

Open Peer Review

Any reports and responses or comments on the
article can be found at the end of the article.

RESEARCH ARTICLE

Benchmarking of long-read assemblers for prokaryote whole
 genome sequencing [version 1; peer review: 4 approved]

Ryan R. Wick , Kathryn E. Holt1,2

Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK

Abstract
Data sets from long-read sequencing platforms (OxfordBackground:

Nanopore Technologies and Pacific Biosciences) allow for most prokaryote
genomes to be completely assembled – one contig per chromosome or
plasmid. However, the high per-read error rate of long-read sequencing
necessitates different approaches to assembly than those used for
short-read sequencing. Multiple assembly tools (assemblers) exist, which
use a variety of algorithms for long-read assembly.

We used 500 simulated read sets and 120 real read sets toMethods:
assess the performance of six long-read assemblers (Canu, Flye,
Miniasm/Minipolish, Raven, Redbean and Shasta) across a wide variety of
genomes and read parameters. Assemblies were assessed on their
structural accuracy/completeness, sequence identity, contig circularisation
and computational resources used.

Canu v1.9 produced moderately reliable assemblies but had theResults:
longest runtimes of all assemblers tested. Flye v2.6 was more reliable and
did particularly well with plasmid assembly. Miniasm/Minipolish v0.3 was
the only assembler which consistently produced clean contig
circularisation. Raven v0.0.5 was the most reliable for chromosome
assembly, though it did not perform well on small plasmids and had
circularisation issues. Redbean v2.5 and Shasta v0.3.0 were
computationally efficient but more likely to produce incomplete assemblies.

Of the assemblers tested, Flye, Miniasm/Minipolish andConclusions:
Raven performed best overall. However, no single tool performed well on
all metrics, highlighting the need for continued development on long-read
assembly algorithms.

Keywords
Assembly, long-read sequencing, Oxford Nanopore Technologies, Pacific
Biosciences, microbial genomics, benchmarking

1 1,2

1

2

 Reviewer Status

 Invited Reviewers

 version 1
23 Dec 2019

 1 2 3 4

report report report report

, Johns Hopkins University,Aleksey Zimin

Baltimore, USA
, Johns Hopkins UniversitySteven L Salzberg

School of Medicine, Baltimore, USA
Whiting School of Engineering, Johns Hopkins
University, Baltimore, USA
Bloomberg School of Public Health, Johns
Hopkins University, Baltimore, USA

1

, University of Zagreb, Zagreb,Robert Vaser

Croatia

, University of Zagreb, Zagreb,Mile Šikić

Croatia
Genome Institute of Singapore, A*STAR,
Singapore

2

, University of CaliforniaMikhail Kolmogorov

San Diego, La Jolla, USA
3

, Massey University Auckland,Olin Silander

North Shore, New Zealand
4

 23 Dec 2019, :2138 (First published: 8
)https://doi.org/10.12688/f1000research.21782.1

 23 Dec 2019, :2138 (Latest published: 8
)https://doi.org/10.12688/f1000research.21782.1

v1

Page 1 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

https://f1000research.com/articles/8-2138/v1
https://f1000research.com/articles/8-2138/v1
https://orcid.org/0000-0001-8349-0778
https://f1000research.com/articles/8-2138/v1
https://orcid.org/0000-0002-8370-0891
https://doi.org/10.12688/f1000research.21782.1
https://doi.org/10.12688/f1000research.21782.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.21782.1&domain=pdf&date_stamp=2019-12-23

 Ryan R. Wick ()Corresponding author: rrwick@gmail.com
 : Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Software, Writing – Original DraftAuthor roles: Wick RR

Preparation; : Conceptualization, Supervision, Writing – Review & EditingHolt KE
 No competing interests were disclosed.Competing interests:

 This work was supported by the Bill & Melinda Gates Foundation, Seattle (grant number OPP1175797) and an AustralianGrant information:
Government Research Training Program Scholarship. KEH is supported by a Senior Medical Research Fellowship from the Viertel Foundation of
Victoria.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 © 2019 Wick RR and Holt KE. This is an open access article distributed under the terms of the ,Copyright: Creative Commons Attribution License
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Wick RR and Holt KE. How to cite this article: Benchmarking of long-read assemblers for prokaryote whole genome sequencing
 F1000Research 2019, :2138 ()[version 1; peer review: 4 approved] 8 https://doi.org/10.12688/f1000research.21782.1

 23 Dec 2019, :2138 () First published: 8 https://doi.org/10.12688/f1000research.21782.1

Page 2 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.21782.1
https://doi.org/10.12688/f1000research.21782.1

Introduction
Genome assembly is the computational process of using
shotgun whole-genome sequencing data (reads) to reconstruct
an organism’s true genomic sequence to the greatest extent
possible1. Software tools which carry out assembly (assem-
blers) take sequencing reads as input and produce reconstructed
contiguous pieces of the genome (contigs) as output.

If a genome contains repetitive sequences (repeats) which are
longer than the sequencing reads, then the underlying genome
cannot be fully reconstructed without additional information;
i.e. if no read spans a repeat in the genome, then that repeat
cannot be resolved, limiting contig length2. Short-read sequenc-
ing platforms (e.g. those made by Illumina) produce reads
hundreds of bases in length and tend to result in shorter contigs. In
contrast, long-read platforms from Oxford Nanopore Technologies
(ONT) and Pacific Biosciences (PacBio) can generate reads tens
of thousands of bases in length which span more repeats and thus
result in longer contigs3.

Prokaryote genomes are simpler than eukaryote genomes in
a few aspects relevant to assembly. First, they are smaller,
most being less than 10 Mbp in size4. Second, they contain less
repetitive content and their longest repeat sequences are often
less than 10 kbp in length5. Third, prokaryote genomes are
haploid and thus avoid assembly-related complications from
diploidy/polyploidy6. These facts make prokaryote genome
assembly a more tractable problem than eukaryote genome
assembly, and in most cases a long-read set of sufficient depth
should contain enough information to generate a complete
assembly – each replicon in the genome being fully assembled
into a single contig7. Prokaryote genomes also have two other
features relevant to assembly: they may contain plasmids that
differ from the chromosome in copy number and therefore
read depth, and most prokaryote replicons are circular with no
defined start/end point.

In this study, we examine the performance of various long-read
assemblers in the context of prokaryote whole genomes. We
assessed each tool on its ability to generate complete assemblies
using both simulated and real read sets. We also investigated
prokaryote-specific aspects of assembly, such as performance on
plasmids and the circularisation of contigs.

Methods
Simulated read sets
Simulated read sets (read sequences generated in silico from
reference genomes) offer some advantages over real read sets
when assessing assemblers. They allow for a confident ground
truth – i.e. the true underlying genome is known with certainty.
They allow for large sample sizes, in practice limited only by
computational resources. Also, a variety of genomes and read
set parameters can be used to examine assembler performance
over a wide range of scenarios. For this study, we simulated
500 read sets to test the assemblers, each using different param-
eters and a different prokaryote genome.

To select reference genomes for the simulated read sets, we
first downloaded all bacterial and archaeal RefSeq genomes using

ncbi-genome-download v0.2.10 (14333 genomes at the time
of download)8. We then performed some quality control steps:
excluding genomes with a >10 Mbp chromosome, a <500 kbp
chromosome, any >300 kbp plasmid, any plasmid >25% of the
chromosome size or more than 9 plasmids (Extended data,
Figure S1)9. We then ran Assembly Dereplicator v0.1.0 with a
threshold of 0.1, resulting in 3153 unique genomes10.

To produce a final set of 500 genomes with 500 plasmids,
we randomly selected 250 genomes from those containing
plasmids, repeating this selection until the genomes contained
exactly 500 plasmids. We then added 250 genomes randomly
selected from those without plasmids. Any ambiguous bases in
the assemblies were replaced with ‘A’ to ensure that sequences
contained only the four canonical DNA bases.

We then used Badread v0.1.5 to generate one read set for each
input genome11. The parameters for each set (controlling read
depth, length, identity and errors) were randomly chosen to
ensure a large amount of variability (Extended data, Figure S2)9.
Note that not all of these read sets were sufficient to reconstruct
the original genome (due to low depth or short read length), so
even an ideal assembler would be incapable of completing an
assembly for all 500 test sets.

For genomes containing plasmids, the read depth of plasmids
relative to the chromosome was also set randomly, with limits
based on the plasmid size (Extended data, Figure S3)9. Large
plasmids were simulated at depths close to that of the
chromosome while small plasmids spanned a wider range of
depth. This was done to model the observed pattern that small
plasmids often have a high per-cell copy number (i.e. may be
high read depth) but can be biased against in library prepara-
tions (i.e. may be low read depth)12. All replicons (chromosomes
and plasmids) were treated as circular sequences in Badread, so
the simulated read sets do not test assembler performance on
linear sequences.

Real read sets
Despite the advantages of simulated read sets, they can be
unrealistic because read simulation tools (such as Badread) may
not accurately model all relevant features: error profiles, read
lengths, quality scores, etc. Real read sets are therefore also
valuable when assessing assemblers. The challenge with real
read sets is obtaining a ground truth genome against which
assemblies can be checked. Since many reference genome
sequences are produced using long-read assemblies, there
is the risk of circular reasoning – if we use an assembly as our
ground truth reference, our results will be biased in favour of
whichever assembler produced the reference.

To avoid this issue, we used the datasets produced in a recent
study comparing ONT and PacBio data which also included
Illumina reads for each isolate13. For each of the 20 bacterial
isolates in that study, we conducted two hybrid assemblies
using Unicycler v0.4.7: Illumina+ONT and Illumina+PacBio14.
Unicycler works by first generating an assembly graph using the
Illumina reads, then using long-read alignments to scaffold the
graph’s contigs into a completed genome – a distinct approach

Page 3 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

https://github.com/kblin/ncbi-genome-download
https://github.com/rrwick/Assembly-Dereplicator
https://github.com/rrwick/Badread
https://github.com/rrwick/Unicycler

from any of the long-read assemblers tested in this study.
We ran the assemblies using Unicycler’s --no_miniasm
option so it skipped its Miniasm-based step which could
bias the results in favour of Miniasm/Minipolish. We then
excluded any isolate where either hybrid assembly failed to reach
completion or where there were structural differences between
the two assemblies as determined by a Minimap2 alignment15.
This left six isolates for inclusion.

The ONT and PacBio read sets for these isolates were quite
deep (156× to 535×) so to increase the number of assembly
tests, we produced ten random read subsets of each, ranging
from 40× to 100× read depth. This resulted in 120 total read
sets for testing the assemblers (6 genomes × 2 platforms × 10 read
subsets). The Illumina+ONT hybrid assembly was used as
ground truth for each isolate.

All real and simulated read sets16 and reference genomes17 are
available as Underlying data.

Assemblers tested
We assembled each of the read sets using the current versions
of six long-read assemblers: Canu v1.9, Flye v2.6, Miniasm/
Minipolish v0.3, Raven v0.0.5, Redbean v2.5 and Shasta v0.3.0.
Default parameters were used except where stated, and exact
commands for each tool are given in the Extended data,
Figure S49. Assemblers that only work on PacBio reads (i.e. not
on ONT reads) were excluded (HGAP18, FALCON19, HINGE20
and Dazzler21), as were hybrid assemblers which also require
short read input (Unicycler14 and MaSuRCA22).

Canu has the longest history of all the assemblers tested, with
its first release dating back to 2015. It performs assembly by
first correcting reads, then trimming reads (removing adapters
and breaking chimeras) and finally assembling reads into
contigs23. Its assembly strategy uses a modified version of the
string graph algorithm24, sometimes referred to as the overlap-
layout-consensus (OLC) approach.

Flye takes a different approach to assembly: first combining
reads into error-prone disjointigs, then collapsing repetitive
sequences to make a repeat graph and finally resolving the
graph’s repeats to make the final contigs25. Of particular note to
prokaryote assemblies, Flye has options for recovery of small
plasmids (--plasmids) and uneven depth of coverage
(--meta), both of which we used in this analysis.

Miniasm builds a string graph from a set of read overlaps – i.e.
it performs only the layout step of OLC. It does not perform
read overlapping which must be done separately with Mini-
map2, and it does not have a consensus step, so its assembly
error rates are comparable to raw read error rates. A separate
polishing tool such as Racon is therefore required to achieve
high sequence identity26. For this study, we developed a tool
called Minipolish to simplify this process by conducting Racon
polishing (two rounds by default) on a Miniasm assembly
graph. To ensure clean circularisation of prokaryote replicons,
circular contigs are ‘rotated’ (have their starting position
adjusted) between rounds. Minipolish also comes with a script

(miniasm_and_minipolish.sh) which carries out all
assembly steps (Minimap2 overlapping, Miniasm assembly and
Minipolish consensus) in a single command, and subsequent
references to ‘Miniasm/Minipolish’ refer to this entire pipeline.

Raven (previously known as Ra) is another tool which takes
an OLC approach to assembly27. Its overlapping step shares
algorithms with Minimap2, and its consensus step is based on
Racon, making it similar to Miniasm/Minipolish. It differs in its
layout step which includes novel approaches to remove spurious
overlaps from the graph, helping to improve assembly contiguity.

Redbean (previously known as Wtdbg2) uses an approach to
long-read assembly called a fuzzy Bruijn graph28. This is
modelled on the De Bruijn graph concept widely used for
short-read assembly29 but modified to work with the inexact
sequence matches present in noisy long reads.

Shasta is an assembler designed for computational efficiency30.
To achieve this, much of its assembly pipeline is performed not
directly on read sequences but rather on a reduced representa-
tion of marker k-mers. These markers are used to find overlaps
and build an assembly graph from which a consensus sequence
is derived.

Computational environment
All assemblies were run on Ubuntu 18.04 instances of Australia’s
Nectar Research Cloud which contained 32 vCPUs and 64 GB
of RAM (m3.xxlarge flavour). To guard against performance
variation caused by vCPU overcommit, the assemblers were
limited to 16 threads (half the number of available vCPUs) in
their options. Any assembly which exceeded 24 hours of runtime
or 64 GB of memory usage was terminated.

Assembly assessment
Our primary metric of assembly quality was contiguity, defined
here as the longest single Minimap2 alignment between the
assembly and the reference replicon, relative to the reference
replicon length. Contiguity of exactly 100% indicates that the
replicon was assembled completely with no missing or extra
sequence (Extended data, Figure S5A)9. Contiguity of slightly
less than 100% (e.g. 99.9%) indicates that the assembly was
complete, but some bases were lost at the start/end of the
contig (Extended data, Figure S5B)9. Contiguity of more than
100% (e.g. 101%) indicates that the contig contains duplicated
sequence via start-end overlap (Extended data, Figure S5C)9.
Much lower contiguity (e.g. 70%) indicates that the assembly
was not complete due to fragmentation (Extended data, Figure
S5D)9, missing sequence (Extended data, Figure S5E)9 or
misassembly (Extended data, Figure S5F)9. Contiguity values
were determined by aligning the contigs to a tripled version of
the reference replicon, necessary to ensure that contigs can fully
align even with start-end overlap and regardless of their starting
position relative to that of the linearised reference sequence
(Extended data, Figure S6)9.

Contiguity values were determined for each replicon in the
assemblies – e.g. if a genome contained two plasmids, then the
assemblies of that genome have three contiguity values: one

Page 4 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

https://github.com/marbl/canu
https://github.com/fenderglass/Flye
https://github.com/rrwick/Minipolish
https://github.com/rrwick/Minipolish
https://github.com/lbcb-sci/raven
https://github.com/ruanjue/wtdbg2
https://github.com/chanzuckerberg/shasta

for the chromosome and one for each plasmid. A status of
‘fully complete’ was assigned to assemblies where all replicons
(the chromosome and any plasmids if present) achieved a
contiguity of ≥99%. If an assembly had a chromosome with
a contiguity of ≥99% but incomplete plasmids, it was given a
status of ‘complete chromosome’. If the chromosome had a
contiguity of <99%, the assembly was deemed ‘incomplete’. If
the assembly was empty or missing (possibly due to the assembler
prematurely terminating with an error), it was given a status
of ‘empty’. If the assembly terminated due to exhausting the
available RAM, it was given a status of ‘out of memory’.
Computational metrics were also observed for each assembly: time
to complete and maximum RAM usage.

Results and discussion
Figure 1 and Figure 2 summarise the assembly results for the
simulated and real read sets, respectively. Full tabulated results
can be found in the Extended data9. The assemblies, times and
terminal outputs generated by each assembler are available as
Underlying data31.

Figure 1A/Figure 2A shows the proportion of read sets with
each assembly status. For the real read sets, a higher proportion
of completed assemblies indicates a more reliable assembler –
one which is likely to make a completed assembly given a
typical set of input reads. For the simulated read sets, a higher
proportion of completed assemblies indicates a more robust
assembler – one which is able to tolerate a wide range of input
read parameters. Extended data, Figure S79 plots assembly conti-
guity against specific read set parameters to give a more detailed
assessment of robustness. Plasmid assembly status, plotted
with plasmid length and read depth, is shown in Extended data,
Figure S8 and Figure S99 for the simulated and real read sets,
respectively.

Figure 1B/Figure 2B shows the chromosome contiguity values
for each assembly, focusing on the range near 100%. These
plots show how well assemblers can circularise contigs
– i.e. whether sequence is duplicated or missing at the contig
start/end (Extended data, Figure S5)9. The closer contiguity
is to 100% the better, with exactly 100% indicating perfect
circularisation. Plasmid contiguity values are shown in Extended
data, Figure S109.

Assembly identity (consensus identity) is a measure of the
base-level accuracy of an assembled contig relative to the
reference sequence (how few substitution and small indel errors
are present) and is shown in Figure 1C/Figure 2C. The identity of
assembled sequences is almost always higher than the identity
of individual reads because errors can be ‘averaged out’ using
read depth, producing more accurate consensus base calls.
However, systematic read errors (e.g. mistakes in homopolymer
length) can make perfect sequence identity difficult to achieve,
regardless of assembly strategy32.

Assembler resource usage is shown in terms of total runtime
(Figure 1D/Figure 2D) and the maximum RAM usage during
assembly (Figure 1E/Figure 2E).

Reliability
When considering only the chromosome, Raven was the most
reliable assembler, closely followed by Flye – both were able
to complete the chromosome in over three-quarters of the real
read sets (Figure 2A). If plasmids are also considered, then
Flye was the most reliable assembler. Miniasm/Minipolish and
Canu were moderately reliable, completing over half of the
real read set chromosomes. Redbean and Shasta were the least
reliable and completed less than half of the chromosomes.

Robustness
Flye, Miniasm/Minipolish and Raven were the most robust
assemblers, able to complete over half of the assemblies
attempted with the simulated read sets (Figure 1A). Flye and
Redbean performed best in cases of low read depth, able to
complete assemblies down to ∼10× depth (Extended data,
Figure S7A)9. Raven performed the best with low-identity
read sets (Extended data, Figure S7B)9. The assemblers per-
formed similarly with regards to read length, except for Shasta
which required longer reads (Extended data, Figure S7C)9. The
assemblers were similarly unaffected by random reads, junk
reads, chimeric reads or adapter sequences (Extended data,
Figure S7D–F)9. Read glitches (local breaks in continuity) were
well-tolerated by the assemblers except for Redbean and Shasta
(Extended data, Figure S7G)9.

Identity
In our real read tests, Canu achieved high sequence identity
on PacBio reads, Miniasm/Minipolish and Raven did well on
ONT reads, and Flye did well on both platforms (Figure 2C). For
each assembler, real PacBio reads resulted in higher identities
than real ONT reads. For the simulated reads (which contain
artificial error profiles), results were more erratic, with Canu,
Miniasm/Minipolish and Raven performing best (Figure 1C).

The nature of read errors depends on the sequencing platform
and basecalling software used, so these results may not hold
true for all read sets. Post-assembly polishing tools (including
Racon26, Nanopolish7, Medaka33 and Arrow34) are routinely used
to improve the accuracy of long-read assemblies35, and identity
can be further increased by polishing with Illumina reads where
available (e.g. with Pilon36). Therefore, the sequence identity
produced by the assembler itself is potentially unimportant for
many users.

Resource usage
Canu was the slowest assembler tested on both real (Figure 2D)
and simulated (Figure 1D) read sets, sometimes taking hours to
complete. Its runtime was correlated with read accuracy and
read set size, with low-accuracy and large read sets being more
likely to result in a long runtime.

Flye was typically faster than Canu, taking less than 15 minutes
for the real read sets and usually less than an hour for the
simulated read sets. It sometimes took multiple hours to assem-
ble simulated read sets, and this was correlated with the amount
of junk (low-complexity) reads, suggesting that removal of such
reads via pre-assembly QC may be beneficial. Flye had the

Page 5 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

Figure 1. Assembly results for the simulated read sets, which cover a wide variety of parameters for length, depth and quality.
(A) Proportion of each possible assembly outcome. (B) Relative contiguity of the chromosome for each assembly, showing cleanliness of
circularisation. (C) Sequence identity of each assembly’s longest alignment to the chromosome. (D) Total time taken (wall time) for each
assembly. (E) Maximum RAM usage for each assembly. ‘Miniasm+’ here refers to the entire Miniasm/Minipolish assembly pipeline.

Page 6 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

Figure 2. Assembly results for the real read sets, half containing ONT MinION reads (circles) and half PacBio RSII reads (triangles).
(A) Proportion of each possible assembly outcome. (B) Relative contiguity of the chromosome for each assembly, showing cleanliness of
circularisation. (C) Sequence identity of each assembly’s longest alignment to the chromosome. (D) Total time taken (wall time) for each assembly.
(E) Maximum RAM usage for each assembly. ‘Miniasm+’ here refers to the entire Miniasm/Minipolish assembly pipeline.

Page 7 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

highest RAM usage of the tested assemblers and occasionally
hit our 64 GB limit for simulated read sets. Its RAM usage was
correlated with read N50 and read set size, with long and large
read sets being more likely to result in high RAM usage.

Miniasm/Minipolish, Raven and Redbean were comparable in
performance, typically completing assemblies in less than
10 minutes and with less than 16 GB of RAM. While not
tested in this study, Racon (which is used in Minipolish) and
Raven can be run with GPU acceleration to further improve
speed performance. Shasta was the fastest assembler and had
the lowest memory usage.

Circularisation
Of all assemblers tested, Miniasm/Minipolish was the only one
to regularly achieve exact circularisation (contiguity=100%), due
to Minipolish’s polishing pipeline (Figure 1B/Figure 2B). Flye
often excluded a small amount of sequence (tens of bases) from
the start/end of circular contigs (contiguity <100%), and Raven
typically excluded moderate amounts of sequence (hundreds of
bases). Canu’s contiguities usually exceeded 100%, indicating
a large amount (thousands of bases) of start/end overlap. The
amount of overlap in a Canu assembly was correlated with
the read N50 length (Extended data, Figure S7C)9. Redbean
and Shasta were both erratic in their circularisation, often
producing some sequence duplication (contiguity >100%) but
occasionally dropping sequence (contiguity <100%).

In addition to cleanly circularising contig sequences, it is
valuable for a prokaryote genome assembler to clearly distin-
guish between circular and linear contigs. This can provide
users with a clue as to whether or not the genome was
assembled to completion. Flye, Miniasm/Minipolish and Shasta
produce graph files of their final assembly which can indicate
circularity. Canu indicates circularity via the ‘suggestCircular’
text in its contig headers. Raven and Redbean do not signal to
users whether a contig is circular.

Plasmids
Canu and Flye were the two assemblers most able to assemble
plasmids at a broad range of size and depth (Extended data,
Figures S8, S9)9. Miniasm/Minipolish also performed well,
though it failed to assemble plasmids if they were very small
or had a very high read depth. Raven was able to assemble most
large plasmids but not small plasmids. Redbean and Shasta
were least successful at plasmid assembly.

Circularisation of plasmids followed the same pattern as for
chromosomes, with only Miniasm/Minipolish consistently
achieving clean circularisation (Extended data, Figure S10)9. For
smaller plasmids, start/end overlap could sometimes result in
contiguities of ∼200% – i.e. the plasmid sequence was dupli-
cated in a single contig. This was most common with Canu,
though it occurred with other assemblers as well.

Ease of use
All assemblers tested were relatively easy to use, either
running with a single command (Canu, Flye, Raven and Shasta)

or providing a convenience script to bundle the commands
together (Miniasm/Minipolish and Redbean). All were able to
take long reads in FASTQ format as input, with the exception of
Shasta which required reads to first be converted to FASTA for-
mat (Extended data, Figure S4)9. We encountered no difficulty
installing any of the tools by following the instructions
provided.

Some of the assemblers needed a predicted genome size as input
(Canu, Flye and Redbean) while others (Miniasm/Minipolish,
Raven and Shasta) did not. This requirement could be a nui-
sance when assembling unknown isolates, as it may be hard to
specify a genome size before the species is known.

Configurability
While we ran our assemblies using default and/or recom-
mended commands (Extended data, Figure S4)9, some of the
assemblers have parameters which can be used to alter their
behaviour. Raven was the least configurable assembler tested,
with few options available to users. Flye offers some parameters,
including overlap and coverage thresholds. Miniasm/Minipolish,
Redbean and Shasta all offer more options, and Canu is the most
configurable with hundreds of adjustable parameters. Many of
the available parameters are arcane (e.g. Miniasm’s ‘max and min
overlap drop ratio’ or Shasta’s ‘pruneIterationCount’), and
only experienced power users are likely to adjust them – most
will likely stick with default settings or only adjust easier-to-
understand options. However, the presence of low-level param-
eters provides an opportunity to experiment and gain greater
control over assemblies and are therefore appreciated even when
unlikely to be used.

Another aspect worth noting is whether an assembler pro-
duces useful files other than its final assembly. Canu stands out
in this respect, as it creates corrected and trimmed reads in its
pipeline which have low error rates and are mostly free of
adapters and chimeric sequences. Canu can therefore be consid-
ered not just an assembler but also a long-read correction tool
suitable for use in other analyses.

Assembler summaries
Canu v1.9 was the slowest assembler and not the most reliable
or robust. Its strength is in its configurability, so power users
who are willing to learn Canu’s nuances may find that they can
tune it to fit their needs. However, it is probably not the best
choice for users wanting a quick and simple prokaryote genome
assembly.

Flye v2.6 was an overall strong performer in our tests:
reliable, robust and good with plasmids. However, it requires
a genome size parameter, tended to delete some sequence
(usually on the order of tens of bases) when circularising con-
tigs and could be excessive in its RAM usage when assembling
simulated read sets.

Miniasm/Minipolish v0.3 was not the most reliable assembler
but was fairly robust to read set parameters. Its main strength is
that it was the only assembler to consistently achieve perfect

Page 8 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

contig circularisation (as this is a specific goal of its polishing
step). Also, it does not require a genome size parameter to run,
which makes it easier to run than Canu, Flye or Redbean for
unknown genomes.

Raven v0.0.5 was the most reliable and robust assembler for
chromosome assembly. However, it suffered from worse circu-
larisation problems than Flye (often deleting hundreds of bases)
and wasn’t good with small plasmids. Like Miniasm/Minipolish,
it does not require a genome size parameter.

Redbean v2.5 assemblies tended to have glitches in the
sequence which caused breaks in contiguity, making it perform
poorly in both reliability and robustness. This, combined with
its erratic circularisation performance and requirement to
specify genome size, make it a less-than ideal choice for long-read
prokaryote read sets.

Shasta v0.3.0 was the fastest assembler tested and used the
least RAM, but it had the worst reliability and robustness. It is
therefore more suited to assembly of large genomes in resource-
limited settings (the use case for which it was designed) than
it is for prokaryote genome assembly.

Conclusions
Each of the different assemblers has pros and cons, and while
no single assembler emerged as an ideal choice for prokaryote
genome long-read assembly, the overall best performers were
Flye, Miniasm/Minipolish and Raven. Flye was very reliable,
especially for plasmid assembly, and was the best perform-
ing assembler at low read depths. Miniasm/Minipolish was the
only assembler to reliably achieve clean contig circularisation.
Raven was the most reliable for chromosome assembly and the
most tolerant of low-identity read sets.

For users looking to achieve an optimal assembly, we recom-
mend trying multiple different tools and comparing the results.
This will provide the opportunity for validation – confidence in an
assembly is greater when it is in agreement with other independent
assemblies. It also offers a chance to detect and repair
circularisation issues, as different assemblers are likely to give
different contig start/end positions for a circular replicon.

An ideal prokaryotic long-read assembler would reliably complete
assemblies, be robust against read set problems, be easy to
use, have low computational requirements, cleanly circularise
contigs and assemble plasmids of any size. The importance
of long-read assembly will continue to grow as long-read
sequencing becomes more commonplace in microbial genomics,
and so development of assemblers towards this ideal is crucial.

Data availability
Underlying data
Figshare: Read sets. https://doi.org/10.26180/5df6f5d06cf0416.

These files contain the input read sets (both simulated and real)
for assembly.

Figshare: Reference genomes. https://doi.org/10.26180/
5df6e99ff3eed17.

This file contains the reference genomes against which the
long-read assemblies were compared. For the simulated read sets,
these genomes were the source sequence from which the reads
were generated.

Figshare: Assemblies. https://doi.org/10.26180/5df6e2864a65831.

These files contain assemblies (in FASTA format), times and
terminal outputs for each of the assemblers.

Extended data
Zenodo: Long-read-assembler-comparison. https://doi.org/10.5281/
zenodo.27024429.

This project contains the following extended data:
• �Results (tables of results data, (including information on

eachreference genome, read set parameters and metrics
foreach assembly).

• �Scripts (scripts used to generate plots).

• �Figure S1. Distributions of chromosome sizes (A), plasmid
sizes (B) and per-genome plasmid counts (C) for the
reference genomes used to make the simulated read sets.

• �Figure S2. Badread parameter histograms for the simu-
lated read sets. (A) Mean read depths were sampled from
a uniform distribution ranging from 5× to 200×. (B) mean
read lengths were sampled from a uniform distribution
ranging from 100 to 20000 bp. C: read length stand-
ard deviations were sampled from a uniform distribution
ranging from 100 to twice that set’s mean length (up to
40000 bp). D: mean read identities were sampled from a
uniform distribution ranging from 80% to 99%. (E) Max
read identities were sampled from a uniform distribution
ranging from that set’s mean identity plus 1% to 100%.
(F) Read identity standard deviations were sampled from
a uniform distribution ranging from 1% to the max iden-
tity minus the mean identity. (G, H and I) Junk, random
and chimera rates were all sampled from an exponential
distribution with a mean of 2%. (J) Glitch sizes/skips
were sampled from a uniform distribution ranging
from 0 to 100. (K) Glitch rates for each set were cal-
culated from the size/skip according to this formula:
100000/1.6986s/10. (L) Adapter lengths were sampled
from an exponential distribution with a mean of 50.

• �Figure S3. Top: the target simulated depth of each replicon
relative to the chromosome. The smaller the plasmid, the
wider the range of possible depths. Bottom: the absolute
read set of each replicon after read simulation.

• �Figure S4. Commands used for each of the six assemblers
tested.

• �Figure S5. Possible states for the assembly of a circular
replicon. Reference sequences are shown in the inner
circles in black and aligned contig sequences are shown
in the outer circles in colour (red at the contig start to
violet at the contig end). (A) Complete assembly with
perfect circularisation. (B) Complete assembly but

Page 9 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

https://doi.org/10.26180/ 5df6f5d06cf04
https://doi.org/10.26180/5df6e99ff3eed
https://doi.org/10.26180/5df6e99ff3eed
https://doi.org/10.26180/ 5df6e2864a658
https://doi.org/10.5281/zenodo.2702442
https://doi.org/10.5281/zenodo.2702442

with missing bases leading to a gapped circularisation.
(C) Complete assembly but with duplicated bases leading
to overlapping circularisation. (D) Incomplete assembly
due to fragmentation (multiple contigs per replicon).
(E) Incomplete assembly due to missing sequence.
(F) Incomplete assembly due to misassembly (noncontigu-
ous sequence in the contig).

• �Figure S6. Reference triplication for assembly assessment.
(A) Due to the ambiguous starting position of a circular
replicon, a completely-assembled contig will typically
not align to the reference in a single unbroken alignment.
(B) Doubling the reference sequence will allow for
a single alignment, regardless of starting position.
(C) However, if the contig contains start/end overlap
(i.e. contiguity >100%) then even a doubled refer-
ence may not be sufficient to achieve a single alignment,
depending on the starting position. (D) A tripled reference
allows for an unbroken alignment, regardless of starting
position, even in cases of >100% contiguity.

• �Figure S7. Contiguity of the simulated read set assem-
blies plotted against Badread parameters for each of the
tested assemblers. These plots show how well the assem-
blers tolerate different problems in the read sets. (A) Mean
read depth (higher is better). (B) Max read identity (higher
is better). (C) N50 read length (higher is better). (D) The
sum of random read rate and junk read rate (lower is
better). (E) Chimeric read rate (lower is better). (F) Adapter
sequence length (lower is better). (G) Glitch size/skip
(lower is better).

• �Figure S8. Plasmid completion for the simulated read set
assemblies for each of the tested assemblers, plotted
with plasmid length and read depth. Solid dots indicate
completely assembled plasmids (contiguity ≥99%) while
open dots indicate incomplete plasmids (contiguity
<99%). Percentages in the plot titles give the proportion
of plasmids which were completely assembled.

• �Figure S9. Plasmid completion for the real read set
assemblies for each of the tested assemblers, plotted
with plasmid length and read depth. Solid dots indicate
completely assembled plasmids (contiguity ≥99%) while
open dots indicate incomplete plasmids (contiguity <99%).
Percentages in the plot titles give the proportion of
plasmids which were completely assembled.

• �Figure S10. The relative contiguity of the plasmids for
each real read set assembly (A) and simulated read set
assembly (B).

Extended data are also available on GitHub.

Data are available under the terms of the Creative Commons
Attribution 4.0 International license (CC-BY 4.0).

Acknowledgements
This research was supported by use of the Nectar Research Cloud,
a collaborative Australian research platform supported by the
National Collaborative Research Infrastructure Strategy (NCRIS).

References

1.	 Myers EW: A history of DNA sequence assembly. IT - Information Technology.
2016; 58(3): 126–132.
Publisher Full Text

2.	 Gurevich A, Saveliev V, Vyahhi N, et al.: QUAST: quality assessment tool for
genome assemblies. Bioinformatics. 2013; 29(8): 1072–1075.
PubMed Abstract | Publisher Full Text | Free Full Text

3.	 Goodwin S, McPherson JD, McCombie WR: Coming of age: ten years of next-
generation sequencing technologies. Nat Rev Genet. 2016; 17(6): 333–351.
PubMed Abstract | Publisher Full Text

4.	 Land M, Hauser L, Jun SR, et al.: Insights from 20 years of bacterial genome
sequencing. Funct Integr Genomics. 2015; 15(2): 141–161.
PubMed Abstract | Publisher Full Text | Free Full Text

5.	 Haubold B, Wiehe T: How repetitive are genomes? BMC Bioinformatics. 2006;
7: 541.
PubMed Abstract | Publisher Full Text | Free Full Text

6.	 Kyriakidou M, Tai HH, Anglin NL, et al.: Current Strategies of Polyploid Plant
Genome Sequence Assembly. Front Plant Sci. 2018; 9: 1660.
PubMed Abstract | Publisher Full Text | Free Full Text

7.	 Loman NJ, Quick J, Simpson JT: A complete bacterial genome assembled de
novo using only nanopore sequencing data. Nat Methods. 2015; 12(8): 733–735.
PubMed Abstract | Publisher Full Text

8.	 Blin K: Ncbi genome downloading scripts. 2019.
Reference Source

9.	 Wick R: rrwick/Long-read-assembler-comparison: Add supplementary figures.
2019.
http://www.doi.org/10.5281/zenodo.3581590

10.	 Wick RR, Holt KE: rrwick/Assembly-Dereplicator: Assembly Dereplicator v0.1.0.
2019.
Publisher Full Text

11.	 Wick RR: Badread: simulation of error-prone long reads. J Open Source Softw.

2019; 4(36): 1316.
Publisher Full Text

12.	 Wick RR, Judd LM, Gorrie CL, et al.: Completing bacterial genome assemblies
with multiplex MinION sequencing. Microb Genom. 2017; 3(10): e000132.
PubMed Abstract | Publisher Full Text | Free Full Text

13.	 De Maio N, Shaw LP, Hubbard A, et al.: Comparison of long-read sequencing
technologies in the hybrid assembly of complex bacterial genomes. Microb
Genom. 2019; 5(9): e000294.
PubMed Abstract | Publisher Full Text | Free Full Text

14.	 Wick RR, Judd LM, Gorrie CL, et al.: Unicycler: Resolving bacterial genome
assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;
13(6): e1005595.
PubMed Abstract | Publisher Full Text | Free Full Text

15.	 Li H: Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics.
2018; 34(18): 3094–3100.
PubMed Abstract | Publisher Full Text | Free Full Text

16.	 Wick R: Read sets. 2019.
http://www.doi.org/10.26180/5df6f5d06cf04

17.	 Wick R: Reference genomes. 2019.
http://www.doi.org/10.26180/5df6e99ff3eed

18.	 Chin CS, Alexander DH, Marks P, et al.: Nonhybrid, finished microbial genome
assemblies from long-read SMRT sequencing data. Nat Methods. 2013; 10(6):
563–569.
PubMed Abstract | Publisher Full Text

19.	 Chin CS, Peluso P, Sedlazeck FJ, et al.: Phased diploid genome assembly with
single-molecule real-time sequencing. Nat Methods. 2016; 13(12): 1050–1054.
PubMed Abstract | Publisher Full Text | Free Full Text

20.	 Kamath GM, Shomorony I, Xia F, et al.: HINGE: long-read assembly achieves
optimal repeat resolution. Genome Res. 2017; 27(5): 747–756.
PubMed Abstract | Publisher Full Text | Free Full Text

Page 10 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

https://github.com/rrwick/Long-read-assembler-comparison/tree/v2.1
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
http://dx.doi.org/10.1515/itit-2015-0047
http://www.ncbi.nlm.nih.gov/pubmed/23422339
http://dx.doi.org/10.1093/bioinformatics/btt086
http://www.ncbi.nlm.nih.gov/pmc/articles/3624806
http://www.ncbi.nlm.nih.gov/pubmed/27184599
http://dx.doi.org/10.1038/nrg.2016.49
http://www.ncbi.nlm.nih.gov/pubmed/25722247
http://dx.doi.org/10.1007/s10142-015-0433-4
http://www.ncbi.nlm.nih.gov/pmc/articles/4361730
http://www.ncbi.nlm.nih.gov/pubmed/17187668
http://dx.doi.org/10.1186/1471-2105-7-541
http://www.ncbi.nlm.nih.gov/pmc/articles/1769404
http://www.ncbi.nlm.nih.gov/pubmed/30519250
http://dx.doi.org/10.3389/fpls.2018.01660
http://www.ncbi.nlm.nih.gov/pmc/articles/6258962
http://www.ncbi.nlm.nih.gov/pubmed/26076426
http://dx.doi.org/10.1038/nmeth.3444
https://github.com/kblin/ncbi-genome-download
http://www.doi.org/10.5281/zenodo.3581590
http://dx.doi.org/10.5281/zenodo.3365572
http://dx.doi.org/10.21105/joss.01316
http://www.ncbi.nlm.nih.gov/pubmed/29177090
http://dx.doi.org/10.1099/mgen.0.000132
http://www.ncbi.nlm.nih.gov/pmc/articles/5695209
http://www.ncbi.nlm.nih.gov/pubmed/31483244
http://dx.doi.org/10.1099/mgen.0.000294
http://www.ncbi.nlm.nih.gov/pmc/articles/6807382
http://www.ncbi.nlm.nih.gov/pubmed/28594827
http://dx.doi.org/10.1371/journal.pcbi.1005595
http://www.ncbi.nlm.nih.gov/pmc/articles/5481147
http://www.ncbi.nlm.nih.gov/pubmed/29750242
http://dx.doi.org/10.1093/bioinformatics/bty191
http://www.ncbi.nlm.nih.gov/pmc/articles/6137996
http://www.doi.org/10.26180/5df6f5d06cf04
http://www.doi.org/10.26180/5df6e99ff3eed
http://www.ncbi.nlm.nih.gov/pubmed/23644548
http://dx.doi.org/10.1038/nmeth.2474
http://www.ncbi.nlm.nih.gov/pubmed/27749838
http://dx.doi.org/10.1038/nmeth.4035
http://www.ncbi.nlm.nih.gov/pmc/articles/5503144
http://www.ncbi.nlm.nih.gov/pubmed/28320918
http://dx.doi.org/10.1101/gr.216465.116
http://www.ncbi.nlm.nih.gov/pmc/articles/5411769

21.	 Myers EW: Efficient local alignment discovery amongst noisy long reads.
Lecture Notes in Computer Science. LNBI, 2014; 8701: 52–67.
Publisher Full Text

22.	 Zimin AV, Marçais G, Puiu D, et al.: The MaSuRCA genome assembler.
Bioinformatics. 2013; 29(21): 2669–2677.
PubMed Abstract | Publisher Full Text | Free Full Text

23.	 Koren S, Walenz BP, Berlin K, et al.: Canu: scalable and accurate long-read
assembly via adaptive k-mer weighting and repeat separation. Genome Res.
2017; 27(5): 722–736.
PubMed Abstract | Publisher Full Text | Free Full Text

24.	 Myers EW: The fragment assembly string graph. Bioinformatics. 2005; 21 Suppl
2: ii79–85.
PubMed Abstract | Publisher Full Text

25.	 Kolmogorov M, Yuan J, Lin Y, et al.: Assembly of long, error-prone reads using
repeat graphs. Nat Biotechnol. 2019; 37(5): 540–546.
PubMed Abstract | Publisher Full Text

26.	 Vaser R, Sović I, Nagarajan N, et al.: Fast and accurate de novo genome
assembly from long uncorrected reads. Genome Res. 2017; 27(5): 737–746.
PubMed Abstract | Publisher Full Text | Free Full Text

27.	 Vaser R, Šikić M: Yet another de novo genome assembler. bioRxiv. 2019.
Publisher Full Text

28.	 Ruan J, Li H: Fast and accurate long-read assembly with wtdbg2. Nat Methods.
2019.
PubMed Abstract | Publisher Full Text

29.	 Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using
de Bruijn graphs. Genome Res. 2008; 18(5): 821–829.
PubMed Abstract | Publisher Full Text | Free Full Text

30.	 Shafin K, Pesout T, Lorig-Roach R, et al.: Efficient de novo assembly of eleven
human genomes using PromethION sequencing and a novel nanopore toolkit.
bioRxiv. 2019.
Publisher Full Text

31.	 Wick R: Assemblies. 2019.
http://www.doi.org/10.26180/5df6e2864a658

32.	 Wick RR, Judd LM, Holt KE: Performance of neural network basecalling tools
for Oxford Nanopore sequencing. Genome Biol. 2019; 20(1): 129.
PubMed Abstract | Publisher Full Text | Free Full Text

33.	 Wright CJ: Medaka. 2019.
Reference Source

34.	 Alexander DH: GenomicConsensus. 2019.
Reference Source

35.	 Wick RR, Judd LM, Holt KE: August 2019 consensus accuracy update. 2019.
Reference Source

36.	 Walker BJ, Abeel T, Shea T, et al.: Pilon: an integrated tool for comprehensive
microbial variant detection and genome assembly improvement. PLoS One.
2014; 9(11): e112963.
PubMed Abstract | Publisher Full Text | Free Full Text

Page 11 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

http://dx.doi.org/10.1007/978-3-662-44753-6_5
http://www.ncbi.nlm.nih.gov/pubmed/23990416
http://dx.doi.org/10.1093/bioinformatics/btt476
http://www.ncbi.nlm.nih.gov/pmc/articles/3799473
http://www.ncbi.nlm.nih.gov/pubmed/28298431
http://dx.doi.org/10.1101/gr.215087.116
http://www.ncbi.nlm.nih.gov/pmc/articles/5411767
http://www.ncbi.nlm.nih.gov/pubmed/16204131
http://dx.doi.org/10.1093/bioinformatics/bti1114
http://www.ncbi.nlm.nih.gov/pubmed/30936562
http://dx.doi.org/10.1038/s41587-019-0072-8
http://www.ncbi.nlm.nih.gov/pubmed/28100585
http://dx.doi.org/10.1101/gr.214270.116
http://www.ncbi.nlm.nih.gov/pmc/articles/5411768
http://dx.doi.org/10.1101/656306
http://www.ncbi.nlm.nih.gov/pubmed/31819265
http://dx.doi.org/10.1038/s41592-019-0669-3
http://www.ncbi.nlm.nih.gov/pubmed/18349386
http://dx.doi.org/10.1101/gr.074492.107
http://www.ncbi.nlm.nih.gov/pmc/articles/2336801
http://dx.doi.org/10.1101/715722
http://www.doi.org/10.26180/5df6e2864a658
http://www.ncbi.nlm.nih.gov/pubmed/31234903
http://dx.doi.org/10.1186/s13059-019-1727-y
http://www.ncbi.nlm.nih.gov/pmc/articles/6591954
https://github.com/nanoporetech/medaka
https://github.com/PacificBiosciences/GenomicConsensus
https://github.com/rrwick/August-2019-consensus-accuracy-update
http://www.ncbi.nlm.nih.gov/pubmed/25409509
http://dx.doi.org/10.1371/journal.pone.0112963
http://www.ncbi.nlm.nih.gov/pmc/articles/4237348

Open Peer Review

 Current Peer Review Status:

Version 1

 30 January 2020Reviewer Report

https://doi.org/10.5256/f1000research.24010.r58116

© 2020 Silander O. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution License

work is properly cited.

 Olin Silander
School of Natural and Computational Sciences, Massey University Auckland, North Shore, New Zealand

The authors compare six long read genome assemblers using simulated and real data (PacBio and
Nanopore). They find that there is no single best method, and that each offers distinct advantages and
disadvantages.
I enjoyed reading this paper. It was well written and clearly presented. As I understand, the authors plan to
continually update the benchmarking is a fantastic step forward and considerably improves the utility of
such a publication. This should be noted more explicitly in the manuscript.

Major comments:
P.3 “Real Read Sets”. Could the authors note which fraction of the PacBio reads were CCS / HiFi
reads?

p.4 para.1: We then excluded any isolate where either hybrid assembly failed to reach completion
or where there were structural differences between the two assemblies as determined by a
Minimap2 alignment.
I wonder if this biases the genomes that were used such that they were easier to assemble than
the genomes that were left out. I do not have a big problem with this, but it could be mentioned. It
would also be good to provide slightly more detail on what precisely “structural differences
between the two assemblies” means - e.g. does this include large indels (size range), inversions,
etc.

P.5 para.4: Figure 1B/Figure 2B shows the chromosome contiguity values for each assembly.
There are some interesting patterns in 1B and 2B. First is the large number of Shasta assemblies
have precisely 100.005% contiguity (looks to be mostly ONT assemblies). I am also surprised by
the sort of bimodality in 1C/2C flye assemblies (and somewhat the miniasm assemblies). I would
expect an even spread, but instead it looks like some assemblies have similar to 99% identity,
whereas others have ~ 2-fold lower error rate (99.5% identity, my guesstimate). Is there an
explanation for either of these patterns?

P.5 Discussion of Identity. The authors could note the level generally achieved by polishing, which

Page 12 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

https://doi.org/10.5256/f1000research.24010.r58116
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

P.5 Discussion of Identity. The authors could note the level generally achieved by polishing, which
for ONT I think is around 99.98% (I am sure the authors are more aware than I am).

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Microbial genomics and evolution, transcription, metagenomics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

 22 January 2020Reviewer Report

https://doi.org/10.5256/f1000research.24010.r58301

© 2020 Kolmogorov M. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution License

work is properly cited.

 Mikhail Kolmogorov
Department of Computer Science and Engineering, University of California San Diego, La Jolla, USA

The article presents the benchmarking of the current popular long-read assemblers (Canu, Flye,
Miniasm/Minipolish, Raven, Redbean and Shasta) on various prokaryotic genomes. Wick & Holt have
simulated 500 long-read datasets to reflect various genomic features (such as repeat length and
complexity) as well as different sequencing parameters (depth, read length, sequencing artifacts etc). In
addition, the authors test the assemblers on 160 real PacBio and Oxford Nanopore datasets. For each
benchmarked algorithm, Wick & Holt summarize the important assembly metrics, such as contiguity or
base-level accuracy (measured against the corresponding references), as well as overall user
experience.

The manuscript is well-written, and the study design is sound. The presented benchmarks will be a

Page 13 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

https://doi.org/10.5256/f1000research.24010.r58301
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

1.

2.

3.

4.

5.

The manuscript is well-written, and the study design is sound. The presented benchmarks will be a
valuable resource for the long-read genomics community, both for developers and users. Importantly, the
authors have made all data sets and benchmarking pipelines freely available. I only have the following
minor suggestions:

In my view, the evaluation pipeline designed by the authors could be highlighted more in the main
text. E.g. how can a developer test a different assembler using the described benchmarks? Is it
quick to reproduce? What would be the resource requirements?

It would be useful to compare the pros and cons of this work with the other assembly evaluation
methods (such as QUAST) in a short discussion.

On Figure 2, triangles and circles are somewhat difficult to distinguish. Is there a way to better
visually separate PacBio and ONT data points (maybe color tones or background pattern)?

For the sake of completeness, it is worth mentioning the minimap2 alignment identity threshold that
is used for contiguity evaluation.

DOI links to read sets and generated assemblies seem to have an unneeded space that break the
URLs.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 M.K. is a developer of Flye, which is benchmarked in this study among the otherCompeting Interests:
assemblers.

Reviewer Expertise: Bioinformatics, genomics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

 16 January 2020Reviewer Report

https://doi.org/10.5256/f1000research.24010.r58113

Page 14 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

https://doi.org/10.5256/f1000research.24010.r58113

1.

2.

3.

© 2020 Šikić M et al. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution License

work is properly cited.

 Robert Vaser
Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and
Computing, University of Zagreb, Zagreb, Croatia

 Mile Šikić
 Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
 Genome Institute of Singapore, A*STAR, Singapore

The authors present a benchmark regarding prokaryotic organisms for several state-of-the-art long-read
assemblers. The comparison includes both third generation sequencing technologies with real and
simulated data, assessing various assembly traits with the conclusion that no assembler is perfect. The
manuscript is well written, the figures look neat and all the data is freely available online.

Minor comments:
Generating the assembly with a hybrid approach which is different from all benchmarked
assemblers is a good approach, but is there a possibility to analyse in details datasets which have
reference genomes assembled with Sanger sequencing (such as CFT073 and MGH78578
datasets used in)?De Maio N, Shaw LP, Hubbard A, et al.

As minipolish is a new pipeline introduced in this paper, I would suggest describing it a bit more in
detail.

Ra assembler has been published as a conference proceedings .here

References
1. De Maio N, Shaw LP, Hubbard A, George S, Sanderson ND, Swann J, Wick R, AbuOun M,
Stubberfield E, Hoosdally SJ, Crook DW, Peto TEA, Sheppard AE, Bailey MJ, Read DS, Anjum MF,
Walker AS, Stoesser N, On Behalf Of The Rehab Consortium: Comparison of long-read sequencing
technologies in the hybrid assembly of complex bacterial genomes. . 2019; (9). Microb Genom 5 PubMed

 | Abstract Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?

1

2

1

Page 15 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-8370-0891
https://ieeexplore.ieee.org/document/8868909
http://www.ncbi.nlm.nih.gov/pubmed/31483244
http://www.ncbi.nlm.nih.gov/pubmed/31483244
https://doi.org/10.1099/mgen.0.000294

1.

2.

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Sequence alignment, de novo assembly, algorithms, machine learning

We confirm that we have read this submission and believe that we have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

 09 January 2020Reviewer Report

https://doi.org/10.5256/f1000research.24010.r58115

© 2020 Salzberg S et al. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution License

work is properly cited.

 Aleksey Zimin
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA

 Steven L Salzberg
 Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore,
Maryland, USA
 Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore,
Maryland, USA
 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore,
Maryland, USA

The report is clear and concise, easy to read, and the authors' conclusions are well supported by their
experimental results. The authors are to be commended for their unusual attention to reproducibility, and
for making all data easily available.

We just have a couple of minor suggestions:
Reliability vs. robustness: the authors summarized their findings using the terms "reliability"
for performance on real data sets, and "robustness" on simulated data sets. These terms might be
a bit misleading to some readers. Reliability can be defined as consistent performance with good
results, and robustness (in contrast) might be the ability to perform well under adverse
conditions. The real data sets do vary in quality and coverage, although not as much as the
simulated data. But it seems that both reliability and robustness can be evaluated on both types of
data. If they want to use the term "robustness," perhaps they could also plot the number of
successful assemblies (or contiguity) vs the read error rate for each assembler. In this respect, a
high error rate might be considered an adverse condition.

Figure 1 is excellent, and provides a really nice summary of the performance on simulated data.

1

2

3

Page 16 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

https://doi.org/10.5256/f1000research.24010.r58115
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2. Figure 1 is excellent, and provides a really nice summary of the performance on simulated data.
However, only 1 of the programs, Flye, failed due to running out of memory, which was limited to
64 GB of RAM. Flye was otherwise one of the best performers. RAM is fairly inexpensive today,
and it's not hard to find a server with >64 GB. The Figure doesn't show how much more memory
Flye would need, and it would be really helpful to know that. Would 128GB allow it to complete in
all cases? We suggest they run those failed assemblies on a larger-memory server and report what
was needed.
Another consideration here, though, is that depending on overcommit ratio and swap parameters,
processes may be killed or slowed down long before they reach the 64GB physical memory limit.
The impact of swap space on performance is an unknown here as well. For a clean evaluation,
they should be sure (and maybe they did this, we can't tell) that swap was disabled and that the
overcommit ratio was set to 97% to allow a process to use essentially all avaliable RAM. (There's
more information about memory overcommit settings) If swapping came into play on any ofhere
these jobs, then it would drastically increase runtime.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Genomics, computational biology

We confirm that we have read this submission and believe that we have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias

You can publish traditional articles, null/negative results, case reports, data notes and more

Page 17 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

http://engineering.pivotal.io/post/virtual_memory_settings_in_linux_-_the_problem_with_overcommit/

The peer review process is transparent and collaborative

Your article is indexed in PubMed after passing peer review

Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com

Page 18 of 18

F1000Research 2019, 8:2138 Last updated: 30 JAN 2020

