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ABSTRACT

This thesis is concerned with statistical methodology for
randomized clinical trials with repeated measurements over time, as
regards both data analysis and the implications for study design. The
inherent within-subject dependencies for repeated measurements
necessitate analyses that take account of their covariance structure.
There exists a whole battery of methods for analysing repeated
measures designs, ranging from very simple (e.g. separate t-tests at
each time-point) to very complicated (e.g. multi-level models with
arbitrary error structures), but 1 will focus on "the summary

statistic approach™ which has recently become increasingly popular.

When 1interest centres around the average response to treatment
over time, a logical choice of summary statistic is the mean of each
subject"s post-randomisation measurements, with appropriate adjustment
for pre-treatment measurements. Among the class of "mean summary
statistics” analysis of covariance (ANCOVA) is shown to be superior to
its competitors. |In particular, variance formulae are derived both
under a general covariance structure and more specific cases (e.g.
compound symmetry) , allowing direct comparisons of efficiency among
different summary statistics and repeated measures designs. The
importance of precise estimates of the pre-entry levels and the

consequences for sample size requirements are emphasized.

Some additional topics in relation to mean summary statistics,
notably; the bias in estimation if pre-treatment means differ, the
choice between additive or multiplicative models, and the summary
statistic "area under the curve", are also investigated. For studies
with restrictions on the range of baseline measurements the negative
consequences incurred by "regression to the mean"™ are explored,

especially regarding the variance for between-group comparisons.

For a more general class of true treatment effects over time, the
optimal linear summary statistic under any covariance structure Iis
derived. Special interest is devoted to the case of linearly diverging
mean treatment curves, where the optimal alternative to the comparison
of slopes is defined.



Asymptotic relative efficiencies are shown to be a useful tool
when contrasting different designs and different summary statistics,
both in the planning and reporting of repeated measures clinical
trials. Finally, comparisons with other approaches are made, and
recommendations given based on the need to balance theoretical
considerations with practical matters.
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1 INTRODUCTION : REPEATED MEASURES AND CLINICAL TRIALS

1.1 INTRODUCTION

In the realm of clinical trials it is more of a rule than an
exception that each subject enrolled is assessed more than once
with regard to the variable (s) comprising the primary objective of
the investigation. These multiple recordings may relate either to
baseline (run-in) visits or to measurements made during the
treatment period, and there may be several visits performed both

before as well as after the time of randomisation.

Heuristically, the longitudinal study allows each person to be
used as his/her own control so that the ever-present heterogeneity
among persons is reduced. Another advantage of performing a
repeated measurements experiment is the possibility of considering
a variety of research hypotheses in the same experiment. Indeed, a
major difference between longitudinal and cross-sectional data is
that the former provide information about the correlations between
responses measured at different times, whereas the latter only
provide information about the population marginal structure.

Increasing the number of measurements on each subject in a
clinical trial will obviously increase the available information on
treatment effects. The optimal way to allocate additional
measurements over time at the design stage (e.g. before or after
randomisation) , and the best way to utilize the additional
measurements at the analysis stage, is, however, not obvious. These
considerations, pursued with emphasis on practical methodology
rather than abstract theory, will form the main thread of this
dissertation.

1.2 OBJECTIVES AND HYPOTHESIS FOR REPEATED MEASURES DESIGNS

Concentrating primarily on randomised clinical trials (RCTs),
the possible main hypotheses in a typical repeated measures study
can broadly be classified into three main categories. These
consists of the main effect of treatment, the main effect of time,
and the interaction of the two.
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For a trial with one post-treatment evaluation, only the first
of these hypotheses can be tested, and this test of an overall
treatment effect is in most instances the one underlying the
decisions concerning the primary objective in a trial. The medical
question seeking an answer might for instance be; will our new
treatment lower the average serum cholesterol level for a certain
population of patients compared to standard treatment.

The main effect of time is usually of less interest. For
example the finding that average levels of diastolic blood pressure
across all subjects, ignoring treatment group, varies between
different time-points will rarely be the answer to a main
hypothesis. In some instances, however, there might be interest in
detecting seasonal variations or diurnal variations.

The test for an interaction effect, that is for a treatment
effect which depends upon the length of time in the trial, will
often be of interest. There might, for instance, exist theories
hypothesizing that the treatment effect will increase, attenuate or
stabilize with time, or that the treatment effect is of a transient
nature.

1.3 TYPES OF DESIGNS AND TYPES OF RESPONSES

In all that follows emphasis will be on randomised clinical
trials, although some of the methods may be applicable also to
laboratory experiments, uncontrolled experimental designs and
sample survey designs. Within the context of randomised clinical
trials there are two main types of design, the parallel group and
the cross-over. My emphasis will be on the former.

There is also a need to decide on what type of responses we
will concentrate on. Here the choice has been to investigate
repeated observations of quantitative outcome measures on each
subject. Thus, we will not be concerned with binary or categorical
data, count data nor survival type data, though some of the ideas
may extrapolate to such problems.

15



1.4 APPROACHES COMMONLY USED

This introductory section will be confined to a brief résumé of
the various analyses strategies for repeated quantitative measures
in clinical trials. More detailed descriptions of what these
approaches do, and comparison with the summary statistic approach,
will be saved for chapter 6.

Separate univariate analyses for each post-randomisation visit
appear frequently in the medical literature and in clinical study
reports. Matthews et al (1990), and Crowder and Hand (1990),
provide informative discussions of the weaknesses of such an
approach.

Repeated measures ANOVA, a modification of split-plot ANOVA, is
also commonly used. This approach is well described in many
standard text-books, like Fleiss (1986), and Milliken (1990).
Relevant articles discussing several aspects of repeated measures
ANOVA have been written by Rouanet and Lepine (1970), Wallenstein
(1982), and Yates (1982).

Hotelling"s T~, a multivariate analogue of the univariate t-
test, 1is sometimes used, even though it is not quite appropriate
for this task. Descriptions of this approach appear in Chatfield
and Collins (1980), and Crowder and Hand (1990) .

Multivariate analysis of variance, MANOVA, can be used for many
different designs, also for repeated measures studies. Descriptions
with emphasis on repeated measures designs may be found in Crowder
and Hand (1990), Fleiss (1986), Hand and Taylor (1987), and Rouanet
and Lepine (1970).

Kenward (1987) has developed a refinement of MANOVA, labelled
the "ante-dependence' approach, which is more economical in use of
degrees of freedom to estimate the covariance structure among the
repeated measurements. This is also discussed by Crowder and Hand
(1990).
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Useful references in relation to the summary statistic approach
are; Matthews et al (1990), Dawson and Lagakos (1991), Rowell and
Walters (1976), and Frison and Pocock (1992). As already hinted
ANCOVA will often be the recommended summary statistic, good
references for analysis of covariance being; Cochran (1957), Cox
and McCullagh (1982), Fleiss (1986), and Senn (1989).

Many more complicated methods have been proposed. Most of them
fall in the mixed model class (e.g. both fixed and random effects
appear in the model) as for instance in multi-level models.
Relevant references are; Crowder and Hand (1990), Jones (1993),
Laird and Ware (1982), and Gumpertz and Pantula (1989).

1.5 THE COVARIANCE STRUCTURE

Interdependence between measurements on the same subject is the
distinguishing factor between longitudinal and cross-sectional
designs. For many of the approaches commonly used to analyse
repeated measurements designs a correct specification of the
covariance structure is essential for a valid and efficient
analysis of the data. Hence, a parsimonious parametrization of the
covariance structure is needed.

For the summary statistics approach, no knowledge about the
covariance structure is needed for the validity of the analysis. As
will be seen later on, however, the covariance structure has a
great impact on the relative efficiencies between various summary
statistics. It is also useful to be able to assume plausible
covariance structures at the design stage, to ensure that
appropriate repeated measurement design strategies and powerful
summary statistics are chosen.

17



1.5.1 Som», mortola for the covariance structure

We now move on to look at some specific classes of covariance
structures. Assuming that the covariance structure is the same in
both treatment groups, and that we have t repeated measurements, we

want to inpose some structure on a covariance matrix of the form

In total, an otherwise unstructured matrix has t(t+1)/2

parameters, t variances and t(t-1)/2 covariances. It is helpful to

rewrite Z as X =Damma, where D*=[<T, <12 .. CI,] is the
1 P2 P,-
s - P\2 1 -
vector of standard deviations and R = is the

-Pu - - 1.
correlation matrix. Having thus removed the variances (but not
assumed they are equal), we will concentrate on parameterizing the

correlation structure.

The absolutely simplest structure is independence, when there
are no random effects and all correlations are zero. This is not
realistic for repeated measurements designs, since for RCT"s there
will always be within-subject variability present, which
necessarily implies correlations different from zero.

The simplest generalization is compound symmetry. Which in
spite of its simplicity is widely adopted as an underlying
assumption for many of the approaches commonly used, explicitly or
implicitly. This popular covariance model goes under many other
names, like; random intercepts model, exchangeability model, and

split-plot model. The correlation structure is given by =p for
all i and j (here we are also assuming that for all 1), with

p confined to lie in the interval [-1,1].

18



Another popular alternative is the first-order autoregressive

pz2 . p’

model. with R = 1 p2 This structure originates
- P
P p2 p 1!

from an exponentially decreasing trend in the correlation pattern.
A decreasing trend is plausible, however, in practice,
exponentially decreasing is to "steep".

A further alternative is the first-order moving average model
(which is frequently used in time-series analysis), with a

1 =]
correlation structure determined by or = p Il =1
0

<i*jl>1

A banded or general autoregressive structure has one parameter
for each diagonal in the matrix, specifically Oi1i=6k, k= ]i-j]+ I,
and there are t unknown parameters (including the variance, here
assumed the same for all time points) .

A flexible family of correlation structures, with only two
parameters, was introduced by Muftoz et al (199-2), which they called
a damped exponential correlation structure. The correlation between
two observations separated by s units of time is modelled as 7 ,
where 7 is the correlation between elements separated by one s-
unit, and O is a damping parameter. Several of the one-parameter
models are included as special cases in this family. For instance,
with 0-0 we have compound symmetry, with 0-1 a first-order
autoregressive model, and with 0O- a First-order moving average

process.
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In addition, for 0<0<1l we obtain a family of correlation structures
with decay rate between those of compound symmetry and first-order
autoregressive models, this is what is called attenuated
exponential decay, and should offer plausible models in most
circumstances. Having 0>1 results in what might be termed

accelerated exponential decay.

The feasibility of some of these models to explain the

correlation structure on real data will be explored in section 2.3.

1.5.2 Examples of correlation «tmetnraa from clinical trials

To give some objective evidence on how the correlation
structures for repeated measurements in clinical trials actually
turn out, a number of such examples are summarized in table 1.5.1.
These examples represent the most recent experience of such trials
that have been encountered in the Medical Statistics Unit at London
School of Hygiene and Tropical Medicine and all have two randomised
treatment groups. The aim is to obtain a reasonably representative
sample of trials covering a variety of diseases and quantitative

outcome measures.

For each trial table 1.5.1 lists the disease, the number of
randomised patients, the numbers of pre- and post-treatment
measurements and the mean time between post-treatment measurements,
and then for each outcome measure three types of mean correlations.
The mean of the pair-wise correlations among the pre-entry
measurements is labelled "pre”, the corresponding mean for the
correlations among the post-treatment measurements is labelled
"post”, and "mix" refers to the mean of the correlations among all
pre-entry post-treatment pairs of measurements. The final column in
the table gives the estimated slope (decrease) in correlation with
"time" between visits (where '"time" denotes the number of visits
apart). This allows a feeling to be gained for the degree of linear
decay in correlation with time. The plausibility of a simple linear
decrease is explored in section 2.3. In nearly all instances the

post-treatment visits were at equally spaced intervals.
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Table 1.5.1 : Summary of the correlations in repeated measurements from a sample

Number of
Disease patients
Coronary heart 152
disease
Coronary heart 219
disease
Hypertension 55
Hypertension 3450
Intermittent 504
claudication
Angina 251
Childhood asthma 138
Multiple sclerosis 162
Low back pain 459
HIV infection 545

1. pre is the mean of the correlations among the pre-treament visits, post similarly among the post-treatment

Number of visits Mean time

pre

®

3

post
®

between post
visits (mths)

1.5

Outcome measure

CPK
ALAT
ASAT
Alkaline phosphatase

HDL
Triglycerides
Total cholesterol

Heart rate
Systolic blood pressure

SBP
DBP

Ankle/arm ratio of SBP

Treadmill test distance

FEVX
PD20 (histamine resp.)

Muscle tone score
Back pain score

CD4 cell count

Mean correlationl

pre

RR BN IBBH

X

of clinical trials.

mixed

JIRR

R B 83 ks¥

B

mix is the mean of the correlations among pretreatment posttreatment pairs of measurements.

post

.67
.67
.76
.75

&4
.56
.65

.61
.70

44

2. Estimated (by least squares) decrease in correlation per visit apart among the posttreatment visits.

Estimated

slope*

-.012
-.017
-.006

.004
-.006
-.066
-.011

-.010
-.006

-.029
-.024

=

-.006
-.032

-.010

-.021

visits



Certain general characteristics emerge from these trials. The
correlations between post-treatment visits mostly average between
0.6 and 0.8. A similar magnitude of correlation exists between pre-
treatment visits, when pS2. The average mixed pre-post correlation
is mostly of similar magnitude, but with a tendency to be slightly
lower. Most examples show a slight decline in correlation (amongst
post-treatment visits) as the time interval between measurements
increase. The extent and pattern of this decline is illustrated in
figure 1.5.1, where the 11 first variables from table 1.5.1 are
included. To reduce the mass of data (in total 531 distinct
correlation coefficients) without imposing any specific structure
(apart from smoothness) on the patterns over time, the correlation
structure for each of the 11 variables has been approximated by a
smoothed curve (using the function SM50 in SAS, SAS, 1992) through
its correlation coefficients (in the figure, A-CPK, B-ALAT, and so
on). There certainly appears to be a slow decrease in correlation
with time for these variables, whether this decay is more
complicated than a linear function is impossible to judge with the

eye.

It is interesting to observe one or two exceptions, in the
table, from the general pattern outlined above. The hypertension
trial in elderly patients had somewhat lower correlations for blood
pressure, and this can be attributed to the fact that treatment
regimens were adjusted over time in each patient according to
observed blood pressure; for example, a patient whose blood
pressure stayed high received additional dosage or supplementary
drugs. This is perhaps an unusual adaptive feature not commonly
encountered in studies with repeated measurements. The low back
pain study had a low mixed correlation, and this reflects the fact
that a proportion of patients were cured (back pain score-0) and
such prospect of cure was not closely associated with the original

severity of disease.



Figure 1.5.1: Correlation coefficients versus time between measurements
Smoothed curves given for the 11 first variables in table 1.5.1

Months apart

Figure 1.5.2: Variances over time for the 11 first variables in table 1.5.1
(For each variable the variances are scaled such that the overall mean equals 1)
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We also need to consider the assumption of homogeneous
variances over time. It is not possible to make any general
conclusions for all possible untransformed biological variables,
since variances often tend to increase with increasing mean values,
and vice versa . However, to heuristically investigate how plausible
an equi-variance assumption might be in practice, the variables
underlying figure 1.5.1 are reused in figure 1.5.2 (using the same
labelling of the curves) for illustrating how variances typically
may change with time in clinical trials. For ease of comparison the
variances have been scaled such that their average for each
variable equals one. There is little evidence of a consistent
pattern of change over time from this figure. However, calculating
some summary statistics, there appears to be a small increase in
variance with time. For instance, the mean of the pre-entry
variances is .948, grouping the post-treatment variances into four-
month periods, the averages are .985 (first 4 months), .996 (middle
4 months), and 1.069 (last 4 months). Calculating linear regression
coefficients for the increase (decrease) in variance over time for
the 11 variables, and testing whether the median of these is zero
with Wilcoxon®s signed-ranks test, results in rejection of the null

hypothesis, p-0.02

In summary, in most of these examples correlations tend to
decline slightly over time and mixed correlations are somewhat
lower. Also, variances might increase slightly with time. But there
is in many of the examples no major departure from the compound
symmetry assumption, which will often hold as an adequate

approximation in practice.
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1.6 THE SUMMARY STATISTIC APPROACH

1-6.1__ Introduction

A profile (sequence of repeated measurements over time) usually
consists of several observations from an underlying continuous
process, and it is this process about which inferences are
required. It may well be that the process itself is best
represented by some summary statistics or derived variates
calculated from the original measurements. This approach, which is
termed the summary statistic approach, is particularly valuable

when a direct comparison of mean profiles is inappropriate.

As described by Matthews et al (1990) this method considers the
individual subject as the basic unit of analyses and uses the
responses for each subject to construct a single number which
summarizes some relevant aspect of that subject®s response curve.
Given the appropriate choice of summary statistics, the subsequent
analysis is straightforward, since each statistic is treated like a
conventional response and orthodox techniques can be applied. Very
few assumptions are required to justify the validity of such an
analysis. Estimates of error for the summary statistics are based
solely on the randomisation in the experimental design, not on any
assumptions about the covariance structure of the repeated
measurements. If the statistics have a distribution that is far

from normal then non-parametric methods can be used.

The simplicity and validity of the summary statistic technique
are thus attractive features for the effective communication of
clinical trial results. An appropriate choice of summary statistics
enables the analysis to focus on relevant and clinically
interpretable aspects of the response. What is not always clear is
which summary statistic to use in a given situation. There exists
many possible alternatives, primarily this choice is governed by
the medical question underlying the trial. From an efficiency point
of view, the way the outcome variable changes with time, and the
covariance structure for the repeated measurements, will also have

important consequences for this choice.
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The summary statistic approach is not a new idea. Apart from
the often obvious choice to analyse some kind of within-subject
average value, the analysis of the individual regression
coefficients resulting from orthogonal polynomial contrasts has
sometimes been advocated. One of the earliest contributions in this
respect being the classical paper "Growth-rate determination in
nutrition studies with the bacon pig, and their analysis™ by
Hishart (1938). Some other authors who have written on this topic
are; Bradstreet (1993), Rowell and Walters (1976), and Leech and
Healy (1959).

The terms "linear contrasts"™ and "orthogonal polynomials"
indicate particular types of summary statistics. However, even when
the underlying curves follow a polynomial, because the repeated
measurements are intercorrelated, the use of least squares
estimates is not optimal in any sense, but merely convenient
(Potthoff and Roy, 1964). This will be elaborated on, and the
summary statistics actually being optimal will be derived, in

chapter 5.

It is important to bear in mind that it is the differences
between the group time trends that determines the efficacy of a
summary statistic, rather than the shape of the group trends

themselves.

1.6.2 The General Linear Summary Statistic

The majority of the commonly used summary statistics are
linearly weighted combinations of the outcomes. As a basis for much
that follows, we now introduce a definition of a general linear
summary statistic, and then give its expected value and variance

under a general covariance structure.

It will be assumed that in a two treatment RCT with a
continuous outcome variable, y, each subject has p measurements
made before randomisation and r measurements after randomisation.
The covariance matrix, consisting of the p+r variances and the
(p+r)(p+r-1)/2 distinct covariances, is denoted by £. We assume
that E is the same in both treatment groups.
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Then, the general linear summary statistic, where 1 indexes

treatment group (usually A or B), and j indexes subject within
treatment group (-1, ..,nt,is given by

where Ck denotes the weights for each measurement k (k--(p-
1),..,0,1,..r). Thus, ;is the summary statistic for subject j in
treatment group i.

Denoting the true underlying mean vector for treatment group i
by Ht, the first two moments for the general linear summary

statistic are given by;

c'li, and Var[s"]=c'2c
Hs#

Assuming p-1 visit is made before and r-3 visits are made after
the randomisation, a few straight forward examples of summary

statistics in this general class are given by;

Post-randomisation mean:

Change, last value-baseline: c'=[- 0 0 17

Linear regression coefficient: c¢'oc[-3 — 1 3]

General formulae for the c"-vectors for the most common linear
summary statistics will be given in section 5.4.

1.6.3 Categorization of response profile»

The best choice of a summary statistic, as far as efficiency
and informativeness is concerned, depends on the clinical
objectives of the study, the covariance structure, and the
difference between the groups in the time trends (group means over
time). The first thing to consider is to appropriately address the
primary objective of the study.
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This emphasizes one of the main attractiveness with the summary
statistics, the possibility for a tailor-made approach to the
analysis. For instance, is the clinical objective to maintain the
subjects on a pH>6 during continuous pH measurement, then we might
use the percentage of time each subject has spent above this
threshold as a summary statistic. The covariance structure has
already been considered in the preceding section, here some common
classes of differences in mean response profiles over time for two

treatment groups will be given.

Table 1.6.1: Examples of classes of differences in mean response

profiles over time.

Linear divergence

Attenuated divergence :

Transient effect

Instant effect +
divergence

Exponential
divergence

Shorttime positive,
longtime negative



It is worth emphasizing that the actual shapes of the group
mean profiles have no direct influence on the analysis, it is the
difference between the mean profiles that matter. A constant
difference might originate from an almost instant treatment effect,
which remains stable over the time period under study.
Alternatively, any differences in treatment effects over time which
remain stable after a quick initial response falls in this
category. This might be exemplified by the CPK-example (from a
coronary heart disease study) described in section 2.5, and also by
many studies on systolic and diastolic blood pressure lowering

drugs.

Linear divergence is meant to mean a steadily increasing
difference between the mean response profiles as time passes on.
Examples of RCT"s involving this type of divergence are often found
in studies on pulmonary function data, e.g. PD20 (histamine
response, see Van Essen-Zandvliet et al, 1992) and FEV1 (see Diem
and Liukkonen, 1988).

Attenuated divergence is something in between the two earlier
mentioned categories. The difference between the mean curves
increases over the whole study period, but the rate of divergence
gets smaller and smaller. This model is often plausible, for
instance, for CD4 cell counts in studies on HIV infection (see

Dawson and Lagakos, 1991) .

A transient effect might, for instance, be the result of a
single-dose regimen, here, the mean curves diverges during the
first phase of the study, until a maximum is achieved, after this
the curves converge, and finally becomes identical again. An
example of this kind might be found in Matthews et al (1990) in the
context of aspirin concentration in the blood over time after a

single dose at time zero.

The final three classes of differences in mean profiles in
table 1.6.1 may be expected in certain applications. An instant
effect, followed by some kind of divergence is suggested by the
example on the concentration of steroisomers of a topical
ophthalmic medication in the blood (Bradstreet, 1993).
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A degree of divergence that increases with time appears to
distinguish the groups in a study reported by Diggle (1986)
concerned with the body-weights of rats. This might be modelled by,
for example, a quadratic or an exponential divergence. Finally
there is the possibility that a drug might show a short-time
positive effect, which in the longer term turns out to be an
adverse effect. This is sometimes found in cancer trials on tumour
size data (see Chi, 1990).

1.6.4__Choice of nummary atatiatica

When a constant difference in group time trends is anticipated,
many plausible summary statistics are available. Often these are
based on the average of each subjects post-treatment measurements,
with or without some adjustment for the baseline level; e.g. post-
treatment mean (POST), mean change (post-pre) (CHANGE), percentage
change (from baseline to post mean), and analysis of covariance
(using post mean as dependent variable, and baseline as covariate)
(ANCOVA). Some alternative choices are; median value (of each
subjects post-treatment measurements), and the area under the curve
(the total area under a subjects response curve, formed by addition
of the areas under the curve between each pair of consecutive
observations, usually relying on a linear interpolation between the

respective measurements) (AUC).

When group trends exhibit a linear divergence over time one
might choose the linear regression coefficient for each subject
(with or without baseline covariate adjustment). (SLOPE) or perhaps
some other measure of rate of change (to be defined in chapter 5) .
Sometimes one of the summary statistics outlined in relation to a
constant difference between mean curves might be useful, or a
modification of one of these, like the mean of the last couple of

measurements with a baseline covariate adjustment.

Peaked curves, such a plasma concentration curves (of some
substance) over time, might be analysed using; maximum response
(concentration) (@€ jj), time to reach maximum (tjuj”™, and the area

under the curve.
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In some studies continuous 24 hour measurements are performed,
for instance of the pH in the gastric juice in relation to anti-
ulcer therapies. Useful summary measures for such studies might be;
percentage time above some threshold (like pH 6), number of
episodes below a certain (at risk™) level, and time to reach a

predefined controlled level.

1.7 STRUCTURE OF THE REST OF THE THESIS

Chapters 2 and 3 cover the topic of "mean summary statistics".
That 1is, summary statistics based on some kind of average of the
post-treatment measurements for each subject, with or without some
adjustment for baseline measurement(s) . In section 2.1 a simple
model is defined for RCT"s with repeated measurements, and general
formulae are given for the estimated difference in treatment
effects and its variances, for the mean summary statistics; POST,
CHANGE and ANCOVA. The statistical properties of these three
commonly used approaches are explored, and the superiority of
ANCOVA is documented. Sections 2.2 and 2.3 make more precise
quantitative comparisons between the three approaches for two
different classes of covariance structures, compound symmetry, and
decaying correlations with time. While the three methods can be
formulated as significance tests (two-sample t-tests and a
covariance adjusted test of difference in mean respectively)

emphasis is on estimating the magnitude of treatment difference.

There is little previous published information on statistical
design considerations in repeated measures studies. Hence, section
2.4 is focused on the choice of the number of pre and post-
treatment measurements, and the use of power calculations for
determining the required number of subjects in repeated measures
designs. Section 2.5 presents analyses of an example, and section
2.6 discusses the value and limitations of these relatively simple

approaches.



The extent of bias in estimation if ANCOVA is not used,
conditional on an observed mean pre-treatment difference, is
described in section 3.1. Section 3.2 gives some guidance on the
relative merits of increasing sample size or number of measurements
for the efficiency of the analysis. Section 3.3 considers the issue
of additive or multiplicative effects, and instances when the log-
transformation is particularly useful are pointed out. A further
summary statistic, the area under the curve, is explored in section
3.4. The final two sections on mean summary statistics, 3.5 and
3.6, are aimed at the recommended approach, ANCOVA. They
investigate the optimal allocation of a fixed number of
measurements before and after randomisation, and the issue of
whether to use multiple baselines individually as separate
covariates or as a single mean summary covariate in the ANCOVA
model .

Chapter 4 is devoted to "regression to the mean", that is, the
phenomenon that an individual with an extreme Tfirst measurement
will tend to be closer to the centre of the distribution for a
later measurement. Emphasis is on the effects of restrictive
baseline values, as obtained from selection criteria. Sections 4.1
and 4.2 give some background for within-group comparisons with the
necessary formulae for the effects of regression to the mean on
means and variances for measurements taken both pre-entry and post-
randomisation. Special interest is in the use of repeated pre-entry
measurements to decrease the regression to the mean-effect. In
section 4.3 some results for between-group comparisons are given.
For studies where selection criteria are used for enrolling
subjects, the value of allowing for an additional pre-entry visit,
not underlying the selection, is evaluated, and results for the
impacts on the variances of the three mean summary statistics are
given.

Chapter 5 covers "optimal linear summary statistics', where the
optimality refers to maximization of the between-group difference
relative to its within-group standard deviation, under specified
choices of the covariance structure and the mean group differences

over time.
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To enable comparisons between summary statistics and repeated
measures designs, the notion of asymptotic relative efficiency
(Pitman efficiency) for linear summary statistics is introduced in
section 5.1. Based on Fisher®s linear discriminant function, the
optimal linear summary statistic is defined in section 5.2. In
section 5.3 emphasis is on analysis of rate of change, and the
optimal alternative to the slope as a summary statistic is given.
Section 5.4 gives explicit formulae for the weights of the
individual measurements to be used for some of the summary
statistics. Section 5.5 gives optimal choices of, and relative
efficiencies among, some summary statistics under specific classes
of assumptions concerning the anticipated alternative hypothesis
and the covariance matrix. In the last section the chapter”s

general relevance is reviewed.

The final chapter gives an overall perspective of the work done
and the needs for some further research. In section 6.1 some of the
approaches commonly used for repeated measures data are described,
and their advantages and disadvantages relative to the summary
statistic approach are discussed. Section 6.2 discusses the need
for further methodology, e.g. allowance for missing values. Section
6.3 gives Tfinal conclusions on how the methods of this thesis
should have an impact on the design and analysis of repeated

measures clinical trials in everyday practice.



2 MEAH SUMMARY STATISTICS: IHS FUNDAMENTAL ISSUES

In many clinical trials one"s prime objective is to assess the
average response to treatment over time, often (but not
necessarily) in anticipation that treatment response is liable to

occur quickly and to remain reasonably stable over time.

For a situation of this kind, the logical choice of summary
statistic is some kind of mean of each subject’s post-randomization
measurements, possibly after adjusting in some way for pre-
treatment measurements. This chapter will be concerned with this
class of summary statistics, henceforth labeled "mean summary

statistics™.

2.1 GENERAL RESULTS

2.1.1 _x .Ir»lg model

In this section a simple model for randomized trials with
repeated measures will be defined. Now we will restrict ourselves
to the case of investigations encompassing two treatment groups.
Most of the results, however, can in quite obvious ways be

generalized to trials with more groups.

Going back to the model, suppose a randomized clinical trial
has two treatment groups (i-A or B) with ni patients per group, and

suppose all patients have p pre-treatment visits k- -(p-1) ... 0,
and r post-treatment visits, k=l ... r. A quantitative measurement
X is observed at every visit for every patient, and we adopt the
simple model:

XH = tik+em for i-A or B, j-I,..,~ and k-(p-1), -.,0,1,..,r

Mil is the true underlying mean response for treatment i at
time k. As a result of randomization we can assume = fitk for
the pre-treatment visits k 5 0. &k is the j* patient "error" or
residual variation around the underlying mean , and these errors

will not be independent within patients.



Hence, let £ = {<KU} be the covariance matrix for all pairs of

measurement times k,l. For simplicity we assume this is the same

for both treatments.

It is helpful to define 3 submatrices:

={<*/} for k,1 -1 ... r ,
2n, ={au} for k,1 - -( p-1) 0 , and
Z@={CTd} for k - -<p-1I) ... 0, and 1-1 r

so that we can display

Also define au = pu <Ik-0, where pu is the within-treatment
group pairwise correlation between a patient®"s measurements at
visits k and 1, and 7k, O, are the standard deviations at visits
k, 1 within each treatment group. We expect the correlations pu to
be substantial (typically greater than 0.5 in most trials, see
table 1.5.1 and the examples given there) since they reflect the
consistency of patient effects over time, which are otherwise not

explicitly included in this simple model.

2.1.2__The three approaches

Even for the subclass of clinical trials where interest centers
around overall levels of response, the choice of summary statistics
is wide. Possible candidates could for instance be; post-treatment
mean, mean change relative to baseline, covariance analysis (with
baseline value as covariate), end-value, end-value - baseline, area

under the curve, median post-treatment, etc.

In this chapter we will be mainly concerned with the first
three of these statistics. More precise definitions of the three

approaches are as follows:



1) Post-treatment means (POST): a simple analysis using
the mean of each patient’s post-treatment measurements

as summary measure.

2) Mean changes (CHANGE): a simple analysis of each
patient®s difference between mean of post-treatment
measurements and mean of baseline measurements,
the latter often consisting of just a single baseline

value per patient.

3) Analysis of covariance (ANCOVA) : between-patient
variations 1in baseline measurements are taken into
account, by using the mean baseline measurement
for each patient as covariate in a linear model for
treatment comparison of post-treatment means.

For brevity, these methods will henceforth be referred to as
POST, CHANGE and ANCOVA respectively.

2.1.3__Estimates and -variance formulae

Let and be the respective means of the r2,p2 and rp
components of the three submatrices and defined above.

Using this notation we can define the following variance formulae

for the three analysis approaches under investigation.
1) Post-treatment means (POST):

For each individual the summary statistic is
r kmi

Overall post-treatment mean difference *

AL gl A

oA I8l Ao

which has expected value



For an individual patient, the variance for the summary

statistic is:

2

Xoo oo 4X -
var t)BZ M xJ +27»

g<hir

The last equality is easily seen to hold from a term-by-term

comparison with the covariance matrix.

Mean changes (CHANGE):

For each individual the summary statistic is the mean change.

Then the overall treatment difference in these mean changes
-— E<*r-*r>— £(*r- *r > = - fr >

which has expected value again equal to P-Z" ~Pt“" since the

pre-treatment expected values are the same for both treatments.

In the same fashion as for POST it is easily shown that

var[ar -*r>-<*r-*r>J«[- +-]1£, - +z,,.
VhA "jy
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3) Analysis of covariance (ANCOVA) :
The model for ANCOVA based on the individual®™s post-treatment
mean 3£ , with the pre-treatment mean X as a covariate, 1is
as follows: X**“= H*0"+ P (xj" — fI"™)+ E" where EN are

independent random errors with assumed constant variance. With

estimate /J obtained by least squares, we may define

X =X - Ji —5¥%), where X**“ stands for the overall pre-

treatment mean averaged over groups.

Then the estimated mean treatment difference

J_ vi-on__ L V y“« -XA Xn
_ 2ux »
M y-1 riB 71

which again has expected value « F/*—M*Mle

From the variance formula for ANCOVA (see Fleiss, 1986)

| I Ofr-*r)2

var(x?-*rj)=" trn—é [1-corr2{x~, x~)J-var(1*-) M nB A+« -2) var(r)

The first term corresponds to the loss of one degree of
freedom, due to estimation of the slope. The additional correction
factor in the last term allows for the fact that sampling error of

the estimated slope leads to a correlation between X% and X~ .

Using the above notation for components of the pooled

within-subject covariance matrix.

- PA+n,,-2 1,1
Vargr-n)=—_, .. w
M+n11_3 a (I'A+ I'B— 2)' ."h
As the sample size increases the first term approaches unity,
and in randomized trials the last term becomes negligible. Hence,
for any reasonable size of trial (say 50 2 subjects per group) we

can use the simpler approximation:
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In summary, for a randomized clinical trial all three estimates
of the mean treatment difference have the same expected value,

nr-nr -

Given the common sample size adjustment the
% T fo)
comparison of variance magnitudes may be expressed as:

POST, variance proportional to

CHANGE, variance proportional to

ANCOVA, variance approximately proportional to

It can be readily shown that ANCOVA always has a smaller
variance than POST.

ANCOVA also produces a smaller population variance than CHANGE,

Proof:
_ L _ _ _
VOr[ANCOVA]< Vor[CHANGE] o 21 <>
y prc mix W 2 <1, £1



After making the substitution: X = — we can express the left-

hand side of the inequality as: f(x) = x(2-x) . It is easily shown
that this function reaches its maximum at x-1 where the value of
the function is 1, i.e.: X,*, = X~, => Var[ANCOVA] - Var [CHANGE],
otherwise always: Var[ANCOVA] < Var [CHANGE]

For a design with two measurements, one pre-entry and one post-
treatment, this superiority of ANCOVA may be shown in a more direct
way. A general covariance matrix for this kind of design is given
by:

The corresponding variances for the three approaches are
related as follows:

Var[POST] «er,2
Var[CHANGE] ~ a2+ex2- 2pa,ay
Var\ANCOVA]~a2(l- p2)

Submitting the data to an arbitrary scaling, whereby all the

measurements are divided by <

the following covariance matrix:

pa._.

The variances for the arbitrarily scaled data
are now proportional to:
Var[POST] « 1

Var[CHANGE]« 1- pl+(a .- p)2
Var[ANCOVA]~\-p2



The superiority of ANCOVA relative to POST as well as to CHANGE
is now evident. It may also be observed that Var[CHANGE] S Var[POST]

if if (3.5 (since

Hence, for the mean summary statistic approach we have shown
that (disregarding the minor correction factors for the variance of
ANCOVA) , ANCOVA is superior to a) ignoring pre-treatment readings
and b) simply subtracting pre-treatment readings for each

individual.

2.2 RESULTS WITH COMPOUND SYMMETRY

When trying to derive new and useful results, there are
basically two different directions one might take. First one can go
for general results which are valid in most circumstances. Then few
assumptions are needed, the results hold globally, but usually
little can be said about specific examples. The second option is to
make more assumptions. Then the generalizability gets more
restricted, but more specific and useful results (in an applied
sense) will be achieved for these examples in line with the

assumptions chosen.

In the preceding section, the more general road was followed,
with variance formulae valid for any variance/covariance matrix. In
this section more assumptions will be imposed, allowing us to

produce more specific results.

More specifically, compound symmetry will be assumed. That is,
we will assume equal variances for all time-points and both
treatments and also equal correlations between all pairs of time-

points. Thus,
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Admittingly these are quite restrictive assumptions,
nevertheless they are used quite frequently, both in the
literature, and for some standard statistical techniques. For
example repeated measurements ANOVA (without correcting the degrees
of freedom for the F-statistic) uses an only slightly more general
assumption for the covariance matrix, labeled the Huynh-Feldt type
H-structure (Huynh and Feldt, 1970), whereby all normalized
contrasts among all repeated measurements have to have the same

variance.

From the real-world examples of covariance matrices presented
in table 1.5.1, it was seen that compound symmetry often is a quite
realistic model for the joint variability in a data set. Also, as
is shown in section 2.2.3, the results derived below are quite

insensitive to modest departures from these assumptions.

2 2.1--Comparison of variances with a single baaeline

Often there is just a single pre-treatment measurement and
several () measurements after randomization for each patient and

we now fFfocus on this simple case.

Under the assumption of compound symmetry, the variances for
the three approaches currently under investigation can be rewritten

as :

POST, variance

CHANGE, variance

ANCOVA,variance

42



Figure 2.2.1 compares the resulting variances (arbitrarily
scaled, <72 is factored out), when assuming a correlation of 0.6
(which 1is often found in practice, as was observed from the
examples in table 1.5.1). With this degree of intra-subject
correlation, and with one pre-entry measurement, the ranking order
between the three approaches is quite clear, with POST performing
least favourably and ANCOVA most favourably. Also evident from this
figure is the increase in precision gained by increasing the number
of post-treatment visits, which is of an identical magnitude for

all the three approaches.

Figures 2.2.2 to 2.2.4 makes pairwise comparisons between the
approaches by plotting ratios of variances for various values of p
and r. First comparing POST with CHANGE, with a correlation of 0.5
the variances are identical irrespective of the number of post-
treatment visits. With lower correlations POST is more favourable,
with higher correlations CHANGE is more advantageous. For any given
correlation, the approach (POST or CHANGE) which is more efficient
with a single post-treatment measurement, will be increasingly more
favourable as the number of visits post-randomisation increase.

Comparing POST with ANCOVA (figure 2.2.3), the former becomes
more inferior the larger the correlation p. This inferiority is
somewhat more marked if the number of post-treatment visits is
substantial. If p-0, then the pre-treatment measurements are of no
value, that is P=0 in ANCOVA in which case the two approaches are
in principle equivalent. We may plausibly expect p in the range .5
to .7, 1in which case the variance for ANCOVA will be around 40% to
60% less than for POST. This reflects the serious loss of
statistical efficiency incurred by failing to take account of pre-
treatment measurements.

CHANGE becomes less inferior to ANCOVA as the correlation p
increases (see figure 2.2.4). Again, for any value of p the
inferiority of CHANGE becomes somewhat more accentuated as the
number of post-treatment measurements increases. For the plausible
values of p in the range .5 to .7, the variance for ANCOVA will be

around 20% to 40% less than for CHANGE.



Figure 2.2.1 :

Variances for POST. CHANGE and ANCOVA depending on r.
suming equiicorrelation with p=0.6 and one pretreatment measure

Visits post—treatment
Figure 2.2.2 :

Dependence of Var(Change)/Var(Post) on r and p, assuming
equicorrelation p and one pretreatment measure.

2.2

0.6

0.4

No. of posttreatment visits, r
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Figure 2.2.3 :
Dependence of Var(Ancova)/Var(Post) on r and p. assuming .
equicorrelation p and one pretreatment measure.

Figure 2.2.4

Dependence of Var(Ancova)/Var(Change) on r and p. assuming
equicorrelation p and one pretreatment measure.

1 2 3 4 5 6 —7

No. of posttreatment visits, r
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Note again that for p=0.5 POST and CHANGE have identical
variances. Our examples (see section 1.5) suggest p will commonly
be somewhat higher, so that CHANGE will be better than POST.
However, with just a single pre-treatment measurement it seems
likely that both analyses will be substantially inferior to ANCOVA
in most practical circumstances.

2-2-2_ Consequences of having more pre-treatment measurementn

It is often possible to have more than one pre-treatment visit
in a repeated measures design (all pre-treatment visits occurring
before randomization) , and here we consider the improved efficiency
for both ANCOVA and CHANGE. Of course the time lapses between pre-
treatment measurements may effect the correlation structure, but
for simplicity we continue to explore the statistical properties
under compound symmetry.

With r post-treatment measurements and p pre-treatment
measurements we have

P-Dp e Imbecr p
For CHANGE, variance rioman @afAlrir-be (p+1)p -1l
ns) 1 r p \

. ~N o | -1
For ANCOVA, variance rio 1L +(r-Np pp2 1
Ua: r r i+(p-dpd

First, consider the advantage of extra pre-treatment visits
while keeping the number of post-treatment visits Tfixed. Then,
CHANGE becomes superior to POST provided p>1/(p+1). This means that
provision of two or more pre-treatment measurements will make
CHANGE the better option unless correlations are small, which
appears unlikely in practice.
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More important is the extent to which extra pre-treatment
measurements make CHANGE closer in statistical efficiency to
ANCOVA. From the above formulae it is easy to show that if p-0.5
then ANCOVA with p pre-treatment measurements has the same variance
as CHANGE with p+l1 pre-treatment measurements. For p>0.5, which is
quite likely in practice, this gap between the two methods is
narrowed more rapidly.

Table 2.2.1 compares ANCOVA and CHANGE for r-10 post-treatment
visits and p-1,..,5 pre-treatment visits, all variances being
expressed as a proportion of the ANCOVA variance for p-1. For
instance, for p~5 and p-0.7 the variance reduction for ANCOVA
relative to CHANGE is only 5%. This is because the observed pre-
treatment mean more closely estimates the true pre-treatment level
for each patient. Consequently the "regression to the mean"™ problem
(the tendency for variables that are extreme on its first
measurement to be closer to the center of the distribution for a
later measurement) 1in a mean changes analysis is reduced and the
estimated slope P in ANCOVA becomes closer to unity. It is worth
pointing out at this stage that CHANGE is not only inferior to
ANCOVA in terms of variances, for any true P<l1 CHANGE (by always
assuming p-1) will overcorrect for any existing mean pre-treatment

differences, and thus give (conditionally) biased results.

For ANCOVA, addition of more pre-treatment visits is always
helpful, but especially so if p is large. For instance, if p-0.7,
then having a second pre-treatment visit reduces the variance by
36%. Further somewhat less substantial gains are made by adding a
third pre-treatment visit, and so on. This proportionate gain for
ANCOVA, as shown in Table 2.2.1 for r-10, is reduced slightly for a
smaller number of post-treatment visits.

a7



Table 2.2.1 : The dependence of the variances for ANCOVA and CHANGE
on the number of pre-treatment measurements p and the
equi-correlation p between time-points assuming r-10
post-treatment visits. For each p, variances are
divided by the variance for ANCOVA with p-I.

p Analysis Number of pre-treatment measurements/ p
1 2 3 4 5
.3 Ancova 1.000 0.827 0.719 0.645 0.591
Change 2.750 1.500 1.083 0.875 0.750
5 Ancova 1.000 0.722 0.583 0.500 0.444
Change 1.833 1.000 0.722 0.583 0.500
7 Ancova 1.000 0.640 0.490 0.407 0.355
Change 1.375 0.750 0.542 0.438 0.375
.9 Ancova 1.000 0.574 0.421 0.343 0.296
Change 1.100 0.600 0.433 0.350 0.300

In some repeated measures designs there may be a fixed total
number of visits p+r-t, and we can therefore only increase the
number of pre-treatment visits p at the expense of the number of
post-treatment visits r.

Then, for CHANGE,variance + +xyliizii
M rB) pyt-p
10 1id f(l-p) t (r-p)(l-p)

and for ANCOVA, variance

'A «« \] p(t_p) rfl+ (p-1)p]

For CHANGE, the variance is minimized for p-r, that is equal
numbers of pre and post readings when t is even and p«(t-1)/2 or
(t+1)/2 when t is odd.
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However it is more important to consider the choice of p for
ANCOVA given a fixed total number of visits p+r-t. In general, the
“"minimum variance"™ choice of p for any given t becomes larger as p
increases, because the pre-treatment readings are of greater use,
that is P becomes larger. More specifically, we can show that for
any choice of integer p" then if p-1/(t-2p"), the variances of
ANCOVA for p-p* and p-p"+1 are the same. If p<l/(t-2p*) then p-p-
produces a smaller variance, and if p>1/(t-2p’> then p—p"+I1
produces a smaller variance. Thus, the optimal choice is p-p" when
p lies between 1/[t-2(p"-1)] and 1/(t-2p*) for p">0. Also p-0 if
p<i/t.

For example, if t-10 measurements in total, to achieve minimum
variance for ANCOVA we would set p*"-5 and divide them equally
between pre- and post-treatment readings if p>1/2 and set p*"-4 if
1/72>p>1/4. Smaller values of p are unlikely to occur in practice.
Hence, if the aim is to minimize the ANCOVA variance, p should be
not much smaller than t/2, since precision of the individual®s pre-
treatment mean level is almost as important as precision of the
post-treatment mean level. For more considerations of the optimal
choice of p for a given t, in particular for more general
covariance structures, see section 3.5.

Of course, reduction in variance is not the only criterion
affecting the choice of p. We usually wish to concentrate on the
post-treatment readings to describe the shape of mean change over
time (for example, is the treatment difference constant, increasing
or peaked?) and post-treatment measurements may be required at
certain intervals for patient monitoring. Departure from the equi-
correlation assumption is also relevant. For instance, if the
average correlation between pre and post readings was considerably
lower than the average pairwise correlation between pairs of post-
treatment readings then the "minimum variance"™ p would be further
from t/2. Nevertheless, the above results appropriately reflect the

merit of having multiple pre-treatment readings if practicable.
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However, it may sometimes be unfeasible or unethical to obtain
multiple pre-treatment measurements at adequate intervals. For
instance, if randomization must occur soon after the first visit,
there may be no opportunity for repeat pre-treatment visits or
their spacing may have to be so close in time that they do not
provide sufficiently independent measurements to improve estimation
of the subject"s "true baseline”. In most applications, it may be
difficult to define what is an adequate minimum spacing, though

having p>1 can only do good!

It should be noted that the greatest gain in efficiency is by
having p—2 rather than p-1. For instance, with t-10 readings in all
and p-0.7, the reduction in ANCOVA variance for p-2 versus p-1 is
34% while for p-5 versus p-1 the reduction is 53%. In practice,
some compromise is needed between precision of overall treatment
effect estimation (p sufficiently large) and adequate description

of the time pattern of treatment response (r sufficiently large).

The statistical consequences of increasing the number of post-
treatment readings r is the same for all three methods of analysis.
Under equi-correlation assumption the reduction in each variance by

having r+1 rather than r post-treatment readings is equal to

The practical consequence of this reduction in variance for
increasing r might best be viewed in the context of power

calculation, as described in section 2.4.

2-2_.3 SeaaltlYIltY inalyala for thw rmrpnM"*

Since many of the comparisons and recommendations in this
chapter are based on the assumption of compound symmetry, it is
important to consider the impact that departure from this

assumption have on the results presented so far.



We suspect non-equal correlations is a more serious problem
than inequality of variances (see figures 1.5.1 and 1.5.2 and the
accompanying comments), and will focus on the alterations to the
variances of the mean summary statistics as a means of illustrating
the implications of unequal correlations.

Let p/M*Pnu and be the mean pairwise correlations

(excluding the "self-correlations™ of 1) in the post-post, pre-post

and pre-pre covariance submatrices and Z”~ respectively.

Then, based on the general variance formulae for the summary
statistics given in section 2.1, and by substituting the general
means for the submatrices of L for the means we get when using the
mean pairwise correlations given above, it is easily shown that the
variances of treatment differences are proportional to the

following :
POST:
r
CHANGE: I+(r-)p,,,, |2+(P-1)p,, .
ANCOVA:  #+Q-Qp,-. ____ PL

Therefore, determination of variances and its dependence on r,
p and the method of analysis can all be documented if one knows the
values of the three parameters and p”~. With these formulae
it is possible to take the time-spacing of pre-entry measurements
into account. Often pre-randomisation visits are performed with
shorter time-intervals in between, than are post-randomisation
visits. If this is considered to produce higher correlations among

the pre-entry measurements, we can adjust the assumed value for p

accordingly.
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The practical consequences of such departures from compound
symmetry are usefully explored in the context of sample size

calculations. We return to this in subsection 2.4.3.

An alternative method of exploring the consequences of assuming
equi-correlation, when correlations are not stable over time, is as

follows. If p-1 baseline measurement, suppose p”~ and p~, differ,

but the overall mean correlation (which under these circumstances

equals is kept fixed.
r+1

Having p~ >p ,seems illogical in practice. Hence, we
anticipate underestimation of the variances for our three mean
summary statistics under the simplifying assumption of compound

symmetry. Specifically, the absolute magnitude of the

underestimation is given by;

- 2¢r-0 (- - )
POST = rer+1) K™ PmU”

CHANGE: 2(i5" 8. B..)

2(r-1) AT A 1

VA: r+y “RO* Pm (r+ 1)2

The underestimation for CHANGE will always be (+l) times as
big as for POST, the underestimation for ANCOVA will always lie
somewhere in between. An example of how the variances for the three
approaches are affected by different mean correlations in the
different submatrices of E 1is given in figure 2.2.5. Here a study
design encompassing 1 pre and 3 post-treatment visits is assumed,

and the dependence of the variances on the difference p is

visualized when the overall mean correlation is 0.6 .
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For p>l pre-treatment visits, and for any specific values of
Pposi’Ppn’Pmix" explicit formulae for the degree of underestimation
caused by assuming compound symmetry are easily defined, but it
gets more complex to discern any clear pattern. We simply compare
the variances for the summary statistics from the formulae given on
page 51, with the corresponding formulae under compound symmetry

given in subsection 2.2 .2.

As an illustration figure 2.2.6 compares variances for the mean
summary statistics for a design with 2 pre and 3 post-treatment
visits. The assumption is imposed that Ppon — Pprt” and that p~
differs from these by such an amount that the overall correlation

remains 0.6.
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2.3 RESULTS WHEN CORRELATIONS DECAY WITH INCREASING TIME INTERVALS

2.3.1__Modelling correlatioaa for aona rftal itwmglwn

Many of the results presented so far have relied on the
assumption of compound symmetry for the covariance structure. Even
if, as was shown in section 1.5, this often is a quite realistic
approximation of the truth, there exists many biological variables
where it is known that correlations decay with increasing time
intervals between visits. To take account of this when comparing
different methods for the analysis of, and design for, repeated
measurements studies, we need to find a simple but adequate model
for the correlation matrix when compound symmetry is known not to
be flexible enough in approximating the true covariance structure.

As a first step we will investigate some of the examples
displayed in table 1.5.1. In doing so we will be comparing the
ability of five different models for the underlying correlation

structure. These are as follows;

Compound symmetry :

py =p , for all 1*j.

First-order autoregressive model :

py = y* , where y is the correlation between adjacent visits
(separated by one "unit') and s is the time-interval

between visits 1 and j in such "units".

Damped exponential model
Py — 7 , where y and s are as above, and O is a parameter
controlling the degree of "damping" of the exponential
decrease (See Mufloz et al, 1992).

Linearly decreasing correlations with time

Py — y—-bsS, with y and s as above, and b is the estimated linear
(least squares) regression coefficient of correlations

on time (ignoring non-independence of pairs) .

Quadratically decreasing correlations with time

Py = y— «S—Dbj<S1 , with parameters as above and with addition
of a quadratic term.



To give some feeling for the flexibility of the damped
exponential correlation structure, figure 2.3.1 is given. For this
example it has been assumed that the correlation between adjacent
visits is 0.8, and different curves are shown for some of the

possible values of the second parameter, 8, in the model, p=Y .

The curve for 8-0 is the special case of compound symmetry, the
one with 8-1 is the special case of a first-order autoregressive
curve, those in between have a damped exponential decrease, and the
bottom two belong to the class having an accelerated exponential

decreasing correlation structure.

Moving on to real examples, we start with the ALAT data
referred to in table 1.5.1. In this study 11 visits were performed,
3 before and 8 after randomisation. The maximal time interval
between visits was 14 months, with all successive visits being
separated by either 1 or 1.5 months. There are 55 estimated
correlation coefficients, ranging from .52 to .79, and with an
overall mean of .65 . The correlation structure may be seen in
figure 2.3.2 along with the five curves resulting from least
squares estimation under the Tfive models outlined above. Clearly
the auto-regressive model does not fit the data, compound symmetry
appears slightly to simplistic, while the remaining three models
give very similar results, and they all seem to represent the data
quite adequately. However, the linear curve has the advantage of

relying on one less parameter.

The estimates for the parameters in the five models, along with
the error sums of squares around the estimated curves, are given in
table 2.3.1 below.



Figure 2.3.1 : Examples of exponentially decreasing correlation structures

Table 2.3.1 : Estimated correlation structures for the five models
with sums of squared deviations for the observed
correlation coefficients around the estimated curves
(SSerror) . ALAT data.

Correlation structure Estimated modelfor p sserror
Autoregressive .936t .982
Compound symmetry .654 222
Linear decrease .718-.011t .138
Damped exponential 73 .136
Quadratic decrease .735-.018t+.00054t2 .135
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CS-Compound symmetry, DE-Damped exponential, LIN-Linear decrease,
QUAD-Quadratic decrease, AR(1)“Autoregressive.



The next example concerns CPK in the same study, the figure
(not shown) 1is almost identical to what was seen for ALAT. The
descriptive statistics for the correlation coefficients are
consequently very similar to the earlier example with a range from
.51 to .78 and a mean of .65 . From table 2.3.2 we can draw about
the same conclusions as we did above relating to the

appropriateness of the respective models.

Table 2.3.2 : Estimated correlation structures for the five models

with error sums of squares. CPK data.

Correlation structure Estimated model for p SSerror
Autoregressive .936¢C 1.154
Compound symmetry .651 272
Linear decrease .705-.0095t .210
Damped, exponential 72 217
Quadratic decrease .709-.011t+.00013t2 .210

The final example is from the smaller (n«55) of the two
hypertension trials included in table 1.5.1, and the outcome
measure chosen is systolic blood pressure (SBP) . This design
encompassed 15 visits, 3 of which were performed before
randomisation, and all successive time intervals between visits
were 1 month. For this example, there is as expected, due to the
smaller N, more variability among the correlation coefficients,
with a range from .41 to .82, once again the mean is equal to .65
The correlation structure for this example, shown in figure 2.3.3,

is somewhat different from the two earlier.

There is a decrease in correlation with increasing time
intervals, but the observed curvature goes in the opposite
direction, as evidenced by the negative estimate for the quadratic
term in the quadratic regression in table 2.3.3 below. This slight
negative curvature may of course be due to chance, but it is only
the quadratic model (of the five models under consideration) that
is able to capture such correlation structures.



Table 2.3.3 : Estimated correlation structures for the five models

with error sums of squares. SBP data.

Correlation structure Estimated model for p sserror
Autoregressive .924c 1.928
Compound symmetry .646 .785
Linear decrease .722-_ 014t 618
Damped exponential 602
Quadratic decrease .593

Thus, from these three real examples we conclude that a first-
order autoregressive model is best forgotten since it generates too
steep a trend. If a simple one-parameter model is desired compound
symmetry is not grossly unreasonable. When compound symmetry is too
restrictive, a model based on a linear regression of correlation
coefficients on the time intervals between visits appears
appropriate and there seems little gain in incorporating a
quadratic term or in using the damped exponential correlation

structure.

Henceforth this section will be concerned with models for the

correlation structure based on a linear decrease with time.

2.3.2 Linearly decreasing correlations

Under compound symmetry, comparing variances for the mean
summary statistics under different designs is very convenient since
the degree of correlation is assumed not to depend on time between
measurements. As soon as one moves away from this simple structure
one has to consider the impact of time intervals on the variances
for the different mean summary statistics.

What also matters here is the shape of the alternative
hypothesis, fIA-/1d=5, over time. We will assume 8, to be

constant over time, and return to the issue of a non-constant 8, in

section 5.5.
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For now, emphasis is on the influence of linearly decreasing
correlations over time on the variances of our treatment
comparisons. When investigating the advantage incurred by adding a
visit to a certain design, one can either keep the time intervals
between successive visits intact and prolong the total study
duration, or keep the study duration intact and '"squeeze" in the
visits by shortening the time intervals between the visits. This
subsection will be divided into two parts looking at these two
alternative strategies. Furthermore, some results will be given
reflecting the influence on the variances for the mean summary
statistics caused by simply changing the time intervals between the
visits while keeping the number of visits constant.

2.3.2.1 Comparison of variances when time intervals between

In this sub-subsection we are assuming that all time intervals
between successive visits are equal, and that the addition of
visits implies an increased study duration. Specifically, we will
assume that the correlation coefficient between two given time-
points drop by a constant amount c for each further visit there are

between them.

For a general design with p pre and r post-randomisation
visits, a correlation structure of this type may be depicted as

1
r 1

y-C 1

y-2C 1

follows: L =

y-(p+r-2)c . . y-c y 1
where jf is the correlation between adjacent visits. Using some

straightforward algebra, the following equalities may be shown to
hold:
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the means of the variances and covariances

It is the changes in
v and vpf, that jointly

in each of the three submatrices,
will decide how the variances for our mean summary statistics (see
section 2.1 for the general variance formulae) are affected when we

increase the number of visits pre and/or post-randomisation.

the decreases for the means of the entities in

In particular,
increasing number of visits

the three distinct submatrices for an

are given by:

1-7 +] (p2+P-2)

PP+

£/0 _ £(ptn _
pr* pre

Assuming, for simplicity, that we have p-1 visit pre-treatment,
the variance formulas for our mean summary statistics are as

follows:
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Var[POST]

Var [ CHANGE =

Var[ANCOVA] -

Moving on to the resulting change in variance for the preferred
mean summary statistic, ANCOVA, incurred by adding an extra post-
treatment visit when there is p-1 pre-treatment, we arrive at the

following change 1in variance:

i-r+f(r» +r-2)

r(r+ 1)

~7 C+—(2r-1
S(@r-n

This formula may be compared with the corresponding formula
derived under a compound symmetry model (which is identical for all
the three approaches).

Change in variance under compound symmetry: [- + — -]Je— -— .
vnz nsﬁ rr+ D

We are now in a position where we can draw some inferences on
the value of increasing the number of visits under a model of

linearly decreasing correlations with increasing time intervals.

For a fixed number of measurements pre-treatment, increasing
the number of measurements post-randomisation will not always
decrease the ANCOVA variance. Even if the precision increases for
the dependent variable (the post-treatment mean), this will under

certain circumstances be offset by the decrease in
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How 7 and c interrelates to determine when an upturn in
variance (with increasing r) occurs may be judged analytically by
the sign of the change in ANCOVA variance for increasing r given in
the formula above. Table 2.3.4 gives the smallest c for which the
variance starts increasing as a function of 7 and r.

Table 2.3.4 : The smallest size of the decrease in correlation per
further visits apart <c), for which the ANCOVA
variance starts to increase when further post-
treatment visits are added, as a function of the
original number of post visits (), and the starting
correlation (). Assuming a linear decrease in

correlation with time and one pre-entry visit.

Number of post-treatment visits

7 1 2 3 5 10
9 .057  .026 .014  .006  .002
8 131 .063 035 .015  .005
7 234 .133 077  .032  .009
.6 .400 - . - .022
5 :

* For fixed 7 and r, the relationship of the ANCOVA variance
depending on c is a quadratic function. When c increases from
zero the ANCOVA variance also increases, but for each 7 and r
there is a worst possible c, after which the ANCOVA variance
starts decreasing again with successively larger c. When this
occurs it is mostly for impossible combinations of the
parameters, when 7.6 and r-10, however, the ANCOVA variance

starts decreasing again when c is larger than .037 .

The above table indicates for which combinations of the
parameters 7, ¢ and r, that the ANCOVA variance would actually
increase when adding a further post visit to the design. To get
some feeling for the relative changes in the variance for different
values of r, for fixed plausible choices of 7 (-.7) and c (-.02),

figure 2.3.4 1is given.



Figure 2.3.4 :
Variances for ANCOVA. CHANGE and POST, for linearly decreasing correlations

Depending on number of post visits for 1 pre, assuming a correlation of 0.7
for adjacent visits and a drop of 0.02 for each visit further apart.
(The assumptions imply that each visit added increases the study duration).

Number of post—treatment visits

Figure 2.3.5 :
Variances for ANCOVA, CHANGE and POST, for linearly decreasing correlations

For a fixed number of visits 1pre and 5 post, but depending on the degree
of decay in correlation assuming a correlation of 0.7 for adjacent visits.



We see that when there is only one pre-entry measurement, and
there is a slight decline in correlation with time, provision of
more than a handful (in this example 4) post visit will not improve
the efficiency of our analysis (when based on ANCOVA, for other, in
these circumstances optimal choices of summary statistics, see
section 5.5).

When both the number of visits before and after randomisation
are fixed, we may illustrate the effect of the degree of linear
decrease in correlations over time on the respective variances for
POST, CHANGE and ANCOVA. This has been done under some plausible
assumptions in figure 2.3.5 (the POST and CHANGE variances are
linearly related to c, for ANCOVA there is a slight curvature) .

We will now consider the consequences of increasing the number
of pre-treatment measurements. As a first step we will give a
reworked version of table 2.2 .1, but instead of assuming compound
symmetry we have assumed linearly decreasing correlations with time
with a drop of 0.02 for each further visit separating two time-
points. From a comparison of the two tables we can conclude that
the advantage of increasing the number of pre-treatment evaluations
is much smaller for a model based on linearly decaying correlations
with time. Obviously the pre-treatment mean will be estimated with
better precision when the number of baselines increase, but this is

counteracted by the decrease in with its consequent lower

dependence between post-treatment and pre-treatment means.

We also need to consider whether it is plausible to assume the

same values for 7 and c in all the three submatrices and
mite As observed in table 1.5.1 it is often the case that

correlations tend to be slightly lower in .
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Table 2.3.5 : The dependence of the variance for ANCOVA and CHANGE
on the number of pre-treatment measurements p and the
correlation p for adjacent visits, assuming linearly
decreasing correlations with a decay of 0.02 for each
further visit apart. We are further assuming r->10
post-treatment visits. For each p, variances are
divided by the variance for ANCOVA with p-1.

p Analysis P-1 P-2 P-3 P-4 P-5
0.3 Ancova 1.000 0.937 0.913 0.908 0.913
0.3 Change 3.246 2.058 1.694 1.537 1.461
0.5 Ancova 1.000 0.865 0.816 0.800 0.801
0.5 Change 2.043 1.354 1.151 1.070 1.036
0.7 Ancova 1.000 0.834 0.789 0.782 0.792
0.7 Change 1.491 1.071 0.960 0.926 0.923
0.9 Ancova 1.000 0.915 0.923 0.957 1.001
0.9 Change 1.175 1.030 1.024 1.054 1.093

The value of adding further pre or post-treatment visits to a
design, under the model for the correlation structure under
investigation, 1is strongly dependent on the degree of decline for
the correlations with increasing time intervals between
evaluations. As a further illustration of this, figures 2.3.6 and
2.3.7 are given, where the proportional decrease (increase) in
variance for ANCOVA is shown for increasing number of pre (or
post)-treatment visits, under some plausible assumptions.
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Figure 2.3.6 :

Pr(?portional decrease invariance for ANCOVA when addins further pretreatmen
visits, when there are 5 visits posttreatment. Depending on the degree of
linear decrease for the correlations over time when assuming a correlation o
0.7 for adjacent visits. All variances are divided by the variance for p=1.

Drop in p for each further visit apart

Figure 2.3.7 :
Proportional decrease in variance for ANCOVA when adding further posttreatment

visits, when there are 1visits pretreatment. Depending on the degree of
linear decrease for the correlations over time when assuming a correlation of
0.7 for adjacent visits. All variances are divided by the variance for r= 1
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2.3.2.2 Comparison of variances when the total study duration

is fixed

We will now be concerned with a different strategy, keeping the
total study period fixed, and letting the between-visits time
interval change as a function of the number of visits incorporated
in the design. Under compound symmetry, the variances for our mean
summary statistics are unaffected by the length of time intervals,
this is not the case when correlations decay with time. As before,
the correlation between adjacent visits will be denoted by 7. The
total decay in correlation will be denoted by b, this is the
anticipated difference between 7 and the correlation between the

very Tfirst and the very last visits.

The correlation matrix for this model has the following

structure:

The means of the variances and covariances in the three

submatrices; pre, mix and post, are equal to:

69



(P-2)

D 1+ (P-D| I— 3(0+ r—2)

(r-2)

: Y
~ poll r|+(r'|)[ "'%4_',._2)

As is independent of the number of visits, many of the
relationships between the mean summary statistics will be more
straightforward. The changes for and incurred by

increasing the number of visits is given by:

1 b{p@-p-r-pN+2(r-1)}
N G 3(+r-2)(p+r-D

y () _ THr+l> _ . b{r(3—p—r_pr)+2(p_l)}
F‘D' r(r+1) 3(p+ r_2)(p+ r_l)
-XErmr)=0
For p-1 measurement pre-treatment the reduction for

simplifies to: g™, -Z ™ = N IR~ Y + F o]

Continuing with the investigation of results when one baseline

measurement is available, we get:

N) [or
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Under the current assumptions, the reduction in variance by

having r+l rather than r post-treatment readings, for p-1 pre-

treatment, may be calculated from: ---_----— . For the current

model, with a fixed study duration, the variance for ANCOVA (as
well as for POST and CHANGE) will always decrease with increasing
number of post-treatment recordings. Further, because always
remain unchanged, the reduction will be the same for all the three

approaches (this is for p-1 measurement pre-treatment) .

2.3.2.3 Comparison of variances with increasing study duration

but with a fixed number of visits

Finally, with respect to linearly decreasing correlations, we
will consider an alternative way to improve the precision in our
estimates of treatment effects, other than increasing the number of

repeated measurements.

When correlations decay with time, it is possible to decrease
the variance for the pre-treatment and post-treatment means simply
by prolonging the study duration. The reason for this is that the
measurements get increasingly less dependent the further apart they
are, and thus provide more individual information.

However, when extending the study duration one has to consider
whether the assumption of a constant difference between mean
response curves over time remains realistic. Also, practicalities
often dictate the study duration. The results given below relies on

—Ht.,= 5, being constant (-8) over the time intervals under

consideration.

We will denote the originally intended study duration by T, and
investigate how the variances change when this duration is
increased to fT, where f 2 1. Starting with the means in the three

submatrices of the total within-subject covariance matrix, we Tfind
that by moving from a duration of T to fT:
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X~,, decreases by

Z~, decreases by

decreases by

The consequent impacts on the variances for our mean summary

statistics, when assuming p-1 measurement pre-entry, Iis:

r-D/=— 2
POST , variance changes by (r-¢ r ) c(/-1) as we move from T to
3

CHANGE, as we move from T to
ANCOVA, variance changes by

w L (r-1) c (/+1)
(r—h>c (/=1 ot —mmmeem Y a— as we move from T to fT.

It is easy to confirm that, for fSI, POST will always gain in
precision, while CHANGE will always lose precision. For ANCOVA the
variance may change in either direction depending on the degree of
the correlations. With high correlations (when ANCOVA gets closer
to CHANGE) ANCOVA tends to lose precision, with lower correlations
(when ANCOVA gets closer to POST) ANCOVA tends to gain precision.
For given y and r, the larger c is, the more likely will it be that

the ANCOVA variance decreases with increasing study duration.
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2.4 SAMPLE SIZE DETERMINATION

2.4.1__A general covariance atrurtum

As in the conventional approach to power calculation we define
a and P as the type | and type 1l errors for the test of our
hypothesis. It is covenient to assume that sample sizes are large
enough that the normal approximation to the t-distribution can be
applied. In that case, for two equal sized treatment groups of

r

size n, for a general summary statistic <S$#= =c'yg),
«_ (%D
under a general shape for the alternative hypothesis and
2c'lc 0
with a general £, we require that; = ————-4=lika,p 9, where
(c’S)

/(«.P)=[*"“(Q-a/2)+0"1(1- p )2 ., ® being the cumulative

distribution of a standardized normal deviate.

Correspondingly, given the sample sizes, the approximate power
may under this general scenario be calculated from;

These formulae for the determination of sample sizes and power
may be used in conjunction with any linear summary statistic,
under any assumed vector of mean treatment differences over time,

and under any plausible covariance structure.

This section will only be concerned with constant treatment
effects, to make similar comparisons and evaluations under any
circumstances (for instance, linearly diverging mean treatment
curves) is straightforward. An immediate observation is that
conditional on a given treatment effect, the required sample sizes
are directly proportional to the variance of the summary

statistic.
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Among the mean summary statistics ANCOVA has been shown to be
consistently more efficient than its competitors. Returning to the
notation of section 2.1, we consider the alternative hypothesis
JIE" — /1/*' =S . For ANCOVA we than require, for a general E,

that;

In the following sections some ways to utilize this formula at
the design stage, under some plausible models for the covariance
structure, will be indicated. Also, the actual gains expected by
using ANCOVA instead of the simpler approaches, POST and CHANGE,
in reducing sample sizes and/or increasing the power, will be
illustrated.

2.4.2____Compound

Under compound symmetry, for two equal sized groups of size n,
we require for ANCOVA that;

For the other two methods of analysis, POST and CHANGE, we have
respectively

The corresponding formulae for calculation of power are obtained
in a straightforward manner by a direct substitution of the variances
of the summary statistics.

For illustration, consider the alternative hypothesis 6-0.4-a, and
let p-0.7, often a realistic value for practical use.
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Figure 2.4.l1a shows the required sample size n in each group for a
variety of study designs and analysis approaches: for r-1,...,8 post-
treatment measurements, for p-1 or 3 pre-treatment measurements and
for POST, CHANGE and ANCOVA.

The simplest possible design has r-1 and p-0. The POST analysis (a
two-sample t-test) requires around n-100 patients per group.
Increasing the number of post-treatment readings has some effect on
decreasing n, but with no use of pre-treatment readings n remains at

around 75 even with r-8.

The CHANGE analysis with p-1 pre-treatment measurements (@ two-
sample t-test comparing mean changes) leads to a required n around 60
for r-1 post-treatment measurements, which can be reduced to n<40 if r
is increased to 4 or more post-treatment measurements. The superiority
of ANCOVA is illustrated by a further fall in sample size. For
instance, with p-1 and r£4 we can reduce n to below 30 if ANCOVA is

used.

The advantage of increasing the number of pre-treatment
measurements in substantial. For instance, with p-3 and r& ANCOVA
requires n<20 patients per group. For p-3, CHANGE is similar to
ANCOVA.

Figure 2.4_.1b is given for comparative purposes, and will be
explored in the next subsection.

Many simplifying assumptions must by necessity be made at the
design stage for a study when making sample size determinations.
The size of the treatment effect one wishes to detect @), often
quantified in terms of a proportion of the standard deviation of a
single measurement, will strongly affect the sample sizes called
for.

The number of patients needed is inversely proportional to the
square of 8. This relationship is exemplified in figure 2.4.2
where a study with 1 pre and 4 post-treatment measurements is
under planning. Common choices of a (-0.05) and P (-0.20) have
been made, and compound symmetry with p-0.6 1is anticipated.
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Figure 2.4.1
Example of Power calculations for arepeated measures
design. Alternative hypothesis <5=0.4a, a= 05, /3=.2

a) assuming p=.7 (pre-pre, pre-post and post—post)

number of posttreatment visits, r
b) assuming p=.8 pre-pre and post—post, but p= .6 pre—post
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Desiring to detect a treatment effect of 0.5-a a total of 90
patients is called for. Would a 5 as large as 0.6-0 be realistic
64 patients would be enough, while settling for 8-0.4a would
increase the necessary sample size to 138. By this little example
we see how quite small alterations in the desired 5 have rather
large implications on the required sample size. From the figure we
may also note how much less efficient POST and CHANGE would be,
and also how much smaller treatment effects ANCOVA would be able

to detect for any given sample size.

The impact of an increase in sample size on power is Tfar from
linear. An illustration of how that relationship might look is
given in figure 2.4.3. We are again looking at an intended design
with 1 pre and 4 post-treatment visits, it is desired to detect a 8
of 0.5-0 and compound symmetry with p-0.7 is assumed. Settling on 40
patients in total, ANCOVA has a power of .82, CHANGE has .73 and
POST only .43 . Doubling the sample sizes, ANCOVA reaches a power
of .98, CHANGE has .95 and POST .72. Not even with 100 patients in
total will POST reach the power ANCOVA obtains with 40 patients.
Looking at power curves of this type is important, both to reach an
acceptable power, but also to avoid over-sized clinical trials.

The two preceding examples have both investigated one specific
type of design. Given that we know that we should use ANCOVA, and
assuming that, for practical reasons, the sample size is limited to
60 subjects, what can we do to reach an acceptable power, given
also that 8-0.50 and compound symmetry with p-0.6 is anticipated?
With only 1 pre and 1 post evaluation the power is .66 (see Tfigure
2.4.4), which is felt to low. Adding a second post visit raises the
power to .82 . If it is required to reach a power of .90 we are
still not satisfied. Adding, also, a second pre visit increases our
power to .89, which is further improved to .94 with a total of 2
pre and 3 post-treatment measurements, which, in this case, would
be our selected design.

Returning to the issue of the assumptions we have to make at
the design stage, one of the advantages with ANCOVA is its
robustness. In relation to the degree of correlation (under

compound symmetry) this is illustrated in figure 2.4.5.



Figure 2.4.2 :

Number of patients needed depending on the ratio (std/delta)
Assumptions :a=0.05, 1-/=0.80, p=0.6, visits=1+4

Figure 2.4.3 :
Power achieved depending on number of patients per group
Assumptions :(std/6)=2,p=0.7, a=0.05, 1+4 visits
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Figure 2.4.4 :
Power achieved depending on number of visits pre+post
Assumptions : (std/delta)=2,/0=0.6, a=0 05, patients=30+ 30

Figure 2.4.5 :
Power achieved depending on the correlation o
Assumptions : (std/delta)=2, a=0.05 patients=30+ 30, 1+4 visits



We are making the same assumptions as in the preceding example,
except that a design of 1 pre and 4 post-treatment measurements is
desired, and that we are very uncertain on the level of p (perhaps
due to difficulties in assessing the degree of measurement error to
be anticipated). However, as long as the other assumptions are met,
the degree of equicorrelation present matters not very much for
this example, the power will never drop below .86 . This particular
feature of robustness is evidently not shared by POST or CHANGE.

2.4.3__Sensitivity of the compound ««nwhrv . _MimnHnn

Utilizing the notation and results of subsection 2.2.3 we may
now investigate the impact that unequal correlations have on sample

size determinations under a compound symmetry assumption.

As indicated in subsection 2.2.3, determination of trial size and
its dependence on r, p and the method of analysis can all be
documented if one knows the values of the three parameters
Ppoti >Pmix and Rore- Given the theoretically infinite variety of
correlation structures that could exist, one cannot reach completely
generalizable quantitative conclusions on these design issues.

However, we will attempt to elucidate some practical suggestions based

on certain realistic departures from compound symmetry.

First, consider p-1 pre-treatment reading and the consequence
of having p~ different from p”~, (pHA, is non-existent if p-1).
Suppose non-equality of correlations can be represented by a
decline in p of magnitude b per visit apart, all visits being
equally spaced. Judged by the examples displayed in figure 1.5.1
this simple structure is likely to be an adequate approximation of
the true covariance structure iIn many situations. If data exist
from a previous trial, this slope b can be estimated from the full

correlation matrix. Then it can be shown that p”, -p”~ 7 b(r+1)/6.
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If power calculations take account of p”~ being less than p ,
, as in figure 2.4.1b where it has been assumed that p” - 0.6
while Pp,. (when it exists) and p”~, m 0.8, the relationships

between the summary statistics change. Again, the five curves are
parallel, but the sample size reductions for CHANGE and ANCOVA
compared with POST become less marked. The difference between the
elevation of the ANCOVA and POST curves is now 35.5 compared to
48_.4 in figure 2.4_la. The advantage of CHANGE over POST has
decreased even more, from 39.5 to 19.8.

Let us next consider the decline in sample size with increasing
r and how this could be affected by unequal correlations. Initially
we assume p-1. Suppose correlations get weaker the further apart
visits are, as often is the case. For a fixed total follow-up time
T it can be shown that for r equally spaced visits the mean of all
pairwise distances is (r+1)T/3r. This declines with r (by a maximum

of one-third for r-~ compared with r-2) so that p”, increases with

r.

Concentrating on ANCOVA, we note that increasing r is liable to
increase slightly p”, .while under the current model for the
decline in correlations, p” will remain unchanged (see subsection
2.3.2.2 for more details) so that the resulting effects on the
trends in sample size with r will tend to level off slightly more

quickly than under a compound symmetry assumption.

When considering the merit of p>l baseline readings, the extent
to which p~, and P~ differ from p”~, has some bearing on the power
calculations. If the repeat baselines are close together p”, might
be increased, whereas having baselines further back in time might
reduce p,,a =either of these possibilities leading to an increase in
the required sample size for ANCOVA. For instance, for p-3
baselines in figure 4.2.1b ANCOVA has the required n decreased by
5.5 (for any value of r) relative to ANCOVA with p-1 baseline. The
corresponding drop in required sample size in figure 2.4.1a was
12.1 (for any value of r).
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Overall, substantial improvement in statistical efficiency with
repeat baselines are possible provided p” 1is not radically reduced

and pp,, is not too large. The magnitude of benefit is dependent on
p”~ and p , but like other parameters in power calculation their

values may not be known in advance. Thus, while the recommendation to
have more than one baseline if possible is of general relevance to
repeated measures trials, the precise extent of statistical
improvement cannot be reliably predetermined unless one has some prior
knowledge (for example from a previous trial) regarding the
correlation structure.

2-4-4__ Linearly decreasing correlation»

When the compound symmetry assumption is felt to restrictive,
and if it is known that correlations will decline with time, the
model with linearly decreasing correlations put forward in section
2.3 is a simple but often realistic and robust alternative.

As already noted, the required sample sizes are directly
proportional to the variances of the respective summary statistics,
and there is no need to repeat the formulae here. Instead, emphasis
will be on illustrating the dependence of the power for ANCOVA, and
also of the number of patients needed, on the covariance structure
as decided by y and b (using the notation from section 2.3).

Figure 2.4.6 gives contours for four levels of power (A-.95,
B-.90, C-.80 and D-.70) as a function of y and b, assuming:
(std/8)-4, a-0.05, 200 patients in total, and 1+4 visits pre
respectively post-treatment. For each given point on any of the
contours we may read off what b at most can be to give the specified
power for a certain Yy, or correspondingly, what y at least has to be
to achieve a certain power for a given b. The contour for b-.3 needs
some extra clarification. As long as the total decline in
correlation (b, the difference between the p for adjacent visits,
and the p between the very first and the very last visit) over the
study period is less than .18, the power will exceed .70 for all Y.
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Figure 2.4.6
7 necessary between adjacent visits to achieve a certain

power for ANCOVA depending on total decline, b, in correlation
Assumptions : (<5/std)= .25, =0.05. 100+100 patients, 1+4 visits

7 o7

Total decline in correlation, b

Figure 2.4.7 :
Number of patients needed (per group) when using ANCOVA, depending

on correlation between adjacent visits and its linear decline with time
Assumptions : (<5/std)= .25, <=0.05, 1-/3= 80. 1+4 visits

0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.40 0.35 0.30

Correlation between adjacent visits



With larger b, y has either to be above the upper arm or below the
lower arm, of the contour, to satisfy the specified power
requirement. Generally, we see that when the decline in correlation
is substantial, the loss in power has to be taken into

consideration.

The required sample sizes will not necessarily decrease as y
increase, this is exemplified with figure 2.4.7. This example
illustrates the sample sizes needed for a design with 1 pre and 4
post-treatment visits, where it is desired to detect a 5 of 0.25-a.
The four curves are labeled with the level of b anticipated (0-.0,
I-_.1, etc.), and y is given on the x-axis. With y in the most likely
range, say .5 to .8, we see that declining correlations affect the
required sample sizes substantially. When b is large, say .2, the
required number of subjects may actually increase when y increases.

Generally, when correlations increase we lose precision iny and
y*0“, this is because the effective sample size is getting smaller,
each individual measurement is giving us less new information.
However, the dependency between y ,r* and yr* also increases, and as
is obvious from the usual ANCOVA variance, this effect is very
important for increasing the overall efficiency. Normally,
increasing correlations imply less ANCOVA variance, but when
correlations decrease with time, and p”~ 1is constrained to be

smaller than ppott, this balance may shift, as was noted in figure

2.4.7.

2.4.5--Use of a specific predefined covariance matrix:

When a certain drug has reached phase 111, the research
personnel at the pharmaceutical company concerned with its
development usually have quite good knowledge of the effects of
their treatment on the outcome measures of primary interest.
Normally, they are also well aware of at which time points and for
which time intervals they are interested in detecting treatment

effects.



Specifically, from all the trials performed earlier on this
drug, and from the literature concerned with the same type of
treatments and diseases, fairly accurate knowledge usually exists
(or could exist, if investigated properly) relating to the type of
treatment effects anticipated over time, and for the type of

covariance structure to be expected.

In this subsection an illustrative example will be given on
how such prior information might be used at the design stage of a
clinical trial to increase the power to detect an effect of a new
treatment regimen. To begin with, a purely hypothetical scenario
will be outlined. We will anticipate that we are dealing with a
disease for which there is a well defined primary outcome measure,
which is continuous and fairly normally distributed. The treatment
duration typically lasts for four weeks, and provision of more
than one baseline visit is not considered feasible. A rather quick
response to treatment which remains reasonably stable over time is
expected. Hence, use of one of the mean summary statistics seems

appropriate.

Assessments of efficacy in this disease are typically performed
weekly, and from the joint information available from earlier
investigations it is known that the covariance structure for one
pre-entry and four post-treatment evaluations, for this kind of
design, will be well approximated by (for notation, see page 18)

L=Dl R D,,, withz>;=[ViO V7 V7 V7 V7], and

Abh o e,
o N o P
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A few remarks regarding this structure are in order here. The
decreasing variances after randomisation reflect the dependence of
the variability on the overall mean response, which drops quite
substantially after the initiation of treatment (implying that we
have to be wary about the risk of unequal covariance matrices
between groups). The effects of this treatment effect explains
also the relatively lower correlations between pre and post-
treatment evaluations as compared to the post-post correlations.

In addition to this difference there is also a decrease in
correlation with increasing time-intervals between evaluations. In
summary, a constant treatment effect after randomisation is
anticipated, with a covariance structure as specified above.

Assessing the efficiencies of our mean summary statistics the
following results emerge after having substituted the appropriate
values of the means for the three submatrices of £ into the

respective variance formulae of the three analysis approaches:

Var[POST]  «5.60
Var[CHANGE] «7.65
Var[ANCOVA] «4 .02

Appreciating that the investigators for practical reasons are
unable to include more than 150 patients in total in this study,
and calculating the resulting power, when having decided on a type
1 error of .05 and having been told by the investigators that they
want to be able to detect a difference in mean treatment effect of
one unit (G-o/V7) , we end up with the following;

Power for; ANCOVA - 0.86
POST - 0.73
CHANGE - 0.60

The superiority of ANCOVA is obvious. The relative
inefficiency of CHANGE, under these circumstances with relatively
high correlations, is perhaps unexpected, but it is explained by
the low resulting regression coefficient for the post-treatment
mean on the pre-treatment reading for this kind of covariance
structure, which has (3-0.397 .



It may also be noted that, had it been possible to include
multiple baselines, great gains in efficiency might have been
possible. Provision of additional post-treatment measurements
offer a limited advantage.

The recommendation that should have been done at the design
stage for this hypothetical example is straightforward, use an
analysis of covariance with each subjects mean post-treatment as
dependent variable.
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2.5 ANALYSIS OF AN EXAMPLE

We now illustrate the value of some of the issues discussed
above with a practical example involving real data. A randomized
trial of 152 patients with coronary heart disease compared an
active drug with a placebo during a 12 month follow-up period. The
liver enzyme CPK in serum was measured to study a possible adverse
drug effect on the liver. Each patient had three pre-treatment
measurements, taken 2 months before, 1 month before and at
randomization, and eight post-treatment measurements, taken at

every 1.5 months after randomization.

Figure 2.5.1 shows the results as commonly displayed in a
medical journal, with means by treatment group for every time
point. While there is a consistent pattern of higher post-treatment
means on the active drug, the standard errors are substantial. The
common but misguided practice of separate significance testing for
each post-treatment time point reveals a varied collection of t-
statistics, whether we use means, mean changes or ANCOVA. The t-
values range from 0.35 (ANCOVA for visit 12 with visit 0 as
covariate) to 3.34 (ANCOVA for visit 4.5 with means of visit -2, -1
and O as covariate) with around half the time-point-specific
significance tests having P<0.05 whichever method of analysis is

used.

However, this plethora of significance tests is based on the
false premise that each time point is of separate interest in its
own right. In reality, the primary hypothesis is more global
(across all post-treatment measurements, is there a tendency for an
elevation in CPK on the active drug?).

In exploring the correlation structure in these data, each
pairwise correlation Pu has been estimated by Pu, the observed
correlations obtained from a weighted average of the two treatment
groups’ covariance matrices, weights being proportional to sample
size. Figure 2.5.2 plots Pu by the time between visit k and 1;
pre-pre, pre-post and post-post pairs are denoted by different
symbols. There is a general consistency in the correlations, all
being in the range 0.5 to 0.8. Also, the three types of pairs show
similar magnitude.
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Figure 2.5.1

Mean level of CPK over time for drug A (n=76) and drug B (n=76)
(standard error of mean shown only for 3 month visit, others are of similar magnitude).

Figure 2.5.2 :
CPK, n=152. correlation coefficents versus time between visits,,

¢=pre,pre, =pre,post, O=post,post.
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There is a slight decline in correlation amongst more distant
pairs of time points, the estimated slope being -0.009 per month
apart. This indicates only slight departure from the assumption
that Pu is constant for any k*I. Also, the variance -2 varied

little between visits.

From the discussion in earlier sections, the most appropriate
method of analysis for the data in figure 2.5.1 is ANCOVA based on
each patient®s mean of the eight post-treatment measurements as
dependent variable with the mean of the three pre-treatment
measurements as covariate. Table 2.5.1 shows CHANGE and POST for
comparison, and also includes for illustration ANCOVA and CHANGE as
if only a single pre-treatment measurement (visit 0) had been

available.

Table 2.5.1 : ANCOVA, CHANGE and POST analyses for the CPK data,
n=76 patients in each treatment group, r-8 post-

treatment measurements, p=| or 3 pre-treatment

measurements; 3 is estimated regression coefficient.

Number of Estimated
pre-treatment mean diff. Standard t- P-
measurements in CPK (IU/1) error statistic value

ANCOVA ., =0.83) 3 -.066 .021 3.24 .001
ANCOVA (4 =0.63) 1 -.043 .025 1.72 .09
CHANGE 3 -.062 .022 2.89 .004
CHANGE 1 -.023 .030 0.77 .44
POST - .085 .037 2.31 .02

ANCOVA is seen to produce a smaller standard error and hence
stronger evidence of a treatment difference, especially if the mean
of all three baseline readings is used as covariate. Since P 1is
close to 1 in this case the CHANGE analysis is only marginally
inferior. POST suffers from two problems: the standard error is
much larger, and also failure to take account of the slightly
higher average pre-treatment mean level on active drug leaves an
upward bias in the estimated treatment effect.
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With just a single pre-treatment reading (visit 0) rather than
the mean of three, the standard errors for ANCOVA and CHANGE are
substantially increased. Given the more pronounced pre-treatment
imbalance at visit 0, the CHANGE analysis is prone to a downward

bias, this being related to the smaller /3 for ANCOVA when p-1.

2.6  SUMMARY AND DISCUSSION

The emphasis of this chapter has been on studies where the main
interest is in an overall (mean) response during treatment, the aim
has been to explore the statistical properties of some simple
approaches to repeated measures using summary statistics. While
there are many possible summary statistics, we have focused on the
mean post-treatment response of each subject as being a logical
choice in many such trials. Consequently, ANCOVA using the mean
pre-treatment level as a covariate is the preferred method of
analysis. In practice, we suspect ANCOVA is not used nearly enough,
so that too many trial reports of quantitative outcome variables,
with or without repeated measurements, rely on inferior analyses

using just post-treatment values or post-pre differences.

Further, we feel that little attention has been given to the
statistical design of clinical trials with repeated measurements.
The methods presented for determining sample size and the number of
pre- and post-treatment measurements should be of practical use in
the planning of such trials. Specifically, the importance of
obtaining precise estimates of the subjects pre-treatment levels
should be acknowledged, and more than one pre-treatment measure be
obtained whenever feasible. For the statistical efficiency of the
treatment comparison, this is almost as important as obtaining
precise estimates of the post-treatment levels. We feel that the
examples presented support the use of the compound symmetry
assumption as a realistic guide to the quantitative planning of
clinical trials with repeated measurements. However, it should
again be emphasized that no such assumption is made when it comes
to data analysis.
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As an alternative to compound symmetry, the assumption of a
slight linear decrease in correlations with time could be made,
using methods given in this chapter. This latter approach should
provide a safeguard against the sometimes slightly optimistic
results (in terms of statistical power) which are suggested under

compound symmetry assumption.

In conclusion, this chapter has presented methods and results
for the choice of approach to analysis, and for appropriate
statistical designs, which when used sensibly in conjunction with
repeated measures clinical trials may greatly improve the
efficiency of the statistical analysis.



3 MEAN SUMMARY STATISTICS: SOME ADDITIONAL TOPICS

3.1 BIAS IN ESTIMATION IF PRE-TRZAMENT MEANS DIFFER

As described earlier we will adopt the simple model:
X~k = Hik+e# where 1 is the index for treatment (A or B), j indexes

subject and k visit (ranging from - (p-1),..,0,1, ..,r) . For a

randomised clinical trial, nr =nr " so the expected value of

X r -xr 1is zero. Accordingly, at the design stage (before X and
X r are observed), all three methods of analysis produce (on
average) unbiased estimates of nUT ~ nST = However, conditional on

any particular observed pre-treatment difference in means

Xr-xr =dnmt*0 there exists scope for bias.

One rationale behind ANCOVA is that the covariance adjustment
removes that component of the observed difference in post-treatment
means that is predicted on purely statistical grounds from the
observed difference in pre-treatment means. For non-randomised
designs (i.e. observational or non-equivalent groups studies) this
removal of bias due to inequality of pre-treatment means is only
true if there is no measurement error in the pre-treatment readings
(see Snedecor and Cochran, 1989). For alternative approaches to
analysis in these situations, see also Caroll (1989) and Huitema
(1980) .

Moving back to the randomised clinical trial, the presence of
measurement errors in the pre-treatment recordings will, as
observed earlier, result in an attenuation of the slope B in
ANCOVA, compared with regression on the true underlying (but

unknown) pre-treatment means for each subject.

If we define a variance a] for measurement error, and suppose
that this is a sub-component of the overall variance <T2, and that

both <7? and CT,2 are the same for all time-points.
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Then, for p=1 pre-treatment reading, the expected value of the

observed slope

For p>1 pre-treatment measurements the attenuation in slope becomes

less marked, and specifically Pds— Po

One might now argue that conditional on a certain difference in
pre-treatment means, the use of an attenuated slope, with a certain
consequent less degree of adjustment, would imply that also ANCOVA
is affected by some bias. This is, however, not the case (see Senn,
1990). The adjustment used by ANCOVA is P-dp“. We have already

seen that the effect of the measurement error on the slope is to

decrease P from or in the case of one

pre-treatment reading from p At the same time

the expected value of dp” is affected. If we label our observed
difference in pre-treatment means allowing for measurement error

df , then given a particular value for this entity, d£f 1is a
biased estimator of d£ (the average over all randomisations, of

course, in both cases is equal to zero) .

In a randomised clinical trial we have the relationship

E[M]zw; where y is the regression of true values on

observed values and satisfies the relationship



Hence, we can write down our covariate adjustment when working

A
on the observed values as;

l.e. our expected degree of adjustment is the same whether pre-
entry measurements are affected by measurement errors or not, and
ANCOVA 1is unbiased. The impact of the measurement errors is only a

loss in precision.

This conclusion reinforces the general message that ANCOVA is
the best of the three methods considered and the only one which
produces unbiased estimators in the presence of chance observed
imbalance, irrespective of whether baseline recordings are subject

to measurement error.

Of course no technique can hope to adjust for unobserved
imbalance, but where we have randomised we are justified in
regarding the variances of our estimators as appropriately

expressing our uncertainty.

The bias for POST and CHANGE conditional on an observed

difference in pre-treatment means, , are as follows;

POST, bias is

CHANGE, bias is -(1- fi~ d

It is worth noting that the POST bias is in favour of the group
being (by chance) better of at baseline, while CHANGE overcorrects
for any chance baseline imbalance and has a bias in favour of the
group being worse off.



Having more than one pre-treatment measurement will reduce this

bias. If we adopt the compound symmetry assumption, then,

for POST, the bias -

for CHANGE, the bias -

For p-1 this means that the POST bias - p-d£~ and the CHANGE
bias - —@-p) "dE£. For p>0.5 (which is usually the case), POST

contains more bias than CHANGE, Furthermore, for p>l pre-treatment
measurements, this aspect of inferiority for POST becomes more

marked. For instance, if p-3 and p—0.7 (say), then the POST bias -
.875-d£ while the CHANGE bias = .125-d£. However, with more pre-

treatment readings we can expect d £ to become smaller.

Overall, if there exists a pre-treatment difference, then POST
may be seriously biased. CHANGE may also contain a certain degree
of bias, especially if the correlations between pre and post
measurements are relatively small, but this bias will be reduced
considerably if the number of pre-treatment measurements is
increased. For some Monte Carlo-simulations on the bias introduced
by chance baseline differences, confirming the results given here,
especially the unbiasedness of ANCOVA, see Overall and Magee
(1992).

Strongly related to the question of biased estimates in the
presence of baseline imbalance, is the question of type 1 error
rates for different approaches to analysis conditional on baseline
imbalance. Senn (1989) gives analytical results proving that only
ANCOVA maintains the proper type I error rate for RCT"s, POST and
CHANGE may often be far off conditional on a given mean pre-

treatment difference.
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3.1.1_ Effects on variances when pre-treatment mean« differ

The variances for the estimated treatment effect when using
POST or CHANGE are not directly affected by chance observed
imbalance between groups. It is different for ANCOVA, as is

obvious from its variance formula;

f

var (ANCOVA) + sy _ > £L_i (nA+nt-21

+nB-2)-1.7

which depends on the difference in pre-treatment means. This
slight increase in the ANCOVA variance is a price we have to
pay for non-orthogonality between treatment groups and pre-
entry measurements. Thus, when using ANCOVA for RCT"s, baseline

balance has nothing to do with validity, only with efficiency.

In the following table it can be seen how this variance

increases with the difference in pre-treatment means.

Table 3.1.1 : Proportional increase in variance for ANCOVA
caused by chance observed mean pre-treatment
differences. (This increase is independent of the
correlation and the number of post-treatment

measurements). SEM stands for standard error of

the mean.
dZ/SEM 10+10 pat. 50+50 pat. 2504250 pat
0 1.000 1.000 1.000
0.5 1.014 1.003 1.001
1.056 1.010 1.002
1.5 1.125 1.023 1.005
1.222 1.041 1.008

For large trials (say, hundreds of subjects) there is nothing
to worry about. For medium-sized trials (say, 50 to 100 subjects
per group) we might lose some precision if we are unlucky with the
randomisation (typically an increase in variance of a few per
cent) .
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With small sample sizes baseline Imbalance might be of a real
concern, and should perhaps be accounted for in the power
calculations. For instance with only 10+10 patients and a
standardized mean pre-treatment difference of 2, the ANCOVA

variance would increase with 22 per cent.

One further table is given, showing the relationship between
the variances for CHANGE and ANCOVA depending on mean pre-treatment
differences, number of subjects, and the degree of correlation.
Here we are assuming compound symmetry for the derivation of the
results.

Table 3.1.2 : Proportional increase in Var(CHANGE) compared to
Var (ANCOVA) depending on standardized baseline
imbalance, sample size and correlation. Assuming

compound symmetry and 1+4 visits.

Number of subjects per group

*/SEM p 10+10 25+25 50+50 100+100 250+250
0 4 1.816 1.883 1.903 1.913 1.919
1 4 1.721 1.845 1.884 1.904 1.915
2 4 1.486 1.738 1.829 1.875 1.904
0 .6 1.389 1.440 1.456 1.463 1.468
1 6 1.316 1.411 1.441 1.456 1.465
2 .6 1.136 1.329 1.399 1.434 1.456
0 8 1.124 1.166 1.178 1.184 1.188
1 8 1.065 1.142 1.166 1.179 1.186
2 8 0.920 1.076 1.132 1.161 1.179

We see from this table that the superiority of ANCOVA relative
to CHANGE decreases when pre-treatment means differ and sample
sizes are small. In extreme cases the CHANGE variance may actually
be smaller. However, when this happens, for large standardized
baseline differences, CHANGE is likely to give biased results
(unless P is close to 1), taking validity into consideration,
ANCOVA should always be chosen before CHANGE.



3.2 INCREASING SAMPLE SIZE OR NUMBER OF VISITS

Consider the design of a repeated measures clinical trial, and
suppose the calculated power for the intended sample size is too
low to be acceptable. We may assume that plausible values have been
chosen for the difference in treatment effect (assumed constant
after randomisation) and for the covariance structure. What can be
done under these circumstances to raise the power to a desired
level? We assume further that an efficient approach to analysis has
been specified, i.e. ANCOVA. Then two options to improve the
situation remains. Either one has to increase the sample size, or
one has to increase the number of repeated measurements taken on
each subject. (A third alternative, when compound symmetry do not
apply, might be to change the timing of the measurements, see

subsection 2.2.3).

In comparing the relative merits of these two options we will
not directly consider the issue of cost, and the natural extension
of evaluating cost-effectiveness. The comparisons will be made
solely in terms of precision. However, it would not be difficult to
have a costings model, involving costs both per patient and per
visit. To keep the exposition simple compound symmetry will be
assumed for the covariance structure, though extensions to other

structures are relatively straightforward.

We will make these comparisons with emphasis on ANCOVA, and
assess the usefulness of increasing either the number of pre-
treatment visits or the number of post-treatment visits, relative
to increasing the total number of subjects, for a two-group RCT
with equal sample sizes. The way we go about doing this is by
equating the variance formula for ANCOVA when there are p pre- and
r post-treatment visits and n+x subjects per group, to the
corresponding variance formula with an additional measurement (pre-

or post-treatment) but with n subjects per group.
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Assessing the value of a further post-treatment visit for
ANCOVA when there are p measurements pre-treatment, we solve the
following equation (based on the variance formula for ANCOVA given

on page 46);

2d2 ji+(r-Dp pp2 _ow s {Hrp pp2  \
n+x Y r I+(p—|)pj]. » r+1 I+ @-Dpd

n(pp-p+D

resulting in x = F(pp+rp + 1"

This is the additional number of subjects needed per group to
raise the power by the same amount as the addition of a further

visit would do. In the simplified case with p-1 we get;

__n
r(l+p+rp)’

The corresponding general formulae for POST and CHANGE are;

POST :r= "a-P) /C\H‘HRI?BE cx= NP
r(l+rp)’ r\+p+r)

Similarly, contrasting an increase in the number of pre-
treatment readings, for a fixed number post-randomisation, relative

to an increase in sample size, we arrive at the following equality

for ANCOVA; X = —————————— —— (for CHANGE we get,

nr
p(p+r+l)

To give some feeling for the relative increases in sample size
that are needed to compensate for not providing for a further visit
in the study design, a few examples will be summarized in the two
tables given below. These examples may usefully be compared with
the sample size figure 2.4.1 on page 76.
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Table 3.2.1 : Percentage of increase in sample size needed to
increase the power by the same amount as provision of
an additional post-treatment visit would. Assuming
p—1, analysis will be based on ANCOVA, compound
symmetry, and a constant treatment effect.

Number of post-treatment visits (before addition)

p 1 2 3 5
4 55.6 22.7 12.8 5.9
45.5 17.9 9.8 4.3
38.5 14.7 7.9 3.4

From the above table we see that when there is only one
treatment measurement to start with, provision of an additional
visit after randomisation is likely to increase the power by the
same amount as an increase in sample size in the order 40 to 50 per
cent (for p in the plausible range around .6). When the originally
intended design has more post-treatment measurements, increasing
the number of subjects might be a better option (for instance,
increasing the sample size by 10% is likely to be more efficient
than increasing the number of post-treatment visits from 3 to 4 .
This is because we already have quite precise estimates of the
subjects post-randomisation levels, increasing the number of pre-

entry evaluations might be a better option in this case.

Table 3.2.2 : Percentage of increase in sample size needed to
increase the power by the same amount as provision of
an additional pre-treatment visit would. Assuming
r=4, analysis will be based on ANCOVA, compound
symmetry, and a constant treatment effect.

Number of pre-treatment visits (before addition)
3

P 1 2

4 21.3 13.4 9.4
-6 36.0 19.6 12.6
-8 51.2 24.5 14.9
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From table 3.2.2 we see that provision of 2 pre-entry
measurements rather than 1 is likely to be as efficient as
increasing the sample size with somewhere between 30 to 50 per
cent, when there are 4 measurements after randomisation. With fewer
post-treatment measurements the value of adding a second pre-entry
measurement would be somewhat less impressive relative to
increasing the number of subjects.

These tables should not be taken to suggest that it might be
more efficient to add further post measurements rather than pre,
because it is usually not. Such comparisons should be based on the
variance formulae given in the preceding chapter, rather than on
indirect comparisons from different designs here.

General practical conclusions relating to the usefulness of
adding further measurements, relative to having more subjects, is
difficult to give. This will depend on costs as well as other
practical matters, like availability of subjects and time. However
provision of two measurements, rather than one, both pre and post-
randomisation is likely to decrease the required number of subjects
substantially in most applications.
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3.3 ADDITIVE OR MULTIPLICATIVE EFFECTS

One of the most frequent assumptions made when searching for an
appropriate statistical model is that of additive effects. However,
many variables measured in clinical experiments have at least one,
often several, of the following characteristics:

1. The treatment effect depends on the initial value for a given
subject, that is (substituting "covariate" for the pre-entry

measurement) we have a treatment-by-cavariate interaction.

2. The standard deviation of the dependent variable increases when
the mean level of the variable increases (a covariate-by-

residual interaction).

3. The residual variance around the fitted (separately for the
groups) regression lines (of dependent variable on covariate)
are different, a treatment-bv-residual interaction.

4. The responses have a log-normal distribution.

These four characteristics are in many ways related (actually
number 4 implies the first three), and for variables with one or
more of these properties the log-transformation will often succeed
both in reducing the heteroscedasticity, the treatment-by-covariate
interaction, and in producing distributions that are more nearly

normal.

Several other types of transformations could be considered
under these circumstances, for instance, the class of power
transformations (Draper and Smith, 1981), but we will restrict

ourselves to evaluation of the logarithmic transformation.

An alternative to a transformation when the treatment effect is
assumed to be multiplicatively related to the pre-entry value is to
analyse either the ratio, Y/X (henceforth labelled RATIO), or the
percentage change, 100*(Y-X)/X (henceforth labelled »CHANGE). These

two summary statistics are mathematically equivalent, 1i.e.;

»CHANGE - 100*(Y-X)/X - 100*(Y/X) - 100 - 100*RATIO - 100 .
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Sometimes %CHANGE may be more clinically meaningful, even if there

is no difference in the fit of the models.

RATIO will be considered further, and it will be shown that by
using this summary statistic, a specific model, consisting of both
additive and multiplicative effects, is implicitly assumed. Under
certain special circumstances RATIO will be shown to be the optimal

summary statistic.

The rest of this section will evaluate different underlying
data-generating models, and show what kind of observed response by
covariate relationship they are likely to produce. Hence, some
guidance will be given in choosing which model is correct, and
thereby in deciding on whether a transformation might be needed.
More formal goodness-of-fit comparisons goes outside the scope of
this thesis. For comparisons between non-nested models see Royston
and Thompson (to appear in Biometrics) and the references therein.
Further, based on analytical results, the transformations needed to
achieve complete additivity, under some different models, will be
given. Finally, some of the proposed methods will be illustrated in
an example selected from table 1.5.1, where multiplicative effects
appears to be present.

3.3.1- Some simple data-generating models

In comparing models with additive and/or multiplicative
effects, fTor simplicity we consider a simple design with one pre-
entry measurement (X), and one post-randomisatidn measurement (Y).

Main interest is in the comparison of the following two models;

1. Y¥z=a, +fi-X¥+e¥

2. log(y;)=y,+5 elog(Xy)+ riy (i.e. =er- X* melT" )

In both models the response is allowed to depend on three
effects; treatment, covariate, and residual. The coefficients have
of course different interpretations in the two models.
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The residuals, £~ and T will in be assumed to follow normal

distributions.

As a starting point for our comparisons we will look at the
kinds of data structures that are likely to be observed under the

different data-generating models.

Under model 1 all effects are additive, we have parallel
regression lines, homoscedasticity between groups, and within-group
variances which are independent of the covariate level. For each
group the X and Y variables Jointly have a bivariate normal
distribution, the only between group difference is the additive
treatment effect.

Under the second model all effects are multiplicatively
interrelated. The treatment-by-covarlate Interaction gives rise to
non-parallel regression lines. T