRF = Electronic case report form

ANOVA = Analysis of variance

IDE = Integrated development environment

CyTOF = Cytometry by time of flight

STAT3 = Signal transducer and activator of transcription 3

TLR = Toll-like receptor

SOP = Standard operating procedure

OD = Optical density

WBC = White blood cell

LPS = Lipopolysaccharide

Introduction
Neonatal infections – challenges in low-income settings
Neonatal infection is the third largest cause of death in chil-
dren under-five worldwide and is an ongoing major global 
public health challenge (Sustainable Development Goal 3.2)1. 
Between 1990 and 2016 maternal and under-five child mortal-
ity has decreased by half2. However, the proportion of neonatal  

deaths among under-five deaths increased from 37% (1990) to 
44% (2013)3,4. Today, approximately 2.8 million children die 
annually during the neonatal period – the first 28 days of life. 
Of these, 73% die within the first six days of life3. An increas-
ing proportion of child deaths are in sub-Saharan Africa5, with 
60–80% of newborn deaths occurring in low birthweight (LBW) 
neonates (<2500g at birth)6. 95% of all LBW neonates are born 
in low-income countries7. However, the situation is likely to be  
worse than documented, as neonatal deaths in developing  
countries are commonly under reported and the records  
commonly contain errors8,9. It is estimated that about one third of 
deaths in the first month of life, are caused by infections includ-
ing bacterial sepsis, meningitis, pneumonia, neonatal tetanus, and  
diarrhoea10.

Evidence is lacking on the aetiology of neonatal infections in  
developing countries, especially from community settings11,12. 
However, the limited data suggests that Klebsiella species, 
Escherichia coli, and Staphylococcus aureus are common causes 
of early onset sepsis (EONS)13–15. The available antibiotic suscep-
tibility data suggests that pathogens associated with neonatal sepsis 
in developing countries are often resistant to WHO-recommended  
empiric antibiotics13,16. Antibiotic resistance has emerged with 
potency over the last few decades due to a multitude of com-
plex reasons. Antibiotic overuse, inappropriate prescribing, inad-
equate diagnostics, extensive agricultural use, availability of 
few new antibiotics, and the ease of transportation of resistant 
bacteria are among the factors contributing to the rise. Equally, 
bacteria have the ability to rapidly mutate (with or without drug  
selection pressure) and horizontally transfer genetic mate-
rial between species (i.e. non-human pathogens) of bacteria17,18.  
Neonates are particularly at risk from antibiotic resistant  
organisms because they generally succumb before alternative  
antibiotic regimes can be tried.

Diagnosis of neonatal sepsis with high specificity remains chal-
lenging in developing countries. A widely used tool developed  
by the World Health Organization Young Infants Clinical Signs 
Studies (YICSS), which includes seven clinical signs to aid  
diagnosis, has only a 85% sensitivity and 75% specificity for 
severe bacterial infection during the first week of life19. Microbio-
logical identification of a pathogen isolated from blood cultures  
often has higher specificity, but microbiological laboratory facili-
ties are frequently lacking in low-income settings19. With this  
all in mind, there is an immediate need to improve our under-
standing of neonatal blood-borne infections and develop novel  
therapies that could enhance immunological protection possibly  
via boosting innate immune mechanisms.

Nutritional immunity
Iron is critical for the human host and most pathogens. Iron  
is one of the most important factors in the host-pathogen battle 
for resources. Bacteria and other pathogens have evolved a wide  
variety of mechanisms to acquire iron from the nutrient rich  
host (e.g. siderophores and iron specific channels)20 to aid 
growth and virulence, with a number of iron acquisition genes  
concentrated on high pathogenicity islands21.
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Nutritional immunity describes the normal physiological innate  
processes used by the host to combat infection by limiting  
nutrient availability. Key among these processes is the abil-
ity to rapidly decrease the circulating concentration of iron (and 
other transition metals) in response to an infection22. The hypof-
erremia of inflammation is mediated by the hormone, hepcidin.  
Research completed in 2000–2001 by three independent 
research groups led to the discovery of the hepcidin hormone,  
and the important function it plays in many aspects of iron  
metabolism23–25. Hepcidin is now understood to be the master 
regulator of iron homeostasis. Unlike any other micronutrient,  
iron is regulated by a hormone that responds to both infection  
and nutritional status. The host inflammatory mediators, IL626,  
IL2227 and Type 1 interferon28, have been found to increase tran-
scription of hepcidin through several Toll-like receptor (TLR) 
ligands29 and STAT3 signalling30,31 resulting in decreased sys-
temic iron concentrations in the circulation. This multifaceted 
mechanism limits nutrient availability to extracellular invad-
ing microorganisms32. The system is well documented in 
mouse models33–35, but less so in human studies. However, it is  
clear that humans with excessive levels of serum iron (e.g. due  
to hemochromatosis) are predisposed to infection with iron- 
dependent species of bacteria36,37.

Neonatal hypoferremia
Although iron metabolism in adults and older children is well  
studied, the kinetics of iron handling in the early neonatal period, 
a time of intense physiological change, are poorly understood38.  
Childbirth results in a neonate moving from a semi-allogeneic,  
protected and nearly sterile environment to one that is abundant 
in a diverse array of microbes. The delivery process is the initial 
focal point for the mass bacterial colonisation of the skin and gas-
trointestinal tract of the neonate39,40. Neonates are known to have 
very low levels of immunological memory and possess an imma-
ture immune system41. Post-natal iron metabolism in neonates 
is controlled by an array of different signals, such as hypoxia, 
erythropoietic drive, maternal and foetal iron stores42. A number 
of studies have investigated serum iron, transferrin saturation  
(TSAT), ferritin and haemoglobin levels at the time of birth using 
cord blood as a proxy for early neonatal blood43,44. A recent pro-
spective study showed neonates born preterm compared to early-
term had higher serum iron concentrations in umbilical blood, 
which was inversely correlated with levels of serum hepcidin45. 
A similar study has also shown that small-for-gestational-age 
neonates and neonates born by elective caesarean have lower  
levels of hepcidin44. Previous work has shown that serum iron 
and TSAT decreases between birth and the first 6–12 hours post- 
partum in full term, healthy vaginally delivered newborns46,47.

The study described here will shed light on the effects of pre-
maturity and birthweight on body iron distribution immedi-
ately after birth and during the first week of life. Free ferric 
and ferrous iron (i.e. transferrin bound iron), haem-based iron  
molecules and their chaperone proteins (haem-hemopexin and  
haemoglobin-haptoglobin) will also be investigated.

Study objectives
The primary study objective is to characterize in detail how full 
term, preterm and low birthweight neonates modulate serum 

iron in the first 24 hours of life. We hypothesize that prema-
ture and/or low birthweight babies have a defect in their ability  
to sequester iron at 6–24 hours after birth in comparison to  
full term neonates with normal birthweight.

The secondary objectives are:

I.        Characterise how iron metabolism, handling and  
recycling differs between full term, preterm and low  
birthweight neonates at birth and during the first  
24 hours of life.

II.       Describe iron metabolism, handling and recycling in full 
term neonates at birth and during the first 7 days of life.

III.     Determine if sera from preterm and low birthweight 
neonates supports a greater level of ex-vivo growth 
of microorganisms that are common causes of neo-
natal sepsis in Africa and The Gambia (Staphylococ-
cus aureus, Klebsiella pneumoniae, Escherichia coli,  
Group B Streptococcus, Streptococcus pneumoniae and 
Salmonella enterica serovar Typhimurium (S. Typhimu-
rium hereafter)) in comparison to sera from full term,  
normal birthweight neonates.

IV.      Characterize frequencies and functionality of neu-
trophils, monocytes, dendritic cells, NK cells, B cells and  
T cells (D8 and CD4) in cord blood from full term,  
premature and low birthweight neonates.

Protocol
Study site
Study participants will be recruited from Kanifing General  
Hospital (formally Serrekunda General Hospital), in the Kanifing  
region of The Gambia, West Africa. Serrekunda is a large 
town, forming a peri-urban area with a population of around  
340,000, and is 13km to the southwest of the capital, Banjul. 
Serrekunda was originally made up of nine villages that have 
merged into a sprawling urban area. Annually, Kanifing General 
Hospital (KGH) provides antenatal care to 500–700 pregnant 
mothers. Mothers receiving antenatal care at other local health-
care facilities increase the total number of births at the hospital 
to 3500–4500 per year. The percentage of these that are live, low  
birthweight neonates (<2.5kg) is approximately 10%. Speci-
men samples will be subjected to primary processing on-site at 
KGH, followed by transport to Medical Research Council Unit  
The Gambia at LSHTM (MRCG) for storage and analysis.

Participants
In total, 450 healthy newly born neonates will be identified dur-
ing delivery at the Kanifing General Hospital Maternity Ward  
(Figure 1) starting in July 2017. Pregnant mothers must be over 
the age of eighteen years. After informed consent is obtained, 
neonates who meet the inclusion criteria will be enrolled 
into the study. For inclusion in the study, neonates must be  
healthy, medically stable, greater than 32 weeks gestational age 
and weigh more than 2000g. To be considered preterm (PTB) the 
neonates will be < 37 weeks gestational age (assessed by New 
Ballard Score48) and q 32 weeks gestational age. All neonates 
with a gestational age q37 weeks will be considered full term  
(FTB). To be considered low birthweight (LBW) the  
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Figure 1. Main study flow chart of all study procedures and exclusion criteria. Group A will contain neonates characterised by preterm 
birth and low birthweight (PTB+LBW); Group B will contain neonates characterised by preterm birth and normal birthweight (PTB+NBW); 
Group C will contain neonates characterised by full term birth and low birthweight (FTB+LBW); Groups D1, D2 and D3 will all contain 
babies characterised by full term birth and normal birthweight (FTB+NBW). In this study, preterm is defined <37 weeks gestation and low 
birthweight is <2500g. Exclusion criteria (α): Father refused, mother refused, family/escort refused, communication not possible or mother 
with severe disabilities. Exclusion criteria (β): Antibiotics or antimalarials given before delivery (<24 hours), referred to tertiary level health 
facility, absconded, known HIV-positive, severe pre-eclampsia, receiving TB treatment, antepartum haemorrhage, recent blood transfusion 
(within the last month), no foetal heartbeat, mother <18 years, refusal, recruited to another study and emergency caesarean section. 
Exclusion criteria (γ): Recruited to another study on-site, refusal, blood transfusion given in labour, antibiotics or antimalarials given during 
labour, neonate requires resuscitation (1 min APGAR), neonatal weight <2000g, neonate born breech, neonate born via vacuum delivery, 
neonate born caesarean section, foetal stillbirth, macerated stillbirth and major congenital malformations. Exclusion criteria (δ): Failed cord 
blood collection (serum tubes), failed cord blood collection (EDTA), cord blood processed >3 hours, neonate requires resuscitation (10 min 
APGAR), absconded and route 2B refusal. Exclusion criteria (ε): Mother birth check refusal, father birth check refusal, family escort birth 
check refusal, mother <18 years, recruited to another study on-site, antibiotics or antimalarials given to mother before delivery (<24 hours), 
neonate has had surgery, neonates sibling twin was recruited, neonate given antibiotics (other than tetracycline eye ointment), neonate 
given iron supplementation, neonatal sickness (tone, activity, feeding, heart rate, respiratory rate, abnormal anterior fontanelle), neonatal 
temperature (<36.5°C or >37.5°C), major congenital malformations (neonate), New Ballard Score (<32 weeks), failed V1 (serum), failed V1 
(EDTA), failed V1 (both EDTA and serum), mother V1 bleed refusal, father V1 bleed refusal, and family/escort V1 bleed refusal. Exclusion 
criteria (ζ): neonatal sickness (tone, activity, feeding, heart rate, respiratory rate, abnormal anterior fontanelle), neonatal temperature (<36.5°C 
or >37.5°C), neonate has had surgery, neonate given antibiotics (other than tetracycline eye ointment), neonate given iron supplementation, 
failed V2 bleed, Mother community/V2 bleed refusal, father community/V2 bleed refusal, and family community/V2 bleed refusal.
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neonates will weigh < 2500g. All neonates weighing q 2500 g will 
be considered normal birthweight (NBW).

The study groups are:

Group A (PTB+LBW): Neonates who are both preterm and low 
birthweight.

Group B (PTB+NBW): Neonates who are preterm and normal 
birthweight.

Group C (FTB+LBW): Neonates who are full term but low  
birthweight.

Group D (FTB+NBW): Neonates who are full term and normal 
birthweight.

In addition to the main study, 300 FTB neonates of the 450 
neonates will also be included into a sub-study, which aims  
to describe serum iron markers in full term babies (Group D, 
FTB+NBW only) over the first week of life.

Study design
This is a proof-of-concept, observational cohort study (Groups 
A, B, C and D) with an embedded short prospective cohort  
study (Group D divided into D1, D2 and D3).

Entry evaluation
Consent and enrolment. There are two routes into the study enrol-
ment (Figure 2). Pregnant mothers who are receiving antena-
tal care on-site at KGH, will be approached at an antenatal visit 
and voluntarily sensitised to the study requirements and proto-
col (Route 1). Pregnant women, who are sensitised will not be  
required at that point to give written or verbal consent. This 
group will be provided with study information sheets and encour-
aged to discuss study participation with their family. When the 
pregnant woman returns to KGH Maternity Ward to deliver  
(some mothers will choose to deliver at other healthcare facili-
ties), she will be asked to read the full study information sheet 
(or have it read to her by a study nurse if she is not literate) 
and provide formal written consent to the study involvement  
for their neonate (see Extended data49–51).

Route 2 will provide an alternative route of enrolment for preg-
nant mothers, that would like their neonate to be part of the 
study but have been receiving antenatal care at another facil-
ity before delivering at KGH maternity ward. In route 2, healthy, 
pregnant women will enter the KGH ward to deliver and will be  
approached to provide written formal consent to umbilical cord 
blood collection and storage only. No testing or laboratory proc-
esses will be conducted on their sample, until full study consent 
is gained post-delivery. The cord blood sample will be stored at 
4°C (within the maternity ward), until the mother’s pain and 
discomfort subside (2–6 hours post-delivery). At this point,  
the mother and/or father will be invited to provide written formal 
consent on full study enrolment. If, at this point, mother and/or 
father refuse full study consent post-delivery, the previously col-
lected personal information and umbilical cord sample will be 
safely discarded.

Pre-delivery screening
In both Route 1 and Route 2 enrolment, mothers must provide  
written consent before assessment of personal information (ante-
natal card) and questioning can begin. After consenting, mothers 
will be asked for their demographic information and their per-
sonal contact details. Pregnant mothers will be excluded from 
the study if they are below the age of 18 years, have no foetal 
heartbeat detected upon admission, known to be HIV-positive,  
in receipt of Mycobacterium tuberculosis therapy, taken antibiot-
ics in the last 24 hours, had a blood transfusion in the last month, 
suffering from severe pre-eclampsia or antepartum haemor-
rhage, or in another research study. Mothers can refuse to be part 
of the study at any stage of the study protocol. Pregnant women  
that are referred at this point to a tertiary level healthcare facility, 
will be excluded from the study.

Delivery procedures, post-delivery screening and umbilical 
cord blood collection
Delivery procedures and screening. Study nurses will assist 
clinical KGH maternity ward staff in the delivery process and 
collect data via electronic case report form (eCRF) on their  
designated study tablets. Neonates will be excluded at the delivery  
stage of the study for the following reasons: major congenital 
malformations (not including polydactylism), blood transfusions  
given to mother or neonate, severe birth asphyxia (requiring 
resuscitation), neonates born via breech, vacuum or via caesarean 
section, or a birthweight <2000g. After the delivery stage of the 
study protocol, neonates can be excluded from the study follow-
ing the detection of infection or illness (information gained from 
full blood count analysis or review of systems). Neonates will  
also be removed from the study protocol, if medication is 
given (not including intramuscular vitamin K, tetracycline eye  
ointment or any immunisations). All medication that is given 
to mothers and neonates will be recorded. Mothers will be able 
to refuse study participation at any stage. Mothers that deliver  
multiple newborns will only be invited to consent and enrol  
one of their neonates into the study.

Umbilical cord blood collection. Once the neonate is fully deliv-
ered, one-minute delayed cord clamping will be used (following 
World Health Organisation (WHO) policy52). During the one-
minute delay, the one-minute APGAR score will be conducted.  
If the neonate requires resuscitation, the neonate will be excluded 
from the study. After the umbilical cord has been removed and 
cleaned, a trained study nurse will identify the umbilical arter-
ies and the umbilical vein. Blood will be collected from both. 
The tubes will be placed in the cool box for 1-3 hours before  
transfer to the study laboratory for primary processing. If the 
mother is enrolled by route 2, the mother will be asked to  
provide written consent to full study recruitment before the  
sample is sent for primary laboratory processing.

Hospital assessment and 1st venous blood draw
Hospital health assessment (study recruitment and group  
allocation). At 6–24 hours post-delivery, recruited mothers 
and their neonates will be invited to a private consultation with  
the study research clinician. Further demographic data will 
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Figure 2. NeoInnate Study enrolment route and blood draw design. Group A contains neonates characterised by preterm birth and low 
birthweight (PTB+LBW); Group B contains neonates characterised by preterm birth and normal birthweight (PTB+NBW); Group C contains 
neonates characterised by full term birth and low birthweight (FTB+LBW); Groups D1, D2 and D3 all contain babies characterised by full term 
birth and normal birthweight (FTB+NBW).
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be collected, along with a photograph of the antenatal card to  
gather gestational age data (fundal height, last menstrual period 
and ultrasound), mother’s last haemoglobin level before deliv-
ery (dated), known sickle cell status, neonate immunisations, and  
medication given to the mother (pre, during and post-delivery) 
and the neonate. A complete review of systems of the mother 
and neonate plus anthropometric data on the newborn will then  
be collected. Neuromuscular and physical maturation of each 
neonate will be assessed using the New Ballard Score48.

Neonates will be excluded if they score less than 32 weeks of 
gestation. From this assessment, the neonate will be assigned 
to a specific study group. If the neonate is allocated to the 
Group D (FTB+NBW) group, the neonate will be allocated to a  
randomised bleed group (q24 hours - <80 hours (Group D1);  
q80 hours - <136 hours (Group D2); and q136 - <192 hours  
(Group D3). Failure to meet the inclusion criteria at this stage  
of the study protocol, will result in exclusion from the study.

1st venous blood draw (all neonates). A blood sample will 
be collected from all neonates that have passed the inclusion  
criteria in the hospital health assessment. Immediately after the 
health assessment, a venous blood draw will be performed (6–24  
hours post-delivery). PTB and/or LBW neonates will donate 
2ml of venous blood. FTB+NBW neonates will donate 3.5ml  
of venous blood. All samples will reach the laboratory within  
three hours post collection for primary processing.

Community health assessment and 2nd venous blood draw
Community health assessment. Study nurses will visit all moth-
ers or enrolled neonates at their homes at least once. At that 
visit, a physical examination of the neonate will be completed.  
The following information will also be collected: neonatal 
immunisation history, a complete review of systems of the 
mother and baby, and any medication given to the mother or  
neonate since delivery. Mothers will also be provided with health 
education and study contact details (should the neonate become 
unwell).

2nd venous blood draw Group D (FTB+NBW) only. At this point, 
if the mother and neonate are deemed to have passed the screen-
ing process and the neonate is in Group D, then the neonate  
will have its second and last venous blood draw (3.5ml). All  
samples will reach the laboratory within three hours post collection 
for primary processing.

Laboratory evaluations
Blood samples. Whole blood samples will be assessed for: full 
haematology panel (using a Medonic M20M GP), glucose-6-
phosphate dehydrogenase deficiency and sickle trait. All serum 
samples collected will be assessed by ELISA for the follow-
ing: IL6, IL22, free haem, hepcidin, hemopexin, lipocalin-2, 
lactoferrin, and foetal haemoglobin. Additionally, serum ferri-
tin, serum iron, UIBC, soluble transferrin receptor (sTfR), trans-
ferrin, C-reactive protein (CRP), haptoglobin, and alpha 1-acid 
glycoprotein (AGP) will be assessed using a fully automated 
biochemistry analyser (Cobas Integra 400 plus) Additionally, 
umbilical WBC will be processed and analysed for exploratory  
secondary analysis 4.

Bacterial growth assays. Ex vivo growth of bacteria (includ-
ing clinical and laboratory isolates of Staphylococcus aureus, 
Klebsiella pneumoniae, Escherichia coli, Enterobacter spp.,  
Enterococcus spp., and Salmonella Typhimurium) in participant 
serum as in Cross et al. (2015)53 will be performed.

Study outcomes
The primary outcome variables will be TSAT (transferrin  
saturation) and serum iron.

The secondary outcome variables will be hepcidin; hemo-
pexin; haptoglobin; IL22; free serum haem and haemoglobin; 
foetal haemoglobin; lactoferrin; lipocalin-2; IL6; C-reactive  
protein; alpha-1-acid glycoprotein; transferrin concentration; 
soluble transferrin receptor; unbound iron-binding capacity;  
ferritin; haemoglobin; WBCs types and numbers in cord blood 
samples and ex vivo bacterial growth.

Data entry, handling, storage and security
All protocol-required field data will be captured electroni-
cally on an electronic eCRF or a paper case report form (CRF) 
that will be completed for each included participant. After giv-
ing written consent the pregnant women will be given a study  
identification number, which will be used in all future data-
sets for subject anonymity. Field data will be collected ver-
bally and from antenatal cards by study nurses. Collected data 
will be entered in real time using eCRFs developed on top of a  
REDCap (Research Electronic Data Capture) database and pub-
lished on Samsung Galaxy Tab 3 SM-T111 handheld devices. 
Collected data will be transported to the database via a direct 
secure connection over the 4G mobile network. Laboratory related 
data will be extracted directly from laboratory equipment and 
uploaded to the database. Any data collected on the paper format 
will be double entered by a trained data entry clerk. The local  
co-investigator will review all forms and identify any errors 
prior to data entry or to marking data as complete. The study 
data will also be validated through automated and manual vali-
dation methods implemented in the study database applica-
tion system. The study database will be custom-developed. All 
paper CRF will be stored in a locked file archive. Electronic 
data will be stored on the local dedicated server maintained at 
MRCG. The study will be conducted in compliance with Good  
Clinical Practice. Study personal security measures will include 
controlled access limited to authorised users only, physi-
cal security, remove identifiable information (anonymization),  
avoidance of third-party cloud storage and password protection.

Sample size and power
This study will target recruitment of 150 ‘’exposed” neonates 
which will include a target of 50 neonates in each Group A, 
B and C. 300 neonates will be recruited for Group D (“unex-
posed”). The study will have constraints from time, budget,  
loss to follow up, haemolysis during sample collection, insuf-
ficient blood volume and the distribution of new births in each  
group at the Kanifing General Hospital. 

Based on this, we have run simulations (Stata/IC 15.1) to  
calculate the power to detect a range of differences comparing 
groups for example Groups D and A with respect to the primary 
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outcomes TSAT and serum iron. We did not calculate power 
for the secondary outcomes, which are considered exploratory. 
The simulation was run using a linear regression model assum-
ing a lognormal distribution for the response variables TSAT and 
serum iron levels 6–24 hours after birth. Data from a previous  
study (Prentice S, personal communication) was used to obtain 
mean and SD estimates for TSAT and serum iron both at base-
line and 6–24 hours after birth. The predictor variables were 
the Groups (A–D) with Group D as the reference. The model 
was adjusted for the baseline (cord blood levels). We also  
examined the power assuming a normal distribution for TSAT 
(i.e. without log transformation). The significance level consid-
ered was 0.05 and the simulation was run for 100000 iterations.  
This process was repeated for the following four different sam-
ple size scenarios which we refer to as N1, N2, N3 and N4  
respectively:

N1) Group A=Group B =Group C =50 neonates

 N2) Group A=Group B =25 neonates and Group C =50 neonates

 N3) Group A=Group B =10 neonates and Group C =50 neonates

 N4) Group A=Group B =50 neonates and Group C =10 neonates

For all the above four cases, D=300.

The simulation results for the baseline adjusted model with 
log transformation show that for sample size scenario N1, the 
minimum mean differences that can be detected with 80% 
power were about 4% and 2.5 µmol/L for TSAT and serum iron 
respectively (Figure 3A and 3B). These correspond to effect  
sizes of 0.35 and 0.39 respectively. The power drops substan-
tially if smaller numbers were to be recruited as in scenarios N2  
(A=B=25) and N3 (A=B=10). Under N2 and N3, the minimum 
mean differences that can be detected with 80% would increase  
to about 5.8% and 9.1% for TSAT (Figure 3A) and 3.3 µmol/L  
and 5 µmol/L for serum iron (Figure 3B). The results for 
scenario N4 can be considered as subset of N1-N3 by  
rearranging Groups A, B and C.

Statistical analysis
The primary research objective is to examine if preterm and/or 
low birthweight neonates (“Exposed”) have a reduced ability  
to sequester iron at 6-24 hours after birth in comparison  
to full term neonates with normal birthweight (“Unexposed”)?

We hypothesize that FTB+NBW (Group D) neonates on 
average will have lower values of TSAT and serum iron  
compared to “Exposed” (PTB or LBW babies) (Figure 4). Ini-
tially, we will analyse all “Exposed” (Groups A+B+C) vs “Unex-
posed” (Group D). Each neonate will be further classified by his  
or her gestational age (premature vs. full term) and birthweight 
(low vs. normal) in a 2x2 table (Table 1). Linear regression  
models will be used in order to evaluate the difference in 
mean between each Group A-C and D; that is where D will be  
the reference group. TSAT and serum iron levels will be log  
transformed before fitting the models (if necessary). Both the  
unadjusted and adjusted (for the cord blood level) mean  
differences together with the 95% CI will be calculated.

In the second stage of analysis, we will assess the effect of poten-
tial confounding variables using the regression models. Covari-
ates to be considered include the specific time of measurement, 
demographic and health variables. The time effect may not be 
linear, and this will be investigated in the further regression  
models. To reduce the effects of multiple testing, data analy-
sis will be driven by a predefined primary study hypothesis. Any  
exploratory analyses conducted (in the absence of predefined 
study hypotheses) will be considered hypothesis-generating, rather 
than confirmatory. In order to reduce the levels of missing and  
inaccurately entered data into the database, all clinical, demo-
graphic and laboratory data will be entered in real time via elec-
tronic data capture, with automated and manual validation methods  
implemented. The study design does not provide for the recruit-
ment of equal numbers of subjects in each month of the  
year (or during the dry vs wet seasons). The Gambia has a 
higher birth rate during the months of September–December in  
comparison to other months54.

In order to remove this potential source of bias, we will adjust 
for month of birth and/or season in the regression analysis. If the  
missing data rates is more than 5%, we will consider imputa-
tion. The follow-up duration is relatively short. Thus, we expect 
little bias from loss to follow-up. If loss to follow-up rate is  
considerably different between groups, we will perform sensi-
tivity analyses to examine the robustness of results. We will also 
consider sensitivity analysis fitting a multivariate regression model 
where the main outcomes of interest (including TSAT, serum 
iron and hepcidin) will be jointly regressed to the same set of  
predictors.

The analysis for the secondary objectives are described below:

I.    Characterise how iron metabolism, handling and 
recycling differs between full term, preterm and low  
birthweight neonates at birth and during the first  
24 hours of life.

A similar strategy will be used as for the primary objective. Regres-
sion modelling will be used to evaluate the difference in means 
between each Group A-C and D; D will be the reference (“Unex-
posed”) group. The effects of potential confounding variables  
will also be assessed using further regression modelling.

II.    Describe iron metabolism, handling and recycling in 
full term neonates at birth and during the first 7 days 
of life.

Analysis of the longitudinal data will involve generalised esti-
mating equations incorporating time of measurement. We will  
include spline terms at each time point to evaluate the change in 
the outcomes (all primary and secondary outcome parameters)  
over time during the transition period from cord to 24–79; 80–135; 
136–192 hours after birth. Note that this will only include data 
collected from Group D neonates and will not be a comparison 
between Groups A–C and D neonates.

III.    Determine if sera from preterm and low birthweight 
neonates supports a greater level of ex-vivo growth of 
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Figure 3. Estimated power to detect a given difference between Groups A vs D based on simulation using a linear regression 
model adjusted for baseline for three sample size scenarios. N1 (Group A=Group B=Group C=50 neonates); N2 (Group A=Group  
B =25 neonates and Group C=50 neonates); N3 (Group A=Group B =10 neonates and Group C=50 neonates); N4 (Group A=Group B=50 
neonates and Group C =10 neonates).

Figure 4. An example of hypothetical scenario for TSAT 
values between the groups to be compared. In this example: 
(i) Time 0 refers to average cord blood levels (ii) Time 6-24 refers 
to the mean level in the 6-24 hour period after birth. (iii) T1, T2, 
represent TSAT in 1 and 2 above and $T=T2-T1 for full term, normal 
birthweight (Group D) (iv.) T1’, T2’and $T’=T2’-T1’ same as above  
but for the premature, low birthweight (Group A). Hypothesis: H0:  
T2=T2’ vs. HA: T2wT2’.

Table 1. Four combinations 
in total for exposure: a: Pre, 
Low; b: Pre, Normal; c: Full, 
Low and d: Full, Normal.

Birthweight 
(BW)

Low Normal

Term Pre A B

Full C D

microorganisms that are common causes of neona-
tal sepsis in Africa and The Gambia (Staphylococcus  
aureus, Klebsiella pneumoniae, Escherichia coli, Entero-
bacter spp., Enterococcus spp., and S. Typhimurium)  
in comparison to sera from FTB+NBW neonates.

The bacterial growth will be analysed in a similar method 
as described in Cross et al. (2015)53 in order to determine if  

changes in iron availability modulate the growth. Growth  
assays will be fitted to a standard form of the logistic equation:
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Here, the population size at the beginning of the growth 
curve is given by N0. The carrying capacity is given by K.  
The intrinsic growth rate of the population is r. We will gener-
ate the best fitting values of K, r and N0 for the growth curve  
data. Additionally, for each bacterium, we compare the time 
at which the population density reaches 1

2
K (inflection point), 

the fastest possible generation time (doubling time) and the  
area under the logistic curve obtained by taking the integral 
of the logistic equation. This will be used to assess growth  
curves from different sample types (Cord vs V1) and between  
the four study groups.

IV. Characterize frequencies and functionality of neutrophils, 
monocytes, dendritic cells, NK cells, B cells, T cells (D8 
and CD4) in cord blood from full term, premature and low  
birthweight neonates.
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Exploratory analysis will be conducted using linear regressions 
modelling.

Statistical analyses will be performed using STATA (Stata-
Corp. 2017. Stata Statistical Software: Release 15. College 
Station, TX: StataCorp LLC); R (R Foundation for Statistical 
Computing, Vienna, Austria.) and Data Desk (Data Description  
Inc Ithaca NY). All files used will have an accompanying data  
dictionary. Annotated STATA do-files or R files will be used to 
describe any data transformations and statistical tests used.

Dissemination of findings
The study results will be published in relevant peer-reviewed 
journals and key findings will be presented at international sci-
entific meetings. Data sharing will be in agreement with the  
sponsor policy on research data sharing and with the Bill &  
Melinda Gates Foundation Global Access requirements.

Study status
The study is in the data collection phase.

Discussion
Humans and bacteria are involved in an on-going tug of war over 
iron. Each side has evolved complicated and varied iron-acquisition  
mechanisms in an effort to turn the tide of war in their  
own favour55. Nutritional immunity describes the processes 
by which the human host tries to starve invading organisms of  
nutrients, especially iron.

This study aims to determine if premature and low birthweight 
babies have a defect in their ability to sequester iron during the 
first 24 hours of life. The study design will produce a detailed 
and extensive picture of iron metabolism in neonates. To our 
knowledge, no other study has tried to analyse such a large  
and diverse collection of iron and infection variables in 
neonates born in Sub Saharan Africa. The study will enrol sub-
jects who are all at an increased risk of neonatal infection, and  
subsequent sepsis and death.

A potential limitation of this study is the inadequacy of using 
the New Ballard Score as the only method of gestational aging.  
Original and New Ballard Score are reported to overestimated 
gestational age compared to ultrasound and in particular, misclas-
sify preterm infants as term newborns56. Additionally, newborn  
clinical assessments as a whole, tend to underestimate gesta-
tional age in growth-restricted neonates56. The gold standard of  
gestational aging is an ultrasound in the first trimester57.  
However, this procedure is rarely correctly completed in this 
study population. If it is documented on the mother’s antenatal  
records, care will be taken to record it. Limits of the study also 
include that HIV status, TB status and iron supplementation  
given are all gained from the antenatal records of the mother.  
Furthermore, antenatal records will not contain all information  
on medication given in every mothers’ pregnancy. As a result,  

care will be made to extensively question participants mother’s  
during verbal one-to-one consultation with our study research  
clinician.

In conclusion, our overarching study goal is to evaluate the likeli-
hood that novel products designed to induce hypoferremia (poten-
tially via mini-hepcidins58) may be useful in the future for the 
prevention of neonatal sepsis in high risk babies. This could be 
produced by a transient redistribution of iron away from the cir-
culation, thus applying a bacteriostatic brake on any bacteria that  
have crossed into the baby’s systemic circulation and hence 
boosting host survival in vulnerable newborns. We hope this may  
ultimately help reduce the use of antibiotics in maternal and  
neonatal wards worldwide.

Ethical approval
This study has been approved by The Gambia Government/MRC 
Joint Ethics Committee (no. SCC1525) and Ethics Commit-
tee of London School of Hygiene and Tropical Medicine (ref no. 
14316). The study procedures will be explained to the neonate’s  
mother/guardians orally or in writing. A neonate is only recruited 
into the study after the consent form has been signed/thumb  
printed by the mother/guardian.

This study was registered with clinicaltrials.gov (NCT03353051) 
on 27 November 2017.

Data availability
Underlying data
No data are associated with this article.

Extended data
Figshare: Cross et al. GatesOpen Research SCC1525v2__NeoIn-
nate_Participant Info&Consent form Route 1. https://doi.
org/10.6084/m9.figshare.8069195.v449

This project contains the following extended data:

•  SCC1525v2__NeoInnate_Consent form Route 1_v3 
Approved8Nov17.docx (Route 1 consent and informa-
tion sheet)

Figshare: Cross et al. GatesOpenResearch SCC1525v2_NeoInnate_
Consent form Route 2_Part 1_ (Umbilical Cord Blood Collection) 
- Labour Ward_v1.1-Approved 8Nov17. https://doi.org/10.6084/
m9.figshare.8069246.v150

This project contains the following extended data:

•  SCC1525v2_NeoInnate_Consent form Route 2_Part 
1_ (UCB Collection) - Labour Ward_v1.1-Approved 
8Nov17.docx (Route 2 consent and information sheet 
part 1)

Figshare: Cross et al. Gates Open Research SCC1525v2__NeoIn-
nate_Consent form Route 2_Part 2_(Post-Delivery) - ANC 
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Outside SGH v1-Approved 8Nov17. https://doi.org/10.6084/
m9.figshare.8069243.v151

This project contains the following extended data:

•  SCC1525v2__NeoInnate_Consent form Route 2_Part 
2_(Post-Delivery) - ANC Outside SGH v1-Approved 
8Nov17.docx (Route 2 consent and information sheet 
part 2)

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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Chapter 5 – Early postnatal hypoferremia in low birthweight and 
preterm babies: A prospective cohort study in hospital-delivered 
Gambian neonates (Main Paper) 
 
 

Summary of Chapter 

 

BACKGROUND: Neonates, particularly those born preterm (PTB) and with low birthweight 

(LBW), are especially susceptible to bacterial and fungal infections that cause an estimated 

225,000 deaths annually globally. Iron is a vital nutrient for the most common organisms 

causing septicaemia. Full-term babies elicit an immediate postnatal hypoferremia assumed 

to have evolved as an innate defence. We tested whether PTB and LBW babies are capable 

of the same response. 

 

METHODS: We conducted an observational study of 152 babies who were either PTB (born 

≥32 to <37weeks gestational age) and/or LBW (<2500g) (PTB/LBW) and 278 term, normal-

weight babies (FTB/NBW). Blood was sampled from the umbilical cord vein and artery, and 

matched venous blood samples were taken from all neonates between 6-24 hrs after 

delivery. We measured haematological, iron and proinflammatory biomarkers.  

 

FINDINGS: In both PTB/LBW and FTB/NBW babies, serum iron decreased 3-fold within 

12hrs of delivery compared to umbilical blood (7·5±4·5 vs 23·3±7·1ng/ml, P<0·001, n=425). 

Transferrin saturation showed a similar decline with a consequent increase in unsaturated 

iron-binding capacity. C-reactive protein levels increased over 10-fold (P<0·001) and 

hepcidin levels doubled (P<0·001). There was no difference in any of these responses 

between PTB/LBW and FTB/NBW babies.  
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INTERPRETATION: Premature or low birthweight babies are able to mount a very rapid 

hypoferremia that is indistinguishable from that in normal term babies. The data suggest that 

this is a hepcidin-mediated response triggered by acute non-infective inflammation at birth, 

and likely to have evolved as an innate immune response against bacterial and fungal 

septicaemia. 
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Research in context: 

Evidence before this study: 

We searched PubMed and Ovid Medline for publications that detail hepcidin, serum iron and 

TSAT concentrations in umbilical cord blood or venous blood taken in the neonatal period 

that were published before July 1, 2019 with restriction to publications in the English 

language. We used the search terms “neonate”, “hepcidin”, “TSAT” and “serum iron”. We 

excluded studies on non-humans, in medically unstable neonates or studies that did not 

provide details of gestational age for the study population. We identified 20 studies on 

hepcidin, 23 on TSAT and 51 on serum iron. Collectively, 59 publications contained research 

on full-term (FTB) neonates, and 16 on premature (PTB) neonates. Many of the retrieved 

publications focused on maternal-fetal iron endowment, where umbilical cord blood was 

used as a proxy for early neonatal blood. Very few publications have documented iron and 

inflammatory variables in matched umbilical and neonatal blood samples taken in the 

immediate hours (0-24h) after delivery. Analysis of the retrieved publications leads to the 

conclusion that neonatal hypoferremia may exist in all neonates, however the evidence is 

sparse and unclear, particularly in PTB newborns.  

 

Added value of this study: 

To our knowledge, this observational non-blinded study is the first to assess the independent 

effects of gestational age and birthweight on iron and infection parameters in healthy 

Gambian newborns in the first hours of life. Our findings confirm that a very rapid 

hypoferremia occurs in the early hours of postnatal life with evidence that it is mediated by 

an increase in hepcidin. Premature and low birthweight babies exhibited almost identical 

postnatal hypoferremic responses to full-term, normal-weight newborns.  
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Implications of all the available evidence: 

There is now clear evidence that neonates, including those with PTB or LBW, elicit a rapid 

and transient hypoferremia probably induced, at least in part, by hepcidin. The strength and 

consistency of this effect indicates that it may have evolved as an innate immune response 

designed to protect neonates from bacterial septicaemia. This suggests the possibility that a 

further enhancement or prolongation of hypoferremia (for instance by mini-hepcidins), might 

offer an additional tool in the armoury against antibiotic-resistant infections in newborns.  
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5.1 ABSTRACT 

 

BACKGROUND: Neonates, particularly those born preterm (PTB) and with low birthweight 

(LBW), are especially susceptible to bacterial and fungal infections that cause an estimated 

225,000 deaths annually globally. Iron is a vital nutrient for the most common organisms 

causing septicaemia. Full-term babies elicit an immediate postnatal hypoferremia assumed 

to have evolved as an innate defence. We tested whether PTB and LBW babies are capable 

of the same response. 

METHODS: We conducted an observational study of 152 babies who were either PTB (born 

≥32 to <37weeks gestational age) and/or LBW (<2500g) (PTB/LBW) and 278 term, normal-

weight babies (FTB/NBW). Blood was sampled from the umbilical cord vein and artery, and 

matched venous blood samples were taken from all neonates between 6-24 hrs after 

delivery. We measured haematological, iron and proinflammatory biomarkers.  

FINDINGS: In both PTB/LBW and FTB/NBW babies, serum iron decreased 3-fold within 

12hrs of delivery compared to umbilical blood (7·5±4·5 vs 23·3±7·1ng/ml, P<0·001, n=425). 

Transferrin saturation showed a similar decline with a consequent increase in unsaturated 

iron-binding capacity. C-reactive protein levels increased over 10-fold (P<0·001) and 

hepcidin levels doubled (P<0·001). There was no difference in any of these responses 

between PTB/LBW and FTB/NBW babies.  

INTERPRETATION: Premature or low birthweight babies are able to mount a very rapid 

hypoferremia that is indistinguishable from that in normal term babies. The data suggest that 

this is a hepcidin-mediated response triggered by acute non-infective inflammation at birth, 

and likely to have evolved as an innate immune response against bacterial and fungal 

septicaemia. 

 

Trial registration: clinicaltrials.gov (NCT03353051). Registration date: November 27, 2017.  

FUNDING: Bill & Melinda Gates Foundation (OPP1152353).  
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WORD COUNT: 247/250 
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5.2 INTRODUCTION 

 

Neonatal sepsis is the third highest cause of death globally, accounting for 225,000 deaths 

each year.1 It is projected that these numbers will increase as a consequence of the 

increasing global prevalence of antimicrobial resistance.2 

 

Physiological adaption to the postnatal environment in the first hours of life is critical for 

survival. At birth, babies transition from a semi-allogeneic, protected fetal setting to a 

microbe-rich extrauterine environment.3 The initial mass bacterial colonisation of mucosa in 

the digestive, respiratory and urogenital tracts, as well as the skin, occurs during the very 

early neonatal period.4 The maternal gut is the source of the majority of transmitted bacterial 

strains to the neonatal microbiome and common strains are also seeded from the maternal 

skin and the vaginal microbiome.5 The acquisition of symbionts can positively affect gut 

maturation, metabolic homeostasis and immune function in early life and beyond,6 but 

pathogenic bacteria and fungi pose an immediate risk unless contained. Adaptive immune 

responses require priming in neonates, and hence innate defence mechanisms play an 

important role in containment.  

 

Similarly, just before delivery or during the intrapartum period babies can be infected by 

micro-organisms, which may lead to early-onset neonatal sepsis (EONS) especially if the 

mother is colonised with pathogenic bacteria.7 Aspiration or ingestion of infected amniotic 

fluid in utero or infected secretions at birth are the common routes of infection. 

 

Iron is an important commodity in the host-pathogen battle for resources.8 It is a cofactor in 

numerous metabolic pathways that are critical for the human host as well as most 

pathogens. Therefore, systemic iron distribution is strictly regulated by the host.9 For many 

human pathogens, the acquisition of iron via a variety of molecular mechanisms can 
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enhance growth and virulence.8 Individuals with chronically high iron states (e.g. 

haemochromatosis) have an enhanced risk of bacterial infection,10 as well as increased free 

radical redox damage.11 Historic studies administering parenteral iron to Polynesian 

neonates infamously increased mortality rates by promoting Escherichia coli septicemias,12 

underlining the critical role that iron plays in the neonatal period. 

  

Cord blood, which has high levels of serum iron and transferrin saturation,13 has frequently 

been used as a proxy for neonatal iron status. However, previous work by our group and 

others has shown that healthy, vaginally-delivered, full-term babies profoundly decrease 

their serum iron and TSAT levels in the first 24h after birth- an adaptation that may have 

evolved as an innate defence against iron-requiring microorganisms.14 In the current study, 

we hypothesised that the greater susceptibility of preterm and low birthweight babies to 

neonatal infections might be because they are less able to elicit this defence. We 

prospectively tested this in hospital-delivered Gambian neonates. 

 

5.3 PARTICIPANTS AND METHODS 

 

Full details of the methods of this study can be found in the published protocol paper.15 

 

Study Design 

This observational study recruited well, hospital-delivered neonates into four different groups 

characterised according to birthweight and gestational age as shown in Figure 1. The 

primary analysis compares all babies exhibiting preterm birth (PTB), low birthweight (LBW) 

or both (PTB/LBW) versus full-term (FTB), normal birthweight (NBW) newborns 

(FTB/NBW)). Secondary analyses examine the PTB+NBW, FTB+LBW and PTB+LBW 

groups separately. 
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Ethics, standards and informed consent 

The study was approved by the Medical Research Council Unit The Gambia at London 

School of Hygiene and Tropical Medicine (MRCG at LSHTM) Scientific Coordinating 

Committee, the Joint Gambia Government/MRCG Ethics Committee (SCC1525) and the 

London School of Hygiene and Tropical Medicine Ethics Committee (Ref:14316). The study 

was conducted according to Good Clinical Practice (GCP) standards. All participants gave 

written, informed consent. 

 

Study setting 

Study participants were recruited from Kanifing General Hospital (formerly Serrekunda 

General Hospital), in the urban Kanifing region of The Gambia, West Africa. 

 

Recruitment, screening and enrolment 

In total, we planned to identify 450 healthy newly born babies during delivery at the Kanifing 

General Hospital (KGH) Maternity Ward. After informed consent was obtained, neonates 

who met the inclusion criteria were enrolled. For inclusion in the study, neonates were 

medically stable (no birth asphyxia nor signs of sepsis as judged by the attending study 

physician), ≥32 weeks gestational age and weighed  ≥2000g. Preterm babies (PTB) were 

<37 completed weeks gestational age (assessed by New Ballard Score16). Term babies 

(FTB) had a gestational age ≥37 completed weeks. Low birthweight (LBW) was defined as 

<2500g in line with the usual WHO definition. Neonates who weighed ≥2500g were defined 

as normal birthweight (NBW). The observational period began at delivery and lasted until the 

end of the 7th day of life. Data collection started on the 5th July 2017 and ended on 1st 

February 2019. 

 

Pregnant mothers were excluded from the study if they were below the age of 18 years, had 

no fetal heartbeat detected upon admission, were known to be HIV-positive, were in receipt 

of Mycobacterium tuberculosis therapy, had taken antibiotics in the last seven days, had a 
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blood transfusion in the last month, were suffering from severe pre-eclampsia or antepartum 

haemorrhage, or were in another research study.  

 

Babies were excluded at the delivery stage for the following reasons: major congenital 

malformations (not including polydactylism), blood transfusions given to mother or neonate, 

severe birth asphyxia (requiring resuscitation), neonates born via breech, vacuum or via 

caesarean section, or a birthweight <2000g (in order to avoid the additional burden of a 

blood draw in these vulnerable neonates as guided by the Joint Gambia Government/MRCG 

Ethics Committee).  

 

After the delivery stage, babies were excluded following the detection of infection or illness 

(information gained from a venous bleed or review of systems). Neonates were also 

removed from the study protocol if any medication other than intramuscular vitamin K, 

tetracycline eye ointment or immunisations were given. All medications given to mothers and 

neonates during the study period were recorded. Mothers who delivered multiple newborns 

were invited to enrol one of their neonates into the study. 

 

Sample collection 

Once the neonate was fully delivered, one-minute delayed cord clamping was used 

(following World Health Organisation (WHO) policy17). After the umbilical cord was removed 

and cleaned, a trained study nurse identified the umbilical arteries and umbilical vein. Blood 

was collected from each using separate blood draw equipment.  

 

At 6-24h post-delivery, recruited mothers and their neonates were invited to a private 

consultation with the study research clinician. Further demographic data were collected, 

along with a complete review of systems of the mother and neonate. Anthropometric data on 

the newborn was also collected at this point. Neuromuscular and physical maturation of 

each neonate was assessed using the New Ballard Score.16 Immediately after passing the 
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health assessment, a venous blood draw was performed on all neonates (2 ml for PTB/LBW 

neonates and 3·5 ml for FTB/NBW neonates). 

 

Laboratory analyses 

A full haematology panel (using a Medonic M20M GP, Boule Diagnostics, Spanga, Sweden) 

and glucose-6-phosphate dehydrogenase deficiency test (R&D Diagnostics Limited, 

Papagos, Greece) were conducted on whole blood. Serum was separated and stored at -

20oC prior to analysis of ferritin, iron, unsaturated iron-binding capacity (UIBC), soluble 

transferrin receptor (sTfR), transferrin, c-reactive protein (CRP), haptoglobin and alpha-1-

acid glycoprotein (AGP) using a fully automated biochemistry analyser (Cobas Integra 400 

plus, Roche Diagnostic, Switzerland). Transferrin saturation (TSAT) was calculated. Serum 

samples were assessed for hepcidin concentration by ELISA (hepcidin-25 (human) EIA Kit, 

DRG, USA) with a dynamic range of 0·135-81 ng/mL. Hepcidin reference material refined by 

Diepeveen et al18 was not used due to the lack of availability at the time of conducting 

laboratory analyses.  

 

In order to ensure a consistent assessment of haemolysis in all serum samples, batches of 

samples were thawed before entering the biochemistry analyser and visually scored by a 

single operator. A previously published specimen integrity chart for haemolysis was used as 

reference.19 Samples were scored 0 (yellow 0 g/L) to 6 (dark red 8 g/L). Samples scoring ≥5 

were removed from the analysis. All serum samples experienced one freeze-thaw cycle 

before biochemical analyses was conducted.  

 

Sample size determination 

This study targeted recruitment of 50 neonates in each of the 3 groups PTB, LBW and 

PTB/LBW and 300 FTB/NBW newborns. Sample size calculations for the primary outcomes 

of change in serum iron and TSAT between cord and the first neonatal samples were based 

on data from a previous study14 and are summarised in the published protocol paper.15 All 
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secondary analyses are considered exploratory and were not subjected to a formal sample 

size calculation. 

 

Statistical analysis 

The primary analysis compared responses in the PTB and/or LBW babies combined 

(PTB/LBW) versus FTB/NBW. Further subgroups of the PTB/LBW group (groups A-C as 

summarised in Figure 1) were also examined in the secondary analyses (see 

Supplementary Material). For continuous variables, baseline characteristics are presented 

as means (± SD) for normally distributed variables. All skewed data were transformed using 

the ladder command in STATA. The ladder command searches a subset of the ladder of 

powers for a transformation that converts the variable of interest into a normally distributed 

variable. Results were confirmed graphically by the gladder command. Categorical variables 

are reported as proportions. The rate of missing data was small (<5%), thus we did not 

impute missing data. Participant characteristics and iron status indicators were compared 

using 2-tailed t-tests or χ2 tests. Multiple regression was used to explore relationships 

between iron status indicators, participant characteristics, inflammatory and haematology 

markers. The relative strength of associations was assessed using standardised coefficients, 

which represent the effect on the outcome variable (expressed as a fraction of a standard 

deviation) caused by a one standard deviation difference in the predictor variable. Changes 

between cord and postnatal blood samples were assessed by paired t-tests. Comparisons of 

continuous variables between groups A-D were produced using repeat measures one-way 

analysis of variance. We examined the association between covariates and the three 

outcomes iron, TSAT and hepcidin status using linear regression models with backward 

elimination for variable selection. All models were adjusted for baseline (cord blood) levels. 

Unless otherwise stated, all hypothesis tests were two-sided at significance level of 0.05. All 

analyses were performed using DataDesk (Data Description Inc., Ithaca, USA) and STATA 

15 (StataCorp LLC, Texas, USA).  
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5.4 RESULTS 

 

Figure 2 is the CONSORT diagram summarising subject recruitment. Baseline 

characteristics for the 430 neonates completing the study are shown in Table 1. As per 

protocol, there was a large difference in birthweight between NBW (3199±376g) and LBW 

(2338±118g) newborns, with associated differences in length and head circumference. 

Gestational age was also lower in the PTB babies (35·6±0·7) than FTB (39·4±1·3wk). When 

the LBW and PTB babies were combined as PTB/LBW, their weight and gestational ages 

were significantly lower than the FTB/NBW newborns. Mothers of low birthweight babies 

were younger (26·8±6·6y) than FTB/NBW mothers (29·7±6·9y), but there were no other 

differences in maternal or neonatal characteristics (Table 1 and Supplementary Table 1 & 

2). 

 

Neonatal hypoferremia  

Figure 3 illustrates a profound hypoferremia occurring in the first day after parturition. There 

were no babies that failed to show a hypoferremic response and very few in whom the 

response was only moderate. Figure 4 shows that the decline had already occurred by the 

beginning of our sampling window at 6h post-delivery. Contrary to our initial hypothesis, 

there was no difference in the hypoferremic response between any of the PTB, LBW or 

PTB/LBW groups and the controls. For all the babies combined, serum iron decreased over 

3-fold from 23·3±7·1 to 7·5±4·5μmol/L (P<0·001) and TSAT decreased from 51·7±17·3 to 

15·0±6·9% (P<0·001) (Table 2). The mean decrease in serum iron from cord to postnatal 

blood was remarkably consistent across all groups (between 15·2 and 16·5μmol/L), 

equivalent to a range from 2·9 to 3·1-fold decrease (Table 3). Likewise, the spread of the 

decreases in TSAT between groups was very tight (between 35 and 39%), equivalent a 3·4 

to 3·5-fold reduction. Correspondingly there was a substantial increase in UIBC in all groups 

indicating an enhanced ability to sequester any free iron (22·9±10·5 to 43·5±15·9μmol/L, 
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P<0·0001 for all babies combined). Notably, ferritin, TIBC and haemoglobin levels increased 

from cord to the first neonatal bleed, and there was no change in transferrin; thus confirming 

that the decrease in serum iron was an active adaptation not related to altered 

haemodynamics. 

 

Figure 5 shows that all groups had similar hepcidin levels (20·9±13·8 in PTB/LBW vs 

19·4±14·4 ng/mL in FTB/NBW, P=0.3) in their cord blood. However, the cord blood from 

PTB neonates had slightly higher TSAT values (54·8±17·7 vs 50·2±16·9%, P=0·017) and 

serum iron (24·4±7·3vs 22·7±7·0 μmol/L, P=0·01) in comparison to FTB neonates. In the 

postnatal venous blood samples, all groups had similar hepcidin levels (37·4±23·5 in 

PTB/LBW vs 38·9±23·9ng/ml in FTB/NBW, P=0.5). The venous blood from PTB and LBW 

neonates had slightly higher TSAT values (16·1±8·4% and 16·2±5·3% vs 14·4±6·0%, both 

P=0.01) in comparison to FTB neonates. There is no evidence that these small differences 

in TSAT will translate into a clinically important difference in susceptibility to neonatal sepsis 

or infection. Additional comparisons can be seen in Supplementary Tables 3 & 4.  

 

Comparisons of further iron, infection and haematological parameters in umbilical cord and 

venous blood can be seen in Supplementary Table 5. Analysis of the babies subdivided 

into groups A-D is listed in Supplementary Tables 6, 7 and 8. As anticipated, based upon 

the lack of difference in hypoferremia between PTB, LBW and FTB/NBW neonates, there 

were no differences between the additional subgroupings of A-D. 

 

Factors associated with the decline in serum iron and TSAT 

CRP levels increased by over 10-fold between cord and postnatal blood (0·17±0·6 to 

2·16±4·0mg/L, P<0·001) and hepcidin levels doubled (19·9±14·2 to 38·4±23·7ng/ml, 

P<0·001). Figure 4 illustrates the timecourse of the changes.  

 



 

 177 

Table 3 lists the results of the regression analysis of factors associated with Day 1 serum 

iron. Use of standardised coefficients permits ranking in order of the effect size per standard 

deviation of the predictor variable. In univariate analysis CRP, hepcidin and transferrin were 

most strongly associated with serum iron. Note that CRP was entered as the reciprocal of 

the square root, so the direction of the coefficient is reversed (i.e. a high CRP was 

associated with a low serum iron). Haptoglobin, age of mother and birthweight were also 

significantly associated with serum iron. In multivariable analysis, CRP and hepcidin were 

the strongest correlates. The parallel analysis for TSAT showed broadly similar associations 

(Table 3). 

 

Factors associated with postnatal hepcidin levels 

Based on the pre-hoc assumption that hepcidin orchestrates the postnatal hypoferremia, we 

examined the factors associated with neonatal hepcidin levels on Day 1 (Table 4).  The 

strongest predictor was time of bleed with a negative coefficient. Examination of Figure 4C 

suggests that this was because hepcidin rose very fast at, or immediately after, parturition 

and was already starting to decline by 6h. Ferritin was positively associated with hepcidin, 

and serum iron was negatively correlated. Surprisingly there was no evidence of a cross-

sectional association between hepcidin and CRP.  

 

5.5 DISCUSSION 

 

The rapid and profound postnatal hypoferremia demonstrated in this study closely matches 

our prior findings in full-term, vaginally-delivered rural Gambian babies14 and the results of 

studies elsewhere.20,21 The 3·4-fold decrease recorded here is towards the top end of the 2-

4-fold range recorded in prior studies.14,20,21 We have previously proposed that this may 

represent an evolved innate immune response designed to deprive blood-stream bacteria of 

iron and hence create a hostile bacteriostatic environment.14 The current study was 
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designed to test the hypothesis that immature or growth-restricted neonates might have a 

lesser ability to trigger this innate defence and that this might explain their greater 

susceptibility to septicemias.22 Our hypothesis was firmly refuted. We showed that the 

premature and low birthweight neonates all exhibited a profound hypoferremia during the 

first 24h of life, with no detectable differences from the full-term, normal birthweight 

newborns. In fact, there was a remarkable similarity in the hypoferremic response across all 

the study groups that underscores the efficiency of the process and supports the likelihood 

that it occurs by the process of evolution.  

 

The host-pathogen battle for iron has been extensively studied23 and it has long been 

assumed that the hypoferremia of the acute phase response acts as an innate defence 

against iron-requiring organisms. Hepcidin is a key, though not necessarily the only,24 

regulator of this response.25 Inflammatory cytokines including IL-6, IL-22 and Type-1 

interferon rapidly upregulate hepcidin expression and release from the liver.26 Hepcidin 

causes hypoferremia by inhibiting the action of the transmembrane iron-exporter ferroportin 

in enterocytes and macrophages, thus blocking iron absorption and recycling.27 Injection of 

recombinant hepcidin results in the very rapid induction of hypoferremia in mice28 and 

humans.29  

 

In both univariate and multivariate analysis neonatal serum iron and TSAT levels were most 

strongly correlated with CRP and hepcidin (Table 3) suggesting that the hypoferremia is, at 

least partly, driven by an inflammatory response to the stress of the birth process and/or the 

exposure of the newborn to vaginal and/or gastrointestinal micro-organisms not previously 

encountered in utero. The modest proportion of variance explained in the full multivariate 

model (29% for serum iron and 22% for TSAT) might reflect the fact that both measures 

have been suppressed too close to their physiological lower limit and hence display a limited 

range. It is also possible that hepcidin-independent mechanisms, driven by effector 

molecules unmeasured in this study, are playing an additional role.24 A full examination of 
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the mechanism responsible for the hypoferremia would probably require studies in an animal 

model. Neonatal piglets may be a suitable model due to their low iron endowment at birth, 

low iron milk30, fast growth rate31 and similarities to human anatomy and physiology.32 These 

factors result in young porcine models often becoming iron deficient and anaemic without 

the need for low-iron diets (i.e. as seen in murine models).33 

 

Using ex vivo assays with sentinel bacteria, we have previously demonstrated that low TSAT 

values in serum from adults34 and neonates14 exerts a powerful bacteriostatic effect. In the 

neonatal study, growth rates of Escherichia coli, Streptococcus pneumoniae, Streptococcus. 

agalactiae and Staphylococcus aureus, were highly significantly lower in neonatal serum 

than in cord serum and for each organism growth rates were significantly associated with 

TSAT. S. aureus was least responsive, possibly reflecting its ability to utilise haem iron, 

though it was still clearly influenced by transferrin saturation. E. coli was most responsive, 

which may explain why intramuscular iron administration to Polynesian neonates increased 

septicaemia rates with a major shift towards E. coli as the most frequently identified cause.12 

The hypoferremia observed in the current hospital-based study (in both PTB/LBW and 

FTB/NBW babies) was more profound than we previously observed in rural home 

deliveries14 (TSAT declined to 15% versus 24% in rural babies) and hence the bacteriostatic 

effect would be expected to be even greater. 

 

There are several strengths and limitations to our study. The large sample size allows us to 

confidently exclude any clinically-meaningful differences in the postnatal response of 

preterm and low birthweight babies compared to the full-term normal birthweight neonates. 

By protocol, we did not recruit mothers with complex medical histories (e.g. pre-eclampsia, 

antepartum haemorrhage or antenatal infection) or sick babies (e.g. with birth asphyxia or 

suspected sepsis). We did not recruit newborns born <32 completed weeks gestation and/or 

<2000g birthweight, or those delivered via c-section, vacuum or forceps. We cannot 

speculate whether similar hypoferremic responses would occur in such cases, but 
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reciprocally we can conclude that the responses we observed are a characteristic feature of 

normal human birth and were not elicited by pathological circumstances. In order to allow 

mothers to recover from their delivery and the neonates to be stabilised and checked for 

inclusion, we constrained our first postnatal blood draw to after 6h post-delivery. With many 

samples collected soon after this point, we have demonstrated that the reduction in 

circulating iron levels occurs very rapidly, but we cannot state how rapidly. We did not 

measure pro-inflammatory cytokines (e.g. IL-6 and IL-22) which might have provided 

additional insights into the mechanisms eliciting hypoferremia. Similarly, we did not attempt 

to address any possible hepcidin-independent mechanisms because the putative mediators 

remain unknown. Such studies may require animal models. 

 

In conclusion, our results suggest that the innate postnatal iron restriction strategy in the first 

hours of life has evolved as an intrinsic mechanism to protect neonates from common 

pathogens and/or free-radical damage, and occurs regardless of gestational age or 

birthweight. This hypoferremia is at least partly mediated by the hormone, hepcidin. The 

trigger mechanism, relation to maternal iron status, and its effect on susceptibility to 

systemic bacterial infections require further investigation.  

 

Our results highlight the importance of hypoferremia as a conserved mechanism of 

protection, and prompt further research into the use of iron restriction as a transient 

bacteriostatic mechanism to limit bacterial growth and virulence in other instances of 

infection. Hypoferremia can slow the multiplication of bacterial pathogens,34 which in 

combination with antibiotics, could allow enough time for the adaptive immune system to 

fight the infection. Augmentation of innate immunity in neonates and other at-risk groups 

(elderly or immunocompromised) might be achieved by the use of small molecule orally-

administered mini-hepcidins currently under development as hepcidin agonists.29,35 
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Abbreviations 

AGP = Alpha-1-acid glycoprotein 

CRP = C-reactive protein 

ELISA = Enzyme-linked immunosorbent assay 

EONS = Early-onset neonatal sepsis 

FTB = Full-term birth 

G6PD = Glucose-6-phosphate dehydrogenase 

GCP = Good Clinical Practice 

IL-6 = Interleukin 6 

IL-22 = Interleukin 22 

KGH = Kanifing General Hospital 

KMC = Kanifing Municipal Council 

LBW = Low birthweight 

MRCG = Medical Research Council Unit The Gambia at LSHTM 

NBW = Normal birthweight 

PI = Principal investigator 

PTB = Preterm birth  

SCC = Scientific Coordinating Committee 

sTfR = Soluble transferrin receptor 

TIBC = Total iron-binding capacity 

TLR = Toll-like receptor 

TSAT = Transferrin saturation 

UIBC = Unbound iron-binding capacity 

V1 = Venous bleed 1 

WHO = World Health Organisation  
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Figure and Table Legends: 

 

Figure 1: Schematic diagram of all study groupings and the generation of subgroups. 

PTB = preterm birth, FTB = full-term birth, LBW = low birthweight and NBW = normal 

birthweight. FTB/NBW neonates are FTB+NBW. PTB/LBW neonates are FTB+LBW, 

PTB+NBW and PTB+LBW neonates. 

 

Figure 2: CONSORT diagram for participant flow. PTB/LBW are displayed in GREEN, 

and FTB/NBW in ORANGE.  

 

Figure 3: Analysis of serum iron (A), TSAT (B) and hepcidin (C) in umbilical cord 

(BLUE) and post-natal venous blood (RED) based on all study groupings. Horizontal 

lines represent the arithmetic group means. FTB/NBW are FTB+NBW. PTB/LBW are 

FTB+LBW, PTB+NBW and PTB+LBW neonates. *** = all group comparisons between cord 

and venous blood are statistically significant (P<0·001). Hepcidin displayed as log10. 

 

Figure 4: Timecourse of the changes in serum iron (A), TSAT (B), hepcidin (C) and 

CRP (D) in the first day of life. Means ± 95% CI. PTB/LBW are RED columns and 

significance lines. FTB/NBW are BLUE columns and significance lines. Columns are plotted 

according to mean time of bleed for the categories 0, 1-8, 9-16 and 17-24 hours. **** = 

P<0·0001, *** = P<0·001, ** = P<0·01, * = P<0·05. No significance line = P>0·05. 

 

Figure 5: Comparisons of serum iron (A = cord, B = venous), TSAT (C = cord, D = 

venous) and hepcidin (E = cord, F = venous) in cord and post-natal venous blood. 

Means ± 95% CI. FTB/NBW are BLUE columns. PTB/LBW are RED columns. PTB are 

DARK GREY columns. LBW are LIGHT GREY columns. Significance lines represent the 

comparison of PTB/LBW, PTB or LBW groups to the FTB/NBW group. ** = P<0·01, * = 

P<0·05. No significance line = P>0·05. 
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Table 1: Participant Characteristics. Demographic, clinical and pregnancy outcome 

characteristics of the women and their newborns. Data are presented as arithmetic mean (± 

SD) and analysed by one-way analysis of variance or as a proportion (%) and analysed 

by Pearson χ2 test. P values in bold font are considered significant based on P<0·05.  

 

Table 2: Iron Parameters (cord vs venous sample) for FTB/NBW, PTB/LBW, PTB and 

LBW neonates. Data are presented as mean (± SD) and analysed by one-way analysis of 

variance. P values in bold font are considered significant based on P<0·05. Skewed 

variables were transformed as follows: log10 (serum iron), 1/sqrt (TIBC), sqrt (ferritin), 1/sqrt 

(CRP), log10 (hepcidin). 

 

Table 3: Linear regression of factors associated with postnatal serum iron and TSAT.  

All regressions were adjusted for 4 grades of visually assessed haemolysis. Ranked 

according to their standardized coefficients calculated in STATA. a 1/sqrt(CRP), b log10 

(hepcidin).  

 

Table 4: Linear regression of factors associated with postnatal serum hepcidin.  

All regressions were adjusted for 4 grades of visually assessed haemolysis. Ranked 

according to their standardized regression coefficients calculated in STATA. a sqrt(ferritin), b 

log10 (serum iron), c sqrt(sTfR).  
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Figure 1  
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Figure 2  
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Figure 3 
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Figure 4 
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Figure 5 
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Table 1 – Participant characteristics 

 Whole Population FTB/NBW PTB/LBW P value FTB PTB P value NBW LBW P value 

Number of participants (n) 430 278 152 ·· 289 141 ·· 377 53 ·· 

Characteristic Mean (± SD) 

Gestational age (Weeks) 38·1 (±2·1) 39·4 (±1·3) 35·8 (±1·1) <0·001 39·4 (±1·3) 35·6 (±0·7) <0·001 38·4 (±2·0) 35·9 (±1·7) <0·001 

Birth weight (g) 3092 (±453) 3299 (±368·3) 2715 (±338·5) <0·001 3264 (±402·2) 2741 (±336·9) <0·001 3199 (±376·3) 2338 (±117·7) <0·001 

Head circumference (cm) 34·0 (±1·2) 34·6 (±1·0) 33·0 (±0·1) <0·001 34·5 (±1·1) 33·1 (±0·1) <0·001 34·3 (±1·1) 32·3 (±0·8) <0·001 

Length (cm) 49·2 (±1·9) 50·0 (±1·6) 47·7 (±1·6) <0·001 49·9 (±1·7) 47·7 (±1·6) <0·001 49·6 (±1·7) 46·7 (±1·4) <0·001 

Maternal haemoglobin ≤7 days before delivery (g/dl) 11·6 (±1·8) 11·6 (±1·8) 11·4 (±1·8) 0·25 11·6 (±1·8) 11·5 (±1·8) 0·35 11·5 (±1·8) 11·8 (±1·7) 0·75 

Age of mother (Years) 29·4 (±6·9) 29·7 (±6·9) 28·7 (±6·8) 0·16 29·6 (±7·0) 28·9 (±6·8) 0·35 29·7 (±6·9) 26·8 (±6·6) 0·003 

1 min APGAR score (0-10) 9·7 (±0·7) 9·6 (±0·8) 9·7 (±0·6) 0·51 9·6 (±0·8) 9·8 (±0·6) 0·26 9·7 (±0·7) 9·6 (±0·8) 0·7 

Time from admission to birth (Hours) 3·2 (±5·1) 3·2 (±5·2) 3·2 (±4·8) 0·96 3·2 (±5·2) 3·2 (±4·8) 0·94 3·2 (±5·1) 3·3 (±5·0) 0·94 

Time from delivery to postnatal blood collection (Hours) 12·7 (±5·3) 12·7 (±5·4) 12·8 (±5·3) 0·81 12·6 (±5·3) 13·0 (±5·3) 0·47 12·8 (±5·3) 12·5 (±4·8) 0·71 

 Percentage (%) 

Percentage male (%) 53·5% (224) 54·3% (151) 52·0% (79) 0·64 54·7% (158) 51·1% (72) 0·48 53·8% (203) 50·9% (27) 0·69 

Percentage early term, ≥37-≤38 weeks (%) 19·3% (83) 27·7% (77) 3·9% (6) <0·001 28·7% (83) 0·0% (0) <0·001 20·4% (77) 11·3% (6) 0·12 

G6PD deficiency positive (%) 12·6% (54) 11·5% (32) 14·6% (22) 0·36 11·4% (33) 15·0% (21) 0·3 13·3% (50) 7·7% (4) 0·26 

Multiple births (%) 3% (13) 2·2% (6) 4·6% (7) 0·16 2·1% (6) 4·9% (7) 0·1 2·7% (10) 5·7% (3) 0·23 

Percentage of mothers on antenatal iron/folic acid (%) 82·1% (353) 81·7% (227) 82·9% (126) 0·87 81·0% (234) 84·4% (119) 0·83 83·3% (314) 73·6% (39) 0·1 
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Table 2 - Changes in iron status, inflammation and hepcidin between cord and postnatal blood 

 Whole Population  FTB/NBW  PTB/LBW  Preterm Birth (PTB) Low Birthweight (LBW) 

Sample Type n Cord n Venous P  
value n Cord n Venous P  

value n Cord n Venous P  
value n Cord n Venous P  

value n Cord n Venous P  
value 

Serum iron  
(μmol/L) 425 23·3 (±7·1) 421 7·5 (±4·5) <0·001 275 22·7 (±7·0) 271 7·3 (±4·6) <0·001 150 24·3 (±7·3) 150 8·0 (±4·1) <0·001 140 24·4 (±7·3) 139 7·8 (±4·1) <0·001 51 24·5 (±7·7) 51 8·5 (±3·4) <0·001 

UIBC  
(μmol/L) 423 22·9 (±10·5) 420 43·5 (±15·9) <0·001 273 23·7 (±10·4) 271 44·1 (±18·0) <0·001 150 21·5 (±10·6) 149 42·2 (±10·9) <0·001 140 21·2 (±9·8) 138 42·0 (±10·9) <0·001 51 22·1 (±12·2) 50 43·8 (±10·2) <0·001 

TIBC  
(μmol/L) 423 46·1 (±8·0) 420 51·0 (±17·9) <0·001 273 46·3 (±8·1) 271 51·4 (±20·7) <0·001 150 45·8 (±7·8) 149 50·2 (±11·3) <0·001 140 45·6 (±7·4) 138 49·8 (±11·1) <0·001 51 46·6 (±9·3) 50 52·3 (±11·9) <0·001 

Transferrin  
(g/L) 426 1·96 (±0·3) 423 1·99 (±0·3) 0·003 275 1·98 (±0·3) 273 1·98 (±0·3) 0·8335 151 1·93 (±0·3) 150 2·00 (±0·3) <0·001 141 1·92 (±0·3) 139 1·99 (±0·3) <0·001 52 1·94 (±0·4) 51 2·02 (±0·4) 0·0024 

TSAT  
(%) 423 51·7 (±17·3) 420 15·0 (±6·9) <0·001 273 50·2 (±16·7) 271 14·4 (±6·1) <0·001 150 54·5 (±18·0) 149 16·2 (±8·2) <0·001 140 54·8 (±17·7) 138 16·1 (±8·4) <0·001 51 54·6 (±18·7) 50 16·2 (±5·3) <0·001 

Serum ferritin  
(ug/L) 426 210·5 (±157·8) 415 381·2 (±297·6) <0·001 275 212·6 (±157·7) 271 393·9 (±312·6) <0·001 151 206·6 (±158·5) 149 358·6 (±268·1) <0·001 141 206·8 (±154·8) 138 355·7 (±259·6) <0·001 52 192·1 (±179·5) 51 366·2 (±343·8) <0·001 

Serum AGP  
(g/L) 426 0·18 (±0·1) 423 0·24 (±0·2) <0·001 275 0·19 (±0·1) 273 0·25 (±0·2) <0·001 151 0·17 (±0·1) 150 0·23 (±0·2) <0·001 141 0·16 (±0·2) 139 0·22 (±0·2) <0·001 52 0·16 (±0·1) 51 0·21 (±0·16) <0·001 

Serum CRP  
(mg/L) 425 0·17 (±0·6) 422 2·16 (±4·0) <0·001 275 0·19 (±0·7) 273 2·27 (±4·1) <0·001 150 0·14 (±0·2) 149 1·96 (±3·8) <0·001 140 0·14 (±0·2) 138 1·99 (±3·9) <0·001 51 0·10 (±0·07) 51 1·14 (±1·8) 0·0002 

>5mg/L 2 0·5% 54 12·8% <0·001 2 0·7% 37 13·6% <0·001 0 0·0% 17 11·4% N/A 0 0·0% 16 11·6% N/A 0 0·0% 4 7·8% N/A 

>3mg/L 3 0·7% 83 19·7% <0·001 3 1·0% 59 21·6% <0·001 0 0·0% 24 16·1% N/A 0 0·0% 23 16·7% N/A 0 0·0% 6 11·8% N/A 

Serum hepcidin  
(ng/ml) 425 19·9 (±14·2) 417 38·4 (±23·7) <0·001 277 19·4 (±14·4) 270 38·9 (±23·9) <0·001 148 20·9 (±13·8) 147 37·4 (±23·5) <0·001 138 21·5 (±13·9) 136 37·7 (±23·3) <0·001 52 17·6 (±13·0) 51 33·7 (±22·2) <0·001 

Haemoglobin  
(g/dl) 414 15·3 (±2·5) 423 19·4 (±3·1) <0·001 270 15·1 (±2·3) 272 19·1 (±2·9) <0·001 144 15·6 (±2·7) 151 19·9 (±3·3) <0·001 136 15·6 (±2·6) 140 19·8 (±3·3) <0·001 48 16·3 (±3·1) 52 20·7 (±3·5) <0·001 
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Table 3 - Factors associated with neonatal serum iron and TSAT at 6-24h post-partum 

Predictor Coefficient Standard error Standardised 
coefficient  P value R2 

(%) 

Univariate Analysis - Serum Iron 

CRP a 0·135 0·023 0·258 <0·0001 15·5 

Hepcidin b -0·139 0·025 -0·249 <0·0001 14·2 

Transferrin 0·273 0·056 0·222 <0·0001 13·7 

Haptoglobin -1·21 0·303 -0·184 <0·0001 12·2 

Age of mother -0·009 0·002 -0·152 0·001 11·1 

Birthweight -0·0001 -0·00004 -0·149 0·001 11 

Multivariate Analysis - Serum Iron 

CRP a 0·124 0·022 0·239 <0·0001 

29·2 

Hepcidin b -0·11 0·025 -0·198 <0·0001 

Transferrin 0·23 0·055 0·186 <0·0001 

Age of mother -0·008 0·002 -0·143 0·001 

Haptoglobin -0·741 0·28 -0·114 0·008 

Birthweight -0·00009 0·00003 -0·104 0·016 

Univariate Analysis - Transferrin Saturation (TSAT) 

CRP a 0·153 0·023 0·306 <0·0001 11·7 

Haptoglobin -1·14 0·302 -0·181 <0·0001 5·7 

Hepcidin b -0·085 0·025 -0·16 0·001 4·8 

Birthweight -0·0001 0·00004 -0·153 0·001 4·7 

Age of mother -0·008 0·002 -0·151 0·002 4·7 

Multivariate Analysis - Transferrin Saturation (TSAT) 

CRP a 0·139 0·022 0·285 <0·0001 

21·8 
Hepcidin b -0·093 0·024 -0·253 <0·0001 

Ferritin -0·008 0·002 0·187 <0·0001 

Age of mother -0·68 0·285 -0·161 <0·0001 
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Table 4 - Factors associated with neonatal serum hepcidin at 6-24h post-partum 

Predictor Coefficient Standard 
error 

Standardised 
coefficient 

P 
value 

R2 
(%) 

Univariate Analysis - Serum Hepcidin 

Ferritin a 0·039 0·0005 0·354 <0·0001 14 

Time of bleed -0·0007 0·0001 -0·321 <0·0001 12 

Transferrin -0·706 0·104 -0·318 <0·0001 11·5 
Serum iron b -0·479 0·089 -0·267 <0·0001 8·2 
sTfR c -0·36 0·092 -0·189 0·001 5 

Multivariate Analysis - Serum Hepcidin 

Time of bleed -0·0008 0·00009 -0·354 <0·0001 

36·1 
Ferritin a 0·035 0·004 0·319 <0·0001 

Serum iron b -0·413 0·078 -0·232 <0·0001 

sTfR c -0·286 0·086 -0·15 0·001 

Transferrin -0·218 0·111 -0·1 0·05 
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SUPPLEMENTARY RESULTS 

Supplementary Table 1 – Participant Characteristics (Groups A-D) 

 Whole Population Group A (PTB+LBW) Group B (PTB+NBW) Group C (FTB+LBW) Group D (FTB+NBW) P value 

Number of Participants (n) 430 42 99 11 278  

Characteristic Mean (± SD) 

Gestational age (Weeks) 38·1 (±2·1) 35·1 (±0·9) 35·7 (±0·5) 38·6 (±1·3) 39·4 (±1·3) <0·0001 

Birth weight (g) 3092 (±453·9) 2326 (±122·6) 2916 (±225·9) 2380 (±89·2) 3299 (±368·3) <0·0001 

Head circumference (cm) 34·0 (±1·2) 32·2 (±0·7) 33·4 (±0·8) 32·7 (±1·0) 34·6 (±1·0) <0·0001 

Length (cm) 49·2 (±1·9) 46·6 (±1·4) 48·2 (±1·4) 47·0 (±1·5) 50·0 (±1·6) <0·0001 

Maternal hemoglobin ≤7 days before delivery (g/dl) 11·6 (±1·8) 12·2 (±1·5) 11·3 (±1·8) 10·8 (±2·0) 11·6 (±1·8) 0·29 

Age of mother (Years) 29·4 (±6·9) 26·9 (±6·6) 29·8 (±6·7) 26·4 (±6·9) 29·7 (±6·9) 0·03 

1 min APGAR score (0-10) 9·65 (±0·7) 9·6 (±0·7) 9·8 (±0·48) 9·2 (±1·3) 9·6 (±0·8) 0·03 

Time from admission to birth (Hours) 3·23 (±5·1) 3·2 (±4·9) 3·2 (±4·8) 3·7 (±5·5) 3·2 (±5·2) 0·99 

Time from delivery to V1 blood collection (Hours) 12·7 (±5·3) 13·0 (±4·9) 13·0 (±5·5) 10·5 (±3·8) 12·7 (±5·4) 0·52 

 Percentage (%) 

Percentage male (%) 53·5% (224) 47·6% (20) 52·5% (52) 63·6% (7) 54·3% (151) 0·76 

Percentage early term, ≥37-≤38 weeks (%) 19·3% (83) 0% (0) 0% (0) 54·5% (6) 27·7% (77) <0·0001 

G6PD deficiency positive (%) 12·6% (54) 7·1% (3) 18·2% (18) 9·1% (1) 11·5% (32) 0·23 

Multiple births (%) 3% (13) 7·1% (3) 4% (4) 0% (0) 2·2% (6) 0·28 

Percentage of mother on antenatal iron/folic acid (%) 82·1% (353) 76·2% (32) 87·9% (87) 63·6% (7) 81·7% (227) 0·21 

 

Supplementary Table 1: Baseline Characteristics. Demographic, clinical and pregnancy outcome characteristics of the women and their 

newborns for groups A-D. Data are presented as mean (± SD) and analysed by ANOVA or as n (%) and analysed by χ2 test. P values in bold 

font are considered significant based on P<0·05. 
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Supplementary Table 2 – Maternal Ethnicity 

Ethnic Group Whole Population FTB/NBW PTB/LBW P value Full-Term Birth (FTB) Preterm Birth (PTB) P value NBW LBW P value Group A (PTB+LBW) Group B (PTB+NBW) Group C (FTB+LBW) Group D (FTB+NBW) P value 

Aku 0·9% (4) 1·4% (4) 0% (0) 

0·13 

1·4% (4) 0% (0) 

0·1 

1·1% (4) 0% (0) 

0·73 

0% (0) 0% (0) 0% (0) 1·4% (4) 

0·65 

Balanta 0·9% (4) 0·4% (4) 2% (3) 0·4% (1) 2·1% (3) 0·8% (3) 1·9% (1) 2·4% (1) 2% (2) 0% (0) 0·4% (1) 

Fula 18·4% (79) 17·3% (79) 20·4% (31) 17% (49) 21·3% (30) 18·6% (70) 17% (9) 19·1% (8) 22·2% (22) 9·1% (1) 17·3% (48) 

Jola 13·3% (57) 14·8% (41) 10·5% (16) 14·5% (42) 10·6% (15) 13·5% (51) 11·3% (6) 11·9% (5) 10·1% (10) 9·1% (1) 14·8% (41) 

Mandinka 38·4% (165) 38·9% (108) 37·5% (57) 39·5% (114) 36·2% (51) 38·7% (146) 35·9% (19) 31% (13) 38·4% (38) 54·6% (6) 38·9% (108) 

Manjago 0·7% (3) 1·1% (3) 0% (0) 1% (3) 0% (0) 0·8% (3) 0% (0) 0% (0) 0% (0) 0% (0) 1·1% (3) 

Sarahule 5·1% (22) 3·6% (10) 7·9% (12) 3·8% (11) 7·8% (11) 4·5% (17) 9·4% (5) 9·5% (4) 7% (7) 9·1% (1) 3·6% (10) 

Serere 6·3% (27) 5·4% (15) 7·9% (12) 5·2% (15) 8·5% (12) 6·6% (25) 3·8% (2) 4·8% (2) 10·1% (10) 0% (0) 5·4% (15) 

Wollof 11·9% (51) 13% (36) 9·9% (15) 13·2% (38) 9·2% (13) 11·1% (42) 17% (9) 16·7% (7) 6% (6) 18·2% (2) 13% (36) 

Other 4·2% (18) 4·3% (12) 4% (6) 4·2% (12) 4·3% (6) 4·2% (16) 3·8% (2) 4·8% (2) 4% (4) 0% (0) 4·3% (12) 

 

Supplementary Table 2: Ethnicity of mother. Data are presented as n (%) and analysed by χ2 test. P values in bold font are considered 

significant based on P < 0·05. No significant differences between groups was observed.  
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Supplementary Table 3 – Comparison of iron status, inflammation and haematological parameters in cord samples  

 Whole Population PTB/LBW FTB/NBW  Full-Term Birth (FTB) Preterm Birth (PTB)  Normal Birthweight (NBW) Low Birthweight (LBW)  

Sample Type n Cord n Cord n Cord P value n Cord n Cord P value n Cord n Cord P value 

Serum iron (μmol/L) 425 23·3 (±7·1) 150 24·3 (±7·3) 275 22·7 (±7·0) 0·02 285 22·7 (±7·0) 140 24·4 (±7·3) 0·01 374 23·1 (±7·0) 51 24·5 (±7·7) 0·2 

UIBC (μmol/L) 423 22·9 (±10·5) 150 21·5 (±10·6) 273 23·7 (±10·4) 0·04 283 23·8 (±10·8) 140 21·2 (±9·8) 0·02 372 23·0 (±10·3) 51 22·1 (±12·2) 0·6 

TIBC (μmol/L) 423 46·1 (±8·0) 150 45·8 (±7·8) 273 46·3 (±8·1) 0·3 283 46·4 (±8·3) 140 45·6 (±7·4) 0·3 372 46·1 (±7·8) 51 46·6 (±9·3) 0·6 

Transferrin (g/L) 426 1·96 (±0·3) 151 1·93 (±0·3) 275 1·98 (±0·3) 0·1 285 1·99 (±0·4) 141 1·92 (±0·3) 0·05 374 1·96 (±0·3) 52 1·94 (±0·4) 0·6 

TSAT (%) 423 51·7 (±17·3) 150 54·5 (±18·0) 273 50·2 (±16·7) 0·01 283 50·2 (±16·9) 140 54·8 (±17·7) 0·01 372 51·4 (±17·0) 51 54·6 (±18·7) 0·2 

Serum ferritin (ug/L) 426 210·5 (±157·8) 151 206·6 (±158·5) 275 212·6 (±157·7) 0·7 285 212·3 (±159·6) 141 206·8 (±154·8) 0·7 374 213·0 (±154·7) 52 192·1 (±179·5) 0·4 

Serum AGP (g/L) 426 0·18 (±0·1) 151 0·17 (±0·2) 275 0·19 (±0·1) 0·2 285 0·19 (±0·1) 141 0·16 (±0·2) 0·08 374 0·18 (±0·1) 52 0·16 (±0·1) 0·3 

Serum CRP (mg/L) 425 0·17 (±0·6) 150 0·14 (±0·3) 275 0·19 (±0·7) 0·4 285 0·19 (±0·7) 140 0·14 (±0·3) 0·4 374 0·18 (±0·6) 51 0·10 (±0·07) 0·3 

     >5mg/L 2 0·5% 0 0 2 0·7% N/A 2 0·7% 0 0 N/A 2 0·5% 0 0 N/A 

     >3mg/L 3 0·7% 0 0 3 1·1% N/A 3 1·1% 0 0 N/A 3 0·8% 0 0 N/A 

Serum hepcidin (ng/ml) 425 19·9 (±14·2) 148 20·9 (±13·8) 277 19·4 (±14·4) 0·3 287 19·1 (±14·3) 138 21·5 (±13·9) 0·1 373 20·2 (±14·3) 52 17·6 (±13·0) 0·2 

Haemoglobin (g/dl) 414 15·3 (±2·5) 144 15·6 (±2·7) 270 15·1 (±2·3) 0·04 278 15·1 (±2·4) 136 15·6 (±2·6) 0·06 366 15·1 (±2·4) 48 16·3 (±3·1) 0·003 

Haematocrit (%) 414 42·7 (±7·4) 144 43·8 (±8·1) 270 42·2 (±7·0) 0·039 278 42·3 (±7·2) 136 43·7 (±7·8) 0·06 366 42·3 (±7·1) 48 45·9 (±9·2) 0·0016 

Soluble transferrin receptor (mg/L) 424 6·0 (±2·0) 151 5·94 (±1·9) 273 5·99 (±2·0) 0·79 283 6·0 (±2·1) 141 5·9 (±1·7) 0·41 372 5·92 (±1·9) 52 6·3 (±2·4) 0·19 

Haptoglobin (g/L) 426 0·02 (±0·07) 151 0·03 (±0·09) 275 0·02 (±0·06) 0·31 285 0·02 (±0·06) 141 0·03 (±0·09) 0·28 374 0·02 (±0·08) 52 0·01 (±0·02) 0·28 

     Undetectable haptoglobin (%) 182 42·7% 66 43·8% 116 42·2% 0·76 120 42·1% 63 44·6% 0·71 158 42·2% 24 46·2% 0·307 

Mean corpuscular volume (fl) 414 98·0 (±6·2) 144 98·5 (±6·1) 270 97·8 (±6·3) 0·23 278 97·7 (±6·4) 136 98·7 (±5·7) 0·11 366 97·9 (±6·0) 48 99·3 (±7·3) 0·15 

Mean corpuscular haemoglobin (pg) 414 35·1 (±2·4) 144 35·3 (±2·5) 270 35·0 (±2·4) 0·38 278 35·0 (±2·5) 136 35·4 (±2·3) 0·19 366 35·1 (±2·4) 48 35·3 (±3·0) 0·61 

Mean corpuscular haemoglobin concentration (g/dl) 414 35·8 (±1·0) 144 35·8 (±1·0) 270 35·9 (±1·0) 0·5 278 35·8 (±1·0) 136 35·8 (±1·0) 0·68 366 35·9 (±0·9) 48 35·5 (±0·9) 0·027 

White blood cell count (unit/L) 412 13·0 (±5·3) 143 12·3 (±4·6) 269 13·3 (±5·7) 0·07 277 13·3 (±5·7) 135 12·2 (±4·4) 0·033 364 13·2 (±5·4) 48 11·5 (±4·8) 0·048 

Lymphocyte count (unit/L) 412 4·73 (±3·1) 143 4·67 (±2·2) 269 4·77 (±3·5) 0·74 277 4·82 (±3·5) 135 4·54 (±2·0) 0·39 364 4·72 (±3·1) 48 4·84 (±2·4) 0·79 

Lymphocyte percentage (%) 412 36·2 (±8·3) 143 38·1 (±8·7) 269 35·2 (±7·9) 0·0006 277 35·4 (±8·0) 135 37·8 (±8·7) 0·0063 364 35·5 (±7·9) 48 42·0 (±8·8) <0·001 

MID cell count (unit/L) 412 1·02 (±0·6) 143 0·99 (±0·5) 269 1·05 (±0·6) 0·35 277 1·05 (±0·6) 135 0·97 (±0·5) 0·22 364 1·0 (±0·6) 48 1·04 (±0·6) 0·82 

MID cell percentage (%) 412 8·27 (±2·6) 143 8·52 (±3·0) 269 8·15 (±2·4) 0·17 277 8·17% (±2·5) 135 8·48 (±3·0) 0·25 364 8·12 (±2·3) 48 9·46 (±4·2) 0·0008 
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Granulocyte count (unit/L) 412 7·21 (±2·7) 143 6·68 (±2·8) 269 7·49 (±2·7) 0·0039 277 7·47 (±2·7) 135 6·66 (±2·8) 0·0047 364 7·41 (±2·7) 48 5·67 (±2·7) <0·001 

Granulocyte percentage (%) 412 55·5 (±9·1) 143 53·3 (±9·4) 269 56·6 (±8·7) 0·0004 277 56·4 (±8·8) 135 53·7 (±9·4) 0·0045 364 56·4 (±8·6) 48 48·5 (±9·8) <0·001 

Red blood cell count (unit/L) 414 4·36 (±0·7) 144 4·45 (±0·8) 270 4·32 (±0·7) 0·096 278 4·33 (±0·7) 136 4·42 (±0·8) 0·2 366 4·33 (±0·7) 48 4·63 (±0·9) 0·0066 

Red blood cell distribution width (%) 414 15·2 (±1·1) 144 15·2 (±1·0) 270 15·2 (±1·2) 0·97 278 15·2 (±1·2) 136 15·1 (±1·0) 0·64 366 15·2 (±1·1) 48 15·2 (±0·9) 0·95 

Red blood cell distribution width - absolute (fl) 414 81·0 (±8·6) 144 81·5 (±8·1) 270 80·7 (±8·9) 0·39 278 80·7 (±9·0) 136 81·6 (±7·8) 0·32 366 80·8 (±8·6) 48 82·0 (±8·7) 0·39 

Platelet count (unit/L) 414 241·4 (±86·9) 144 236·7 (±74·8) 270 243·8 (±92·8) 0·43 278 243·2 (±93·4) 136 237·5 (±72·1) 0·53 366 243·3 (±87·3) 48 225·8 (±83·1) 0·19 

Mean platelet volume (fl) 409 8·34 (±0·8) 142 8·30 (±0·8) 267 8·37 (±0·8) 0·38 275 8·36 (±0·8) 134 8·3 (±0·8) 0·45 362 8·36 (±0·8) 47 8·17 (±0·8) 0·094 

Platelet distribution width (%) 409 43·3 (±2·8) 142 43·0 (±2·5) 267 43·5 (±3·0) 0·063 275 43·4 (±3·0) 134 42·9 (±2·5) 0·091 362 43·3 (±2·8) 47 42·9 (±2·8) 0·39 

Platelet distribution width - absolute (fl) 409 11·8 (±1·2) 142 11·7 (±1·1) 267 11·8 (±1·3) 0·17 275 11·8 (±1·3) 134 11·7 (±1·1) 0·22 362 11·8 (±1·2) 47 11·5 (±1·1) 0·11 

Platelet crit (%)a 409 0·2 (±0·06) 142 0·194 (±0·06) 267 0·201 (±0·07) 0·24 275 0·2 (±0·06) 134 0·194 (±0·05) 0·36 362 0·201 (±0·06) 47 0·18 (±0·06) 0·057 

Plate large cell ratio (%) 409 17·8 (±5·3) 142 17·5 (±5·1) 267 18·0 (±5·4) 0·3 275 18·0 (±5·3) 134 17·5 (±5·1) 0·31 362 18·0 (±5·3) 47 16·8 (±4·9) 0·14 

Plate large cell count (unit/L) 409 41·4 (±14·2) 142 40·1 (±13·2) 267 42·1 (±14·6) 0·16 275 41·9 (±14·8) 134 40·2 (±12·7) 0·24 362 42·0 (±14·1) 47 36·6 (±13·7) 0·014 

Haemolysis score (0-6)                  

0 166 39·0% 54 35·8% 112 41·2% 0·27 116 41·1% 50 35·5% 0·26 149 40·2% 17 32·7% 0·3 

1 144 34·0% 53 35·1% 91 33·5% 0·73 93 33·0% 51 36·2% 0·51 132 35·6% 12 23·1% 0·074 

2 78 18·4% 29 19·2% 49 18·00% 0·6 52 18·4% 26 18·4% 0·99 62 16·7% 16 30·8% 0·014 

3 35 8·3% 15 9·93% 20 7·35% 0·4 21 7·5% 14 9·9% 0·38 28 7·6% 7 13·5% 0·15 

4 0 0·0% 0 0·00% 0 0·00% ·· 0 0·0% 0 0·0% ·· 0 0·00% 0 0·00% ·· 

 

Supplementary Table 3: Further Iron, Infection and Haematological Parameters (umbilical cord samples) for FTB/NBW, PTB/LBW, FTB, PTB, 

NBW and LBW neonates. Data are presented as mean (± SD) and analysed by ANOVA. P values in bold font are considered significant based 

on P<0·05. a = Platelet Crit (%) is a measure of total platelet mass. 
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Supplementary Table 4 – Comparison of iron status, inflammation and haematological parameters in venous samples 

 Whole Population PTB/LBW FTB/NBW  Full-Term Birth (FTB) Preterm Birth (PTB)  Normal Birthweight (NBW) Low Birthweight (LBW)  

Sample Type n Venous n Venous n Venous P value n Venous n Venous P value n Venous n Venous P value 

Serum iron (μmol/L) 421 7·5 (±4·5) 150 8·0 (±4·1) 271 7·3 (±4·6) 0·07 282 7·4 (±4·6) 139 7·8 (±4·1) 0·2 370 7·4 (±4·6) 51 8·5 (±3·4) 0·05 

UIBC (μmol/L) 420 43·5 (±15·9) 149 42·2 (±10·9) 271 44·1 (±18·0) 0·2 282 44·2 (±17·8) 138 42·0 (±10·9) 0·2 370 43·4 (±16·5) 50 43·8 (±10·2) 0·9 

TIBC (μmol/L) 420 51·0 (±17·9) 149 50·2 (±11·3) 271 51·4 (±20·7) 0·5 282 51·5 (±20·5) 138 49·8 (±11·1) 0·4 370 50·8 (±18·6) 50 52·3 (±11·9) 0·2 

Transferrin (g/L) 423 1·99 (±0·3) 150 2·00 (±0·3) 273 1·98 (±0·3) 0·6 284 1·99 (±0·3) 139 1·99 (±0·3) 0·8 372 1·99 (±0·3) 51 2·02 (±0·4) 0·5 

TSAT (%) 420 15·0 (±6·9) 149 16·2 (±8·2) 271 14·4 (±6·1) 0·01 282 14·5 (±6·0) 138 16·1 (±8·4) 0·01 370 14·9 (±7·1) 50 16·2 (±5·3) 0·2 

Serum ferritin (ug/L) 415 381·2 (±297·6) 149 358·6 (±268·1) 271 393·9 (±312·6) 0·3 277 393·9 (±314·5) 138 355·7 (±259·6) 0·2 364 383·3 (±291·0) 51 366·2 (±343·8) 0·7 

Serum AGP (g/L) 423 0·24 (±0·2) 150 0·23 (±0·2) 273 0·25 (±0·2) 0·2 284 0·25 (±0·17) 139 0·22 (±0·2) 0·2 372 0·25 (±0·2) 51 0·21 (±0·2) 0·1 

Serum CRP (mg/L) 422 2·16 (±4·0) 149 1·96 (±3·8) 273 2·27 (±4·1) 0·5 284 2·24 (±4·1) 138 1·99 (±3·9) 0·5 371 2·3 (±4·2) 51 1·14 (±1·8) 0·05 

     >5mg/L 54 12·8% 17 11·4% 37 13·6% 0·5 38 13·4% 16 11·6% 0·6 50 13·5% 4 7·8% 0·3 

     >3mg/L 83 19·7% 24 16·1% 59 21·6% 0·2 60 21·1% 23 16·7% 0·3 77 20·8% 6 11·8% 0·1 

Serum hepcidin (ng/ml) 417 38·4 (±23·7) 147 37·4 (±23·5) 270 38·9 (±23·9) 0·5 281 38·7 (±24·0) 136 37·7 (±23·3) 0·7 366 39·0 (±23·9) 51 33·7 (±22·2) 0·1 

Haemoglobin (g/dl) 423 19·4 (±3·1) 151 19·9 (±3·3) 272 19·1 (±2·9) 0·02 283 19·2 (±3·0) 140 19·8 (±3·3) 0·04 371 19·2 (±3·0) 52 20·7 (±3·5) 0·001 

Haematocrit (%) 423 54·7 (±9·3) 151 56·1 (±10·1) 272 53·9 (±8·9) 0·025 283 54·1 (±9·0) 140 55·9 (±9·8) 0·64 371 54·1 (±9·0) 52 59·0 (±10·7) 0·0004 

Soluble transferrin receptor (mg/L) 421 7·0 (±2·2) 150 7·03 (±2·1) 271 6·94 (±2·2) 0·7 282 7·0 (±2·3) 139 6·9 (±2·0) 0·64 370 6·87 (±2·1) 51 7·71 (±2·5) 0·0093 

Haptoglobin (g/L) 423 0·02 (±0·06) 150 0·02 (±0·04) 273 0·03 (±0·07) 0·35 284 0·03 (±0·07) 139 0·02 (±0·04) 0·41 372 0·02 (±0·07) 51 0·01 (±0·01) 0·25 

     Undetectable haptoglobin (%) 144 34·0% 43 28·7% 101 37·00% 0·083 106 37·3% 38 27·3% 0·041 129 34·7% 15 29·4% 0·46 

Mean corpuscular volume (fl) 423 98·0 (±6·1) 151 98·5 (±6·2) 273 97·7 (±6·0) 0·21 283 97·6 (±6·2) 140 98·8 (±5·8) 0·048 371 97·9 (±5·8) 52 98·9 (±7·6) 0·26 

Mean corpuscular haemoglobin (pg) 423 34·9 (±2·4) 151 35·0 (±2·4) 272 34·8 (±2·4) 0·48 283 34·8 (±2·5) 140 35·1 (±2·3) 0·13 371 34·9 (±2·4) 52 34·8 (±2·9) 0·82 

Mean corpuscular haemoglobin concentration (g/dl) 423 35·6 (±1·0) 151 35·5 (±0·9) 272 35·6 (±1·1) 0·39 283 35·6 (±1·1) 140 35·5 (±0·9) 0·59 371 35·6 (±1·0) 52 35·2 (±0·9) 0·0036 

White blood cell count (unit/L) 422 15·9 (±5·5) 151 14·9 (±4·7) 271 16·4 (±5·8) 0·0068 282 16·3 (±5·7) 140 15·0 (±4·8) 0·019 370 16·3 (±5·5) 52 13·3 (±4·1) 0·0002 

Lymphocyte count (unit/L) 422 4·1 (±2·4) 151 3·93 (±1·4) 271 4·21 (±2·9) 0·25 282 4·19 (±2·8) 140 3·95 (±1·4) 0·35 370 4·17 (±2·6) 52 3·72 (±1·2) 0·22 

Lymphocyte percentage (%) 422 26·9 (±8·8) 151 27·8 (±8·9) 271 26·5 (±8·8) 0·14 282 26·5 (±8·7) 140 27·8 (±9·0) 0·14 370 26·5 (±8·7) 52 29·7 (±9·2) 0·014 

MID cell count (unit/L) 422 1·48 (±1·0) 151 1·37 (±0·9) 271 1·55 (±1·1) 0·08 282 1·54 (±1·0) 140 1·37 (±0·9) 0·11 370 1·52 (±1·0) 52 1·27 (±0·9) 0·097 

MID cell percentage (%) 422 9·67 (±5·4) 151 9·43 (±5·0) 271 9·81 (±5·6) 0·49 282 9·79 (±5·6) 140 9·41 (±5·0) 0·49 370 9·67 (±5·4) 52 9·75 (±5·1) 0·91 
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Granulocyte count (unit/L) 422 10·3 (±4·1) 151 9·63 (±3·8) 271 10·67 (±4·2) 0·012 282 10·6 (±4·1) 140 9·68 (±3·9) 0·029 370 10·57 (±4·1) 52 8·31 (±3·3) 0·0002 

Granulocyte percentage (%) 422 63·4 (±8·6) 151 62·8 (±8·1) 271 63·7 (±8·8) 0·28 282 63·7 (±8·7) 140 62·7 (±8·2) 0·27 370 63·8 (±8·5) 52 60·5 (±8·2) 0·0095 

Red blood cell count (unit/L) 423 5·58 (±1·0) 151 5·69 (±1·0) 272 5·53 (±0·9) 0·093 283 5·55 (±1·0) 140 5·66 (±0·9) 0·28 371 5·54 (±0·9) 52 5·97 (±1·1) 0·0018 

Red blood cell distribution width (%) 423 15·4 (±1·3) 151 15·4 (±1·0) 272 15·4 (±1·4) 0·49 283 15·5 (±1·4) 140 15·3 (±1·0) 0·36 371 15·4 (±1·3) 52 15·3 (±0·9) 0·6 

Red blood cell distribution width - Absolute (fl) 423 82·2 (±8·5) 151 82·6 (±8·4) 272 82·0 (±8·6) 0·47 283 81·9 (±8·8) 140 82·8 (±8·1) 0·26 371 82·1 (8·4) 52 82·8 (±9·2) 0·58 

Platelet count (unit/L) 423 260·4 (±94·6) 151 263·4 (±96·0) 272 258·7 (±94·0) 0·62 283 257·8 (±93·6) 140 265·7 (±96·7) 0·42 371 261·6 (±95·9) 52 252·1 (±85·4) 0·5 

Mean platelet volume (fl) 419 8·47 (±0·8) 148 8·38 (±0·7) 272 8·52 (±0·8) 0·064 282 8·52 (±0·8) 137 8·37 (±0·7) 0·061 367 8·49 (±0·8) 52 8·37 (±0·8) 0·31 

Platelet distribution width (%) 419 43·7 (±3·2) 148 43·4 (±2·8) 271 43·9 (±3·3) 0·082 282 44·0 (±3·3) 137 43·3 (±2·8) 0·051 367 43·8 (±3·2) 52 42·4 (±3·0) 0·39 

Platelet distribution width - Absolute (fl) 419 12·0 (±1·3) 148 11·8 (±1·1) 271 12·1 (±1·4) 0·045 282 12·1 (±1·4) 137 11·8 (±1·1) 0·035 367 12·0 (±1·3) 52 11·8 (±1·3) 0·22 

Platelet crit (%) 419 0·22 (±0·07) 148 0·22 (±0·07) 271 0·215 (±0·07) 0·59 282 0·214 (±0·07) 137 0·221 (±0·07) 0·33 367 0·218 (±0·07) 52 0·207 (±0·06) 0·32 

Plate large cell ratio (%) 419 18·8 (±5·5) 148 18·1 (±4·9) 271 19·2 (±5·8) 0·045 282 19·2 (±5·8) 137 18·0 (±4·9) 0·032 367 18·9 (±5·6) 52 18·2 (±5·3) 0·38 

Plate large cell count (unit/L) 419 46·5 (±15·8) 148 45·9 (±13·4) 271 46·9 (±17·0) 0·55 282 46·7 (±16·9) 137 46·3 (±13·4) 0·79 367 47·0 (±16·3) 52 43·6 (±11·6) 0·15 

Haemolysis score (0-6)                  

0 0 0·0% 17 32·7% 33 12·2% <0·001 0 0·0% 0 0·0% ·· 39 10·5% 4 7·8% 0·55 

1 43 10·2% 12 23·1% 135 49·9% <0·001 34 12·1% 9 6·5% 0·075 192 51·9% 21 41·2% 0·15 

2 213 50·6% 16 30·7% 92 34·00% 0·66 138 49·0% 75 54·0% 0·33 125 33·8% 25 49·00% 0·033 

3 150 35·6% 7 13·5% 11 4·1% 0·006 99 35·1% 51 36·7% 0·75 14 3·8% 1 1·96% 0·51 

4 15 3·5% 0 0·00% 0 0·00% ·· 11 3·9% 4 2·9% 0·59 0 0·00% 0 0·00% ·· 

 
Supplementary Table 4: Further Iron, Infection and Haematological Parameters (venous samples) for FTB/NBW, PTB/LBW, FTB, PTB, NBW 

and LBW neonates. Data are presented as mean (± SD) and analysed by ANOVA. P values in bold font are considered significant based on P 

< 0·05. 
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Supplementary Table 5 – Changes in further iron status and inflammation variables between cord and post-natal blood 

 Whole Population FTB/NBW PTB/LBW Preterm Birth (PTB) Low Birthweight (LBW) 

Sample Type n Cord n Venous P value n Cord n Venous P value n Cord n Venous P value n Cord n Venous P value n Cord n Venous P value 

Hematocrit (%) 414 42·7 (±7·4) 423 54·7 (±9·3) <0·001 270 42·2 (±7·0) 272 53·9 (±8·9) <0·001 144 43·8 (±8·1) 151 56·1 (±10·1) <0·001 136 43·7 (±7·8) 140 55·9 (±9·8) <0·001 48 45·9 (±9·2) 52 59·0 (±10·7) <0·001 

Soluble transferrin receptor (mg/L) 424 6·0 (±2·0) 421 7·0 (±2·2) <0·001 273 5·99 (±2·0) 271 6·94 (±2·2) <0·001 151 5·94 (±1·9) 150 7·03 (±2·1) <0·001 141 5·9 (±1·7) 139 6·9 (±2·0) <0·001 52 6·3 (±2·4) 51 7·71 (±2·5) <0·001 

Haptoglobin (g/L) 426 0·02 (±0·07) 423 0·02 (±0·06) 0·52 275 0·02 (±0·06) 273 0·03 (±0·07) 0·06 151 0·03 (±0·09) 150 0·02 (±0·04) 0·19 141 0·03 (±0·09) 139 0·02 (±0·04) 0·2 52 0·01 (±0·02) 51 0·01 (±0·01) 0·28 

     Undetectable haptoglobin (%) 182 42·7% 144 34·0% 0·009 116 42·2% 101 37·00% 0·21 66 43·8% 43 28·7% 0·006 63 44·6% 38 27·3% 0·002 24 46·2% 15 29·4% 0·08 

Mean corpuscular volume (fl) 414 98·0 (±6·2) 423 98·0 (±6·1) 0·63 270 97·8 (±6·3) 273 97·7 (±6·0) 0·29 144 98·5 (±6·1) 151 98·5 (±6·2) 0·42 136 98·7 (±5·7) 140 98·8 (±5·8) 0·24 48 99·3 (±7·3) 52 98·9 (±7·6) 0·37 

Mean corpuscular haemoglobin (pg) 414 35·1 (±2·4) 423 34·9 (±2·4) <0·001 270 35·0 (±2·4) 272 34·8 (±2·4) <0·001 144 35·3 (±2·5) 151 35·0 (±2·4) <0·001 136 35·4 (±2·3) 140 35·1 (±2·3) <0·001 48 35·3 (±3·0) 52 34·8 (±2·9) <0·001 

Mean corpuscular haemoglobin concentration (g/dl) 414 35·8 (±1·0) 423 35·6 (±1·0) <0·001 270 35·9 (±1·0) 272 35·6 (±1·1) <0·001 144 35·8 (±1·0) 151 35·5 (±0·9) 0·0001 136 35·8 (±1·0) 140 35·5 (±0·9) <0·001 48 35·5 (±0·9) 52 35·2 (±0·9) 0·01 

White blood cell count (unit/L) 412 13·0 (±5·3) 422 15·9 (±5·5) <0·001 269 13·3 (±5·7) 271 16·4 (±5·8) <0·001 143 12·3 (±4·6) 151 14·9 (±4·7) <0·001 135 12·2 (±4·4) 140 15·0 (±4·8) <0·001 48 11·5 (±4·8) 52 13·3 (±4·1) 0·008 

Lymphocyte count (unit/L) 412 4·73 (±3·1) 422 4·1 (±2·4) <0·001 269 4·77 (±3·5) 271 4·21 (±2·9) 0·0001 143 4·67 (±2·2) 151 3·93 (±1·4) 0·0001 135 4·54 (±2·0) 140 3·95 (±1·4) 0·0006 48 4·84 (±2·4) 52 3·72 (±1·2) 0·003 

Lymphocyte percentage (%) 412 36·2 (±8·3) 422 26·9 (±8·8) <0·001 269 35·2 (±7·9) 271 26·5 (±8·8) <0·001 143 38·1 (±8·7) 151 27·8 (±8·9) <0·001 135 37·8 (±8·7) 140 27·8 (±9·0) <0·001 48 42·0 (±8·8) 52 29·7 (±9·2) <0·001 

MID cell count (unit/L) 412 1·02 (±0·6) 422 1·48 (±1·0) <0·001 269 1·05 (±0·6) 271 1·55 (±1·1) <0·001 143 0·99 (±0·5) 151 1·37 (±0·9) <0·001 135 0·97 (±0·5) 140 1·37 (±0·9) <0·001 48 1·04 (±0·6) 52 1·27 (±0·9) 0·1 

MID cell percentage (%) 412 8·27 (±2·6) 422 9·67 (±5·4) <0·001 269 8·15 (±2·4) 271 9·81 (±5·6) <0·001 143 8·52 (±3·0) 151 9·43 (±5·0) 0·04 135 8·48 (±3·0) 140 9·41 (±5·0) 0·04 48 9·46 (±4·2) 52 9·75 (±5·1) 0·6 

Granulocyte count (unit/L) 412 7·21 (±2·7) 422 10·3 (±4·1) <0·001 269 7·49 (±2·7) 271 10·67 (±4·2) <0·001 143 6·68 (±2·8) 151 9·63 (±3·8) <0·001 135 6·66 (±2·8) 140 9·68 (±3·9) <0·001 48 5·67 (±2·7) 52 8·31 (±3·3) <0·001 

Granulocyte percentage (%) 412 55·5 (±9·1) 422 63·4 (±8·6) <0·001 269 56·6 (±8·7) 271 63·7 (±8·8) <0·001 143 53·3 (±9·4) 151 62·8 (±8·1) <0·001 135 53·7 (±9·4) 140 62·7 (±8·2) <0·001 48 48·5 (±9·8) 52 60·5 (±8·2) <0·001 

Red blood cell count (unit/L) 414 4·36 (±0·7) 423 5·58 (±1·0) <0·001 270 4·32 (±0·7) 272 5·53 (±0·9) <0·001 144 4·45 (±0·8) 151 5·69 (±1·0) <0·001 136 4·42 (±0·8) 140 5·66 (±0·9) <0·001 48 4·63 (±0·9) 52 5·97 (±1·1) <0·001 

Red blood cell distribution width (%) 414 15·2 (±1·1) 423 15·4 (±1·3) <0·001 270 15·2 (±1·2) 272 15·4 (±1·4) <0·001 144 15·2 (±1·0) 151 15·4 (±1·0) <0·001 136 15·1 (±1·0) 140 15·3 (±1·0) <0·001 48 15·2 (±0·9) 52 15·3 (±0·9) 0·002 

Red blood cell distribution width - absolute (fl) 414 81·0 (±8·6) 423 82·2 (±8·5) <0·001 270 80·7 (±8·9) 272 82·0 (±8·6) 0·0001 144 81·5 (±8·1) 151 82·6 (±8·4) <0·001 136 81·6 (±7·8) 140 82·8 (±8·1) <0·001 48 82·0 (±8·7) 52 82·8 (±9·2) <0·001 

Platelet count (unit/L) 414 241·4 (±86·9) 423 260·4 (±94·6) 0·0003 270 243·8 (±92·8) 272 258·7 (±94·0) 0·022 144 236·7 (±74·8) 151 263·4 (±96·0) 0·003 136 237·5 (±72·1) 140 265·7 (±96·7) 0·003 48 225·8 (±83·1) 52 252·1 (±85·4) 0·09 

Mean platelet volume (fl) 409 8·34 (±0·8) 419 8·47 (±0·8) 0·0003 267 8·37 (±0·8) 272 8·52 (±0·8) 0·0001 142 8·30 (±0·8) 148 8·38 (±0·7) 0·37 134 8·3 (±0·8) 137 8·37 (±0·7) 0·29 47 8·17 (±0·8) 52 8·37 (±0·8) 0·07 

Platelet distribution width (%) 409 43·3 (±2·8) 419 43·7 (±3·2) 0·007 267 43·5 (±3·0) 271 43·9 (±3·3) 0·021 142 43·0 (±2·5) 148 43·4 (±2·8) 0·16 134 42·9 (±2·5) 137 43·3 (±2·8) 0·26 47 42·9 (±2·8) 52 42·4 (±3·0) 0·61 

Platelet distribution width - absolute (fl) 409 11·8 (±1·2) 419 12·0 (±1·3) 0·0006 267 11·8 (±1·3) 271 12·1 (±1·4) 0·0009 142 11·7 (±1·1) 148 11·8 (±1·1) 0·24 134 11·7 (±1·1) 137 11·8 (±1·1) 0·3 47 11·5 (±1·1) 52 11·8 (±1·3) 0·21 

Platelet crit (%) 409 0·2 (±0·06) 419 0·22 (±0·07) <0·001 267 0·201 (±0·07) 271 0·215 (±0·07) 0·01 142 0·194 (±0·06) 148 0·22 (±0·07) 0·0001 134 0·194 (±0·05) 137 0·221 (±0·07) 0·0001 47 0·18 (±0·06) 52 0·207 (±0·06) 0·034 

Plate large cell ratio (%) 409 17·8 (±5·3) 419 18·8 (±5·5) 0·0001 267 18·0 (±5·4) 271 19·2 (±5·8) 0·0001 142 17·5 (±5·1) 148 18·1 (±4·9) 0·27 134 17·5 (±5·1) 137 18·0 (±4·9) 0·32 47 16·8 (±4·9) 52 18·2 (±5·3) 0·06 

Plate large cell count (unit/L) 409 41·4 (±14·2) 419 46·5 (±15·8) <0·001 267 42·1 (±14·6) 271 46·9 (±17·0) <0·001 142 40·1 (±13·2) 148 45·9 (±13·4) <0·001 134 40·2 (±12·7) 137 46·3 (±13·4) <0·001 47 36·6 (±13·7) 52 43·6 (±11·6) 0·006 
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Haemolysis score (0-6)                          

0 166 39·0% 0 0·0% <0·001 112 41·2% 33 12·2% <0·001 54 35·8% 17 32·7% 0·69 50 35·5% 0 0·0% <0·001 17 32·7% 4 7·8% 0·001 

1 144 34·0% 43 10·2% <0·001 91 33·5% 135 49·9% <0·001 53 35·1% 12 23·1% 0·11 51 36·2% 9 6·5% <0·001 12 23·1% 21 41·2% 0·05 

2 78 18·4% 213 50·6% <0·001 49 18·00% 92 34·00% <0·001 29 19·2% 16 30·7% 0·083 26 18·4% 75 54·0% <0·001 16 30·8% 25 49·00% 0·06 

3 35 8·3% 150 35·6% <0·001 20 7·35% 11 4·1% 0·1 15 9·93% 7 13·5% 0·48 14 9·9% 51 36·7% <0·001 7 13·5% 1 1·96% 0·03 

4 0 0·0% 15 3·5% <0·001 0 0·00% 0 0·00% ·· 0 0·00% 0 0·00% ·· 0 0·0% 4 2·9% 0·042 0 0·00% 0 0·00% ·· 

 

Supplementary Table 5: Further Iron, Infection and Haematological Parameters (Umbilical cord and venous sample) for FTB/NBW, PTB/LBW, 

PTB and LBW neonates. Data are presented as mean (± SD) and analysed by ANOVA. P values in bold font are considered significant based 

on P<0·05. 
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Supplementary Table 6 – Changes in iron status, inflammation and hepcidin between cord and post-natal blood (Groups A-D) 

 Whole Population Group A (PTB+LBW) Group B (PTB+NBW) Group C (FTB+LBW) Group D (FTB+NBW) 

Sample Type n Cord n Venous P value n Cord n Venous P value n Cord n Venous P value n Cord n Venous P value n Cord n Venous P value 

Serum iron (μmol/L) 425 23·3 (±7·1) 421 7·5 (±4·5) <0·001 41 25·0 (±7·6) 40 8·2 (±3·3) <0·001 99 24·2 (±7·2) 99 7·7 (±4·4) <0·001 10 22·6 (±7·9) 11 9·4 (±3·9) 0·0039 275 22·7 (±7·0) 271 7·3 (±4·6) <0·001 

TSAT (%) 423 51·7 (±17·3) 420 15·0 (±6·9) <0·001 41 55·6 (±17·7) 39 15·9 (±5·5) <0·001 99 54·5 (±17·7) 99 16·2 (±9·3) <0·001 10 50·4 (±23·2) 11 17·1 (±4·5) 0·0019 273 50·2 (±16·7) 271 14·4 (±6·1) <0·001 

Serum hepcidin (ng/ml) 425 19·9 (±14·2) 417 38·4 (±23·7) <0·001 42 18·8 (±13·2) 40 33·6 (±21·1) <0·001 96 22·7 (±14·1) 96 39·4 (±24·0) <0·001 10 12·7 (±11·6) 11 34·0 (±27·0) 0·023 277 19·4 (±14·4) 270 38·9 (±23·9) <0·001 

UIBC (μmol/L) 423 22·9 (±10·5) 420 43·5 (±15·9) <0·001 41 21·1 (±10·0) 39 43·4 (±10·1) <0·001 99 21·2 (±9·8) 99 41·5 (±11·2) <0·001 10 26·4 (±18·8) 11 45·2 (±10·9) 0·0006 273 23·7 (±10·4) 271 44·1 (±18·0) <0·001 

TIBC (μmol/L) 423 46·1 (±8·0) 420 51·0 (±17·9) <0·001 41 46·0 (±8·4) 39 51·6 (±11·6) 0·0014 99 45·4 (±7·0) 99 49·1 (±10·9) 0·0013 10 49·0 (±12·6) 11 54·6 (±13·5) 0·022 273 46·3 (±8·1) 271 51·4 (±20·7) <0·001 

Serum ferritin (ug/L) 426 210·5 (±157·8) 415 381·2 (±297·6) <0·001 42 189·3 (±173·1) 40 358·5 (±340·0) 0·0002 99 214·1 (±146·7) 98 354·6 (±220·7) <0·001 10 203·8 (±214·4) 11 394·3 (±372·9) 0·05 275 212·6 (±157·7) 266 393·9 (±312·6) <0·001 

Haemoglobin (g/dl) 414 15·3 (±2·5) 423 19·4 (±3·1) <0·001 40 16·4 (±2·9) 41 20·8 (±3·3) <0·001 96 15·3 (±2·4) 99 19·4 (±3·1) <0·001 8 15·8 (±4·5) 11 20·2 (±4·3) 0·021 270 15·1 (±2·3) 272 19·1 (±2·9) <0·001 

Hematocrit (%) 414 42·7 (±7·4) 423 54·7 (±9·3) <0·001 40 46·1 (±8·3) 41 59·4 (±10·1) <0·001 96 42·7 (±7·3) 99 54·5 (±9·4) <0·001 8 44·7 (±13·3) 11 57·5 (±12·9) 0·023 270 42·2 (±7·0) 272 53·9 (±8·9) <0·001 

Transferrin (g/L) 426 1·96 (±0·3) 423 1·99 (±0·3) 0·003 42 1·90 (±0·3) 40 2·00 (±0·4) 0·0034 99 1·92 (±0·3) 99 1·99 (±0·3) 0·0001 10 2·08 (±0·6) 11 2·11 (±0·5) 0·43 275 1·98 (±0·3) 273 1·98 (±0·3) 0·84 

Soluble transferrin receptor (mg/L) 424 6·0 (±2·0) 421 7·0 (±2·2) <0·001 42 6·14 (±2·0) 40 7·47 (±2·3) <0·001 99 5·74 (±1·6) 99 6·67 (±1·8) <0·001 10 7·00 (±3·7) 11 8·6 (±2·9) 0·0011 273 5·99 (±2·0) 271 6·94 (±2·2) <0·001 

Haptoglobin (g/L) 426 0·02 (±0·07) 423 0·02 (±0·06) 0·52 42 0·01 (±0·01) 40 0·01 (±0·01) 0·18 99 0·03 (±0·1) 99 0·02 (±0·05) 0·15 10 0·02 (±0·03) 11 0·02 (±0·02) 0·87 275 0·02 (±0·06) 273 0·03 (±0·07) 0·06 

     Undetectable haptoglobin (%) 182 42·7% 144 34·0% 0·009 20 47·6% 10 25·00% 0·033 42 42·4% 28 28·3% 0·037 4 40% 5 45·5% 0·8 116 42·2% 101 37·00% 0·21 

Serum AGP (g/L) 426 0·18 (±0·1) 423 0·24 (±0·2) <0·001 42 0·15 (±0·2) 40 0·19 (±0·2) <0·001 99 0·17 (±0·2) 99 0·24 (±0·2) <0·001 10 0·22 (±0·1) 11 0·27 (±0·15) 0·063 275 0·19 (±0·1) 273 0·25 (±0·17) <0·001 

Serum CRP (mg/L) 425 0·17 (±0·6) 422 2·16 (±4·0) <0·001 42 0·09 (±0·05) 40 1·01 (±1·2) <0·001 99 0·16 (±0·3) 98 2·39 (±4·5) <0·001 10 0·14 (±0·1) 11 1·63 (±3·3) 0·19 275 0·19 (±0·7) 273 2·27 (±4·1) <0·001 

     >5mg/L 2 0·5% 54 12·8% <0·001 0 0·0% 3 7·5% N/A 0 0·0% 13 13·3% N/A 0 0·0% 1 9·1% N/A 2 0·7% 37 13·6% <0·001 

     >3mg/L 3 0·7% 83 19·7% <0·001 0 0·0% 5 12·5% N/A 0 0·0% 18 18·4% N/A 0 0·0% 1 9·1% N/A 3 1·0% 59 21·6% <0·001 

Mean corpuscular volume (fl) 414 98·0 (±6·2) 423 98·0 (±6·1) 0·63 40 100·0 (±6·1) 41 100·1 (±6·5) 0·17 96 98·2 (±5·4) 99 98·3 (±5·4) 0·76 8 95·3 (±11·4) 11 94·2 (±9·8) 0·28 270 97·8 (±6·3) 272 97·7 (±6·0) 0·29 

Mean corpuscular haemoglobin (pg) 414 35·1 (±2·4) 423 34·9 (±2·4) <0·001 40 35·6 (±2·6) 41 35·2 (±2·5) 0·0001 96 35·3 (±2·2) 99 35·1 (±2·1) 0·0001 8 33·9 (±4·3) 11 33·2 (±3·8) 0·46 270 35·1 (±2·4) 272 34·8 (±2·4) <0·001 

Mean corpuscular haemoglobin concentration (g/dl) 414 35·8 (±1·0) 423 35·6 (±1·0) <0·001 40 35·5 (±0·9) 41 35·2 (±0·9) 0·0034 96 35·9 (±1·0) 99 35·7 (±0·9) 0·0031 8 35·5 (±1·1) 11 35·3 (±0·9) 0·62 270 35·8 (±0·9) 272 35·6 (±1·1) <0·001 

White blood cell count (unit/L) 412 13·0 (±5·3) 422 15·9 (±5·5) <0·001 40 10·9 (±4·2) 41 13·1 (±4·2) 0·0027 95 12·7 (±4·4) 99 15·8 (±4·8) <0·001 8 14·7 (±6·6) 11 14·0 (±3·7) 0·8 269 13·3 (±5·7) 271 16·4 (±5·8) <0·001 

Lymphocyte count (unit/L) 412 4·73 (±3·1) 422 4·1 (±2·4) <0·001 40 4·5 (±2·0) 41 3·7 (±1·2) 0·021 95 4·6 (±2·0) 99 4·0 (±1·5) 0·01 8 6·6 (±3·6) 11 3·6 (±1·1) 0·052 269 4·77 (±3·5) 271 4·21 (±2·9) 0·0001 

Lymphocyte percentage (%) 412 36·2 (±8·3) 422 26·9 (±8·8) <0·001 40 41·8 (±9·3) 41 30·5 (±9·6) <0·001 95 36·2 (±7·9) 99 26·8 (±8·5) <0·001 8 43·4 (±6·4) 11 27·0 (±7·2) 0·0048 269 35·2 (±7·9) 271 26·5 (±8·8) <0·001 

MID cell count (unit/L) 412 1·02 (±0·6) 422 1·48 (±1·0) <0·001 40 1·01 (±0·6) 41 1·25 (±0·9) 0·13 95 0·97 (±0·4) 99 1·42 (±1·0) <0·001 8 1·23 (±0·5) 11 1·32 (±1·0) 0·5 269 1·05 (±0·6) 271 1·55 (±1·0) <0·001 

MID cell percentage (%) 412 8·27 (±2·6) 422 9·67 (±5·4) <0·001 40 9·56 (±4·4) 41 9·79 (±5·2) 0·75 95 8·04 (±2·0) 99 9·27 (±4·9) 0·017 8 8·99 (±3·5) 11 9·62 (±5·3) 0·61 269 8·15 (±2·4) 271 9·81 (±5·6) <0·001 
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Granulocyte count (unit/L) 412 7·21 (±2·7) 422 10·3 (±4·1) <0·001 40 5·43 (±2·6) 41 8·12 (±3·4) <0·001 95 7·18 (±2·7) 99 10·32 (±3·9) <0·001 8 6·9 (±3·0) 11 9·02 (±2·8) 0·046 269 7·49 (±2·7) 271 10·67 (±4·2) <0·001 

Granulocyte percentage (%) 412 55·5 (±9·1) 422 63·4 (±8·6) <0·001 40 48·7 (±10·2) 41 59·8 (±8·5) <0·001 95 55·8 (±8·2) 99 64·0 (±7·8) <0·001 8 47·6 (±7·8) 11 63·3 (±6·6) 0·0013 269 56·6 (±8·7) 271 63·7 (±8·8) <0·001 

Red blood cell count (unit/L) 414 4·36 (±0·7) 423 5·58 (±1·0) <0·001 40 4·6 (±0·8) 41 5·9 (±1·0) <0·001 96 4·4 (±0·7) 99 5·5 (±0·9) <0·001 8 4·73 (±1·3) 11 6·11 (±1·2) 0·016 270 4·32 (±0·7) 272 5·53 (±0·9) <0·001 

Red blood cell distribution width (%) 414 15·2 (±1·1) 423 15·4 (±1·3) <0·001 40 15·1 (±0·8) 41 15·2 (±0·8) 0·0069 96 15·2 (±1·0) 99 15·4 (±1·0) 0·0001 8 15·8 (±1·3) 11 15·6 (±1·1) 0·096 270 15·2 (±1·2) 272 15·4 (±1·4) <0·001 

Red blood cell distribution width - absolute (fl) 414 81·0 (±8·6) 423 82·2 (±8·5) <0·001 40 82·4 (±7·8) 41 83·8 (±8·4) 0·0038 96 81·2 (±7·7) 99 82·5 (±7·9) 0·0008 8 79·8 (±12·7) 11 79·2 (±11·5) 0·38 270 80·7 (±8·9) 272 82·0 (±8·6) 0·0001 

Platelet count (unit/L) 414 241·4 (±86·9) 423 260·4 (±94·6) 0·0003 40 226·3 (±76·4) 41 256·9 (±86·1) 0·092 96 242·2 (±70·1) 99 269·4 (±101·0) 0·015 8 223·8 (±117·5) 11 234·3 (±84·3) 0·76 270 243·8 (±92·8) 272 258·7 (±94·0) 0·02 

Mean platelet volume (fl) 409 8·34 (±0·8) 419 8·47 (±0·8) 0·0003 39 8·16 (±0·8) 41 8·35 (±0·8) 0·083 95 8·36 (±0·8) 96 8·38 (±0·7) 0·99 8 8·22 (±0·8) 11 8·46 (±0·8) 0·5 267 8·37 (±0·8) 271 8·52 (±0·8) 0·0001 

Platelet distribution width (%) 409 43·3 (±2·8) 419 43·7 (±3·2) 0·007 39 43·0 (±2·9) 41 43·2 (±3·1) 0·94 95 42·9 (±2·4) 96 43·4 (±2·8) 0·17 8 42·6 (±2·4) 11 44·2 (±2·7) 0·0064 267 43·5 (±3·0) 271 43·9 (±3·3) 0·021 

Platelet distribution width - absolute (fl) 409 11·8 (±1·2) 419 12·0 (±1·3) 0·0006 39 11·5 (±1·1) 41 11·7 (±1·3) 0·33 95 11·7 (±1·2) 96 11·8 (±1·1) 0·56 8 11·6 (±1·2) 11 12·1 (±1·3) 0·026 267 11·8 (±1·3) 271 12·1 (±1·4) 0·0009 

Platelet crit (%) 409 0·2 (±0·06) 419 0·22 (±0·07) <0·001 39 0·183 (±0·05) 41 0·212 (±0·06) 0·031 95 0·199 (±0·06) 96 0·226 (±0·07) 0·0008 8 0·179 (±0·09) 11 0·190 (±0·07) 0·87 267 0·201 (±0·07) 271 0·215 (±0·07) 0·01 

Plate large cell ratio (%) 409 17·8 (±5·3) 419 18·8 (±5·5) 0·0001 39 16·6 (±5·0) 41 17·9 (±5·3) 0·1 95 17·8 (±5·2) 96 18·1 (±4·7) 0·86 8 17·6 (±4·9) 11 19·3 (±5·4) 0·062 267 18·0 (±5·4) 271 19·2 (±5·8) 0·0001 

Plate large cell count (unit/L) 409 41·4 (±14·2) 419 46·5 (±15·8) <0·001 39 36·5 (±12·2) 41 44·1 (±11·3) 0·005 95 41·7 (±12·6) 96 47·2 (±14·1) 0·0025 8 37·3 (±20·7) 11 41·8 (±13·0) 0·71 267 42·1 (±14·6) 271 46·9 (±17·0) <0·001 

Haemolysis score (0-6)                          

0 166 39·0% 0 0·0% <0·001 13 31·00% 3 7·5% 0·007 37 37·4% 6 6·1% <0·001 4 40·00% 0 0·00% 0·019 112 41·2% 33 12·2% <0·001 

1 144 34·0% 43 10·2% <0·001 10 23·8% 18 45·00% 0·043 41 41·4% 57 57·6% 0·022 2 20·00% 1 9·1% 0·48 91 33·5% 135 49·8% <0·001 

2 78 18·4% 213 50·6% <0·001 13 31·00% 18 45·00% 0·18 13 13·1% 33 33·3% <0·001 3 30·00% 3 27·3% 0·89 49 18·00% 92 34·00% <0·001 

3 35 8·3% 150 35·6% <0·001 6 14·3% 1 4·5% 0·056 8 8·1% 3 3·00% 0·12 1 10·00% 7 63·6% 0·011 20 7·4% 11 4·1% 0·098 

4 0 0·0% 15 3·5% <0·001 0 0·00% 0 0·00% ·· 0 0·00% 0 0·00% ·· 0 0·00% 0 0·00% ·· 0 0·00% 0 0·00% ·· 

 

Supplementary Table 6: Iron, Infection and Haematological Parameters (umbilical cord and venous samples) for groups A, B, C and D 

neonates. Data are presented as mean (± SD) and analysed by ANOVA. P values in bold font are considered significant based on P<0·05. 
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Supplementary Table 7 – Comparison of iron status, inflammation and haematological parameters in cord samples (Group A-D) 

 Whole Population Group A (PTB+LBW) Group B (PTB+NBW) Group C (FTB+LBW) Group D (FTB+NBW)  

Sample Type n Cord n Cord n Cord n Cord n Cord P value 

Serum iron (μmol/L) 425 23·3 (±7·1) 41 25·0 (±7·6) 99 24·2 (±7·2) 10 22·6 (±7·9) 275 22·7 (±7·0) 0·11 

TSAT (%) 423 51·7 (±17·3) 41 55·6 (±17·7) 99 54·5 (±17·7) 10 50·4 (±23·2) 273 50·2 (±16·7) 0·079 

Serum hepcidin (ng/ml) 425 19·9 (±14·2) 42 18·8 (±13·2) 96 22·7 (±14·1) 10 12·7 (±11·6) 277 19·4 (±14·4) 0·075 

UIBC (μmol/L) 423 22·9 (±10·5) 41 21·1 (±10·0) 99 21·2 (±9·8) 10 26·4 (±18·8) 273 23·7 (±10·4) 0·094 

TIBC (μmol/L) 423 46·1 (±8·0) 41 46·0 (±8·4) 99 45·4 (±7·0) 10 49·0 (±12·6) 273 46·3 (±8·1) 0·52 

Serum ferritin (ug/L) 426 210·5 (±157·8) 42 189·3 (±173·1) 99 214·1 (±146·7) 10 203·8 (±214·4) 275 212·6 (±157·7) 0·83 

Haemoglobin (g/dl) 414 15·3 (±2·5) 40 16·4 (±2·9) 96 15·3 (±2·4) 8 15·8 (±4·5) 270 15·1 (±2·3) 0·02 

Haematocrit (%) 414 42·7 (±7·4) 40 46·1 (±8·3) 96 42·7 (±7·3) 8 44·7 (±13·3) 270 42·2 (±7·0) 0·015 

Transferrin (g/L) 426 1·96 (±0·3) 42 1·90 (±0·3) 99 1·92 (±0·3) 10 2·08 (±0·6) 275 1·98 (±0·3) 0·18 

Soluble transferrin receptor (mg/L) 424 6·0 (±2·0) 42 6·14 (±2·0) 99 5·74 (±1·6) 10 7·00 (±3·7) 273 5·99 (±2·0) 0·22 

Haptoglobin (g/L) 426 0·02 (±0·07) 42 0·01 (±0·01) 99 0·03 (±0·1) 10 0·02 (±0·03) 275 0·02 (±0·06) 0·21 

     Undetectable haptoglobin (%) 182 42·7% 20 47·6% 42 42·4% 4 40% 116 42·2% 0·92 

Serum AGP (g/L) 426 0·18 (±0·1) 42 0·15 (±0·2) 99 0·17 (±0·2) 10 0·22 (±0·1) 275 0·19 (±0·1) 0·24 

Serum CRP (mg/L) 425 0·17 (±0·6) 42 0·09 (±0·05) 99 0·16 (±0·3) 10 0·14 (±0·1) 275 0·19 (±0·7) 0·75 

     >5mg/L 2 0·5% 0 0·0% 0 0·0% 0 0·0% 2 0·7% 0·78 

     >3mg/L 3 0·7% 0 0·0% 0 0·0% 0 0·0% 3 1·0% 0·65 

Mean corpuscular volume (fl) 414 98·0 (±6·2) 40 100·0 (±6·1) 96 98·2 (±5·4) 8 95·3 (±11·4) 270 97·8 (±6·3) 0·1 

Mean corpuscular haemoglobin (pg) 414 35·1 (±2·4) 40 35·6 (±2·6) 96 35·3 (±2·2) 8 33·9 (±4·3) 270 35·1 (±2·4) 0·25 

Mean corpuscular haemoglobin concentration (g/dl) 414 35·8 (±1·0) 40 35·5 (±0·9) 96 35·9 (±1·0) 8 35·5 (±1·1) 270 35·8 (±0·9) 0·17 

White blood cell count (unit/L) 412 13·0 (±5·3) 40 10·9 (±4·2) 95 12·7 (±4·4) 8 14·7 (±6·6) 269 13·3 (±5·7) 0·04 

Lymphocyte count (unit/L) 412 4·73 (±3·1) 40 4·5 (±2·0) 95 4·6 (±2·0) 8 6·6 (±3·6) 269 4·77 (±3·5) 0·32 

Lymphocyte percentage (%) 412 36·2 (±8·3) 40 41·8 (±9·3) 95 36·2 (±7·9) 8 43·4 (±6·4) 269 35·2 (±7·9) <0·001 

MID cell count (unit/L) 412 1·02 (±0·6) 40 1·01 (±0·6) 95 0·97 (±0·4) 8 1·23 (±0·5) 269 1·05 (±0·6) 0·49 

MID cell percentage (%) 412 8·27 (±2·6) 40 9·56 (±4·4) 95 8·04 (±2·0) 8 8·99 (±3·5) 269 8·15 (±2·4) 0·009 



 

 211 

Granulocyte count (unit/L) 412 7·21 (±2·7) 40 5·43 (±2·6) 95 7·18 (±2·7) 8 6·9 (±3·0) 269 7·49 (±2·7) 0·0002 

Granulocyte percentage (%) 412 55·5 (±9·1) 40 48·7 (±10·2) 95 55·8 (±8·2) 8 47·6 (±7·8) 269 56·6 (±8·7) <0·001 

Red blood cell count (unit/L) 414 4·36 (±0·7) 40 4·6 (±0·8) 96 4·4 (±0·7) 8 4·73 (±1·3) 270 4·32 (±0·7) 0·054 

Red blood cell distribution width (%) 414 15·2 (±1·1) 40 15·1 (±0·8) 96 15·2 (±1·0) 8 15·8 (±1·3) 270 15·2 (±1·2) 0·45 

Red blood cell distribution width - absolute (fl) 414 81·0 (±8·6) 40 82·4 (±7·8) 96 81·2 (±7·7) 8 79·8 (±12·7) 270 80·7 (±8·9) 0·67 

Platelet count (unit/L) 414 241·4 (±86·9) 40 226·3 (±76·4) 96 242·2 (±70·1) 8 223·8 (±117·5) 270 243·8 (±92·8) 0·63 

Mean platelet volume (fl) 409 8·34 (±0·8) 39 8·16 (±0·8) 95 8·36 (±0·8) 8 8·22 (±0·8) 267 8·37 (±0·8) 0·41 

Platelet distribution width (%) 409 43·3 (±2·8) 39 43·0 (±2·9) 95 42·9 (±2·4) 8 42·6 (±2·4) 267 43·5 (±3·0) 0·31 

Platelet distribution width - absolute (fl) 409 11·8 (±1·2) 39 11·5 (±1·1) 95 11·7 (±1·2) 8 11·6 (±1·2) 267 11·8 (±1·3) 0·39 

Platelet crit (%) 409 0·2 (±0·06) 39 0·183 (±0·05) 95 0·199 (±0·06) 8 0·179 (±0·09) 267 0·201 (±0·07) 0·29 

Plate large cell ratio (%) 409 17·8 (±5·3) 39 16·6 (±5·0) 95 17·8 (±5·2) 8 17·6 (±4·9) 267 18·0 (±5·4) 0·47 

Plate large cell count (unit/L) 409 41·4 (±14·2) 39 36·5 (±12·2) 95 41·7 (±12·6) 8 37·3 (±20·7) 267 42·1 (±14·6) 0·11 

Haemolysis score (0-6)            

0 166 39·0% 13 31·00% 37 37·4% 4 40·00% 112 41·2% 0·62 

1 144 34·0% 10 23·8% 41 41·4% 2 20·00% 91 33·5% 0·2 

2 78 18·4% 13 31·00% 13 13·1% 3 30·00% 49 18·00% 0·067 

3 35 8·3% 6 14·3% 8 8·1% 1 10·00% 20 7·4% 0·5 

4 0 0·0% 0 0·00% 0 0·00% 0 0·00% 0 0·00% ·· 

 
 
Supplementary Table 7: Iron, infection and haematological parameters (umbilical cord samples) for groups A, B, C, and D neonates. Data are 

presented as mean (± SD) and analysed by ANOVA. P values in bold font are considered significant based on P<0·05. 
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Supplementary Table 8 – Comparison of iron status, inflammation and haematological parameters in venous samples (Groups A-D) 

 Whole Population Group A (PTB+LBW) Group B (PTB+NBW) Group C (FTB+LBW) Group D (FTB+NBW)  

Sample Type n Venous n Venous n Venous n Venous n Venous P value 

Serum iron (μmol/L) 421 7·5 (±4·5) 40 8·2 (±3·3) 99 7·7 (±4·4) 11 9·4 (±3·9) 271 7·3 (±4·6) 0·29 

TSAT (%) 420 15·0 (±6·9) 39 15·9 (±5·5) 99 16·2 (±9·3) 11 17·1 (±4·5) 271 14·4 (±6·1) 0·68 

Serum hepcidin (ng/ml) 417 38·4 (±23·7) 40 33·6 (±21·1) 96 39·4 (±24·0) 11 34·0 (±27·0) 270 38·9 (±23·9) 0·076 

UIBC (μmol/L) 420 43·5 (±15·9) 39 43·4 (±10·1) 99 41·5 (±11·2) 11 45·2 (±10·9) 271 44·1 (±18·0) 0·53 

TIBC (μmol/L) 420 51·0 (±17·9) 39 51·6 (±11·6) 99 49·1 (±10·9) 11 54·6 (±13·5) 271 51·4 (±20·7) 0·64 

Serum ferritin (ug/L) 415 381·2 (±297·6) 40 358·5 (±340·0) 98 354·6 (±220·7) 11 394·3 (±372·9) 266 393·9 (±312·6) 0·68 

Haemoglobin (g/dl) 423 19·4 (±3·1) 41 20·8 (±3·3) 99 19·4 (±3·1) 11 20·2 (±4·3) 272 19·1 (±2·9) 0·009 

Haematocrit (%) 423 54·7 (±9·3) 41 59·4 (±10·1) 99 54·5 (±9·4) 11 57·5 (±12·9) 272 53·9 (±8·9) 0·0042 

Transferrin (g/L) 423 1·99 (±0·3) 40 2·00 (±0·4) 99 1·99 (±0·3) 11 2·11 (±0·5) 273 1·98 (±0·3) 0·65 

Soluble transferrin receptor (mg/L) 421 7·0 (±2·2) 40 7·47 (±2·3) 99 6·67 (±1·8) 11 8·6 (±2·9) 271 6·94 (±2·2) 0·017 

Haptoglobin (g/L) 423 0·02 (±0·06) 40 0·01 (±0·01) 99 0·02 (±0·05) 11 0·02 (±0·02) 273 0·03 (±0·07) 0·67 

     Undetectable haptoglobin (%) 144 34·0% 10 25·00% 28 28·3% 5 45·5% 101 37·00% 0·2 

Serum AGP (g/L) 423 0·24 (±0·2) 40 0·19 (±0·2) 99 0·24 (±0·2) 11 0·27 (±0·15) 273 0·25 (±0·17) 0·19 

Serum CRP (mg/L) 422 2·16 (±4·0) 40 1·01 (±1·2) 98 2·39 (±4·5) 11 1·63 (±3·3) 273 2·27 (±4·1) 0·26 

     >5mg/L % 54 12·8% 3 7·5% 13 13·3% 1 9·1% 37 13·6% 0·73 

     >3mg/L % 83 19·7% 5 12·5% 18 18·4% 1 9·1% 59 21·6% 0·42 

Mean corpuscular volume (fl) 423 98·0 (±6·1) 41 100·1 (±6·5) 99 98·3 (±5·4) 11 94·2 (±9·8) 272 97·7 (±6·0) 0·017 

Mean corpuscular haemoglobin (pg) 423 34·9 (±2·4) 41 35·2 (±2·5) 99 35·1 (±2·1) 11 33·2 (±3·8) 272 34·8 (±2·4) 0·08 

Mean corpuscular haemoglobin concentration (g/dl) 423 35·6 (±1·0) 41 35·2 (±0·9) 99 35·7 (±0·9) 11 35·3 (±0·9) 272 35·6 (±1·1) 0·029 

White blood cell count (unit/L) 422 15·9 (±5·5) 41 13·1 (±4·2) 99 15·8 (±4·8) 11 14·0 (±3·7) 271 16·4 (±5·8) 0·0021 

Lymphocyte count (unit/L) 422 4·1 (±2·4) 41 3·7 (±1·2) 99 4·0 (±1·5) 11 3·6 (±1·1) 271 4·21 (±2·9) 0·6 

Lymphocyte percentage (%) 422 26·9 (±8·8) 41 30·5 (±9·6) 99 26·8 (±8·5) 11 27·0 (±7·2) 271 26·5 (±8·8) 0·06 

MID cell count (unit/L) 422 1·48 (±1·0) 41 1·25 (±0·9) 99 1·42 (±1·0) 11 1·32 (±1·0) 271 1·55 (±1·0) 0·27 

MID cell percentage (%) 422 9·67 (±5·4) 41 9·79 (±5·2) 99 9·27 (±4·9) 11 9·62 (±5·3) 271 9·81 (±5·6) 0·86 
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Granulocyte count (unit/L) 422 10·3 (±4·1) 41 8·12 (±3·4) 99 10·32 (±3·9) 11 9·02 (±2·8) 271 10·67 (±4·2) 0·0017 

Granulocyte percentage (%) 422 63·4 (±8·6) 41 59·8 (±8·5) 99 64·0 (±7·8) 11 63·3 (±6·6) 271 63·7 (±8·8) 0·04 

Red blood cell count (unit/L) 423 5·58 (±1·0) 41 5·9 (±1·0) 99 5·5 (±0·9) 11 6·11 (±1·2) 272 5·53 (±0·9) 0·018 

Red blood cell distribution width (%) 423 15·4 (±1·3) 41 15·2 (±0·8) 99 15·4 (±1·0) 11 15·6 (±1·1) 272 15·4 (±1·4) 0·69 

Red blood cell distribution width - absolute (fl) 423 82·2 (±8·5) 41 83·8 (±8·4) 99 82·5 (±7·9) 11 79·2 (±11·5) 272 82·0 (±8·6) 0·39 

Platelet count (unit/L) 423 260·4 (±94·6) 41 256·9 (±86·1) 99 269·4 (±101·0) 11 234·3 (±84·3) 272 258·7 (±94·0) 0·35 

Mean platelet volume (fl) 419 8·47 (±0·8) 41 8·35 (±0·8) 96 8·38 (±0·7) 11 8·46 (±0·8) 271 8·52 (±0·8) 0·3 

Platelet distribution width (%) 419 43·7 (±3·2) 41 43·2 (±3·1) 96 43·4 (±2·8) 11 44·2 (±2·7) 271 43·9 (±3·3) 0·26 

Platelet distribution width - absolute (fl) 419 12·0 (±1·3) 41 11·7 (±1·3) 96 11·8 (±1·1) 11 12·1 (±1·3) 271 12·1 (±1·4) 0·19 

Platelet crit (%) 419 0·22 (±0·07) 41 0·212 (±0·06) 96 0·226 (±0·07) 11 0·190 (±0·07) 271 0·215 (±0·07) 0·35 

Plate large cell ratio (%) 419 18·8 (±5·5) 41 17·9 (±5·3) 96 18·1 (±4·7) 11 19·3 (±5·4) 271 19·2 (±5·8) 0·21 

Plate large cell count (unit/L) 419 46·5 (±15·8) 41 44·1 (±11·3) 96 47·2 (±14·1) 11 41·8 (±13·0) 271 46·9 (±17·0) 0·52 

Haemolysis score (0-6)            

0 0 0·0% 3 7·5% 6 6·1% 0 0·00% 33 12·2% 0·2 

1 43 10·2% 18 45·00% 57 57·6% 1 9·1% 135 49·8% 0·018 

2 213 50·6% 18 45·00% 33 33·3% 3 27·3% 92 34·00% 0·51 

3 150 35·6% 1 4·5% 3 3·00% 7 63·6% 11 4·1% <0·001 

4 15 3·5% 0 0·00% 0 0·00% 0 0·00% 0 0·00% ·· 

 
 
Supplementary Table 8: Iron, infection and haematological parameters (venous samples) for groups A, B, C, and D neonates. Data are 

presented as mean (± SD) and analysed by ANOVA. P values in bold font are considered significant based on P < 0·05. 
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Chapter 6 – Iron homeostasis in full term, normal birthweight 
Gambian neonates over the first week of life (FTB/NBW Paper) 
 
 

Summary of Chapter 

 

BACKGROUND: Human neonates elicit a profound hypoferremia to protect against 

bacterial and fungal sepsis on their first day of life. 

 

OBJECTIVE: We examined the transience of this effect by measuring iron and its 

chaperone proteins, inflammatory and hematological parameters over the first post-partum 

week. 

 

DESIGN: We prospectively studied term (>37 completed gestational weeks), normal weight 

(>2500g) newborns at Kanifing General Hospital, The Gambia. Blood was sampled from the 

umbilical cord vein (CDV) and artery (CDA). Neonatal venous blood was sampled at 6-24h 

(V1) in all babies, who were then randomized to a second blood draw at 25-80h (V2), 81-

136h (V3) or 137-192h (V4). Hepcidin, serum iron, transferrin saturation, transferrin, 

haptoglobin, CRP, AGP, sTfR, ferritin, TIBC, UIBC and full blood count were assayed. 

 

RESULTS: Two hundred and seventy-eight neonates (278, 54.3% males, gestational age 

39.4±1.3wk, birth weight 3299±368g) were enrolled. We confirmed the profound early 

postnatal decrease in serum iron (CDV=22.7±7.0 µmol/L to V1=7.3±4.3 µmol/L, P<0.0001) 

and TSAT (50.2±16.7% to 14.4±6.1%, P<0.0001). Both variables increased steadily to reach 

16.5±3.9 µmol/L and 36.7±9.2% at V4 (P for trend <0.0001 for each). Hepcidin increased 

rapidly after birth (CDV=19.4±14.4 ng/ml to V1=38.9±23.9 ng/ml, P<0.0001) then dipped 

before rising again by V4. Inflammatory markers increased from V1 onwards. Network 
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analysis revealed a disconnect between the correlations observed in CDV and V2-V4 and 

those in V1. Surprisingly, serum iron and TSAT were only weakly influenced by hepcidin. 

 

CONCLUSIONS: Rapid anti-infective post-natal hypoferremia in human neonates is 

transient. The later rise in serum iron despite very high hepcidin indicates hepcidin 

resistance possibly caused by macrophage saturation with iron released from degradation of 

fetal erythrocytes. Pharmacological prolongation of hypoferremia might offer an ancillary tool 

in the armoury against antimicrobial resistance, however, it would need to overcome or 

circumvent the hepcidin resistance we now report. 
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6.1 ABSTRACT 

 

BACKGROUND: Human neonates elicit a profound hypoferremia to protect against 

bacterial and fungal sepsis on their first day of life. 

OBJECTIVE: We examined the transience of this effect by measuring iron and its 

chaperone proteins, inflammatory and hematological parameters over the first postpartum 

week. 

DESIGN: We prospectively studied term (>37 completed gestational weeks), normal weight 

(>2500g) newborns at Kanifing General Hospital, The Gambia. Blood was sampled from the 

umbilical cord vein (CDV) and artery (CDA). Neonatal venous blood was sampled at 6-24h 

(V1) in all babies, who were then randomized to a second blood draw at 25-80h (V2), 81-

136h (V3) or 137-192h (V4). Hepcidin, serum iron, transferrin saturation, transferrin, 

haptoglobin, CRP, AGP, sTfR, ferritin, TIBC, UIBC and full blood count were assayed. 

RESULTS: Two hundred and seventy-eight neonates (278, 54.3% males, gestational age 

39.4±1.3wk, birth weight 3299±368g) were enrolled. We confirmed the profound early 

postnatal decrease in serum iron (CDV=22.7±7.0 µmol/L to V1=7.3±4.3 µmol/L, P<0.0001) 

and TSAT (50.2±16.7% to 14.4±6.1%, P<0.0001). Both variables increased steadily to reach 

16.5±3.9 µmol/L and 36.7±9.2% at V4 (P for trend <0.0001 for each). Hepcidin increased 

rapidly after birth (CDV=19.4±14.4 ng/ml to V1=38.9±23.9 ng/ml, P<0.0001) then dipped 

before rising again by V4. Inflammatory markers increased from V1 onwards. Network 

analysis revealed a disconnect between the correlations observed in CDV and V2-V4 and 

those in V1. Surprisingly, serum iron and TSAT were only weakly influenced by hepcidin. 

CONCLUSIONS: Rapid anti-infective postnatal hypoferremia in human neonates is 

transient. The later rise in serum iron despite very high hepcidin indicates hepcidin 

resistance possibly caused by macrophage saturation with iron released from degradation of 

fetal erythrocytes. Pharmacological prolongation of hypoferremia might offer an ancillary tool 
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in the armoury against antimicrobial resistance, however, it would need to overcome or 

circumvent the hepcidin resistance we now report. 

Trial Registration: clinicaltrials.gov (NCT03353051). Registration date: November 27, 

2017.  

FUNDING: Bill & Melinda Gates Foundation (OPP1152353).  

WORD COUNT: 296/300 

Keywords: Nutritional immunity, host-pathogen interaction, hepcidin, neonates, 

hypoferremia, transferrin, The Gambia, sub-Saharan Africa  

 

6.2 INTRODUCTION 

 

During pregnancy, the mother increases iron absorption and turnover of erythrocytes to 

provide for the growing fetus.1 As maternal hepcidin decreases during the third trimester, 

placental iron transfer rises.2 This leads to higher cord blood TSAT and serum iron levels 

compared to those of the mother at delivery,3–5 even in anemic mothers.6 To protect the 

fetus against possible iron overload during the last trimester, fetal-derived hepcidin regulates 

iron transfer via degradation of ferroportin on placental syncytiotrophoblasts.7 As a result, 

umbilical cord hepcidin concentrations of term neonates are higher than those of the mother, 

before and during delivery.8–10  

 

Using murine and in vivo human trophoblast models, evidence also suggests that the 

placenta may independently regulate iron transfer to the fetus in specific circumstances.11 A 

reduction of ferroportin expression on the apical fetal-facing membrane of placental 

syncytiotrophoblasts and increased expression of transferrin receptor 1 (TFR1) on the 

maternal-facing side have been observed in the setting of maternal iron deficiency. Placental 

metabolic homeostasis is subsequently maintained, protecting the fetus from the more 

detrimental condition of placental dysfunction.11  
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In laboring mothers at term, cord levels of IL-6 increase 4-fold even in the absence of 

evident infection.12 Since the placenta is impermeable to IL-6,12,13 these high cord blood 

levels suggest that labour could be associated with a fetal-neonatal inflammatory response, 

potentially triggered by labour-related mechanisms or exposure to infectious agents. 

Immediately after delivery, newborns face the most complex multi-organ physiological 

adaption that they will experience in their entire lives. Increased IL-6 levels in the newborn 

are thought to assist with organ system transition at birth (e.g. cytokine-induced synthesis of 

lung surfactant proteins14) and the activation of the immune system in the newborn15. IL-6 is 

also known to activate the JAK-STAT pathway, leading to the induction of hepcidin 

synthesis.16 In previous studies we17,18 and others19–22 have demonstrated a rapid and 

profound hypoferremia occurring within the first few hours after delivery. This is assumed to 

have evolved as a defence against early-onset neonatal sepsis (EONS) and remains robust 

in premature and low-birthweight babies.18 Several studies have shown that post-natal 

peripheral hepcidin and prohepcidin (precursor) levels are higher than those in cord 

blood.9,19,20 We previously observed an initial increase in hepcidin within the first 12 hours of 

life in healthy newborns, positively correlated to raised IL-6 levels,17 and we confirmed this in 

low birth weight and premature newborns.18 Our data suggested that the IL-6-hepcidin-

ferroportin axis plays a partial, but probably not exclusive, role in orchestrating the 

hypoferremia. 

 

Here, we examine the duration of the hypoferremia and the likely regulatory influences in 

full-term, normal birthweight babies by analysing serial blood samples over the first week of 

life. 
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6.3 SUBJECTS AND METHODS 

 

Full details of the NeoInnate Study (clinicaltrials.gov, NCT03353051) can be found in the 

published protocol paper.23 

 

Study Design 

The NeoInnate Study tested whether preterm and/or low birthweight babies were capable of 

inducing acute hypoferremia previously noted in full-term, normal birthweight babies. Results 

of the primary outcomes have been presented elsewhere.18 Here we describe the pre-

planned secondary analysis of longitudinal changes in iron, hematological and inflammatory 

parameters over the first week of life within the term, normal weight babies from the 

FTB/NBW group. All babies were sampled from the cord artery (CDA) and vein (CDV) and 

had an early postnatal draw (V1) at 6-24h. For the longitudinal analysis over the first week of 

life and to avoid more than two blood draws per baby, the babies were then randomly 

allocated to a second blood draw at 25-80h (V2), 81-136h (V3) or 137-192h (V4) (Figure 1). 

Randomisation of second blood draw group allocation was completed using a random 

number calculator (GraphPad QuickCalcs, GraphPad Software INC, CA 92037, USA). This 

allocation was adapted according to study working hours and access to the newborn. Data 

collection started on the 5th July 2017 and ended on 1st February 2019. 

 

Ethics, standards and informed consent 

The trial was approved by the Medical Research Council Unit The Gambia at London School 

of Hygiene and Tropical Medicine (MRCG at LSHTM) Scientific Coordinating Committee, the 

Joint Gambia Government/MRC Ethics Committee (SCC1525) and the London School of 

Hygiene and Tropical Medicine Ethics Committee (Ref:14316) and conducted according to 

Good Clinical Practice (GCP) standards. All participants gave written, informed consent. 
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Study setting 

Study participants were recruited from Kanifing General Hospital (formerly Serrekunda 

General Hospital), in the urban Kanifing region of The Gambia, West Africa.  

 

Recruitment, screening and enrolment 

We planned to enrol 300 neonates into this longitudinal arm of the NeoInnate Study. For 

inclusion in this aim of the study, neonates were healthy, medically stable (i.e. not requiring 

resuscitation and with no signs of sepsis) with a gestational age ≥37 completed weeks 

(assessed by New Ballard Score24) and weighed ≥2500g.  

 

Pregnant mothers were excluded from the study if they were below the age of 18 years, had 

no fetal heartbeat detected upon admission, were known to be HIV-positive, were in receipt 

of TB therapy, had taken antibiotics in the last seven days, had a blood transfusion in the 

last month, were suffering from severe pre-eclampsia or antepartum haemorrhage, or were 

in another research study.  

 

Babies were excluded at the delivery stage for the following reasons: major congenital 

malformations (not including polydactylism), blood transfusions given to mother or neonate, 

severe birth asphyxia (requiring resuscitation), neonates born via breech, vacuum or via 

caesarean section. 

 

After the delivery stage, babies were excluded following the detection of infection or illness 

(i.e. information gained from a venous bleed or review of systems). Neonates were also 

removed from the study protocol if any medication other than intramuscular vitamin K, 

tetracycline eye ointment or immunisations was given. All medications given to mothers and 

neonates during the study period were recorded. Mothers who delivered multiple newborns 

were invited to enrol one of their neonates into the study.  
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Sample collection 

Once the neonate was fully delivered, one-minute delayed cord clamping was used 

(following World Health Organisation (WHO) policy25). After the umbilical cord was removed 

and cleaned, a trained study nurse identified the umbilical arteries (CDA) and umbilical vein 

(CDV). Blood was collected from each using separate blood draw equipment.  

 

At 6-24 hours post-delivery, recruited mothers and their neonates were invited to a private 

consultation with the study research clinician. Demographic data were collected, along with 

a complete review of systems of the mother and neonate, and newborn anthropometry. 

Neuromuscular and physical maturation of each neonate was assessed using the New 

Ballard Score.24 Immediately after passing the health assessment, a 3.5ml venous blood 

draw was performed on all neonates (V1).  

 

During the community visit at the home of the neonate, a review of systems in the mother 

and child were conducted by a research nurse. This was followed by collecting data on 

medication, behaviour and immunisations of the neonate after leaving the hospital. A further 

sample of 3.5ml venous blood was then collected (V2-4) if the neonate was regarded as 

healthy.  

 

Laboratory analyses 

A full haematology panel (using a Medonic M20M GP, Boule Diagnostics, Spanga, Sweden) 

and glucose-6-phosphate dehydrogenase deficiency test (R&D Diagnostics Limited, 

Papagos, Greece) were conducted on fresh whole blood. Serum was separated and stored 

at -20oC prior to analysis of ferritin, iron, unsaturated iron-binding capacity (UIBC), soluble 

transferrin receptor (sTfR), transferrin, c-reactive protein (CRP), haptoglobin, and alpha-1-

acid glycoprotein (AGP) using a fully automated biochemistry analyser (Cobas Integra 400 

plus, Roche Diagnostic, Switzerland). Transferrin saturation (TSAT) was calculated. Serum 
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samples were assessed for hepcidin concentration by ELISA (hepcidin-25 (human) EIA Kit, 

DRG, USA) with a dynamic range of 0.135-81 ng/mL. 

 

In order to ensure a consistent assessment of haemolysis in all serum samples, batches of 

samples were thawed before entering the biochemistry analyser and visually scored by a 

single operator. A previously published specimen integrity chart for haemolysis was used as 

reference.26 Samples were scored 0 (yellow 0 g/L of hemoglobin) to 6 (dark red 8 g/L of 

hemoglobin). Samples scoring ≥5 were removed from the analysis. 

 

Sample size determination 

Sample size calculations for the primary outcomes of the NeoInnate Study were based on 

data from a previous study17 and are summarised in the protocol paper.23 The secondary 

outcomes presented here were not subjected to a formal sample size analysis. 

 

Statistical analysis 

Statistical analysis and preparation of figures were conducted using STATA v15.1 (Stat-Corp 

LP, College Station, TX, USA), DataDesk version 7.0.2 (Data Description Inc) and 

GraphPad Prism (GraphPad Software INC, CA 92037, USA). For continuous variables, 

baseline characteristics are presented as means (± SD) for normally distributed variables. All 

skewed data (hepcidin, CRP, AGP, sTfR and ferritin) were transformed using the ladder 

command in STATA. The ladder command searches a subset of the ladder of powers for a 

transformation that converts the variable of interest into a normally distributed variable. 

Results were confirmed graphically by the gladder command. Categorical variables are 

reported as proportions (%). Iron and inflammation markers were compared using ordinary 

least squares analysis of variance (OLS ANOVA), using Scheffé’s post-hoc tests to control 

for multiple testing (V1 vs V2, V3 or V4). All hypothesis tests were two-sided at a 

significance level of 0.05. The rate of missing data was small (<5%), thus we did not impute 

missing data. Weighted Pearson network analysis was conducted using the Shiny Network 
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Application (https://jolandakos.shinyapps.io/NetworkApp/). The network was formatted using 

the Fruchterman-Reingold Algorithm27 only showing moderate or strong (>0.3) associations 

between nodes. V2, V3 and V4 nodes were combined to aid visualisation. 

 

6.4 RESULTS 

 

A CONSORT diagram summarising subject recruitment is shown in Figure 2. There were 

278 neonates with paired cord blood and V1 samples. Of these, 224 provided a second 

venous blood sample (V2, V3 or V4). 

 

Neonatal characteristics 

Baseline characteristics are shown in Table 1. Newborns were healthy vaginally delivered 

babies, with a mean gestational age of 39.4 ± 1.3wk and mean birthweight of 3299 ± 368g. 

Many of the mothers (81.7%) received iron and folic acid during pregnancy as per WHO 

guidelines. Mean anthropometric measurements of all neonates fell within the 25th and 75th 

centiles of the WHO growth charts for gestational age.28 The mean times of bleed were: V1 

= 12.7 ± 0.32h; V2 = 57.6 ± 15.6h; V3 = 105.8 ± 17.0h; and V4 = 156.7 ± 21.0h. 

 

Changes in iron and chaperone proteins in the first week of life 

Iron metabolism parameters over the first week of life can be seen in Table 2 and Figure 3. 

Following the acute hypoferremia on Day 1 (V1 = 7.3 ± 4.6µmol/L vs CDV = 22.7 ± 

7.0µmol/L, P<0.0001) there was a steady increase in serum iron to 16.5 ± 3.9μmol/L at V4 

(P for trend <0.0001) (Fig 3A). There was a slight decrease in transferrin levels (Fig 3B) but 

TIBC levels remained relatively constant (Fig 3C) and hence TSAT levels mirrored those for 

serum iron (Fig 3D). Following the acute postnatal hypoferremia (V1 = 14.4 ± 6.0% vs CDV 

= 50.2 ± 16.7%, P<0.0001) TSAT increased steadily to 36.7 ± 9.2% at V4 (P for trend 

<0.0001). UIBC consequently decreased from V1 to V4 (from 44.1 ± 18.0μmol/L to 29.5 ± 
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9.6μmol/L, P for trend <0.0001) (Fig 3E). Ferritin levels were very high at V1 (393 ± 

313μg/L) and showed a non-significant decline to 355 ± 182μg/L at V4 (Fig 3F).  

 

Changes in hepcidin and inflammatory markers in the first week of life 

Hepcidin levels in cord blood were high (19.4 ± 14.4ng/ml) and doubled immediately after 

birth to reach 38.9 ± 23.9ng/ml at V1 (P<0.0001). There was then a slight non-significant dip 

followed by a steady rise to 45.2 ± 19.1ng/ml at V4 (P for trend <0.0001) (Fig 4A). CRP 

levels were low in cord blood (0.2 ± 0.7 mg/L) and increased 10-fold immediately after birth 

(to 2.3 ± 4.1mg/L at V1, P<0.0001) followed by a further steep rise to 5.6 ± 9.3mg/L at V2 

(P<0.0001 vs V1) and then a decline to 0.9 ± 1.5 by V4 (P<0.0001 for trend)(Fig 4B). AGP 

showed a small increase after birth and then a further slow rise to V4 (P<0.0001) (Fig 4C). 

The heme-binding inflammatory-response protein haptoglobin increased between CDV and 

V1 (from 0.02 ± 0.1g/L to 0.1 ± 0.2g/L, P<0.0001) and then declined slightly to 0.08 ± 0.1g/L 

at V4 (P for trend <0.0001) (Fig 4D). 

 

Changes in hematological indices in the first week of life 

Cord hemoglobin (15.1 ± 2.3g/dl) and hematocrit (42.2 ± 7.0%) were high and there was a 

further increase by V1 (hemoglobin to 19.5 ± 2.9g/dl, hematocrit to 55.0 ± 9.7%, P<0.0001 

for both increases). This was followed by a steady decline back towards cord-like levels by 

V4 (hemoglobin to 16.9 ± 2.9g/dl, hematocrit to 46.9 ± 9.0%, P<0.0001 for trend in both 

cases) (Fig 5A,5B). Soluble transferrin receptor levels dropped markedly reflecting the fact 

that there was a net breakdown of haemoglobin during the first week of life and an 

abundance of circulating iron to supply the needs of any on-going erythropoiesis (Fig 5C). 

 

Pearson correlation network analysis of iron and inflammation markers  

Weighted Pearson correlation network analysis between the iron and inflammation markers 

in all samples (CDV, V1 and V2-4) are shown in Figure 6. The unconnected nodes for 

birthweight and gestational age reflect their lack of influence on any of the markers. As 
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expected, there were consistent associations between serum iron, TSAT, UIBC and TIBC at 

all time points, but the V1 nodes were notably separated from CDV and V2-V4 underscoring 

the unusual nature of the immediate post-natal hypoferremia. Hemoglobin and hematocrit 

followed a similar pattern, with cord values only correlating to V2-V4 values. The 

inflammatory markers CRP, AGP and haptoglobin were generally associated as would be 

expected (see lower part of the network) but ferritin, also an inflammatory marker, was 

notably separate. The most surprising feature was that hepcidin featured on the periphery of 

the network and was not associated with the inflammatory markers or serum iron. 

 

Comparisons of iron and inflammation markers in arterial (CDA) and venous cord 

blood (CDV) 

Figure 7 illustrates the comparisons between iron and inflammation markers in venous and 

arterial cord blood. For most markers there were no differences. TSAT was slightly higher in 

venous blood (50.5 ± 1.0%) than arterial cord blood (46.9 ± 1.0%, P<0.0001). Conversely, 

arterial blood had higher ferritin (276.9 ± 14.7 vs 215.7 ±10.1µg/L, P<0.0001), UIBC (27.1 ± 

0.7 vs 23.4 ± 0.7µmol/L, P<0.0001) and TIBC (49.8 ± 0.57 vs 46.1 ± 0.51µmol/L, P<0.0001).  

There were no differences in any red blood cell indices between venous and arterial cord 

blood, but white cell counts (with the exception of granulocyte count) were significantly 

higher in arterial blood (Table 3). Conversely platelet counts were significantly higher in 

venous blood.  

 

6.5 DISCUSSION 

 

This study demonstrates that, following the previously reported17,18 acute postnatal 

hypoferremia, serum iron and TSAT steadily revert towards cord-like levels over the first 

week of life. We interpret this as further evidence that the early hypoferremia has evolved to 
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help newborns navigate the hazardous journey as they progress from an almost sterile intra-

uterine existence to the heavy bacterial exposures of extra-uterine life. 

 

Our prior analyses17,18 using data from independent studies, revealed that the early 

hypoferremia was, at least in part, driven by an inflammatory response to the birth process, 

eliciting a rapid IL-6-mediated rise in hepcidin. Hepcidin blocks the release of iron from 

enterocytes and macrophages1 and thereby reduces serum iron through the dual actions of 

preventing iron absorption and recirculation. In neonates who receive insignificant amounts 

of dietary iron on Day 1, the latter mechanism dominates and the hypoferremia represents a 

temporary redistribution of iron away from the extracellular plasma where it would enhance 

the growth of any ingressing bacteria or fungi.17 It is likely that additional hepcidin-

independent mechanisms play an additional role in the hypoferremia.29 

 

A surprising element of the current data is that iron and TSAT levels start to revert to normal 

despite hepcidin levels that continue to rise over the first week reaching values that are 3-4-

fold higher than observed in healthy adults.30 Furthermore, there was no correlation between 

hepcidin and serum iron or TSAT in the V2-4 samples. This unexpected disconnect between 

the relatively high levels of serum iron and TSAT coupled with high hepcidin concentrations 

suggests that early neonatal iron metabolism is desensitised to the action of hepcidin and 

thus the sequestration of intracellular iron is not maintained. This could be because the 

intracellular iron pools are saturated in the early post-partum period. We propose that 

macrophage cellular iron pools are increased in the first hours of life, initially due to the 

physiological hemolysis of fetal erythrocytes,31 followed by the uptake of transferrin-iron 

complexes.32 Erythrophagocytosis and the recycling of iron released from the catabolism of 

heme also add to intracellular iron levels.33 This is further exacerbated by the effects of 

inflammation-induced hepcidin excess at 6-24 hours post-delivery, leading to hepcidin-

induced co-degradation34 and/or hepcidin occlusion35 of the transmembrane iron transporter, 

ferroportin. We propose the initial hepcidin levels reduce expression of ferroportin on 
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macrophage cell membranes, thus eliciting the immediate post-natal hypoferremia, but that 

complete removal of all ferroportin molecules from the cell membrane is not achieved. This 

is supported by in vivo hepcidin challenge experiments showing a halving of ferroportin 

expression within 4 hours.36 However, the complete removal of ferroportin was not achieved. 

Previous authors have suggested that excess levels of hepcidin more likely result in the 

blocking of the central cavity of ferroportin, rather than its internalization.35 We propose that 

as hepcidin levels are consistently high during the first week of life, intermittent binding and 

releasing of hepcidin to the central cavity of individual ferroportin molecules may allow for 

slow rates of iron efflux into the circulation. We hypothesize that this results in a gradual 

increase in serum iron and TSAT, even in the high hepcidin environment, as seen in 

Figures 3 and 4. Previous research suggests that a potential cause of occlusion over 

internalization and the differences between tissues in sensitivity to hepcidin could be due to 

the differing endocytic machinery present in different cell types, or differing ferroportin 

glycosylation.36,37 Further research in respect to neonatal macrophages is required. 

 

Other studies have shown that following the neonatal period, circulating hepcidin levels 

decline to those similar to or lower than those observed in cord blood.38–40 Increased 

expression of growth factors (i.e. IGF-1, HGF, EGF, PDGF-BB) is thought to be the cause of 

downregulation of hepcidin transcription.41,42 Our research shows that this trend does not 

begin until after the first week of life.  

 

Differences in hepcidin concentration between males and females are observed in adults43 

and children.44 Previous research has noted significantly lower hepcidin concentrations in 

male neonates compared to females in the first week of life.45 Though initially thought to be 

due to iron status and CRP concentration differences, it has recently been suggested that 

higher testosterone levels may be the cause. Though we did not measure testosterone 

levels in our samples, no significant difference in cord, V1 (6-24 hrs) or V2-4 (24-192 hours) 

hepcidin concentration was observed between sexes.  
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CRP levels peaked between 24-80 hours post-delivery, with again a surprising absence of 

correlation with hepcidin concentrations. This is despite the well-documented regulatory 

pathways of infection and inflammation on iron regulation.46 Previous studies have 

suggested that the lack of correlation between hepcidin, IL-6 and CRP is due to differences 

in the kinetics of these proinflammatory biomarkers during the infection process. IL-6 

concentrations spike very early in the course of infection or inflammation, hepcidin then 

follows and the rise of CRP is delayed and with a further delay to AGP release.47 

 

The great majority of mothers in this study reported that they received iron and folic acid in 

pregnancy as per Gambian government guidelines but 52% remained anaemic in the last 

week before delivery. Despite this, ferritin levels in cord blood were high (CDV: 213 ± 

158µg/L) and levels almost doubled immediately after delivery to 394 ± 313µg/L at V1. It has 

previously been suggested that this is due to the physiological hemolysis of fetal red blood 

cells, which contain ferritin in high concentrations.22 Similarly, we found elevated levels of 

haptoglobin, peaking at 0.1 ± 0.2g/L at 24-80 hours of life. We suggest this is another layer 

of nutritional immunity, as haptoglobin binds to hemoglobin, further restricting iron availability 

to invading microorganisms.48  

 

We also recorded increases in newborn hemoglobin and hematocrit taken within the first 

hours of life (6-24 hours) compared to cord blood. This is likely to be in part due to postnatal 

dehydration, as well as vasomotor instability and venous pooling.49 The decreases in 

hemoglobin and hematocrit over the first week of life are likely a response to the higher 

ambient oxygen concentration ex-utero.49 

 

We undertook the comparative analysis of iron markers and inflammation in arterial and 

venous cord blood to ensure that non-standardized sampling of ‘cord blood’ in prior studies 

did not affect the comparisons between cord and postnatal samples. Serum iron was 

identical between sampling sites, and although there were significant differences for TIBC, 
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and hence reciprocally for TSAT, the differences were only in the order of 6-7%. Transferrin 

levels were similar, suggesting that differences in non-transferrin iron-binding compounds 

account for the small difference in TIBC and TSAT.   

 

Cord arteriovenous samples show significant differences in all platelet parameters. This may 

be the result of the placenta being an active site of platelet production as previously 

suggested by Woods et al.50  

 

There are several strengths and limitations to our study. The large sample size and the 

relative homogeneity of responses across most analytes provides confidence in the trends 

observed. A limitation is that maternal iron markers in mid-gestation, parturition and after 

delivery were not measured. This would have provided information as to what effect 

maternal iron and inflammation status had on the neonatal iron marker fluctuations we 

studied. Measurement of pro-inflammatory cytokines (e.g. IL-6 and IL-22) and growth factors 

(i.e. IGF-1, HGF, EGF and PDGF-BB) may have provided additional insights into the 

regulation of postnatal iron metabolism. Variables governing the hepcidin-independent 

regulation of iron redistribution are not yet known so could not be measured in our study. 

The effects of diurnal rhythm, iron supplementation and infection were not assessed and 

could be a direction for future research.  

 

In conclusion, our results suggest that early postnatal hypoferremia is a fast-acting, yet 

short-lived adaptation likely to have evolved to protect the newborn from infection at the time 

they are most vulnerable. This is followed by a period of hepcidin desensitisation, or leaky 

intracellular iron sequestration, as iron efflux into the serum continues even in the presence 

of high serum hepcidin concentrations. The reduced need for iron for erythropoiesis during 

the first week of life could also increase the concentration of serum iron. This interpretation 

is supported by the observed decrease in sTfR levels over the first week indicating that 

erythroid tissues were not demanding iron. We have previously shown18 that, in principle, the 
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duration of postnatal hypoferremia might be extendable through the administration of mini-

hepcidins as an ancillary tool against antimicrobial-resistant infections. The new data 

presented here suggests that any such intervention would need to overcome or circumvent 

the hepcidin resistance we report in the first week of life. 
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Abbreviations: 

AGP = Alpha 1-acid glycoprotein 

CDA = Cord arterial blood 

CDV = Cord venous blood 

CRP = C-reactive protein 

EDTA = Ethylenediaminetetraacetic acid 

EGF = Epidermal growth factor 

ELISA = Enzyme-linked immunosorbent assay 

G6PD = Glucose-6-phosphate dehydrogenase 

GCP = Good Clinical Practice 

HGF = Hepatocyte growth factor 

IGF-1 = Insulin-like growth factor-1 

IL-6 = Interleukin 6 

IL-22 = Interleukin 22 

KGH = Kanifing General Hospital 

KMC = Kanifing Municipal Council 

MRCG = Medical Research Council Unit The Gambia at LSHTM 

PDGF-BB = Platelet-derived growth factor - BB 

ROS = Reactive oxygen species 

SCC = Scientific Coordinating Committee 

sTfR = Soluble transferrin receptor 

TfR1 = Transferrin receptor 

TIBC = Total iron-binding capacity 

TSAT = Transferrin saturation 

UIBC = Unbound iron-binding capacity 

WHO = World Health Organisation 
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Figure Legends: 

 

Figure 1: Study recruitment and blood draw design. Mothers were approached on 

entering the KGH maternity ward, The Gambia. This was followed by the consenting 

process, recruitment and delivery data collection. At delivery, venous (CDV) and arterial 

(CDA) cord blood was collected after one-minute delayed cord clamping. The neonate was 

weighed after cord blood collection. At 6-24 hours post-delivery, the research study clinician 

conducted a health check of the mother and newborn. New Ballard Score was used to 

establish gestational age. If the neonate was deemed healthy, the V1 blood draw was 

completed. Follow-up in the community was conducted 24-216 hours post-delivery. This 

involved a health check of mother and newborn by the study nurse. If deemed healthy, the 

newborn was bled again (V2: ≥24 hours - <80 hours, V3: ≥80 hours - <136 hours, V4: ≥136 - 

<192 hours).  

 

Figure 2: CONSORT diagram for participant flow. Two hundred and seventy-eight full-

term, normal birthweight neonates were recruited to the study. Red outlined boxes represent 

all neonates excluded. 

 

Figure 3: Changes in iron and chaperone proteins in the first week of life 

Blood was drawn from the umbilical cord vein (CDV) at birth and from the dorsum of the 

hand at serial time points for each individual (>6-≤24hrs and >24-≤216hrs). Dots represent 

individual measurements. The blue line is a loess fit curve with 95% confidence intervals 

shaded in red. A = serum iron, B = transferrin, C = TIBC, D = TSAT, E = UIBC, F = ferritin. 

 

Figure 4: Changes in hepcidin and inflammatory markers in the first week of life 

Blood was drawn from the umbilical cord vein at birth and from the dorsum of the hand at 

serial time points for each individual (>6-≤24hrs and >24-≤216hrs). Dots represent individual 
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measurements. The blue line is a loess fit curve with 95% confidence intervals shaded in 

red. A = hepcidin, B = CRP, C = AGP, D = haptoglobin. 

 

Figure 5: Changes in hematological indices in the first week of life 

Blood was drawn from the umbilical cord vein at birth and from the dorsum of the hand at 

serial time points for each individual (>6-≤24hrs and >24-≤216hrs). Dots represent individual 

measurements. The blue line is a loess fit curve with 95% confidence intervals shaded in 

red. A = hemoglobin, B = hematocrit, C = sTfR. 

 

Figure 6: Weighted Pearson correlation network analysis of iron status and 

inflammation variables between cord and post-natal blood samples. Produced using 

the Shiny Network Application (https://jolandakos.shinyapps.io/NetworkApp/). This analysis 

is formatted into the “spring” layout that uses the Fruchterman-Reingold Algorithm 27 placing 

the more strongly correlated nodes closer together. Node colours define sample type 

(YELLOW = CDV, BLUE = V1, PINK = V2-4). The direction and size of the Pearson 

correlation between two nodes is represented using the colour (RED = Negative, GREEN = 

Positive) and thickness of an edge. Cord = umbilical cord blood. V1 = venous blood from 

dorsum of the hand at >6-≤24hrs. V2-4 = venous blood from dorsum of the hand at >24-

≤216hrs. Fer = ferritin, Hep = hepcidin, Hct = hematocrit, Hgb = hemoglobin, GA = 

gestational age, BW = birthweight, CRP = C-reactive protein, Hapt = haptoglobin, AGP = 

alpha 1-acid glycoprotein, sTfR = soluble transferrin receptor, UIBC = unbound iron-binding 

capacity, TIBC = total iron-binding capacity, Trans = transferrin, fe = serum iron, TSAT = 

transferrin saturation.  

 

Figure 7: Comparison of iron status, inflammation and hematological parameters in 

cord arterial (CDA = BLUE) and venous (CDV = RED) blood. Box plots represent the 

arithmetic mean with whiskers representing minimum and maximum values. * = P<0.05. No 

significance line = P>0.05. 
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Tables 

Table 1: Demographic, clinical and pregnancy outcome characteristics of the women and their newborns.  

Study Group Exclusions V1  
(Total Sample) V2 V3 V4 

Number of Participants (n) 54 278 56 100 68 

Characteristic Mean (±SD) 

Gestational Age (Weeks) 39.4 (±1.3) 39.4 (±1.3) 39.4 (±1.4) 39.3 (±1.3) 39.6 (±1.2) 
Birth Weight (g) 3361.2 (±377.9) 3299 (±368.3) 3270.4 (±355.3) 3293.1 (±364.7) 3281.9 (±378.7) 
Head Circumference (cm) 34.5 (±1.0) 34.6 (±1.0) 34.5 (±1.0) 34.6 (±1.0) 34.6 (±1.2) 
Length (cm) 50.0 (±1.6) 50.0 (±1.6) 50.2 (±1.5) 50.0 (±1.5) 49.9 (±1.7) 
Maternal Hemoglobin ≤7 Days Before Delivery (g/dl) 11.6 (±2.2) 11.6 (±1.8) 11.4 (±1.8) 11.8 (±1.6) 11.6 (±1.8) 
Age of Mother (Years) 27.5 (±6.8) 29.7 (±6.9) 31.2 (±7.3) 28.9 (±6.5) 31.4 (±6.8) 
1 min APGAR Score (0-10) 9.5 (±0.8) 9.6 (±0.8) 9.6 (±0.7) 9.6 (±0.9) 9.6 (±0.7) 
Time from Admission to Birth (Hours) 3.3 (±4.5) 3.2 (±5.2) 3.7 (±5.7) 2.7 (±4.1) 3.5 (±6.6) 
Time from Delivery to V1 Blood Collection (Hours) 13.1 (±5.6) 12.7 (±5.4) 12.3 (±5.7) 13.1 (±5.0) 12.1 (±5.4) 
Time from Delivery to V2 Blood Collection (Hours) - 57.2 (±15.6) 57.6 (±15.6) - - 
Time from Delivery to V3 Blood Collection (Hours) - 105.8 (±17.0) - 105.8 (±17.0) - 
Time from Delivery to V4 Blood Collection (Hours) - 156.7 (±21.0) - - 156.7 (±21.0) 
 Percentage % (n) 

Percentage Male (%) 55.5% (30) 54.3% (151) 46.4% (26) 58.0% (58) 54.4% (37) 
G6PD Deficiency Positive (%) 14.8% (8) 11.5% (32) 8.9% (5) 10.0% (10) 13.2% (9) 
Multiple Births (%) 0.0% (0) 2.2% (6) 1.8% (1) 4.0% (4) 1.5% (1) 
Percentage of Mother on Antenatal Iron/Folic Acid (%) 81.5% (44) 81.7% (227) 83.9% (47) 80.0% (80) 82.3% (56) 

Data are presented as arithmetic mean (± SD) or as a proportion (%). Exclusions represent newborns successfully bled at cord and V1 

timepoints but who were lost to follow up or sick before V2-4 blood draw was completed.  
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Table 2: Comparison of iron status, inflammation and hematological parameters in cord and post-natal samples. 

Sample Type n CDV n V1 n V2 n V3 n V4 V1 vs V2 (P value) V1 vs V3 (P value) V1 vs V4 (P value) Trend (P Value) 

Serum Iron (μmol/L) 275 22.7 (±7.0) 271 7.3 (±4.6) 54 10.1 (±3.2) 93 14.7 (±4.7) 62 16.5 (±3.9) 0.0005 <0.0001 <0.0001 <0.0001 

TSAT (%) 273 50.2 (±16.7) 271 14.4 (±6.1) 54 20.2 (±8.1) 91 32.2 (±13.0) 61 36.7 (±9.2) <0.0001 <0.0001 <0.0001 <0.0001 

Serum Hepcidin (ng/ml) 277 19.4 (±14.4) 270 38.9 (±23.9) 55 32.7 (±18.4) 92 45.9 (±17.7) 62 45.2 (±19.1) ns 0.003 ns <0.0001 

UIBC (μmol/L) 273 23.7 (±10.4) 271 44.1 (±18.0) 54 41.5 (±10.3) 91 32.4 (±10.2) 61 29.5 (±9.6) ns <0.0001 <0.0001 <0.0001 

TIBC (μmol/L) 273 46.3 (±8.1) 271 51.4 (±20.7) 54 51.6 (±9.8) 91 46.9 (±9.6) 61 46.0 (±10.5) ns ns ns 0.03 

Serum Ferritin (ug/L) 275 212.6 (±157.7) 266 393.9 (±312.6) 54 343.7 (±206.0) 93 311.8 (±131.3) 62 354.6 (±181.8) ns ns ns ns 

Hemoglobin (g/dl) 270 15.1 (±2.3) 272 19.1 (±2.9) 49 19.5 (±2.9) 95 18.1 (±2.9) 64 16.9 (±2.9) ns 0.03 <0.0001 <0.0001 

Hematocrit (%) 270 42.2 (±7.0) 272 53.9 (±8.9) 49 55.0 (±9.7) 95 50.5 (±8.8) 64 46.9 (±9.0) ns 0.01 <0.0001 <0.0001 

Transferrin (g/L) 275 2.0 (±0.3) 273 2.0 (±0.3) 56 1.9 (±0.3) 93 1.7 (±0.2) 62 1.7 (±0.2) ns <0.0001 <0.0001 <0.0001 

Soluble Transferrin Receptor (mg/L) 273 6.0 (±2.0) 271 6.9 (±2.2) 54 6.6 (±2.0) 92 6.1 (±2.2) 62 5.1 (±1.3) ns 0.003 <0.0001 <0.0001 

Haptoglobin (g/L) 275 0.02 (±0.1) 273 0.03 (±0.07) 56 0.1 (±0.2) 93 0.08 (±0.2) 62 0.08 (±0.1) <0.0001 0.001 0.01 <0.0001 

Serum AGP (g/L) 275 0.2 (±0.1) 273 0.3 (±0.2) 56 0.4 (±0.2) 93 0.4 (±0.1) 62 0.4 (±0.1) <0.0001 <0.0001 <0.0001 <0.0001 

Serum CRP (mg/L) 275 0.2 (±0.7) 273 2.3 (±4.1) 55 5.6 (±9.3) 93 2.0 (±2.2) 62 0.9 (±1.5) <0.0001 ns 0.01 <0.0001 

Mean Corpuscular Volume (fl) 270 97.8 (±6.3) 272 97.7 (±6.0) 49 97.6 (±5.1) 95 96.0 (±5.9) 64 94.1 (±5.6) ns ns 0.0002 <0.0001 

Mean Corpuscular Hemoglobin (pg) 270 35.1 (±2.4) 272 34.8 (±2.4) 49 34.8 (±2.1) 95 34.5 (±2.2) 64 34.1 (±2.2) ns ns ns ns 

Mean Corpuscular Hemoglobin Concentration (g/dl) 270 35.8 (±1.0) 272 35.6 (±1.1) 49 35.6 (±1.5) 95 35.9 (±0.9) 64 36.2 (±1.1) ns ns <0.0001 0.0002 

White Blood Cell Count (unit/L) 269 13.3 (±5.7) 271 16.4 (±5.8) 48 10.5 (±5.4) 93 8.8 (±3.0) 64 9.2 (±2.5) <0.0001 <0.0001 <0.0001 <0.0001 

Lymphocyte Count (unit/L) 269 4.8 (±3.5) 271 4.2 (±2.9) 48 3.1 (±1.6) 93 3.3 (±1.2) 64 3.5 (±1.0) 0.01 0.01 ns 0.0005 

Lymphocyte Percentage (%) 269 35.2 (±7.9) 271 26.5 (±8.8) 48 31.1 (±9.3) 93 38.7 (±7.6) 64 38.4 (±7.0) 0.006 <0.0001 <0.0001 <0.0001 

MID Cell Count (unit/L) 269 1.04 (±0.6) 271 1.54 (±1.0) 48 1.1 (±0.8) 93 1.2 (±0.8) 64 1.7 (±0.8) 0.03 0.04 ns 0.0005 

MID Cell Percentage (%) 269 8.1 (±2.4) 271 9.8 (±5.6) 48 11.5 (±7.0) 93 14.8 (±7.8) 64 18.9 (±8.1) ns <0.0001 <0.0001 <0.0001 

Granulocyte Count (unit/L) 269 7.5 (±2.7) 271 10.7 (±4.2) 48 6.3 (±4.0) 93 4.2 (±1.9) 64 4.1 (±1.8) <0.0001 <0.0001 <0.0001 <0.0001 

Granulocyte Percentage (%) 269 56.6 (±8.7) 271 63.7 (±8.8) 48 57.4 (±9.3) 93 46.4 (±9.2) 64 42.7 (±9.1) 0.0001 <0.0001 <0.0001 <0.0001 

Red Blood Cell Count (unit/L) 270 4.3 (±0.7) 272 5.5 (±0.9) 49 5.6 (±1.0) 95 5.3 (±0.9) 64 5.0 (±0.9) ns ns 0.0005 <0.0001 

Red Blood Cell Distribution Width (%) 270 15.2 (±1.2) 272 15.4 (±1.4) 49 15.6 (±2.8) 95 15.1 (±0.9) 64 15.1 (±2.2) ns ns ns ns 
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Red Blood Cell Distribution Width - Absolute (fl) 270 80.7 (±8.9) 272 82.0 (±8.6) 49 82.5 (±15.7) 95 77.9 (±8.0) 64 75.3 (±7.0) ns 0.004 <0.0001 <0.0001 

Platelet Count (unit/L) 270 243.8 (±92.8) 272 258.7 (±94.0) 49 261.2 (±90.8) 95 234.8 (±97.0) 64 267.7 (±94.0) ns ns ns ns 

Mean Platelet Volume (fl) 267 8.4 (±0.8) 271 8.5 (±0.8) 48 8.5 (±0.9) 93 8.7 (±0.8) 64 9.3 (±0.7) ns ns <0.0001 <0.0001 

Platelet Distribution Width (%) 267 43.5 (±3.0) 271 43.9 (±3.3) 48 44.5 (±3.5) 93 45.4 (±3.6) 64 46.4 (±2.7) ns 0.05 <0.0001 <0.0001 

Platelet Distribution Width - Absolute (fl) 267 11.8 (±1.3) 271 12.1 (±1.4) 48 12.1 (±1.6) 93 12.5 (±1.5) 64 13.3 (±1.2) ns 0.003 <0.0001 <0.0001 

Platelet Crit (%) 267 0.201 (±0.07) 271 0.215 (±0.07) 48 0.2 (±0.1) 93 0.2 (±0.07) 64 0.2 (±0.08) ns ns ns 0.009 

Plate Large Cell Ratio (%) 267 18.0 (±5.4) 271 19.2 (±5.8) 48 19.4 (±6.3) 93 21.1 (±5.9) 64 24.3 (±5.0) ns ns <0.0001 <0.0001 

Plate Large Cell Count (unit/L) 267 42.1 (±14.6) 271 46.9 (±17.0) 48 48.4 (±17.4) 93 47.6 (±17.8) 64 63.1 (±21.8) ns ns <0.0001 <0.0001 

Data are presented as mean (± SD) and analysed by ordinary least squares analysis of variance (OLS ANOVA). Number of available results 

differs by each parameter, due to limitations in blood sample volume for some participants. Scheffé’s post-hoc tests were conducted between 

V1 vs V2, V3 and V3 groups. P values in bold font are considered significant based on P<0.05. Hepcidin (log), ferritin (log), sTfR (log), AGP 

(Sqrt) and CRP (log) were all transformed to form a normal distribution before ordinary least squares analysis of variance (OLS ANOVA) and 

reverse transformation for the listings above. 

 

 

 

 

 

 

 



 248 

Table 3: Comparison of iron status, inflammation and hematological parameters in 

cord venous and arterial blood.  

Sample Type n Cord (Arterial) n Cord (Venous) P value 

Serum Iron (μmol/L) 258 22.7 (±6.9) 275 22.7 (±7.0) 0.8 

TSAT (%) 255 47.1 (±15.8) 273 50.2 (±16.7) <0.0001 

Serum Hepcidin (ng/ml)  249 19.7 (±14.4) 277 19.4 (±14.4) 0.34 

UIBC (μmol/L) 255 27.1 (±11.3) 273 23.7 (±10.4) <0.0001 

TIBC (μmol/L) 257 49.8 (±9.1) 273 46.3 (±8.1) <0.0001 

Serum Ferritin (ug/L)  241 277.0 (±234.2) 275 212.6 (±157.7) <0.0001 

Hemoglobin (g/dl) 242 15.2 (±2.6) 270 15.1 (±2.3) 0.53 

Hematocrit (%) 260 43.0 (±7.5) 270 42.2 (±7.0) 0.16 

Transferrin (g/L) 258 2.0 (±0.3) 275 2.0 (±0.3) 0.48 

Soluble Transferrin Receptor (mg/L) (log) 260 6.0 (±1.9) 273 6.0 (±2.0) 0.86 

Haptoglobin (g/L) 260 0.02 (±0.05) 275 0.02 (±0.06) 0.64 

Serum AGP (g/L)  260 0.2 (±0.1) 275 0.2 (±0.1) 0.97 

Serum CRP (mg/L)  242 0.2 (±0.03) 275 0.2 (±0.7) 0.27 

Mean Corpuscular Volume (fl) 241 98.2 (±6.2) 270 97.8 (±6.3) 0.07 

Mean Corpuscular Hemoglobin (pg) 241 35.1 (±2.5) 270 35.1 (±2.4) 0.9 

Mean Corpuscular Hemoglobin Concentration (g/dl) 241 35.8 (±1.1) 270 35.8 (±1.0) 0.09 

White Blood Cell Count (unit/L) 241 14.2 (±6.1) 269 13.3 (±5.7) 0.004 

Lymphocyte Count (unit/L) 241 5.5 (±3.7) 269 4.8 (±3.5) <0.0001 

Lymphocyte Percentage (%) 241 38.0 (±9.1) 269 35.2 (±7.9) <0.0001 

MID Cell Count (unit/L) 241 1.2 (±0.8) 269 1.0 (±0.6) <0.0001 

MID Cell Percentage (%) 241 8.8 (±3.2) 269 8.1 (±2.4) 0.0001 

Granulocyte Count (unit/L) 241 7.5 (±3.0) 269 7.5 (±2.7) 0.53 

Granulocyte Percentage (%) 241 53.2 (±9.4) 269 56.6 (±8.7) <0.0001 

Red Blood Cell Count (unit/L) 242 4.4 (±0.8) 270 4.3 (±0.7) 0.44 

Red Blood Cell Distribution Width (%) 242 15.3 (±1.0) 270 15.2 (±1.2) 0.11 

Red Blood Cell Distribution Width - Absolute (fl) 242 81.5 (±9.2) 270 80.7 (±8.9) 0.008 

Platelet Count (unit/L) 242 193.0 (±86.7) 270 243.8 (±92.8) <0.0001 

Mean Platelet Volume (fl) 237 8.6 (±0.8) 267 8.4 (±0.8) <0.0001 

Platelet Distribution Width (%) 237 44.6 (±3.4) 267 43.5 (±3.0) <0.0001 

Platelet Distribution Width - Absolute (fl) 237 12.3 (±1.4) 267 11.8 (±1.3) <0.0001 

Platelet Crit (%) 237 0.2 (±0.07) 267 0.2 (±0.1) <0.0001 

Plate Large Cell Ratio (%) 237 20.4 (±5.9) 267 18.0 (±5.4) <0.0001 

Plate Large Cell Count (unit/L) 237 42.1 (±14.6) 267 42.1 (±14.6) <0.0001 

Data are presented as mean (± SD) and analysed by one-way analysis of variance. P values 

in bold font are considered significant based on P<0.05. Hepcidin (log), ferritin (log), sTfR 
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(log), AGP (Sqrt) and CRP (log) are all transformed to form a normal distribution before one-

way analysis of variance (ANOVA) and reverse transformation for the listings above. 
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Figure 1: Study recruitment and blood draw design. 
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Figure 2: CONSORT diagram for participant flow. 
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Figure 3: Changes in iron and chaperone proteins in the first week of life. 
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Figure 4: Changes in hepcidin and inflammatory markers in the first week of life. 
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Figure 5: Changes in hematological indices in the first week of life. 
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Figure 6: Weighted Pearson correlation network analysis of iron status and 

inflammation variables between cord and postnatal blood samples. 
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Figure 7: Comparison of iron status, inflammation and hematological parameters in 

cord arterial (CDA = BLUE) and venous (CDV = RED) blood. 
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Chapter 7 - Discussion  
 
 
 

Summary of Chapter 

 

This chapter focuses on describing a flowing narrative of the overall content of this thesis. It 

begins with a description of the essential aspects of study design, the critical learning gained 

from previous pilot studies and the literature review process. A detailed summary of what 

was discovered during the NeoInnate Study and how it addressed critical research gaps 

then follows.  

 

The subsequent section then notes several of the main issues and learning points faced 

during the research study process. At each point in this section, we outline the problem, the 

science behind it and how our research team overcame it.  

 

Finally, this discussion recommends four potential future research areas. This firstly focuses 

on the role the placenta plays in the maternal-fetal iron transfer process. This is followed by 

a review of possible triggers of the neonatal hypoferremic response (e.g. hepcidin-

dependent and hepcidin-independent mechanisms), and what research is required in order 

to understand these mechanisms further. Thirdly, this section describes the current research 

into harnessing hypoferremia to combat other infections and how this area is moving 

forward. This includes the current development of therapies that use iron chaperone proteins 

(e.g. haptoglobin, lactoferrin and lipocalin-2), bacterial iron-uptake mechanisms, and 

hepcidin agonists to treat bacterial infections. Lastly, this chapter outlines how future 

research should focus on the role of macrophages in the neonatal hypoferremic response 

and the kinetics of hepcidin-resistance post-hypoferremia. 
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7.1 A Review of the NeoInnate Study 

 

7.1.1 NeoInnate Study: Where Did It Begin? (Chapter 1) 

 

In light of the evidence that suggests hepcidin-induced hypoferremia is protective against 

severe bacterial infections,1 the findings of our team's pilot study were an exciting, 

unexpected finding. This PhD study was formulated after the previous research by Prentice 

et al. (HYPO-G study).2 This study was a non-blinded randomised controlled trial conducted 

on 120 full-term, normal birthweight Gambian neonates. Infants were randomised to receive 

Bacillus Calmette–Guérin (BCG) vaccination on the day of birth or after study completion at 

four days of age. Blood samples for investigation of iron parameters, hepcidin, IL-6 and red 

blood cell parameters were collected at birth (i.e. umbilical cord) and time-points up to 96 

hours of age. This study found that regardless of whether neonates received BCG 

vaccination or not, that during the first 24 hours of life full-term neonates actively reduce the 

serum iron concentration and transferrin saturation of the blood. This was found to occur as 

early as six hours postpartum and lasted for two to three days. This response was in strong 

correlation with hepcidin, suggesting that hepcidin regulates this response as seen in 

previous mechanistic studies.3 This finding was also correlated to levels of IL-6, suggesting 

that inflammatory stimulation was the trigger. Using a micro-adaptation of the ex vivo 

bacterial growth assay previously described in our FeVir study,4 we showed that the lack of 

iron similarly reduced growth rates of E. coli, S. aureus, S. pneumoniae and S. agalactiae 

(common neonatal sepsis causing pathogens) inoculated into venous samples collected at 

6-24 hours of life, in comparison to cord samples. The growth rates were significantly 

associated with TSAT level in the serum.2  

 

Supported by similar but smaller reductions in serum iron concentration and TSAT observed 

in the first week of life in other studies,5–8 this observation suggested that the neonatal 



 

 259 

hypoferremia may have evolved as a mechanism designed to protect neonates from 

infection during the first critical days of life. This is a result of limiting the pathogenicity and 

virulence of invading bacterial organisms. However, more diverse populations with a range 

of birthweights and gestational ages were required to confirm this. This is especially the 

case in the light of evidence that suggests preterm neonates suffer deficiencies in Toll-like 

receptors (TLRs), a vital component of the inflammation-induced hypoferremic response.9 

We further hypothesised that this might lead to a dampening of this response, or a complete 

failure to reduce systemic iron concentrations. We believed that this might, in part, explain 

why being premature and/or low birthweight may be risk factors for neonatal sepsis.10  

 

7.1.2 A Review of Iron Homeostasis Over the First Month of Life (Chapter 3) 

 

This research studentship started with a systematic search of literature relating to hepcidin, 

serum iron and transferrin saturation levels in full-term and preterm newborns during the first 

month of life (Chapter 3). Retrieved data suggested that hepcidin, serum iron and TSAT 

levels for adults and infants are much lower than those observed in cord blood and venous 

blood during the first month of life. Accumulated data further strengthened our previously 

defined hypothesis that full-term neonates possess the ability to produce a hepcidin-

mediated hypoferremic response post-delivery. Nonetheless, data concerning preterm 

neonates was lacking and subsequently it was unclear as to whether they produce a similar 

response. This dearth of studies is presumably due to their relatively unstable medical 

condition, and the complex ethical issues around bleeding premature neonates. This review 

also highlighted a lack of data from blood samples collected in the first hours of life (6-24 

hours) and over the first week, even in term babies. 

 

Previously, Van der Vorm et al. formulated a series of linear equations to assist in the 

standardisation of each commonly used hepcidin measurement assay.11 In our review, we 
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used these equations to standardise results from previous publications. This allowed the 

calculation of weighted mean averages in cord and venous blood for full-term and preterm 

neonates. We believe the main strength of this review was that it is the first review to 

compare retrospective serum hepcidin concentrations between studies, using standardised 

values. This is the first review of hepcidin, serum iron and TSAT in cord blood and venous 

samples over the first weeks of life, that was stratified by gestational age. The learning 

points from this review for the following observational study were the importance of 

collecting of very early postnatal venous blood (6-24 hours), the use of the DRG hepcidin 

ELISA kit, the importance of detailed labour and delivery data, and standardisation of cord 

blood collection protocols (Chapter 4).  

 

Weaknesses of the review included the allocation of each study group or population in each 

publication to a mean gestational age. This was due to limited access to raw study data. It is 

suspected that this has reduced any natural variation potentially caused by gestational age 

between the reviewed populations. Equally, due to studies rarely stating the average birth 

weight of each population, analysis stratified by birthweight was not possible. Furthermore, 

the retrieval of gestational age was a crucial aspect of the search strategy; however, few 

studies documented the method used to calculate it. Due to the substantial differences in the 

accuracy of different techniques,12 the true mean gestational age of each population may 

vary by differing amounts.  

 

7.1.3 Early Postnatal Hypoferremia in Low Birthweight and Preterm Babies 

(Chapter 5) 

 

Initiation of the NeoInnate Study then began, with the formation of a protocol and data 

analysis plan. The primary objective of the NeoInnate study was to ascertain if there was a 

defect in the ability of preterm and low birthweight newborns to elicit a hypoferremic 
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response immediately after delivery (Chapter 5). This observational study ended with the 

recruitment of 152 babies who were either preterm (PTB) (born ≥32 to <37 weeks 

gestational age) and/or low birth weight (LBW) (<2500g) (PTB/LBW) and 278 term (FTB), 

normal-weight babies (NBW) (FTB/NBW). Blood was sampled from the umbilical cord vein 

and artery, as well as matched venous blood samples taken from all neonates between 6-24 

hours after delivery. In both PTB/LBW and FTB/NBW babies, we observed serum iron 

decreased 3-fold within 12 hrs of delivery compared to umbilical blood, and transferrin 

saturation showed a similar decline with a consequent increase in unsaturated iron-binding 

capacity. C-reactive protein levels increased over 10-fold and hepcidin levels doubled over 

the same period. We can now conclude that there was no difference in any of these 

responses between PTB/LBW and FTB/NBW babies. This result suggests that the innate 

postnatal iron restriction strategy in the first hours of life has evolved as an intrinsic 

mechanism to protect all neonates from common pathogens and/or free-radical damage, 

regardless of gestational age or birthweight. This finding now prompts further research into 

the use of iron restriction as a transient bacteriostatic mechanism to limit bacterial growth 

and virulence in other instances of infection.  

 

One of the limitations of this study includes that we did not recruit mothers with complex 

medical histories (e.g. pre-eclampsia, antepartum haemorrhage or antenatal infection) or 

sick babies (e.g. with birth asphyxia or suspected sepsis). This was deliberate; however, the 

question remains as to whether neonates with suspected sepsis, have sepsis due (in part) to 

them lacking this innate immune response. This question will remain challenging to assess 

as it will be difficult to access the exact point of the initiation of the infection and to what 

degree any change in inflammation or iron restriction is due to the presence of the infection 

itself. Additionally, we did not recruit newborns born <32 completed weeks gestation and/or 

<2000g birth weight, or those delivered via caesarean section, vacuum or forceps. As a 

result, we cannot speculate whether similar hypoferremic responses occur in these 

newborns. However, reciprocally, we can reason that the responses we observed in the 
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NeoInnate Study are a characteristic feature of normal human birth and not due to 

pathological circumstances.  

 

7.1.4 Iron Homeostasis in Full Term, Normal Birthweight Gambian Neonates 

Over The First Week of Life (Chapter 6) 

 

The final objective of the NeoInnate Study was to describe the longitudinal changes in iron 

metabolism and haematological parameters after the initial hypoferremic response at 6-24 

hours post-delivery. This was achieved by the collection of a second venous sample from all 

full-term, normal birth weight newborns later in the first week of life. This resulted in 224 of 

the 278 full-term, normal birthweight neonates (FTB/NBW) providing a cord blood sample, 

and two peripheral venous blood samples at 6-24h and 24-192h of age. This publication 

(Chapter 6) highlights that levels of hepcidin quickly return to previous mean cord-like levels 

at 24-48 hrs, and then subsequently increase to very high levels at 80-136hrs post-delivery. 

Serum iron and TSAT levels also increased during this period. This observation suggests 

that the early postnatal hypoferremia is a fast-acting, yet short-lived, adaptation that is 

followed by a period of hepcidin desensitisation or leaky intracellular iron sequestration. We 

suggest that this is the explanation for increased iron efflux into the serum, even in the 

presence of high serum hepcidin concentrations. This increase in circulating serum iron 

could be heightened by the reduced need for iron for erythropoiesis over the same period. A 

marker of this is the decreasing sTfR level over the first week of life. Weaknesses in 

research directed toward this objective include the lack of data relating to the quality of 

breastfeeding during the first week of life. This would have allowed us to control the analysis 

of V2-4 samples for the effect of enteric iron absorption from breast milk or formula (though 

both are likely to contribute small amounts of iron).13 Similarly, the measurement of maternal 

iron markers before (i.e. midgestation and parturition) and after delivery could have provided 

greater detail into the role of iron endowment between the mother and fetus and also the 
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part that labour-induced inflammation plays in the recorded hypoferremic response. Though 

maternal iron markers have been analysed in relation to cord iron markers,14,15 we believe 

no analysis has been completed concerning the change in serum iron and TSAT we have 

recorded. This analysis could provide further evidence as to what is triggering this 

phenomenon. The measurement of pro-inflammatory cytokines (e.g. IL-6 and IL-22) and 

growth factors (e.g. IGF-1, HGF, EGF and PDGF-BB) in all samples would have provided 

greater insight into the regulation of neonatal iron homeostasis.  

 

7.2 NeoInnate Study: Study Design, Issues Faced and Learning Points 

for the Future  

 

The NeoInnate study was a challenging study to design, due to its time-sensitivity, 

complicated exclusion criteria and complex ethical issues.  

 

The review of the previous literature conducted at the start of the NeoInnate Study provided 

insight into the importance of collecting accurate delivery and labour data. We were 

particularly concerned that the inflammation believed to be responsible for the hypoferremic 

response in the neonate, may be confounded by pro- or anti-inflammatory stimuli received 

during labour and delivery. This included the effect of differing medication prescribed (i.e. 

gentamycin during labour),16 and delivery methods.17 As a consequence of this review, the 

subsequent study collected a detailed assessment of the labour process for each delivery. 

This study design also ensured that all recruited neonates had a cord blood sample 

collected using a standardised protocol, as previous studies have shown differing delays 

between cord-cutting can significantly affect early neonatal iron metabolism.18 Importantly, it 

also added much to the standard of care offered to study participants. 
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A fundamental aspect of the study design was the allocation of all neonates to four 

independent groups (e.g. FTB+NBW, FTB+LBW, PTB+NBW, PTB+LBW). This has allowed 

for the analysis of the independent effects of both birthweight and prematurity on neonatal 

hypoferremia. However, we did struggle to recruit full-term, low birthweight neonates during 

the study recruitment period. As birthweight is a predictor of prematurity, I believe this could 

be due to the research clinician, who conducted the New Ballard Score (NBS) of each 

neonate, not being blinded to the birthweight before NBS completion. Thus, there could be a 

degree of misclassification. The study research clinician was however, well trained in NBS 

and was deliberately unaware of specific group recruitment rates. 

 

An important ethical issue facing the design of this study was the earliest time point in which 

a neonate could be bled post-delivery. Our team and hospital staff concluded that six hours 

would be the ideal time. This aspect of study design allowed the mother to recover physically 

and psychologically before providing full consent to the recruitment of the neonate and 

collection of the V1 sample. It also allowed clinical staff to assess if the mother or newborn 

were experiencing any medical complications. This led to the assessment of gestational age 

and anthropometrics at 6-24 hours post-delivery being a less stressful experience for the 

neonate, after being warmed and exposed to early breastfeeding. 

 

Another of the most ethically complex study design aspects was the size of the blood 

volume collected from all recruited neonates, especially those born preterm and low 

birthweight. A sample volume of 3.5 ml of blood was required from each venous bleed of a 

full-term, normal birth weight neonate. This was calculated from the data produced by Howie 

et al.,19 which suggest to the Gambia Government/MRC Joint Ethics Committee to allow a 

single blood draw of 2.4% total blood volume. With regards to maximum cumulative draw 

volume allowed, Howie et al., 2011 referenced multiple institutions that allowed >10ml of 

whole blood from a 3 kg birth weight neonate to be taken for research purposes throughout 

one to two months. These volumes were deemed to provided 'minimal risk' to the neonate. 
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Regarding preterm neonates, venous bleed volumes used in prior studies varied according 

to their weight, with an average of ~2ml per venous bleed. In our study, each blood draw 

tube was marked with a specific volume allowed from each neonate. As another layer of 

protection, all neonates received a complete review of systems by a research clinician or 

senior study nurse before any bleed was conducted. This ensured that the subject's health 

was of the highest priority. Furthermore, the study was designed in order to reduce the 

number of bleeds for each neonate. We were aware that repetitive bleeding of healthy 

neonates, would be unpopular with their families and expose each neonate to repetitive 

episodes of stress. As a result, we allocated each full-term, normal birthweight individual into 

a specific study group, in order to repetitively measure iron and inflammation markers at 

specific ranges of time over the first week of life using a maximum of two bleeds per baby. 

 

Bleeding neonates is notoriously difficult. At the start of the study, the study team faced the 

complex challenge of completing 750 neonatal peripheral bleeds. On bleeding the first study 

participant, we became aware that the long tubing section of the vacutainer set-up was 

resulting in the loss of the pressure required to complete a successful blood draw. An 

extended study meeting successfully overcame this hurdle, where we were able to safely 

adapt the blood draw equipment, while still maintaining its sterility. However, in some cases, 

the blood volume collected was not high enough to conduct the ex vivo bacterial growth 

assay on some serum samples. This was primarily due to the difficulty of bleeding neonates, 

resulting in clotting taking place before the required sample volumes could be reached. 

Efforts were made to miniaturise the assay; however, the reduced assay-well volume 

caused a breakdown in the relationship previously documented between bacterial growth 

and TSAT. Sadly, as a result, one of the study objectives set out in the protocol (e.g. ex vivo 

bacterial growth assay) could not be achieved.  

 

Before the study initiation, our study team was informed that bleeding neonates in the 

community would be an impossible challenge, primarily due to the interference from 
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members of the family on the bleeding procedure. Experienced studies teams had 

suggested that the study design should ask the mother and their newborn to return to the 

maternity ward during this period. However, we were aware of experiences in other 

communities in The Gambia, where many neonates would have been lost to follow up if this 

design was adopted. With no other option available to acquire samples from discharged 

neonates between 24-192 hour post-delivery, we recruited an immensely experienced 

neonatal nurse with good local connections to conduct all community bleeds. We also 

worked as a study team to deliver safe and effective study protocols using the knowledge of 

local practices and cultural structures to drive this protocol. This resulted in 224/278 

community bleeds being completed.  

 

The NeoInnate Study suffered toward the end of the study from a lack of funds. This was 

primarily due to the issues relating to delays in the study initiation and the recruitment rate. 

The lack of funds resulted in our study being unable to examine how hypoferremia relates to 

maternal iron and inflammation makers (before, during and after labour). Similarly, this also 

led to the inability to measure IL-6, IL-22, haptoglobin (by ELISA assay) and hemopexin in 

all blood samples. This analysis would have informed us as to the role that inflammation and 

other chaperone molecules play in the reported hypoferremic response. The use of the 

Cobas 400+ biochemical analyser to detect haptoglobin concentrations in cord blood in this 

study, has also resulted in us not being to detect mother-neonate pairs that have 

experienced intrauterine infections as previously stated in Buhimschi et al.20 If we had been 

able to afford haptoglobin ELISA test kits, this would not have been the case.  
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7.3 Recommendations For Future Research 

 

7.3.1 Role of the Placenta in Maternal-Fetal Iron Transfer 

 

As detailed in Chapter 3, sufficient iron stores are critical for a healthy pregnancy. In the 

placental villi, syncytiotrophoblasts uptake transferrin-bound iron from the maternal 

circulation via transferrin receptor 1 (TFR1) (Chapter 3 - Figure 1).21–23 TFR1 releases iron 

into an acidified clathrin-coated vesicle, where it is then transported into the cytoplasm of the 

syncytiotrophoblast by DMT-1,23 Zrt/Irt-like protein ZIP824 and ZIP14,25 collectively. 

Ferroportin, ceruloplasmin, hephaestin, and zyklopen all assist with the transportation of iron 

into the fetal circulation, where it binds to fetal transferrin.22,26–28 However, the regulation of 

maternal-placental-fetal iron transport mechanisms remains unclear. A recent publication by 

Sangkhae et al. provides additional details on the effects of iron-deficient, iron-replete and 

iron-overload conditions on the regulation of this process in mice, humans and human 

trophoblasts.29 

 

As seen in previous publications,30–32 Sangkhae et al. detected maternal hepcidin 

suppression during the pregnancy to ensure increased dietary iron intake and a raised 

systemic serum iron concentration.29 The suppression of hepcidin at this time is believed to 

be regulated by several factors including erythropoiesis in the mother or fetus,32 oestrogen,33 

and progesterone receptor membrane component-1.34 Conflicting evidence now exists as to 

whether pregnancy-induced plasma dilution may also play a role.29,35 

 

In instances of iron-overload, both maternal and fetal hepcidin is produced at higher 

quantities in order to restrict further dietary uptake and protect the fetus from oxidative 

damage via placental iron transfer.29,35,36 However, questions remain as to whether fetal iron 

endowment is regulated by fetal or placental hepcidin in iron-replate or iron-deficient 
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conditions. Previous publications have remarked that in a state of maternal iron deficiency, 

the fetus could be regarded as the "perfect parasite" as human fetal iron endowment is 

maintained regardless of maternal iron status.21 However, Sangkhae et al. recently recorded 

conflicting evidence in murine models.29 Instead, iron transfer to the murine fetus under iron-

deficient conditions was restricted. Decreased expression of ferroportin on the fetal side of 

the placenta is understood to be the cause. Interestingly, also observed was increased 

TFR1 expression on the maternal-facing membrane of the placental syncytiotrophoblasts. 

This suggests that during maternal iron deficiency, iron is held in the placenta to ensure that 

placental metabolic homeostasis is maintained. Sufficient iron concentration of the placenta 

is believed to ensure oxidative phosphorylation can continue, ensuring adequate levels of 

ATP are still produced.29 This allows the continuation of placental protein synthesis and 

other critical transfer functions, protecting against placental dysfunction. 

 

Nonetheless, these findings were only observed in the murine and in vivo human trophoblast 

models.29  When similar analyses were conducted on human pregnancies, expression of 

TFR1 protein increased, yet ferroportin expression did not change. Sangkhae et al. have 

proposed that this may be the case due to the scarcity of severely iron deficient human 

mothers in their study setting.29 Further research is now required to fully understand these 

interspecies differences, and what role placental iron regulation has on the hypoferremic 

response discussed here.  

 

7.3.2 Potential Triggers of Early Postnatal Hypoferremia 

 

7.3.2.1 IL-6 and the JAK/STAT3 Pathway 

 

The initiation of hepcidin synthesis via the actions of IL-6/JAK/STAT3 pathway has been 

extensively characterised.37 IL-6 begins by binding to its receptor activating the formation of 
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a hexameric plasma-membrane signalling assembly. This is formed of IL-6, IL-6 receptor, 

and a gp130 subunit.38 Activation of JAK2 then follows, enabling the phosphorylation of its 

tyrosine residues and those of subsequent downstream STAT molecules. The 

phosphorylated STAT molecules then dimerise, translocate to the nucleus, and target the 

transcription promoters of the HAMP gene.39 Transcription of the HAMP gene results in the 

synthesis of new hepcidin proteins, which are later released into the circulation. Hepcidin 

then binds a single ferroportin protein on the plasma membrane of enterocytes, 

macrophages, and hepatocytes. This causes the endocytosis and co-degradation of both 

bound proteins in the lysosome.40 Hence, enteric absorption of dietary iron is reduced, and 

sequestration of iron in macrophages causes a reduction in serum iron concentration.3 

 

Our study has now confirmed that hepcidin-mediated neonatal hypoferremia exists in all 

healthy neonates (Chapter 5). Potential triggers for this mechanism remain unclear, as IL-6 

was not analysed. However, previous research has found that inflammation (signalled by IL-

6 and other cytokines) is involved in the onset and progression of human labour at term in 

the mother,41–48 in the absence of intrauterine infection. Similarly, inflammatory markers are 

also detected in the cord blood of the neonate.49 Previous authors have suggested that the 

instigating stimuli for this could involve the endocrine events of labour,47,48,50 mechanical 

distension of the membranes and cervix (smooth muscle),41,50–53, placental hypoxia and/or 

hypo-perfusion,50,54 fetal hypoxia-acidemia,55 maternal pain56 or exposure to infective 

agents.46,48,50,57 We suggest that due to the impermeability of the placenta to IL-6,49,58 

independent stimuli of the increased inflammatory response are taking place in the mother 

and newborn. This theory is supported by evidence that there are significantly lower levels of 

IL-6 in the newborn than the mother.59 We propose that this increase in IL-6 leads to the 

previously reported large influx of immune cells (predominantly neutrophils) into the cervix, 

decidua, myometrium, chorioamnionic membranes and amniotic fluid.47,60 We speculate that 

a similar process may occur in the neonate, with the activation of circulating neutrophils 

around the body at delivery. Labour is associated with neutrophilia in the early neonatal 
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period.61 Both neonatal neutrophil activation and antigen expression correlate with the length 

of labour.62 Decreased proportions of T cells expressing CD2, CD3 and CD4, as well as 

increased expression of CD16 and CD56 on natural killer cells from vaginally-delivered 

newborns have been reported.63 This is in contrast to those born by elective caesarean 

section. Interestingly, another publication has documented significantly higher cord hepcidin 

levels in neonates born via standard vaginal delivery and second stage caesarean section 

than those born via elective caesarean section.64 This evidence suggests that stimuli on the 

neonate that cause the proposed inflammation-induced hypoferremia may occur during the 

process of labour, rather than delivery. This is reinforced by a study by Weinschenk et al.,62 

that did not observe a difference in the increased neonatal neutrophil activation between 

modes of delivery after the initiation of labour. We propose that the stimuli during labour 

could be mechanical trauma caused by contractions in the latent and active phases of 

labour, or the rupture of membranes leading to the exposure of the neonate to the uterine 

microbiome.65 Both proposed stimuli would increase in severity as the length of labour 

progressed. In this study, we have analysed the time between arrival to the maternity ward 

and time of delivery, in relation to hypoferremic response. However, as many factors are 

responsible for the time of arrival at the hospital before delivery, especially in LMICs with the 

lack of transport infrastructure and financial constraints,66 it is no surprise that no significant 

effect was observed. Future studies measuring the length of labour accurately in relation to 

hypoferremia could clarify this. As to whether this effect is a deliberate action to generate the 

hypoferremic response is unknown. Previous authors have suggested this pro-inflammatory 

response may also assist in organ system transition at birth (e.g. the lungs and cytokine-

induced synthesis of surfactant proteins)67 and/or the activation of the immune system in the 

newborn.68  

 

Since hepcidin and IL-6 are not thought to cross the placenta,58,69 we have proposed that 

this labour-induced inflammatory response leads to the increase in hepcidin expression in 

the newborn and hence to the systemic sequestration of iron during and immediately after 
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labour/delivery has taken place. Further studies are required to confirm this, with a specific 

focus on the differences in iron and inflammation markers in the newborn over the first 48 

hours of life between vaginally, elective caesarean and emergency caesarean section 

deliveries. However, this hypothetical study would be challenging due to the complex 

confounding clinical reasons for elective and emergency caesarean section delivery.  

 

7.3.2.2 Additional Pro-Inflammatory Regulators of Hepcidin Expression 

 

Additional research is also required to understand the role of other pro-inflammatory 

regulators of hepcidin expression have on early postnatal iron homeostasis.  

 

IL-22 is a member of the IL-10–related family of cytokines, predominately expressed by 

lymphocytes.70 The binding of IL-22 to its receptor leads to activation of Jak1 and Tyk2, 

causing the phosphorylation of tyrosine molecules on STAT1, STAT3, STAT5.71 The 

subsequent transcription of the HAMP gene results in the synthesis of hepcidin and the 

reduction of circulating serum iron levels. The distinct familial differences between IL-22 and 

IL-6, lead the IL-22 pathway to work independently of IL-6-mediated hepcidin expression.72 

IL-22 also mediates the production of other antimicrobial proteins and acute-phase reactant 

proteins in the liver. 73 These include the chaperone protein responsible for restricting 

bacterial uptake of human haemoglobin in the blood, haptoglobin. This finding, besides the 

weak activation of IL-22 from exposure to bacterial LPS,74 makes additional research into 

this cytokine pathway necessary. This research would provide further insight as to whether 

contact with microorganisms during the delivery process is the exclusive trigger of neonatal 

hypoferremia.  

 

Similar to IL-22, IL-1 is a pro-inflammatory molecule that can work independently of the IL-

6/JAK/STAT3 signalling pathway to induce hepcidin expression.75 The synthesis of hepcidin 



 

 272 

in hepatocytes in both wild-type and IL-6 pathway knockout mice supports this observation.75 

Nonetheless, the action of IL-1 is suggested to more commonly be additive to the 

mechanism of IL-6. STAT3 and NF-κB pathway crossover is believed to be the cause.76,77 

This is supported by murine models showing increased hepcidin synthesis in response to 

LPS inoculation, compared to those that received IL-6 treatment.78 IL-1 binds to its receptor, 

IL-1R, causing the phosphorylation of the cellular protein, IKK. Phosphorylation and 

degradation of pathway inhibitor, IkB then follows, resulting in the activation of NF-κB. NF-κB 

promotes the expression of C/EBPδ, which then binds to P-Smad and promotes the 

transcription of the HAMP gene.78 IL-1Ra is a structurally similar molecule to IL-1; however, 

it binds to IL-1 receptor in a competitive nature and does not induce any intracellular 

response79. At birth, levels of IL-1Ra increase for the first days of life.80 This suggests that IL-

1-mediated inflammation and subsequent hepcidin synthesis may be unfavourable to early 

neonatal life, which is in conflict with the conclusions of our study (Chapters 5 and 6). An 

analysis of IL-1 and its relationship with the mechanisms of neonatal hypoferremia is 

required. 

 

Pro-inflammatory regulators of hepcidin expression also include activin b81, leptin,82 

oncostatin M83,84 and leukaemia inhibitory factor (LIF).84 However, the strength of their 

independent hypoferremia-inducing qualities in the setting of bacterial infection in the human 

host remain unknown. 

 

7.3.2.3 Hepcidin-Independent Mechanisms of Hypoferremia 

 

Ferroportin (FPN1) is the only cell-surface transmembrane protein known to export ferrous 

iron out of mammalian cells.85 Subsequently, FPN1 expression levels, play a key role in the 

control of cellular and systemic iron concentrations. Duodenal enterocytes, placental 

syncytiotrophoblasts, hepatocytes and reticuloendothelial macrophages are the predominant 
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cell types that express FPN1.86 As seen in Figure 1.7, erythropoiesis, hypoxia, iron status, 

and inflammation are all reported to alter the expression levels of FPN1.85 This is primarily 

controlled via the action of its master regulator, hepcidin.37 Inhibition of ferroportin begins by 

hepcidin binding, inducing endocytosis and co-degradation of both molecules.87 This results 

in a reduction in iron export and an increase in pooled intracellular iron.  

 

Nonetheless, FPN1 can also be regulated via hepcidin-independent mechanisms leading to 

a reduction in systemic serum iron concentration.88 Whether hepcidin-independent 

mechanisms contribute to the production of early neonatal hypoferremia (via the direct 

suppressive effects of inflammation on FPN1) remains undetermined. 

  

One such potential hepcidin-independent mechanism is the activation of TLR2/6, leading to 

the direct downregulation of FPN1 mRNA synthesis.89,90 This results in intracellular iron 

sequestration and systemic hypoferremia. Previous authors speculate that TLR2 and TLR6 

do not activate hepcidin upregulation, offering redundancy to the mechanism of 

hypoferremia, enabling a faster, broader and more effective immune response.89,90 These 

same studies have shown that bacterial lipopeptides (e.g. Mycoplasma-derived FSL1 and 

bacterial LPS) that target TLR2 and TLR6 promptly reduce ferroportin mRNA production for 

over three hours.89,90 This is supported by TLR2-knockout models exhibiting no effect on 

ferroportin expression in response to FSL1 inoculation.89 Further analyses are now required 

to understand if whole pathogens can trigger a similar response. This information would 

strengthen TLR2/6 as essential mediators of iron redistribution and may offer an alternative, 

more direct drug target compared to hepcidin-mediated pathways.  

  

Tumour necrosis factor-α (TNF-α) is a cytokine produced by many cell types, including the 

primary producers: macrophages, Langerhans cells, and Kupffer cells.91 Following synthesis 

and release, TNF-α binds to either tumour necrosis factor receptor 1 or 2 (TNFR1 and 

TNFR2) resulting in the initiation of mitogen-activated protein kinase (MAP kinase), caspase, 
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and NF-κB pathways (amongst others).92 In 1989, Alvarez-Hernández et al. proposed that 

TNF-α causes systemic hypoferremia within the first six hours of inoculation, while total iron-

binding capacity remains constant.93 Laftah et al. uncovered a similar reduction in serum iron 

recorded in the first 3 hours after intraperitoneal inoculation of TNF-α.94 These findings are 

supported by evidence that TNF-α mediated hypoferremia is initiated within the first eight 

hours after caecal ligation and puncture in wild-type murine models.95 No such response 

was detected in TNF-α deficient model. As no change in serum hepcidin concentration was 

linked to any of these responses,93–95 studies suggest hepcidin-independent mechanisms 

regulate this method of protection, resulting in the downregulation in FPN1 transcription. 

TNF-α mediated hypoferremia may regulate a proportion of the early neonatal hypoferremia 

we have uncovered; however, additional research is needed to understand its role. 

  

7.3.3 Harnessing Iron to Fight Infections  

 

As previous research by our group has shown, limited iron concentrations reduce bacterial 

growth rates of sepsis-causing pathogens in human serum (Annex 1.16).4 The NeoInnate 

Study discussed here has also shown that iron-sequestration is a potentially fundamental 

aspect of the early life innate immune response. In light of the innate and adaptive 

immunological differences between preterm, full-term and low birthweight newborns,96 the 

observation that neonatal hypoferremia is maintained in the population, regardless of 

gestational age or weight, suggests that it offers a significant benefit to the newborn. As a 

result, it is possible to consider that the limitation of iron sources to invading organisms in a 

multitude of other infection types could offer a partial (in combination with antibiotics) or 

complete (with the use of the host's immune system) treatment option. We hypothesise that 

limiting the growth and replication rates of invading organisms by providing a transient 

bacteriostatic mechanism of protection, would allow the host's neutrophils to engulf and 

destroy bacterial cells. We also propose that reduced replication rates of the bacterial 
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pathogen may allow for a reduction in the recommended dose, frequency and/or duration of 

current antibiotic treatments. We wonder whether combining iron-sequestration plus 

antibiotics may allow for toxic drug regimens and classes to be made available to individuals 

with a decreased maximum tolerable dose. This is particularly the case with neonates, as 

they possess unique physiological processes compared to adults leading to differences in 

drug absorption, distribution, metabolism, and elimination.97 

 

An added benefit of this proposed treatment method would be that it is defined as 

combination therapy. Evidence suggests that antibiotic combination therapies already offer 

an increased benefit against blood infections, including those caused by carbapenem-

resistant K. pneumonia (i.e. a common neonatal pathogen).98 We speculate that similar 

observations may be seen by inducing transient hypoferremia, without causing long term 

adverse effects to iron homeostasis (Chapter 6). This proposed treatment strategy may 

allow for the use of older disused drugs to be redeployed, as observed with other drug 

combination therapies.99 Furthermore, the use of antibiotic combination therapy has been 

found to reduce the spread of antimicrobial resistance.100 This observation, along with most 

microbial pathogens requiring iron for growth and virulence, and bacterial iron acquisition 

mechanisms being genetically coded by pathogenic housekeeping genes, suggests that 

hypoferremia-antibiotic therapies may offer a reduction in the creation of new antimicrobial 

resistance mechanisms. Evidence of the effect that iron chelation therapy could offer in 

combination with an antibiotic can already be seen in the study conducted by Coraca-Huber 

et al.101 This study showed that this form of treatment significantly reduced the formation of 

staphylococcal biofilms during infections. It is worth noting that hepcidin has also been 

previously described to have direct bactericidal effects on bacterial pathogens.102  

 

The sequestration of iron and its moieties by native chaperone molecules in order to 

produce a protective response against invading organisms could also offer a new and novel 

treatment option. A study that supports this is that of Remy et al.,103 the main finding of 
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which is the positive effect haptoglobin treatment has on reducing canine pneumonia and 

sepsis in animal models. Haptoglobin works by binding to cell-free haemoglobin in the blood 

and other body fluids, reducing its availability as an iron source to many bacterial 

pathogens.104 Cell-free haemoglobin is regularly elevated during sepsis, with the level of 

increase correlating with a higher rate of mortality.105 Remy et al. have shown that in a 

canine S. aureus pneumonia model with septic shock, that human haptoglobin concentrate 

infusions lead to the binding with canine cell-free haemoglobin. This results in its clearance 

and lowering of the overall level of iron within the circulation. The resulting effect is an 

increase in survival in the canine model. The theory behind this is an increase in the 

internalisation of haptoglobin-haemoglobin complexes, thus limiting access to iron for 

extracellular organisms. This suggests that haptoglobin therapy can enhance innate host 

immunity, supporting the notion it offers a novel approach to treat systemic bacterial 

infections. Further clinical trials in humans are required to confirm this. This use of 

haptoglobin is particularly relevant to neonates due to enhanced erythrocyte turnover in 

early postnatal life leading to the release of haemoglobin, along with the suggestion that 

haptoglobin synthesis is increased in response to intrauterine infection.20 This supports the 

hypothesis it may be an effective method of innate protection.  

 

Another treatment option in the host-pathogen battle for iron is the use of lipocalin-2. 

Lipocalin-2, also known as neutrophil gelatinase-associated lipocalin (NGAL), is released by 

several cell types (e.g. hepatocytes, pneumocytes, renal epithelial cells, and vascular 

smooth muscle cells) as a result of inflammation, ischemia and infection.106 Recent research 

has shown that lipocalin-2 is produced in response to the infection of macrophages by 

intracellular bacterial pathogens, such as Brucella abortus.107 Lipocalin-2 it thought to 

prevent iron uptake by B. abortus by two mechanisms: 1) by stripping iron from iron-laden 

siderophores and 2) intracellular levels of lipocalin-2 in macrophages inhibit further iron 

uptake by macrophages during infection. This results in the starvation of the pathogen of an 

iron source, which is critical for growth, virulence and replication. This suggests that 
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synthetically increasing the concentration of lipocalin-2 in the host's extracellular 

environment could also protect individuals against extracellular pathogens which commonly 

cause sepsis.108  

 

Lactoferrin is a glycoprotein belonging to the innate immune system, found in saliva, blood, 

tears and human milk. Lactoferrin's central role is to bind to iron, with additional 

immunostimulatory, antimicrobial and anti-inflammatory roles.109 Due to the structural 

similarities between bovine and human lactoferrin, the biological function is similar.110 A 

Cochrane review of six studies detailing its use in preterm neonates has shown that oral 

supplementation of lactoferrin with or without probiotics reduced the risk of late-onset 

necrotizing enterocolitis, bacterial and fungal sepsis.111 Equally, the use of recombinant 

lactoferrin (i.e. Talactoferrin) offers some promise as it does not require pasteurisation, 

increasing its biological activity.112 Interestingly, concentrations of lactoferrin are high in 

colostrum,113 again suggesting that iron-restriction is an essential aspect of neonatal innate 

immune defence in the gut.114 How this might be linked to circulating levels of neonatal iron 

remains unclear. 

 

Lastly, research is also progressing toward harnessing the use of the bacterium's iron 

uptake machinery in order to combat the infections it causes. This comes in the form of the 

manipulation of the action of bacterial siderophores and the bacterial influx transport 

channels. Small-molecule siderophores are produced and released by nearly all bacterial 

species.115 As seen in Figure 1.6 and Table 1.2, the redundancy of these iron-uptake 

systems allows bacteria to bind and consume different forms of iron. This function of multiple 

ligand targets by a plethora of siderophore types is predominately due to their differing 

chemical structures of the iron-chelating chemical groups (i.e. hydroxamate, α-hydroxyl-

carboxylate and catechol).115 The ability to synthesise these molecules is often transferred 

between bacterial isolates by mobile genetic elements.116 Recently, developments have 

been made to exploit these iron-siderophore uptake systems in common bacterial pathogens 
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by using siderophores conjugated to antibiotics. This new form of antibiotics has been 

focused on gram-negative bacteria due to the threat they pose with regards to antimicrobial 

resistance and their vastly characterised bacterial iron uptake mechanisms.117 One drug 

discovery candidate that is showing early promise is cefiderocol. The new expedited 

development program of cefiderocol has led to a recent international, double-blind, 

randomised phase III clinical trial of the efficacy and safety of cefiderocol in patients with 

nosocomial pneumonia.118 These results highlight that cefiderocol met the non-inferiority 

comparison to high dose meropenem in all-cause mortality at 14 days after initiation of 

treatment. Cefiderocol, a siderophore-cephalosporin drug, which uses the bacterium's active 

transport machinery in a "Trojan horse" style to gain entry past the cell wall. As previously 

stated, cefiderocol is now of particular use against carbapenem-resistant gram-negative 

pathogens, including those expressing New Delhi metallo-β-lactamase-mediated 

carbapenem resistance, as seen in cases of neonatal sepsis (Section 1.9.7). Additionally, in 

vitro activity against isolates from the global surveillance studies, SIDERO-WT and SIDERO-

CR have shown that cefiderocol is highly effective against current strains of P. aeruginosa, 

A. baumannii, B. cepacia, B. pseudomallei and S. maltophilia.119,120 Several of these have 

recently been noted in cases of invasive bacterial infection in neonates in sub-Saharan 

Africa.121 

 

7.3.4 Hepcidin Agonists as Hypoferremic Therapies  

 

Here, we speculate that the use of hepcidin agonists or inducers may be the hypoferremic 

therapy that is required to produce this iron-restricted environment in the host. There are 

several therapeutic inducers of hepcidin expression; these include BMP6, TMPRSS6-

silencing oligonucleotides and a number of small molecules.122 One of the inducers that has 

progressed in its development is IONIS-TMPRSS6-LRX (Ionis Pharmaceuticals, Inc.).123 

This molecule is in phase 2 clinical trials and induces hepcidin expression by silencing 
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Tmprss6 mRNA by using lipid nanoparticles linked to small interfering RNAs (siRNAs) 

(ClinicalTrials.gov Identifier: NCT04059406).  

 

A hepcidin agonist of note is minihepcidin PR73, which works by inhibiting the function of the 

transmembrane protein, ferroportin. PR73 has been shown to have possible protective 

effects in animal models against systemic bacterial infection. Researchers have uncovered 

that animal models deficient in hepcidin, when given PR73, are protected against 

siderophilic bacteria such as Vibrio vulnificus1 and Yersinia enterocolitica.124 Additionally, 

PR73 is observed to be protective against non-siderophilic bacteria such as Klebsiella 

pneumoniae or Escherichia coli.125,126 This is due to the PR73 mechanism of action leading 

to a systemic hypoferremic state in the model, repressing bacterial growth, and 

subsequently reducing the likelihood of mortality. These findings are especially remarkable 

as a similar deficiency of hepcidin, seen in hereditary hemochromatosis, leads to increased 

mortality when infected with siderophilic bacteria.127,128 This suggests that these 

observations may be relatable to humans. Currently, all of the research relating to the use of 

PR73 is in the preclinical phase.122  

 

Two hepcidin agonists that have reached clinical trials are LJPC-401 (La Jolla 

Pharmaceutical Company) and PTG-300 (Protagonist Therapeutics Inc.). PTG-300 is now in 

phase II and has previously been shown to reduce serum iron concentration in cynomolgus 

monkeys.129 During phase I trials, the drug was shown to be tolerated by study participants 

and reduced their serum iron concentration in a dose-dependent manner. Hypoferremic 

responses were maintained for almost 144 hours.130 The LJPC-401 phase 1 trial reports 

similar findings with reduced serum iron concentration of the blood in a dose-dependent 

manner. Researchers found that the maximal point of hypoferremia occurred at eight-hours 

post-injection.131  
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Though the clinical trials referenced suggest that induced hepcidin levels produce a fast-

acting and short-lived response, it is still unclear what effect hormonal augmentation would 

have in the sick neonate in the immediate period after treatment, or the long-term effects 

(i.e. erythropoiesis, microbiome and iron deficiency). Further research is required in humans 

to assess how we might produce a balanced therapy, focused on 1) maintaining iron-

sequestration for a required time allowing for iron starvation in invading organisms, and 2) to 

not produce significant adverse side effects to human iron homeostasis. Realistically it will 

be many years before trials in neonates would be seriously contemplated. 

 

7.3.5 Hepcidin-Resistance 

 

Assessing our data on iron and inflammation markers in full-term, normal birthweight 

neonates over the first week of life (Chapter 6) leads us to question the validity of the 

proposed methods of treatment for severe bacterial infections in newborns seen in Sections 

7.3.3 and 7.3.4. The hepcidin-induced hypoferremia observed in the NeoInnate Study was a 

robust and fast-acting response to early postpartum life. Nevertheless, it was not maintained 

for longer than 72 hours of life in most individuals. This is even the case despite hepcidin 

levels remaining higher than adult levels in the majority of the full term, normal birthweight 

study participants over the first week of life. From our data, we suggest that hepcidin-

resistance may potentially halt the continuation of this protective mechanism after 48 hours 

post-delivery. This is observed in Chapter 6 (Figures 3 and 4) were hepcidin levels are 

maintained at high levels at 48 hours onwards, with serum iron and TSAT levels increasing 

over the same period. We hypothesise that this is due to the effect of high dose excess 

hepcidin, causing occlusion rather than degradation of ferroportin on the membrane of 

neonatal macrophages. Previous research has shown that excess hepcidin can 

preferentially cause occlusion, leading to the intermittent binding and releasing of hepcidin to 

the central cavity of individual ferroportin molecules.132 We propose that this may allow for 
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the steady and slow increase of serum iron concentration over the following days. This 

finding is noteworthy, as dietary iron absorption during this period is very low.133 Therefore, 

any increase in serum iron is unlikely to be caused due to enterocyte iron efflux.  

 

A previous study in suckling 15-day old mouse models has found a potentially related 

discovery in the context of early life hepcidin resistance.134 Frazer et al. aimed to elicit if, as 

previous studies had suggested, iron absorption in suckling mammals was resilient to stimuli 

that ordinarily decreased absorption in adults. Interestingly, this study uncovered that 

enterocyte ferroportin was hyporesponsive to the effect of circulating serum hepcidin during 

the suckling period. Immunofluorescence assays suggested that this finding was not due to 

changes in ferroportin localisation, making it inaccessible to the actions of hepcidin, as 

previously reported by Theurl et al. concerning hepcidin resistance in the retinal pigment 

epithelium.135 Similarly, this could be the possible cause of hepcidin-resistance in our study, 

due to impermeable physical barriers between molecules of ferroportin and hepcidin in a 

subset of cell types responsible for iron release at the latter part of the first week of life. On 

balance, this is unlikely to be the case as we believe circulating and splenic macrophages 

are the target cells for iron sequestration during neonatal hypoferremia.  

 

Furthermore, Frazer et al. found that decreases in serum iron levels occurred after hepcidin 

stimulation, suggesting that hepcidin activity was present in some cell types.134 However, 

this was not the case concerning enterocytes. After further laboratory analysis, ferroportin in 

these murine enterocytes was shown to be smaller than standard adult ferroportin 

molecules. The authors suggested that this may be due to early life murine ferroportin being 

spliced or glycosylated differently. This evidence suggests that in murine models, age-

specific modification of ferroportin is found in the transmembrane of enterocytes. Further 

research is required to assess if that is the case with respect to human neonatal 

macrophage-expressed ferroportin molecules.  
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Similar to our reports, Frazer et al. note that hepcidin-resistance could be the result of high 

hepcidin excess favouring the occlusion of ferroportin rather than its degradation. As seen in 

Aschemeyer et al. hepcidin is thought to bind to the central metal-binding cavity, leading to 

the hinderance of the conformational changes required for iron efflux.132 Additionally, we 

submit that with the hepcidin levels in excess, intermittent binding and releasing of hepcidin 

to the central cavity of individual ferroportin molecules may allow for slow rates of iron efflux 

into the circulation (Chapter 6). This leads us to consider that there could be scope for 

research into the optimum dose of minihepcidin required to swing the balance back into the 

favour of degradation rather than occlusion, should our hypothesis be found to be correct. 

Equally, it would also be interesting to access the endocytic machinery of neonatal 

macrophages to uncover if deficiencies in degradation mechanisms may be the cause of 

these proposed reasons for hepcidin-resistance.136,137 

 

Why hepcidin-resistance occurs in young mice and humans remains unclear. However, it 

could be that both the hyporesponsiveness of murine enterocytes in 15-day mice pups and 

the hepcidin-resistance uncovered in our study in human neonates is a semi-protective 

mechanism against the iron deficiency in early life, which is particularly common.138 It may 

be possible that human neonates are trying to strike a balance between inducing protective 

hypoferremia at the point it is most required to protect against infection (i.e. 24 hours of life) 

and ensuring serum iron is still available to the tissues responsible for erythropoiesis and 

growth.  

 

Further research is required to determine whether neonatal ferroportin is differentially spliced 

or glycosylated and if so, what cell types this occurs in. It is also crucial that we establish 

whether, like adult ferroportin, the expression of the hypothetical variant form of ferroportin 

suggested here, is less or more affected by inflammation and by what mechanism.  
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Until these questions are answered, it would not be worthwhile supporting the use of 

hepcidin agonist or inducers to combat neonatal systemic infections. 

 

7.4 Conclusions 

 

The research of this thesis has contributed three key components to our present 

understanding of neonatal iron homeostasis. Firstly, it has evaluated our current knowledge 

of iron and inflammation markers (hepcidin, serum iron and TSAT) in the neonatal period in 

respect to gestational age. This was only possible because of the newly developed methods 

in the standardisation of hepcidin values across multiple retrospective studies in order to 

produce comparisons and averages. Secondly, it has unequivocally refuted our previous 

hypothesis that immature or growth-restricted neonates might have a lesser ability to trigger 

a hypoferremic defence and that this might explain their greater susceptibility to 

septicaemias. Consequently, we have shown that the premature and low birthweight 

neonates all exhibited a profound hypoferremia during the first 24 hours of life, with no 

detectable differences from the full-term, normal birthweight controls. The remarkable 

similarity in the hypoferremic response across all the study groups further accentuates the 

efficiency of the process and supports the likelihood that it occurs by the process of 

evolution. Thirdly, our results suggest that after a fast-acting, short-lived early postnatal 

hypoferremic response at birth, there is a period of hepcidin-resistance, resulting in slow and 

consistent iron efflux into the circulation over the next week of life. Further research is 

required to understand why neonatal iron homeostasis is unresponsive to high serum 

hepcidin concentrations after the hypoferremic period. While contemplating the use of iron-

sequestration as a method of combatting antimicrobial resistant infections seems untimely, 

in light of our results and the threat we all face, the importance of scrutinising hypoferremia 

as a mechanism of protection has never been more evident.   
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ANNEX 1.16 Oral iron acutely elevates bacterial growth in human serum (FeVir 
Study) 
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Oral iron acutely elevates bacterial 
growth in human serum
James H. Crossͷ, Richard S. Bradburyͷ,, Anthony J. Fulfordͷ,, Amadou T. Jallowͷ, 
Rita Wegmüllerͷ, Andrew M. Prenticeͷ, & Carla Ceramiͺ
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�������������������������������������������������������������Ǧ����������������Ǥ��������ǡ������
��������������������������Ǧ�������������������������������������������������������������������������
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are unclear. We here investigated the ex vivo������������������������������������������������������ 
�����������������������������������ͺ��������������������������������������Ȁ������������������� 
sulfate. Escherichia coli, Yersinia enterocolitica and Salmonella enterica���������������������ȋ����  
����Ǧ�����������������Ȍ�����Staphylococcus epidermidis�ȋ����Ǧ��������Ȍ��������������������������
����������������������������������������������������Ǥ�
������������������������������������������
����������������������������ȋ��<�ͶǤͶͶͶͷ�������������ȌǤ�
���������Staphylococcus aureus, which 
����������������������������������ǡ��������ơ�����Ǥ������������������������������������������
��������������������������������ȋ���Ǧ�������������Ȍ�����ǡ�������������������������Ǧ���������������ǡ�
������������������������������������������������������������������������������������������������
immune defenses.

Iron de!ciency (ID) remains the most pervasive nutritional de!ciency worldwide. "e prevalence of 
ID in mothers and young children frequently exceeds 50% in low-income countries. Insu#cient iron 
impairs growth and cognitive development in childhood1,2.

Low cost iron supplements are e$ective for the treatment of ID and in countries with ID rates of > 40%, 
the World Health Organization recommends universal iron supplementation of pregnant women and 
young children3–5. To overcome perceived limitations in the ability to absorb iron, supplements usually 
employ highly soluble forms of iron (ferrous sulfate or fumarate) given in rather large non-physiological 
bolus doses. "e wisdom of these policies has long been questioned6,7 and has come under serious 
scrutiny starting in 2006 with the premature termination of a large trial in Pemba, Tanzania a%er sig-
ni!cant increases in serious adverse outcomes (hospitalizations and deaths) in young children receiving 
iron-folate supplements were seen8. "e emphasis was originally focused on malaria as the causative 
agent for the increases in morbidity and mortality during iron supplementation9 but subsequent trials 
have described excesses of other infections in groups randomized to iron or multiple micronutrients 
containing iron10–15. "ese !ndings have paralyzed iron supplementation policies.

"e underlying mechanisms and the types of organisms responsible for these clinical and epide-
miological observations remain unclear. Recent !eld studies suggest that oral iron supplementation in 
children increases susceptibility to bacterial infections, particularly diarrhea13,16, alters the gut microbi-
ota16,17, and increases the virulence of many common bacterial enteropathogens18–20.
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Numerous animal studies over many decades have shown that administration of iron in diverse forms 
accelerates the growth of peritoneally-injected pathogens, causing a septicemia with rapidly fatal out-
comes21,22. We here examine the possibility in humans that a simple oral dose of supplemental iron could 
promote bacterial growth in serum. We used a series of ex vivo bacterial growth assays with sentinel 
organisms that were selected on the basis of their varying modes of pathogenesis and abilities to scavenge 
iron from the host.

Results
������������������������������������������������������������Ǥ� To determine the e$ects of oral 
iron supplementation on bacterial growth in human serum, we enrolled 48 normal healthy non-ane-
mic male subjects [mean ±  SD: Hemoglobin (Hgb) =  14.5 ±  1.13 g/dL; Mean Corpuscular Volume 
(MCV) =  83.8 ±  5.5 fL; Ferritin =  62.8 ±  53.2 ng/mL]. Volunteers donated serum immediately before, and 
then four hours a%er, oral ingestion of 400 mg ferrous sulfate (containing the equivalent of 130 mg of 
elemental iron). Transferrin saturation (TSAT) increased from 42.1% (± 12.5%, SD) to 75.7% (± 18.1%, 
SD) and total serum iron increased from 30.3 μmol/L (± 10.2μmol/L, SD) to 53.0μmol/L (± 15.8μmol/L, 
SD) four hours a%er iron supplementation.

�ơ�������������������������������������ex vivo bacterial growth in serum. We next measured 
the growth of the !ve species of sentinel bacteria in the baseline and post-dose sera. To account for the 
between-subject variance in the starting transferrin saturation levels, we used mixed statistical models to 
allow two nested higher levels of variation: patient and bleed (pre- and post-iron supplementation). "is 
enabled us to independently analyze the e$ects of TSAT and iron supplementation.

S. aureus, an organism with a strong preference for heme-derived iron23, behaved di$erently from the 
other four bacteria (Fig. 1A). Iron supplementation had no impact on the general pattern of the growth 
curve (p =  0.3). Both the time to reach peak doubling time (p =  0.21), and the doubling time during the 
exponential growth phase (p =  0.78) were also unchanged by iron supplementation (Table  1). Growth 
did not correlate with TSAT (p =  0.08) (Table 2).

S. epidermidis (Fig. 1B) demonstrated an initial delay in growth in comparison with the other species. 
Iron supplementation in(uenced the overall pattern of the growth curve (p <  0.0001). Speci!cally, iron 
supplementation reduced the lag phase, the time to reach peak doubling time (p =  0.001), and increased 
the doubling time during the exponential growth phase (p <  0.001) (Table  1). "e very strong e$ect 
of iron on the overall increase in bacterial growth (X2 =  55 (approximately), p <  0.0001) was equally 
explained using pre/post supplementation as a dichotomized variable or by TSAT (Table 2).

S. Typhimurium (Fig.  2A) and E. coli (Fig.  2B) both showed highly signi!cant di$erences in their 
growth curves a%er iron supplementation (p <  0.0001). "e doubling times post-iron supplementation 
were signi!cantly shorter than pre-iron supplementation (p <  0.0001), but time to reach peak doubling 
time was una$ected by treatment (Table  1). Transferrin saturation had a very strong e$ect on overall 

Figure 1. Growth of sentinel gram-positive bacteria in human serum before and a!er oral iron 
supplementation. S. aureus (A) and S. epidermidis (B) were grown in serum from subjects before (blue) 
and a%er (red) oral iron supplementation with 400 mg ferrous sulfate (containing the equivalent of 130 mg 
of elemental iron). "e thicker central lines represent the !tted curves for an average individual and the 
thinner lines the 95% con!dence intervals for these estimates. "e points show individual values of OD620. 
Curves were derived from mixed e$ects models !tting degree-four orthogonal polynomials in time to 
log(OD620), where OD620 is the mean optical density of the three replicates at time (t).
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growth rates of both S. Typhimurium (X2 =  348, p <  0.0001) and E. coli (X2 =  300, p <  0.0001), com-
parable to, indeed a little larger than, that of iron supplementation in both S. Typhimurium (X2 =  213, 
p <  0.0001) and E. coli (X2 =  221, p <  0.0001). For E. coli, iron supplementation (X2 =  35, p <  0.0001) and 
TSAT (X2 =  69, p <  0.0001) each had signi!cant e$ects on bacterial growth a%er controlling for the other. 
"e same held true for S. Typhimurium growth where both iron supplementation (X2 =  22, p =  0.0004) 
and TSAT (X2 =  105, p <  0.0001) each had signi!cant e$ects on bacterial growth a%er controlling for 
the other (Table 2). "is is likely to be because, in addition to capturing the e$ect of supplementation, 
transferrin saturation also explains di$erences between individuals.

Analysis of Growth S. aureus S. epidermidis E. coli S. Typhimurium Y. enterocolitica

Growth Curve
X2 (5 df) 6.05 65.70 225.00 232.00 117.70

p-value 0.30 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Time to Reach Peak 
Doubling Time (hours)

Mean pre (CI95%) 3.34 (3.21, 3.47) 13.7 (11.8, 15.7) 1.86 (0.50, 3.21) Not Applicable - 
No MAX

Not Applicable - 
No MAX

Mean post (CI95%) 3.25 (3.12, 3.38) 10.70 (10.0, 11.4) 2.56 (2.32, 2.79)

z − 1.26 − 3.24 1.03

p-value 0.21 0.001 0.3

Doubling Time During 
Exponential Phase 
(hours)

Mean pre (CI95%) 1.74 (1.67, 1.81) 4.82 (4.2, 5.5) 2.14 (1.99, 2.29) 2.03 (1.81, 2.26) 4.96 (3.0, 7.0)

Mean post (CI95%) 1.75 (1.68, 1.82) 3.36 (3.0, 3.7) 1.50 (1.44, 1.56) 1.60 (1.37, 1.62) 4.37 (2.8, 6.0)

z 0.28 − 4.56 − 8.04 − 4.34 − 1.73

p-value 0.78 < 0.001 < 0.0001 < 0.001 0.62

Table 1.  Statistical analysis of ex vivo bacterial growth assays. For each species of bacterium we 
compared its growth pre- and post-iron supplementation by examining di$erences in (1) Growth Curve, i.e. 
general pattern curve of the overall growth trajectories; (2) Time to Reach Peak Doubling Time, i.e. the time 
at which the rate of increase in log(OD620) was at a maximum; and (3) Doubling Time During Exponential 
Growth Phase.

Hypothesis Testing S. aureus S. epidermidis E. coli S. Typhimurium Y. enterocolitica

(1) Iron supp. 
a$ects growth

X2 (5 df) 5.92 55.70 221.00 213.00 108.17

p-value 0.31 <0.0001 <0.0001 <0.0001 <0.0001

(2) Iron supp. 
a$ects growth 
independently of 
TSAT

X2 (5 df) 8.85 7.53 35.10 22.40 32.71

p-value 0.12 0.18 <0.0001 0.0004 <0.0001

(3) TSAT a$ects 
growth

X2 (5 df) 9.79 55.50 300.00 348.00 120.41

p-value 0.08 <0.0001 <0.0001 <0.0001 <0.0001

(4) TSAT 
a$ects growth 
independently 
of iron 
supplementation

X2 (5 df) 12.70 6.22 69.50 105.00 36.89

p-value 0.03 0.29 <0.0001 <0.0001 <0.0001

Table 2.  Statistical testing of the independent e"ects of iron supplementation and transferrin 
saturation (TSAT). "ree models (mathematical equations) were !tted for each bacterial species: 
(a) iron supplementation ×  (t1 t2 t3 t4), i.e. iron supplementation, the time polynomials and their 
interactions; (b) TSAT ×  (t1 t2 t3 t4), i.e. TSAT, the time polynomials and their interactions; (c) (iron 
supplementation +  TSAT) ×  (t1 t2 t3 t4), i.e. iron supplementation, TSAT and both their interactions 
with the time polynomials. We employed the likelihood ratio test to compare models for which the 
growth patterns were and were not dependent on TSAT or iron supplementation. "e e$ects of iron 
supplementation and TSAT were derived from models (a) and (b) respectively and refer to the joint 
e$ects of the variable and the terms for its interaction with the time polynomials. "e independent 
(conditional) e$ects of iron supplementation a%er controlling for TSAT, and TSAT a%er controlling for 
iron supplementation, are both derived from model (c) and again refer to the joint e$ects of the variable 
and the terms for its interaction with the time polynomials. For each bacterial species, each of the 
following four hypotheses were tested: (1) iron supplementation has an impact on bacterial growth; (2) iron 
supplementation has an impact on bacterial growth independently of TSAT; (3) TSAT has an impact on 
bacterial growth; and (4) TSAT has an impact on bacterial growth independently of iron supplementation. 
Signi!cance was determined using a chi-squared test. Chi-squared and p-values are reported.
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For Y. enterocolitica (Fig.  2C), the maximum growth rate was di#cult to locate. In fact, although 
the growth curves clearly di$er signi!cantly (p <  0.0001), the doubling times at one hour did not di$er 
signi!cantly. As was the case for S. Typhimurium and E. coli, TSAT had an impact on growth (X2 =  120, 
p <  0.0001) as did iron supplementation (X2 =  108, p <  0.0001). Additionally, iron supplementation 
(X2 =  33, p <  0.0001) and TSAT (X2 =  37, p <  0.0001) each had signi!cant e$ects on bacterial growth 
a%er controlling for the other (Table 2).

Discussion
"e biologically useful redox characteristics of the Fe(II) to Fe(III) transition place iron apart from other 
nutrients. Additionally, it lies at the epicenter of the host-pathogen battle for resource control. Host 
defense mechanisms to withhold iron from invading pathogens are some of the most evolutionarily 
conserved innate strategies against infection24, but most bacterial species have evolved counter-acting 
strategies for pirating host iron including: (1) receptors that bind transferrin, lactoferrin or hemoglobin; 
and (2) low molecular weight siderophores that acquire iron from host proteins or from low molecular 
weight iron compounds25.

"e potential health threat posed by exogenous iron, repeatedly demonstrated in animal models25, 
has tended to be overlooked in clinical settings. "e recent iron trials with adverse outcomes in children 
in developing countries8,10–15 have prompted new mechanistic studies providing experimental veri!ca-
tion that oral iron adversely modi!es the gut microbiome17,26 and increases the virulence of pathogenic 
enteric bacteria18,20. In this study we focused on the issue of systemic, as opposed to enteric, bacterial 
infections building upon prior knowledge that iron can precipitate septicemias (for instance, based on 
the disastrous outcomes of intramuscular iron-dextran administration to Polynesian neonates27).

"e ex vivo assays we describe here show that customary oral supplementation with highly-soluble 
iron as ferrous sulfate can profoundly a$ect the growth dynamics of four of the !ve sentinel species we 
studied. "is could potentially undermine a key component of innate immunity allowing such organisms 
to achieve overwhelming numbers by the time adaptive immune defense mechanisms are up-regulated. 
Note that the very strong correlations between TSAT and growth rates emphasizes the importance of this 
variable even in the presence of likely inter-individual di$erences in other iron-related (e.g. lipocalin-2, 
haptoglobin) and other (e.g. defensins) non-cellular defense mechanisms within the sera.

Recent molecular insights into human iron metabolism have challenged the basic pillars on which 
public health strategies involving highly soluble iron supplements have been developed. "e prior belief 
that humans are constitutionally ine#cient at absorbing iron, and hence require large non-physiological 
doses taken apart from food, is now overturned by the knowledge that hepcidin actively down-regulates 
iron acquisition especially in the presence of an infectious threat24. "e dual regulation of hepcidin 
by iron and infection (in(ammation) underscores the threat posed by exogenous iron. An increase of 
hepcidin caused by an infection might have the evolutionary function of decreasing further iron uptake 
from the intestine to reduce circulating iron fuel for microorganisms. "is suggests that we should not 
interfere via high dose iron supplements.

Figure 2. Growth of sentinel gram-negative bacteria in human serum before and a!er oral iron 
supplementation. S. Typhimurium (A), E. coli (B) and Y. entercolitica (C) were grown in serum from 
subjects before (blue) and a%er (red) oral iron supplementation with 400 mg ferrous sulfate (containing the 
equivalent of 130 mg of elemental iron). "e thicker central lines represent the !tted curves for an average 
individual and the thinner lines the 95% con!dence intervals for these estimates. "e points show individual 
values of OD620. Curves were derived from mixed e$ects models !tting degree-four orthogonal polynomials 
in time to log(OD620), where OD620 is the mean optical density of the three replicates at  
time (t).
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Transferrin saturation is homeostatically controlled with a normal range between 15–50% in males. 
Our data show that increasing TSAT from a mean of 42% to 76% profoundly stimulated bacterial growth 
with a continuous association across all levels of TSAT. "e role of TSAT in mediating host susceptibility 
to infection has been known for almost half a century28. However, neither the strength of this association, 
nor the ability of acute increases in TSAT following iron doses to so rapidly favor bacterial growth, have 
been previously appreciated. "e dose level selected for the adults in this study was based on that most 
frequently used for young children with iron de!ciency (2 mg/kg/day), however our subjects were iron 
replete. In iron de!cient children, hepcidin would be down-regulated to allow maximal iron absorption29 
and hence TSAT would be expected to rise even further. Although a higher percentage of increase can 
be expected, the TSAT baseline will be lower and may still end up lower than in iron replete men. In the 
event of accidental ingress of pathogens through a cut, abrasion or leaky gut, these high levels of TSAT 
could precipitate a fulminant bacteremia before other cognate immune defenses have time to respond.

Iron absorbed from a natural food matrix, or even when ferrous sulfate is given with food30, is released 
much more slowly and causes minor deviations in TSAT and in non-transferrin bound iron (NTBI)30 
which, according to the data presented here, would be much less likely to promote bacterial growth. In 
regions of the world where iron-rich foods are scarce, or too costly, supplementation with slow release 
nano-molecular formulations that mimic a food matrix31 may provide a safer option and might addition-
ally reduce the adverse e$ects of unabsorbed iron on the gut microbiota. Field trials of such compounds 
are warranted. Additional safe approaches to supplement iron include the use of oral bovine lactoferrin32.

Materials and Methods
Subjects. Forty-eight male Gambian subjects (averaging 40y; range 21–64y) were recruited. Subjects 
had no history of fever, illness or anti-microbial use during the preceding seven days; were malaria rapid 
test negative and were non-anemic (Hemoglobin > 12 g/dL). All patients donated blood between 9 and 
10 am, on an empty stomach, immediately prior to and four hours a%er taking 400 mg ferrous sulfate 
orally. Food was provided two hours a%er iron supplementation.

Informed consent was obtained from all subjects. "is study was approved by the Gambian 
Government/MRC Joint Ethics Committee (SCC1312v2) and by the University of North Carolina 
Institutional Review Board (protocol #143044). All experiments were performed in accordance with the 
approved guidelines.

Biochemical Parameters. Complete blood counts were obtained using a Medonic M series (Boule 
Diagnostics Int AB, Stockholm, Sweden) hematology analyzer. Serum biochemical parameters including 
serum iron, transferrin, ferritin and transferrin saturation were obtained using a Cobas Integra 400 plus 
(Roche, Basel, Switzerland) biochemistry analyzer.

���������� 
������ ������Ǥ� Staphylococcus aureus (strain NCTC8325), Staphylococcus epidermidis 
(FDA strain PCI1200, ATCC12228), Salmonella enterica serovar Typhimurium (strain LT2, ATCC19585) 
and Escherichia coli (strain Crooks, ATCC8739) were grown overnight for 18 hours at 37 °C in 5 mL 
iron free minimal growth media, Iscove’s Modi!ed Dulbecco’s Medium (IMDM, Invitrogen). "is was 
conducted in air with continuous shaking (250 rpm). A high-virulence, siderophore producing Yersinia 
enterocolitica (strain WA-314, ATCC51871) was grown in IMDM containing 10 mM ethylene glycol 
tetraacetic acid (EGTA, Sigma) (pH7). All growth assays were run in triplicate in IMDM containing 
50% heat-inactivated human serum. Bacterial growth was monitored by measuring the optical density 
at 620 nm (OD620) hourly for 12 hours (Staphylococcus aureus, Salmonella enterica serovar Typhimurium, 
and Escherichia coli) and then at 20, 28, 36 hours (Staphylococcus epidermidis and Yersinia enterocolitica)  
using a Multiscan FC ELISA plate reader ("ermo Scienti!c).

Statistical analysis. We analyzed the growth assays with a mixed model using a quartic polynomial 
in Stata12 (StataCorp, College Station, TX). We used the logarithm of the mean of the three replicate 
OD readings at each time point as the response variable and modeled growth trajectories by !tting this 
to orthogonal polynomials (to degree 4) in time using mixed e$ects models with random intercept and 
coe#cients due to patient and, nested within patient, bleed (pre and post). In e$ect, therefore, the growth 
trajectory for the ith blood sample was modeled by an equation of the form:

( ) = (β + τ ) + (β + τ ) + (β + τ ) + (β + τ ) + (β + τ ) + ε ,log[OD t ] t t t ti 0 0i 1 1i 2 2i
2

3 3i
3

4 4i
4

it

where t is time since inoculation, the β s are estimated coe#cients and the τ s and ε  are the random 
e$ects.

For each species of bacterium, we compared its growth pre- and post-iron supplementation by exam-
ining di$erences in (1) Growth Curve i.e. general pattern of the overall growth trajectories; (2) Time to 
Reach Peak Doubling Time, i.e. the time at which the rate of increase in log[OD] was at a maximum and 
(iii) Doubling Time During Exponential Growth Phase, i.e. when the doubling time was at its greatest, 
or, if the lag phase was not detectable at 1 hour a%er inoculation. We estimated the timing of the maxi-
mum slope by setting the second derivative with respect to time of the deterministic component of the 
model to zero. We calculated the doubling time at time t as log(2)/(slope of log[OD(t)]). We employed 
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the likelihood ratio test to compare models for which the growth patterns were and were not dependent 
on the transferrin saturation or iron supplementation. We used the delta method to obtain the 95% con-
!dence intervals for the time at which maximum slope occurred and the doubling time.
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ANNEX 3.8 New Ballard Score Sheet (Gestational Aging) 

 
 




