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Abstract 

The analyses contained herein focus on making comparisons between model 

inferences obtained using different scales of pathogen identification, with a particular 

focus on respiratory syncytial virus (RSV).  A significant proportion of lower respiratory 

tract infections in children has been attributed to infection by RSV and as such, there 

has been global interest in understanding its transmission characteristics in order to 

plan for effective control. Mathematical models have often been used to explore 

potential mechanisms that drive the patterns observed in data collected at different 

scales. Several models have been used to explore how immunity to RSV is acquired 

and maintained, vaccination strategies and potential drivers of seasonality. However, 

most of these models do not make a distinction between the two antigenically and 

genetically distinct RSV groups (RSV A and RSV B), neither do they consider its 

ecological environment, in particular, potential interactions between RSV and other 

viral pathogens. This thesis therefore presents work done aimed at understanding the 

transmission characteristics of viral respiratory pathogens spreading in a group of 

households using a dynamic model of transmission 

 

The data analysed is cohort data collected between December 2009 and June 2010 

from 493 individual distributed across 47 households from a rural coastal community 

in Kenya. Individuals in the study had nasopharyngeal swab�samples collected twice 

weekly irrespective of symptom status. Infecting viral pathogens were identified using 

RT-PCR resulting in the identification of 4 main pathogens: RSV, human coronavirus, 

rhinovirus and adenovirus. RSV and coronavirus were further classified according to 

genetically distinct subgroups. Some of the RSV samples were sequenced to obtain 

whole genome sequences (WGS) and further classified into genetic clades/clusters.  

 

I first conducted a review of methods to identify the best way to integrate social-

temporal data and WGS genetic data into a single modelling framework for RSV. Given 

that the social-temporal data and genetic data were available at different sampling 

densities, I decided to use a model that focused on the data with the highest density. 

The results in this thesis are thus presented in three main chapters; the first focuses on 

analysing social-temporal shedding patterns of RSV identified at the group level (i.e. 
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distinguish between RSV A and RSV B); the second incorporates the available genetic 

data into the model used to analyse the social-temporal data (i.e. separating RSV-A 

into 5 clusters, and RSV-B into 7 clusters); the third is an analysis of the interaction of 

two pathogens, RSV and coronavirus, identified at two different scales.  

 

One of the main findings in this thesis is that the household setting plays an important 

role in the spread of RSV, a finding that is made clearer with added detail on pathogen 

type. In the case of the data analysed here, and the social structuring from which it 

was collected, RSV clades appeared to mimic household structure as such 

identification at this level did not drastically change the transmission characteristic 

observed with identification at the group level. However, the combination of 

epidemiological and genetic data elucidated transmission chains within the household 

enabling the identification of the sources of infant RSV infections. For this particular 

study, it was inferred that the sources of infant RSV infections were both in the same 

household as the infant and from external sources. Where infant infections occurred in 

the household, the source of infection was often a child between the ages of 2-13 

years. It was inferred that previous infection with one RSV group type reduced 

susceptibility to re-infection by heterologous group type within the same epidemic. 

Interactions were also observed between RSV and human coronavirus groups. In 

particular, previous infection with RSV B was estimated to increase susceptibility to 

corona OC43 by 81% (95% CrI: 40%, 134%). Detailed data of infection events in 

individual hosts can provide a wealth of knowledge. The inferences made from this 

study should be explored at larger spatial and temporal scales to determine the 

population level impact, and hence public-health significance, of pathogen 

interactions, whether these interactions are between strains of the same pathogen of 

between different pathogens. In planning for, and assessing the impact of, an 

intervention against a particular pathogen, investigators should not ignore the pre-

existing ecological balance and should make efforts to understand how this will be 

disrupted by an intervention against one or more pathogens.  
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1. Introduction 

1.1. RSV disease burden and epidemiology 

The continued identification of respiratory syncytial virus (RSV) as a major cause of 

acute lower respiratory infection (ALRI) is of global concern. In 2005, an estimated 33.8 

million ALRIs in children less than 5 years of age were due to RSV, resulting in 3.4 

million hospitalizations1. Ten years on, and the estimated ALRI burden due to RSV had 

not changed; 33.1 million cases were estimated to arise from an RSV infection 

resulting in 118,200 (94,600-149,400) deaths. Over 90% of the estimated RSV burden 

was carried by developing countries. 2. A recent study across sites in 7 low-income and 

low-middle-income countries looking into the aetiology of severe and very severe 

pneumonia found that RSV has the largest attributable fraction of any single pathogen, 

including bacterial pathogens3. Infants below 6 months of age experience the most 

severe disease4. Increasingly, RSV is also being identified as a disease causing pathogen 

in the elderly, with the fraction of disease due to RSV being comparable to that due to 

non-pandemic influenza5. Though studies vary in their definition of lower respiratory 

illness, this does not alter the fact that RSV has a key role to play.  

 

Individuals are repeatedly infected with RSV throughout their lives, however the risk of 

disease decreases with age, possibly the result of a combination of physiology 

(increase in airway size) and immunology (immunological maturity and past 

exposure)6,7. Immunity to RSV infection is evidently partial and transient6,8,9. Primary 

infection occurs early in life, and most children will have experienced at least one RSV 

infection by the age of two years10–13. Children are usually born with maternally 

acquired RSV specific antibodies. Though these wane quickly, high levels have been 

associated with reduced risk of severe disease in the first 3-6 months of life10,14 . 

However, the protective antibody threshold remains unclear15 and given that infection 

still occurs in the 3-6 month age group, the protective effect of maternally acquired 

antibodies is likely partial and the exact mechanisms of action are yet to be 

understood14. Age is not only a factor determining the severity of RSV-related disease, 

it has also been associated with duration of shedding (younger children have longer 

durations)16, and household/ family studies have found that for an infant, having an 

older sibling of school-going age increases the risk of infection 17–20 
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Respiratory syncytial virus is highly transmissible, evident by its rapid spread in close 

contact settings21–23, but relative to viruses like non-pandemic influenza A, it is less 

invasive at a cellular level 24. A large proportion of RSV infections are asymptomatic25. 

Mild cases presenting with cold- like symptoms tend to resolve themselves within 2 

weeks. Severe cases that require hospitalization receive supportive therapy in the form 

of administration of supplementary oxygen, mechanical ventilation and fluid 

replacement26. Though a clear association has been observed between decreasing age 

and increased disease severity, RSV pathogenicity is likely to be multifactorial, 

involving a combination of viral and host factors that contribute to a range of infection 

presentations even within hosts of the same age27. 

 

The RSV genome is about 15000 bases long consisting of 10 genes coding for 11 

proteins. Of the three surface proteins, it is only the fusion (F) and attachment (G) 

glycoprotein that have been found to elicit protective neutralizing antibodies28. 

Respiratory syncytial virus can be categorized into two antigenically and genetically 

distinct groups, RSV A and RSV B. The two groups often co-circulate but RSV A has 

been observed to dominate a majority of outbreaks29–31. Within each group are genetic 

subgroups that are continually replaced over time29,32,33. The clustering pattern of RSV 

sequences in the long term has been found to be more temporal than geographical34–36. 

 

The spread of RSV occurs in seasonal patterns. In the temperate regions, seasonality is 

thought to be driven by low winter temperatures, in the tropics however, the drivers 

of seasonality and less well defined37–39. Given the ubiquitous nature of RSV, it is not 

uncommon to find other viral pathogens in circulation during an RSV season. 

Adenovirus and rhinovirus, which tend to be more year-round pathogens than 

seasonal, are frequently identified either to co-circulate or co-infect with RSV40–45.  

Influenza, human coronaviruses (HCoVs) and human metapneumovirus (HMPV), all of 

which have epidemic patterns of spread, have been observed to have overlapping 

epidemic timings with RSV in some settings37,41,46–50. Influenza is more frequently 

observed with RSV in temperate regions and less so in the tropics 37,43,44,51,52. There is 

evidence of interactions between RSV and other pathogens. At a cellular level, 

facilitative interactions have been demonstrated between RSV and bacterial 
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pathogens53–56 while a competitive interaction has been demonstrated between RSV 

and influenza24,57. At a host level, these interactions have sometimes been associated 

with increased disease severity or longer duration of hospital stay45,47,58–64. In a case-

control study that looked at the effect of therapeutic measures against RSV, it was 

found that there was no significant difference in the rate of occurrence of respiratory 

illness between the treatment and placebo group, however, within the placebo group, 

co-infections were more common than RSV infections65. This points to a possible 

competitive interaction between RSV and other viruses that would result in pathogen 

replacement once an RSV vaccine is in effect. How cellular and host level interaction 

then scale up to population level dynamics is understudied, a situation which could be 

remedied by the use of mathematical models informed by experimental and 

epidemiological studies66,67. Pathogen interactions, whether it is interactions between 

different strains of the same pathogen or between different pathogens, that have a 

population level impact on transmission dynamics, could also affect the effectiveness 

of vaccination strategies. The pneumococcal conjugate vaccine (PCV) has had 3 

variants so far, PCV7, PCV10, PCV13 acting against 7, 10 and 13 serotypes of the 

bacteria streptococcus pneumonia.  Though evidence of a reduction in cases of 

invasive pneumococcal disease (IPD) and pneumonia has been observed68,69, strain 

replacement which could lead to a mitigation of PCV vaccine efforts is a genuine 

concern70–72. Though active surveillance in ongoing and several theories behind 

serotype replacement are being proposed71,73, studies exploring possible multi-strain 

interactions could further elucidate the mechanism behind replacement. In contrast, 

evidence of immunomodulation following measles infection that results in a loss of 

immune memory to other infections has been used to explain the observed reduction 

in non-measles infectious disease mortality following the introduction of the measles 

mumps and rubella  (MMR) vaccine74. Consideration of only the pathogen that is the 

target of a vaccine without an understanding of its interactions with other pathogens 

could lead to an under-estimation or over-estimation of vaccine impact at the 

population level.  

1.2. Control 

As with most viral infections, there is no specific antiviral treatment for RSV infection. 

Severe cases requiring hospitalizations receive supportive therapy in the form of 
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administration of supplementary oxygen, mechanical ventilation and fluid 

replacement3,75, such facilities are often unavailable in many recourse-poor settings. 

 

Preventive therapy against severe disease in the form of a humanized monoclonal 

antibody Palivizumab is administered to high-risk infants. Despite Palivizumab being 

cost effective in preventing RSV disease in high-risk infants, such as those born 

prematurely or with congenital heart disease, in some high income countries76, at 

approximately 4458 US dollars per child for the recommended 5-month course77 it is 

not affordable for wide scale use in the general population of at-risk infants. 

Vaccination of infants <6 months of age is faced by several challenges ranging from 

interference from maternal antibodies to immunological immaturity of the recipient 

and risk of enhanced disease upon subsequent natural infection78–80. In recent years 

however, there has been increased interest in developing a vaccine with three main 

target groups in mind; infants, pregnant women and the elderly81. Infants and the 

elderly would directly benefit from the vaccination while the aim of vaccinating 

pregnant women would be to provide passive protection to the infant. There are 

currently over fifty vaccines in different stages of development with the most 

advanced being a maternal vaccine for which phase III trials were recently 

completed82–84. The trial for ResVax™, which enrolled third-trimester pregnant women 

from countries in the Northern and Southern hemisphere, failed to meet its primary 

objective of a statistically significant reduction in medically significant RSV-LRTI in the 

infants born to the vaccinated women. The results did show reasonable vaccine 

efficacy against RSV LRTI hospitalizations, but timing of the vaccine relative to 

gestational age was a key determinant of efficacy. Results of timing relative to RSV 

seasonality were not presented84. As with other vaccines in the pipeline ResVax™ was 

targeted towards the F protein as neutralizing antibodies generated against it have 

been shown to be protective against severe disease85. Of the three RSV surface 

glycoproteins, the G gene is the most variable and often used for variant typing while 

the F gene is mostly conserved86 and anti-F antibodies have been found to be cross-

reactive between RSV A and B87, meaning that a successful F-based vaccine should, in 

theory, work against RSV A and B. Whether a broad-spectrum RSV vaccine will have 

the intended effect given that interactions between RSV A and B have been shown to 

contribute to observed seasonal patterns, will be determined once any significant 
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interaction mechanisms have been considered while making projections of vaccine 

impact.  

1.3. Models for improved understanding of disease transmission  

Differences in transmission patterns and host social-demographic factors between 

locations and settings mean that a vaccine against RSV will have different efficacies 

and subsequently effectiveness. To gain a better understanding of disease 

transmission and the effect of an intervention, study investigators often use 

mathematical models88. Models represent a hypothesis of infection transmission, and 

often, they are compared to data related to the particular disease under study with an 

aim of estimating model parameters that then allow for inference on transmission 

dynamics. Some interesting insights gained from modelling include: an analysis of 

rotavirus that highlighted the role of birth rates in driving the observed seasonal 

dynamics in the United States of America89,  parameterization of a model with contact 

data revealed the importance of contact patterns in identifying at-risk groups90, and 

estimation of the basic reproductive number during an ongoing Ebola virus outbreak 

highlighted the need for increased bed capacity and case ascertainment if the 

outbreak was to be controlled91. 

 

Increasingly, combinations of data streams are being used in models of infectious 

diseases, perhaps the most popular combination is that of epidemiological and genetic 

data92–94. This combination stems from the field of phylodynamics which involves the 

incorporation of ecological and evolutionary dynamics of a pathogen, based on the 

assumption that they occur at the same timescale95. From a traditional epidemiology 

view, as opposed to molecular epidemiology, integration of genetic and 

epidemiological data has been used to infer transmission chains96–98, estimate 

reproductive numbers99–101 and other quantities of interest.  

 

A more detailed review of models in the context of RSV and phylodynamics 

approaches in provided in the next chapter. 

 

Depending on the data available and the level of detail desired in the process 

represented by the model, mathematical models can vary in complexity and by 
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association, so can the inference technique. Inference can broadly be categorized as 

either Frequentist or Bayesian. With a Frequentist approach, point estimates of 

desired parameters are obtained with confidence intervals based on an empirical 

distribution of those estimates. With Bayesian, a distribution of parameter estimates is 

obtained (the posterior) based on the data, the model and prior information. Bayesian 

inference therefore not only allows for more information on the parameter, it also 

allows for inferring latent data variables through data augmentation102,103. With 

increasing model and inference complexity comes increasing computational 

demands88 therefore a balance has to be found that suits the specific study.  

1.4. Data from the Kilifi household study cohort 

1.4.1. Description  

This PhD study was motivated in part by the availability of detailed epidemiological 

data. During a seasonal RSV outbreak beginning late 2009, members of 47 households 

in a rural location at the coast of Kenya were intensively followed up for a period 

spanning 6 months with an aim of recording the incidence of RSV and inferring who 

infects the household infant17. A household in this setting is described as composing of 

members who share a kitchen, in which case a household could be made up of 

extended family members distributed across several structures on the same 

compound. The definition of a household in this study is similar to what is used in 

national surveys in the country104. In addition to households, a homestead is defined 

as a group of individuals living in the same compound and may be composed of one or 

more households. The study was conducted in Kilifi District, an administrative district 

within the larger Kilifi county. The Kilifi Health and Demographic Surveillance System 

(KHDSS), highlighted in yellow in the map shown in Figure 1. 1, was set up within the 

District as a record of births, pregnancies, migration events and deaths. The study area 

was selected to capture the majority of patients admitted to the main referral District 

Hospital105. Matsangoni location, the household study site, as shown in Figure 1. 1, is 

at the northern tip of the KDHSS. As of 2009, Matsangoni location had a population of 

14,998 individuals distributed across 1,835 homesteads. The average number of 

individuals per homestead was 8.2106. 
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Figure 1. 1: Maps showing the household study site in geographical context as at 

September 2009.  

Left: the map of Kenya shows the position of Kilifi district. Centre: Kilifi district which is 

further divided into administrative locations. The locations within the KHDSS are 

highlighted in yellow. Right: Matsangoni location where the household study was 

carried out106. 

 

Households were recruited on the basis of having an infant born after the previous RSV 

epidemic who had at least 1 elder sibling less than 13 years old. Members of the 

household had nasopharyngeal swab (NPS) samples and clinical data collected every 3-

4 days. The samples were tested for RSV and other pathogens using an in-house real-

time multiplexed polymerase chain reaction (PCR) assay107. A sample was considered 

antigen positive if the PCR cycle threshold value was greater than 0 and less than 35. A 

Ct value of 0 is interpreted as a lack of genetic signal for the virus of interest while 

values above the threshold of 35 are interpreted as weak signals which could be due to 

environmental contamination. Near complete whole genome sequences were 

obtained for some of the RSV positive samples using the Illumina MisSeq 

platform108,109. 

 

A total of 47 households, consisting of 493 household members, were successfully 

followed up. The sizes of the household ranged from 4 to 37 members, with a median 

of 8. The largest distance between households was 6 km. Of the 493 household 

members, 272 were female and 221 were male, their age distributions are shown in 

Figure 1. 2. 

73 

 

 
Figure 3.7: Matsangoni map showing distribution of the recruited households (navy blue). 

Insert at top-right shows the legend and on the bottom-right is the map of the KHDSS area 

with the grey region showing Matsangoni location 

3.6 Study implementation 

3.6.1 Recruitment of field staff and training 

A careful selection and thorough training of staff was obligatory, given the intensity in 

sampling and community interactions in the study. Recruitment of the field staff was done in 

September and October 2009, about two months prior to start of the study to allow proper 

training. The underlying principle in these appointments was to build a field team with 

knowledge of the local area and who spoke and understood the local languages and would 

people. The idea of the KHDSS was conceived in 2000 to
create a longitudinal community-based study linked, at
inception, to hospital morbidity surveillance by inte-
grating the existing clinical and field-based research
infrastructure.

The rationale for the project was (i) to define the in-
cidence and prevalence of significant local diseases of
childhood; (ii) to evaluate the impact of new commu-
nity-based interventions against infectious diseases;
and (iii) to provide an epidemiological sampling frame
for cross-sectional surveys and case–control studies at
the research programme. Although it was established as
a framework for epidemiological studies, it also func-
tions as a demographic surveillance system and was
affiliated to The INDEPTH network (http://www
.indepth-network.org/) in August 2005.

What does it cover now?
At the outset, the project aimed to define rates of
mortality, migration and fertility in a setting that
lacked formal vital registration systems; to estimate
the incidence of major infectious diseases (invasive
bacterial infections and malaria) in children; to test
the association between genetic risk factors (espe-
cially haemoglobinopathies) and infectious diseases
in childhood; to calculate the operational effectiveness
of a new conjugate vaccine against invasive H. influ-
enzae type b disease; and to define the prevalence and
incidence of epilepsy in the community.

Additional objectives studied subsequently include:
defining vaccine coverage for routine childhood

immunizations and estimating the impact of access
to hospital care and vaccines on morbidity and mor-
tality; calculating the excess mortality among children
discharged from hospital; defining the incidence
of potentially vaccine-preventable viral infections
of childhood including rotavirus and respiratory syn-
cytial virus and estimating the direct and indirect ef-
fects of routine immunization with pneumococcal
conjugate vaccine.

Where is the HDSS area?
As the underlying rationale for the study was to
create a community-based surveillance system linked
to hospital-based disease surveillance, we set the geo-
graphical boundaries of the KHDSS with reference to
the area served by KDH. An area of 891 km2 was
selected (Figure 1) as the smallest number of admin-
istrative sublocations that collectively included
the stated sublocation of residence of at least 80%
of paediatric inpatients in the preceding 3 years
(1998–2000). KDH is located in Kilifi town, 38 south
of the equator and KHDSS extends up and down the
coastal strip for 35 km from Kilifi. KDH is the only
inpatient facility offering paediatric services in the
KHDSS area. The local economy is based on subsist-
ence farming of maize, cassava, cashew nuts and
coconuts as well as goats and dairy cows. Two large
agricultural estates, two research institutes and sev-
eral tourist hotels contribute to local employment.

In 2001, the area was mapped using ArcGIS Desktop
software (ESRI, Redlands, CA) by surveyors using
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methods since 2007 (Berkley et al. 2010; Hammitt et al. 2012). Data from this inpatient study 

was used in identifying the start and end of RSV season as described later.  

KDH is the main inpatient referral facility in the district but there were 23 public health 

centres and dispensaries offering outpatient services within the District in 2009 (Figure 3.2). 

The dispensaries provide primary health care; and are staffed by nurses, clinicians, and a 

public health officer, all with a diploma level training. 

 

Figure 3.2: Map of the Kilifi District showing administrative locations in KHDSS (light 

yellow areas) and health facilities (circles filled in red) in the district as at September 2009 

Location

Study site
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Figure 1. 2: Histograms showing the age distribution of the household members.  

 

A total of 16928 samples were collected from 483 household members. The mean 

sampling interval was 3.7 days (SD=2.3). The median number of samples collected per 

participant was 41, the range of samples collected was between 1 and 48. Figure 1. 3 

shows the distribution of the number of sampled collected per individual for all the 

participants, and for the different participant age groups. Of the 16928 samples, 1780 

were positive for rhinovirus, 1274 for human coronavirus, 1232 for adenovirus and 537 

for RSV41,110. 

 

 

Figure 1. 3: Histograms showing the distribution of the total number of samples 

collected from the study participants. 
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1.4.1. Past work 

Given that the data has been available for almost a decade, a substantial amount of 

work has already come out of it revealing several factors about RSV transmission. 

School-going children were linked to initiating household outbreaks leading to infant 

infection17. Bigger household size and infection with RSV group B, higher age, shorter 

duration of infection, lower peak viral load, absence of concurrent RSV infections 

within the household, and no prior human rhinovirus infections were found to be 

independently associated with increased risk of asymptomatic infection25. Shedding 

durations were found to be longer than previously established, 11.2 days on average 

relative to a previous range of 3.9-7.4 days. The length of shedding durations was 

associated with age and severity of disease and reveal potential interactions with 

other respiratory viruses16. Individuals experiencing their first infection in an RSV 

season were found to shed more virus relative to secondary infections; <1 year old, 

symptomatic shedders and RSV A and B co-infected individuals were identified as most 

likely to transmit due to their relatively higher viral loads110. In this particular study 

setting respiratory virus infections and associated illness, are ubiquitous in households. 

The most frequently detected virus was rhinovirus (10.5% of samples), followed by 

human coronaviruses (HCoV) (7.5%), adenovirus (7.3%) and RSV (3.2%)107. Relative to 

changes observed prior to an upper respiratory tract infection (URTI), the increase in 

the concentration of Streptococcus pneumonia with RSV or rhinovirus infection was 

modest. This potentially pointed to the link between viral URTIs and pneumococcal 

disease not being as straightforward as previously thought111.  

  

In 2016 the first rhinovirus genomes from Kenya were generated from samples 

collected by the household study112. A joint epidemiological and phylogenetic analysis 

of rhinovirus sequences of the VP4/VP2 gene junction from 5 of the 47 households 

identified 3 species and 26 known subspecies/types in circulation. Repeat infections 

were common, with up to 8 at an individual level and 13 at a household level in a span 

of 6 months. Temporal clustering of types was observed within households. Almost all 

of the reinfections were with heterologous types, indicative of acquisition of immunity 

against homologous re-infections. Increasing age was associated with decreased 

infection rate, decreased re-infection rates, decreased duration of shedding and 

decreased proportion of symptomatic cases. Asymptomatic individuals were not 
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associated with decreased infectivity and there was evidence of competition between 

the species113. A recent phylogenetic analysis of human coronavirus (HCoV) sequences 

from cases in the household study and cases in an inpatient surveillance study found 

evidence that changes to the HCoV-NL63 genome are not immune driven114. A 

phylogenetic analysis of RSV A whole genome sequences from 13 households aimed at 

inferring transmission chains showed that cases arise more from within household 

spread rather than multiple introductions109. A subsequent analysis of RSV A and RSV B 

whole genome sequences from 20 households found that where transmission pairs 

could be resolved, the source of infant infection was most likely either a toddler or a 

school-aged child. However, the conclusion of this study was that there was 

insufficient diversity in the genomic data for the sequence data alone to be able to 

fully resolve transmission chains hence they recommended an integrated data analysis 

combining the genetic data with epidemiological data108. To somewhat concur with 

this, an analysis of shared minor variants derived from deep sequencing of some of the 

RSV samples failed to provide further resolution in the transmission chain beyond that 

derived from consensus whole genome sequences115. 

1.5. Motivation for the PhD 

At conceptualization, the aim of this PhD project was to gain a better understanding of 

RSV transmission dynamics by appropriately analysing a combination of 

epidemiological and genetic data from a longitudinal household study. The results of 

this work were intended to inform control strategies and future study designs. The 

specific objectives were: 

 

• To review current literature in data integration methods and decide on a 

technique best suited for the data available and analytical objectives. 

• To use all available genetic and epidemiological data (including social 

relationships) to gain a better understanding of the transmission dynamics of 

RSV in terms of (realized and potential) transmission chains and the factors 

affecting RSV viral diversity. This will be done in three parts: first using only 

epidemiological data to infer parameters, second using only epidemiological 

data to infer transmission chains and finally using epidemiological and genetic 

data to infer transmission chains.  
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• To identify the added benefit of viral genetic sequence data in understanding 

transmission of RSV; and use the methodology to inform on how to efficiently 

collect data for such analyses and obtain feedback on where we can continue 

to collect data for further inference. 

• To use the integrated data framework developed to explore intervention 

strategies such as vaccination in terms of the target populations, timings and 

frequency. 

 

That said, the data available still drove the direction of the analysis which was flexible 

enough to go in new directions without deviating too far from the initial purpose.  

1.6. Computation  

Most of the analysis in this thesis was carried out on the R platform116. R is a freely 

available software with a large community of users and contributors and therefore 

broad applicability, including analysis of genetic data. All the models used in the 

analyses presented in this thesis were formulated to suite the household data. Given 

that the data represented a densely sampled small subset of a community, the models 

are not overly complicated and it was therefore not necessary to apply complex 

inference techniques, the use of Metropolis-Hasting MCMC (MH-MCMC) was 

sufficient117. MH-MCMCM was implemented successfully in R, in some instances using 

pre-existing packages and other times having to write my own functions. However, 

with the inclusion of sequence data, the model became more complicated including 

several iterative steps in calculating the likelihood function. In addition, given that 

sequence data was not available for all the cases I had to extend the MCMC algorithm 

to include data augmentation. Increased complexity in the model and inference 

technique meant the analysis was significantly slower to execute and would have 

taken weeks to run in R. As such, I moved to using the julia platform118. For simplicity I 

prepared the data in R, saved it at CSV files that were then used in julia. The julia 

results were then exported as CSV files into R as it has better developed graphics. Even 

in julia, the analysis still took several days to run, as such I outsourced the computing 

to a cluster computer based at the KEMRI-Wellcome Trust Research Programme in 

Kilifi, Kenya. Further details of the methods are provided in subsequent chapters. All 

the R and julia code used to generate the main analysis is freely available under the 
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GNU Lesser General Public License v3.0 and can be found at 

https://github.com/Ikadzo/HH_Transmission_Model. 

1.7. Structure of the thesis 

Though the PhD is by thesis, not by publication, the main results in this thesis are 

written in research paper format as some of them have already been published and 

the rest are intended for publication. Following this introductory chapter are five more 

chapters: 

Review of models of RSV transmission dynamics and methods for including genetic 

information: This chapter is a review of models that have been used on RSV and 

approaches in phylodynamics.  
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Paper 1: Model based estimates of transmission of respiratory syncytial virus within 

households. Given the choice of approach arrived at after a review of the methods, 

this chapter is the first stand-alone analysis of the epidemiological data. It is written in 

paper format and has an abstract, introduction, methods, results, discussion and 

references section. This analysis has already been published119. 

 

Paper 2: Integrating epidemiological and genetic data with different sampling densities 

into a dynamic model of RSV transmission. This chapter in an extension of the model 

presented in the previous chapter with modifications made to allow the use of genetic 

information. The analysis is presented in paper format; however, this work is yet to be 

submitted for publication. 

 

Paper 3: A multi-pathogen model of infection investigating potential interactions 

between respiratory syncytial virus and coronavirus. This chapter is an extension of the 

model in Paper 1 modified to allow the use of data from multiple pathogens. The 

analysis is presented in paper format; however, this work is yet to be submitted for 

publication. 

 

Discussion. Unlike the discussion subsections in the previous three chapters, this is an 

overall discussion tying together all the conclusions and implications for future work.  

 

Appendices. This section contains supplementary information referenced in different 

sections of the thesis. 

 

Prior to each chapter written for publication is a copy of a ‘research paper cover sheet’ 

signed by one of my supervisors and myself. This is a requirement for this thesis 

format. Given that the main results have been presented in paper format that are 

meant to be independently readable, there is some repetition in the content of each 

paper, particularly the introduction.  The references are at the end of each chapter as 

opposed to being at the end of the thesis, even for the chapters that are not written in 

paper format. 
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1.8. Additional information  

1.8.1. Ethics statement 

For the data collection, informed written consent was obtained from all the study 

participants or their parents/guardian. The KEMRI-Scientific and Ethical Review 

Committee in Kenya provided ethical approval. The analysis presented here falls under 

the expected results from the original data collection study, however, additional 

ethical approval was obtained from the Observational / Interventions Research Ethics 

Committee at the London School of Hygiene and Tropical Medicine. The ethical 

approval letters can be found in appendix section A1: Ethical approval. 

1.8.2. Training 

To be able to meet the objectives of this PhD I attended several trainings and 

workshops in order to develop the required skills. I attended a 4-day course from 14-

17 June 2016 at the London School of Hygiene and Tropical Medicine on model fitting 

and inference for infectious disease dynamics ran by Dr Sebastian Funk. The training 

used the R platform. I attended a 3-month distance-learning course on bioinformatics 

hosted at KEMRI-Wellcome Trust in Kilifi, Kenya. The course was run and sponsored by 

the Pan African Bioinformatics Network for H3Africa (H3ABioNet) and it ran from 6th 

July to 9th October 2016. I attended a one-day phylodynamics workshop on the 15th of 

February 2018 given by Professor Simon Frost of the Alan Turing Institute in the UK. I 

was part of a team of three facilitators of a Bayesian statistics workshop from 4-6 June 

2018 on the Stan platform ran by Dr Michael Betancourt https://betanalpha.github.io/. 

I attended a 5-day interactive bioinformatics workshop from 20-26 September 2018 

sponsored and ran by The Global Initiative for Neuropsychiatric Genetics Education in 

Research (GINGER). The most recent and final bit of my training was on coding on the 

julia platform, which I picked up while attending the 3-day Epirecipes workshop from 

1-3 October 2018 at the Alan Turing institute organized by Professor Simon Frost.  
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2. Review of models of RSV transmission dynamics and 

methods for including genetic information  

In this chapter I present my review of the methods in two parts: first a review of some 

of the models that have been used in the context of RSV, second, I review models used 

in phylodynamics analysis. In the final section I present the logic in deciding which 

methods to apply to the data available. 

2.1. Models of respiratory syncytial virus 

Mathematical models of infectious disease transmission (from here on referred to 

simply as models), as mentioned in the previous chapter, are often used to improve 

understanding on infection and/or disease dynamics, following from which the same 

tools can be used to make projections for the future with or without an intervention. 

Models allow one to represent their assumptions of the natural history of a disease in 

a manipulatable system of equations, a fundamental element of which is the feedback 

process between the number of infectious hosts and the risk of infection to the 

susceptible population. Models at the population level are often compartmental, 

meaning individuals are grouped into compartments representing their state relative 

to the infection under study. The most basic is the deterministic, ordinary differential 

equation (ODE), SIR model. In this model individuals are assumed to be susceptible (S), 

they get infected at a rate λ and move to the infected (I) class and after a duration of 

infection 
.

/
 they recover into the R class where they have lifelong immunity.  The 

process of transition from one compartment to the next is represented by a system of 

ODE’s. Figure 1. 4 shows a flow chart for the SIR model, the accompany equations and 

sample model projections.  

 



 42 

 

Figure 1. 4: A flow chart for the SIR model, the model equations and sample 

deterministic model projections.  

Panel A): The main disease states in the SIR model are represented by the blue boxes, 

the transitions are shown by the blue arrow and the rates of transitions between 

compartments and shown by symbols on top of the blue arrows. The dashed yellow 

arrow shows the feedback process between the size of the infected compartment and 

the rate of exposure λ. Panel B): the set of ODE’s for the SIR model showing the rates 

of change in each compartment (dS, dI ,dR) per change in time (dt). Panel C): Sample 

model projections for the SIR model, the values of the parameters used were 

c=10/person/day, q= 0.05 and  0 = 0.2/person/day.  

 

Given a population of size N, the rate of exposure λ is determined by an individual’s 

contact rate (c), the probability that a contact is with an infectious person (I/N) and 

the probability of transmission given an infectious contact (q). Contact rates can be 

density dependent (increase with increase in population density) or frequency 

dependent (do not change with population density). A deterministic model does not 

allow for stochasticity when making predictions, as such given the same value for the 
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model parameters, the deterministic SIR model will project the same time series of 

cases an example of which is shown in Figure 1. 4. 

 

If the disease of interest has a latency period, where an individual is infected but not 

yet infectious, then an exposed compartment E is introduced into the SIR structure 

resulting in an SEIR model. If immunity to infection is not lifelong and individuals can 

become susceptible again after some time, then a transition is introduced out of the R 

compartment back to the S compartment, giving the SIRS model. If the infection does 

not confer any immunity and individuals are susceptible again as soon as they stop 

shedding, then the R compartment is dropped from the model and from I, individuals 

go back into the S compartment, giving the SIS model. If the infection confers partial 

immunity, i.e. previously infected individuals are less susceptible to future infections, 

then the R compartment is replaced by an S2 compartment of reduced susceptibility. 

These extensions of the SIR are depicted in Figure 1. 5. 
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Figure 1. 5: Possible extensions of the basic SIR model representing different 

assumptions about the natural history of an infection.  

Panel I): The SEIR model which assumes a period of latency prior to onset of 

infectiousness. Panel II): The SIRS model that assumes immunity to infection is 

transient and is lost after a period = 1 23 . Panel III): The SIS model that assumes no 

immunity following infection. Panel IV): The SIS2 model that assumes individuals 

develop partial lifelong immunity following infection. 

 

Numerous other variations of this simple model are possible and have been made to 

explore a broad range of assumptions1,2. The host population can also be modelled 

using network models or individual based models, depending on what dynamics are of 

interest and the nature of the population of interest2. 
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Though epidemiological studies investigating factors associated with RSV transmission 

have provided some useful insights, it is though mathematical models that the 

interaction of such factors can be explored, and the overall resultant dynamics 

analysed. In this section, some of the models that have been used in the context of 

RSV are reviewed, highlighting the main assumptions that went into them and the 

main inferences that were drawn. The first set of models to be discussed are those 

that take an international view of RSV by analysing data from multiple countries. The 

advantage of such analysis is that they could potentially pick up on the broader RSV 

specific characteristics and identify differences between countries that could be 

important for how interventions are planned. RSV occurs in seasonal patterns, but the 

exact drivers of seasonality are not well defined. It is common practice for 

mathematical models to use trigonometric functions to force oscillations in model 

projections (seasonal forcing applied to the rate of exposure, λ), nonetheless, even in 

doing so a comparative analysis of the forcing functions for different locations can give 

some insight. One of the earlier studies was conducted by Weber et al. using data from 

the Gambia, USA, Finland and Singapore3. The study explored structural uncertainty by 

fitting two different compartmental ODE models with seasonal forcing. Their results 

highlighted the sensitivity of the inferred transmissibility of RSV to the model 

structure, the model assuming transient full immunity and lifelong partial immunity 

following primary infection gave higher values of the basic reproductive number 

compared to the SIRS model of transient full immunity. They also found evidence that 

different locations have different factors driving seasonality. An attempt to use rainfall 

and temperature data to explain seasonality in the tropical countries, was 

unsuccessful, leading the authors to conclude the perhaps it is a combination of 

meteorological and social factors driving the seasonal patterns. In 2005 White et al. 

analysed data from the UK and Finland using a deterministic compartmental model 

that distinguished between RSV A and RSV B4. They found that in addition to seasonal 

forcing, the interactions between RSV groups were required to produce the observed 

seasonal patterns. The group interactions were homogenous across locations, but the 

seasonality parameters were not. In addition, they found that the data supported the 

existence of transient partial immunity following infection more so for homologous 

group reinfection than heterologous.  They also estimated that RSV A was about 8% 

more transmissible than RSV B, perhaps providing an explanation for A being the 
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dominant group in most epidemics. This study brings out the importance of 

distinguishing between the RSV groups when investigating transmission determinants, 

the concluding remarks advocated for longitudinal cohort data in order to obtain a 

biologically realistic multigroup model for RSV. 

 

Both the Weber and White models were unable to determine the role of young 

children in RSV epidemiology and they highlighted this as an open question. In a 

second multi-country analysis using data from 9 locations distributed over 7 country 

locations White et al. used nested deterministic compartmental models to gain a 

better understanding of RSV natural history. The study found that the data supported 

the existence of lifelong partial immunity however waning immunity also provided 

visually good fits to the data.  They used a seasonal forcing function, but based on the 

estimates of the peak timing, they found no indication that temperature had a role to 

play therefore there was no clear indication of what could be driving the observed 

differences in seasonality among the countries in the data5.  The amplitude parameter 

in the seasonal forcing function not only varied by location but also by model 

structure. Whereas most of the locations seem to agree on the order of best fitting 

models, Finland, which has biennial rather than annual epidemic cycles had a different 

order. It would appear that if the driving forces of seasonality cannot be accounted for, 

different locations could end up supporting different model structures and hence 

natural histories in particular, the duration of immunity. The authors hypothesize that 

there might be similar seasonality drivers across different pathogens e.g. RSV and 

measles, but the variation in timing could be due to differences in immune 

mechanisms between the pathogens. Unfortunately, more models looking at 

multicounty data were not found in the literature, there were however statistical 

analyses that have found some associations between RSV and meteorological factors. 

Bloom-Feshbach et al. conducted a time series analysis of clinical, geographical and 

socio-economic data from over 50 countries and compared the variation between RSV 

and influenza epidemiology6 . The study found that RSV cases peaked in the winter 

months in temperate countries but the pattern driving peak incidence in the tropics 

was less apparent. In another time series analysis of data from two locations in the 

Philippines and one in Japan, the study concluded that seasonality had more to do 

with the amplitude and variation in climatic factors than with actual absolute values7. 
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At a narrower geographical scale, several other studies have attempted to understand 

seasonality drivers and immune mechanisms. In the USA Pitzer et al, combined a 

statistical and dynamic age-structured compartmental model with seasonal forcing 

and lifelong partial immunity to analyse data from different states. They found that the 

strongest link to seasonal variation in RSV was potential evapotranspiration, which is a 

measure of the demand for water from the atmosphere8. There was an indication from 

one of the states that birth rates could also be driving transmission, but this, along 

with being able to tease apart climatic effects from social patterns, required further 

studies. Interestingly a regression analysis on data spanning 16 years from a single 

state in the US found that early epidemic timing was significantly associated with 

higher population density9. Models of RSV transmission fitted to data from Spain have 

found that most cases occurred in the winter months10,11 and through a combination 

of climatic and clinical data established an association between mean temperature and 

atmospheric pressure, and RSV activity12. Studies from Scotland trying to understand 

drivers of RSV transmission found that RSV transmission was favourable when daily 

ranges in humidity were narrow13. Paynter et al fit a compartmental model to data 

from the Philippines spanning 5 years14. They found that the peak in the 

transmissibility parameter in the model preceded the peak in cases and, intriguingly, 

seasonal malnutrition and rainfall could be driving transmission. 

 

Using an age-structured compartmental model with seasonal forcing and complete but 

waning immunity calibrated to clinical data from Western Australia spanning a 6-year 

period, Moore et al were able to reproduce the observed biennial seasonal patterns 

with estimated infectious period ranging from 8-11 days and the duration of immunity 

being 160 days15. Given the longer duration of time in-between epidemics, it is 

perhaps intuitively understandable that a model in such a setting would support the 

idea of waning complete immunity, however, it is interesting that when White5 fit a 

nested model to Finland’s biennial data, an assumption of partial lifelong immunity 

gave the best fit. This further strengthens the idea that unless seasonality drivers at a 

given local area are well understood, contrasting natural histories of RSV could be 

inferred.  
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If the natural history of RSV inferred from models can be so variable, what impact is 

this likely to have on vaccination programs?  Pan-Ngum et al showed that despite 

structural uncertainty in models, reflecting uncertainty in immunity development and 

loss following natural infection, vaccines that act to reduce the duration of infection 

and infectivity are predicted to have the largest impact on cases16. Surprisingly, 

maternal vaccination was predicted to have only moderate effects. This is not the only 

modelling study to suggest that a maternal vaccination might not be the most optimal 

strategy. A deterministic compartmental model by Kinyanjui et al sought to establish 

the optimal age to vaccinate against RSV, with a particular focus on the inherent 

mixing assumptions17. Results using a contact matrix derived from contact diaries were 

compared to results obtained using a synthetic contact matrix. Though both structures 

support the vaccination of older infants 5-10 months old, which would result in 

significant herd immunity, the two different contact matrices predict different 

mechanisms of vaccine action; the synthetic matrix is such that contacts patterns are 

dominated by children and so the vaccine works through preventing children from 

transmitting to the very young, as such it works by reducing secondary infections 

rather than primary. With the diary-based matrix the force of infection by age shows 

that primary cases drive transmission as such the vaccination strategy works by 

impacting primary cases. This work highlights the importance of mixing assumptions 

and social structure as additional factors that affect model predictions. To further 

explore the effect of social structure, Poletti et al. simulated RSV infection on a 

synthetic population grouped according to households and schools18. Given estimated 

transmission chains, this study found that household transmission was responsible for 

about 38.3% (35.4,40.9) of infant infection and that school-age children played a key 

role introducing infection to the household. The impact of vaccination was dependent 

on the duration of immunity but in general, second to infant vaccination at 3 months 

of age, annual vaccination of all primary school students (aged 7 to 15 years on 

average) would result in preventing a significant proportion of infant and community 

infection. Vaccinating pregnant mothers to protect the infant was effective if it 

provided an additional 4 months of maternally acquired immunity, beyond the 4 

months assumed to occur naturally (i.e. a total of 8 months). Despite infant vaccination 

being optimal in this study, the risk of maternal antibody interference means 3 months 

might be too early to vaccinate, in fact Nyiro et al. used a catalytic compartmental 
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model to analyse the seroprevalence profile of children aged between 0 and 145 

months and found that targeting vaccination at infants 5 months and older would 

archive the highest rate of seroconversion19. Yamin et al. used contact data, 

information on viral load during the course of an infection and data on behaviour 

change due to RSV symptoms, to parameterize the force of infection in an age 

structured compartmental model with seasonal forcing, waning immunity and altered 

infectiousness and disease severity following primary infection20. They calibrated the 

model to RSV incidence in 5 states in the US and found that vaccinating children <5 

years old was the most effective strategy, owing to the fact that they were more 

infectious (higher viral load and longer durations of infections) and had more frequent 

contacts. There was, however, geographical variability in predicted vaccine 

effectiveness across states part of which was attributed to differences in seasonal 

patterns and population demography. In work that looked at 11 RSV seasons in the 

USA, Goldstein et al. found that children aged between 3 and 6 years old played an 

important role in propagating the RSV epidemics21. These studies suggest that even in 

the face of uncertainty in how immunity to RSV is built up, a vaccine targeted at the 

group most likely to infect others would have the biggest impact on overall 

transmission. It is therefore crucial to establish generalizable transmission chains in a 

given setting. Several epidemiological studies have found an association between 

having an older sibling and an increased risk of infant infection, though no direct 

infection link between the older siblings and the infant was confirmed22–24. These 

results answer questions raised over 10 years ago by Weber3 and White4 on the role of 

children in RSV epidemiology. 

 

There have also been modelling studies predicting the benefits of a maternal 

vaccination. Hogan et al calibrated an age-structure compartmental model to data 

from an electronic birth cohort followed up during the period from 1996 to 201225. In 

this study they found that a maternal vaccination would lead to a 6-37% reduction in 

hospitalization in the <3-month-old age group and 30-46% reduction in the 3-5-month-

old age group. An analysis by Scheltema et al. modelled antibody kinetics starting from 

trans-placental transfer to waning post-delivery using parameters derived from 

literature26. They then looked at RSV cases from hospital admission in the UK and the 

Netherlands and reported deaths in the literature from 20 countries. Based on the age 
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of the infant at the time of the RSV related outcome (hospitalization or death), and the 

inferred antibody dynamics from their model, they estimated how many cases would 

have been averted had a vaccine been administered to the mothers in the third 

trimester of pregnancy.  They found that at least 62% of admissions would have been 

prevented in the UK and 76% in the Netherlands, while globally, at least 29% of the 

reported deaths would have been avoided. Similar to the strategy applied to pertussis, 

Brand et al. explored the benefits of a two-vaccine strategy aimed at pregnant women 

and their household cohabitants. Calibrated to data from a low-income country, the 

study found that a 50% reduction in RSV hospitalizations is possible if the maternal 

vaccine effectiveness can achieve 75 days of additional protection for new-borns 

combined with a 75% coverage of their birth household co-inhabitants (∼7.5% 

population coverage)27. 

 

Other than the study by White et al.28, few others have explored interactions between 

RSV groups. Through estimating group specific reproductive numbers, Otomaru et al 

did find that the range for RSV A was 0.92-1.33 and that for RSV B was 1.04 -1.76, 

variation being due to epidemic under study and the location. Where time and 

location results were comparable, RSV A had a slightly higher reproductive number 

than RSV B, consistent with findings from the White et al. study. These estimates were 

much lower than expected however, the method used to derive them did not include 

any assumptions of immunity, which from the previous studies, were noted to 

influence model inference. Going a level beyond looking at RSV group dynamics, Chan 

et al. were interested in understanding drivers of viral diversity and used a 

compartmental model to establish that viral populations in large cities with dense host 

populations are more likely to generate new variants29. Comparing RSV to other 

pathogens Gonzales et al. built models looking at RSV at the molecular level and 

compared in vitro30 and in vivo31 infections of RSV and influenza. The first study found 

that as a result of RSV having a slower rate of spread from cell to cell, RSV titres 

increased at a slower rate and reached peak value much later than influenza. The 

second study found that the infectious cell lifespan was shorter for RSV than influenza. 

These interactions could shape population level dynamics. 
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Going beyond using models to infer transmission dynamics and predict vaccine impact, 

tools for forecasting and tracking ongoing infection trends have been developed in the 

USA. Using data from 10 RSV seasons, Reis and Shaman built a forecasting tool with 

70% accuracy at predicting the peak of an outbreak 4 weeks in advance32. In another 

first, Oren et al. attempted to track the trends in RSV cases using internet search data 

and found that the regression based method worked fairly well33. 

 

Taken together, it is clear that RSV has different seasonal transmission dynamics in 

different climate zones, different countries and even within a country, local areas can 

have different patterns of transmission.  Questions still exist on the exact drivers of 

transmission, more so from tropical low-income countries from which there is a 

paucity of data. In the temperate regions, the role of lower temperatures especially in 

winter months seems to be quite clear. However, climatic factors alone are not enough 

to explain variations in seasonal patterns and other demographic factors such as birth 

rates have also been proposed.  In a theoretical modelling study, Hogan et al. built a 

model that was able to replicate 4 distinct seasonal patterns that have been observed 

in real data and identified birth rates as having a key role in shaping some of these 

patterns34. However even while accounting for difference in birth rates, a seasonal 

forcing function was still necessary implying that other factors are still influencing 

seasonality and called for further investigations into the effect of social and climatic 

factors.  

 

To be able to disentangle and quantify the effect of different factors such as natural 

history (interactions between the groups and duration of group specific immunity), 

climatic variables, birth rates, social factors such as crowding behaviours and the role 

of immunity in driving seasonality, a lot of data is needed. To start with, future work 

could fit dynamic models to the data from Pacheco et al.35 that give a global overview 

of RSV seasonality. Additional data on the country-level birth rates and average 

descriptions of climate would also be needed. Quantifying the effect of social factors 

would be harder to do at a global scale, but it might be possible within country say by 

grouping locations into rural or urban.  
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Despite marked difference in seasonality across locations, the benefits of vaccination 

programs targeting pregnant women, infants or young children have been identified.  

However, further investigations into the transmission dynamics of RSV in tropical low-

income counties are warranted. Countries with functional and consolidated national 

healthcare registries such as the USA, Australia and Scotland can use electronic records 

to map transmission, which makes access to data easier. The WHO has recently 

embarked on a strategy for global RSV surveillance based on the global influenza 

surveillance and response system, which is promising36. In addition to looking at 

disease-related factors that influence vaccine effectiveness, studies should also look 

into how a vaccination program might be impacted by population social-demographic 

factors.  

2.2. Approaches in phylodynamics 

Phylodynamics as a field was first formally defined by Grenfell as the unification of 

immunodynamics, epidemiology and evolutionary biology, processes that potentially 

simultaneously influence pathogen diversity, in understanding the drivers of observed 

pathogen phylogenies at different scales 37. The main underlying assumption is that 

the three processes occur at the same timescale. By definition, phylodynamics first 

came into existence with the aim of understanding observed patterns of genetic 

sequences data, hence naturally, methods were biased towards detailed models of 

pathogen evolution and simple birth-death models were used to represent hypotheses 

of the epidemiological processes38. Increasing complexity in the epidemiological 

models within a phylodynamics framework made it difficult to infer the 

epidemiological parameter solely based on observed phylogenies, the use of other 

complementary data then became useful in distinguishing between competing 

phylodynamics hypotheses39. From a traditional epidemiology perspective, most of the 

applications of phylodynamics have been aimed at determining the transmission 

characteristics such as the reproductive number40–42 or transmission chains43–45 during 

an outbreak, more so for viral outbreaks.  

 

This review of methods will focus on phylodynamics approaches that were aimed at 

inferring epidemiological dynamics from sequence data. The first broad 

characterization of the methods I will make is grouping them either as methods that 
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simultaneously infer epidemiological and evolutionary dynamics, or those that apply a 

two-step inference process beginning with the evolutionary dynamics. Methods such 

as42,46–50 that break the inference process into two parts start by fitting a model of 

evolution to the sequence data available, resulting in a phylogenetic tree showing 

relatedness of the sequences based on the inferred model parameters. Following from 

this, transmission trees46 or other epidemiological characteristics of interest such as 

the basic reproductive number47 or hazard ratios42 are inferred. Such methods have 

the advantage of being less computationally intensive than their simultaneous 

inference counterparts, however, they could potentially result in inconsistencies 

between the inferred evolutionary and epidemiological dynamics. Methods of 

simultaneous inference therefore tend to be preferred, in which case the parameters 

of a model of evolution and that of an epidemiological model of transmission are 

inferred instantaneously and are therefore allowed to interact40,43–45,50–53. Depending 

on the complexity of the models of evolution and epidemiology and the mechanism of 

interaction e.g. through a joint likelihood function, one might then be required to use a 

sophisticated inference technique such as the methods developed by Lau et al. 53 and  

Li et al. 40.   

 

Phylodynamics methods can also be distinguished by the kind of data used. The basic 

requirement is that for every case under study, at least one genetic sequence and the 

sampling times are available. The inclusion of other data describing the infection 

episode and/or the demographics of the host have led to a broad spectrum of 

methods. To take into account the importance of within host pathogen evolution, 

methods have been developed that can accommodate more than one sequence per 

infected host53–55. Though most of these methods assume that if a host has multiple 

sequences they are from the same infection episode, a few do allow multiply infected 

hosts55. In addition to sequence sampling times, data giving information on possible 

exposure times has also been used, particularly for nosocomial infections56. Host 

demographic information such as location 44,45,52,57 and recent contacts43 has also been 

used to enrich analyses, with contact information proving highly valuable in clarifying 

likely infection sources. The use of other data to complement the sequence data has 

the added advantage of allowing more complex epidemiological models to be used.  
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Most methods initially assume that every case has a genetic sequence attached to it, 

however in reality this is seldom the case. Either not all cases have been observed and 

therefore not all cases have a sequence available for analysis, or some cases have been 

observed but for one reason or the other, do not have a genetic sequence. Several 

approaches have been used to tackle the issue of an incomplete observation of the 

cases in a particular temporal window and geographical region (often considered an 

outbreak), the most popular of which is to estimate the proportion of the outbreak 

that is unobserved43,51,55. The method by Didelot et al. accounts for missing sequences 

by allowing additional branches on the transmission tree to be introduced46, while the 

more complicated approach by Lau et al. tries to infer the missing sequences in an 

outbreak53. The first approach is simpler conceptually and computationally. The Lau 

method requires the use of a sophisticated model of evolution that tries to infer how a 

genetic sequence might have evolved in a period of time given an initial guess of an 

introductory sequence, also known as a master sequence. Accounting for unobserved 

cases can be crucial to an analysis depending on the timeframe under consideration 

and the pathogen under study. Despite the range of ways to account for missing cases, 

if a significant fraction of the outbreak is missing data, then no amount of 

computational suaveness can make up for poor data, as a recent study comparing 

different methods found58.  

 

A transmission bottleneck refers to the limitation of the amount of viral diversity that 

is passed on from the infecting host to the infected one. A complete bottleneck 

therefore refers to the situation where only a single strain is passed on. Transmission 

bottlenecks can also influence the observed phylogeny at a population level, as such, 

additional assumptions regarding the size of the bottleneck have to be made when 

analysing population level phylogenies.  Most methods assume a complete 

transmission bottleneck, in that only one lineage is passed on at the time of a 

transmission event46,50,54.  For acute infections, relaxing this assumption may not have 

a significant impact on inferred dynamics, however, for chronic infections such as HIV 

where there is a significant amount of within host diversity, one might need to 

consider an incomplete transmission bottleneck in order to make accurate inference. 

Volz et al. developed a method that looks at both the population and within-host 

pathogen diversity and allows for an incomplete transmission bottleneck. This method, 
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surprisingly, does not require infected hosts to have multiple sequences available for 

analysis59.  

 

Several phylodynamics analyses have been conducted for RSV. Tan et al analysed 33 

RSV A genomes from the Netherlands, Belgium and the USA spanning a period from 

2001 to 201160. In their analysis, they found implications that nonselective 

epidemiological processes, rather than immune pressure, likely play a bigger role in 

shaping viral diversity observed from the phylogeny. A study carried out using RSV A 

and RSV B genes of the F protein using samples from Northern Taiwan found that the 

rate of evolution was dynamic over time, with an increase observed between 2005 and 

2010. They did not find evidence of positive selection61. A positive selection analysis 

carried out by Do et al. using whole genomes for RSV A and RSV B collected over 2 

consecutive epidemics found some evidence of positive selection on the G gene both 

at the population and within host level62. In an analysis of 26 sequences obtained over 

78 days from chronically infected immune-compromised child, Grad et al found some 

evidence of an adaptive immune response, however further studies are warranted to 

validate this finding which could be a result of the unique host factors63. As noted by 

Tan et al.60 , the results of a positive selection analysis could be influenced by the study 

design, of note is the difference in temporal and geographical scale between the 

studies that find evidence of positive selection and those that do not. It would appear 

that in the short term over a local scale (i.e. within a country or an individual), the RSV 

genome is likely to show evidence of positive selection whereas in the long term, it is 

not. Analysis of sequences collected at a large geographical scale, whether in the short 

or long term, could benefit from the inclusion of additional data on the outbreak to aid 

in distinguishing between competing hypotheses.  
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3. Paper 1: Model based estimates of transmission of 

respiratory syncytial virus within households. 

 

3.1. Overview 

This chapter was written in fulfilment of the first part of the second objective. It 

presents a primary analysis of the social-temporal data from the household cohort 

study described in Chapter 1. The work in this chapter was published as Kombe, I. K., 

Munywoki, P. K., Baguelin, M., Nokes, D. J. & Medley, G. F. Model-based estimates of 

transmission of respiratory syncytial virus within households. Epidemics 1–11 (2018).  

 

3.2. Role of candidate 

I formulated the equations and conducted the numerical analysis and wrote the first 

draft of the paper. Revisions were made with feedback, input, and guidance from my 

supervisors Graham F. Medley and D. James Nokes, and advisor Marc Baguelin. Patrick 

K. Munywoki (PKM) was responsible for the original study design and data collection 

that led to the data used in my analysis, information he provided on the data helped to 

identify its limitations. Charles Agoti, George Githinji and Sam Brand provided 

comments on the analysis.  
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3.3. Abstract 

Introduction 

Respiratory syncytial virus (RSV) causes a significant respiratory disease burden in the 

under 5 population. The transmission pathway to young children is not fully quantified 

in low-income settings, and this information is required to design interventions.  

Methods  

We used an individual level transmission model to infer transmission parameters using 

data collected from 493 individuals distributed across 47 households over a period of 6 

months spanning the 2009/2010 RSV season. A total of 208 episodes of RSV were 

observed from 179 individuals. We model competing transmission risk from within 

household exposure and community exposure while making a distinction between RSV 

groups A and B.  

Results 

We find that 32-53% of all RSV transmissions are between members of the same 

household; the rate of pair-wise transmission is 58% (95% CrI: 30-74%) lower in larger 

households (≥8 occupants) than smaller households; symptomatic individuals are 2-7 

times more infectious than asymptomatic individuals i.e. 2.48 (95% CrI: 1.22-5.57) 

among symptomatic individuals with low viral load and 6.7(95% CrI: 2.56-16) among 

symptomatic individuals with high viral load; previous infection reduces susceptibility 

to re-infection within the same epidemic by 47% (95% CrI: 17%-68%) for homologous 

RSV group and 39% (95%CrI: -8%-69%) for heterologous group; RSV B is more 

frequently introduced into the household, and RSV A is more rapidly transmitted once 

in the household.  

Discussion 

Our analysis presents the first transmission modelling of cohort data for RSV and we 

find that it is important to consider the household social structuring and household 

size when modelling transmission. The increased infectiousness of symptomatic 

individuals implies that a vaccine against RSV related disease would also have an 

impact on infection transmission. Together, the weak cross immunity between RSV 

groups and the possibility of different transmission niches could form part of the 

explanation for the group co-existence.  
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3.4. Introduction 

Respiratory syncytial virus (RSV) is an ubiquitous RNA virus infection that is a major 

cause of lower respiratory tract disease in children under 5 years of age worldwide 1,2.  

The estimated global burden of RSV associated acute lower respiratory tract infection 

(ALRI) in 2015 in under 5 year olds is 33.0 million (21.6-50.3), most of which occurs in 

developing countries (30.5 million) 3. Of the 3.2 (2.7 -3.8) million hospital admissions 

associated with RSV in the under 5s, 1.4 (1.2-1.7) million occurred in the 0-5 months 

age group, and 1.2 (1.0-1.5) million occurred in developing countries.  

 

Despite 50 years of vaccine research none is yet licensed for the prevention of RSV 

infection or disease.  There are currently over fifty vaccines in different stages of 

development: many with the aim of prevention of early infant RSV disease.  While the 

most advanced (in phase III trials) is a maternal vaccine to boost transplacental 

antibody transfer 4,5,  a variety of product types and range of strategies for protecting 

young children are under investigation including indirect protection  by targeting older 

infants, elder siblings and family cocooning 6–8.   

 

Prior to vaccine introduction, drivers of transmission need to be well understood in 

order to predict the potential public health impact of implementation. Investigating 

outbreaks within the household setting could help to further characterize RSV 

transmission. The household is an important unit of study for diseases that are 

transmitted through close contact. The quantitative analysis of household outbreaks 

has been conducted for influenza 9–15. This has led to quantification of transmissibility 

within the household, improved understanding of the factors that determine level of 

transmission such as household size and effectiveness of different household level 

interventions 16. To date studies of RSV transmission within households or families 

have been largely observational. One of the earliest is a household cohort study in the 

USA in which 36 families were followed up for 2 months during the 1974/1975 RSV 

season 17. This study found that RSV attack rates in households were high, more so in 

infants. Older siblings to infants were found to be the most likely index cases in 

household outbreaks, and illness was found to have an age-related severity. Several 

other studies over the years across different settings have highlighted the importance 
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of older children in household outbreaks18–20 which could have implications for control 

strategies 21.  

 

In Kenya, a household cohort study conducted in a rural coastal community during the 

2009/2010 RSV epidemic has revealed several patterns. In addition to the importance 

of older children20, bigger household size and infection with RSV group B, among other 

factors, were found to be independently associated with increased risk of 

asymptomatic infection 22; shedding duration estimates (using molecular diagnostics) 

were 11.2 days on average, and longer than  the previous range reported of 3.9-7.4 

days 23; individuals experiencing the first infection of an RSV season were found to 

shed more virus relative to secondary infections; children under 1 year old, 

symptomatic shedders and RSV A and B co-infected individuals were identified as the 

most likely to transmit due to their relatively higher viral loads 24. 

 

RSV can be categorized into two antigenically and genetically distinct groups, RSV A 

and RSV B 25. These groups, thought to have diverged about 350 years ago 26, have 

been observed to co-exist geographically and temporally with most outbreaks being 

dominated by RSV A and, in some locations, clear patterns of alternating dominance 27. 

Within the RSV groups are subgroups or genotypes whose frequency changes from 

season to season, with some genotypes undergoing complete replacement over time 

28–33. This pattern of group and genotype replacement is thought to be due to a herd 

immunity effect 25,27,34,35. A phylogenetic analysis of RSV A sequences from the Kenyan 

household study showed that most infections arise from a single variant introduction 

followed by accumulation of household specific variation, i.e. cases arise more from 

within household spread rather than multiple introductions 36. 

 

However, there is yet to be a mechanistic analysis of RSV household outbreak data 

that consolidates information on the characteristics of infection episodes and 

characteristics of the host population into a single dynamic framework.  Inference 

could then be drawn on the competing risks of within household exposure and 

community (external to household) exposure, in order to quantify the importance of 

households in RSV transmission. We proposed to use an individual-based approach 

within a Bayesian framework to analyse the household cohort data from Kenya to 
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further understand transmission dynamics. We also explore the differences and 

interactions between RSV groups. 
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3.5. Methods 

Data 

The data to be used were collected from a household cohort study conducted in rural 

coastal Kenya within the Kilifi Health and Demographic Surveillance System (KHDSS) 

during the 2009/2010 RSV epidemic. Details of the study have been published 

elsewhere 20,22,23,37. In brief, the infant-centric study recruited household members 

using the criteria that the infant was born after 1 April 2009 (after the previous RSV 

epidemic) and had at least 1 older sibling less than 13 years old. Deep nasopharyngeal 

swab (NPS) samples were collected every 3-4 days regardless of symptoms, together 

with a record of clinical illness.  The samples were tested for RSV antigen using an in-

house real-time multiplex polymerase chain reaction (PCR) assay. A sample was 

considered antigen positive if the PCR cycle threshold (Ct) value was 35.0 or below. 

Positive Ct values were then converted to viral load (log10 RNA equivalent). A 

household was defined as a group of individuals living in the same compound and who 

eat together. The data contain information from 493 individuals spread across 47 

households whose dates of data collection span 180 days. The household sizes range 

from 4 to 37 occupants with a median of 8 members.  

 

An RSV A/B shedding episode is defined as a period within which an individual 

provided PCR positive samples for RSV A/B that were no more than 14 days apart. A 

shedding episode is referred as symptomatic if within the window of virus shedding, 

there is at least one day where symptoms were recorded. The symptoms of interest 

are those of an acute respiratory illness (ARI), which are: cough, or nasal 

discharge/blockage, or difficulty breathing. Sampling of the study population was done 

in 3-4 day intervals, as such, complete duration of shedding and ARI episodes had to be 

imputed, and missing viral loads were linearly interpolated. Shedding durations were 

imputed first, after which, if there were any days of recorded ARI within shedding 

episodes, the total duration of the ARI was imputed based on the days of recorded 

symptoms. As such, the length of an ARI episode within a shedding episode can be ≤ 

length of related shedding episode. The start and end of a shedding and ARI episode 

were imputed rather than inferred through data augmentation to ensure consistency 

and hence comparability across studies that have used the same household data20,23,24. 
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During the sample-collection visits, if a household member was not present, they were 

recorded as being ‘away’ on that particular day. As with the shedding information, 

there was incomplete information on continuous periods of presence or absence from 

the household. This information was imputed using the same method that was applied 

to imputing complete shedding durations. There are some instances where an 

individual was present but not sampled, as such, presence could not purely be 

identified by the availability of NPS samples. Details of the imputation of shedding, ARI 

and presence/absence durations and interpolation of viral load can be found in the 

appendix section A2: Supplementary appendix for Paper 1. For the model, we will 

assume that all the cases were observed, and ignore the possibility of short duration 

shedding episodes that could have been missed by the sampling intervals.  

 

We categorized days of shedding according to viral load and symptoms into 4 

categories to compare infectiousness: low viral load and asymptomatic, high viral load 

and asymptomatic, low viral load and symptomatic and, high viral load and 

symptomatic. High viral load is defined as >6 log10 viral copy number (or a PCR Ct value 

<23.05). 

 

Transmission model 

We built a mechanistic model for RSV that tracks group-specific infection onset at the 

individual host level. The main aim is to determine the factors that influence infection 

onset in an individual, and this is the focus of the model formulation. At the start of 

the outbreak, we assume that everyone is susceptible to RSV infection, but the risk of 

infection is dependent on age. Once individuals have been exposed to infection, they 

enter a latency period that ranges between 2 to 5 days after which they become 

infectious. After the infectious period, individuals become susceptible to infection 

again, but the risk to subsequent infection is modified, i.e. RSV confers partial transient 

immunity that lasts as long as the outbreak is ongoing. This partial immunity is 

assumed to be different from heterologous group re-infection and homologous group 

re-infection. Having RSV infection risk altered by age and infection history implies the 

existence of long-term and short-term immunity. This has previously been explored by 

other modelling studies38,39. Individuals can get heterologous group co-infections, i.e. 
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we assume infection with RSV A is possible while shedding RSV B, and vice-versa. Per 

RSV group, our model formulation is similar to the Susceptible(S)-Exposed(E)-

Infectious(I)-Susceptible(S2) type model dynamics. 

 

The main assumptions about transmission are contained in the equation giving the per 

capita rate of exposure (to infection) per unit time, also known as the infection hazard, 

denoted 5(7). At its base:  

 

 

5(7) = : ∗<=(7) 

 

In our model, a susceptible individual can get infected by someone they share a 

household with, or from a source outside of the household, splitting λ into two 

components: a within household exposure component and a community exposure 

component. 

 

 

5(7) = >: ∗ < =(7)
?@ABC?@DE

F + HI ∗ < =(7)
J@KKALMNO

P 

 

The number of infectious household contacts is observed in the data. Though there are 

cases from different households in the data, the sample in the study is small relative to 

the number of households in the community, as such the true number of infectious 

community contacts is unknown. We therefore cannot directly infer infectious 

community contacts and have to use a representative function instead. We do this 

using a bell-shaped curve that mimics the ongoing outbreak dynamics. We thus have: 

λ(t)	=	contact	rate	*	probability	of	transmission	give	contact	*	number	of	infectious	contacts(t)

=	baseline	rate	of	exposure	*	number	of	infectious	contacts(t)	

λ(t)	=	[baseline	household	rate	of	exposure	*	number	of	infectious	household	contacts(t)]

+	

[baseline	community	rate	of	exposure	*	number	of	infectious	community	contacts(t)]
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5(7) = >: ∗ < =(7)
?@ABC?@DE

F + QI ∗ R(7)S 

We extend this basic formulation to explore if factors such as household size, 

infectiousness (as determined by viral load and ARI symptoms) and age are 

determinants of exposure. Further details of each component are provided in the 

subsequent sections. The rate of exposure to a particular RSV group (index g) is given 

for a particular individual, (index i) from a given household (index h) at a given day 

(index t) and is specified by the notation 5M,?,T(7).  

 

Within household exposure: 

For an individual i, in household h, the rate of exposure at a given time t, is a 

summation of rates from all the infectious individuals in their household. The rate of 

exposure from a single infectious housemate (index j) is assumed to depend on the 

size of the household and the viral load and symptom status. We consider the 

household size effect as a binary variable where a house with >8 members is 

considered large. We consider viral load and symptom status as one variable with 4 

categories: low viral load and no symptoms, high viral load and no symptoms, low viral 

load and symptomatic, high viral load and symptomatic. The household rate of 

exposure from infectious individual j present in the household at time t to i is thus give 

as: 

 

UU_WX7Y?,T,Z→M(7)

= 	 :T × ]^(U_`aYℎ_cd_aefYM) × ]g,MLhQ=iRYj7eke7lZ,?,T(7)S × mZ,?(7) 

 

:T is the baseline rate of exposure in the household which is estimated for each of the 

two RSV groups, RSV A and RSV B. ]^ is the coefficient modifying exposure in large 

household relative to small households and ]g,MLhis the coefficient modifying 

infectiousness based on viral load and symptom status. The within household rate of 

λ(t)		=	[baseline	household	exposure	rate	*	number	of	infectious	household	contacts(t)]

+	

[baseline	community	exposure	rate	*	background	community	function(t))]
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exposure only affects susceptible individuals who are present in the household, as 

such this rate is multiplied by a binary variable mM,?(7) =0 if i is not present in the 

household at time t and mM,?(7)=1 if i is present. 

 

Community exposure: 

For a susceptible individual i, this external to the household source of exposure is 

assumed to represent both sampled and unsampled cases from other households. 

Community exposure is assumed to depend on the age of the susceptible individual 

and time. Age is treated as a categorical variable. The community rate of exposure is 

thus given as:  

 

n_oopqNCM,T(7) = IT 	×	RT(7) 	× 	]r,qTCQstY_tu_`vr,MS 

 

IT is the baseline rate of exposure from the community, which is estimated for each of 

the two RSV groups. ]r,qTC  is the coefficient modifying the rate of community 

exposure by age. For each RSV group, we have RT(7), a time-unit dependent curve that 

modifies the community rate of exposure over time, in this case the time period of 

interest is the duration of the study. We wanted this curve to represent the 

background epidemic dynamics in the local zone from which the data was collected; as 

such we proceeded to use the same household dataset to generate it.  

The data are calibrated in days and are at the individual level, but to obtain the 

background community rate, we assumed that this background rate is scalable from 

the weekly household-level rate of primary incidence, denoted 5^^(7w). The 

household level rate of primary incidence is the rate at which a household (rather than 

a single member of a household) acquires the first episode/outbreak in the ongoing 

RSV season. A household outbreak is a period within which at any given time, at least 

one household member is shedding RSV. If we treat 5^^(7w) as the hazard rate in a 

probability distribution, we can estimate it using the following model: 

=J(7w) = x^^ y1 −	Y|v
}∫ �ÄÄ(B)

ÅÇ
É Ñ	 

		=(7w) = =J(7w) − =J(7w − 1)	 

Where 

NHH = Total number of households in the study 
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I(7w) = Average weekly household-level incidence of primary infection  

IC(7w) = Weekly cumulative household-level incidence of primary infection 

We further assumed that 5^^(7w) = X.Y|v
}y

ÅÇÖÜá
àá

Ñ
â

, giving it a bell-shape, and 

estimated {a1, b1, c1} using maximum likelihood assuming Poisson distributed data.  

Once 5^^(7w) was estimated for each RSV group, it was scaled such that it ranges 

between 0 and 1 using the formula äM
ãJqDCE = åç}éèê	({å})

éìî({å})}éèê	({å})
. As such, 

 RT(7w) =
�ÄÄ(NÇ)}éèê	({�ÄÄ(.),�ÄÄ(ï)…�ÄÄ(NÇ)})

éìî({�ÄÄ(.),�ÄÄ(ï)…�ÄÄ(NÇ)})}éèê	({�ÄÄ(.),�ÄÄ(ï)…�ÄÄ(NÇ)})
. To turn RT(7w) into 

a daily scale, the value for a given week were assumed to be the values for every day 

of that week. The resultant background community curves for RSV A and B are shown 

in Figure 3. 1. 

 

 

Figure 3. 1:  Establishing the background community rate function.  

The figures in the top row show a comparison of data and model fit of the weekly 

household-level rate of primary incidence that was used to derive the background 

community rate function. Top left: RSV A data and model fit; Top right: RSV B data and 

model fit; Bottom: Comparing the estimated background community rate function for 

RSV A and RSV B. 
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Finally, we assume that susceptibility can be modified according to an individual’s 

infection history within the same epidemic, and their age. These two components are 

combined into an equation representing relative susceptibility to infection as shown 

below  

 

óM,T(7) = exp yõú,?MBNQ=iRYj7e_i_Uea7_ulM(7)S +	õå,qTCQstY_tu_`vã,MSÑ 

 

õå,qTCis the coefficient modifying susceptibility by age. We categorized infection 

history into four groups: no previous infection, recovered from an RSV A infection, 

recovered from an RSV B infection, recovered from both RSV A and B. 	ϕû,üè†° is the 

coefficient modifying susceptibility to a particular RSV group depending on infection 

history in the following three ways: by Y|v¢£,§•¶  if an individual has previously 

experienced and recovered from infection by the same group (homologous infection), 

Y|v¢£,§ßÅ  if the individual has previously experienced and recovered from infection by 

a different group (heterologous infection) and by	Y|v(¢£,§•¶®¢£,§ßÅ) if an individual has 

previously experienced and recovered from both RSV A and RSV B infection. This 

mechanism of interaction between RSV A and B is similar to that applied in a 

compartmental model used to analyse data from the UK and Finland 27.  

In combination, all the above assumptions result in the rate of exposure equation 

shown below 

5M,?,T(7) = Rate of exposure of individual i in household h with RSV group g at 

time t. 

5M,?,T(7) = óM,T(7)

⎣
⎢
⎢
⎢
⎢
⎡

mM,?(7) < UUpqNC?,T,Z→M(7)
Z¨M,

	Z	ML	M≠B	
?@ABC?@DE

+ n_oopqNCM,T(7)

⎦
⎥
⎥
⎥
⎥
⎤

… (±≤	3.1) 

The assumption of how age and infection history modify the rate of exposure is similar 

to the assumptions made in a proportional hazards model.  
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Additional details on the data variables and parameters are given in Table 3. 1.  

 

Table 3. 1: Model Notation 

Symbol Name Type Description 

i   Index Index of individual 

h  Index Index of household 

g  Index Index of RSV group type, either A or B 

t   Index Index of time in days 

¥µ,∂,∑(∏) Infectivity Data* Categorical data variable for infectious 

individuals indicating level of infectivity 

categorized by viral load and symptom status 

at time t. The categories are: low viral load 

and asymptomatic (reference group), high 

viral load and asymptomatic, low viral load 

and symptomatic and, high viral load and 

symptomatic. High viral load is defined as >6 

log10 viral copy number. 

π∫(∏) Infection_

history 

Data Variable indicating if an individual has 

experienced and recovered from an infection 

by a particular RSV group in the current 

epidemic at time t. 

ª∫ Age_grou

pS 

Data§ Categorical data variable indicating the 

susceptibility age group of an individual. The 

age groups are <1 year (reference group), 1-4 

years, 5-14 years and ≥15 years. 

º∫,∂(∏)  Data Binary data variable indicating if an individual 

is present in the household at time t. 

Absence from the household means that an 

individual was not present at the point of 

sample collection and thus in the model they 

can only get infection from a community 



 78 

source and not from an infectious housemate 

(not sampled and not at household risk). 

Individuals who were present but not 

sampled are exposed to both household and 

community source transmission in the 

models (not sampled but at household risk).  

Ω∫ Household

_size 

Data* Binary data variable indicating whether the 

individual lives in a large or small household. 

A small household (reference group) has <8 

individuals. 

æ∫ Age_grou

pE 

Data§ Categorical data variable indicating the 

community exposure age group of an 

individual. The age groups are <1 year 

(reference group), 1-4 years and ≥5 years. 

øª,¿∑¡ Sus.age.2 

Sus.age.3 

Sus.age.4 

Parameter Coefficients modifying susceptibility to RSV 

depending on age, applied to the age group 

covariate Xi. Sus.age.2 estimates the effect 

being in age group 1-4 years, Sus.age.3 the 

effect of group 5-15 and Sus.age.4 of group 

≥15 relative to group <1 year.  

øπ,∂∫¬∏ 

 

Prev.hom 

Prev.het 

Parameter Coefficients modifying susceptibility to 

infection by a particular RSV group 

depending on infection history. Prev.hom 

estimates the effect of a previous 

homologous group infection, while Prev.het 

estimates the effect of a previous 

heterologous group infection. Applied to the 

categorical covariate Yi(t). 

√Ω HH.size Parameter Coefficient modifying the amount of within 

household exposure by household size. 

HH.size estimates the effect of being in a 
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large household relative to a small one. 

Applied to covariate Hi. 

ƒ∑ HH.rsv.a 

HH.rsv.b 

Parameter Baseline rate of within household exposure 

by RSV group 

√¥,∫≈∆ High.Asym 

Low.Sym 

High.Sym 

Parameter Coefficients modifying infectiousness by viral 

load and symptom status. Relative to 

shedding low viral load and being 

asymptomatic, High.Asym estimates the 

effect of shedding high viral load and being 

asymptomatic, Low.Sym the effect of 

shedding low viral load and being 

symptomatic and High.Sym the effect of 

shedding high viral load and being 

symptomatic. Applied to the infectivity 

covariate ¥µ,∂,∑(∏). 

√æ,¿∑¡ 

 

Exp.age.2 

Exp.age.3 

Parameter Coefficients modifying the rate of community 

exposure by age group. Exp.age.2 estimates 

the effect being in age group 1-4 years and 

Exp.age.3 the effect of group ≥5, relative to 

the <1-year age group. Applied to the age 

group covariate Ei 

«∑ 

 

Comm.rsv.

a 

Comm.rsv.

b 

Parameter Community transmission coefficient by RSV 

group 

∆∑(∏)  Estimated  RSV group specific, time-dependent curve 

modifying the rate of community exposure.  

»∫,∂,∑  Data Set of all days where individual i has an onset 

of infection with RSV group g. Only includes 

the first day of shedding for each infection 

episode. 
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…∫,∂,∑  Data Set of all the days where individual i is at risk 

of infection with RSV group g, i.e. they are 

not currently shedding g. 

* The choice of cut-off for high viral load and large households was based on initial 

runs of the inference algorithm that explored different cut-offs for each. The choice of 

6 log10 copy number for high viral load and 8 persons for large households led to the 

best convergence. §The decision to have different age groups for susceptibility and 

community exposure was based on initial model runs where the 4th community 

exposure age group effect (>15 years) was poorly estimated and as such was 

uninformative. Consequently, this group was merged with the 3rd group. 

 

Following on from the rate of exposure equation are two additional nested equations 

that make up the model. 

 

 M,?,T(7) = Probability of infection following exposure per day i.e. individual 

enters the latent phase 

 M,?,T(7) = Q1 − Y|v}�ç,§,À(N)S			…		(±≤	3.2) 

vM,?,T(7) = Probability of starting to shed i.e. individual enters the infectious 

phase at time t given they did not shed until t.  

vM,?,T(7) = <ÕD M,?,T(7 − c)
Œ

Dœ–

			…		(±≤	3.3) 

Where L is the maximum latent period and ÕD  is the probability that the latent 

period is exactly c days. For c = {0,1,2,3,4,5} days, we have the following 

probabilities [0,0,4,4,3,1]/12= [0, 0,0.33,0.33,0.25,0.083] 40. The same latency 

distribution is used for RSV A and B.  

Since the model is focused on the determinants of infection onset process, the data 

whose likelihood we are interested in is the individual onset times. As such, we express 

the likelihood of an individuals observed days of onset as: 

—M

= 	 “ [vu_‘X‘ece7l	_R	Xcc	_iaY7	dXla	Xid	i_i__iaY7	dXla	’e7ℎ	uea÷	_R	_iaY7|o_dYc]
qDD	pãŸ	T⁄@A¤B

 

We assume the data is binomially distributed and write the likelihood as: 
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—M = 	“‹ “ vM,?,T(`)
A∈fiç,§,À

“ Q1 − vM,?,T(`)S
A∈flç,§,À

‡
T

 

Where Ui,h,g is the set of days where individual i had an onset of RSV group g infection 

and Ai,h,g is the set of all days where i did not have an onset but was at risk of infection 

(i.e. not shedding RSV group g). 

 

The model as presented can be reduced to fit for a single RSV group or for RSV as a 

single pathogen with no distinction between RSV A and B. Attempts to model 

household size as a continuous variable were unsuccessful possibly due to our small 

sample size and hence we modelled transmission within the household as a density 

dependent process but identified households as either large or small and found that 

the cut-off between categories of 8 provided the best fit.   

 

Parameter inference 

We used Bayesian inference to obtain estimates of the parameters. Adaptive 

Metropolis Markov Chain Monte Carlo was used as implemented in the R software 

package fitR 41, function mcmcMH . The mcmcMH function can adapt the size of the 

proposal distribution, such that the acceptance rate is close to 23.4%, and the shape 

using the Adaptive metropolis algorithm as in 42; the difference in size and shape 

adaptation being in the scaling factor used. In brief, the method builds a Markov chain 

which allows us to sample from the posterior distribution P(φ|D) of the parameters 

given the data, where φ={õå,qTC,	õú,?MBN,	]^,	:T ,	]g,MLh,	]r,qTC,	IT }. Flat bounded 

priors were used for all the log of parameters. The limits on the parameters measuring 

relative effects was -10 to 10, while that on the transmission coefficients was -20 to 0. 

We initiated 3 chains and set the algorithm to start adapting the size of the proposal 

distribution after 1000 iterations and the shape after 500 accepted iterations.  

 

Burn-in was assessed visually after which the results of the three concurrent chains 

were combined to infer the posterior distribution. To obtain fairly accurate values for 

the 95% credible intervals, we ran the MCMC algorithm until the effective sample size 

(ESS) was ≥ 4000 43. The three chains were run for 250,000 iterations each and burn-in 

for each chain was 80,000, 90,000 and 80,000.  After burn-in the reminders of the 
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three chains were combined into a single chain with and overall acceptance rate of 

16.8%. The parameters were estimated on the log scale. All the computation was done 

using R software package (RStudio version 1.1.383 running R version 3.4.0 44). The 

code is freely available under the GNU Lesser General Public License v3.0 and can be 

found at https://github.com/Ikadzo/HH_Transmission_Model. 
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3.6. Results 

Table 3. 2 gives a summary of the shedding episodes in the data. This particular 

outbreak had more RSV B cases than RSV A, with a significant portion of cases being 

symptomatic both for RSV A and B. Eighty five percent of the households that were 

successfully followed up had an introduction of an RSV case. In addition to the 

information in Table 3. 2; 28 (13.5%) of the total 208 episodes were censored during 

imputation; of the A and B episodes, 14 (6.7%) were simultaneous RSV A and B 

shedding episodes, 7 (3.3%) of which had a simultaneous onset; of the 179 individuals 

who got infected 31 (17.3%) were <1 year old, 41 (22.9%) were 1-4 years, 66 (36.9%) 

were 5-14 years and 41 (22.9%) ≥15 years old. Of the symptomatic infected individuals, 

28 (25.7%) were <1 year old, 35 (32.1%) were 1-4 years, 36 (33%) were 5-14 years and 

10 (9.2%) ≥15 years old. A detailed analysis of these shedding patterns has been 

published elsewhere 24. Figure 3. 2 shows the shedding pattern for all 179 people who 

had a shedding episode. Figure A2. 3 and Figure A2. 4 in appendix A2 shows the 

shedding and ARI patterns for RSV A and B respectively. 

 

Table 3. 2: Summary of shedding episodes 

 
RSV A RSV B All RSV 

Number of episodes 97 125 208 

Number of symptomatic episodes 59 69 119 

Number of people infected 88 113 179 

Number of people with symptomatic 

episodes 

54 67 109 

Number of people with repeat infections 8 12 27 

Number of households infected 

(percentage of total) 

25 (53.2%) 34 (72.3%) 40 (85.1%) 

Total percentage of household occupants 

that were infected (total number of 

occupants) *  

30.0% (293) 28.5% (396) 40.5% (442) 

* The total number of infected individuals out of the total number of individuals that 

occupy the infected households.   
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Figure 3. 2: Shedding patterns for each of the 179 individuals who experienced at 

least one RSV shedding episode.  

The y-axis shows the household, time is on the x-axis with zero indicating the day 

before the first sample was collected. The grey dots show RSV A shedding, dark pink 

show RSV B and blue shows days of co-shedding. The horizontal grey lines separate the 

data by household. The study initially recruited 60 households but 13 were lost to 

follow-up, hence the numbering of the households goes beyond 47.  

 

Transmission model parameter inference 

The trace plots used to assess convergence of the three chains are shown in Figure A2. 

5 in appendix A2. The resulting parameters estimates are given in Error! Reference 

source not found. and Figure A2. 6. 
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Table 3. 3: Results of fitting the transmission model.   

Median and 95% credible intervals (CrI) are given for the 15 parameters of interest. 

The posterior distribution for each parameter was obtained by running 3 MCMC chains 

for 250,000 iterations each. The burn-in for the three chains was 80,000, 90,000 and 

80,000 respectively. The reminders of the three chains were combined into a single 

chain with and overall acceptance rate of 16.8% 

 

Symbol Description Name Median (95% credible 

interval (CrI)) 

øª,¿∑¡ Coefficients modifying 

susceptibility to RSV by age. 

Sus.age.2 estimates modification 

to group 1-4 years, Sus.age.3 5-15 

years and Sus.age.4 ≥15 years 

relative to group <1 year.  

Sus.age.2 

Sus.age.3 

Sus.age.4 

0.924 (0.483, 1.87) 

0.267 (0.142, 0.537) 

0.155 (0.0825, 0.316) 

øπ,∂∫¬∏ 

 

Coefficients modifying 

susceptibility to infection by a 

particular RSV group depending 

on infection history. Prev.hom 

estimates the effect of a previous 

homologous group infection, and 

Prev.het the effect of a previous 

heterologous group infection.  

Prev.hom 

Prev.het 

0.530 (0.316, 0.833) 

0.607 (0.306, 1.08) 

√Ω Coefficient modifying the amount 

of within household exposure by 

household size for households of 

8 or more relative to <8.  

HH.size 0.424 (0.265, 0.702) 

ƒ∑ Baseline rate of within household 

exposure by RSV group 

HH.rsv.a 

HH.rsv.b 

0.0188 (0.00734, 0.0401) 

0.015 (0.00578, 0.033) 

√¥,∫≈∆ Coefficients modifying 

infectiousness by viral load and 

High.Asym 

Low.Sym 

0.0704 (0.0000692, 3.15) 

2.48 (1.22, 5.57) 
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symptom status. Relative to 

shedding low viral load and being 

asymptomatic, High.Asym 

estimates the effect of shedding 

high viral load and being 

asymptomatic, Low.Sym the 

effect of shedding low viral load 

and being symptomatic and 

High.Sym the effect of shedding 

high viral load and being 

symptomatic.  

High.Sym 6.7 (2.56, 16.0) 

√æ,¿∑¡ 

 

Coefficients modifying the rate of 

community exposure by age 

group. Exp.age.2 estimates the 

effect being in age group 1-4 

years and Exp.age.3 the effect of 

group ≥5, relative to the <1-year 

age group.  

Exp.age.2 

Exp.age.3 

0.563 (0.206, 1.45) 

1.87 (0.788, 4.26) 

«∑ 

 

Community transmission 

coefficient by RSV group 

Comm.rsv.a 

Comm.rsv.b 

0.00338 (0.00203, 0.00530) 

0.00615 (0.00388, 0.00926) 

 

In short, susceptibility to infection was reduced by previous infection whether these 

infections were homologous (Prev.hom = 0.53 (0.32 - 0.83)) or heterologous (Prev.het 

= 0.61 (0.3 - 1.1)). Increasing age also reduces susceptibility with ages 1-4 years old 

having an estimated 8% reduction  (Sus.age.2 = 0.92 (0.48 - 1.9)), ages 5-15 years a 

73% reduction (Sus.age.3 = 0.27 (0.14 - 0.53)) and ages ≥15 years an 84% reduction 

(Sus.age.4 = 0.16 (0.08 - 0.32)). The within household transmission coefficients 

(HH.rsv.a = 0.019 (0.0073 – 0.04) and HH.rsv.b =0.015 (0.0058 – 0.033)) are estimated 

higher than the community transmission coefficients (Comm.rsv.a = 0.0034 (0.002 – 

0.0053) and Comm.rsv.b = 0.0062 (0.0039 – 0.0093)). The coefficient modifying within 

household exposure by size (HH.size = 0.42 (0.27 – 0.7)) suggests that larger 

households have less risk of pair-wise within household transmission 
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(UU. Wea÷?,T,Z→M(7)) than smaller households. However the total risk of household 

transmission (∑ UU. Wea÷?,T,Z→M(7)Z¨M ) can conceptually be higher than that in smaller 

households if there are 20 or more infectious household members at a single time 

point, this is illustrated in Figure A2. 7. However, it should be noted that in this study, 

the highest number of simultaneously infectious individuals in large households was 

14.  

 

Although there is suggestion that pre-school individuals are the least likely to acquire 

infection from the community, and school-age individuals and older are the most likely 

to acquire community infection, the evidence is very weak: the relative estimate for 

age groups 1-4 years is Exp.age.2 = 0.56 (0.21 – 1.5) while for age group ≥5 years is 

Exp.age.3 = 1.9 (0.78 – 4.2). Symptomatic individuals are more infectious than 

asymptomatic individuals, more so those with high viral load, the relative estimate for 

high viral load symptomatic shedders is given as High.Sym=6.7 (2.6 – 16). However, 

there are not enough instances where individuals have high viral load and are 

asymptomatic to quantify the relative infectiousness of this specific combination, the 

relative estimate for high viral load asymptomatic shedders, High.Asym, has a very 

wide 95% CrI. Given 71132 person days of observation (493 individuals * 180 days of 

data, minus days individuals were away), 1021 had RSV A shedding, of which 49 were 

asymptomatic high viral load shedding days, and 1227 had RSV B shedding with 49 

days of asymptomatic high viral load shedding. Given the inability to distinguish 

between the infectiousness of high versus low viral load asymptomatic shedders, we 

will not make this distinction in subsequent results and instead just refer to 

asymptomatic shedders in general. 

 

For a better understanding of the within household and community transmission 

coefficient parameters, we calculated the different rates of exposure and plotted them 

as shown in Figure 3. 3. 
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Figure 3. 3: Comparing the range of within household exposure rate and community 

exposure rate for a single susceptible individual given different heterogeneities in 

exposure and infectiousness.   

Top row: The box plots show the 0.025, 0.25, 0.5, 0.75 and 0.975 percentiles for the 

rate of exposure per person per day between a single susceptible and a single 

infectious housemateyUU_Wea÷?,T,Z→M(7)Ñ for RSV A (I) and RSV B (II). The 

distributions of rate are categorized by household size and the infectiousness based on 

viral load and symptom status (see text). Note: outliers have been removed from the 

box plots for better visualization. Bottom row: The shaded graphs show the range of 

values over time for the rate of exposure from the community to a single susceptible 

individualyn_oo_Wea÷M,T(7)Ñ for RSV A (III) and RSV B (IV). The graphs are color-

coded by the age group of the susceptible individual. The ranges for each age group 

are determined by the 95% CrI of the parameters that go into the calculations, hence 

the shaded regions show 95% CrI of the community exposure rate. 

 

Given two competing sources of infection, an infectious housemate and a source 

outside of the household, a susceptible individual is more likely to get infected within 
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the household rather than from the community. There is a suggestion that RSV A has a 

higher transmission potential at the household level relative to RSV B, while the 

situation is reversed at the community level. However, there is considerable overlap 

between the distributions of within household transmission coefficient for RSV A and 

that for RSV B as seen in Figure A2. 6, which shows the distribution of the parameters 

on the log scale, which is mirrored in the rate of household exposure shown in Figure 

3. 3. 

 

We observed some correlations in the estimated parameters. In particular there were 

strong positive correlations within the relative susceptibility by age parameters. The 

within household transmission coefficient for RSV A was strongly positively correlated 

with the within household transmission coefficient for RSV B. The age effects of 

susceptibility were strongly negatively correlated with the age effects on community 

exposure. Figure A2. 8 in the supplementary index shows all the pairwise correlation 

patterns.  

 

Given the posterior densities for the parameters, we calculated the source with the 

highest likelihood for each infection. While respecting the correlation patterns 

observed in Figure A2. 8, we sampled 10 different parameter sets and for each, we 

calculated the proportion of cases whose most likely source was an infectious 

housemate. The changes made to the likelihood equation to allow for this calculation 

are described in the appendix A2. For all the infection cases, 32-53% of them were 

attributed to transmission within the household. For RSV A, this range was 40-59%, 

while for RSV B it was 26-48%.  

 

To check if any information is lost when we have less data, we refitted the data in 

three additional ways: RSV A alone, RSV B alone and RSV with no distinction between 

groups. The results are shown in Table A. 1 in the supplementary index. In reducing the 

data used to infer parameters we notice that more posterior densities for the relative 

effect parameters now include 1 in their 95% credible interval, as can be expected. In 

general, the trends with age, household size and relative infectiousness, as seen in 

Figure A2. 6, are maintained. However, when RSV is treated as one entity, the 

protective effect of previous infection is reduced, symptomatic cases are more 
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infectious, and the estimate of the community transmission coefficient is increased. 

This suggests that misclassification of viruses disrupts the ability of the model to track 

transmission patterns, resulting in a greater propensity to account for infections as 

spontaneous.  

 

Model validation and sensitivity analysis 

To validate the model, we checked to see that the range of simulated epidemics 

contained the real data; then we chose a single simulation with known parameters and 

re-estimated to see if the posterior distribution contained the known values. Details of 

this process can be found in the appendix A2, but in general, we were satisfied that the 

model was working as expected. Figure 3. 4 shows multiple simulated epidemics for 

different parameter sets relative to the real data. From this we see that as with the 

real data, the simulations show the RSV B epidemic taking off earlier than the RSV A 

epidemic. There is a tendency for simulate epidemics to be larger than that observed 

in terms of total number of cases (Figure A2. 23). 
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Figure 3. 4: A comparison between the simulated data and real epidemics using 

simulations from 5 different parameter sets estimated from the full model (row 1 to 

5).  

First column: RSV A simulated epidemics (grey lines) compared to real data (thick black 

line). Second column: RSV B simulated epidemics (light blue lines) compared to real 
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data (thick blue line). Third column: RSV simulated epidemics (orange lines) compared 

to real data (thick green lines). 

We performed a sensitivity analysis to check the robustness of our results to the 

background community density function. We used 3 additional background functions 

and found that despite a change in summary values for the parameters, in general the 

trends were maintained. These results are shown in the appendix A2. They show that 

the results are robust to the choice in the shape of background community density 

function. 

 

Finally, we removed the largest household (which had a very large RSV A outbreak but 

only a single RSV B case) from the data to check if this would change the patterns of 

the within household transmission coefficients. The results, shown in the appendix A2, 

were robust to these changes. 

 

Following the validation of the model, we simulated epidemics altering the degree of 

infectiousness. Initially we reduced the infectiousness of symptomatic individuals to 

predict the effect of reducing RSV related ARI; then we assumed that asymptomatic 

individuals are not infectious in order to quantify the contribution of asymptomatic 

infections to transmission. The results show that reducing infectiousness of 

symptomatic individuals to the level of asymptomatic individuals lowers the 

distribution of total number infected. Assuming that asymptomatic individuals are not 

infectious also tends to decrease the total number infected (see Figure A2. 23 in 

appendix A2).  We also removed the asymptomatic shedding episodes from the data 

and re-estimated the parameters to check what the effect of only having sampled 

symptomatic individuals would be. We found that we lose precision in the estimates of 

the relative infectiousness parameters, previous infection is estimated as being more 

protective as is being ≥15 years old (Figure A2. 24 and Figure A2. 25). 
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3.7. Discussion 

We developed an individual based approach to make Bayesian based inference on 

transmission parameters using MCMC. We set out to better understand RSV 

transmission within a household setting using cohort data collected with 

unprecedented detail during the course of a single RSV epidemic in a rural coastal 

community in Kenya.  

 

Older individuals are less susceptible to detectable infection, presumably due to 

immunity acquired in previous epidemics. We found strong evidence of partial 

immunity to homologous re-infection within the same epidemic for the RSV groups. 

The effect of previous infections is captured in two different ways in our model. Age 

(Sus.age parameters) captures the combined effect of age and experience of 

epidemics prior to the one under study, while the estimates for the effect of previous 

observed infections (Prev.hom parameter), captures effect of infections in the current 

epidemic. It is therefore implicit that immunity to RSV is built up in the long term, from 

one epidemic to the next and in the short term from one infection to the next. The 

evidence for cross-immunity between RSV A and B was weaker, which presumably 

allowed the two virus groups to co-circulate in this epidemic. However, typically, RSV 

epidemics are dominated by one or other of group A or B and so the particular 

circumstances of this epidemic might not always hold. It remains to be explored how 

this individual level parameter estimate is translated into population dynamics.  

 

We found some evidence that individuals aged ≥5 years were the most likely to get 

infection from a community source (less likely to get infected during a household 

outbreak). This means that given our assumption of latent periods between 2-5 days, 

which forms the temporal link between cases, individuals ≥5 years were the most 

often identified as index cases in a household outbreak relative to the younger age 

groups. We have not considered an age-dependent latent period and estimating the 

latent period from these data is a future goal. The ≥5 years age group contains school 

going children and our result is in line with those of Munywoki et al 20, based on a 

different analysis of the same study, who found that school-going children were often 
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initiating household outbreaks. Establishing transmission chains using genomic 

information could strengthen this result. 

 

We have assumed that the community risk of infection changes smoothly over time 

and is homogeneous apart from an age effect. These assumptions are necessary as 

community infections are not completely observed. We are confident that these 

assumptions do not have significant influence on our estimates of within-household 

transmission (which is fully observed), but may result in an over-estimate of 

community exposure, which will be more heterogeneous than we have assumed. 

Consequently, the simulated epidemics are larger in total numbers than that observed, 

Figure 3. 4, and our results of up to one half of infections arising from within the 

household are likely to be a minimum. Data on genetic relatedness between viral 

isolates will clarify the extent to which individuals are infected from the community 

during a household outbreak.  

 

By separating RSV A and RSV B we find that RSV B has a higher rate of introduction into 

the household, and RSV A is more transmissible once in the household, an observation 

also made by 36 from a phylogenetic analysis of RSV A sequences. This, together with 

the fact that RSV A had a larger proportion of cases attributed to within household 

transmission, suggests that there might be some niche separation, explaining how and 

why these two different groups are able to co-exist and remain separate. It should be 

noted however that the difference in the distribution of the within household 

transmission coefficient between the RSV groups is not large, there is a substantial 

overlap of credible intervals. As such, whatever advantage RSV A might have over RSV 

B at the household level is small in terms of transmission but might be larger in terms 

of interaction with other respiratory viruses, and small differences in individual based 

parameters might translate into large population effects. In the present epidemic, the 

RSV B epidemic takes off earlier than the RSV A epidemic despite the first case being 

RSV A (Figure 3. 2). In addition to which, we see that despite RSV B infecting more 

households than RSV A, RSV A infects a larger proportion of household members 

(Error! Reference source not found.). An examination of the comparative dynamics of 

RSV A and B within epidemics might be a good way to understand how they interact. 
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With the definition of a household as a group of individuals living in the same 

compound and eating food from the same kitchen, we found that the pairwise rate of 

within household transmission is higher in small households than large ones. The 

relationship between household size and pair-wise rate of transmission has been 

observed before for Influenza, 11,12,14,15, however going a step further we show that if 

households are structured such that they can have at least 20 simultaneously 

infectious occupants (possible if several members of an extended family live in the 

same household as is the case in the present study) then larger households will tend to 

contribute more to transmission than smaller households.  

 

We looked at a combination of presence of symptoms and viral load to infer 

infectiousness. We found that being symptomatic is of key importance. In general, 

symptomatic individuals were more infectious, particularly if shedding large amounts 

of virus. Though this result is not surprising it has an important implication on vaccine 

effectiveness. If an RSV vaccine works by reducing or preventing disease in the form of 

an ARI, this will in turn have an impact on transmission potential and we should expect 

to see reduced morbidity and infection. To check what that potential impact of such a 

vaccine would be, we simulated epidemics where the infectiousness of symptomatic 

individuals was equal to that of asymptomatic individuals and we found a significant 

shift in the overall distribution of simulated case towards smaller total numbers 

infected. The shift was more for ages between 1 and 15 years, given that this group 

also had the larger fraction of symptomatic cases, the observation from simulations 

with reduced infectiousness suggests largely assortative mixing within this group, 

which in turn means largely assortative transmission. The number of cases in the <1 

year age group is not greatly altered by reducing the infectiousness of symptomatic 

individuals, implying that there are several sources of infection to the infant and 

reducing or removing only one has little impact Figure A2. 23.  

 

We reduced the model complexity to look at RSV as a single pathogen without 

distinguishing between groups. This resulted in skewing the parameter estimates away 

from within household transmission and towards spontaneous infection from external 

sources, as a result of introductions due to RSV A and RSV B being treated as multiple 

introduction of the same pathogen thus compounding the effect of community 
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transmission. This, in addition to the reduced protective effect of previous infection 

due to misclassification of re-infections, led to the within household transmission 

parameter being underestimated in order for the model to account for the observed 

number of infections. In addition, temporally linking RSV A and B cases as a result of 

misclassification also led to the effect of symptoms on transmission being 

overestimated. This suggests that the estimates obtained in the present analysis are 

likely to change if we further classified the cases into RSV subgroups. This goes to 

illustrate the importance of making distinctions between pathogens in order to obtain 

accurate estimates of transmission parameters. At any given moment multiple 

pathogens are co-circulating in a host population, this household study alone had 

multiple viruses spreading in large numbers during the time of data collection 45. How 

these pathogens interact could have dramatic implications for parameter estimates, 

and ultimately on how control strategies are implemented. We have seen the effect of 

the pneumococcal vaccine on the non-vaccine serotypes and how it might mitigate 

vaccine effectiveness 46 and a study on influenza has shown evidence of its controlling 

effect on other pathogens 47. There is an increasing call from such observations to 

understand how multiple pathogens interact at the host population level.  

 

Our study is not without limitations. The households in the study were selected based 

on the presence of an infant born after the previous RSV epidemic and older siblings to 

the infant in order to determine who infects the infant. As such the sample is not 

random and this might introduce bias in the parameter estimates, the extent of which 

we are uncertain. Relative to other studies, our sample size in terms of number of 

households is small. However, the intensive sampling regardless of symptoms means 

we had less biased observation of infections relative to index-case ascertained 

household studies that rely on symptom reporting by household contacts. In our study 

we had 47.2% of RSV A and 40.2% of RSV B positive samples that were symptomatic, 

60.8% of RSV A and 55.2% of RSV B episodes were symptomatic. Estimation of 

parameters only using data from symptomatic episodes shows similar parameter 

estimates, although with loss of precision, especially in terms of differential 

infectiousness Figure A2. 24. In addition, sampling was done every 3 or 4 days, which 

means that short duration infections might have been missed, and we do not have 

serological data to complement the PCR results. There were 14 instances of RSV A and 
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RSV B co-infections, 7 of these were apparent co-onset shedding episodes. Our 

method of imputing the start of a shedding episode is based on the gap between the 

last negative sample before the first positive sample of the episode, and the first 

positive sample of the episode. For the co-onset cases, this gap ranged between 3-4 

days, and the start of onset was imputed as being halfway between the gap. These 

may or may not be true co-onset cases, it would require the existence of daily 

sampling to confirm. Treating the start and end of a shedding episode as augmented 

data is an alternative to the mid-point estimation, if applied that could lead to 

different onset days being inferred.   

  

The present analysis could be extended in several ways. We used interpolated 

shedding durations; it would be an added advantage to use the data to estimate a 

distribution of shedding durations that could potentially be more generalizable. The 

inclusion of other sources of information into the analysis could improve parameter 

inference, as was the case with Li et al and the inclusion of genetic data 48. The 

inference made on within-household transmission compared to community 

transmission is based on the latency distribution that links onset of cases. This is a 

temporal linking of cases that is not always correct. A combination of temporal and 

genetic distance would allow better inference on linked cases and consequently the 

competition between within-household and community source transmission. Finally, 

the RSV A and B model could be used to look at other pathogen interactions and 

perhaps incorporate more than two pathogens. 

 

In conclusion, our analysis presents the first transmission modelling of cohort data for 

RSV and we find that it is important to factor in household size and social structuring – 

such as the tendency for households to contain several members of the extended 

family – when modelling transmission. It is also important to model competing risks of 

infection from within the household and the community. There are questions on the 

mechanisms that allow co-existence of RSV groups temporally and geographically. The 

weak cross immunity between RSV groups demonstrated by our analysis and the 

possibility of different transmission niches could form part of the explanation for the 

co-existence.   
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4. Paper 2: Integrating epidemiological and genetic data with 

different sampling densities into a dynamic model of RSV 

transmission. 

4.1. Overview  

This chapter was written in fulfilment of the second part of the second objective, and 

the third objective. It is an extension of the methods developed in the previous 

chapter. As with the previous chapter, this chapter is written in the format of a 

publication and we intend to submit it to a journal with the running title: Integrating 

epidemiological and genetic data with different sampling densities into a dynamic 

model of RSV transmission.  

4.2. Role of candidate  

I formulated the problem, conducted the numerical analysis and wrote the first draft 

of the chapter. Revisions were made with feedback, input and guidance from my 

supervisors Graham F. Medley and D. James Nokes, and advisor Marc Baguelin.   
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4.3. Abstract 

Respiratory syncytial virus (RSV) is responsible for a significant burden of respiratory 

illness in children under 5 years old. A maternal vaccination against RSV disease has 

recently completed phase III trials where it was reported as being modestly efficacious. 

Prior to rolling out any vaccination program, a clear understanding of the transmission 

dynamics in necessary in order predict which vaccination strategies would be the most 

effective. We built a dynamic model calibrated at the individual host level that 

integrated social-temporal data on shedding patterns and genetic clustering patterns 

derived from a phylogenetic analysis. Through aggregating the genetic information 

into clusters and the use of data augmentation, we were able to integrate data types 

of different sampling densities into a single framework. In this study population of 493 

individual with 55 infants under the age of 1 year distributed across 47 households, we 

found that 52% of RSV B and 60% of RSV A cases arise from infection within the 

household.  Fifty-five percent of infant RSV A infections occur in the household, as do 

36% of infant RSV B. Frequently the source of infant infection is a child aged between 2 

and 13 years living in the same household at the infant. These results further highlight 

the importance of school-aged children in RSV transmission, particularly the role they 

play in directly infecting the infant at the household level. This age group could provide 

an alternative vaccination target group. 
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4.4. Introduction 

Ever since the term phylodynamics first came into use in 2004 1 there has been an 

increasing interest to analyse genetic sequences of pathogens while accounting for the 

epidemiology of the infection: the main question being, how do the pathogen’s 

transmission dynamics shape the observed genetic relationships and conversely, how 

does the evolution of the pathogen influence how it is transmitted? Developing the 

methodology that accurately captures both the epidemiological and evolutionary 

processes, and that is computationally tractable is challenging. The field of 

phylodynamics has grown to include other multiple data types, more so to determine 

transmission chains during an outbreak2–4. A range of methods have been developed 

with variations observed in the nature of sequence data (single 2,3,5,6 versus multiple 7,8 

sequences per infected host ); complexity of genetic model (coalescent 7,9,10 versus 

simple genetic distance models5); complexity of transmission model (dynamic 

transmission models 2,11,12 versus simple temporal distance models4,5); generalizability 

across pathogens (often available in packages such as SCOTTI7, Outbreaker5,6, 

PhyDyn13, TransPhylo14); types of data (sequences and collection dates5,7,12; sequences, 

collection dates and location of host3,4; sequences, collection dates and contact data2) 

and ability to account for unsampled cases 5,7,12,14. A recent attempt has been made to 

compare the utility of several methods, and though only 9 published models were 

used, the authors came to the conclusion that “Each model had its own strengths 

related to the purpose for which it was developed, and limitations related to its 

assumptions” 15. It is therefore crucial for investigators to bear in mind their specific 

study design in choosing a method to adopt. 

 

Despite the existence of a wide assortment of methods for integrated epidemiological 

and evolutionary analyses, most of them use data types that are at the same sampling 

density, meaning there usually are as many cases as are identified by the generated 

sequences. To account for there being cases without sequences, some methods 

estimate or fix the fraction of the outbreak that is unobserved5–7,12,14. Uniquely, the 

method developed by Lau et al can explicitly model confirmed cases that do not have 

sequence data since the method imputes missing sequences12. There have been great 

advancements in the generation of pathogen genetic sequences, however, whole 
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genome sequencing is not always successful, more so when the pathogen is present at 

low loads within the host. Given that it might not always be possible to generate 

genetic sequences for a majority of samples from an outbreak, it would be useful if an 

analysis technique can simultaneously make use of the sequence data where available, 

and more readily available spatial or social-temporal shedding patterns to make 

inferences on transmission characteristics. In this article, we model social-temporal 

data from an outbreak of respiratory syncytial virus (RSV) and genetic data that covers 

~50% of the observed cases to infer the determinants of transmission within a group 

of households over a 6-month follow-up period.  

 

Respiratory syncytial virus infects all age groups but causes a significant lower 

respiratory disease burden in children <5 years old, more so in < 6 months old, and the 

elderly 16–18. RSV virus is a negative stranded RNA virus (length ~15,200 bases) that 

exists in two antigenically and genetically distinct groups estimated to have diverged 

350 years ago 19. It spreads in seasonal patterns with most places experiencing annual 

cycles 20–23. Phylogenetic analysis of RSV whole genome sequences from different 

countries that span several years have estimated mutation rates between 6 × 10}‰ 

and 7 × 10}‰ substitutions/site/year 24–26. These studies found that the clustering 

pattern of RSV sequences in the long term is more temporal than geographical. In the 

short term, changes in the dominant transmitting genotype have been used to 

understand transmission patterns, as has been the case with studies looking at the 

distribution of the RSV A ON1 genotype 27–29. Genotype replacement from one RSV 

season to the next is common 23,30,31, however short term changes to the genome over 

the course of a single epidemic could help to determine transmission chains across a 

limited geographical space. It is such short-term changes observed in the RSV genome 

that we exploited in the analysis presented here. 

 

The model we use is an extension of our previous work where we successfully used 

social-temporal patterns of shedding coupled with demographic information on the 

host to identify symptom status and virus load, household size, age and recent 

infection history as determinants of transmission at the individual level. In addition, by 

virtue of RSV A having slightly higher estimates of the parameter quantifying within 

household transmission relative to RSV B, we hypothesized that RSV A having might 
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have a transmission niche at the household level 32. The question we aim to answer is 

whether increased resolution in pathogen identification improves inference on 

transmission characteristics; do weak signals in previously inferred parameters, e.g. a 

slight difference in the within-household transmission coefficient for RSV A relative to 

RSV B, become clearer? The easiest place to start would be to build on an existing tool 

for data integration. The ‘Outbreaker’ model 5,6 takes a modular approach by 

establishing a model for the epidemiological data (epidemiological likelihood) and 

another for the genetic data (genetic likelihood) and then combines these into a single 

likelihood for inference on parameters and transmission pairs given genetic sequences 

and their dates of collection. This modular approach can be used with different data 

types; temporal (sampling times or exposure data), genetic and spatial 3,4,12. An 

alternative, more classical phylodynamics approach, would be to link the equations of 

the epidemiological model to the rate of coalescence of the model of evolution and 

estimate parameters based on the genetic sequences as was the case in the Li et al 

model 33. Joint inference of epidemiological and genetic characteristics would be ideal, 

however writing down a likelihood and developing an inference technique given 

different data densities is not straightforward, as demonstrated by Lau et al 12 and, 

depending on what fraction of the outbreak is missing genetic information, an attempt 

at joint inference can lead to significant inaccuracies even for fairly sophisticated 

methods15. Instead, we will take the two-staged approach of first ‘learning’ from the 

sequence data and then using the inferred traits within the epidemiological model, 

similar to14,34–37.The aim of our analysis is therefore to attempt to enrich the densely 

sampled epidemiological data with the genetic data that is available at a lower 

sampling density.  
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4.5. Methods 

The model that we extended for this analysis is an individual level transmission model 

that is calibrated by day and individual host (see Chapter 3). The individuals 

represented in the data are grouped into households according to the demographic 

information provided. Individuals can get infected within the household from a 

sampled infectious individual or from an unsampled infectious individual outside of the 

household represented by a background community rate. Distinctions are made 

between RSV A and RSV B group infections and interaction between the two groups is 

modelled through modified susceptibility to heterologous group reinfection. Further 

details can be found in 32.    

 

The data used in the present analysis consists of shedding durations imputed from the 

results of samples collected every 3-4 days, information on symptom status and 

information on presence or absence from the household.  Given the discontinuity in 

the sampling, complete shedding, ARI and presence/absence durations had to be 

imputed. This imputation process has been described in detail in A2: Supplementary 

appendix for Paper 1. In brief, an RSV A/B shedding episode is defined as a period 

within which an individual provided PCR positive samples for RSV A/B that were no 

more than 14 days apart. A shedding episode is referred as symptomatic if within the 

window of virus shedding, there is at least one day where symptoms were recorded. 

The symptoms of interest are those of an acute respiratory illness (ARI), which are: 

cough, or nasal discharge/blockage, or difficulty breathing. Individuals are assumed to 

start shedding halfway between the last negative sample and the first positive sample 

of the episode, and they stop shedding halfway in between the last positive sample of 

the episode and the first negative sample. In the same way, complete ARI durations 

are imputed within shedding episodes and complete presence/absence durations are 

imputed for all the days of data available for a particular individual. There are some 

instances where an individual was present but not sampled, as such, presence could 

not purely be identified by the availability of NPS samples. Imputation was chosen over 

data augmentation to ensure consistency across studies analysing the same household 

dataset38–40. 
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In the same way that a shedding episode can be identified as RSV A or RSV B, we used 

the sequence data to further classify shedding episodes into genetic clusters.  These 

genetic clusters are then treated in the same way as genetic groups in the model. 

Transmission is allowed between members of the same cluster but between clusters 

transmission is not. Figure 4. 1 illustrates how cases can become disconnected with 

addition of genetic information. If all the cases are identified at the pathogen level 

(i.e., all infecting viruses are alike), then the timing of cases is the only thing that 

informs possible transmission clusters. With information on RSV group, one knows 

that there are at least 2 transmission clusters since an RSV A case could only have been 

infected by another RSV A case, and so forth with the genetic clusters.   

 

 

Figure 4. 1: Illustration of how cases become disconnected with added pathogen 

information 

 

The sequences available from the outbreak are grouped into clusters according to a 

combination of criteria based on: nucleotide distance cut-off, clustering patterns on 

the global RSV phylogenetic tree and the inferred date of sequence divergence. Details 
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of this phylogenetic analysis can be found in 41. Figure 4. 2, part of Figure 2 in the 

original paper, shows the time-resolved maximum likelihood phylogenetic trees for 

RSV A and RSV B showing the estimated node edges and assigned clades and sub-

clades. RSV A clustered into one clade with 5 sub-clades while RSV B clustered into 5 

clades, two of which had two sub-clades each. For our analysis we do not make a 

distinction between clades and sub-clades as such we use 5 clusters for RSV A and 7 

for RSV B.  

 

 

Figure 4. 2: Time-resolved maximum likelihood phylogenetic trees for RSV A and RSV 

B from the Agoti et al 41phylogenetic analysis.  

 

4.5.1. Imputing missing genetic information 

We did not have whole genome sequences for all the positive samples and as such, we 

needed to impute information where it is lacking. We decided to impute cluster 

identity rather than sequences, choosing to look at genetic clusters as a way to 

aggregate genetic information. Augmenting sequences has previously been done by 

Lau et al 42,  but we proposed to use a simpler approach which does not need any 

assumptions on sequence evolution. Within a given RSV group, infection by a 

particular cluster is assumed to be a mutually exclusive process, an individual can only 

shed one cluster type at a time. The genetic data available is consensus whole genome 

sequences as such, only one cluster can be identified from a single sample. There are 

two levels of missing sequence data: 

- Partially missing. Where only some of the positive samples in an episode have 

sequences.  
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- Completely missing. None of the positive samples in an episode have 

sequences 

 

Partially missing 

If all the sequences within a particular shedding episode belong to the same genetic 

cluster, then this cluster id is assigned to every day of the shedding episode. If the 

sequences belong to multiple clusters say C1 and C2, the duration of shedding each is 

divided such that the first day of shedding up to and including the last day where C1 

appeared are assigned cluster C1, subsequent days are assigned C2 up until the end of 

shedding, and so forth for >2 cluster identities. 

 

Completely missing  

Here we make a further distinction between cases that are part of a household 

outbreak that has some genetic information, and those that are not. Cases in a 

household will be assumed to be in the same outbreak if, either there is an overlap in 

shedding period, or the time between end of shedding of one case and onset in 

another is ≤5 days. Cluster assignment will proceed as follows: 

 

• Cluster assignment for cases that are part of a household outbreak with at least 

one sequence will depend on the identity of the closest temporal known 

cluster in the household outbreak. If there is more than one cluster option, this 

case is left unassigned. The assignment is done sequentially beginning with the 

case with the earliest onset. Given that this is a deterministic process, these 

assignments are maintained throughout the fitting process.  

 

• Cluster assignment for cases that are part of a household outbreak with no 

sequence information. For such cases, the cluster assigned to the entire 

outbreak is inferred along with model parameters. The option of possible 

cluster assignment is chosen from the pool of possible clusters. Cases left 

unassigned by the previous step also have their cluster identity inferred.  
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A spatial-temporal clustering algorithm was attempted using a distance metric similar 

to 43. To validate the algorithm, we blinded the algorithm from known clusters, and 

had it impute them. Over 50% of the time, the algorithm failed.  

 

We also investigated if within cluster variation is informative of transmission events. 

There is evidence that the clustering pattern mimics closely the household structure41 

and in such a case, the model might not learn much from the genetic clustering alone. 

We therefore derived genetic distances between cases in the same cluster, which were 

used to weight the transmission link between said cases.  

 

4.5.2. Deriving genetic distances between cases 

Consider a case i who had an onset after case j, both of whom have sequences. The 

genetic distance between case i  and j is obtained by comparing the first sequence 

available from case i and any sequence from j whose sampling time is closest to the 

first sequence from i. In the illustration below, this would mean comparing sequence 

Si,1 to Sj,2 to obtain genetic distance dgen(i,j). The phylogenetic analysis of Agoti et al 41 

found that long shedding episodes do not have drastically differing genetic sequences 

(<6 SNPs) as such it should not make a significant difference whether we compare 

sequences forward (Si,1 to Sj,2) or backward (Si,1 to Sj,1) in time. 

 

 

If either one or both of the cases do not have sequences, then the genetic distance is 

obtained from randomly sampling from the set of all pair-wise genetic distances from 

the specific genetic cluster. For cases with sequence data, dgen(i,j) is fixed, but for cases 

where one or both is missing sequences, dgen(i,j) changes every time the likelihood is 

calculated to reflect uncertainty. In this way only pairs of cases with sequence data 

Time	

Case	j	

Case	i	

t1	 t2	

Sj,1	 Sj,2	

Si,1	 Si,3	Si,2	
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contribute definitive genetic information to the parameter inference algorithm while 

the rest will not. We use nucleotide differences as the distance dgen(i,j). 

 

Once we have dgen(i,j), we then use this to obtain a genetic weight for the probability 

of a transmission event given by ÊZ→M = Y|v}EÀßÁ(M,Z)∗Ë where È is the rate of 

exponential decay and is estimated along with other model parameters. This function 

form results in a negative exponential relationship between the genetic weight and the 

genetic distance between a pair of cases. As part of uncertainty analysis, we will 

explore an additional function form where ÊZ→M  is a step-function such that ÊZ→M =

1	eR	dTCL(e, Í) 	≤ È, 0	_7ℎYu’eaY, where È now becomes a nucleotide distance cut-off 

for within cluster transmission that is estimated along with other model parameters.  

4.5.3. The transmission model 

We extend the model in Chapter 3 to track cluster-specific infection onset at the 

individual host level. We create 3 levels of hierarchy in pathogen identification within 

the model. At the top level of the structure is identification by pathogen type, at the 

second level is identification by RSV groups and at the third level is identification by 

genetic clusters within groups. This hierarchy is in place to allow estimation of some 

parameters at the pathogen level and others at the group level while identifying the 

infecting pathogen at the cluster level. The model in Chapter 3 had 2 levels of 

hierarchy.  

 

Similar to the previous model, everyone is assumed to be susceptible to RSV infection 

at the start of the outbreak, but the risk of infection is dependent on age. Once 

individuals have been exposed to infection, they enter a latency period that ranges 

between 2 to 5 days after which they become infectious. After the infectious period, 

individuals become susceptible to infection again, but the risk to subsequent infection 

is modified, i.e. RSV confers partial transient immunity that lasts as long as the 

outbreak is ongoing. This partial immunity is assumed to be different for heterologous 

group re-infection and homologous group re-infection. Individuals can get 

heterologous group co-infections, however, different from the model in the previous 

chapter, we explore if susceptibility to infection by RSV A is modified if an individual is 

currently shedding RSV B, and vice-versa.  
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Let’s denote the rate at which individuals get exposed to infection (rate of exposure) 

as 5. In our model, an individual can get infected by someone they share a household 

with or from a source outside the household, resulting in a two-component rate of 

exposure. In a simplified form, we have:  

 

 

5(7) = >: ∗ < =(7)
?@ABC?@DE

F + HI ∗ < =(7)
J@KKALMNO

P 

In the previous model, we represented infectious community contacts using a bell-

shaped curve that mimicked ongoing transmission dynamics. In this chapter, two 

changes are made to the community rate of exposure. First, we explore the possibility 

of transmission between sampled households by introducing a term in the rate of 

exposure representing risk from sampled neighbours. The risk from sampled 

neighbours is weighted by a spatial distance kernel which modifies the risk based on 

the spatial distance between individuals. Second, because we are now modelling the 

rate of exposure to a specific RSV cluster, deriving a bell-shaped curve to mimic 

outbreak dynamics for specific clusters is no longer appropriate due to the low number 

of some cluster specific cases that resulted in unexpected curve shapes. Details of the 

new formulation of the background cluster-specific community function can be found 

in the subsequent section. The rate of exposure now takes the form: 

 

 

5(7) = Ï: ∗ < =(7)
?@ABC?@DE
J@LNqJN

Ì + I ∗

⎝

⎜⎜
⎛

⎝

⎜
⎛

< =(7)
BqK¤DCE
LCMT?Ò@A⁄ ⎠

⎟
⎞
+ R(7)

⎠

⎟⎟
⎞

 

λ(t)	=	[baseline	household	rate	of	exposure	*	number	of	infectious	household	contacts(t)]

+	

[baseline	community	rate	of	exposure	*	number	of	infectious	community	contacts(t)]

λ(t)	=	{baseline	household	rate	of	exposure	*	number	of	infectious	household	contacts(t)}

+	

{baseline	community	rate	of	exposure	*	[number	of	infectious	neighbour contacts(t))	+	

background	community	function(t)]}
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In detail, we present the model by specifying the rate of exposure to a particular RSV 

cluster c acting on a susceptible person i from household h at time t, denoted 5M,?,J(7) 

as:  

 

5M,?,J(7) = óM,T(7) ‹mM,?(7)<UU_WX7Y?,J,Z→M(7)
Z¨M

+	n_oo_WX7YM,J(7)‡										…		(±≤	4.1) 

Where: 

óM,T(7) is the factor modifying exposure by recent group specific infection history, age 

and group specific shedding status at time t given by: 

 

óM,T(7) = exp yõú,?MBNQ=iRYj7e_i_Uea7_ulM(7)S +	õå,qTCQstY_tu_`vã,MS

+ õˆ,JA⁄⁄QóℎYddeit_a7X7`aM(7)SÑ 

 

UU_WX7Y?,J,Z→M(7) is the cluster specific within household exposure rate from 

infectious individual j present in the household at time t, and is given by:  

 

UU_WX7Y?,J,Z→M(7)

= 	 :T 	× 	]^(U_`aYℎ_cd_aefYM) 	× 	]g,MLhQ=iRYj7eke7lZ,?,J(7)S 	

× 	mZ,?(7) 

 

n_oo_WX7YM,J(7) is the cluster specific community (external to the household) 

exposure rate given by: 
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n_oo_Wea÷M,J(7)

= It 	

× 	]r,qTCQstY_tu_`vr,MS

⎝

⎜⎜
⎛

⎝

⎜
⎛
me,ℎ(7) < óXovcYd_xYetℎ‘_`u_Wea÷?,J,Z→M(7)

Í≠e,			Í	i_7	ei

	e′a	ℎ_`aY ⎠

⎟
⎞
	

+	Rj(7)

⎠

⎟⎟
⎞

 

Where: 

óXovcYd_xYetℎ‘_`u_Wea÷?,J,Z→M(7) is the cluster specific exposure rate from 

sampled infectious individual j present in a neighbouring household at time t, and is 

given by: 

óXovcYd_xYetℎ‘_`u_Wea÷?,J,Z→M(7)

= ]g,MLhQ=iRYj7eke7lZ,?,J(7)S 	× 	¯Qde,Í, ˘S 	× 	mÍ,ℎ(7) 

The parameter ˘  is the rate of exponential decay for the spatial distance kernel given 

by ¯QdM,˙, ˘S = 	 Y
}˚∗Eç,¸. 

 

The background community function  

We define a background cluster-specific rate of exposure, RJ(7), which affects 

susceptible individuals outside their household. This background function allows for 

introduction of new transmission clusters. The function form for a cluster c at time t is 

given as  

RJ(7) = ˝ + < YQN}˛ç,àSˇ

M	B?CEEMLT
pãŸ	JDABNC⁄	J

 

Where ˝ is the basic risk prior to any observed onsets and ! is the rate of exponential 

decay related to the time since onset of a case shedding cluster type c, ! is a measure 

of the rate at which the cluster might disappear from the community and "M,J  is the 

onset time of RSV cluster type c by person i. The parameters ˝ and ! are not cluster or 

group specific. The sum of the cluster specific curves has to add up to the group 

specific curve, otherwise using clusters could lead to an over or under representation 

of the background community exposure rate. To ensure that ∑RJ(7) = RT(7) we need 
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to normalize the cluster level curves such that their sum adds up to the group level 

curve.  A description of how this was done can be found in the appendix section A3: 

Supplementary appendix for Paper 2. 

 

Table 4. 1 lists all the parameters in the model and gives a brief description. Despite 

identifying the infection pathogen at the cluster level, we do not have any cluster-

specific parameters in the model. 

 

Table 4. 1: Model parameters and their descriptions 

Parameter 

(symbol) 

Parameter 

(name) 

Description 

øπ Prev.hom, 

Prev.het 

Coefficients modifying susceptibility to infection by a 

particular RSV group depending on infection history. 

Prev.hom estimates the effect of a previous homologous 

group infection, while Prev.het estimates the effect of a 

previous heterologous group infection 

øª Sus.age.2, 

Sus.age.3, 

Sus.age.4 

Coefficients modifying susceptibility to RSV depending 

on age. Sus.age.2 estimates the effect being in age 

group 1-4 years, Sus.age.3 the effect of group 5-15 and 

Sus.age.4 of group ≥15 relative to group <1 year. 

ø# Curr.het Coefficient modifying susceptibility to a particular RSV 

group based on shedding status of the heterologous 

group type 

ƒ∑ HH.rsv.a, 

HH.rsv.b 

Baseline rate of within household exposure by RSV 

group, per person per day.  

√Ω HH.size Coefficient modifying the amount of within household 

exposure by household size. HH.size estimates the 

effect of being in a large household(>8 inhabitants) 

relative to a small one 

$ Gen.rate For ÊZ→M = Y|v}EÀßÁ(M,Z)∗Ë the genetic distance kernel 

giving the genetic weight on probability of transmission, 

Gen.rate is the rate of exponential decay.  



 119 

√¥ Low.Sym 

High.Sym 

Coefficients modifying infectiousness by viral load and 

symptom status. Relative to being asymptomatic, 

Low.Sym estimates the effect of shedding low viral load 

and being symptomatic and High.Sym the effect of 

shedding high viral load and being symptomatic 

«∑ Comm.rsv.a 

Comm.rsv.b 

Baseline rate of community exposure by RSV group, per 

person per day. 

√æ Exp.age.2 

Exp.age.3 

Coefficients modifying the rate of community exposure 

by age group. Exp.age.2 estimates the effect being in 

age group 1-4 years and Exp.age.3 the effect of group 

≥5, relative to the <1-year age group 

% Dist.rate The rate of exponential decay for the spatial distance 

kernel given by ¯QdM,˙, ˘S = 	 Y
}˚∗Eç,¸ 		 

2,& Delta, 

Beta 

For the cluster specific background community function 

given by  

RJ(7) = ˝ + < YQN}˛ç,àSˇ

M	B?CEEMLT
pãŸ	JDABNC⁄	J

 

Delta(˝) is the basic risk and Beta(!) is the rate of 

exponential decay related to the time since onset of a 

case shedding cluster type c. 

 

Following from the rate of exposure is the probability of exposure to cluster c given an 

exposure event has occurred, expressed as: 

Probability of exposure = prob(any exposure event) * prob(exposure to cluster c) 

 M,?,J(7) = Q1 − Y|v}∑ �ç,§,à(N)'≠ S ∗ (
5M,?,J(7)

∑ 5M,?,J(7))≠
* 										…		(±≤	4.2) 

 

Where n+is the set of all clusters in a given RSV group. 

This formulation factors in the fact that on any given day, an individual can only be 

shedding virus from a single cluster, in the respective group, this can be seen in the 

shedding patterns shown in Figure 4. 5. The clusters are therefore competing for 
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susceptible hosts. Exposure events are mutually exclusive and distributed according to 

a multinomial distribution. We thus have  

,vu_‘(i_	Y|v_a`uY) + < vu_‘(Y|v_a`uY	7_	jc`a7Yu	j)
flDD	JDABNC⁄B

- = 1 

 

 

Assuming that the duration of latency can range from 0 to 5 days with probabilities [0, 

0,0.33,0.33,0.25,0.083] 44, we then have the following probability of onset at time t 

given no onsets or shedding until t: 

vM,?,J(7) =<ÕD M,?,J(7 − c)

Œ

Dœ–

 

Where L is the maximum latency period and ÕD  is the probability that the latency 

period is exactly c days. In this way, the genetic clusters are used together with the 

spatial/social clusters (households) and the latency distribution (which implicitly works 

based on temporal clusters) to make joint inference on transmission parameters. 

 

The likelihood  

Since the model is focused on the determinants of infection onset process, the data 

whose likelihood we are interested in is the onset data. Given the model described, 

the likelihood of an individual’s observed cluster c data is the probability of all the 

onsets, and days of no onsets where the individual was at risk of infection, i.e. not 

shedding RSV cluster c. For a particular cluster, this follows a Bernoulli distribution 

with probability vM,?,J(`). 

 

For i with no onset of type c: 

—M,J = 	“.1 − vM,?,J(7)/

0

Nœ.

 

Where T is the end of the observation period.  

For i with an onset of type c, the likelihood is give as: 

—M,J = ‹H “ vM,?,J(`)
A∈1LBCNBç,§,à

P ∗ H “ y1 − vM,?,J(X)Ñ
q∈flN2ç34ç,§,à

P‡ 



 121 

In this instance, to factor in the genetic data we modify the rate of exposure given in 

(Eq 4.1) such that: 

UU_Wea÷?,J,Z→M(7)

= 	 :T 	× 	]^(U_`aYℎ_cd_aefYM) 	× 	ÊZ→M 	× 	]g,MLhQ=iRYj7eke7lZ,?,J(7)S 	

× 	 	mZ,?(7) 

 

óXovcYd_xYetℎ‘_`u_Wea÷?,J,Z→M(7) = ÊZ→M × ]=,j,Í(7) 	× 	¯Qde,Í, ˘S 	× 	mÍ,ℎ(7) 

With this formulation, the genetic components of the model are dependent on the 

epidemiological in that they are not expressed independently in the likelihood function 

as is the case with modular approaches such as the kind implemented in the 

Outbreaker package5,6. We introduce ÊZ→M  into the rate of exposure equation as 

opposed to directly into the likelihood because for a given case, we are not making 

direct inference on the source of infection or the exact date of exposure: we consider 

all likely dates and sources given the latency distribution. 

 

The total likelihood is thus given by the product of —M,J  over all the genetic clusters and 

individuals in the data 

 

— = 	“‹“‹H “ vM,?,J(`)
A∈1LBCNBç,§,à

P ∗ H “ y1 − vM,?,J(X)Ñ
q∈flN2ç34ç,§,à

P‡
J

‡
M

 

4.5.4. Inference of model parameters and augmented data 

We used Bayesian inference to obtain estimates of the model parameters j= 

{Prev.hom, Prev.het, Sus.age.2, Sus.age.3, Sus.age.4, Curr.het, HH.rsv.a, HH.rsv.b, 

HH.size, Gen.rate, Low.Sym, High.Sym, Comm.rsv.a, Comm.rsv.b, Exp.age.2,Exp.age.3, 

Dist.rate, Delta, Beta} and the augmented data DA given the observed data D. In brief:, 

Bayesian inference results in an updated distribution of the parameter of interest 

(posterior distribution) given prior assumptions/knowledge of the parameter (prior 

distribution) and an expression giving the probability of a parameter value given data 

(likelihood) i.e. Ê(5|6,6fl) ∝ Ê(5) × 	—(5|6,6fl).  
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The adaptive MH-MCMC algorithm is a popular first step for a situation where the 

target distribution is not simple, and the dimension of the parameters is not small. As 

we have a total of 19 parameters this seemed a natural starting point. We assume that 

all the cases were observed but that for some of the cases, there is no information on 

the cluster id of the shedding episode, as such, the augmented data is the set of all 

shedding episodes whose cluster id was left unassigned by the imputation process 

previously described. These include cases that are part of household outbreaks with no 

genetic information and cases that are part of household outbreaks with more than 

one possible genetic cluster id. For cases that are part of an outbreak with no genetic 

information, a single cluster id is inferred for all the cases in the household outbreak. 

For a brief explanation of our implementation of MH-MCMC, see appendix section A3.  

 

We initiated 3 chains and set the algorithm to start adapting the proposal distribution 

based on accepted parameters after 10000, 15000 and 10000 iterations respectively. 

Burn-in was assessed visually after which the results of the three concurrent chains 

were combined to infer the posterior distribution. The three chains were run for 

250,000 iterations each. The parameters were estimated on the log scale. All the 

computation was done using the julia language45 (version 1.1) 46. The code is freely 

available under the GNU Lesser General Public License v3.0 and can be found at 

https://github.com/Ikadzo/HH_Transmission_Model. 

 

4.5.5. Highest probability transmission source 

Following the estimation of the posterior parameter distribution, we randomly 

selected a subset to determine infection sources for very case.  For every case 

observed in the data we identified the transmission source that had the highest 

likelihood given the data and a parameter set 5∗ sampled from the joint parameter 

posterior distribution (highest probability transmission source: HPTS). Consider a case i 

,with onset date TM
1. Given our assumption of a maximum latency duration of 5 days, 

we define a time window where potential infection could have occurred. For each day 

in the time window, potential sources of infection are {ΩM
.,ΩM

ï …ΩM
L} . An infection 

source is assigned if it gives the highest value of i's likelihood defined as “ the 

likelihood of i's onset date, infection date and infection source given sample 
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parameter set 5∗.  Further details of the likelihood function used to identify the HPTS 

can be found in appendix section A3.  A hundred parameter sets were sampled and the 

HPTS for each case established for each sample. From the distribution of 100 HPTS, the 

one with the highest frequency was selected as the source of transmission.  
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4.6. Results 

4.6.1. The data 

Prior to model fitting, we look at the patterns of the sequence data. The table below 

quantifies the missing data problem by giving the number of sequences available by 

RSV group, shedding episode, person and household. 

 

Table 4. 2: A summary of the distribution of sequences 

  RSV A RSV B 

No. Samples 250 306 

No. Samples with sequences 103 (41.2%) 88 (28.8%) 

No. Episodes 97 125 

No. Episodes with sequences 54 (55.6%) 54 (43.2%) 

No. People infected 88 113 

No. People infected with sequences 50 (56.8%) 53 (46.9%) 

No. Households 25 34 

No. Households with sequences 9 (36%) 15 (44.1%) 

 

Given the genetic clusters imported from the clades and sub-clades of Agoti et al 41,  

Figure 4. 3 and Figure 4. 4 show the distribution of pair-wise nucleotide difference 

between sequences in the same genetic cluster for RSV A and RSV B respectively.  

Figure 4. 5 shows the distribution of sequences across the temporal shedding patterns 

and the results of the cluster duration imputation previously described. 
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Figure 4. 3: Distribution of pair-wise nucleotide distances between RSV A sequences. 

Top row, the first distribution shows all the pair-wise distances, the subsequent figures 

show the distances by cluster.  

Pair−wise nucleotide distances between all 103 RSV A sequences 

Nucleotide distance

Fr
eq

ue
nc

y

0 10 20 30 40 50 60

0
10

0
20

0
30

0
40

0
50

0
60

0

Pair−wise nucleotide distances between  31  RSV A sequences in cluster  1

Nucleotide distance

Fr
eq

ue
nc

y

0 5 10 15 20 25 30

0
20

40
60

80
10

0
12

0

Pair−wise nucleotide distances between  10  RSV A sequences in cluster  2

Nucleotide distance

Fr
eq

ue
nc

y

0 2 4 6 8

0
5

10
15

20
25

30
35

Pair−wise nucleotide distances between  24  RSV A sequences in cluster  3

Nucleotide distance

Fr
eq

ue
nc

y

0 5 10 15 20 25 30 35

0
10

20
30

40
50

Pair−wise nucleotide distances between  5  RSV A sequences in cluster  4

Nucleotide distance

Fr
eq

ue
nc

y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

6

Pair−wise nucleotide distances between  33  RSV A sequences in cluster  5

Nucleotide distance

Fr
eq

ue
nc

y

0 5 10 15 20

0
20

40
60

80
10

0
12

0



 126 

 

 

Figure 4. 4: Distribution of pair-wise nucleotide distances between RSV B sequences.  

Top row, the first distribution shows all the pair-wise distances, the subsequent figures 

show the distances by cluster.  
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Figure 4. 5: Distribution of available sequences across shedding episodes (left) and 

the results of imputation of cluster durations (right).  

RSV A data is shown in the top row shows and RSV B is shown at the bottom. 

Imputation of cluster shedding durations was done for episodes that had at least one 

sequence, and for episodes with no sequences but that were part of a household 

outbreak with at least one sequence. 
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4.6.2. Inference on model parameters 

The median and 95% credible intervals of the 19 parameters inferred using the model 

and data with three levels of hierarchy in pathogen identification are shown in Table 4. 

3. The trace plots showing the results of the MCMC algorithm are given in A3: 

Supplementary appendix for Paper 2. Convergence was assessed visually and 

confirmed using the Gelman-Rubin-Brooks (GRB) statictic47.  

 

Table 4. 3: Median and 95% credible intervals for parameters estimated using the 

model with sequence data. 

Symbol Description Name Median (95% 

Credible interval) 

øπ Coefficients 

modifying 

susceptibility to 

infection by a 

particular RSV 

group depending 

on infection 

history. Prev.hom 

estimates the 

effect of a previous 

homologous group 

infection, and 

Prev.het the effect 

of a previous 

heterologous 

infection 

Prev.hom 

 

Prev.het 

0.4328 (0.2665, 

0.6727) 

0.5126 (0.2601, 

0.8985) 

ø# Coefficient 

modifying 

susceptibility to a 

particular RSV 

group based on 

Curr.het 0.9520 (0.2494, 

2.262) 
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shedding status of 

the heterologous 

group type 

øª Coefficients 

modifying 

susceptibility to 

RSV by age. 

Sus.age.2 

estimates 

modification to 

group 1-4 years, 

Sus.age.3 5-15 

years and 

Sus.age.4 ≥15 

years relative to 

group <1 year. 

Sus.age.2 

 

Sus.age.3 

 

Sus.age.4 

0.8804 (0.4997, 

1.616) 

0.2741 (0.1591, 

0.4946) 

0.1562 (0.08867, 

0.2852) 

ƒ∑ Baseline rate of 

within household 

exposure by RSV 

group, per person 

per day. 

HH.rsv.a 

 

HH.rsv.b 

0.02360 (0.0119, 

0.04361) 

0.02272 (0.01120, 

0.04196) 

√Ω Coefficient 

modifying the 

amount of within 

household 

exposure by 

household size for 

households of 8 or 

more relative to 

<8. 

HH.size 0.4457 (0.2892, 

0.6843) 

√¥ Coefficients 

modifying 

Low.Sym 

High.Sym 

2.1 (1.214, 3.67) 

4.437 (1.8, 8.959) 
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infectiousness by 

viral load and 

symptom status. 

Relative to being 

asymptomatic, 

Low.Sym estimates 

the effect of 

shedding low viral 

load and being 

symptomatic and 

High.Sym the 

effect of shedding 

high viral load and 

being symptomatic 

% The rate of 

exponential decay 

on the spatial 

distance kernel 

Dist.rate 207.7  (7.819, 

169100) 

$ The rate of 

exponential decay 

on the genetic 

weight function.  

Gen.rate* 0.0002631 

(0.000001027, 

0.003817) 

«∑ Baseline rate of 

community 

exposure by RSV 

group, per person 

per day. 

Comm.rsv.a 

 

 

Comm.rsv.b 

0.0003091 

(0.0001198, 

0.0008682) 

0.0003849 

(0.0001525, 

0.001072) 

√æ Coefficients 

modifying the rate 

of community 

exposure by age 

Exp.age.2 

 

Exp.age.3 

0.5311 (0.2179, 

1.221) 

1.64 (0.7705, 

3.386) 
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group. Exp.age.2 

for 1-4 years and 

Exp.age.3 for ≥5 

years, relative <1 

year  

2,& Parameters for the 

cluster specific 

background 

community 

function.  

Delta 

 

Beta 

1.58 (0.5466, 

4.693) 

0.1929 (0.08315, 

0.7321) 

* Here Gen.rate is the rate of exponential decay. 

 

Previous infection reduces the risk of re-infection in the same outbreak by ~50% based 

on the estimates of Prev.hom and Prev.het parameters which measure the relative 

reduction in susceptibility to infection by a particular RSV group given previous 

homologous or heterologous group infection, respectively. Estimates of Sus.age.2, 

Sus.age.3 and Sus.age.4 imply an inverse relationship between age and susceptibility 

to infection. Households of 8 or more individuals have ~55% reduction in pair-wise rate 

of exposure within the household relative to smaller households, HH.size= 0.4457 

(0.2892, 0.6843). Symptomatic cases are 2-4 times more infectious than asymptomatic 

cases, Low.Sym = 2.1 (1.214, 3.67) and High.Sym = 4.437 (1.8, 8.959). The high 

estimate for the rate of exponential decrease in probability of transmission with 

increasing distance between households, Dist.rate = 207.7  (7.819, 169100), means 

that transmission between household for this study population is unlikely to have 

occurred, although the large credibility interval suggests that there is limited 

information for this parameter. Estimates of the rate of exponential decrease in 

transmission probability with increasing genetic distance (Gen.rate) parameter imply 

that within cluster transmission was nearly 100% likely regardless of the pair-wise 

nucleotide distances.  The uncertainty analysis where a genetic cut-off for transmission 

was estimated rather than a rate of exponential decay resulted in the same outcome 

(results not shown). Age is unlikely to affect the rate of exposure to infection from 
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sources outside of the household, Exp.age.2 and Exp.age.3, were estimated with 

credible intervals including 1.  

 

To validate the model, we simulated multiple epidemics and checked to see if the 

observed epidemic was captured by the range of simulated dynamics. Details of the 

simulation algorithm can be found in A3: Supplementary appendix for Paper 2. We 

sampled 12 sets of parameters from the posterior distribution, and for each set, 

simulated 100 epidemics. The results of these simulations are shown in Figure 4. 6 for 

RSV A and Figure 4. 7 for RSV B. In addition to comparing the time course of cases, we 

also looked at the total number of cases in an epidemic, the proportion of individuals 

with multiple onsets and the number of cases in the first and last week of the time 

period. These values from the data were compared to the range of simulated values to 

check that key aspects of the epidemic were being reproduced by the simulations. 

These results are shown in A3: Supplementary appendix for Paper 2. From these 

results, we concluded that the model sufficiently captured key aspects of the 

epidemic.   

 

 

 

Figure 4. 6: A comparison of simulated and observed data for RSV A.   
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Each panel shows the results of 100 simulations from a single parameter set. The grey 

lines show the simulated data while the black lines show the observed data. Time is 

shown on the x-axis while the y-axis shows the total number of people who are 

shedding at a given point in time.  

 

Figure 4. 7: A comparison of simulated and observed data for RSV B.   

Each panel shows the results of 100 simulations from a single parameter set. The light 

blue lines show the simulated data while the dark blue lines show the observed data. 

Time is shown on the x-axis while the y-axis shows the total number of people who are 

shedding at a given point in time.  

 

 

To assess the impact of increased resolution in pathogen identification on estimated 

parameters we compared the distributions of parameters estimated using RSV cases 

identified at the pathogen level, group level and cluster level. Figure 4. 8 shows the 

density plots comparing these distributions, details of the model modifications to 

allow fitting of group level data are given in appendix section A3. This figure shows 17 

of the 19 parameters in the model with genetic clusters, parameters Dist.rate and 

Gen.rate are not included. For parameters that are present in the model with group 

and cluster level identification but not in the model with pathogen level identification, 
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e.g. Prev.het, we used the corresponding parameter assumption, i.e. Prev.het = 

Prev.hom. 

 

 

Figure 4. 8: A comparison of the parameter distributions obtained from the model 

using different resolutions in pathogen identification.  

The green curves show the results using data at the pathogen level, the blue curves 

shows the group level and the pink curves show the cluster level. Each panel shows 1 

one of 17 shared parameters. 

 

The results show that for most of the parameters, the estimated distributions do not 

differ by the resolution in pathogen identification. The parameters measuring the 

effect of viral load and symptoms on infectiousness (Low.Sym and High.Sym) are 

estimated with increased precision when pathogen resolution is increased. The 
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distribution of the within household transmission coefficients shift slightly towards 

higher values with increased resolution both for RSV A and B (HH.rsva and HH.rsv.b) 

while the community transmission coefficient for RSV A (Comm.rsv.a) has a slight shift 

towards lower values. 

 

4.6.3. Highest Probability transmission source 

For each case in the data, we established the HPTS given a particular set of parameters 

and matching augmented data. For a particular case, the frequency of each HPTS 

across the sample was recorded and only the most frequent HPTS is show in the 

transmission networks in Figure 4. 9. Table 4. 4 gives additional characteristics of the 

transmission networks. 

 

Table 4. 4: Characteristics of the transmission chains inferred. 

 RSV A RSV B 

Number of cases 97 125 

Number of introductions into households (index 

cases) 

39 60 

Number of introductions leading to onward 

transmission 

13 23 

Number of infant cases 20 22 

Number of non-index infant cases 11 8 

Number of household outbreaks initiated by an 

infant 

3 9 

 

Thirty-nine out of ninety-seven (40%) of the RSV A cases were from sources outside of 

the household, while for RSV B 60 (48%) cases were are result of non-household 

exposures; 33% (13/39) of RSV A introductions into the household led to infection of 

other household members, as did 38% (23/60) of RSV B introductions; 55% (11/20) 

infant, children <1 year old, RSV A infections were acquired within the household as 

were 36% (8/22) infant RSV B infections. Of the 11 infant RSV cases that were infected 

within the household, 8 were infected by children aged between 2 and 13 years, 1 was 

infected by another infant , 1 by a 16-year old and 1 by a 37-year old adult. Five out of 
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8 of the infant RSV B cases infected within the household were infected by children 

between 2 and 13 years, 2 were infected by a 16 and 18-year-old while one was most 

likely infected by a 49 year old. Table 4. 5 gives the age distribution of index cases that 

led to other infections in the household (HH outbreaks) compared to the age 

distribution of index cases that did not. Household outbreaks were, more often than 

not, initiated by children below 13 years old (31 out of 36 index cases).  

 

Table 4. 5: Age distribution of index cases of household outbreaks. 

Index cases are clustered into 3 age groups and according to whether they led to 

onward transmission in the household or not.   

Age Group No. index cases leading to 

onward transmission 

No. index cases NOT leading to 

onward transmission 

RSV A RSV B RSV A RSV B 

 < 1 3 9 6 5 

 1 − 13 8 11 13 19 

 ≥ 13 2 3 7 13 

Total 13 23 26 37 
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Figure 4. 9: Transmission networks showing the highest probability source of 

transmission given by our model results.  

Each vertex is an RSV case labelled by individual study number (top) and age in years 

(bottom) and color-coded by household. Cases that are <1 year old are represented by 

square shaped vertices.  The width of the connecting edge is proportional to the 

frequency at which the particular source was identified as the HPTS given different 

parameter set values. 
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4.7. Discussion 

We carried out an analysis of data on the social-temporal and genetic pattern of 

spread of RSV in a group of households in rural Kenya followed up during a six-month 

study period covering the time frame of an entire RSV epidemic in the local area. 

Through systematically integrating all the available information of the infection 

episodes and host demographics, we were able to infer sources of infant infections. 

Fifty five percent of infant RSV A infections were acquired within the household, 

compared to 36% of infant RSV B infections. There were 8% more RSV B introductions 

into the household than RSV A, and a 5% difference in the proportion of introductions 

that led to onward within household transmission between the RSV groups. In this 

study population, there is evidence of differences in transmission dynamics between 

the two RSV groups, parts of which could be due to RSV B dominating in this particular 

outbreak. However, despite the seemingly slight transmission advantage of RSV B, a 

larger fraction of infant RSV A infections was acquired within the household. This 

points to the household not only being an important environment for RSV transmission 

in general, but possibly, more specifically, for infant RSV A transmission.  

 

This work is an extension of a previous analysis on social-temporal data32 that now 

incorporates the output of a phylogenetic analysis41 with the aim of utilizing all the 

available data from an outbreak to define transmission dynamics. In doing so, we also 

assessed the difference in model inference when different data resolutions were used 

for pathogen identification; resolution at the pathogen level (RSV), resolution at the 

group level (RSV A and RSV B), and resolution at the genetic cluster level (5 RSV A 

clusters and 7 RSV B clusters). We found that increased resolution did not dramatically 

change the distribution of estimated parameters. With resolution at the group level we 

had previously inferred possible niche separations between RSV A and RSV B based on 

the distribution of the transmission coefficients. The evidence of this was not 

overwhelming to begin with, and the slight change in parameter distributions as a 

result of increased resolution resulted in this line of evidence being lost. However, in 

both the present and previous analysis, a larger fraction of RSV A cases were acquired 

in the household relative to RSV B. In the present analysis, 60% of RSV A and 52% of 

RSV B infections occurred in the household. In the previous analysis, 40-59% of RSV A 
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and 26-48% of RSV B infection occurred in the household. As previously established in 

the social-temporal data analysis, households with less that 8 occupants had a higher 

pair-wise risk of exposure compared to larger household, increasing age had a 

protective effect on transmission as did previous infection in the same outbreak. 

Symptomatic cases with high viral load were more infectious than asymptomatic cases, 

the effect of which was inferred more precisely with the inclusion of genetic data.  We 

found that transmission between the households in this study was unlikely to have 

occurred, which is in line with the results of the phylogenetic analysis of Agoti et al41. 

Different resolutions of the data had different ways of suggesting a difference in 

transmission niche between RSV A and RSV A; the group data inferred overlapping but 

slightly different values for the transmission coefficients, the cluster resolution data 

inferred almost similar distributions for the transmission coefficients between RSV A 

and B, but RSV A was better transmitted to infants within the household. Respiratory 

syncytial virus is an important pathogen to the under 5 years olds, with <6 month olds 

experiencing the most severe disease burdens48. It is a ubiquitous pathogen that 

circulates in seasons which are not only characterized by a change in the dominant 

group type, but also changes to the genotype composition23,29. The slower mutation 

rates of RSV A49 could account for its niche being in young infection-naïve infants. In 

accord with this, White et al found evidence that RSV A is slightly more transmissible 

than RSV B50. Their study used a compartmental multi-strain model to fit data from the 

UK and Finland. From the household study that we analysed, we cannot state with 

certainty that there is a difference in transmission niche between the two groups, a 

study that incorporates information from different potential transmission hubs such as 

households, schools and workplaces would be better placed to do so.  

 

Increasing the resolution in pathogen identification did not have a drastic impact on 

estimated parameters; this could be due to the study design. Nasopharyngeal swab 

(NPS) samples to test for the presence of infection were collected twice a week every 

week for 6 months from all the participants present in the households at the time of 

the sample collection visits. This resulted in densely sampled detailed data that left 

little room for uncertainty in when individuals got infected. In addition, information on 

the social structuring of the population in the form of households provides information 

on some of the most frequent contacts each participant had. This level of detail is 
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likely why the addition of genetic information, whose clustering mimicked the 

household structure, did not lead to much further resolution on who might have 

acquired infection from whom, hence no significant changes in most of the inferred 

parameter distribution. This result should not have been surprising; Campbell et al in 

integrating genetic, temporal and contact data found that the contact data could 

replace the genetic data in a model trying to infer the transmission chains2. In their 

work, Kinyanjui et al highlighted the importance of mixing assumptions and social 

structure in models of RSV transmission51. This implies that good quality data on timing 

of cases and their most frequent contacts is key to be able to determine transmission 

characteristics of an infection. However, this could be limited to the type of infection 

under study and it should be borne in mind that contact data can be difficult to gather 

in the heat of an ongoing outbreak. In place of a detailed epidemiological study with 

dense sampling, integrating temporal and genetic data is the next best thing, 

particularly if the priority is transmission chain inference. A possible further analysis of 

these data would be to determine to what extent the genetic information can 

recapture the household clustering, i.e. to fit a model which does not include the 

household information. 

 

Through combining epidemiological and phylogenetic inference, our method was able 

to determine transmission chains within households with greater certainty than a 

preceding phylogenetic analysis by Agoti et al52. In general, the networks inferred from 

the present analysis did not contradict any of the inference from the phylogenetic 

analysis. However, for one of the infected infants the inferred source of transmission 

differed. We assigned individual 3806 as the source of infant 3801’s RSV B infection 

while Agoti assigned 3805. Both 3806 and 3805 were children of school going age and 

both had sequences that were 3 nucleotides apart from the closet temporal sequence 

from 3801. In addition to considering the social grouping, infection window and 

genetic cluster, our approach also considers the infectiousness of a potential source. In 

this case, 3806 had symptoms and a high viral load in the three days preceding 

shedding onset in 3801, while 3805 did not. Our model assigned 3806 as the infection 

source due to their higher infectiousness relative to 3805. Such an example highlights 

the strength in our technique in being able to incorporate all possible determinants of 

a transmission event. Despite the marked improvement in transmission chain 
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inference when combining an epidemiological and phylogenetic analysis, we did notice 

that our method has a propensity to infer super-spreaders, examples are infant 504 

who was implicated in infecting 10 household cohabitants and 3821 who seeded 7 

other infections. Though there might be some truth to these dynamics, based on the 

roles of the different members of the household, the model arrives at these networks 

based on the patterns in the available data. If all the criteria for a transmission event 

have been met, i.e. in the same genetic cluster, within a reasonable infection window, 

in the same household, a highly infectious potential source, then the model will create 

a link between cases. To tease apart true super-speared events from “convenience” 

networks, additional data on within household contacts would be needed to inform 

the model, data such as the kind collected by Kiti and colleagues53.  

 

This study is not without its limitations. Similar to previous work14,35,37, we used a two-

step approach in our application of phylodynamics.  This has the potential to lead to 

inconsistencies that would otherwise not occur with simultaneous inference of the 

evolutionary and epidemiological dynamics. However, given that we only used 

aggregated results of the phylogenetic analysis, in the form of clusters, and raw 

nucleotide distances as opposed to phylogenetic tree distances, we do not heavily rely 

on the exact results of the independent phylogenetic analysis. Using genetic clusters 

provides the advantage of being able to identify obvious separate introductions, a 

characteristic that can be difficult to account for in the models of simultaneous 

inference. In addition, given that the genetic clusters were generated using a 

combination of criteria makes it less likely that the wrong clustering pattern was 

inferred. As with previous work14, our two-step approach is more computationally 

tractable than a simultaneous-inference version of it would have been. We were able 

to include data from individuals who did not have genetic sequences and use a non-

trivial epidemiological model.  

 

Despite the fact that sequence data did not make a significant change in understanding 

overall transmission patterns for RSV in this study, we believe that there is still a lot of 

potential for phylodynamics in RSV. At a larger geographical scale, say country level, 

sequences collected over several months coupled with a stochastic transmission model 

of RSV could be used to determine patterns of spread within the country; answering 
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questions such as where are new strains of RSV introduced, how quickly to they spread 

across the country and what are the drivers of the spread. Sequences collected over 

several years coupled with a transmission model and social-demographic data on the 

host population could help determine what drives the replacement of RSV genotypes 

and what allows the co-existence of RSV groups; potentially giving a more definitive 

answer as to whether immune pressure plays a role in changes to the RSV genome in 

the short term. RSV has already been shows to have geographically different 

transmission patterns and potential drivers of seasonality 21,54, if a phylodynamics 

analysis reveals that there are also geographically different drivers of genotype 

replacement, this could have significant implications to vaccine development and 

effectiveness. Finally, improved surveillance is needed in order to get better data on 

RSV outbreaks. There is currently a spatial bias in the RSV sequences available in 

GenBank as Giallonardo et al reported 25, however, there is an ongoing WHO effort to 

develop a global RSV surveillance strategy55. 

 

In conclusion, we were able to integrate the results of a phylogenetic analysis with 

epidemiological data to infer that nearly half of the RSV infections in this study were 

acquired within the household. A significant portion of infant RSV infections occur in 

the household, more so for RSV A than RSV B, and a majority of these are a result of 

transmission from children aged between 2 and 13 years old. Vaccination of this age 

group would therefore provide indirect protection to the infant.  
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5. Paper 3: A multi-pathogen model of infection investigating 

potential interactions between respiratory syncytial virus 

and coronavirus. 

5.1. Overview  

This chapter presents an analysis based on an extension of the model first introduced 

in Chapter 3. As with the previous chapter, this chapter is written in the format of a 

publication and we intend to submit it to a journal with the running title: A multi-

pathogen model of infection investigating potential interactions between respiratory 

syncytial virus and coronavirus. 

5.2. Role of candidate  

I formulated the problem, conducted the numerical analysis and wrote the first draft 

of the chapter. Revisions were made with feedback, input and guidance from my 

supervisors Graham F. Medley and D. James Nokes and advisor Marc Baguelin.   
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5.3. Abstract 

Respiratory syncytial virus (RSV) is a common viral pathogen that causes a significant 

burden of respiratory disease in children. RSV circulates in seasonal patterns and has 

often been observed to co-circulate with other viral pathogens such as influenza, 

human coronavirus, rhinovirus etc. Often, viral pathogens are assumed to be 

circulating independently, ignoring any possible interactions between pathogens in the 

same ecological system. This could lead to a miss-representation of the true disease 

burden attributed to a particular pathogen and ill-informed projections of the effect of 

an intervention targeted at a single pathogen. In light of this, we extended a previously 

developed multi-strain model of RSV to include data on RSV and human coronavirus in 

order to investigate potential interactions at the individual host level and extend these 

to infer transmission dynamics of the two pathogens in a small population of hosts. We 

found that interactions between the two pathogens are specific to particular groups. 

RSV B interacted with coronavirus OC43 through increased susceptibility to 

heterologous pathogen infection, where the susceptibility to corona OC43 was 

increased by about 81% (95% CrI: 40%, 134%) following an RSV B infection. Though the 

results of this study are based on a small population of hosts, the inferred interactions 

imply that a vaccine that reduces the transmission of RSV would also reduce the 

transmission of coronavirus OC43 and its associated disease burden. Further studies 

are warranted to explore these and other interactions between RSV and other 

pathogens at a larger geographical and temporal scale.   
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5.4. Introduction 

Respiratory syncytial virus (RSV) is recognized as a major cause of respiratory disease 

in children less than 5 years old1–3. RSV has clear epidemic patterns that coincide with 

winter seasons in temperate countries, but has less definitive correlates of seasonality 

in the tropics4. Co-circulation of RSV with other pathogens is common especially 

adenovirus and rhinovirus, both of which tend to be year-round as opposed to 

seasonal 5–10. However, RSV and influenza have been shown to have similar epidemic 

timings during winter in temperate regions 8,9,11–13. In the tropics, it is not as clear 

which pathogens share similar epidemic timings with RSV, but observations have been 

made on co-circulation with human coronaviruses (HCoVs) and human 

metapneumovirus (HMPV)6,14–18.  

 

Given the ubiquitous nature of RSV and other respiratory pathogens, co-infections are 

common. In studies looking at the distribution of pathogens present in cases of 

respiratory illness, RSV-virus or RSV-bacteria co-infected samples represent a 

significant fraction of the total RSV samples5,7,10,15,19,20. The effects of viral co-infections 

in general are not clear. Some studies report co-infections being associated with 

increased disease risk10,21,22, others do not find any associations 23,24, while some have 

found an association with decreased disease risk25. Viral-bacterial co-infections do 

have a clearer pattern of increased disease risk or severity26. Cases of respiratory 

illness co-infected with RSV and a bacterial pathogen have been associated with 

increase disease severity27–29. More specifically, when looking at Streptococcus 

pneumonia, Greenberg et al found that RSV more commonly occurs with non-invasive 

serotypes than invasive serotypes, hypothesizing that non-invasive serotypes do not 

typically cause disease unless there is a viral co-infection30. Further evidence of a 

facilitative relationship between RSV and bacterial pathogens has been found31–33. 

RSV-virus co-infections have been associated with increased disease risk or longer 

duration of hospital stay in some instances10,15,21,34–36, which could also be indicative of 

facilitation, but further evidence is warranted.  

 

Competitive relationships between RSV and other viruses have been proposed as 

explanations for the observed associations in data. Greer et al looked at data from 
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cases presenting with ARTI at hospitals and found an association between detection of 

RSV, rhino and HMPV and decreased detection of other viruses, implying 

competition37. The cases from this study were mostly children. Martin et al followed 

children in day-care for two years and characterized respiratory illness. Though 

adenovirus, human bocavirus (HBoV), HCoVs, HMPV and rhinovirus often occurred 

together, RSV and rhinovirus occurred together less frequently than would happen by 

chance, a signal of competition between the two38. Bhattacharyya et al found evidence 

of cross-immunity between paramyxoviruses, more so an immunizing effect of RSV, 

the strength of which increased with decreasing phylogenetic distance between 

viruses39. At a cellular level, Shinjoh et al showed competition between RSV and 

influenza38.  

 

Facilitative or competitive pathogen interactions can occur at a cellular and/or host 

and/or population level. Despite the biological and epidemiological evidence of RSV 

interacting with other pathogens, many mathematical models of RSV do not account 

for it. In fact, pathogen interactions are rarely accounted for in most studies of viral 

transmission dynamics, yet if there are important pathogen interactions that affect 

population level dynamics, models that do not take this into account could be 

erroneous in their analysis of individual viruses. Mechanistic mathematical models are 

powerful tools for gaining a better understanding of disease transmission. They can be 

used not only to investigate and quantify mechanisms of pathogen interactions, but 

also to predict the population level impact of an intervention against one pathogen 

that interacts with other pathogens in the same host population40. Multiple-pathogen 

models, in general, are not common. Statistical models that take into account co-

circulation of pathogens have been used to assign causality to cases of respiratory 

disease3,41. Asten et al looked at data on influenza like illness (ILI) spanning 10 years 

from the Netherlands and were able to establish, through regression, that a change in 

shift in the influenza A epidemic resulted in changes to the epidemics of other 

pathogens that usually circulate around the same time. When influenza A outbreaks 

occurred earlier, RSV outbreaks were delayed, and coronavirus outbreaks were 

intensified. RSV outbreaks in this dataset tended to start earlier than influenza 

outbreaks, as such when the influenza outbreaks were early and the RSV outbreaks 

late, they overlapped more42. In a recent systematic analysis of data from multiple 
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sites distributed across the globe, Li et al found that the global seasonal trend of RSV 

and influenza differed by both timing and length and despite RSV and HMPV having 

similar epidemic durations, they did not co-circulate in most countries, an observation 

which led to the hypothesis of a potential competitive interaction between RSV and 

HMPV. This analysis had the strong advantage of more study sites, hence more 

geographically representative data11. Merler et al used a simple compartmental model 

with homogenous mixing to explore the hypothesis that co-infection with an acute 

respiratory infection increased the transmissibility of pandemic influenza, leading to 

multiple waves of cases during an outbreak. Their model, which had no seasonal 

forcing, was able to produce output that was in agreement with data showing multiple 

waves of the 1918 Spanish flu43. Velasco-Hernández et al used a deterministic 

compartmental model to explore a hypothesis of a competitive interaction between 

RSV and influenza through super-infection, where influenza was treated as the 

superior pathogen capable of infecting hosts already infected with RSV. Their 

hypothesis was partially validated, using data from children <5 years old seeking 

treatment at a hospital in Mexico, despite that fact that their model needed further 

complexities to be more realistic44. Pinky et al built an ODE model to explore RSV and 

influenza viral kinetics at a cellular level. In the model, within a co-infected host, RSV 

and influenza were competing to infect cells in the respiratory tract. The model was fit 

to data of in vitro co-infection and then used to determine that the virus with the 

highest growth-rate will outcompete other co-infecting viruses and infect more cells, 

however, this competitive advantage could be surpassed if the slower virus had a 

higher initial inoculum or an earlier infection time. Single pathogen in vitro and in vivo 

models comparing influenza and RSV found that indeed RSV had a slower rate of 

spread from cell to cell and hence viral titres increased at a slower rate. In addition, 

the infectious cell lifespan was shorter for RSV than influenza 45,46. Multi-strain models 

are much more common with a huge volume of literature around models of 

influenza47. Models that look at the interactions between RSV groups are few and far 

between48. In a recent review, Opatowskia et al highlighted the importance of multi-

pathogen mechanistic models. They argue that once pathogen interactions have been 

adequately accounted for, then a more accurate picture of disease burden can be 

established and intervention programs can be better optimized40.  
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In studying the interaction between species, the level of the data is critical. Most of the 

previous studies have either been at the population level (looking at population level 

patterns) or the within-individual level. The data from the HH study enable us to look 

in detail at the individual level, i.e. the simultaneous exposure and transmission 

patterns in co-circulating viruses. In this study, we propose to use a mechanistic 

mathematical model that tracks infection at the individual host level to investigate 

interactions between different strains (groups) of RSV and endemic strains of human 

coronavirus (HCoV). This choice of pathogens was based on the fact that RSV and HCoV 

were the only pathogens whose identification was also at a group level for all the 

observed cases. Rhinovirus was typed in only 5 of the 47 households, while no typing 

was carried out for adenovirus. The most frequently circulating strains of HCoV are 

HCoV-OC43, HCoV-NL63, HCoV-229E and HCoV-HKU149. The four groups cause mild to 

severe disease and have often been observed to co-circulate6,14,50–52. As with RSV, 

children and the elderly are at an increased risk of symptomatic infection53,54. There is 

evidence that the strains differ by host age group55, symptoms56 and seasonality56. 

Repeat infections with HCoV are common6 and a recent phylogenetic analysis found 

evidence that changes to the HCoV-NL63 genome are not immune driven57. Similar to 

RSV, HCoV-NL63 has been shown to have a facilitative interaction with Streptococcus 

pneumoniae through enhancing its cell adherence58.  
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5.5. Methods 

5.5.1. Data 

We use data on RSV and human coronavirus (hCoV) shedding patterns collected from a 

household cohort study conducted in rural coastal Kenya within the Kilifi Health and 

Demographic Surveillance System (KHDSS) during the 2009/2010 RSV epidemic. A 

household was defined as a group of individuals living in the same compound who 

share a kitchen. Details of the study have been published elsewhere 6,59–62. In brief, the 

infant-centric study recruited household members using the criteria that the infant 

was born after 1 April 2009 (after the previous RSV epidemic) and had at least 1 older 

sibling less than 13 years old. Deep nasopharyngeal swab (NPS) samples were collected 

every 3-4 days regardless of symptoms, together with a record of clinical illness. The 

focus of the study was to investigate who infects the infant with RSV, however, three 

other pathogens were identified as frequently circulating in the study participants: 

rhinoviruses, adenoviruses and human coronaviruses with coronavirus further 

classified by group into 229E, OC43 and NL63. We did not include adenovirus and 

rhinovirus in the present analysis due to the lack of information on infecting virus 

species. This resulted in the observation of some shedding durations being as long as 

>60 days, which were probably re-infections by different species. Test runs were 

conducted with adenovirus and rhinovirus data in the model, but each time the 

inference algorithm failed to converge. Details of all the pathogens identified from the 

household study can be found in6. The data contain information from 493 individuals 

spread across 47 households whose dates of data collection span 180 days. 

 

In addition to the data on shedding and symptom status, there is information on 

presence or absence from the household. Given the discontinuity in the sampling, 

complete shedding, and presence/absence durations had to be imputed. This 

imputation process has been described in detail in A2: Supplementary appendix for 

Paper 1. In brief, a virus shedding episode is defined as a period within which an 

individual provided PCR positive samples for the virus that were no more than 14 days 

apart. Individuals are assumed to start shedding halfway between the last negative 

sample and the first positive sample of the episode, and they stop shedding halfway in 

between the last positive sample of the episode and the first negative sample. In the 



 158 

same way, complete presence/absence durations are imputed for all the days of data 

available for a particular individual. There are some instances where an individual was 

present but not sampled, as such, presence could not purely be identified by the 

availability of NPS samples. Imputation was chosen over data augmentation to ensure 

consistency across studies analysing the same household59,61,63. 

5.5.2. Transmission model 

To interrogate the data on any possible interactions between pathogens, we built a 

model that tracks infection with RSV and coronavirus at the individual host level. This 

model is a modified version of an earlier model that was used to analyse RSV A and 

RSV B data 64. We extend the logic applied to modelling multiple groups/strains of RSV 

to model multiple groups/strains of multiple pathogens interacting through modified 

susceptibility. Every group within a pathogen is treated independently, so for RSV with 

two groups, we treat RSV A and RSV B as distinct infectious agents and look for an 

interaction. In the case where we have RSV and coronaviruses, we have a total of 5 

infectious agents: RSV A, RSV B, corona 229E, corona OC43 and corona NL63. An 

individual is either susceptible to, or infected with, a particular infectious agent.  An 

individual who is currently not shedding any of the infectious agents is considered 

susceptible to all of them, if they are shedding one, say RSV A, then they are 

susceptible to the other 4, RSV B, corona 229E, corona OC43 and corona NL63. For a 

single infectious agent, we assume SEIS2 type dynamics where an individual is initially 

susceptible, they get exposed and go through a period of latency prior to onset of 

infectiousness after which they become susceptible again, but the susceptibility is 

modified as a result of having experienced an infection. Unlike in the previous models 

in Chapter 3 and 4. We do not assume an age effect on susceptibility, this is purely for 

computational reasons in order to reduce the dimension of the parameter vector. Also 

different from the models in the previous chapter is that fact that we do not fix the 

latency distribution. We assume that every pathogen has a gamma latency distribution 

with a specific mean and standard deviation (SD). The pathogen-specific mean and SD 

for these distributions are estimated along with other model parameters. 

 

We model the rate at which an individual i, is getting exposed to infection by infectious 

agent v at time t, denoted 5M,?,<(7). Individuals can get infected by someone they share 
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a household with or from a source outside of the household, resulting, as in previous 

model versions, in a two-part rate of exposure equation.  

 

5(7) = >: ∗ < =(7)
?@ABC?@DE

F + QI ∗ R(7)S 

The number of infectious household contacts is observed in the data while infectious 

contacts from the community are represented using a derived function. We use the 

same function form that was used in Chapter 4, We define an infectious-agent specific 

background rate of exposure, R<(7) given as  

R<(7) = ˝ + ∑ YQN}˛ç,=SˇM	B?CEEMLT	
MLhCJNM@L	<

 is the basic risk prior to any observed onsets and ! is 

the rate of exponential decay related to the time since onset of a case shedding 

infectious agent v, ! is a measure of the rate at which the infectious agent might 

disappear from the community and "M  is the onset time by person i. The parameters ˝ 

and ! are not infectious-agent or pathogen specific. 

Where δ is the basic risk prior to any observed onsets and β is the rate of exponential 

decay related to the time since onset of a case shedding infectious agent v, ! is a 

measure of the rate at which the infectious agent might disappear from the 

community and τi,v is the onset time of infectious agent v by person i. 

 

Unlike in the previous model iterations, we do not include the effect of household size, 

viral load and ARI, or age in the rate of exposure. As with the removal of age effects on 

susceptibility, this was also done to reduce the dimension of the parameter vector. 

The main aim of this version of the model is to investigate possible pathogen 

interactions.  

 

We model pathogen interactions through parameters that modify susceptibility based 

on infection history and current infection status. The interactions are investigated in a 

pair-wise manner. Say we have three infectious agents in the data, V1, V2 and V3. 

Susceptibility to V1 is modified based on previous infection with: V1 indicated by the 

parameter (uea÷.>.. vuYk.>.), V2 indicated by the parameter (uea÷.>.. vuYk.>ï) and 

!(#)		= [baseline household exposure rate * number of infectious household contacts(t)]

+

[baseline community exposure rate * background community function(t)]



 160 

V3 indicated by the parameter (uea÷.>.. vuYk.>?). The first modification is due to 

previous homologous infection while the second and third are due to previous 

heterologous infection. In addition, susceptibility to V1 is also modified if the individual 

is currently shedding V2 indicated by the parameter (uea÷.>.. j`uu.>ï) and V3 

indicated by the parameter (uea÷.>.. j`uu.>?). The same logic applies to modification 

of susceptibility to V2, V3 and V4. We assume that the modification to risk of V1 given 

previous or current infection with V2 = modification of risk to V2 given previous or 

current infection with V1, i.e. (uea÷.>.. vuYk.>ï) = (uea÷.>ï. vuYk.>.) and 

	(uea÷.>.. j`uu.>ï) = (uea÷.>ï. j`uu.>.). This greatly reduces the number of 

interaction parameters to be estimated. The effect of multiple infections by different 

infectious agents is cumulative, if at time t an individual has experienced and 

recovered from infection by V2 and V3 then their susceptibility to V2 is modified by a 

factor = Y(⁄MB@.Ÿâ.¤⁄C<.Ÿâ®	⁄MB@.Ÿâ.¤⁄C<.ŸA). The rate of exposure to a particular infectious 

agent (index v) is given for a particular individual, (index i) from a given household 

(index h) at a given day (index t) and is specified by the notation 5M,?,<(7).  The rate of 

exposure is given in equation Eq.5.1 and the variables are described in Table 5. 1. 

5M,?,<(7) = exp yõú(7) × BM,?,<(7)

+	õã × óM,?,<(7)Ñ

⎣
⎢
⎢
⎡

⎝

⎛mM,?(7) 	× 	:< < yóZ,?,<(7) × mZ,?(7)Ñ
Z¨M,			Z	ML

	M≠B	?@ABC?@DE ⎠

⎞

+ QI< 	× 	R<(7)S

⎦
⎥
⎥
⎤
…		(±≤	5.1)	 

 

Table 5. 1: Description of variables in the model 

Symbol Type Description 

i  Index Index of individual 

h Index Index of household 

v Index Index of the type of infectious agent 

t  Index Index of time in days 

p Index Index of the type of pathogen 
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D∫,∂,E(∏) Data Binary data variable indicating if an individual i is shedding 

infectious agent v at time t 

π∫,∂,E(∏) Data Binary variable keeping track of an individual’s infection 

history with respect to infectious agent v by time t. 

º∫,∂(∏) Data Binary data variable indicating if an individual is present in 

the household at time t. Absence from the household 

means that an individual was not present at the point of 

sample collection and thus in the model, they can only get 

infection from a community source and not from an 

infectious housemate (not sampled and not at household 

risk). Individuals who were present but not sampled are 

exposed to both household and community source 

transmission in the models (not sampled but at household 

risk).  

øπ 

 

Parameter Coefficients modifying susceptibility to infection by a 

particular infectious agent depending on infection history. 

The estimated effect could be due to previous 

homologous or previous heterologous infection. Applied 

to the categorical covariate Yi,h,v(t). The parameter name is 

risk.V1.prev.V2. 

øD Parameter Coefficients modifying susceptibility to infection by a 

particular infectious agent depending on shedding status. 

The estimated effect is due to heterologous infection. 

Applied to the categorical covariate Si,h,v(t). The parameter 

name is risk.V1.curr.V2. 

ƒE Parameter Baseline rate of within household exposure specific to the 

infectious agent. The parameter name is HH.V. 

«E 

 

Parameter Community transmission coefficient specific to the 

infectious agent. The parameter name is Comm.V. 

2,& Parameters  For the infectious-agent specific background community 

function given by  
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R<(7) = ˝ + < YQN}˛ç,=Sˇ

M	B?CEEMLT
MLhCJNM@L	<

 

Delta(˝) is the basic risk and Beta(!) is the rate of 

exponential decay related to the time since onset of a case 

shedding infectious agent v. The parameter names are 

Delta and Beta and they are not pathogen or infectious-

agent specific. 

FG,HG Parameters The mean I¤ and standard deviation J¤ of a pathogen 

specific gamma distribution used to approximate the 

distribution of latency durations. Different groups/species 

in a single pathogen are assumed to have the same 

latency distribution. Latency durations are used in 

calculating the probability of onset given exposure.  

»∫,∂,E Data Set of all days where individual i has an onset of infection 

with infectious-agent v. Only includes the first day of 

shedding for each infection episode. 

…∫,∂,∑ Data Set of all the days where individual i is at risk of infection 

with infectious-agent v, i.e. they are not currently 

shedding v. 

 

Following on from the rate of exposure equation are two additional nested equations 

that make up the model. 

 

 M,?,<(7) = Probability of infection following exposure per day i.e. individual 

enters the latent phase 

 M,?,<(7) = Q1 − Y|v}�ç,§,=(N)S			…		(±≤	5.2) 

ÊM,?,<(7) = Probability of starting to shed i.e. individual enters the infectious 

phase at time t given they did not shed until t. 

ÊM,?,<(7) =<ÕD,¤ M,?,<(7 − c)
Œ

Dœ–

			…		(±≤	5.3) 

Where L is the maximum latent period and ÕD,¤ is the probability that the latent 

period is exactly c days. We assumed that the latency durations follow a 
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discretized gamma distribution truncated at 7 days. Given that incubation 

periods have been estimated to range from 2-5 days65, we chose 0 to 7 days for 

possible latency durations. The mean and standard deviation of the gamma 

distribution are estimated for every pathogen p.  

Since the model is focused on investigating if pathogen interactions determine the 

infection onset process, the data whose likelihood we are interested in is the onset 

data for the different infectious agents. As such, we express the likelihood of an 

individuals observed days of onset for all infectious agents as: 

—M = 	“‹ “ ÊM,?,<(`)
A∈fiç,§,=

“ Q1− ÊM,?,<(X)S
q∈flç,§,=

‡
<

 

 

Where Ui,h,v is the set of days where individual i had an onset of infectious agent v  and 

Ai,h,g is the set of all days where i did not have an onset but was at risk of infection (i.e. 

not shedding infectious agent v). As with the previous iterations of the model, we 

assumed binomially distributed data. 

 

While fitting the data with the pathogens identified at the group level, the model has 

37 parameters, however, reducing the model to fit the data identified at the pathogen 

level results in 14 parameters. The parameters for the latency distribution 	I¤,J¤ were 

estimated once using the data identified at the pathogen level. The inferred values 

were then fixed for the model with pathogen identification at the group level.  

5.5.3. Parameter inference 

We used Bayesian inference to obtain estimates of the parameters. Adaptive 

Metropolis Markov Chain Monte Carlo was used to explore the parameter space 66. In 

brief, the method builds a Markov chain which allows us to sample from the posterior 

distribution P(φ|D) of the parameters given the data, where φ={	õú ,	õã,	:< ,	I<,	˝,!, 

I¤,J¤}. Normal distributions with large standard deviations were used as weakly 

informative priors for the log of all the parameters. The algorithm is initiated with 

narrow standard deviations in the joint parameter proposal distribution, which are 

adjusted after a specified number of accepted proposals.  
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We initiated 3 chains and set the algorithm to start adapting the proposal distribution 

based on accepted parameters after 25,000 iterations. Burn-in was assessed visually 

after which the results of the three concurrent chains were combined to infer the 

posterior distribution. The three chains were run for 250,000 iterations each. The 

parameters were estimated on the log scale All the computation was done using R 

software package (RStudio version 1.1.383 running R version 3.4.0 67). The code is 

freely available under the GNU Lesser General Public License v3.0 and can be found at 

https://github.com/Ikadzo/HH_Transmission_Model. 
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5.6. Results 

5.6.1. Data  

A summary of the distribution of cases by infectious agent is given in Table 5. 2. A 

majority of the onsets were due to coronaviruses with Corona OC43 having the highest 

number of onsets and Corona 229E the lowest. All the households in the study 

experienced at least one coronavirus infection, while 7 households did not get any RSV 

infections. There were some cases that experienced re-infections in each of the 5 

infectious agents considered. RSV A and RSV B had similar proportions of onsets that 

were re-infections (10.2% and 10.6% respectively), while of the coronaviruses, NL63 

had the highest proportion of re-infections (32.5%). RSV A had the highest proportion 

of onsets accompanied by an acute respiratory illness while HCoV 229E had the lowest, 

61% and 26% respectively. 

 

Table 5. 2: Summary of the data 

Infectious 

agent 

Number 

of onsets  

Number 

of onsets 

with an 

ARI 

Number of 

people 

infected 

Number of 

repeat 

infections 

Number of 

households 

infected 

RSV A 97 59  88 9 25 

RSV B 125 69  113 12 34 

RSV 208 119  179 29 40 

Corona-229E 133 34  119 14 30 

Corona-NL63 216 85  163 53 33 

Corona-

OC43 

260 118  215 45 44 

Corona 565 228 346 219 47 

 

 

Figure 5. 1 shows the temporal distribution of cases clustered by age group for ages <1 

year, 1-5 years, 5-15 years and >15 years. The number of individuals in the study in 

each age group increased by age, from 55 <1 year olds to 191 >15 year olds, however 

the number of onsets for each pathogen was highest in the 5-15 age group. Figure 5. 2 
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shows the distribution of shedding episodes for each individual that had a recorded 

onset. Despite the fact that there were hundreds of coronavirus cases, there were very 

few RSV-coronavirus co-infections. Figure A4. 1 in A4: Supplementary appendix for 

Paper 3. shows the distribution of shedding durations by infectious agent and 

pathogen.  

 

Figure 5. 1: Temporal distribution of cases for the 5 infectious agents clustered by 

age group.  

In each panel, the x-axis shows time in days while the y-axis shows the total number of 

infectious people. Top-left: The temporal distribution of all the cases in the data; Top-

centre: temporal distribution for all the cases <1 year old; Top-right: 1-5 year olds; 

Bottom-left: 5-15 year olds and Bottom-centre: > 15 year olds. 
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Figure 5. 2: Distribution of shedding episodes for coronavirus and RSV by household 

and time.  

The x-axis shows the time in days while the y-axis shows the individuals, where each 

notch is a single individual. The horizontal lines demarcate the different households. 

The labels on the y-axis are color-coded to separate the different households.   

 

5.6.2. Pathogen interactions 

This section of results aims to answer two questions: Are there interactions between 

RSV and coronavirus that can be detected from the data? Are these interactions 

detected at different scales of pathogen identification? To answer these questions, the 

data was fitted in two ways, first with identification of coronavirus and RSV at the 
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pathogen level, then at the group level. The comparable parameter densities that 

came out of this analysis are shown in Figure 5. 3 and Table A4. 1 in appendix A4. The 

trace plots showing the results of the MCMC algorithm are given in appendix A4. 

Convergence was assessed visually and confirmed using the Gelman-Rubin-Brooks 

(GRB) statistic 68. 

 

Starting from panel a) in the top row in Figure 5. 3, the risk of RSV infection given an 

individual has already experienced at least one other RSV infection in the present 

outbreak is reduced by about 40% compared to an individual who has no previous RSV 

infection. This reduction in susceptibility remains approximately unchanged whether 

infection is identified at a pathogen (solid black line) or group level (dashed coloured 

lines). However, the 95% Credible interval for the parameters estimated with the 

group level data now includes 1 on the fringes of the interval. The first interaction 

parameter in panel b) measures the reduce susceptibility to reinfection by a 

heterologous pathogen, i.e. risk of RSV given previous coronavirus and vice versa. Here 

there is a noticeable change in distribution when the pathogens are identified at a 

finer scale. When identification is at a pathogen level, the modified susceptibility is 

1.33 (95% CrI: 1.14, 1.57), which indicates and increased risk of infection. However, 

with identification at the group level, this effect is increased for an (RSV B - OC43) 

interaction to 1.81 (1.4, 2.34) and reduced for an (RSV A - 229E) interaction to 0.698 

(0.383, 1.17). These parameters are estimated such that the interactions are assumed 

to be symmetric, i.e. previous infection with RSV B increases the risk to subsequent 

infection with coronavirus OC43 and vice versa. However, the data shows that in 66% 

(40 out of 61) of the individuals who had an RSV B and OC43 infection, the RSV B 

infection preceded the OC43 infection. In individuals who had an RSV A and 229E 

infection, 59% (10 out of 17) of them had the coronavirus infection prior to the RSV 

infection. These shedding patterns are shown in  Figure 5. 2 and Figure A4. 2, Figure 

A4. 3, Figure A4. 4 and Figure A4. 5 in appendix A4. The other group level interactions 

have their distributions centred closer to 1, which implies no effect. The risk of 

infection with HCoV is modified given previous infection within the same epidemic, 

however, unlike with RSV, the direction of effect is not as clear, panel c). Previous 

infection reduces susceptibility to homologous group infection for OC43 

(risk.oc43.prev.oc43=0.58 (0.413, 0.79)) and NL63 (risk.nl63.prev.nl63=0.617 (0.438, 
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0.844)). The interaction between NL63 and the other HCoV groups appears to be of 

increased susceptibility, as the medians of the distributions are above 1, however, the 

95% Credible intervals do include one so the effect cannot be stated with significance 

(risk.229e.prev.nl63=1.1 (0.806, 1.46) and risk.nl63.prev.oc43=1.16 (0.914, 1.48)). 

 

 

The other interaction between RSV and coronavirus measured by the susceptibility to 

co-infection (risk.rsv.curr.corona) shown in panel d) does not have a strong signal 

regardless of the level of pathogen identification, the distribution of the estimated 

parameters are either centred around 1 or have a wide credible interval. The values of 

the within household transmission coefficients are dependent on the level of pathogen 

identification. For RSV (HHrsv) shown in panel e), when identification is at the 

pathogen level, the value is 0.0038 (0.00291, 0.00508) while identification at the group 

level increases the within household coefficient for RSV A to 0.00544 (0.00379, 

0.00758). The change in distributions with increased pathogen resolution is also 

observed when looking at the coronavirus within household transmission coefficient 

(HH.corona) shown in panel f). In general, coronaviruses had higher values for the 

within household transmission coefficient than RSV (HH.229e=0.00795 (0.00577, 

0.0108), HH.nl63 = 0.0117 (0.00939, 0.0145) and HH.oc43 = 0.00547 (0.00428, 

0.00681), compared to HH.rsva = 0.00544 (0.00379, 0.00758) and HH.rsvb = 0.00408 

(0.00282, 0.00555)). The distributions of the community transmission coefficients have 

a narrower credible interval when identification of the pathogen is at the group level; 

however, the distributions of the individual groups are not too different from each 

other whether looking at RSV (Comm.rsva = 0.000186 (0.000101, 0.000317) and 

Comm.rsvb = 0.000217 (0.00012, 0.000357)) shown in panel g), or coronavirus 

(Comm.229e = 0.000242 (0.000132, 0.000398), Comm.nl63 = 0.000181 (0.0000996, 

0.000297) and Comm.oc43 = 0.000297 (0.000167, 0.000485)) shown in panel h). The 

parameters for the background community function are not significantly altered by the 

resolution of pathogen identification (Delta and Beta) shown in panel i) and j) 

respectively. 
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Figure 5. 3: Comparing parameter densities obtained from fitting the data at the pathogen level (solid black lines) to the 

densities obtained from fitting data at the group level (dashed coloured lines). 
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Estimates of the mean and standard deviation of latency distribution were derived for 

RSV and coronavirus. RSV had a mean latency distribution of 3.05 days (2.19, 3.7) and 

standard deviation of 0.683 (0.323, 1.21); coronavirus had a mean of 2.95 days (2.4, 

3.62) and standard deviation of 0.712 (0.518, 0.938).  

 

5.6.3. Modified pathogen inference 

This section of results compares the pathogen specific parameters estimated when 

independently fitting the pathogen (either RSV or coronavirus) to parameters 

estimated when fitting multiple pathogens (RSV and coronavirus). The results are 

shown in Figure 5. 4 for RSV and Error! Reference source not found. for coronavirus. 

The trace plots showing the results of the MCMC algorithm are given in appendix A4.  

For RSV, there are slight shifts in the distributions of the parameters for RSV B within 

household transmission coefficients (towards smaller values), and RSV A community 

transmission coefficients (towards larger values) when going from a single-pathogen fit 

to a multi-pathogen fit.  The shift observed in the parameters of the background 

community function (Delta and Beta) imply that when considering multiple interacting 

pathogens in a model, the basic risk prior to any observed onsets is higher and the rate 

of exponential decay of risk following observed onsets is much faster. The rates of 

exposure from within the household and from the community need to balance out in a 

way that explains the timing of the cases. Since Delta and Beta are not pathogen 

specific, the shift was probably necessary in order to explain the number of observed 

RSV and HCoV index cases in the data and subsequent cases in the same time window 

that were likely part of the same transmission chain as the index cases.  
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Figure 5. 4: Comparison of the RSV specific parameters obtained from fitting a single 

pathogen model (blue line) to those obtained from fitting a multi-pathogen model 

(black line). 

 

For coronavirus, fitting of multiple interacting pathogens results in slight shifts in the 

distributions of some of the parameters, while the parameters that define the 

background community rate of exposure (Comm.229e, Comm.nl63, Comm.oc43, Beta) 

become better defined. Noticeably, when fitting HCoV as a single pathogen the 

distributions for Comm.229e, Comm.nl63, Comm.oc43 and Beta appear to be bimodal. 

It is worth noting however that the model with HCoV data took a lot longer to 

converge relative to the version with RSV data. Increasing the number of iterations to 

400,000 resulted in an increase in the effective sample sizes, however it did not 

resolve the bimodal distributions observed for these parameters as seen in Figure 5. 5. 
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Figure 5. 5: Comparison of the coronavirus specific parameters obtained from fitting 

a single pathogen model (pink line) to those obtained from fitting a multi-pathogen 

model (black line). 
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5.7. Discussion 

We extended a multi-strain individual level transmission model of RSV to be able to fit 

data from multiple pathogens and investigated the interactions between RSV and 

coronavirus. The two pathogens interacted through modified susceptibility and we 

found evidence that RSV and HCoV interacted through increased susceptibility to 

heterologous pathogen re-infection. With increased resolution at the group level, this 

effect was only significant for the interaction between RSV B and OC43 where previous 

infection with RSV B increased an individual’s susceptibility to coronavirus OC43 by 

about 81% (95% CrI: 40%, 134%). Though the modification to susceptibility was 

assumed to be symmetric, i.e. modified susceptibility to RSV B given previous OC43 

equals modified susceptibility to OC43 given previous RSV B, the pattern in the data 

was such that RSV B infections preceded OC43 infections 66% of the time. The exact 

mechanism of this facilitative interaction between RSV B and HCoV OC43 is unknown; 

differences in target host cells, immune response to infection or modification in host 

behaviour following infection could play a role in the observed dynamics. In vitro and 

in vivo infection studies coupled with models of viral kinetics would provide more data 

at different levels of interaction45,46.In addition to investigating interactions, we 

compared inference made when fitting data from a single pathogen to fitting data 

from multiple pathogens and found that though there were no drastic changes to the 

pathogen specific parameters, fitting more data did lead to better resolution in some 

of the parameter distributions, more so for HCoV. 

 

The data used in this study showed that 26-45% of coronavirus onsets were 

accompanied by an acute respiratory illness, with OC43 having the higher case-disease 

ratio. Though this is not as high as for RSV, 55% for RSV B and 61% for RSV A, it is still 

significant evidence of the importance of coronaviruses as contributors to respiratory 

illness. Given our inferred interaction between RSV B and coronavirus OC43, it follows 

that if a vaccine against RSV was introduced leading to a reduction in RSV transmission, 

it could also lead to a reduction in coronavirus OC43 transmission and associated 

disease. Since there is no clear evidence of competition between the coronavirus 

groups, a reduction in OC43 transmission is unlikely to result in its replacement in 

dominance by the other coronavirus groups. In this case, the inferred pathogen 

interaction would lead to a positive unintended effect of RSV vaccination against 
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coronavirus. Such a scenario would not be novel. It has been shown that the effect of 

the measles mumps and rubella (MMR) vaccine has had an impact on measles related 

cases and non-measles related deaths. This is as a result of preventing measles 

infections which lead to immunomodulation making the host more susceptible to 

infections for up to 3 years after the measles infection 69. This is one significant 

example of how complex pathogen interactions can be, necessitating the need to 

consider viruses as potentially being linked to each other in order to fully understand 

their epidemiology.   

 

Previously, a different version of the model used in the present analysis was used to fit 

RSV data identified up to the level of genetic clusters (see Chapter 4). This analysis 

found evidence of an interaction between RSV A and RSV B where previous infection 

with either RSV A or RSV B reduced the risk of heterologous group re-infection by 

49%(95% CrI: 10%-74%). In the present analysis, this effect was not as clear as the 

estimates for the modified susceptibility included one. This could be a result of a 

difference in model assumptions or due to the increased resolution in pathogen 

identification. Even with such detailed data, the more pathogens that are considered 

together in the same system, the more interaction parameters are needed leading to a 

decrease in statistical power to make inference and an increase in computational 

demands. In moving from the model in Chapter 4 to the model presented here, 

parameters quantifying the effect of age, household size and viral load were forgone in 

order to estimate parameters that would allow inference on potential interactions.  

 

The results of this analysis must be considered along with its limitations. Interaction 

between the infectious agents was through modified susceptibility to heterologous re-

infections or co-infections. Other potential mechanisms of interaction such as modified 

infectiousness, modified duration of infection or ecological interference by way of 

modified behaviour following infection, were not explored. Ecological interference is 

unlikely to have a significant effect when considering transmission events within 

households70. Modified susceptibility is a common place to begin when investigating 

pathogen interactions39,48,71. While it is plausible that a combination of modifications 

could be contributing to observed pathogen dynamics, including all possible 

interactions could quickly lead to an intractable model, as such choices have to be 
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made on the system being represented by the model and conclusions should be drawn 

in light of the simplifying assumptions72. There is however evidence from this data set 

that pathogens could be interacting through modified duration of infection. Previous 

infection with other viruses was found to be associated with shorter RSV shedding 

episodes while co-infections were associated with longer shedding episodes61. It was 

assumed that the interactions between the pathogens were symmetric, effectively 

ignoring the order of infection events within a single individual. Though this is also 

assumed when using compartmental models that are fitted to data that span larger 

geographical and temporal scales39,48,71, it is often done due to a lack of suitable data 

to determine the order of infection with multiple pathogens. That is not the case with 

the household data used in the present analysis, as a first step to extend this analysis 

in preparation for publication, the symmetry assumption will be relaxed. It was also 

assumed that immunity following exposure to multiple pathogens is built up 

geometrically, i.e. if previous infection with pathogen X reduces susceptibility to 

infection by Y by a factor of 0.7 and previous infection with Z reduces susceptibility to 

Y by a factor of 0.5, then previous infection by X and Z reduced susceptibility to Y by a 

factor of 0.35. Making such an assumption for pathogens that appear to co-circulate is 

reasonable since the data has a record of infection history during the epidemic period. 

However, were it clear that one of the pathogens is significantly out of sync with the 

rest, then this assumption would not be appropriate. Instead, the model could be 

formulated such that only the most recent infection contributes to modified 

susceptibility72.  

 

The data spanned a relatively short temporal period of 6 months bringing into 

question whether the observations are generalizable across epidemics. However, the 

detailed nature of the data that captured repeat infections with different pathogens is 

a great advantage relative to cross-sectional studies that mostly capture single onsets 

making it difficult to explore pathogen relationships at the host level. Cross-sectional 

studies often have the advantage of capturing transmission dynamics at a larger 

temporal and geographical scale, such data is available from the same local area as the 

household data and has previously been used to fit a compartmental model73. A multi-

scale model that combines the individual level dynamics and extrapolates these to the 

population level would elucidate if the pathogen interactions observed at the 
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individual host level significantly impact transmission at the population level. The 

model was only fit to data from RSV and coronavirus onsets but there are other viral 

pathogens in circulation, most notably rhinovirus and adenovirus, both of which could 

have potential interactions with RSV, as well as unobserved bacterial infections. The 

choice in which pathogen to fit was based on the availability of pathogen identification 

at a finer scale. Rhinovirus has over 100 serotypes as such, treating it as a single 

homogenous pathogen is likely to lead to incorrect inference. All the households in the 

data experience at least one rhinovirus introduction, but only 5 of the 47 households 

in the data had the rhinoviruses typed74. In preparing this analysis for publication, a 

sub-analysis of 5 households will be included where three pathogens with 

identification at the group level are used to fit the model, RSV, HCoV and rhinovirus. 

Due to the relatively short study period, the circulation of other pathogens might have 

been missed, in particular the HMPV epidemic. Susceptibility to HMPV has been shown 

to be altered by an RSV infection39 which could explain why the epidemics were not 

observed to overlap. Such potentially competitive interactions warrant further 

exploration and extrapolation to a larger population of hosts. 

 

In conclusion, this study, to the best of our knowledge, presents the first dynamic 

multi-pathogen model of RSV and coronavirus group specific data. We show that 

interactions between the two pathogens are group specific, which could explain the 

contradictory observations from previous studies on the effect of RSV infection on 

other respiratory pathogens. Quantifying the level of interaction between pathogens 

and understanding how this influences the transmission dynamics of each could help 

to design optimized control strategies. Future studies should look at pathogen 

interactions at multiple levels such as cellular, individual host, etc., identifying 

parameters that could then be used in mechanistic population models of transmission. 

Most models assume viruses are independent, a factor that is unlikely to be true. 

There are challenges in determining the level and extent of interactions; however, 

pathogen interactions could shed light on long standing issues such as drivers of 

seasonality and pathogenicity.  
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6. Discussion 

Recognizing the importance of understanding the transmission dynamics of RSV, this 

PhD project was conceptualized with an aim to use an integrated data analysis to 

identify transmission chains within a household setting. The idea was to use all the 

data available on the shedding episodes and host social-demographic factors within a 

single modelling framework. A key determinant of the methodology that could be 

applied was the availability of genetic data. Naturally, this called for an investigation 

into the field of phylodynamics1,2. A review of the methods available revealed that 

applying any of the pre-existing methods that simultaneously infer ecological and 

evolutionary dynamics would be challenging due to the nature of the data. The genetic 

sequences were available at about half the sampling density of the pathogen-positive 

samples. It was therefore decided that a two-part analysis of the data would be more 

suitable beginning with the epidemiological data, then extending the model to include 

genetic information, similar to previous work3,4. 

 

The epidemiological data, consisting of timings of positive samples, viral load and 

symptom status, was modelled using a dynamic transmission model calibrated at the 

individual host level and time in days. RSV cases were identified by group either as RSV 

A or RSV B. The results of this primary analysis revealed that during the course of a 

single epidemic, individuals acquire partial immunity that is stronger against 

homologous group re-infection than heterologous. The existence of re-infections 

within the same epidemic is evidence that even in the short-term, immunity to RSV 

infection is not complete and this incompleteness was quantified as a 47% (95% CrI: 

17%-68%) reduction in susceptibility to homologous re-infection and 39% (95%CrI: -

8%-69%) reduction to heterologous.  An effect of increasing age on susceptibility was 

also inferred. Older individuals were less susceptible to RSV infection. This could be 

indicative of a lifelong partial immunity that builds up with repeated exposure, a 

mechanism previously explored by Weber et al5 and Kinyanjui et al6. However, it was 

assumed that exposure and hence infectious contacts occurred homogeneously with 

respect to age. This is not necessarily the case, as a recent study on household contact 

revealed7, as such the estimated age effects on susceptibility could include effects of 

age related contacts within the household. Nonetheless, these results imply that there 

are short-term and long-term immune dynamics against RSV. If vaccinations are timed 
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according to the seasonal patterns, models assessing the impact of such strategies will 

need to account for both the short and long-term dynamics. Individuals who were 

shedding large quantities of virus and had ARI symptoms, characteristics which have 

been found to be correlated8, were estimated as being more infectious than their 

asymptomatic low viral load counterparts. Simulations were run to assess the impact 

of a vaccine that worked by eliminating symptoms. These showed that such a vaccine 

would reduce the projected number of cases significantly. It has previously been 

shown that a vaccine that worked by reducing infectiousness and duration of shedding 

would have the highest impact9. Two unique findings came out of this analysis: firstly, 

households of less than 8 occupants were inferred as having an increased pair-wise 

risk of transmission; secondly, there was evidence that RSV A had a slight transmission 

advantage over RSV B in the household. The first observation could be the result of 

smaller households, as defined in this setting, being more likely to have fewer 

structures and as such members come into contact more freely, and therefore are 

more likely to infect each other. If so, then this means that social structuring needs to 

be considered when modelling transmission, or at a minimum, population density. 

High population density has already been linked to the generation of new RSV viral 

variants10 and household structure has been included in a dynamic model used to 

explore a joint maternal and cocoon vaccination strategy11. The second observation is 

not completely new; other studies have found evidence that RSV A is more 

transmissible than RSV B12,13, perhaps providing an explanation for RSV A dominating 

most outbreaks. Finding some evidence that RSV A and RSV B might have different 

transmission niches could point more to the ecology of the two groups and the 

mechanisms by which they manage to co-exist. 

 

The genetic information was included into the model by allowing further classification 

of the infecting virus into genetic clusters. These clusters were derived from a separate 

phylogenetic analysis14 and were used to create mutually exclusive pathogen 

identities. The model and inference technique were then adapted to include the 

genetic cluster information where available and infer it where it was not. Increased 

resolution in pathogen identification did not result in significant shifts in the 

distribution of estimated parameters, however, the weak signal of there being 

separate transmission niches for RSV A and B transmission inferred though differences 
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in the distribution of the group-specific transmission coefficients was lost. In inferring 

the transmission networks, which were refined by the pathogen resolution, I did find 

that despite RSV B being the dominant pathogen in circulation, RSV A was more 

successfully transmitted to infants in the household.  It was also shown that when 

infants were infected within the household, it was by a child under the age of 13 years 

which is supported by a household contact study that showed that children 6-14 years 

old frequently contacted children 0-5 years old in the same household7. Infants were 

also frequently found to be index cases in household outbreaks, this result taken 

together with observations from the previously mentioned household contact study 

that found children 0-5 years old were frequently contacted by adults outside of their 

households7, could point to childcare practices that are important in determining the 

source of infant infections.  Since the analysis by White et al15, there aren’t other 

publications that look into quantifying the interaction between RSV groups and 

inferring what such interactions mean for transmission dynamics.  Such studies could 

aid in gaining a better understanding of why the RSV groups manage to co-exist with 

RSV A being the more dominant pathogen. Why does RSV A not replace RSV B? 

Interactions between the RSV groups could be ecological and/or immunological, and 

disentangling these effects would result in a better understanding of transmission 

drivers thereby allow more effective control16. 

 

Following the results above, there was increased interest in identifying if RSV 

interactions within the household also occur with other pathogens. The model was 

adapted to fit data from two different pathogens, RSV and human coronavirus (HCoV), 

each identified at the group level. Coronavirus was classified as corona-229E, corona-

NL63 or corona-OC43. Given how frequently individuals in the study were infected 

with HCoVs, it was surprising that the frequency of RSV-HCoV co-infections was not 

more common than what was observed. Whether this frequency was less than what 

would be expected to occur if the pathogens were independent was investigated by 

estimating if susceptibility to RSV infection is modified if one is currently shedding 

HCoV, and vice versa. Whether susceptibility was altered depended on the level of 

pathogen identification. If all RSV shedding episodes were treated homogeneously and 

all the HCoV episodes were also treated homogenously, it was inferred that 

susceptibility was not altered; implying the lack of frequent co-infections was to be 
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expected. However, with pathogen identification at the group level, there was a 

combination of effects, with some pathogen group pairs showing reduced 

susceptibility and others showing increased. A similar effect was observed when 

attempts to infer if susceptibility to one pathogen was altered by previous infection to 

another. Interactions with RSV A seemed to result in reduced susceptibility while 

interactions with RSV B resulted in increased susceptibility. These observations could 

form part of the explanation as to why epidemiological studies investigating the effect 

of viral co-infections find conflicting interactions, with some reporting increased 

disease risk17–19 and other not20–22. However, these results should be interpreted with 

caution. A strong assumption was made by treating the interactions as symmetric, i.e. 

the effect of say previous RSV A infection on susceptibility to HCoV-OC43 was the same 

as the effect of previous HCoV-OC43 infection on susceptibility to RSV A. This 

assumption was made to reduce the dimensions of the parameters being estimated 

for computational efficiency and ease of interpretation. However, the results suggest 

that this should be challenged, and asymmetric relationships explored. Asymmetric 

fitting is beyond the scope of this thesis, however since the results of the multi-

pathogen fitting are intended for publication, this will be done prior to submitting to a 

journal. The analysis we presented in Chapter 5 only begins to scratch the surface of 

possible interaction mechanisms that could be driving patterns of pathogen 

transmission observed at the host level. A majority of models treat pathogens as 

existing independently, an assumption which has already been challenged by studies 

showing RSV replacement as a disease causing agent in the face of prophylactic 

treatment23, competitive interactions between RSV and influenza24,25, competitive 

interactions between RSV and human metapneumovirus (HMPV)16,26, and facilitative 

interactions between viruses and bacteria27–29. It is increasingly crucial for investigators 

to begin to consider multi-pathogen interactions even if the focus is just on one 

particular pathogen30. The challenge for such studies will be in determining the level 

and extent of these interactions. Models would become increasingly intractable with 

increase in the number of pathogens being considered. The resolution with which 

these pathogens are identified will also play a role in the consistency of inferred 

interactions. All these factors mean that a lot of data is required at different potential 

levels of interactions, within the host, individual host level and between host level.  
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The table below gives a summary of the three versions of the individual level dynamic model used in Chapter 3, 4 and 5.  

 

Table 6. 1: A summary of the three variants of the individual level model used to investigate transmission dynamics of RSV.  

The models are named according to the chapter in which they were presented.  

 Chapter 3 Chapter 4 Chapter 5 

Data • Social-temporal RSV shedding 

patterns where shedding episodes 

are identified by RSV group. 

• Individual’s demographics e.g. age 

• Social-temporal RSV shedding 

patterns. 

• Individual’s demographics e.g. 

age 

• Viral genetic sequence data in 

the form of genetic clusters used 

to further classify shedding 

episodes 

Social-temporal RSV and hCoV 

shedding patterns 

Analysis 

objectives 

To define transmission patterns for 

RSV  

• To define transmission patterns 

for RSV  

• To identify transmission chains 

and source of infant infections 

To investigate possible pathogen 

interactions between RSV and hCoV 

at the individual host level 
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Assumptions • Susceptible-Exposed-Infected-

Susceptible (SEIS2) RSV natural 

history 

• Infection from household and 

external unknown sources 

(community exposure) 

• Group-specific community 

exposure to infection can be 

represented by a bell-shaped 

curve estimated from household 

level incidence 

• Age, household size, viral load and 

symptom might affect 

transmission 

• Latency period ranges between 2-

5 days 

• Transmission between households 

in the study not explicitly 

modelled 

• Susceptible-Exposed-Infected-

Susceptible (SEIS2) RSV natural 

history 

• Infection from household and 

external unknown sources 

(community exposure) 

• Cluster-specific community 

exposure to infection can be 

represented by adding up an 

exponential function relating the 

rate of exposure to time since 

onset in every case. 

• Age, household size, viral load 

and symptom might affect 

transmission 

• Latency period ranges between 

2-5 days 

• Possible transmission between 

households in the study 

• Susceptible-Exposed-Infected-

Susceptible (SEIS2) RSV and 

hCoV natural history 

• Infection from household and 

external unknown sources 

(community exposure) 

• pathogen-specific community 

exposure to infection can be 

represented by adding up an 

exponential function relating 

the rate of exposure to time 

since onset in every case. 

• Pathogen-specific latency 

durations gamma distributed 

with mean and SD estimated 

from the data 

• Transmission between 

households in the study not 

explicitly modelled 
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Findings • Smaller households have a higher 

pairwise rate of exposure. 

• Increasing age estimated to 

reduce susceptibility to infection. 

• RSV confers partial short-term 

immunity more so against 

homologous group re-infections.  

• A vaccine that works to eliminate 

symptoms would have an impact 

on overall transmission 

• Estimates of the baseline rates of 

exposure within the household 

and at the community level for 

RSV A and B suggest a possible 

transmission niche for RSV A 

within the household. 

• Estimated 40-59% of RSV A and 

26-48% of RSV B cases occurred in 

the HH 

• Smaller households have a 

higher pairwise rate of exposure. 

• As with model in Chapter 3, age 

estimated to affect susceptibility 

and RSV infection estimated to 

confer short-term immunity 

• Inclusion of genetic data in the 

model resulted in slight shifts in 

the distributions of the baseline 

rates of exposure for RSV A and 

B, resulting in the evidence of a 

transmission niche from the 

previous model being lost 

• Increased precision in infection 

source attribution, estimated 

60% of RSV A cases from the HH, 

while 52% of RSV B were from 

the HH.  

• Pathogen interactions become 

cleared with increased 

resolution of pathogen 

identification, which could 

explain conflicting evidence of 

how RSV interacts with other 

pathogens from other studies. 

 

• RSV B and hCoV OC43 estimated 

to have a facilitative interaction 

where previous infection with 

one increases susceptibility to 

the other.  



 192 

 • Over half of infant RSV A 

infections contracted within the 

household, less so for RSV B 

• Where infant infections occurred 

in the household, often the 

source of infection was a child 

between the ages of 2 and 13.  

• Transmission between 

households in the study unlikely 

to have occurred.  

Limitations • Small sample size  

• Sampling frequency means short 

duration episodes might have 

been missed 

Used two-step approach in data 

integration which could introduce 

inconsistency in inferred dynamics 

• Assumed symmetry in pathogen 

interactions 

• Only used data from 2 

pathogens 

• Data represents short temporal 

window  

Recommendations Inclusion of other data types such as 

genetic data to further elucidate 

• Targeting school-aged children 

for vaccination would result in an 

• Pathogen interactions should 

not be ignored if we are to fully 
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transmission chains and clarify 

hypothesis of transmission niche. 

indirect protective effect on the 

infant 

• Though genetic data did not lead 

to a drastic change in the 

inferred transmission dynamics, 

its utility should not be ruled out 

in future studies conducted at a 

broader temporal and 

geographical scale 

• Inferred interactions between 

RSV A and B, and differences in 

transmission such as the 

observation that more RSV A 

infections occur in the household 

relative to RSV, warrant further 

investigations. 

understand their pathogen 

transmission dynamics. 

 

• Evidence of an interaction 

between RSV and hCoV 

warrants further investigation  
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In all the three main analyses presented in this thesis, it was considered that infection 

can occur within a household, through contact with an infectious household 

cohabitant, or outside the household (community level). The possibility of between 

household transmission as a source of community infection was considered in the 

model in Chapter 4, however there were numerous households in the study area that 

were not recruited, making the possibility of direct transmission occurring between 

the few that were sampled unlikely. It was therefore necessary to find a way to 

account for community exposure in order to allow introductions into the households. 

Two different approaches to account for this were implemented. In Chapter 3, a bell-

shaped incidence curve was fitted to primary onsets of household outbreaks and used 

as a proxy for the background community rate. This background function was derived 

at the RSV group level. In Chapter 4, it was no longer feasible to use this function with 

the identification of genetic clusters. This was because some clusters had such a low 

representation in the population of infected households that the background curves 

derived in this way took unexpected shapes. As such, a new function form was 

adopted that was based on the timings of cases infected with a particular cluster. The 

‘signal’ of the cluster in the broader community was assumed to wane exponential 

from the time of onset in an individual. Signals from all the individuals with onsets to a 

particular cluster were added up to give the total background community function. 

Though this formulation worked, it requires further validation. Accounting for 

exposure from sources outside of the household is crucial, if one community exposure 

can lead to a household member getting infected, it would be wrong to assume that 

this external exposure is not competing with exposure at the household level once 

infection is introduced. However, throughout all the analyses, the inferred pair-wise 

rate of within household exposure was much higher than the community rate of 

exposure. 

 

Depending on the definition of RSV disease, the efficacy and effectiveness of 

preventive measures may vary and be affected by population characteristics (genetic 

or otherwise) and circulation patterns31,32. This necessitates the understanding of RSV 

transmission dynamics at geographical scales that have generalizable seasonality, 

population demographics and infrastructure for implementation of vaccine policy. 

Kenya is a lower middle-income country in the tropical eastern coast of the African 
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continent. As with other tropical locations, the seasonality drivers of RSV are not well 

understood, however, the burden of disease due to RSV has been shown to be 

significant33–38, making a vaccine against RSV a subject of national interest. Though the 

results of this study are based on a small number of individuals, the characterization of 

the ecology of RSV calls for further investigations to determine the role of pathogen 

interactions and social-demographic characteristics in driving the observed viral 

seasonality patterns. Would an RSV vaccine need to be such that it prevents disease 

without disrupting the viral ecology so as not to elicit pathogen replacement?  

 

All the inference made in this work is based on data collected from a small fraction of 

the population. Due to the intense sampling of the individuals in the study, it was not 

feasible to extend follow-up to large groups of individuals due to constraints, the least 

of which is logistics. The results presented here must therefore be taken with the 

knowledge that it was not possible to characterize what was not observed, and 

transmission in a majority of the local area was largely unobserved.  In addition to the 

data being limited in geographical scale, there are also temporal limits to bear in mind. 

Data collection only covered six months of the year, meaning seasonality of viruses 

such as HMPV were missed, (which could also be another indicator of competition 

between RSV and HMPV). The strengths of such study designs are being able to 

observe infection dynamics at the individual host level, picking up on repeat infections, 

co-infections, asymptomatic infections and variations in the infecting pathogen. On the 

opposite end of the spectrum are studies such as those conducted by Li and colleagues 

that collated data from different sources to come up with a global picture of pathogen 

dynamics spanning several years26. Such studies are useful in being able to compare 

and contrast seasonality and therefore infer potential drivers, however, it is too course 

to infer factors such as the role of repeat infections. Depending on the purpose of a 

study, a balance must be found between the number of samples and the information 

content of each sample.  

  

In the analyses presented in this thesis, individual level dynamics were used to predict 

population level transmission dynamics, albeit in a small population. Due to the size of 

the population, it was possible to use individual-level mathematical models. Such 

models can become increasingly complicated and computationally intensive when they 
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are used to represent large heterogeneous populations. At which point a popular 

alternative is compartmental models that group hosts into several states. As a middle 

ground, multi-scale models are used to link individual level dynamics such as variation 

in infectiousness based on age of infection, to populations level transmission 

dynamics39. As more data on the characteristics of individual infections are becoming 

available, especially genetic data, such multi-scale models should concurrently 

increase in frequency. This naturally might mean an increase in complexity of the 

inference technique, requiring the use of advanced techniques such as particle filter 

MCMC40.  

 

This PhD project was conceptualized with a broad aim of gaining a better 

understanding of RSV transmission dynamics by interrogating different data types 

collected from a longitudinal household study. Specifically, I had four main objectives. 

The first was simply to conduct a review of the literature and identify the best way to 

integrate different data types into a single modelling framework. This review, 

presented in Chapter 2, was successful in identifying that the choice of method should 

be data driven, thus given the unique nature of the data, it was decided that the model 

will be focused on representing short-term (6 months) infection dynamics at the 

individual host. The model also focused on the most abundant type of data, social-

temporal shedding patterns, and used any other data types as enhancements. The 

second objective was to use all the available genetic data and epidemiological data to 

infer transmission dynamics and transmission chains within and possibly between 

households. The model was built-up in stages, first using the epidemiological (social-

temporal) data to infer transmission characteristics and then extending the model to 

include genetic data as a way to further clarify transmission clusters. These two 

versions of the model are presented in Chapter 3 and 4 respectively. Including genetic 

data in the model did not result in a drastic change in the inferred dynamics, possibly 

due to the study design, as discussed in Chapter 4. Despite the hypothesis of a 

difference in transmission niche between RSV A and B inferred in Chapter 3 from the 

distribution of parameters being nullified in Chapter 4, there was consistency in the 

fact that more of the RSV A cases were attributed to within household transmission 

than RSV B. The evidence for the existence of a transmission niche might not be clear, 

but the differences inferred between the two groups warrant further investigation. 
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The third objective was to identify the added benefit of viral genetic sequence data 

and provide advice on data collection for future studies. The use of genetic clusters in 

the model increased the certainty with which transmission clusters were inferred, 

therefore allowing more precision in some of the epidemiological parameters. 

However, given the relatively smaller sampling density of the genetic data compared 

to the social-temporal data, the utility of the former was not greatly observed in the 

model inference. However, I do not dismiss how informative viral genetic sequences 

can be and argue that at a larger temporal and geographical scale the insights gained 

from integrating genetic data with epidemiological data will be much more impactful. 

Finally, the integrated data framework was to be used to explore vaccination strategies 

and give information on target population, timing and frequency. Though I did not 

explicitly model vaccination, I did infer that targeting school going children would lead 

to indirect protection of the infant and that a vaccine would have an overall effect on 

transmission even if it only worked to eliminate symptomatic infections. The inference 

from the analyses presented in this thesis could be used in multi-scale model of 

vaccination that aims to translate individual level dynamics onto population level 

effects. Though it was not part of the main objectives, Chapter 5 presents the results 

of extending the model in Chapter 3 to fit data from multiple pathogens. The need to 

do so arose after the observations of the interactions between RSV A and B. Though 

the analysis had numerous simplifying assumptions, it was able to highlight the need 

to not only consider group/species interactions of the same pathogen, but also 

between pathogen interactions as they could have an impact on how effective and 

intervention will be.  

 

In conclusion, this thesis presents the progression of a data driven analysis that began 

with an aim of simply inferring transmission dynamics through integrating genetic 

sequence data and epidemiological data. Though this target was met, inference on the 

ecological dynamics of RSV groups and RSV with other pathogens was made. Evidently, 

there is an interaction between the two RSV groups and possible differences in 

transmission propensity within the household that require further investigation. 

Signals of possible multi-pathogen interactions also warrant further investigations and 

should serve as a precaution for future studies that treat RSV as a homogenous 

independent pathogen. During vaccine trials, samples should be taken to consider the 
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potential enhanced or reduced impact of a reduction in RSV transmission. Extensions 

of this analysis are possible on two fronts. First, integration of epidemiological and 

genetic data could be done at larger temporal and geographical scales to reveal 

interactions between ecological and evolutionary dynamics. The approach taken here 

was two-staged, avoiding simultaneous inference of the epidemiological and genetic 

models for computational reasons and due to restrictions in the data brought about by 

differences in sampling densities. However, much insight can be gained through 

simultaneous phylodynamic inference.  Second, future models of RSV could aim to be 

a combination of inference on the longitudinal short-term host dynamics, such as the 

kind inferred here in Chapter 4, and population level long-term dynamics such as the 

kind inferred by Kinyanjui et al6. Such models would not only be able to make better 

inference on interactions between RSV groups, but also interactions between different 

pathogens, and in doing so, be better placed to make predictions on the impact of an 

intervention strategy against one or more pathogens30.  
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A2: Supplementary appendix for Paper 1. 

A2.1. Imputing shedding durations, symptomatic episodes and viral loads 

 

An RSV A/B shedding episode is defined as a period within which an individual 

provided PCR positive samples for RSV A/B that were no more than 14 days apart. 

Sampling of the study population was done in intervals, as such, complete shedding 

episodes had to be imputed using the mid-point method described.  Shedding was 

assumed to start mid-way between the last negative sample and the first positive 

sample, and it ended midway between the last positive sample and the first negative 

sample of an episode. This is illustrated below: 

 

                   

 

Filled circles are positive samples in a single episode, empty circle are negative. t1, t2, t3 

and t4 are dates of sample collection. 

 

For (t4-t3) and (t2-t1) ≤7 days 

!"#$%&'( = *%+ + -
%. − %+

2
1 23 − *%4 − -

%4 − %5
2
1 23  

For (t4-t3)>7 
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For (t2-t1) >7 
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Where x=mean of sampling intervals for samples in an episode, which was found to be 

3.45 days.  

Any negative samples (Ct >35 or Ct=0) in between a shedding episode were ignored, 

i.e. were not treated like true end of shedding. Figure A2. 1 shows the distribution of 

imputed shedding durations for RSV A and RSV B episodes. 

 

L=t4 J=t3 I=t2 K=t1 

Time 

       L=t4 J=t3 I=t2 K=t1 

Time 
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Figure A2. 1: Distributions of imputed shedding durations for RSV A (left) and RSV 

(right)  

 

In order to include information of the amount of virus shed by an infected person into 

the transmission model, the Ct value need to be converted to log10 RNA copy number 

which is a more direct measure of viral load. The formula used to convert Ct values to 

their log10 RNA equivalent was y= -3.308x + 42.9, where y=Ct values and x=log10 RNA 

copy number[1,2]. 

Following conversion of the PCR Ct values to viral load, we proceeded to interpolate 

the viral loads for days in an episode that did not have data. Linear interpolation was 

used for all the shedding episodes. It was assumed that the starting and ending 

sample, if data was missing, had a viral load of 2.388 log10 RNA (baseline positive Ct 

value converted to viral load). For two samples of viral load Va and Vb at times ta and 

tb, tb > ta, the gap in between is filled out as follows:  

For tb – ta =n, viral load Vj at time point tj for j=1…(n-1) is given by 

 ;< = ;= +
<	(@AB@C)

E
 

Viral loads lower than 2.388 log10 RNA in between an episode were not included in the 

interpolation. Figure A2. 2 shows histograms of interpolated viral loads for RSV A and 

RSV B. 
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Figure A2. 2: Histograms of interpolated viral loads for RSV A (left) and RSV B (right). 

 

We define symptomatic as having an acute respiratory illness (ARI), which is defined as 

having at least one of three traits: cough or nasal discharge/ blockage or difficulty 

breathing. Within virus shedding episodes, we imputed complete ARI episodes from 

intervals of recorded ARI. A virus shedding episode that had no day where an ARI was 

reported was assumed to be asymptomatic. For a virus shedding episode with at least 

one day of recoded ARI, the duration of symptoms was imputed using the midpoint 

method described for shedding episodes. This is illustrated below: 

 

Green open circles are reported ARI symptoms (ARI positive) within the shedding 

episode and black open circles are confirmed absence of ARI (ARI negative). τ1, τ2, τ3 

and τ4 are days within the shedding episode where information on symptoms was 

collected. 

In this case, the mean sampling interval for ARI ‘samples’ within an episode was 3.78 

days. This was obtained from all ARI episodes not just the ones within shedding 

	-	o	-	-	o	-	-	o	-	-	o	-	-		
τ1	 τ4	τ2	 τ3	

Imputed	Shedding	duration	

Imputed	ARI	duration	

Time	
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episodes. Figure A2. 3 and Figure A2. 4 show the shedding patterns by RSV group and 

ARI status. 

 

 

Figure A2. 3: Shedding and ARI patterns for each of the 88 individuals who 

experienced at least one RSV A shedding episode.  

The y-axis shows the individuals with labels color-coded by household, time is on the x-

axis with zero indicating the day before the first sample was collected. The green dots 

show virus shedding and orange dots show the virus shedding days that were 

accompanied by an ARI. 
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Figure A2. 4: Shedding and ARI patterns for each of the 113 individuals who 

experienced at least one RSV B shedding episode.  

The y-axis shows the individuals with labels color-coded by household, time is on the x-

axis with zero indicating the day before the first sample was collected. The green dots 

show virus shedding and orange dots show the virus shedding days that were 

accompanied by an ARI. 

 

The imputation of continuous periods of presence or absence from the household was 

done similar to the imputation of shedding durations, however, there was no left or 

right censoring. Each participant had a set of days of recorded data, these days were 

either marked as ‘away’ or ‘present’ in the household, e.g. a participant might have 

data on days {32, 36, 39, 43, 46, 50, 53, 57} with status {away, away, present, away, 

present, present, away, present}. Since no data is available for this individual before 

day 32 and after day 57, no imputation is done outside this time window. For the days 

within the window, imputation is done as illustrated below: 
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Filled circles are days when the participant was recorded as being present while open 

ones is when they were away. The present period starts halfway between the last ‘away’ 

and first ‘present’ and ends halfway between the last ‘present’ and first ‘away’. 

A2.2. Extra results 

This section shows some additional results that are mentioned in the main text. 

Three chains with different starting points were used to generate the parameter 

estimates. The trace plots are shown in Figure A.5. Chain 3 was run in three parts each 

with a length of 50000, 100000 and 100000 respectively. The starting point of the 

second part was the end point of the first part, and so on for the third part. This was 

done in an attempt to reduce total computation time. The model runs were 

implemented on a cluster computer that appeared to be slowing down tasks that were 

taking up a lot of time and resources, as such, to try and work around this, the long 

chains were split up to give the impression of a new task. The Final results given after a 

burn-in of 80000 iterations exclude the re-start period seen between iteration 150000 

and 175000. However, including it does not make a significant difference to the 

inferred posterior distributions. 

t=32 t=36 t=39 t=43 t=46 t=50 t=53 t=57

Time

Present Present Present
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Figure A2. 5: Trace plots showing convergence for the 15 parameters of interest.  

Three chains with different starting points were used.  



 213 

 

 

 

Figure A2. 6: Caterpillar plot of estimated parameters.  

The 15 parameters estimated, and their respective effective sample sizes are shown. 

Points represent posterior medians, the thick lines represent 50% credible region and 

the thin lines represent 95% credible region. Except ηA	and	ηB	(within	household	

transmission	coefficients)	εA,	and	εB	(community transmission coefficients 

respectively) all the other parameters represent relative effects where a reference 

group exists. If a relative effect parameter is equal to 1(0 on the log scale) then the 

group it represents, and the reference group are not different. ESS is the effective 

sample size 
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Figure A2. 7: Comparing the total household rate of exposure 

7∑ GG.IJKLM,O,P→J
(R)PSJ 9 between small and large households.  

Each panel shows violin plots (combination of box plots and density plots) giving the 

distribution of the total household rate of exposure by total number of people 

infectious in the household at a given time point. The x-axis shows the total number 

infectious and the y-axis shows the value of the total household rate of exposure. The 

top row shows the linear relationship between total number of infectious individuals 

and total rate of within household exposure inferred from the parameter estimates for 

small households (left panel) and large household (right panel). The bottom row shows 

the same linear relationship, but with actual observed number of infectious household 

members. In this data set, small households had at most 6 simultaneously infectious 

household members while large household had 14.  
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Figure A2. 8: Correlation patterns of the different parameters obtained from fitting 

to the observed data.  

 

Table A2. 1: Results of fitting a reduced version of the model.  

We reduced the model such that there are no interactions between different RSV 

groups and refit the data in three additional ways: RSV A alone, RSV B alone and RSV 

with no distinction between groups. 

 

Parameter 

symbol 

Parameter 

name 

RSV A  RSV B  RSV 

 TU,MVW Prev.hom 0.444 (0.0194, 

0.963) 

0.547 (0.276, 

0.983) 

0.643 (0.423, 

0.978) 

 TXY	 Sus.age.2 1.01 (0.436, 

3.16) 

0.773 (0.263, 

2.99) 

0.919 (0.456, 2) 

 TXZ Sus.age.3 0.293 (0.134, 

0.821) 

0.234 (0.0866, 

0.859) 

0.294 (0.154, 

0.63) 

 TX[ Sus.age.4 0.187 (0.0829, 

0.534) 

0.129 (0.047, 

0.494) 

0.159 (0.0811, 

0.343) 
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η HH.rsv 0.021 (0.00544, 

0.0561) 

0.0101 

(0.000453, 

0.0343) 

0.0133 (0.00457, 

0.0311) 

 TG	 HH.size 0.337 (0.184, 

0.659) 

0.606 (0.285   

1.52) 

0.467 (0.277, 

0.847) 

 T\Y High.Asym 0.0401 

(0.0000626, 

1.72) 

0.243 

(0.0000662, 

18.1) 

1.03 (0.000126, 

6.36) 

 T\Z Low.Sym 1.91 (0.711, 

6.36) 

3.39 (1.20, 71.1) 2.17 (0.931, 

5.93) 

 T\[ High.Sym 7.28 (0.701, 

25.4) 

6.31 (0.885, 158) 8.76 (3.72, 23.5) 

ε Comm.rsv 0.00328 

(0.00159, 

0.00594) 

0.006 (0.00339, 

0.0096) 

0.00939 

(0.00588, 0.014) 

 T]Y	 Exp.age.2 0.335 (0.0745, 

1.46) 

0.815 (0.16, 

3.44) 

0.574 (0.187, 

1.65) 

 T]Z Exp.age.3 1.73 (0.548, 

5.26) 

2.13 (0.484, 7.6) 1.81 (0.712, 4.4) 

 

A2.3. Modification of the likelihood to establish the most likely infection 

source for every case. 

 

The rate of exposure in the model is give as: 

^_,`,a(%) = b_,a(%) cd_,`(%)eff_h&ij`,a,<→_
(%)

<S_

+	k'll_h&ij_,a(%)m 

This can be expanded to show all the variables and parameters as shown: 

^_,`,a(%) = exp7qr,`_st(%) +	qu,=av9 cd_,`(%)e7wa ∗ yz 	∗ 	y{,_E|9

<S_

+ 7}a ∗ ~a(%) ∗ y�,=av9m																				(1) 
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For a given case i, in order to be able to calculate the likelihood of infection from a 

particular source Ω_, either a sampled housemate or an unknown community source, 

we need to formulate the probability of transmission from said source at time t. This is 

given by:  

Ç#ÉÑ→_,`,a
(%) =

^ÉÑ→_,`,a
(%)

^
_,`,a

(%)
															(2) 

For Ω_  in the same household as i, the rate of exposure is given by  

^ÉÑ→_,`,a
(%) = exp -q

Ö,ℎ&i%
(%) +	q

á,$àâ
2 äd

&,ℎ
(%)w

à
y

&,f

y
ÉÑ,ã,&(~

(%)dÉÑ,ℎ
(%)å 

 

For Ω_  an unknown source external to the household, the rate of exposure is given by 

 

^ÉÑ→_,`,a
(%) = exp -q

Ö,ℎ&i%
(%) +	q

á,$àâ
2 6	}a ∗ ~a(%) ∗ y�,=av: 

 

The likelihood function 

The probability given in (2) is calculated for a time point t = exposure time of individual 

i, %
_

�. This is not observed in the data, however, given our assumption on the latency 

duration, we can define a 6-day window of possibility. If case i had a shedding onset at 

time ç
_

é, then the window for transmission is from day 7ç
_

é
− 59 to 7ç

_

é
− 09. For 

each day in the window, potential sources are identified based on shedding status and 

for each combination of infection source Ω_  and exposure date %
_

�, the likelihood is 

calculated using the formula below:  

 

ë(íì{ç
_

ï
, %
_

�
, Ω_

})

= -1 − â
BóÑ,ò,ô7tÑ

ö
9
2 ∗ õú â

BóÑ,ò,ô(tÑ)

tÑStÑ
ö

ù ∗ -ûü(ç_
ï
− %

_

�
)2

∗ †

^ÉÑ→_,`,a
(%

_

�
)

^_,`,a(%_
�
)

° 

 

The first part of the product is the probability of infection at time %
_

�, the second part is 

the probability of escaping infection at any time %_ ≠ %
_

�, the third is the probability of 
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a latency duration of length (ç
_

ï
− %

_

�
)	and the last term is the probability of 

transmission from source Ω_  to i. 

 

Given the likelihood, the highest-probability-source is chosen as the infection source 

that give the highest value of the likelihood.  

A2.4. Model validation  

This is a two part process: first we check if the parameters estimated can reproduce 

the results (or something similar) by simulation; then we check if given simulated data, 

we can re-estimate parameters that are similar to the ones used to simulate the data. 

This process is illustrated in the flow chart below. 

 

 

Figure A2. 9: Flow chart showing validation process 

 

Given a set of parameter values, the simulation pseudo code per simulation is as 

follows:  

 

1. Initiate system such that everyone one is susceptible to RSV A and RSV B.  

2. At every time step keep track of:  

a. Susceptibility status of every individual 

b. Exposure status 

c. Infectious status (viral load and infectivity group) 

Data	

Likelihood	of	model	
given	data	

Simulate	epidemics		using	
set	of	parameter	values	
from	the	posterior	(θ)	

Posterior	distribution	
of	parameters	

Model	building	

MCMC	

Compare	to	
data	

Sample	set	of	
parameters	from	
posterior	(θ*)	

Simulate	epidemic	

Estimate	parameters	
(θ’)	

Compare	θ’	
to	θ*	

Part	1	 Part	2	
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d. Infection history 

3. At every time step: 

a. Determine number of transmission events using  

∆§ = Ç'&ii'(õe(1 − â
B•=tvö,Ñ)

_∈ßö

ù 

ΔE =	number	of	events	of	type	E	at	a	given	time	point	

CE	=	set	of	all	individuals	capable	of	experiencing	event	E.	

rateE,i		=	rate	of	occurrence	of	event	E	on	person	i.		 

b. Determine who experiences each event. For a given event, order 

individuals capable of experiencing the event. For a given person p to 

experience the event, the following inequality has to be satisfied. 

 

e Ç�,_

_®©B5

_™5

	< õh¨≠!	 × e Ç�,_

_	∈ßö

ù 	≤ 	eÇ�,_

_®©

_™5

 

Where Ç�,_ = 1 − â
B•=tvö,Ñ  = probability of person i experiencing event 

E. RAND = a random number between (but not including) 0 and 1. This is 

illustrated in the figure below. 

 

 

Repeat this until the required number of events 

 

c. For each individual experiencing a transmission event, assign a latency 

duration and shedding profile by sampling from the relevant empirical 
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distributions. The empirical latency distribution is the same as was used 

in estimating the parameters and is homogeneous for every individual. 

The shedding profiles are grouped by age in the following 4 groups <1,1-

5, 5-15 and ≥15 years (see Figure A2. 10 and Figure A2. 11 for age 

grouped shedding profiles). An assigned shedding profile is a 

combination of duration of shedding, viral loads and symptom status. 

Once latency durations and shedding profiles have been assigned, the 

state variables for each individual are updated accordingly.  

d. Update rate of exposure.  

The rate of exposure/transmission for susceptible individuals changes 

according to  

^_`a(%) = exp	(quá_ + qraÖ_a(%)) cd_`(%)wa	qzf_eq{ã<`a(%)

<S_

+	q�§_}a~a(%)m 

Figure A2. 10 and Figure A2. 11 show the shedding profiles as observed from the data 

for RSV A and B, clustered by age and symptom status. 

 

Figure A2. 10: RSV A shedding profiles as observed.  

Each figure shows the viral loads on different days of shedding for each infection 

episode observed. The top row shows profiles for symptomatic RSV A shedding by age 

group in years, the bottom row shows profiles for asymptomatic RSV A shedding by 

age group in years. 
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Figure A2. 11: RSV B shedding profiles as observed.  

Each figure shows the viral loads on different days of shedding for each infection 

episode observed. The top row shows profiles for symptomatic RSV B shedding by age 

group in years, the bottom row shows profiles for asymptomatic RSV B shedding by 

age group in years. 

 

We sampled 5 sets of parameters (dependent sampling to maintain the correlations 

observed) and for each set simulated 200 epidemics to compare to the data. The 

sampled parameters relative to the posterior distribution are shown in Figure A2. 12. 

In addition to looking at the projected epidemics, we also look at the following 

outcome measures to make comparisons:  

- Total number of individuals infected  

- Total number of households infected 

- Proportion of individuals with repeat infections 

- Timing of epidemic peak 

 

Figure A2. 13 and Figure 3. 4 in the main text show the results of the simulations 

relative to the observed data. 
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Figure A2. 12: Histograms of the posterior distributions with vertical lines showing 

sample sets that were used in simulation.  

Each panel shows histograms of different parameters in grey. Red dashed lines show 

the value of the parameter in set1, dark pink shows set2, black set3, yellow set4 and 

blue set5. 
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Figure A2. 13: Outcome measures from simulated data when using different sets of 

parameters drawn from the posterior estimated from the observed data.  

Each box and whisker plot is the distribution of the specific outcome measure from 

200 simulations run from a single sampled data set. 

 

To check if the model can re-estimate known parameter values, we simulated an 

epidemic and compared the re-estimated densities to the densities given by using the 

observed data. Table A2. 2 gives the values of the parameters used to simulate the 

epidemic, Figure A2. 14 compares the real and simulated epidemics and Figure A2. 15 

compares the original and re-estimated parameter densities.  

 

Table A2. 2: Parameter set used to simulate an epidemic 

Parameter symbol Parameter name Set1 

 TU,MVW Prev.hom 0.544 
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 TU,M∞R Prev.het 1 

 TXY	 Age.2 0.662 

 TXZ Age.3 0.265 

 TX[ Age.4 0.138 

ηA Eta.A 0.026 

ηB Eta.B 0.0186 

 ±G	 hh.size 0.394 

  ±\Y HighAsym 0.356 

 ±\Z LowSym 1.77 

 ±\[
 HighSym 6.85 

εA Epsilon.a 0.00289 

εB Epsilon.b 0.00545 

 ±]Y	 Eps.age2 1.29 

 ±]Z Eps.age3 2.57 

 

 

Figure A2. 14: Comparing the real (red lines) and simulated( black lines) epidemics 
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Figure A2. 15: Comparing the posterior densities obtained from using the observed 

data to those from using the simulated data.  

The posterior densities from using real data are shown in red while the ones from 

simulated data are shown in blue. The dashed red line shows the value of the 

parameter used to simulate the epidemic. ESS is the effective sample size. 

 

The re-estimated distributions capture the parameter used to simulate the epidemic 

and in general fall within the ranges of the original distributions obtained from the real 

data.  

 

A2.5. Sensitivity analysis 

We check if our results were sensitive to the background community density function 

by exploring 3 additional function forms. The results are presented in the following 

three figures. Option1 shows the density curves used in the main analysis, Options 2,3 

and 4 show the curves used in the sensitivity analysis. The first additional function 

form was sampling switching the RSV A curve with the RSV B curve to check for 

sensitivity to peak epidemic timing. The second function, option 3, is curves generated 

from RSV A and RSV B hospital incidence from the same sampling period. The data on 

RSV admissions was obtained from the main referral hospital in the area. The curve in 



 226 

option 4 is a reverse of the curves in option 3, i.e. the RSV A curve was swapped was 

swapped with the RSV B curve.  

 

Figure A2. 16: Using different density functions for the background community rate 

and comparing results.  

The left side shows the density functions for RSV A and RSV B, the right side shows the 

re-estimated parameters after 20,000 iterations. 
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Figure A2. 17: Using different density functions for the background community rate 

and comparing results.  

Box plots comparing the estimated parameters. 
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Figure A2. 18: Using different density functions for the background community rate 

and comparing results.  

Density plots comparing the estimated parameters. 

 

We also looked at the distribution of cases by household size. In Figure A2. 19 we see 

that RSV A got into the largest household and infected significantly more people that 

RSV B. Looking at Figure A2. 20, it seems that all but one RSV A case were probably 

part of a single outbreak (based on perceived temporal distance). To check if this could 

be the reason for the difference in within household transmission coefficient 

estimated, we removed data from the largest household (HH5) and re-estimated the 

parameters. The results of this are show in Figure A2. 21 and Figure A2. 22. The slight 

difference between the RSV groups in the within household transmission parameter is 

still present.  

 

 

Figure A2. 19: Frequency distributions of RSV A and RSV B infections by household 

size 
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Figure A2. 20: Infection patterns in HH5 

 

 

Figure A2. 21: Caterpillar plot showing results obtained when household 5 data was 

removed from the set. 
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Figure A2. 22: Comparing densities of parameters estimates obtained when using all 

the data (light red) to densities obtained when using data without household 5 (light 

blue). 

 

A2.6. Checking the contribution of symptomatic and asymptomatic 

individuals 

In this section we show the results of simulations where infectiousness was altered, 

Figure A2. 23, and parameter estimation where only a subset of the data was used 

Figure A2. 24. For the simulation we compare three scenarios: Infectiousness of 

symptomatics and asymptomatics as given in the model parameters presented in 

Table 3; Infectiousness of the symptomatic individuals is reduced to match that of 

asymptomatic individuals (this is done so as to get an idea of what the effect of a 

vaccine that reduces symptoms would be); Infectiousness of asymptomatic individuals 

is assumed to be 0 such that they cannot transmit (this is done so as to get an idea of 

the contribution of asymptomatic infections to transmission). For each scenario, 10000 

simulations were used based on sampling 100 different parameter(and making the 

modifications necessary for scenario 2 and 3) sets and for each set simulation 100 

epidemics. 
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Figure A2. 23: Densities comparing the relative total incidence, by RSV group and age 

group, when the infectiousness of symptomatic individuals is altered or when the 

infectiousness of asymptomatic individuals is removed.  

The black line shows the distribution of total number of people infected from 10000 

simulations for estimated (unaltered) parameters scenario where symptomatic 

individuals are more infectious than asymptomatic. The red line shows the case when 

where the parameters used in simulation have been altered to force symptomatic 

individuals to be as infectious as asymptomatic individual (i.e. reduced infectiousness). 

The blue line shows when asymptomatic individuals are assumed to not be infectious 

at all. 

 

From the figure above we notice that the greater shift in the distribution of cases when 

infectiousness of symptomatics is reduced occurs in the 1-15 year old age group. The 

reduction in the <1 year age group is not huge, presumably because transmission to 

this age group is from several sources as such reducing the infectiousness of 

symptomatics has little impact on the total numbers infected during an outbreak.  We 

also notice that assuming asymptomatic cases are not infectious leads to far less 

number than were actually observed. This highlights the importance of asymptomatic 

individuals in transmission. 

 

Following on from the simulation, we used a subset of the data that had only 

symptomatic episodes to re-estimate the model parameters (this is done to give an 
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idea of how much information would be missed if the sampling had only been of 

individuals who showed symptoms). In this case, we still had days in the data with 

shedding, but no symptoms and ARI episodes are not necessarily as long as the entire 

virus shedding episode. 

 

 

Figure A2. 24: Caterpillar plot of estimated parameters when only data from 

symptomatic episodes is used.  

The 15 parameters estimated, and their respective effective sample sizes are shown. 

Points represent posterior medians, the thick lines represent 50% credible region and 

the thin lines represent 95% credible region. Except ηA	and	ηB	(within	household	

transmission	coefficients)	εA,	and	εB	(community transmission coefficients) all the 

other parameters represent relative effects where a reference group exists. If a 

relative effect parameter is equal to 1(0 on the log scale) then the group it represents 

and the reference group are not different.  Parameters where 50% credible interval 

overlaps with 0(dashed vertical line) are shown by open grey circles, where the 50% 

credible intervals do not overlap with 0 but the 95% credible interval does, filled grey 
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circles show these parameters. If there is not overlap with 0, the circles are black and 

filled. 

 
Figure A2. 25: Comparing densities of parameters estimates obtained when using all 

the data (light red) to densities obtained when using data from only symptomatic 

cases (light blue). 

 

A2.7. Fitting household size as an ordinal variable 

As the model was built up in stages, this section was done prior to the inclusion of 

symptom data; instead only viral load was used as a proxy to infectivity. To fit 

household size as an ordinal variable, the rate of exposure equation is as below 

^_`a(%) = exp	(quá_

+ qraÖ_a(%)) cd_`(%)wa(≠_ − 1)
B≤

eq{ã<`a(%)

<S_

+	q�§_}a~a(%)m 

The factor (≠_` − 1)
B≤ modifies the within household transmission coefficient, where 

Ni is the household size for susceptible i and ω determines that kind of transmission. If 

ω	à	0,	it	points	to	density	dependent	transmission,	ω=1	implies	frequency	

dependence.	The	estimation	of	ω	was	done	using	the	entire	data	set	and	again	

using	a	subset	where	the	definition	of	a	household	was	changed	such	that	a	

household	is	defined	as	individuals	who	share	a	building	unit.	The	results	of	this	

are	shown	below. 	
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Figure A2. 26: Caterpillar plot showing the results of estimating a parameter ω	

(omega)	when	household	size	is	treated	as	an	ordinal	variable.		

These results were obtained when fitting was done using all the data available. 
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Figure A2. 27: Caterpillar plot showing the results of estimating a parameter ω	

(omega)	when	household	size	is	treated	as	an	ordinal	variable.		

These results were obtained when fitting was done using a subset of the data that had 

complete information on building units and hence a household could be redefined as a 

building unit. 

 

Neither the entire data set nor the subset with redefined households seems to be able 

to give proper estimates of ω (omega). The distribution for this parameter is wide, but 

it should be noted that it does not include 1 (0 on the log scale) as such, the 

transmission is not frequency dependent in the usual notation. We also used the 

subset with redefined households to fit for a categorical effect of household size, the 

results of which are shown in Figure A2. 28. The subset does not have enough 

information in it to narrow down on the effect of categorical household size, the effect 

of previous heterologous infection and the effect of high viral load.  In fact, the latter 

distribution seems to have a reversed direction from previous results, implying high 

viral load reduces transmission. This is a curious result that perhaps further highlights 

the need to also use information on symptoms.  
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Figure A2. 28: Caterpillar plot showing the results of estimation	when	household	

size	is	treated	as	a	categorical	variable	but	with	the	definition	of	a	household	

changed.		

These results were obtained when fitting was done using a subset of the data that had 

complete information on building units and hence a household could be redefined as a 

building unit. 
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A3: Supplementary appendix for Paper 2. 

A3.1. Normalizing the cluster specific background community exposure rate 

curves 

We define a background cluster-specific rate of exposure, ~≥(%), for a cluster c at time t 

as  

~≥(%) = ¥ + e â
7tBµÑ,∂9∑

_	s`v∏∏_Ea

π∫@	≥üªstv•	≥

 

 

Where ¥ is the basic risk and º is the rate of exponential decay related to the time 

since onset of a case shedding cluster type c. º is a measure of the rate at which the 

cluster might disappear from the community. Ω_  is the onset time by person i. 

To ensure that ∑ ~≥(%)ßæ = ~a(%) we need to normalize the cluster level curves such 

that their sum adds up to the group level curve.  We describe how to do this using the 

illustration below: 

 

P1  x x x x x    

P2    x x x x x  

P3   x x x x x x x 

P4     x x x x x 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 

 

Say person P1, P2, P3 and P4 all have RSV A but there are 6 clusters in this particular 

configuration. The issue with multiple clusters showing up like above is that we get 

onsets where we previously had none which leads to ∑~≥(%) > ~a(%). By looking at 

RSV, we have 4 onsets at T2, T3, T4 and T5 respectively. By cluster we have 6 onsets, 

with an extra one at T5 and T8. Up until T4 ∑~≥(%) = ~a(%), at T5 we can normalize such 

that ~a(%¿) is divided proportionally among the 4 cluster. In normalizing, the absolute 

value is reduced, but the clusters are weighed appropriately. At T8, by looking at RSV 

we see no new onset, but by cluster we have one and so 

~a(%¡) = ¥ + (â
(t¬Bt√)∑	 + â

(t¬Btƒ)∑	 + 	â
(t¬Bt≈)∑	 + â

(t¬Bt∆)∑	) 
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 since the most recent onset was at %¿. At weighing, this value is divided proportionally 

among the red (~•v∏(%¡) = ¥ +	â
(t¬Bt√)∑	), black (~«ü=≥»(%¡) = ¥ +	â

(t¬Bt≈)∑	), green 

(à#ââ((%¡) = ¥ +	â
(t¬Bt∆)∑	), dark blue (~….«üªv(%¡) = ¥ +	â

(t¬Btƒ)∑	), purple 

~©ª•©üv(%¡) = ¥ +	â
(t¬Bt∆)∑	 and light blue (~ .«üªv(%¡) = ¥ + 	1	) clusters. The 

equation for the normalized function ~À≥(%) is given as: 

~À≥(%) = Ã¥ + e â
7tBµÑ,∂9∑

_	s`v∏∏_Ea

π∫@	≥üªstv•	≥

Õ × Ãe Ã¥ + e â
7tBµÑ,∂9∑

_	s`v∏∏_Ea

π∫@	≥üªstv•	≥

Õ

≥∈ß
æ

Õ 

An example of the shapes of the background community rate of exposure curves is 

shown in Figure A3.1 for the 5 clusters in RSV A and FigureA3.2 for the 7 clusters in RSV 

B. 

 

Figure A3. 1: The background cluster-specific rate of exposure curves for RSV A.  

The normalized fC(t) curves are shown for the 5 different clusters and the group. 
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Figure A3. 2: The background cluster-specific rate of exposure curves for RSV B.  

The normalized fC(t) curves are shown for the 7 different clusters and the group. 

 

A3.2 Further details on the inference method (MH-MCMC) 

A3.2.1. Metropolis-Hastings Markov Chain Monte Carlo (MH-MCMC) for 

parameter inference 

The MH-MCMC algorithm is a popular first step for a situation where the target 

distribution is not simple and the dimension of the parameters is not small. As we have 

a total of 19 parameters this seemed like a natural starting point. For a given 

intractable target distribution, the MH-MCMC algorithm creates a chain of auto-

correlated samples, for each desired parameter, whose equilibrium distribution is 

drawn from the desired target density. The samples that form part of the chain are 

proposed from a distribution q and are either accepted or rejected based on an 

acceptance probability ρ.	A	generic	MH-MCMC	algorithm	is	as	follows:		

For	a	desired	target	density	Œ(8),	where	x	is	the	set	of	parameters,	given	xn	(the	set	

of	parameters	at	iteration	n	of	the	chain):	

1. Generate	Yn	~	q(y|xn)	

2. Take	the	next	set	of	parameters:		

	 	Xn+1	=	Yn	with	acceptance	probability,	œ = min ”1,
‘(r’)÷7áEìÖE9

‘(u’)÷7ÖEìáE9
◊	

																											xn	otherwise 



 240 

 

For a symmetric proposal distribution where q(y|x) = q(x|y) the acceptance ratio 

‘(r’)÷7áEìÖE9

‘(u’)÷7ÖEìáE9
 reduces to 

‘(r’)

‘(u’)
 making the acceptance probability independent of q(.). 

However the choice of q(.) does determine the performance of the algorithm as such 

q(.) has to be carefully chosen. The conditional probability q(y|x) means that the 

samples in the MH-MCMC chain are dependent. Variations of the algorithm can use an 

independent proposal g such that q(y|x)=g(y). The construction of an appropriate 

proposal distribution can be difficult as such, an alternative to doing this is to slowly 

approach the target distribution by exploring the parameter space close to current 

values of the MH-MCMC chain. This is what the random walk MH-MCMC does. The 

algorithm for this is: 

1. Generate	Yn	=	xn	+	εn,	where	εn	~	g(.).	

2. Take	the	next	set	of	parameters:		

	 	Xn+1	=	Yn	with	acceptance	probability,	œ = min ÿ1,
‘(r’)

‘(u’)
Ÿ	

																											xn	otherwise	

If	g(.)	is	a	uniform	distribution	then		Yn	~	U(xn	-	δ,	xn	+	δ),	for	g(.)	a	Normal	

distribution	Yn	~N(xn,	σ2).	For	a	pair	(xn,	yn)	the	acceptance	ratio	will	be	the	same	

whether	yn	came	from	a	Uniform	or	Normal	proposal	distribution.	However	the	

choice	of	g(.)	does	determine	the	range	of	proposed	values	as	such	must	be	made	

such	that	the	boundaries	of	the	target	distribution	Œ(x)	are	explored[3].	However,	

in	practice	an	additional	condition	to	accepting	a	proposed	value	is	used	to	make	

sure	that	even	low	probability	regions	of	the	parameter	space	are	explored	and	

thus	represented	in	the	final	equilibrium	distribution.	If	œ ≠ 1,	generate	

#	~	€(&~'#l(0,1),	if	œ > #	then	the	proposed	value	is	accepted. 

 

A3.2.2 Our application of MH-MCMC  

We denote the observed data as D, the augmented data as DA and the set of 

parameters as í. The target distribution is given as ‹(í|!, !fi) =

Ç(!|!fi)ë(í|!, !fi)Ç(í); Ç(!|!fi) = probability of the observed data give the 

augmented data; ë(í|!, !fi) = the likelihood of the parameters given the observed 

and augmented data; Ç(í) = the prior probability of the data. The augmented and 

observed data are independent and we have no information to inform what the 
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missing cluster ids could be, making every combination of D and !fi equally likely. 

Consequently, we did not include P(D|A) when calculating the posterior probability.  

 

The parameters will be updated first, followed by an update of the augmented data. 

We will assume weakly informative priors in the form of a normal distribution with 

mean 0 and a standard deviation of ~3 for the log of parameters. There is only one 

move to update the data with a probability of occurrence =1, i.e. the updates to !fi are 

carried out at every iteration. Given the significant number of uninformed outbreaks, 

for the same set of parameter values, the likelihood value (and subsequently the 

posterior value) can vary drastically with new configurations of the missing cluster ids. 

This is very likely to lead to the proposed change in !fi being rejected and if it is 

accepted subsequent updates to the parameter values might get rejected even when 

the standard deviation for the proposal distribution is small. As such, to mimic a 

gradual change in cluster configurations, at every iteration of the MCMC algorithm, the 

random allocation of cluster ids will be done for one household outbreak at a time.   

A3.2.3.1. Choice of proposal distributions for the parameters  

For the parameter set í we will use a multivariate normal distribution as the proposal 

distribution. For iteration n in the chain a new set í∗ will be proposed such that 

í
∗
~≠'#l$‚(í

EB5
|Σ). The choice of the variance-covariance matrix Σ will determine 

the size of the space that is explored and how fast the MCMC chain converges. This 

can be fixed at the start of the algorithm and regular manual checks conducted to 

make sure the chain is progressing well and modifying Σ if it is not, e.g. by making sure 

the acceptance rate is not too high (implying the standard deviation is too low and 

thus only the very close neighbours of a current value are being explored, leading to 

the acceptance ratio being high most of the time and hence more accepted values) or 

too low (implying the inverse problem). Alternatively the modification of Σ can be 

automated through an adaptive random walk MH-MCMC algorithm. There are several 

adaptation algorithms [4], we will chose one that learns from the empirical distribution 

of values up to the (n-1)th iteration to modify the Σ at iteration n. For samples 

{í5, í4, í+, . . . íEB5
} in the MCMC chain so far, at iteration n the proposal density g(.) 

is given by 

  

àE(. ) = (1 − })≠(í
EB5

|2.38
4
ΣEB5/Á)) + 	}≠(í

EB5
|0.1

4
ΣË/Á) 
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Where: 

} =	A small positive constant, chosen to be 0.05 as in [4]. 

ΣEB5 =	The empirical variance-covariance matrix derived from samples 

{í5, í4, í+, . . . íEB5
} 

	Á =	The dimension of the parameter set 

ΣË =	The initial guess of the parameter variance-covariance matrix. This is 

usually a diagonal matrix of variances.  

 

This notation means for a fraction of the time (1 − }), the proposal distribution will be 

≠(í
EB5

|2.38
4
ΣEB5/Á)) and the rest of the time it will be ≠(íEB5

|0.1
4
ΣË/Á). Prior to 

adaptation beginning at iteration n, the proposal distribution at iteration k is given by 

à»(. ) = ≠(í
»B5

|0.1
4
ΣË/Á) 

 

A3.2.3.2 Pseudo algorithm for our implementation of MH-MCMC 

For each MCMC chain 

1. Set initial values for the parameters and assign cluster ids at random for the 

outbreaks with no sequence information (uninformed outbreaks). 

2. For every iteration n 

a. Update parameter values 

i. Propose a new set of parameters by sampling from the proposal 

distribution: í∗
~≠'#l$‚(í

EB5
|Σ) 

ii. Calculate the acceptance probability œ(íEB5
, í

∗
) =

min È1,

©-í
∗
Í!, !

fi

EB5
2

©-í
EB5

Í!, !
fi

EB5
2

Î	 

iii. If œ(íEB5
, í

∗
) > #~€(&~'#l(0,1) update íE

= í
∗ otherwise 

í
E
= í

EB5 

b. Update cluster id for a single uniformed outbreak 

i. Randomly select an uniformed outbreak from the set of 

uninformed outbreaks, all with the same probability of being 

selected. 
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ii. Given the present cluster id for the chosen outbreak k•, 

randomly select a new cluster id from the set of all possible 

clusters excluding k•. 

iii. With  ks as the proposed cluster id, the proposed change to the 

augmented data is accepted with probability  

œ′(!
fi

EB5
, !

fi

∗
) = min È1,

‹(í
E
|!, !

fi

∗
)	

‹(í
E
|!, !

fi

EB5
)	

|k•|

|k
s
| + 1

Î 

Where |k•| is the number of household outbreaks in k•  in the 

present  

permutation of the augmented data !
fi

EB5 and |ks| is the 

number of household  

outbreaks in ks.  

 

iv. If œ′(!
fi

EB5
, !

fi

∗
) > #′~€(&~'#l(0,1) update !

fi

E
, !

fi

∗ otherwise 

!
fi

E
, !

fi

EB5 

 The correction factor 
|ßÌ|

|ßÓ|Ô5
 is introduced into the acceptance ratio for a proposed 

change in cluster id because the proposal distributions are not symmetric. For an 

update of cluster id from CS to Cr, the proposed change is uniformly distributed over 

the set of all household outbreaks/cases in cluster CS that are part of the augmented 

dataset. Conversely the reverse move of a change of cluster id from Cr to CS is 

uniformly distributed over the set of all household outbreaks/cases in cluster Cr that 

are part of the augmented dataset. As such, the proposal distributions are dependent 

on the number of uniformed household outbreaks in each cluster. 

A3.3. Establishing the highest probability transmission source (HPTS) 

We modified the likelihood to establish the most likely infection source (HPTS) for 

every case. For a given case i infected with RSV cluster c within group g, there are 

three possible sources of infection (Ω_), either a sampled housemate, a sampled 

neighbour or an unknown community source. The total rate of exposure is given as:  

^_,`,≥(%) = b_,a(%) cd_,`
(%)effπ=tv`,≥,<→_

(%)

<S_

+	k'll_h$%â_,≥(%)m																					(1) 

Where (as in the main text): 



 244 

b_,a(%) is the factor modifying exposure by recent group specific infection history, age 

and group specific shedding status at time t  

k'll_h$%â_,≥(%) is the cluster specific community (external to the household) 

exposure rate.  

 

The probability of exposure is = prob(any exposure event) * prob(exposure to cluster c) 

_,`,≥(%) = 71 − â8‹
B∑ óÑ,ô,∂(t)∂

æ 9 ∗ †

^_,`,≥(%)

∑ ^
_,`,≥

(%)
≥
æ

°																									(2) 

 

For a given source of infection Ω_  in the same household as i, the rate of exposure is 

given by:  

 

^ÉÑ→_,`,≥
(%) = b_,a(%)6d_,`

(%) ×	ÇÉÑ→_ 	× 	wa 	× 	yz
(f'"iâℎ'‚Á_i&Òâ_) 	

× 	y{,_E|7ã(~âÚ%&Û&%ÙÉÑ,`,≥
(%)9 	× 	dÉÑ,`

(%): 

 

For Ω_  not in the same household as i but among the sampled individuals, the rate of 

exposure is given by: 

 

^ÉÑ→_,`,≥
(%) = b_,a(%) *}à 	× 	y�,=av -¨àâa•ïª©

�,_
2 × d

&,ℎ
(%) 	× 	ÇÉÑ→_ 	

× 	y{,_E| -ã(~âÚ%&Û&%ÙÉÑ,`,≥
(%)2 	× 	ı7Á

&,ÉÑ
, ˆ9 	× 	dÉÑ,ℎ

(%)3	 

 

For Ω_  an unknown source external to the household, the rate of exposure is given by: 

 

^ÉÑ→_,`,≥
(%) = b_,a(%) *}à 	× 	y�,=av -¨àâa•ïª©

�,_
2 × ~

Ú
(%)3 

 

The probability of transmission from a single source Ω_  at time t thus becomes:  

Ç#ÉÑ→_,`,≥
(%) =

^ÉÑ→_,`,≥
(%)

^
_,`,≥

(%)
															(ã) 

 

The likelihood function 

The probability given in (ã) is calculated for a time point t = exposure time of individual 

i, %
_

�. This is not observed in the data, however, given our assumption on the latency 
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duration, we can define a 6-day window of possibility. If case i had a shedding onset at 

time ç
_

é, then the window for transmission is from day 7ç
_

é
− 59 to 7ç

_

é
− 09. For 

each day in the window, potential sources are identified based on shedding status and 

for each combination of infection source Ω_  and exposure date %
_

�, the likelihood is 

calculated using the formula below:  

 

ë(íì{ç
_

ï
, %
_

�
, Ω_

})

= _,`,≥(%) ∗ õú -1 − _,`,≥(%)2

tÑStÑ
ö

ù ∗ -ûü(ç_
ï
− %

_

�
)2 ∗ †

^ÉÑ→_,`,≥
(%

_

�
)

^_,`,≥(%_
�
)

° 

 

The first part of the product is the probability of infection with cluster c at time %
_

�, the 

second part is the probability of escaping infection at any time %_ ≠ %
_

�, the third is the 

probability of a latency duration of length (ç
_

ï
− %

_

�
)	and the last term is the 

probability of transmission from source Ω_  to i. 

 

Given the likelihood, the highest-probability-source is chosen as the infection source 

that gives the highest value of the likelihood.  

 

A3.4. Details of the model using pathogen data identified at group resolution  

The null model is similar in structure to the model of sequence data presented in the 

main text, however, there is no identification of the infecting pathogen at the cluster 

level, only at the group level. The rate of exposure to a particular RSV cluster g acting 

on a susceptible person i from household h at time t: 

 

^_,`,a(%) = b_,a(%) cd_,`
(%)effπ=tv`,a,<→_

(%)

<S_

+	k'll_h$%â_,a(%)m																					(1) 

Where: 

b_,a(%) is the factor modifying exposure by recent group specific infection history, age 

and group specific shedding status at time t given by: 
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b_,a(%) = exp -qr,`_st7ã(~âÚ%&'(_f&i%'#Ù_(%)9 +	qu,=av7¨àâ_à#'"‹∫,_9

+ q˜,≥ª••7bℎâÁÁ&(à_i%$%"i_(%)92 

 

ff_h$%â`,a,<→_
(%) is the group specific within household exposure rate given by:  

 

ff_h$%â`,a,<→_
(%)

= 	 wa 	× 	yz
(f'"iâℎ'‚Á_i&Òâ_) 	× 	y{,_E|7ã(~âÚ%&Û&%Ù<,`,a(%)9 	

× 	d<,`
(%) 

 

k'll_h$%â_,a(%) is the cluster specific community (external to the household) 

exposure rate given by: 

k'll_h$%â_,a(%)

= }
à
	

× 	y�,=av7¨àâ_à#'"‹�,_9

⎝

⎜
⎜

⎛

⎝

⎜

⎛
d

&,ℎ
(%) e b$l‹‚âÁ_≠â&àℎ˚'"#_h$%â`,a,<→_

(%)

¸≠&,			¸	('%	&(

	&
′
i	ℎ'"iâ ⎠

⎟

⎞
	

+	~
à
(%)

⎠

⎟
⎟

⎞

 

Where: 

 

b$l‹‚âÁ_≠â&àℎ˚'"#_h$%â`,a,<→_
(%) = y

ã,à,¸
(%) 	× 	ı7Á

&,¸
, ˆ9 	× 	d

¸,ℎ
(%) 

 

The background function ~a(%) is derived the same way ~≥(%) is, as described in the main 

text. Since we do not use genetic distances in this version of the model, we do not 

estimate ! for  Ç<→_ = â8‹
B∏ò"’(_,<)∗# or  Ç<→_ = 1	&~	ÁavE(&, ¸) 	≤ !, 0	'%ℎâ#$&iâ, 

making the total number of parameters 17. 

 

Following from the rate of exposure is the probability of exposure given by: 

_,`,a(%) = 71 − â8‹
BóÑ,ô,ò(t)9																					(2) 
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The probability of onset is given as: 

‹_,`,a(%) = eûü_,`,a(% − ‚)

 

ü™Ë

 

Where L is the maximum latency period and ûü  is the probability that the latency 

period is exactly ‚ days.  

 

The likelihood for individual i's data is given as: 

ë_ = 	úc ú ‹_,`,a(")

ª∈%Ñ,ô,ò

ú 71 − ‹_,`,a($)9

=∈fiÑ,ô,ò

m

a

 

The total likelihood is thus given by the product of ë_  over all the individuals in the 

data 

 

ë = 	úcúc ú ‹_,`,a(")

ª∈%Ñ,ô,ò

ú -1 − ‹_,`,a($)2

=∈fiÑ,ô,ò

m

a

m

_

 

 

A3.5. Results of the MCMC algorithm 

 

The figures below show the evolution of the parameter value with increasing number 

of iterations for the model with pathogen identification at the genetic cluster level 

(cluster model) and at the group level (group model). 
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Figure A3. 3: Trace plots of parameters in the cluster model.  

Three chains were initiated at different parameter values and these are shown in black 

(Chain 1), green (Chain 2) and blue (Chain 3) lines. The x-axis shows the iteration 

number, while the y-axis shows the log parameter value.  
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Figure A3. 4: Trace plots of parameters in the group level data model.  

Three chains were initiated at different parameter values and these are shown in black 

(Chain 1), green (Chain 2) and blue (Chain 3) lines. The x-axis shows the iteration 

number, while the y-axis shows the log parameter value.  

 

To confirm convergence observed in the trace plots, we calculated the Gelman-Rubin-

Brooks statistic and the effective sample size. When using the GRB statistic, 

convergence is said to have occurred if the ratio of pooled/within chain variance is 

close to 1. The GRB statistic assumes that the target distribution is Normal. The plot 

below shows the value of the GRB statistic as the number of iterations increases for 

each parameter. This is to check whether a value close to one was reached by chance 

or if the trend line had truly stabilized close to 1. 
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Figure A3. 5: The evolution of the Gelman-Rubin-Brooks (GRB) statistic (shrink factor) 

as the number of iterations increases. 

Each grey line represents a model parameter in the cluster level data model and the 

dashed red line shows the value 1.  

 

The point estimated of the GRB and the values of the ESS after burn in are given in the 

table below.  

 

Table A3. 1: The value of the GRB statistic (to 3 significant figures) and the ESS after 

burn-in are shown for the parameters in the cluster level data model. 

Parameter Point estimate  

GRB statistic 

ESS 

Prev.hom 1 10607 

Prev.het 1 10073 

Curr.het 1.01 7131 

Sus.age.2 1.01 9154 

Sus.age.3 1.02 9771 

Sus.age.4 1.02 10384 

HH.rsv.a 1 9476 
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HH.rsv.b 1.01 9765 

HH.size 1 10147 

Low.Sym 1.02 9987 

High.Sym 1.01 9774 

Dist.rate 1.16 10455 

Gen.rate 1.04 10436 

Comm.rsv.a 1.09 7847 

Comm.rsv.b 1.09 7823 

Exp.age.2 1 8432 

Exp.age.3 1.01 9863 

Delta 1.04 7908 

Beta 1.03 6678 

The mGRB is 1.07 and the mESS is 10008. 

 

 

Figure A3. 6: The evolution of the Gelman-Rubin-Brooks (GRB) statistic (shrink factor) 

as the number of iterations increases. 

Each grey line represents a model parameter in the group level data model and the 

dashed red line shows the value 1.  
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Table A3. 2: The value of the GRB statistic (to 3 significant figures) and the ESS after 

burn-in are shown for the parameters in the group level data model. 

Parameter Point estimate 

 GRB statistic 

ESS 

Prev.hom 1.01 3713 

Prev.het 1.02 3978 

Curr.het 1.07 2309 

Sus.age.2 1.02 2998 

Sus.age.3 1.03 3617 

Sus.age.4 1.04 3694 

HH.rsv.a 1.01 3426 

HH.rsv.b 1.01 3361 

HH.size 1.02 3673 

Low.Sym 1.04 3957 

High.Sym 1.03 3744 

Dist.rate 1.07 3374 

Comm.rsv.a 1.05 4069 

Comm.rsv.b 1.05 4093 

Exp.age.2 1.02 2858 

Exp.age.3 1.02 3476 

Delta 1.04 5331 

Beta 1.04 3873 

The mGRB is 1.09 and the mESS is 4146. 

 

As a rule of thumb, a GRB of <1.1 is generally considered good, as such, it is safe to 

conclude that there was convergence.  

 

A3.6. Model validation 

 

The results of the model fitting are the posterior parameter distribution and 

corresponding augmented data for the cluster ids of cases with no genetic 

information. A simulation based on a set of parameter values will also be based on the 
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corresponding augmented data which will be used to derive a complete set of 

shedding profiles from the observed data. A single shedding profile is a combination of 

duration of shedding, viral loads and symptom status, and genetic cluster. The 

simulation pseudo code per simulation is as follows:  

 

1. Initiate system such that everyone one is susceptible to RSV.  

2. At every time step keep track of the following variables:  

a. Exposure status (by RSV cluster) 

b. Shedding status by group 

c. Shedding status by genetic cluster 

d. Infectiousness status (combination of viral load and symptom status) 

e. Infection history (by RSV group) 

f. The background rate of exposure from the community 

3. At every time step: 

a. Update the background community function to reflect any new 

shedding onsets 

b. Calculate the cluster specific rate of exposure, ^_,`,≥(%), as defined in the 

main text. 

c. Determine the number of group specific transmission events §a where  

§a = Ç'&ii'(õ e Ç�ò,_

_∈∫öò

ù 

b�ò
	=	set	of	all	individuals	susceptible	to	infection	event	Eg.	

Ç�ò,_
	=	probability	of	person	i	experiencing	event	Eg	

Ç�ò,_
= e &71 − â8‹

B∑ óÑ,ô,∂(t)∂
æ 9 ∗ †

^_,`,≥(%)

∑ ^
_,`,≥

(%)
≥
æ

°'	
≥	™	≥üªstv•s	

_E	a

	

Where ^_,`,≥(%)= rate at which person i is exposed to infection of 

cluster type C. 

d. Given the number of group specific transmission events, determine the 

cluster id of each through weighted sampling. E.g. if Eg = 4 and c = 

{1,2,3} are the cluster ids in the group, the probability of a case being 

any one if the three clusters is: 
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È

^`,5(%)

∑ ^
`,≥
(%)

≥
æ

,

^`,4(%)

∑ ^
`,≥
(%)

≥
æ

,

^`,+(%)

∑ ^
`,≥
(%)

≥
æ

Î , ~'#	^`,5(%) =e^_,`,≥(%)

_

	 

e. Determine who experiences each cluster specific transmission event. 

For a given event, order individuals capable of experiencing the event. 

For a given person p to experience the event, the following inequality 

has to be satisfied. 

 

e Ç�∂,_

_®©B5

_™5

	< õh¨≠!	 × e Ç�∂,_

_	∈∫ö∂

ù 	≤ 	eÇ�∂,_

_®©

_™5

 

 Where: 

 	

Ç�∂,_
= 71 − â8‹

B∑ óÑ,ô,∂(t)∂
æ 9 ∗ †

^_,`,≥(%)

∑ ^
_,`,≥

(%)
≥
æ

° 

b�∂
	=	all	individuals	susceptible	to	infection	of	cluster	

type	c.	

RAND = a random number between (but not including) 0 

and 1.  

 

This is illustrated in the figure below. 

 

 

Repeat this until the required number of events 
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f. For each individual experiencing a transmission event, assign a latency 

duration and shedding profile by sampling from the relevant empirical 

distributions. The empirical latency distribution is the same as was used 

in estimating the parameters and is homogeneous for every individual. 

Shedding profiles are derived from the observed data and a 

combination of duration of shedding, viral loads and symptom status, 

and genetic cluster. The shedding profiles are grouped by age in the 

following 4 groups <1,1-5, 5-15 and ≥15 years. Once latency durations 

and shedding profiles have been assigned, the state variables for each 

individual are updated accordingly.  

 

To explore how much variation there can be in the simulations from a single 

parameter set, a set of 12 parameter set samples were used, and for each set, 100 

simulations were run, giving a total of 1200 simulations. We then sampled 100 

parameter sets and run single simulations from each to explore between-parameter-

set variation. The results of the simulations are presented in the form of epidemic 

curves and summary measures that are used to compare the main features of the 

outbreak. The summary measures shown in the subsequent figures are: total number 

of people infected, the proportion of cases that had multiple onsets and the number of 

cases in the first and last week of the observation/simulation period.  

 

The results of the simulation are shown in Figure 4. 7 and Figure 4. 8 in the main text 

and Figure A3. 7, Figure A3. 8 and Figure A3. 9. 



 256 

 

Figure A3. 7: Violin plots showing the distribution of the total number of people 

infected in the simulations by RSV group and age. 

Each panel shows the distribution of the total numbers infected in the simulations run 

using 12 different parameter sets (violin plots) compared to the total number from the 

observed data (dashed red line). The y-axis shows the total number and the x-axis is 

labelled by parameter set used. Top row: RSV A results for all the cases (1st column), 

cases < 1 year old (2nd column), cases between 1-5 years old (3rd column) and cases > 5 

years old (4th column). Bottom row: RSV B results. Violin plots are a combination of box 

plots and density distributions, the shapes should therefore be interpreted as density 

plots would while the ranges should be interpreted as the tips of whiskers in a box and 

whisker plots.  

 

 

Figure A3. 8: Violin plots showing the distribution of the proportion of cases that had 

multiple onsets in the simulations by RSV group and age.  

Each panel shows the distribution of the proportion of cases that had multiple onsets 

in the simulations run using 12 different parameter sets (violin plots) compared to the 

proportion from the observed data (dashed red line). The y-axis shows the proportion 
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and the x-axis is labelled by parameter set used. Top row: RSV A results for all the 

cases (1st column), cases < 1 year old (2nd column), cases between 1-5 years old (3rd 

column) and cases > 5 years old (4th column). Bottom row: RSV B results.  

 

 

Figure A3. 9: Violin plots showing the distribution of the number of cases in the first 

(1st column) and last (2nd column) week of the observation/simulation period in the 

simulations by RSV group.  

The y-axis shows the total number of people infected and the x-axis is labelled by 

parameter set used. The dashed red line shows what was observed in the data, i.e. 

there were no cases observed in the first and last week of the 180-day observation 

period.  
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A4: Supplementary appendix for Paper 3. 

A4.1 Extra results  

 

 

Figure A4. 1: Distributions of shedding durations for the different infectious agents.  

Each panel shows data from the 5 different infectious agents and the white histograms 

show the pathogen level distribution of durations. The medium and 90% interval are 

given in text in each panel.  

 

Table A4. 1: Results of parameter estimation using data identified at the pathogen 

level and group level. 

Pathogen level Group level 

Parameter Median 

(95% CrI) 

Parameter Median (95% CrI) 

risk.rsv.prev.rsv 0.599 

(0.395, 

0.878) 

risk.rsva.prev.rsva 0.598 (0.265, 

1.13) 

risk.rsvb.prev.rsvb 0.589 (0.317, 

1.01) 
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risk.rsva.prev.rsvb 0.591 (0.302, 

1.06) 

risk.rsv.prev.corona 1.33 (1.14, 

1.57) 

risk.rsva.prev.229e 0.698 (0.383, 

1.17) 

risk.rsva.prev.nl63 1.15 (0.846, 1.53) 

risk.rsva.prev.oc43 1.05 (0.728, 1.45) 

risk.rsvb.prev.229e 1.17 (0.811, 1.64) 

risk.rsvb.prev.nl63 1.14 (0.828, 1.54) 

risk.rsvb.prev.oc43 1.81 (1.4, 2.34) 

risk.corona.prev.corona 0.843 

(0.706, 1) 

risk.229e.prev.229e 0.724 (0.435, 

1.15) 

risk.229e.prev.nl63 1.1 (0.806, 1.46) 

risk.229e.prev.oc43 0.784 (0.576, 

1.05) 

risk.nl63.prev.nl63 0.617 (0.438, 

0.844) 

risk.nl63.prev.oc43 1.16 (0.914, 1.48) 

risk.oc43.prev.oc43 0.58 (0.413, 0.79) 

risk.rsv.curr.corona 1.09 (0.786, 

1.46) 

risk.rsva.curr.229e 1.996 (0.841, 

3.95) 

risk.rsva.curr.nl63 0.741 (0.281, 

1.76) 

risk.rsva.curr.oc43 0.733 (0.418, 

1.21) 

risk.rsvb.curr.229e 1.15 (0.375, 2.53) 

risk.rsvb.curr.nl63 2.3 (0.774, 4.31) 

risk.rsvb.curr.oc43 0.804 (0.321, 

1.57) 

  risk.rsva.curr.rsvb 1.98 (0.831, 3.95) 

  risk.229e.curr.nl63 1.04 (0.465, 1.99) 

  risk.229e.curr.oc43 1 (0.508, 1.79) 
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  risk.nl63.curr.oc43 0.799 (0.387, 

1.41) 

HH.rsv 0.00387 

(0.00291, 

0.00508) 

HH.rsva 0.00544 (0.00379, 

0.00758) 

HH.rsvb 0.00408 (0.00282, 

0.00555) 

HH.corona 0.00636 

(0.00518, 

0.00755) 

HH.229e 0.00795 (0.00577, 

0.0108) 

HH.nl63 0.0117 (0.00939, 

0.0145) 

HH.oc43 0.00547 (0.00428, 

0.00681) 

Comm.rsv 0.000296 

(0.000146, 

0.000798) 

Comm.rsva 0.000186 

(0.000101, 

0.000317) 

Comm.rsvb 0.000217 

(0.00012, 

0.000357) 

Comm.corona 0.000395 

(0.000199, 

0.00119) 

Comm.229e 0.000242 

(0.000132, 

0.000398) 

Comm.nl63 0.000181 

(0.0000996, 

0.000297) 

Comm.oc43 0.000297 

(0.000167, 

0.000485) 

Delta 1.55 (0.567, 

3.94) 

Delta 1.55 () 

Beta 0.338 

(0.148, 

2.19) 

Beta 0.294 (0.148, 

0.557) 
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mu.rsv 3.05 (2.19, 

3.7) 

  

sigma.rsv 0.683 

(0.323, 

1.21) 

  

mu.corona 2.95 (2.4, 

3.62) 

  

sigma.corona 0.712 

(0.518, 

0.938) 
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Figure A4. 2: Distribution of shedding episodes for coronavirus 229E and RSV A by 

household and time.  

The x-axis shows the time in days while the y-axis shows the individuals, where each 

notch is a single individual. The horizontal lines demarcate the different households.   
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Figure A4. 3: Distribution of shedding episodes for coronavirus OC43 and RSV B by 

household and time.  

The x-axis shows the time in days while the y-axis shows the individuals, where each 

notch is a single individual. The horizontal lines demarcate the different households. 
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Figure A4. 4: Distribution of shedding episodes for RSV A and RSV B by household 

and time. 

The x-axis shows the time in days while the y-axis shows the individuals, where each 

notch is a single individual. The horizontal lines demarcate the different households. 
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Figure A4. 5: Distribution of shedding episodes for coronavirus 229E, NL63 and OC43 

by household and time.  

The x-axis shows the time in days while the y-axis shows the individuals, where each 

notch is a single individual. The horizontal lines demarcate the different households. 

 

 

A4.2. Results of the MCMC algorithm 

In Chapter 4, there were 4 different model fits; a fit of the multi-pathogen model to 

data with pathogen identification at the group level, a fit of the multi-pathogen model 

to data with pathogen identification at the pathogen level, a fit of the single-pathogen 

model to RSV data with pathogen identification at the group level, a fit of the single-

pathogen model to hCoV data with pathogen identification at the group level. The 

following sections show the parameter trace plots, GRB statistic values and ESS values 

for each of the 4 fits. 

A4.2.1. Multi-pathogen model fit to data with pathogen identification at the 

group level 

 

The following are trace plots of the 37 parameters in the multi-pathogen model with 

pathogen identification at the group level. 
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Figure A4. 6: The evolution of the Gelman-Rubin-Brooks (GRB) statistic (shrink factor) 

as the number of iterations increases. 

Each grey line represents a model parameter in the multi-pathogen model with 

pathogen identification at the group level and the dashed red line shows the value 1.  
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The burn-in point was chosen as 225,000 for chain 1, 125,000 for chain 2 and 150,000 

for chain 3.  

 

Table A.4 1: The values of the GRB statistic (to 3 significant figures) and the effective 

sample size are shown for all the parameters in the multi pathogen model with 

pathogen identification at the group level. 

Parameter Point estimate 

 GRB statistic 

ESS 

risk.rsva.prev.rsva 1.25 616 

risk.rsva.prev.rsvb 1.08 865 

risk.rsva.prev.229e 2.73 736 

risk.rsva.prev.nl63 1.1 929 

risk.rsva.prev.oc43 1.13 877 

risk.rsvb.prev.rsvb 1.26 823 

risk.rsvb.prev.229e 1.1 758 

risk.rsvb.prev.nl63 1.1 894 

risk.rsvb.prev.oc43 1.34 1010 

risk.229e.prev.229e 2.51 717 

risk.229e.prev.nl63 1.1 787 

risk.229e.prev.oc43 1.83 848 

risk.nl63.prev.nl63 3.63 864 

risk.nl63.prev.oc43 1.09 921 

risk.oc43.prev.oc43 4.76 828 

risk.rsva.curr.rsvb 2.41 886 

risk.rsva.curr.229e 1.11 601 

risk.rsva.curr.nl63 2.23 545 

risk.rsva.curr.oc43 1.43 776 

risk.rsvb.curr.229e 1.13 521 

risk.rsvb.curr.nl63 1.11 375 

risk.rsvb.curr.oc43 1.33 580 

risk.229e.curr.nl63 1.36 600 
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risk.229e.curr.oc43 1.18 631 

risk.nl63.curr.oc43 1.28 635 

eta.rsva 1.1 1060 

eta.rsvb 1.01 1250 

eta.229e 1.12 1290 

eta.nl63 1.43 1190 

eta.oc43 1.16 1070 

epsilon.rsva 1.03 1060 

epsilon.rsvb 1.01 1180 

epsilon.229e 1.03 935 

epsilon.nl63 1.01 1090 

epsilon.oc43 1.01 1110 

delta 1 1900 

beta 1.01 1090 

The mGRB is 7.43 and the mESS is 1099. 

 

 

 

Visually the chains look like they do converge, but the values of the GRB and ESS 

suggest that longer runs are needed.  
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A4.2.2. Multi-pathogen model fit to data with pathogen identification at the 

pathogen level 

 

Figure A4. 7: Trace plots of parameters in the multi-pathogen model with pathogen 

identification at the pathogen level.  

Two chains were initiated at different parameter values and these are shown in black 

(Chain 1) and pink (Chain 2). The x-axis shows the iteration number, while the y-axis 

shows the log parameter value.  
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Figure A4. 8: The evolution of the Gelman-Rubin-Brooks (GRB) statistic (shrink factor) 

as the number of iterations increases. 

Each grey line represents a model parameter in the multi-pathogen model with 

pathogen identification at the pathogen level and the dashed red line shows the value 

1.  

 

Burn-in point was chosen as 75000.   

 

Table A.4 2: The values of the GRB statistic (to 3 significant figures) and the effective 

sample size are shown for all the parameters in the multi pathogen model with 

pathogen identification at the pathogen level. 

 

Parameter Point estimate 

 GRB statistic 

ESS 

risk.rsv.prev.rsv 1.07 1840 

risk.rsv.prev.corona 1.05 2940 

risk.corona.prev.corona 1.29 1560 

risk.rsv.curr.corona 1.23 1160 

eta.rsv 1.02 2160 
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eta.corona 1.04 1770 

epsilon.rsv 1.04 1250 

epsilon.corona 1.04 1110 

delta   1.01 2050 

beta 1.04 981 

mu.rsv   1.13 1220 

sigma.rsv   1.14 1570 

mu.corona 1.16 1130 

Sigma.corona 1.13 1460 

The mGRB is 1.23 and the mESS is 1893. 

 

 

A4.2.3. Single-pathogen model fit to RSV data with pathogen identification at 

the group level 
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Figure A4. 9: Trace plots of parameters in the single-pathogen model for RSV with 

pathogen identification at the group level.  

Two chains were initiated at different parameter values and these are shown in black 

(Chain 1) and blue (Chain 2). The x-axis shows the iteration number, while the y-axis 

shows the log parameter value.  
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Figure A4. 10: The evolution of the Gelman-Rubin-Brooks (GRB) statistic (shrink 

factor) as the number of iterations increases. 

Each grey line represents a model parameter in the single-pathogen model for RSV 

with pathogen identification at the group level and the dashed red line shows the 

value 1.  

 

Burn-in was set at 40,000 for each chain. 

 

Table A.4. 3: The values of the GRB statistic (to 3 significant figures) and the effective 

sample size are shown for all the parameters in the single pathogen RSV group 

model. 

Parameter Point estimate 

 GRB statistic 

ESS 

risk.rsva.prev.rsva 1.05 3970 

risk.rsva.prev.rsvb 1.06 4290 

risk.rsvb.prev.rsvb 1.05 3920 

risk.rsva.curr.rsvb 1.04 4250 

eta.rsva 1.03 4820 

eta.rsvb 1.01 5180 

epsilon.rsva 1.00 4990 

epsilon.rsvb 1.00 4580 



 282 

delta   1.00 7580 

beta 1.01 4180 

mu.rsv   1.02 3720 

sigma.rsv   1.07 3770 

The mGRB is 1.08 and the mESS is 5239. 

 

 

A4.2.4. Single-pathogen model fit to hCoV data with pathogen identification at 

the group level 
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Figure A4. 11: Trace plots of parameters in the single-pathogen model for hCoV with 

pathogen identification at the group level.  

Two chains were initiated at different parameter values and these are shown in black 

(Chain 1) and pink (Chain 2). The x-axis shows the iteration number, while the y-axis 

shows the log parameter value.  
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Figure A4. 12: The evolution of the Gelman-Rubin-Brooks (GRB) statistic (shrink 

factor) as the number of iterations increases. 

Each grey line represents a model parameter in the single-pathogen model for hCoV 

with pathogen identification at the group level and the dashed red line shows the 

value 1. 

 

Chose a burn-off of 100,000 for each chain.  
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Table A.4. 4: The values of the GRB statistic (to 3 significant figures) and the effective 

sample size are shown for all the parameters in the single pathogen hCoV strain 

model. 

 

Parameter Point estimate 

 GRB statistic 

ESS 

risk.229e.prev.229e 1.05 2660 

risk.229e.prev.nl63 1.06 2730 

risk.229e.prev.oc43 1.07 2640 

risk.nl63.prev.nl63 1.09 2970 

risk.nl63.prev.oc43 1.06 2720 

risk.oc43.prev.oc43 1.08 2500 

risk.229e.curr.nl63 1.04 2000 

risk.229e.curr.oc43 1.06 1950 

risk.nl63.curr.oc43 1.04 2070 

eta.229e 1.00 2920 

eta.nl63 1.04 3120 

eta.oc43 1.02 3190 

epsilon.229e 1.03 1290 

epsilon.nl63 1.03 1360 

epsilon.oc43 1.03 1320 

delta 1.02 1570 

beta 1.04 1160 

mu.corona 1.19 3070 

sigma.corona 1.22 3850 

The mGRB is 1.11 and the mESS is 3097. 
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