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Abstract
Data sets from long-read sequencing platforms (OxfordBackground: 

Nanopore Technologies and Pacific Biosciences) allow for most prokaryote
genomes to be completely assembled – one contig per chromosome or
plasmid. However, the high per-read error rate of long-read sequencing
necessitates different approaches to assembly than those used for
short-read sequencing. Multiple assembly tools (assemblers) exist, which
use a variety of algorithms for long-read assembly.

We used 500 simulated read sets and 120 real read sets toMethods: 
assess the performance of six long-read assemblers (Canu, Flye,
Miniasm/Minipolish, Raven, Redbean and Shasta) across a wide variety of
genomes and read parameters. Assemblies were assessed on their
structural accuracy/completeness, sequence identity, contig circularisation
and computational resources used.

Canu v1.9 produced moderately reliable assemblies but had theResults: 
longest runtimes of all assemblers tested. Flye v2.6 was more reliable and
did particularly well with plasmid assembly. Miniasm/Minipolish v0.3 was
the only assembler which consistently produced clean contig
circularisation. Raven v0.0.5 was the most reliable for chromosome
assembly, though it did not perform well on small plasmids and had
circularisation issues. Redbean v2.5 and Shasta v0.3.0 were
computationally efficient but more likely to produce incomplete assemblies.

Of the assemblers tested, Flye, Miniasm/Minipolish andConclusions: 
Raven performed best overall. However, no single tool performed well on
all metrics, highlighting the need for continued development on long-read
assembly algorithms.
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Introduction
Genome assembly is the computational process of using  
shotgun whole-genome sequencing data (reads) to reconstruct 
an organism’s true genomic sequence to the greatest extent  
possible1. Software tools which carry out assembly (assem-
blers) take sequencing reads as input and produce reconstructed  
contiguous pieces of the genome (contigs) as output.

If a genome contains repetitive sequences (repeats) which are 
longer than the sequencing reads, then the underlying genome  
cannot be fully reconstructed without additional information; 
i.e. if no read spans a repeat in the genome, then that repeat  
cannot be resolved, limiting contig length2. Short-read sequenc-
ing platforms (e.g. those made by Illumina) produce reads  
hundreds of bases in length and tend to result in shorter contigs. In 
contrast, long-read platforms from Oxford Nanopore Technologies  
(ONT) and Pacific Biosciences (PacBio) can generate reads tens 
of thousands of bases in length which span more repeats and thus 
result in longer contigs3.

Prokaryote genomes are simpler than eukaryote genomes in 
a few aspects relevant to assembly. First, they are smaller, 
most being less than 10 Mbp in size4. Second, they contain less  
repetitive content and their longest repeat sequences are often 
less than 10 kbp in length5. Third, prokaryote genomes are 
haploid and thus avoid assembly-related complications from  
diploidy/polyploidy6. These facts make prokaryote genome  
assembly a more tractable problem than eukaryote genome  
assembly, and in most cases a long-read set of sufficient depth 
should contain enough information to generate a complete  
assembly – each replicon in the genome being fully assembled 
into a single contig7. Prokaryote genomes also have two other  
features relevant to assembly: they may contain plasmids that  
differ from the chromosome in copy number and therefore 
read depth, and most prokaryote replicons are circular with no  
defined start/end point.

In this study, we examine the performance of various long-read 
assemblers in the context of prokaryote whole genomes. We  
assessed each tool on its ability to generate complete assemblies 
using both simulated and real read sets. We also investigated 
prokaryote-specific aspects of assembly, such as performance on 
plasmids and the circularisation of contigs.

Methods
Simulated read sets
Simulated read sets (read sequences generated in silico from 
reference genomes) offer some advantages over real read sets  
when assessing assemblers. They allow for a confident ground  
truth – i.e. the true underlying genome is known with certainty. 
They allow for large sample sizes, in practice limited only by 
computational resources. Also, a variety of genomes and read 
set parameters can be used to examine assembler performance 
over a wide range of scenarios. For this study, we simulated  
500 read sets to test the assemblers, each using different param-
eters and a different prokaryote genome.

To select reference genomes for the simulated read sets, we  
first downloaded all bacterial and archaeal RefSeq genomes using 

ncbi-genome-download v0.2.10 (14333 genomes at the time 
of download)8. We then performed some quality control steps:  
excluding genomes with a >10 Mbp chromosome, a <500 kbp 
chromosome, any >300 kbp plasmid, any plasmid >25% of the  
chromosome size or more than 9 plasmids (Extended data,  
Figure S1)9. We then ran Assembly Dereplicator v0.1.0 with a 
threshold of 0.1, resulting in 3153 unique genomes10.

To produce a final set of 500 genomes with 500 plasmids, 
we randomly selected 250 genomes from those containing  
plasmids, repeating this selection until the genomes contained  
exactly 500 plasmids. We then added 250 genomes randomly 
selected from those without plasmids. Any ambiguous bases in 
the assemblies were replaced with ‘A’ to ensure that sequences  
contained only the four canonical DNA bases.

We then used Badread v0.1.5 to generate one read set for each  
input genome11. The parameters for each set (controlling read  
depth, length, identity and errors) were randomly chosen to  
ensure a large amount of variability (Extended data, Figure S2)9. 
Note that not all of these read sets were sufficient to reconstruct 
the original genome (due to low depth or short read length), so  
even an ideal assembler would be incapable of completing an 
assembly for all 500 test sets.

For genomes containing plasmids, the read depth of plasmids 
relative to the chromosome was also set randomly, with limits  
based on the plasmid size (Extended data, Figure S3)9. Large  
plasmids were simulated at depths close to that of the  
chromosome while small plasmids spanned a wider range of 
depth. This was done to model the observed pattern that small  
plasmids often have a high per-cell copy number (i.e. may be 
high read depth) but can be biased against in library prepara-
tions (i.e. may be low read depth)12. All replicons (chromosomes 
and plasmids) were treated as circular sequences in Badread, so 
the simulated read sets do not test assembler performance on  
linear sequences.

Real read sets
Despite the advantages of simulated read sets, they can be  
unrealistic because read simulation tools (such as Badread) may 
not accurately model all relevant features: error profiles, read  
lengths, quality scores, etc. Real read sets are therefore also  
valuable when assessing assemblers. The challenge with real 
read sets is obtaining a ground truth genome against which  
assemblies can be checked. Since many reference genome  
sequences are produced using long-read assemblies, there 
is the risk of circular reasoning – if we use an assembly as our 
ground truth reference, our results will be biased in favour of  
whichever assembler produced the reference.

To avoid this issue, we used the datasets produced in a recent 
study comparing ONT and PacBio data which also included  
Illumina reads for each isolate13. For each of the 20 bacterial  
isolates in that study, we conducted two hybrid assemblies  
using Unicycler v0.4.7: Illumina+ONT and Illumina+PacBio14. 
Unicycler works by first generating an assembly graph using the  
Illumina reads, then using long-read alignments to scaffold the 
graph’s contigs into a completed genome – a distinct approach 
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from any of the long-read assemblers tested in this study. 
We ran the assemblies using Unicycler’s --no_miniasm 
option so it skipped its Miniasm-based step which could 
bias the results in favour of Miniasm/Minipolish. We then  
excluded any isolate where either hybrid assembly failed to reach  
completion or where there were structural differences between 
the two assemblies as determined by a Minimap2 alignment15.  
This left six isolates for inclusion.

The ONT and PacBio read sets for these isolates were quite  
deep (156× to 535×) so to increase the number of assembly  
tests, we produced ten random read subsets of each, ranging 
from 40× to 100× read depth. This resulted in 120 total read  
sets for testing the assemblers (6 genomes × 2 platforms × 10 read  
subsets). The Illumina+ONT hybrid assembly was used as  
ground truth for each isolate.

All real and simulated read sets16 and reference genomes17 are  
available as Underlying data.

Assemblers tested
We assembled each of the read sets using the current versions 
of six long-read assemblers: Canu v1.9, Flye v2.6, Miniasm/ 
Minipolish v0.3, Raven v0.0.5, Redbean v2.5 and Shasta v0.3.0.  
Default parameters were used except where stated, and exact 
commands for each tool are given in the Extended data,  
Figure S49. Assemblers that only work on PacBio reads (i.e. not 
on ONT reads) were excluded (HGAP18, FALCON19, HINGE20  
and Dazzler21), as were hybrid assemblers which also require  
short read input (Unicycler14 and MaSuRCA22).

Canu has the longest history of all the assemblers tested, with 
its first release dating back to 2015. It performs assembly by 
first correcting reads, then trimming reads (removing adapters 
and breaking chimeras) and finally assembling reads into  
contigs23. Its assembly strategy uses a modified version of the  
string graph algorithm24, sometimes referred to as the overlap- 
layout-consensus (OLC) approach.

Flye takes a different approach to assembly: first combining  
reads into error-prone disjointigs, then collapsing repetitive 
sequences to make a repeat graph and finally resolving the 
graph’s repeats to make the final contigs25. Of particular note to  
prokaryote assemblies, Flye has options for recovery of small 
plasmids (--plasmids) and uneven depth of coverage  
(--meta), both of which we used in this analysis.

Miniasm builds a string graph from a set of read overlaps – i.e. 
it performs only the layout step of OLC. It does not perform  
read overlapping which must be done separately with Mini-
map2, and it does not have a consensus step, so its assembly 
error rates are comparable to raw read error rates. A separate  
polishing tool such as Racon is therefore required to achieve 
high sequence identity26. For this study, we developed a tool 
called Minipolish to simplify this process by conducting Racon  
polishing (two rounds by default) on a Miniasm assembly  
graph. To ensure clean circularisation of prokaryote replicons, 
circular contigs are ‘rotated’ (have their starting position  
adjusted) between rounds. Minipolish also comes with a script 

(miniasm_and_minipolish.sh) which carries out all 
assembly steps (Minimap2 overlapping, Miniasm assembly and 
Minipolish consensus) in a single command, and subsequent  
references to ‘Miniasm/Minipolish’ refer to this entire pipeline.

Raven (previously known as Ra) is another tool which takes 
an OLC approach to assembly27. Its overlapping step shares  
algorithms with Minimap2, and its consensus step is based on 
Racon, making it similar to Miniasm/Minipolish. It differs in its 
layout step which includes novel approaches to remove spurious 
overlaps from the graph, helping to improve assembly contiguity.

Redbean (previously known as Wtdbg2) uses an approach to  
long-read assembly called a fuzzy Bruijn graph28. This is  
modelled on the De Bruijn graph concept widely used for 
short-read assembly29 but modified to work with the inexact  
sequence matches present in noisy long reads.

Shasta is an assembler designed for computational efficiency30. 
To achieve this, much of its assembly pipeline is performed not 
directly on read sequences but rather on a reduced representa-
tion of marker k-mers. These markers are used to find overlaps 
and build an assembly graph from which a consensus sequence  
is derived.

Computational environment
All assemblies were run on Ubuntu 18.04 instances of Australia’s 
Nectar Research Cloud which contained 32 vCPUs and 64 GB  
of RAM (m3.xxlarge flavour). To guard against performance  
variation caused by vCPU overcommit, the assemblers were  
limited to 16 threads (half the number of available vCPUs) in  
their options. Any assembly which exceeded 24 hours of runtime  
or 64 GB of memory usage was terminated.

Assembly assessment
Our primary metric of assembly quality was contiguity, defined 
here as the longest single Minimap2 alignment between the  
assembly and the reference replicon, relative to the reference 
replicon length. Contiguity of exactly 100% indicates that the  
replicon was assembled completely with no missing or extra 
sequence (Extended data, Figure S5A)9. Contiguity of slightly 
less than 100% (e.g. 99.9%) indicates that the assembly was  
complete, but some bases were lost at the start/end of the  
contig (Extended data, Figure S5B)9. Contiguity of more than 
100% (e.g. 101%) indicates that the contig contains duplicated  
sequence via start-end overlap (Extended data, Figure S5C)9. 
Much lower contiguity (e.g. 70%) indicates that the assembly 
was not complete due to fragmentation (Extended data, Figure  
S5D)9, missing sequence (Extended data, Figure S5E)9 or  
misassembly (Extended data, Figure S5F)9. Contiguity values 
were determined by aligning the contigs to a tripled version of 
the reference replicon, necessary to ensure that contigs can fully 
align even with start-end overlap and regardless of their starting  
position relative to that of the linearised reference sequence 
(Extended data, Figure S6)9.

Contiguity values were determined for each replicon in the 
assemblies – e.g. if a genome contained two plasmids, then the  
assemblies of that genome have three contiguity values: one 
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for the chromosome and one for each plasmid. A status of  
‘fully complete’ was assigned to assemblies where all replicons 
(the  chromosome and any plasmids if present) achieved a  
contiguity of ≥99%. If an assembly had a chromosome with 
a contiguity of ≥99% but incomplete plasmids, it was given a  
status of ‘complete chromosome’. If the chromosome had a  
contiguity of <99%, the assembly was deemed ‘incomplete’. If 
the assembly was empty or missing (possibly due to the assembler 
prematurely terminating with an error), it was given a status 
of ‘empty’. If the assembly terminated due to exhausting the  
available RAM, it was given a status of ‘out of memory’.  
Computational metrics were also observed for each assembly: time 
to complete and maximum RAM usage.

Results and discussion
Figure 1 and Figure 2 summarise the assembly results for the 
simulated and real read sets, respectively. Full tabulated results  
can be found in the Extended data9. The assemblies, times and 
terminal outputs generated by each assembler are available as  
Underlying data31. 

Figure 1A/Figure 2A shows the proportion of read sets with  
each assembly status. For the real read sets, a higher proportion 
of completed assemblies indicates a more reliable assembler – 
one which is likely to make a completed assembly given a  
typical set of input reads. For the simulated read sets, a higher 
proportion of completed assemblies indicates a more robust  
assembler – one which is able to tolerate a wide range of input 
read parameters. Extended data, Figure S79 plots assembly conti-
guity against specific read set parameters to give a more detailed 
assessment of robustness. Plasmid assembly status, plotted 
with plasmid length and read depth, is shown in Extended data, 
Figure S8 and Figure S99 for the simulated and real read sets,  
respectively.

Figure 1B/Figure 2B shows the chromosome contiguity values 
for each assembly, focusing on the range near 100%. These 
plots show how well assemblers can circularise contigs 
– i.e. whether sequence is duplicated or missing at the contig  
start/end (Extended data, Figure S5)9. The closer contiguity 
is to 100% the better, with exactly 100% indicating perfect  
circularisation. Plasmid contiguity values are shown in Extended 
data, Figure S109.

Assembly identity (consensus identity) is a measure of the 
base-level accuracy of an assembled contig relative to the  
reference sequence (how few substitution and small indel errors 
are present) and is shown in Figure 1C/Figure 2C. The identity of  
assembled sequences is almost always higher than the identity 
of individual reads because errors can be ‘averaged out’ using 
read depth, producing more accurate consensus base calls.  
However, systematic read errors (e.g. mistakes in homopolymer 
length) can make perfect sequence identity difficult to achieve,  
regardless of assembly strategy32. 

Assembler resource usage is shown in terms of total runtime  
(Figure 1D/Figure 2D) and the maximum RAM usage during 
assembly (Figure 1E/Figure 2E).

Reliability
When considering only the chromosome, Raven was the most 
reliable assembler, closely followed by Flye – both were able  
to complete the chromosome in over three-quarters of the real 
read sets (Figure 2A). If plasmids are also considered, then 
Flye was the most reliable assembler. Miniasm/Minipolish and 
Canu were moderately reliable, completing over half of the 
real read set chromosomes. Redbean and Shasta were the least  
reliable and completed less than half of the chromosomes.

Robustness
Flye, Miniasm/Minipolish and Raven were the most robust  
assemblers, able to complete over half of the assemblies 
attempted with the simulated read sets (Figure 1A). Flye and  
Redbean performed best in cases of low read depth, able to 
complete assemblies down to ∼10× depth (Extended data,  
Figure S7A)9. Raven performed the best with low-identity 
read sets (Extended data, Figure S7B)9. The assemblers per-
formed similarly with regards to read length, except for Shasta  
which required longer reads (Extended data, Figure S7C)9. The  
assemblers were similarly unaffected by random reads, junk  
reads, chimeric reads or adapter sequences (Extended data,  
Figure S7D–F)9. Read glitches (local breaks in continuity) were  
well-tolerated by the assemblers except for Redbean and Shasta 
(Extended data, Figure S7G)9.

Identity
In our real read tests, Canu achieved high sequence identity 
on PacBio reads, Miniasm/Minipolish and Raven did well on  
ONT reads, and Flye did well on both platforms (Figure 2C). For 
each assembler, real PacBio reads resulted in higher identities  
than real ONT reads. For the simulated reads (which contain  
artificial error profiles), results were more erratic, with Canu,  
Miniasm/Minipolish and Raven performing best (Figure 1C).

The nature of read errors depends on the sequencing platform 
and basecalling software used, so these results may not hold 
true for all read sets. Post-assembly polishing tools (including  
Racon26, Nanopolish7, Medaka33 and Arrow34) are routinely used 
to improve the accuracy of long-read assemblies35, and identity  
can be further increased by polishing with Illumina reads where 
available (e.g. with Pilon36). Therefore, the sequence identity 
produced by the assembler itself is potentially unimportant for  
many users.

Resource usage
Canu was the slowest assembler tested on both real (Figure 2D) 
and simulated (Figure 1D) read sets, sometimes taking hours to  
complete. Its runtime was correlated with read accuracy and 
read set size, with low-accuracy and large read sets being more  
likely to result in a long runtime.

Flye was typically faster than Canu, taking less than 15 minutes 
for the real read sets and usually less than an hour for the  
simulated read sets. It sometimes took multiple hours to assem-
ble simulated read sets, and this was correlated with the amount  
of junk (low-complexity) reads, suggesting that removal of such 
reads via pre-assembly QC may be beneficial. Flye had the  
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Figure 1. Assembly results for the simulated read sets, which cover a wide variety of parameters for length, depth and quality. 
(A) Proportion of each possible assembly outcome. (B) Relative contiguity of the chromosome for each assembly, showing cleanliness of 
circularisation. (C) Sequence identity of each assembly’s longest alignment to the chromosome. (D) Total time taken (wall time) for each 
assembly. (E) Maximum RAM usage for each assembly. ‘Miniasm+’ here refers to the entire Miniasm/Minipolish assembly pipeline.
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Figure 2. Assembly results for the real read sets, half containing ONT MinION reads (circles) and half PacBio RSII reads (triangles).  
(A) Proportion of each possible assembly outcome. (B) Relative contiguity of the chromosome for each assembly, showing cleanliness of 
circularisation. (C) Sequence identity of each assembly’s longest alignment to the chromosome. (D) Total time taken (wall time) for each assembly.  
(E) Maximum RAM usage for each assembly. ‘Miniasm+’ here refers to the entire Miniasm/Minipolish assembly pipeline.
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highest RAM usage of the tested assemblers and occasionally 
hit our 64 GB limit for simulated read sets. Its RAM usage was  
correlated with read N50 and read set size, with long and large  
read sets being more likely to result in high RAM usage.

Miniasm/Minipolish, Raven and Redbean were comparable in  
performance, typically completing assemblies in less than  
10 minutes and with less than 16 GB of RAM. While not 
tested in this study, Racon (which is used in Minipolish) and  
Raven can be run with GPU acceleration to further improve 
speed performance. Shasta was the fastest assembler and had  
the lowest memory usage.

Circularisation
Of all assemblers tested, Miniasm/Minipolish was the only one 
to regularly achieve exact circularisation (contiguity=100%), due 
to Minipolish’s polishing pipeline (Figure 1B/Figure 2B). Flye  
often excluded a small amount of sequence (tens of bases) from 
the start/end of circular contigs (contiguity <100%), and Raven  
typically excluded moderate amounts of sequence (hundreds of 
bases). Canu’s contiguities usually exceeded 100%, indicating 
a large amount (thousands of bases) of start/end overlap. The  
amount of overlap in a Canu assembly was correlated with 
the read N50 length (Extended data, Figure S7C)9. Redbean 
and Shasta were both erratic in their circularisation, often  
producing some sequence duplication (contiguity >100%) but  
occasionally dropping sequence (contiguity <100%).

In addition to cleanly circularising contig sequences, it is  
valuable for a prokaryote genome assembler to clearly distin-
guish between circular and linear contigs. This can provide 
users with a clue as to whether or not the genome was  
assembled to completion. Flye, Miniasm/Minipolish and Shasta 
produce graph files of their final assembly which can indicate 
circularity. Canu indicates circularity via the ‘suggestCircular’  
text in its contig headers. Raven and Redbean do not signal to  
users whether a contig is circular.

Plasmids
Canu and Flye were the two assemblers most able to assemble 
plasmids at a broad range of size and depth (Extended data,  
Figures S8, S9)9. Miniasm/Minipolish also performed well,  
though it failed to assemble plasmids if they were very small  
or had a very high read depth. Raven was able to assemble most  
large plasmids but not small plasmids. Redbean and Shasta  
were least successful at plasmid assembly.

Circularisation of plasmids followed the same pattern as for  
chromosomes, with only Miniasm/Minipolish consistently 
achieving clean circularisation (Extended data, Figure S10)9. For  
smaller plasmids, start/end overlap could sometimes result in  
contiguities of ∼200% – i.e. the plasmid sequence was dupli-
cated in a single contig. This was most common with Canu,  
though it occurred with other assemblers as well.

Ease of use
All assemblers tested were relatively easy to use, either  
running with a single command (Canu, Flye, Raven and Shasta)  

or providing a convenience script to bundle the commands  
together (Miniasm/Minipolish and Redbean). All were able to 
take long reads in FASTQ format as input, with the exception of 
Shasta which required reads to first be converted to FASTA for-
mat (Extended data, Figure S4)9. We encountered no difficulty 
installing any of the tools by following the instructions  
provided.

Some of the assemblers needed a predicted genome size as input 
(Canu, Flye and Redbean) while others (Miniasm/Minipolish, 
Raven and Shasta) did not. This requirement could be a nui-
sance when assembling unknown isolates, as it may be hard to  
specify a genome size before the species is known.

Configurability
While we ran our assemblies using default and/or recom-
mended commands (Extended data, Figure S4)9, some of the  
assemblers have parameters which can be used to alter their 
behaviour. Raven was the least configurable assembler tested,  
with few options available to users. Flye offers some parameters, 
including overlap and coverage thresholds. Miniasm/Minipolish, 
Redbean and Shasta all offer more options, and Canu is the most 
configurable with hundreds of adjustable parameters. Many of 
the available parameters are arcane (e.g. Miniasm’s ‘max and min  
overlap drop ratio’ or Shasta’s ‘pruneIterationCount’), and 
only experienced power users are likely to adjust them – most 
will likely stick with default settings or only adjust easier-to- 
understand options. However, the presence of low-level param-
eters provides an opportunity to experiment and gain greater  
control over assemblies and are therefore appreciated even when 
unlikely to be used.

Another aspect worth noting is whether an assembler pro-
duces useful files other than its final assembly. Canu stands out 
in this respect, as it creates corrected and trimmed reads in its  
pipeline which have low error rates and are mostly free of  
adapters and chimeric sequences. Canu can therefore be consid-
ered not just an assembler but also a long-read correction tool  
suitable for use in other analyses.

Assembler summaries
Canu v1.9 was the slowest assembler and not the most reliable 
or robust. Its strength is in its configurability, so power users  
who are willing to learn Canu’s nuances may find that they can 
tune it to fit their needs. However, it is probably not the best  
choice for users wanting a quick and simple prokaryote genome 
assembly.

Flye v2.6 was an overall strong performer in our tests:  
reliable, robust and good with plasmids. However, it requires 
a genome size parameter, tended to delete some sequence  
(usually on the order of tens of bases) when circularising con-
tigs and could be excessive in its RAM usage when assembling  
simulated read sets.

Miniasm/Minipolish v0.3 was not the most reliable assembler 
but was fairly robust to read set parameters. Its main strength is  
that it was the only assembler to consistently achieve perfect  
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contig circularisation (as this is a specific goal of its polishing  
step). Also, it does not require a genome size parameter to run, 
which makes it easier to run than Canu, Flye or Redbean for 
unknown genomes.

Raven v0.0.5 was the most reliable and robust assembler for  
chromosome assembly. However, it suffered from worse circu-
larisation problems than Flye (often deleting hundreds of bases) 
and wasn’t good with small plasmids. Like Miniasm/Minipolish,  
it does not require a genome size parameter.

Redbean v2.5 assemblies tended to have glitches in the  
sequence which caused breaks in contiguity, making it perform 
poorly in both reliability and robustness. This, combined with 
its erratic circularisation performance and requirement to  
specify genome size, make it a less-than ideal choice for long-read 
prokaryote read sets.

Shasta v0.3.0 was the fastest assembler tested and used the 
least RAM, but it had the worst reliability and robustness. It is  
therefore more suited to assembly of large genomes in resource-
limited settings (the use case for which it was designed) than  
it is for prokaryote genome assembly.

Conclusions
Each of the different assemblers has pros and cons, and while 
no single assembler emerged as an ideal choice for prokaryote  
genome long-read assembly, the overall best performers were 
Flye, Miniasm/Minipolish and Raven. Flye was very reliable,  
especially for plasmid assembly, and was the best perform-
ing assembler at low read depths. Miniasm/Minipolish was the 
only assembler to reliably achieve clean contig circularisation.  
Raven was the most reliable for chromosome assembly and the 
most tolerant of low-identity read sets.

For users looking to achieve an optimal assembly, we recom-
mend trying multiple different tools and comparing the results. 
This will provide the opportunity for validation – confidence in an  
assembly is greater when it is in agreement with other independent  
assemblies. It also offers a chance to detect and repair  
circularisation issues, as different assemblers are likely to give  
different contig start/end positions for a circular replicon.

An ideal prokaryotic long-read assembler would reliably complete  
assemblies, be robust against read set problems, be easy to 
use, have low computational requirements, cleanly circularise  
contigs and assemble plasmids of any size. The importance 
of long-read assembly will continue to grow as long-read 
sequencing becomes more commonplace in microbial genomics, 
and so development of assemblers towards this ideal is crucial.

Data availability
Underlying data
Figshare: Read sets. https://doi.org/10.26180/5df6f5d06cf0416. 

These files contain the input read sets (both simulated and real)  
for assembly.

Figshare: Reference genomes. https://doi.org/10.26180/
5df6e99ff3eed17. 

This file contains the reference genomes against which the  
long-read assemblies were compared. For the simulated read sets, 
these genomes were the source sequence from which the reads  
were generated.

Figshare: Assemblies. https://doi.org/10.26180/5df6e2864a65831. 

These files contain assemblies (in FASTA format), times and  
terminal outputs for each of the assemblers.

Extended data
Zenodo: Long-read-assembler-comparison. https://doi.org/10.5281/
zenodo.27024429.

This project contains the following extended data:
•    �Results (tables of results data, (including information on 

eachreference genome, read set parameters and metrics 
foreach assembly).

•    �Scripts (scripts used to generate plots).

•    �Figure S1. Distributions of chromosome sizes (A), plasmid 
sizes (B) and per-genome plasmid counts (C) for the  
reference genomes used to make the simulated read sets.

•    �Figure S2. Badread parameter histograms for the simu-
lated read sets. (A) Mean read depths were sampled from 
a uniform distribution ranging from 5× to 200×. (B) mean 
read lengths were sampled from a uniform distribution  
ranging from 100 to 20000 bp. C: read length stand-
ard deviations were sampled from a uniform distribution 
ranging from 100 to twice that set’s mean length (up to  
40000 bp). D: mean read identities were sampled from a 
uniform distribution ranging from 80% to 99%. (E) Max 
read identities were sampled from a uniform distribution 
ranging from that set’s mean identity plus 1% to 100%. 
(F) Read identity standard deviations were sampled from 
a uniform distribution ranging from 1% to the max iden-
tity minus the mean identity. (G, H and I) Junk, random 
and chimera rates were all sampled from an exponential  
distribution with a mean of 2%. (J) Glitch sizes/skips 
were sampled from a uniform distribution ranging 
from 0 to 100. (K) Glitch rates for each set were cal-
culated from the size/skip according to this formula: 
100000/1.6986s/10. (L) Adapter lengths were sampled  
from an exponential distribution with a mean of 50.

•    �Figure S3. Top: the target simulated depth of each replicon 
relative to the chromosome. The smaller the plasmid, the 
wider the range of possible depths. Bottom: the absolute 
read set of each replicon after read simulation.

•    �Figure S4. Commands used for each of the six assemblers 
tested.

•    �Figure S5. Possible states for the assembly of a circular  
replicon. Reference sequences are shown in the inner  
circles in black and aligned contig sequences are shown  
in the outer circles in colour (red at the contig start to  
violet at the contig end). (A) Complete assembly with  
perfect circularisation. (B) Complete assembly but 
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with missing bases leading to a gapped circularisation.  
(C) Complete assembly but with duplicated bases leading 
to overlapping circularisation. (D) Incomplete assembly 
due to fragmentation (multiple contigs per replicon). 
(E) Incomplete assembly due to missing sequence.  
(F) Incomplete assembly due to misassembly (noncontigu-
ous sequence in the contig).

•    �Figure S6. Reference triplication for assembly assessment. 
(A) Due to the ambiguous starting position of a circular 
replicon, a completely-assembled contig will typically 
not align to the reference in a single unbroken alignment.  
(B) Doubling the reference sequence will allow for 
a single alignment, regardless of starting position.  
(C) However, if the contig contains start/end overlap  
(i.e. contiguity >100%) then even a doubled refer-
ence may not be sufficient to achieve a single alignment,  
depending on the starting position. (D) A tripled reference 
allows for an unbroken alignment, regardless of starting 
position, even in cases of >100% contiguity.

•    �Figure S7. Contiguity of the simulated read set assem-
blies plotted against Badread parameters for each of the  
tested assemblers. These plots show how well the assem-
blers tolerate different problems in the read sets. (A) Mean 
read depth (higher is better). (B) Max read identity (higher 
is better). (C) N50 read length (higher is better). (D) The 
sum of random read rate and junk read rate (lower is  
better). (E) Chimeric read rate (lower is better). (F) Adapter 
sequence length (lower is better). (G) Glitch size/skip  
(lower is better).

•    �Figure S8. Plasmid completion for the simulated read set  
assemblies for each of the tested assemblers, plotted 
with plasmid length and read depth. Solid dots indicate  
completely assembled plasmids (contiguity ≥99%) while 
open dots indicate incomplete plasmids (contiguity 
<99%). Percentages in the plot titles give the proportion  
of plasmids which were completely assembled.

•    �Figure S9. Plasmid completion for the real read set 
assemblies for each of the tested assemblers, plotted 
with plasmid length and read depth. Solid dots indicate  
completely assembled plasmids (contiguity ≥99%) while 
open dots indicate incomplete plasmids (contiguity <99%). 
Percentages in the plot titles give the proportion of  
plasmids which were completely assembled.

•    �Figure S10. The relative contiguity of the plasmids for 
each real read set assembly (A) and simulated read set  
assembly (B).

Extended data are also available on GitHub.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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complexity) as well as different sequencing parameters (depth, read length, sequencing artifacts etc). In
addition, the authors test the assemblers on 160 real PacBio and Oxford Nanopore datasets. For each
benchmarked algorithm, Wick & Holt summarize the important assembly metrics, such as contiguity or
base-level accuracy (measured against the corresponding references), as well as overall user
experience.

The manuscript is well-written, and the study design is sound. The presented benchmarks will be a
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1.  

2.  

3.  

4.  

5.  

The manuscript is well-written, and the study design is sound. The presented benchmarks will be a
valuable resource for the long-read genomics community, both for developers and users. Importantly, the
authors have made all data sets and benchmarking pipelines freely available. I only have the following
minor suggestions:

In my view, the evaluation pipeline designed by the authors could be highlighted more in the main
text. E.g. how can a developer test a different assembler using the described benchmarks? Is it
quick to reproduce? What would be the resource requirements?
 
It would be useful to compare the pros and cons of this work with the other assembly evaluation
methods (such as QUAST) in a short discussion.
 
On Figure 2, triangles and circles are somewhat difficult to distinguish. Is there a way to better
visually separate PacBio and ONT data points (maybe color tones or background pattern)?
 
For the sake of completeness, it is worth mentioning the minimap2 alignment identity threshold that
is used for contiguity evaluation.
 
DOI links to read sets and generated assemblies seem to have an unneeded space that break the
URLs.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 M.K. is a developer of Flye, which is benchmarked in this study among the otherCompeting Interests:
assemblers.

Reviewer Expertise: Bioinformatics, genomics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

 16 January 2020Reviewer Report
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© 2020 Šikić M et al. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution License

work is properly cited.

 Robert Vaser
Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and
Computing, University of Zagreb, Zagreb, Croatia

   Mile Šikić
 Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
 Genome Institute of Singapore, A*STAR, Singapore

The authors present a benchmark regarding prokaryotic organisms for several state-of-the-art long-read
assemblers. The comparison includes both third generation sequencing technologies with real and
simulated data, assessing various assembly traits with the conclusion that no assembler is perfect. The
manuscript is well written, the figures look neat and all the data is freely available online.

Minor comments:
Generating the assembly with a hybrid approach which is different from all benchmarked
assemblers is a good approach, but is there a possibility to analyse in details datasets which have
reference genomes assembled with Sanger sequencing (such as CFT073 and MGH78578
datasets used in  )?De Maio N, Shaw LP, Hubbard A, et al.
 
As minipolish is a new pipeline introduced in this paper, I would suggest describing it a bit more in
detail.
 
Ra assembler has been published as a conference proceedings  .here

References
1. De Maio N, Shaw LP, Hubbard A, George S, Sanderson ND, Swann J, Wick R, AbuOun M,
Stubberfield E, Hoosdally SJ, Crook DW, Peto TEA, Sheppard AE, Bailey MJ, Read DS, Anjum MF,
Walker AS, Stoesser N, On Behalf Of The Rehab Consortium: Comparison of long-read sequencing
technologies in the hybrid assembly of complex bacterial genomes. . 2019;   (9). Microb Genom 5 PubMed

 |   Abstract Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
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Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

 No competing interests were disclosed.Competing Interests:

Reviewer Expertise: Sequence alignment, de novo assembly, algorithms, machine learning

We confirm that we have read this submission and believe that we have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.
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© 2020 Salzberg S et al. This is an open access peer review report distributed under the terms of the Creative Commons
, which permits unrestricted use, distribution, and reproduction in any medium, provided the originalAttribution License
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 Aleksey Zimin
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA

 Steven L Salzberg
 Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore,
Maryland, USA
 Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore,
Maryland, USA
 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore,
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The report is clear and concise, easy to read, and the authors' conclusions are well supported by their
experimental results. The authors are to be commended for their unusual attention to reproducibility, and
for making all data easily available.

We just have a couple of minor suggestions:
Reliability vs. robustness: the authors summarized their findings using the terms "reliability"
for performance on real data sets, and "robustness" on simulated data sets. These terms might be
a bit misleading to some readers. Reliability can be defined as consistent performance with good
results, and robustness (in contrast) might be the ability to perform well under adverse
conditions. The real data sets do vary in quality and coverage, although not as much as the
simulated data. But it seems that both reliability and robustness can be evaluated on both types of
data. If they want to use the term "robustness," perhaps they could also plot the number of
successful assemblies (or contiguity) vs the read error rate for each assembler. In this respect, a
high error rate might be considered an adverse condition.
 

Figure 1 is excellent, and provides a really nice summary of the performance on simulated data.
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2.  Figure 1 is excellent, and provides a really nice summary of the performance on simulated data.
However, only 1 of the programs, Flye, failed due to running out of memory, which was limited to
64 GB of RAM. Flye was otherwise one of the best performers. RAM is fairly inexpensive today,
and it's not hard to find a server with >64 GB. The Figure doesn't show how much more memory
Flye would need, and it would be really helpful to know that. Would 128GB allow it to complete in
all cases? We suggest they run those failed assemblies on a larger-memory server and report what
was needed.
Another consideration here, though, is that depending on overcommit ratio and swap parameters,
processes may be killed or slowed down long before they reach the 64GB physical memory limit.
The impact of swap space on performance is an unknown here as well. For a clean evaluation,
they should be sure (and maybe they did this, we can't tell) that swap was disabled and that the
overcommit ratio was set to 97% to allow a process to use essentially all avaliable RAM.  (There's
more information about memory overcommit settings  ) If swapping came into play on any ofhere
these jobs, then it would drastically increase runtime.
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