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Abstract 

 

There is an urgent need for safe, efficacious, affordable and field-adapted 

drugs for the treatment of cutaneous leishmaniasis, a disease which affects 

around 1.5 million people worldwide every year. Chitosan, a biodegradable 

cationic polysaccharide, has previously been reported to have antimicrobial, 

anti-leishmanial and immunostimulatory activities. The work described here 

found that chitosan and its derivatives were approximately 7-20 times more 

active in vitro against Leishmania promastigotes and amastigotes at pH 6.5 

than at pH 7.5, with high molecular weight chitosan being the most potent. 

Despite the in vitro activation of bone marrow macrophages by chitosan to 

produce nitric oxide and reactive oxygen species, this work showed that the 

anti-leishmanial activity of chitosan was not mediated by these metabolites. It 

was subsequently shown that rhodamine-labelled chitosan is taken up by 

pinocytosis and accumulates in the parasitophorous vacuole of Leishmania-

infected macrophages. The application of chitosan in drug delivery systems 

was then studied by preparing two types of chitosan nanoparticles (positive 

(with tripolyphosphate sodium (TPP)) and negative (with dextran sulphate) 

surface charge with different sizes) and incorporation of amphotericin B within 

these nanoparticles. These amphotericin B-loaded nanoparticles 

demonstrated a good in vitro anti-leishmanial activity, similar to pure 

amphotericin B, and were also significantly less toxic than pure amphotericin 

B. The positive amphotericin B-loaded chitosan-TPP nanoparticles showed 

promising in vivo efficacy against cutaneous leishmaniasis caused by L. major 

in the BALB/c mouse model, via the intravenous route, and they were more 

active than AmBisome®. The impact of an in vitro media perfusion system on 

host cell phagocytosis and macropinocytosis was evaluated as well as the 

anti-leishmanial activity of chitosan solution and blank or amphotericin B-

loaded chitosan-TPP nanoparticles. There was a significant difference 

between in vitro static and flow culture systems in the cell uptake and anti-

leishmanial activity of the studied compounds. 
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1. General introduction 

1.1. Leishmaniasis and Leishmania species  

Leishmaniasis is an infectious disease caused by parasites belonging to the 

genus Leishmania in the family Trypanosomatidae. Leishmania parasites are 

transmitted to mammals through the bite of sandflies that belong to the genus 

Phlebotomus (Old World) or Lutzomyia (New World). Leishmania species 

cause two main clinical forms, cutaneous leishmaniasis (CL) and visceral 

leishmaniasis (VL) (1). CL is the most common type of leishmaniasis and in 

addition to “simple” CL, there are other complex cutaneous leishmaniasis 

manifestations including mucocutaneous leishmaniasis (MCL), diffuse 

cutaneous leishmaniasis (DCL), disseminated cutaneous leishmaniasis 

(DsCL) and leishmaniasis recidivans (LR) (1, 2). CL is caused by Leishmania 

species that are classified into Old World species, for instance Leishmania 

major (L. major), L. tropica, and L. aethiopica and New World species, such 

as L. amazonensis, L. mexicana, L. braziliensis and L. guyanensis (Fig 1.1) 

(3, 4). CL occurs in 88 countries and 90% of the cases are reported in 

Afghanistan, Brazil, Iran, Peru, Saudi Arabia and Syria (Fig 1.2) (1). Recently, 

a recrudescence has been noticed in Syria as a result of the destruction of the 

public health system and the lack of sanitation caused by the current conflict 

(5). Because of the displacement of Syrian people and the millions forced to 

flee the country, with the majority of them residing in Lebanon, Jordan, Egypt 

and Iraq, reporting of CL has increased across the region (6). 

The clinical features of leishmaniasis depend on the parasite, the host and the 

vectors –  Fig 1.2 shows an overview of the taxonomy of Leishmania species 

and the related clinical manifestations (Fig 1.1 and Table 1.1) (7).  

- VL, also known as kala-azar (black fever), a potentially fatal illness 

which is characterised by irregular fever lasting for 14 days, the 

enlargements of spleen and liver, pancytopenia and weight loss. The 

incubation time for VL is between 2 weeks and 8 months and without 

treatment, the disease is typically fatal. One of the big challenges for 
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VL is the co-infection with HIV. VL is caused mainly by L. donovani, L. 

infantum  and rarely by L. tropica (8).   

 

- LCL is associated with an erythemic papule at the bitten site (1 -10 mm 

diameter) and then can lead to rounded ulcers combined with nodal or 

thick edges. These ulcers or lesions can stay from 5 months to 20 

years. Lesions caused by L. mexicana are typically self-healing within 

3-9 months, 6-15 months in the case of L. braziliensis, L. tropica or L. 

panamensis and within 2-6 months for L. major infections (8).   

 

- DCL is uncommon anergic dissemination form of CL caused by L. 

aethiopica, L. amazonensis or L. mexicana. It begins with erythematous 

nodules resembling lepromatous leprosy and infiltrative plaques and 

then might ulcerate. DCL starts firstly on the face and subsequently 

affects other parts of the body and could affect the complete skin 

surfaces in some cases (8).  

 

- MCL is caused by L. braziliensis, L. guyanensis, or L. panamensis. MCL 

is identified by invasive and destructive lesions of the mucosal 

membrane of the face, mouth and throat cavities. MCL is more frequent 

in immunocompromised patients (4).  

 

- DsCL is caused by L. aethiopica, L. guyanensis and L. mexicana, 

spotted in Latin America and characterised by ten or more lesions 

(mixed type) located in two or more parts of the body. 

 

- LR is caused by L. tropica and L. braziliensis and usually identified as 

new lesions around the old scar that has been cured and infiltrated with 

lymphocytes. 
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Figure  1.1. The distribution of cutaneous leishmaniasis WHO (9) 

 

 

Figure  1.2. Leishmania species and related clinical manifestations (7). 
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Table 1.1. Clinical and epidemiological characteristics of the main Leishmania species copied from (4) 

 

 

 Subgenus Clinical Main clinical features Natural progression Risk groups Main High-burden Estimated annual 

  form    reservoir countries or worldwide incidence 

       regions  
         

Leishmania Leishmania VL and Persistent fever, VL is fatal Predominantly adolescents Humans India, Bangladesh, 50 000–90 000 VL cases; 

donovani*  PKDL splenomegaly, weight loss, within 2 years; PKDL and young adults for VL;  Ethiopia, Sudan, unknown number of 

   and anaemia in VL; multiple lesions self-heal in up young children in Sudan  and South Sudan PKDL cases 

   painless macular, papular, to 85% of cases in and no clearly established    

   or nodular lesions in PKDL Africa but rarely in Asia risk factors for PKDL    

Leishmania Leishmania CL, LR, and Ulcerating dry lesions, CL lesions often No well defined risk groups Humans but Eastern 200 000–400 000 CL 

tropica*  rarely VL painless, and frequently self-heal within 1 year  zoonotic foci Mediterranean,  

   multiple   exist the Middle East,  

       and northeastern  

       and southern Africa  

Leishmania Leishmania CL, DCL, Localised cutaneous nodular Self-healing, except for Limited evidence; Hyraxes Ethiopia and Kenya 20 000–40 000 CL 

aethiopica*  DsCL, and lesions; occasionally DCL, within 2–5 years adolescents    

  oronasal CL oronasal; rarely ulcerates      

Leishmania Leishmania CL Rapid necrosis, multiple Self-healing in No well defined risk groups Rodents Iran, Saudi Arabia, 230 000–430 000 CL 

major*   wet sores, and severe >50% of cases within   north Africa,  

   inflammation 2–8 months; multiple   the Middle East,  

    lesions slow to heal,   central Asia, and  

    and severe scarring   west Africa  

Leishmania Leishmania VL and CL Persistent fever and VL is fatal within Children under 5 years and Dogs, hares, China, southern 6200–12 000 cases of 

infantum*   splenomegaly in VL; 2 years; CL lesions immunocompromised and humans Europe, Brazil, and Old World VL and 

   typically single nodules and self-heal within 1 year adults for VL; older children  South America for 4500–6800 cases of 

   minimal inflammation and confers individual and young adults for CL  VL and CL; Central New World VL; unknown 

   in CL immunity   America for CL number of CL cases 
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  Subgenus Clinical form Main clinical features Natural progression Risk group Main 
reservoir 

High-burden 
countries or 
regions 

Estimated annual 
worldwide incidence 

Leishmania 
mexicana† 

Leishmania CL, DCL, and 
DsCL 

Ulcerating lesions, 
single or multiple 

Often self-healing 
within 3-4 months 

No well 
defined risk 
groups 

Rodents 
and   
marsupials 

South America Limited number of 
cases 

Leishmania 
amazonensis† 

Leishmania CL, DCL, and 
DsCL 

Ulcerating lesions, 
single or multiple 

Not well desribed No well 
defined risk 
groups 

Possums 
and 
rodents 

South America Limited number of 
cases 

Leishmania  

braziliensis†  

Viannia CL, MCL, 

DCL, and LR 

Ulcerating lesions can 

progress to 
mucocutaneous 
form; local lymph 
nodes are 
palpable before and 
early on 
in the onset of the 
lesions 

Might self-heal within 

6 months; 2·5% of 
cases progress to 
MCL 

No well 

defined risk 
groups 

Dogs, 

humans, 
rodents, 
and 
horses 

South America Majority of the 

187 200–300 000 total 
cases of New World 
CL‡ 

Leishmania  
guyanensis†  
 

Viannia CL, DsCL, 
and MCL 

Ulcerating lesions, 
single or 
multiple that can 
progress 
to mucocutaneous 

form; 
palpable lymph nodes. 

Might self-heal within 
6 months` 

No well 
defined risk 
groups 

Possums, 
sloths, 
and 
anteaters 

South America Limited number of 
cases, included in the 
187 200–300 000 total 
cases of New World 
CL‡ 

VL=visceral leishmaniasis. PKDL=post-kala-azar dermal leishmaniasis. CL=cutaneous leishmaniasis. LR=leishmaniasis recidivans. DCL=diffuse cutaneous leishmaniasis. 
DsCL=disseminated cutaneous leishmaniasis, MCL=mucocutaneous leishmaniasis. *Old World leishmaniasis. †=New World leishmaniasis. ‡Estimates are of all New World 
leishmaniases, with Leishmania braziliensis comprising the vast majority of these cases. 
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1.2. Life cycle 

Many causative species for CL, have a zoonotic cycle1 (L. major, L. aethiopica, 

and all the New World species), whilst few have an anthroponotic cycle2 (L. 

tropica). Regarding the VL, humans are the main reservoir for L. donovani 

while dogs form the primary reservoir for L. infantum. The Leishmania life cycle 

starts when infected female sandflies (Phlebotomus species in the Old World, 

Lutzomyia species in the New World) bite their hosts and inject parasites (the 

infective metacyclic promastigote form) into the skin of a mammalian host (a 

sand fly injects 100-1000 promastigotes). Sandflies salivary chemoattractants 

enhance the flow of macrophages, dendritic cells (DCs) and neutrophils to the 

biting site. These promastigotes are then phagocytised by resident 

phagocytes. After which, promastigotes transform in these cells into 

amastigotes which replicate by simple division in the parasitophorous vacuole 

and infect other macrophages, either locally or in remote tissues (1, 4).  

Neutrophils play a critical role in leishmaniasis by acting as Trojan horses for 

Leishmania promastigotes before entering their target cells (macrophages). 

Leishmania survive in the neutrophils by inhibiting the phagosome 

acidification. Leishmania promastigotes directly infect DCs and reside within 

parasitophorous vacuoles. In macrophages, promastigotes are interlined into 

phagolysosome like compartment, named the Leishmania parasitophorous 

vacuole. The maturation of parasitophorous vacuole is regulated by 

Leishmania parasites to protect them from destruction by the macrophage 

microbicidal activity and to avoid the host immune defence responses (9, 10, 

11) 

Female sandflies become infected when they feed on an infected host and 

amastigotes transform into promastigotes in the midgut of the sandfly and then 

migrate to salivary glands and transform into infectious metacyclic 

promastigotes (Fig 1.3) (1, 12).  

                                                
1 In zoonotic cycles: animasl are main reservoirs 
2 In anthroponotic cycles: humans are main reservoirs 
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Figure  1.3. The life cycle of Leishmania parasites (13).  

 

1.3. Immune response in CL 

The cellular immune responses play a critical role in the control or progress of 

cutaneous leishmaniasis and have been widely studied in mouse models, 

often using L. major. Progressive lesions have been developed in susceptible 

mice (BALB/c mice) with a dominance of the Th2 response, leading to the 

production of anti-inflammatory cytokines, such as IL-4, IL-5, and IL-13, which 

suggests that Th2 cells are associated with develop progressive lesions. On 

the other hand, resistant mice (C57BL/6 and C3H/HeJ mice), infected by L. 

major, present small lesions with few parasites and a dominance of the Th1 

response, with the production of IFN-γ, TNF-α and IL-12. These cytokines 

activate macrophages to produce reactive oxygen species (ROS) and nitric 

oxide (NO), which are responsible for killing intracellular parasites as seen in 

Fig 1.4 (14, 15, 16). In humans, resolution from cutaneous leishmaniasis is 

recognized by induction of specific IFN-γ releasing CD4+ T cells (17, 18). The 

response in individuals with moderate CL caused by L. major is a mixture of 

Th1 and Th2. There is an absence of a Th1 response in individuals with severe 

CL (17, 18).  
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To conclude, the control of CL is linked with Leishmania-specific T 

lymphocytes producing TNF-α and IFN-γ and this enhances macrophages in 

the skin to produce microbicidal materials (NO and ROS). It is obvious from 

Fig 1.5 that, the balance between pro- and anti-inflammatory factors controls 

the consequence of CL infection (19).  

The functions of B cells are still a matter of debate. Several studies suggest 

that these cells enhance the Leishmania infection while some state that B cells 

have a protective function against L. amazonensis (20).  

 

 

Figure  1.4. Immune response against leishmaniasis. A: neutrophils play an 
important role during the early stage of infections. B: the essential role of 
monocytes in killing Leishmania and promoting the differentiation of Th-1, which 
leads to the elimination of parasites (16)  

 

1.4. Current treatment of cutaneous leishmaniasis 

CL lesions can heal spontaneously in most cases within 2-18 months. Infection 

is not usually fatal but can cause considerable cosmetic morbidity, 

psychological disorders, social stigma leading to changes in individual self-

esteem (4, 8). The important goal of making the decision to treat CL is to 

eradicate the Leishmania parasites and enhance the lesion healing process.  

This will reduce the risk of scarring and help to lower the risk of dissemination 

or progression other forms of more sever CL.  

A B 
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Other criteria to commence treatment includes the presence of many lesions 

(more than 5), large size (>4 cm), location over sensitive body areas such as 

the face, or lasting for more than 6 months and/or in Immunosuppressed 

patients (Table 1.2) (4, 21). The Infectious Diseases Society of America 

recently published comprehensive treatment guidelines for the management 

of CL according to the clinical characteristics, summarised in Table 1.2  (22).  

Table 1.2. Clinical features of New World CL that might modify management 
copied from (23) 

Simple CL Complex CL 

Caused by a Leishmania species 

unlikely to be associated with mucosal 

leishmaniasis 

Caused by a Leishmania species that 

can be associated with increased risk 

for ML, particularly Viannia spp in the 

“mucosal belt” of Bolivia, Peru, and 

Brazil a,b,c 

No mucosal involvement noted Local subcutaneous nodules d 

Absence of characteristics of complex 

CL 

Large regional adenopathy d 

Only a single or a few skin lesions >4 skin lesions of substantial size (eg, 

>1 cm) 

Small lesion size (diameter Large individual skin lesion (diameter 

≥5 cm) 

Location of lesion feasible for local 

treatment 

Size or location of lesion such that local 

treatment is not feasible 

Nonexposed skin (ie, not cosmetically 

important) 

Lesion on face, including ears, eyelids, 

or lips; fingers, toes, or other joints; or 

genitalia 

Immunocompetent host Immunocompromised host (especially 

with respect to cell-mediated immunity) 

Lesion(s) resolving without prior 

therapy 

Clinical failure of local therapy 

 Unusual syndromes: leishmaniasis 

recidivans, diffuse CL, or disseminated 

CL 

Abbreviation: CL, cutaneous leishmaniasis. 
a The highest risk areas for mucosal leishmaniasis (ML) are south of the Amazon 
basin in parts of Bolivia, Peru, and Brazil (defined here as the “mucosal belt”). 
Moderate-risk areas are south of Nicaragua to the Amazon basin. Low-risk areas 
for ML are in New World CL (Viannia)–endemic regions north of Costa Rica. 
Amazonian basin regions up to an altitude of approximately 2000 meters are 
referred to as increased ML-risk regions. 
b Leishmania species with an increased risk of causing ML include L. (V.) 
braziliensis mainly, but also L. (V.) guyanensis and L. (V.) panamensis. There are 
other species that can be associated with ML less frequently. In this document, we 
refer to these 3 species as “increased ML-risk species.” Geographic regions in 
which there is an increased risk for ML are defined above. 
c High therapeutic failure rates after treatment with pentavalent antimonial drugs 
have been observed in CL acquired in Amazonian Bolivia (eg, Madidi National 
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Park) and southeastern Peru (eg, Manu National Park and Puerto Maldonado). 
Poor efficacy after using miltefosine in the treatment of L. (V.) braziliensis was 
reported in Guatemala. 
d It is somewhat controversial whether the presence of small subcutaneous nodules 
is always associated with complex CL, but certainly complex CL applies if bubonic-
like adenopathy is present in regional drainage area of lesions. These findings have 
been linked to complications or treatment failure when only local treatment is 
administered. Some experts would not consider systemic therapy needed for a few, 
small subcutaneous nodules in Old World CL 

 

Treating CL can include (i) chemotherapy (anti-leishmanial drugs that kill the 

parasites directly) (ii) local physical methods (cryo- or thermotherapy), (iii) 

immunotherapy (by immune modulators for stimulating effective immune 

response against Leishmania parasites) (Fig 1.5) (24).   

 

 
Figure  1.5. Strategies for treatment of CL and the related limitations. 
Syst=systemic. Tx= treatment. ACL=asymptomatic CL (25). 
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1.4.1. Systemic therapies  

1.4.1.1. Pentavalent Antimony  

Pentavalent antimony (SbV) compounds like sodium stibogluconate (SSG, 

Pentostam ®, GSK, contains 100 mg/ml of SbV) and meglumine antimoniate 

(Fig 1.6) (MA, Glucantime®, Sanofi, contains 85 mg/ml) have been the 

standard therapy for CL since they were developed in the 1940s (26, 27). The 

severity of CL can determine the routes of administration (locally or 

systemically). In local treatment, SbV (1-5 ml) is administrated by injection (1- 

5 times every 3-7 days for up to 5 sessions) in lesions edges with or without 

cryotherapy (application of liquid nitrogen after the injection) (28, 29). The 

parenteral route includes intravenous or intramuscular administration of 20 

mg/kg/day of SbV, typically in the case of complex CL (28). Intralesional 

administration benefits include making a high enough concentration of the 

drug at the site of infection, reduced costs, limiting the systemic side effects 

and faster healing time (30). However, the problems with this route includes 

the difficulty of administration, pain of these injections, sensations of burning, 

itching and sometimes the appearance of inflammation in the location of the 

injections (31). On the other hand, parenteral injections can lead to adverse 

side effects (hepatoxicity and cardiotoxicity) (32). There is a lack of placebo-

controlled randomized clinical trials to compare the activity of SbV therapy 

against specific species of CL (31). Variability of the sensitivity of Leishmania 

(promastigotes and intracellular amastigotes) species to SbV has been 

confirmed in vitro (33, 34).  

There is still no clear definition of the mechanism of the action of SbV, in spite 

of these drugs being used for several decades. One of the suggested 

mechanisms is that SbV is converted after administration to the trivalent form 

(SbIII) which is the active but more toxic form. This trivalent antimony (SbIII) 

intervenes with the trypanothione reductase system that protects the 

Leishmania amastigotes from the harm caused by the oxidation and toxicity of 

heavy metals (35, 36). Others suggested that SbIII can cause Leishmania 

apoptosis by fragmenting DNA of amastigotes (37, 38). A third mechanism has 
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suggested that SbV interacts with adenine ribonucleoside and produces a 

complex that causes a depletion of intracellular ATP and the prevention of 

macromolecule synthesis in amastigotes by inhibiting type I DNA 

topoisomerase (32, 39).  

 

 

Figure  1.6. Proposed structural formula for 364 Da and 365 Da ions identified by 
ESI(-)-MS in aqueous solutions of meglumine antimoniate and stibogluconate, 
respectively, copied from (40) 

1.4.1.2. Miltefosine 

Miltefosine (MF), an alkylphospholipid, was developed as an antineoplastic 

agent (for cutaneous cancers). Croft et al in 1987 showed the anti-leishmanial 

activity of miltefosine and other phospholipid compounds (1). MF is 

recommended for VL and complex cases of CL and considered as the only 

effective drug that can be given orally for leishmaniasis treatment. The 

effective dose for CL is a daily oral dose 2.5 mg/kg for 28 days (1, 41).  

However, different Leishmania species show significantly different sensitivity 

to MF (42). Randomized clinical trials have been conducted in different regions 

against different species with various clinical responses. For instance, in 

Colombia the cure rates against L. panamensis were 91% in comparison to 

38% for placebo group (43). While the cure rates were just 53% in Guatemala 
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against L. mexicana and L. braziliensis compared to 32% in placebo treatment 

(43). In vitro studies confirmed the species variation in MF sensitivity (44). The 

two major concerns about this drug is that, (i) MF is a teratogenic agent and 

so cannot be given to women who are pregnant and (ii) the presence of 

resistance development in vitro (42). Some common side effects of MF 

treatment are gastrointestinal discomfort, renal disorders, headache and 

raised liver enzymes (45).  

The mechanism of action of MF remains unclear. Different mechanisms have 

been suggested such as the inhibition of synthesis of phospholipids, 

interaction with the parasite membrane, dysfunction of mitochondria or 

stimulation of apoptosis-like cell death (46, 47, 48, 49). 

 

Figure  1.7. Chemical structure of miltefosine (50) 

1.4.1.3. Amphotericin B (AmB) 

The second most common treatment for leishmaniasis is amphotericin B, 

which is a polyene antibiotic (Fig 1.8), mainly used for VL and MCL (51). The 

therapeutic dose of AmB deoxycholate (Fungizone) is 0.7 mg/kg/day by slow 

intravenous infusion for 25-30 days or 2-3 mg/kg/day of liposomal formulations 

for 10-15 days (28). In 1950s, AmB was firstly noted and derived from 

Streptomyces nodosus. Sodium deoxycholate solution of AmB (DAmB, 

Fungizone) was brought to the market in 1959. Fungizone has been used 

intravenously as a standard treatment for invasive fungal infections for several 

decades. Fungizone has serious side effects such as nephrotoxicity and fever, 

anaemia, malaise and abdominal pain (52).  

Several lipid formulations, including liposomal amphotericin B (AmBisome®), 

amphotericin B lipid complex (AbelcetR), and amphotericin B colloidal 
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dispersion (AmphocilTM) have been developed and used in treatment of VL to 

reduce the previous toxicities since 1990s (53). AmBisome® (liposomal 

amphotericin B, LAmB; Gilead Sciences, Dimas, CA, USA) has been approved 

by the Food and Drug Administration (FDA) for treatment of VL in 1997 with 7 

intravenously doses of 3 mg/kg/day over 21 days (54). Yardley and Croft 

(2000) found that AmBisome® (liposomal amphotericin B) was also successful 

in reducing the size of lesions in CL caused by L. major in BALB/c mouse 

model (55). The high cost of these formulations (up to 250 USD$ per vial) 

prevents more widespread use (56, 57). Recently there is an agreement 

between WHO and Gilead Sciences for the donation through WHO of 

AmBisome® vials for VL treatment (58). Other problems related to AmBisome® 

were reported in s study with a low positive outcome of 63% among travellers 

infected with CL and MCL coming back from both Old- and New-World 

countries and 53% of these treated patients showed renal toxicity and infusion-

related reactions (59) and higher rates of relapse were noticed in 

immunocompetent patients with VL treated with AmBisome® (60, 61). 

Amphotericin B acts by forming a complex between its hydrophobic polyene 

region and the ergosterol in the plasma membrane of Leishmania or fungi 

which causes transmembrane channels, after which a death of the microbe is 

induced by the collapsing of ion gradient (62, 63). Recently, an alternative 

mode of action has been suggested, that AmB primarily exists as large, extra-

membranous aggregates that results in the removal of ergosterol from the lipid 

bilayer leading to microbe death (64). Additionally, reports claim that AmB has 

immunomodulatory effects and stimulates oxidative stress in immune cells 

(52, 65, 66).  
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Figure  1.8. Chemical structure of amphotericin B (A), Fungizone (B) and 
AmBisome® (C) (67) 
 

1.4.1.4. Pentamidine  

Pentamidine is, an aromatic diamidine, as effective as antimonial drugs for 

healing CL caused by L. panamensis or L. guyanensis (30, 57). The cure rates 

of parenteral pentamidine with 7 doses of 2 mg/kg for 14 days vary from 35% 

to 95% (1). This drug offered significant advantages such as shorter duration 
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of the therapy and lower costs in comparison with other drugs for CL (68) but 

is rarely used due to low cure rates and significant side effects of diabetes, 

myocarditis and nephrotoxicity (69). 

The mode of action is not completely clear but interference with Leishmania 

DNA and disruption of mitochondrial membrane have been suggested (70). 

 

  

 

Figure  1.9. Chemical structure of pentamidine (71)  
 

1.4.1.5. Azoles 

Azoles are antifungal agents, which also have an anti-leishmanial activity 

because they inhibit the 14 a-demethylation of lanosterol and this inhibition 

leads to an accumulation of 14 a-methyl sterols and blocks ergosterol 

synthesis of Leishmania parasites (72). The most important azoles that are 

active against Leishmania parasites are fluconazole, ketoconazole and 

itraconazole which have been used orally with different results against CL. The 

effectivity of ketoconazole, with the oral dose 8 mg/kg/day for 4 to 6 weeks, 

was 76–90% in CL caused by L. panamensis and L. mexicana in Guatemala 

and Panama (28). However, in a clinical trial in Colombia, itraconazole (oral 

dose 200 mg twice daily for 28 days) was ineffective against CL caused by L. 

panamensis (73).  

Fluconazole has important properties including a longer half-life and increased 

concentrations in cutaneous tissues. In L. major infections, there was a good 

evidence of the benefit for the use of 200 mg oral fluconazole for 6 weeks (31). 

A study in Saudi Arabia showed cure rates 79% in CL caused by L. major after 

6-weeks of 200 mg daily of oral fluconazole (74). An important advantage of 
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azoles is the ease of administration via the oral route. However, these drugs 

have many side effects such as the low cure rates, hepatotoxicity and 

gastrointestinal symptoms (72). 

 

 

 

 

Figure  1.10. Chemical structure of some azoles(75)  

1.4.2. Local therapy  

1.4.2.1. Paromomycin  

Paromomycin (PM) is an aminoglycoside antibiotic (Fig 1.11) and was 

identified as an anti-leishmanial drug in the 1960s. The sulphate salt of PM is 

given parenterally to treat VL, e.g. 11 mg/kg/day intramuscularly for 21 days. 

A topical formulation of paromomycin sulphate 15% plus 12% methyl-

benzethonium chloride (MBCL) ointment has been used for LCL by applying 

twice daily for 20 days (28, 76). Topical 15% PM + 12% MBCL was active in 

BALB/c mice infected with New World species (L. mexicana) but did not show 

activity against L. panamensis and L. amazonensis (77).  

Different formulations with a lower skin irritancy including one containing 15% 

paromomycin with 0.5% gentamicin gave cure rates of 81-82% for CL caused 

by L. major and 80% in Panama for CL caused by L. braziliensis and L. 
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panamensis in phase 3 studies. However, these results compared with a 

placebo cure rate of 58%, and almost no difference between formulations 

combining paromomycin and gentamicin or paromomycin alone (4). 

Paromomycin has low cure rates against certain Leishmania species and in 

many cases, relapse can be found during the first year (30, 46).  

The exact mechanism of PM against Leishmania parasites is not fully known, 

studies suggest PM inhibits protein synthesis by blocking the dissociation of 

ribosomal subunits (78) , others suggest that PM alters leishmanial lipid 

metabolism leading to the arresting of growth (79).  

 

 

 

 

Figure  1.11. Chemical structure of paromomycin(71)   

 

1.4.2.2. Physical treatments 

Physical methods such as, localised heat or cryotherapy have been used in 

the treatment of CL. Localized heat is performed by using a device (e.g. 

Thermomed®) which provides a focused heat on the lesion (50°C for 30 

seconds once per week for one month) and this method demonstrates about 

69% overall efficacy against CL (1, 80). Cryotherapy is the use of liquid 

nitrogen to freeze lesions, repeated on three separate days. The efficacy of 

this procedure is about 57% against L. major. The benefits of localised heat or 
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cryotherapy methods are the ease of use and the safety. The problems with 

these methods include the low cure rates, the need for expensive equipment, 

and availability of electricity in rural areas (1). A comparison of the effects of 

three different therapies for CL was done in Iran: intralesional meglumine 

antimoniate or cryotherapy (liquid nitrogen (−195 °C)) or a combination of 

these two methods. They found that combining both MA and cryotherapy gave 

a significant higher activity than the two monotherapies (81, 82).  

1.4.3. Immunomodulatory treatment 

The immune response plays an important role in the control of CL - cure 

depends upon the activation of macrophages to produce toxic nitrogen and 

oxygen metabolites to kill the intracellular amastigotes (83). Consequently, 

immunomodulators for CL and VL have been studied widely for many years 

either alone or in combination with other drugs (84). For example, 11532 

Venezuelan patients with American cutaneous leishmaniasis were treated 

with a combination of an immunomodulator (heat 

killed Leishmania promastigotes and bacille Calmette-Guérin (BCG)) and 

chemotherapy (meglumine antimoniate). Cure rates of 91.2 to 98.7% were 

achieved (85).  

 

 Examples of other clinically used immunomodulators include: 

-Imiquimod: an antiviral compound [1-(2- methylropyl)-1H-imidazo (4, 5-c) 

quinolin-4-amine] used topically for the treatment of genital warts, caused by 

the human papillomavirus, via the stimulation of localised immune response.  

Macrophages are activated to produce cytokines and nitric oxide at the site of 

application (76). Many studies have shown that imiquimod has anti-

leishmanial activity. A randomized, double-blind clinical trial in Peru showed 

that patients with CL treated with 5% Imiquimod cream in combination with 

meglumine antimonate therapy showed faster lesion cure in comparison with 

those received meglumine antimonate with placebo vehicle cream therapy  

- Pentoxifylline: Pentoxifylline is s a methylxanthine derivative that inhibits 

TNF-α and decreases tissue inflammation. A clinical study showed that 

patients with CL caused by L. braziliensis who received a combination of 
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pentoxifylline plus SbV had higher cure rates than in those receiving antimony 

plus placebo (86, 87). 

- A topical immunomodulator which is cytokine granulocyte-macrophage 

colony stimulating factor (GM-CSF) was found to accelerate the lesion healing 

in CL patients (88).   

1.5. Challenges for CL treatment  

CL is classified as a neglected tropical disease (NTD). NTDs have been 

described by the WHO as a varied group of diseases that have an impact on 

more than one billion people and dominate in 149 countries in tropical and 

subtropical conditions. These diseases are commonly associated with poverty 

and cause a huge economic and health burden in low- and middle-income 

countries (89, 90).  

Many factors form a challenge for CL treatments. CL happens in tropical areas 

with high temperatures, humidity and without cold chains and these conditions 

affect the stability of drug formulations for CL and even for other diseases (91). 

For example, AmBisome® requires a cold chain to protect its activity and a 

consistent supply of electricity is often difficult in rural regions. Moreover, some 

patients live in remote areas and are unable to access treatment easily. 

Availability of medicine(s) is also a challenge (92). Besides that, WHO 

estimated the cost of CL treatment to be between 12-40 USD$ per patient (28) 

, this cost is prohibitive for many as the monthly income in many CL-endemic 

areas is only 7-17 USD$ /per person (28). Additionally, a delay between 

recognition of CL and starting the treatment increases the possibly of lesion 

progression to an ulcer with subsequent treatment complications and scarring 

(93, 94).  

1.6. Assays to test the anti-leishmanial activity of drugs 

The existing predictive models to study the anti-leishmanial activity of 

compounds are classified into in vitro and in vivo assays.  
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1.6.1. In vitro assays  

These models are classified as either promastigote, axenic (extracellular) 

amastigote or intracellular amastigote assays.  

The advantages of using promastigote and axenic (extracellular) amastigotes 

are higher-throughput, cheaper, quicker and more straightforward screening. 

However, the drawbacks encompass that promastigotes are significantly 

different from intracellular amastigotes (target form in mammalians resides 

within the macrophages of the dermal skin layer) in terms of metabolism and 

ecology. Moreover, these promastigotes grow at 26°C and this could affect the 

anti-leishmanial action of drugs while in vivo temperature of 37 °C ( 34 °C skin 

temperature) (95, 96). The axenic amastigotes test is semi – predictive as it 

does not examine the penetration of the compound into the host cell and does 

not reflect the activity of the compound in the host environment and 

accordingly, is prone to false positive and negative results (95, 97). 

 

On the other hand, the intracellular amastigote test (infected macrophages) is 

the gold standard model. In this model, macrophages can be derived from a 

range of sources, for example murine peritoneal macrophages (PEMs) or 

murine bone-marrow macrophages (BMMs), or chemically differentiated from 

human cancer cell lines (THP-1) (71). 

The activity of tested drugs is evaluated by exposing infected macrophages to 

particular concentrations of the drug for a specific period (such as 2, 3 or 5 

days), and then stained with Giemsa after fixation with methanol. Activity is 

measured by either microscopical counting of number of amastigotes per 

macrophage or the percentage of infected macrophages (containing at least 

one parasite) (% infection). The selections of new compounds as anti-

leishmanial depend on the 50 % and 90 % effective concentrations (EC50, 

EC90) after comparison with an untreated control and a positive control drug 

(95, 97). 

In addition, there are more in vitro methods used to test the anti-leishmanial 

activity of drugs are summarised in Table 1.3 with positive and negative points 

for each assay. 
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Table 1.3. In vitro screening models with positive and negative drawbacks copied 
from (97).  

 

In vitro models Merits Demerits 

Promastigote 

Rapid method and very little 
amount of test compounds are 
required for screening. 

Not relevant life cycle stage 
for mammalian leishmanial 
infection. 
Data correlation with 
amastigote screening is 
unreliable. 

Axenic 
amastigotes 

Test is direct on relevant stage 
of the parasite. 
 

The assay is semi – 
predictive. 
 
 

This stage is as easy to 
manipulate as the 
promastigotes. 

It neither tests for 
penetration of compound 
into host cell nor for activity 
in peculiar environment of 
the macrophage 
phagolysosome 

Quantification of drug activity is 
simple and often inexpensive. 

Different metabolic 
processes than intracellular 
amastigotes. Screening of 
axenic amastigotes from 
clinical isolates is not 
possible as they require time 
to get adapted in the 
cultures. 

Intracellular 
amastigotes 

Effective screening method. Labour intensive and 
subjective. 

Mimic the environment 
encountered by the target cell. 

Provide an approximation of 
the macrophages that are 
counted. Rendered difficult 
the screening of several 
drugs at a time and 
incompatible with HTS. 

Shows the effect of drug 
mediated toxicity on host cell. 

 

Reporter gene 
assays: 

(GFP) Green 
fluorescent 

protein 

Simple Fluorescence intensity in 
parasites decreased with 
time in the absence of 
geneticin sulphate (antibiotic 
G 418), thereby 
necessitating its regular 
addition. 



23 
 

Easier kinetic monitoring. Application for drug-drug 
screening is limited to 
promastigotes. 

Low cost and enhanced 
biosafety. 

 

β -galactosidase 

Colorimetric detection can be 
performed 

Large size (the monomer is 
116 kDa). 
Low sensibility. 
Endogenous expression of 
β-galactosidase by some 
mammalian cell types 
including macrophages. 

β–lactamase 

Simple colorimetric β-
lactamase assay for quantifying 
Leishmania amastigotes grown 
in micotiter plates. 
High-level stable expression of 
the enzyme 

Not very sensitive. 

Luciferase 

The method is rapid. 
Very sensitive. 
Highly reproducible. 
Does not require any very 
specialized instrument or 
training. 
Detection of only live, 
metabolically active cells by 
biphotonic imaging. 
Absence of background activity 
in the host cell. 
Compatible with HTS. 

Luminescent read out 
transient. Mixing of the 
samples and reagents 
needs to be timed with 
entering samples into the 
luminometer. 

HTS, high throughput screening 

 

These in vitro screening models have a major drawback related to their lack 

of biological relevance - they involve traditional cell culture methods (static and 

two-dimensional culture systems). Static cell culture systems that use the 

micro well plates are widely used. However, cells in human and animal tissues 

are sensitive to their microenvironment and face different mechanical 

stimulants due to interstitial flow and nutrient diffusion. Static cell culture 

systems are unable to provide these mechanical and physical factors arguably 

significantly limiting the cellular response in vitro l (98, 99). Dynamic culture 

systems have the potential to overcome these limitations and better mimic the 

in vivo situation for drug discovery process (100) . 
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1.6.2. In vivo assays 

Different animal models (summarized in Table 1.4) are used to evaluate the 

effectiveness of drugs against leishmaniasis. These models imitate some of 

the pathological features and immunological responses shown in humans 

when exposed to Leishmania infections. In vivo assays allow the 

determination of drug activity in association with drug administration, 

excretion, and distribution. They can identify adverse events (toxic side 

effects) resulting from a particular treatment (101, 102). Murine models are 

widely used to evaluate the effectiveness of new drugs against leishmaniasis 

and to study the pathogenesis of this disease. L. major-BALB/c is the most 

used, with high reproducibility, and relatively fast progress of skin lesions 

(within 3 weeks). In this model, only potent drugs show anti-leishmanial 

efficacy as self-healing of CL is rare due to the immunological incapability of 

BALB/c mice (97, 101, 102).   

The anti-leishmanial activity of compounds in the animal model is typically 

determined by a reduction of lesion size compared to untreated controls. 

However, inflammation plays a key role in lesion size. Therefore, size alone 

does not accurately reflect the anti-leishmanial activity. An additional indicator 

of therapeutic effect, e.g. determination of parasite burden should be 

considered. This can be achieved by different assays such as quantitative 

polymerase chain reaction (qPCR) or in vivo imaging (semi-quantitative) of 

bioluminescent parasites (97, 101, 102). A Therapeutic Index (TI) is often used 

to express the window between the required effective dose and the toxic/lethal 

doses of the drug (ED50/LD50) (95, 97). 

 

Table 1.4. In vivo models for leishmaniasis copied from (97) 

Animal Species Examples Main strength 

Mice 

BALB/c 
Immunology, Vaccines, 

Chemotherapy 

C57BL/6 
Negative model-Immunology, 

Vaccines, Chemotherapy 

Transgenic mice Immunology 

Hamster Syrian golden hamster Pathology, Chemotherapy 
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Dogs Different breeds 
Pathology, Vaccines, 

Chemotherapy 

Non-human 

primates 

Langurs, Monkeys - 

vervet, rhesus, owl, 

mandrills, baboon, 

marmoset, squirrel 

Vaccine, Pathogenesis, 

Chemotherapy, Pathology 

 

1.7. Drug development for CL: from pipeline to patients  

The currently available drugs for CL have some drawbacks such as, low cure 

rates, toxicity, and high costs. These limitations clearly highlight the need for 

short, safe, efficacious, affordable and field-adapted treatments against 

Leishmania parasites (84). The process of developing and discovering new 

drugs is long, slow, expensive and challenging (Fig 1.12). For example, 

screening 100,000 compounds can lead to just one compound from a research 

and development (R&D) pipeline to a marketed drug and may take more than 

10 years with an estimated expenditure around 2.6 billion USD$ (87). NTDs 

are generally considered commercially unattractive for Pharma research and 

development (R&D) (103) (81). In the last 40 years, only few new drugs have 

been developed for NTDs despite the great knowledge in the field of NTDs 

(88). NTDs usually involve populations with low purchasing power in low 

income countries - not a monetary incentive for the private sector to develop 

new therapies. Publication is typically the end of the line for NTD R&D or at 

other stages in the drug development pipeline (Fig 1.13) (88).   

Nonetheless, there has been a considerable moving forward in VL treatment 

and in the developing of new drugs of this disease. In contrast, no great 

attentions have been paid for CL drugs development (more details later) (90).  

 

One of the strategies to overcome the high cost and long time lines of 

developing a new drug or chemical entity is “drug repurposing” (90). In this 

strategy, a known drug for a specific target is tested against different diseases. 

The drug has already been tested for toxicity, and other pharmacokinetic and 

pharmacodynamic studies have already been carried out, all in relation to its 

original indication. This can save time and money. As a result, getting a drug 
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to market can take less time. For instance, three drugs have been repurposed 

and used clinically for leishmaniasis; AmB was originally developed for fungal 

infections, paromomycin was primarily used for amoeba infections as an oral 

drug, and miltefosine was developed as an anti-cancer treatment (104, 105).  

Many researchers, worldwide, have identified a large number of compounds 

that show anti-leishmanial activity, either via re-purposing (tamoxifen, 

nelfinavir, imipramine, delamanid, fexinidazole) or isolating new chemical 

entities (NCEs) from natural sources (quinones, pyrimidines) (90). Another 

strategy is optimising the drug by reformulation of the active ingredient in the 

current drug or by using drug delivery systems for currently active drugs (more 

details later) (104, 105, 106).  

 

 

Figure  1.12. The process of drug discovery and drug development. 
a) drug discovery stages b) drug development (107)  

A 

B 
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Figure  1.13. The Drug Development Pipeline - potential drugs for NTDs are 
frequently stuck in the early stage of development as a result of pipeline gaps (108) 

1.8. New CL drugs 

Despite limited resources, there have been recent developments in the NTD 

drug development arena. Some non-profit organisations such as TDR3, have 

been involved in the development of 12 new drugs for NTDs. Another 

collaborative, patients’ needs-driven, non-profit drug R&D organisation 

developing new treatments for neglected diseases, is the Drugs for Neglected 

Diseases initiative (DNDi). The partners and collaborators, which include 

academic institutions, Pharma and other non-governmental organizations 

(NGOs) work together, using their knowledge of NTDs, clinical trials and the 

capability of manufacturing drugs. DNDi facilitate these complex partnerships 

to enable rapid development and deployment to patients (80, 108, 109).  

Drug discovery for CL is especially complex as CL is not a single disease with 

a single etiological agent, by contrast it is caused by more than 15 different 

Leishmania species with known variability in susceptibility to drugs. Identifying 

                                                
3 the Special Programme for Research and Training in Tropical Diseases, supported by the 
WHO, the United Nations Children’s Fund (UNICEF) and the United Nations Development 
Programme (UNDP). 
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a drug that shows activity against all forms and species of CL is a tall order 

(109, 110).  

Some potential new treatment candidates in the DNDi pipeline for NTDs are 

shown in Fig 1.14. Those for CL are: 

 

- CPG-D35 oligonucleotides - synthetic DNA molecules working as an 

immunomodulator (by activating skin immune cells) for use as a 

monotherapy or in combination (111).   

- DNDi-6148 and DNDi-0690 from oxaborole and nitroimidazole classes 

respectively, are undergoing Phase I clinical studies after completing 

the pre-clinical development as drugs for VL and CL.  

- A combination of miltefosine (orally for three weeks) with thermotherapy 

(50°C for 30 seconds once during the treatment course) is in Phase II 

clinical trial (111).  

 

Figure  1.14. New treatment candidates for leishmaniasis (111) 
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1.9. Drug delivery systems for leishmaniasis  

Great attention has been paid in the field of drug development to drug delivery 

systems (DDs). These systems are used to increase efficacy and decrease 

toxicity of already active drugs by controlling their pharmacokinetic properties, 

such as absorption, distribution, metabolism, and excretion and also by 

enabling drug targeting to infected tissues/cells (112, 113).  

The accomplishment of CL treatment depends on the physical accessibility of 

the drug delivery systems to the infected macrophages in the dermis. The DDs 

should be able to penetrate the infected macrophages and by the time, the 

drug reaching the infection site of CL; the drug must cross the infected 

macrophage membrane, then permeate through the membrane of the PV and 

at the end crossing the plasma membrane of the Leishmania parasite, 

releasing the drug inside the PVs, leading to a local high concentration of the 

drug (Fig 1.15) (67, 113).  

 

 

Figure  1.15. Route a drug must take to access intracellular Leishmania 
amastigotes within macrophages (A) (114) and DDs to intracellular Leishmania 
amastigotes(B) (115). A drug-loaded lipid or polymeric nanoparticle (yellow) is 
reaching the infected macrophage (1). This DDs is successfully phagocytosed by 
this infected macrophage (2). The DDs-including endolysosome (or 
phagolysosome) fuses with the amastigote-including parasitophorous vacuole (3). 
Drug is released from phagocytized DDs to kill Leishmania amastigotes (4).  
 

B 

A 
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Another promising approach for leishmaniasis treatment is related to the use 

of anti-leishmanial drugs with nanocarriers (DDs). There are different classes 

of nanocarriers e.g. particles, liposomes, emulsions etc, and many drug 

delivery systems have been evaluated in CL treatment (summarised in Table 

1.5), some with promising results. Liposomal nanocarriers are the most 

studied over the past 30 years (67, 112, 113).  

Using these nanocarriers DDs for CL therapies may facilitate drug solubility, 

reduce the toxicity, improve efficacy, modulate drug pharmacokinetics, permit 

sustainable drug release at the site of infection and protect the drug from 

degradation (113). An additional potential benefit is reducing the number of 

doses and the total dose, which would be significant for a drug like 

amphotericin B.  The physicochemical properties (size, charge, morphology) 

and the rate of drug release from these DDs will significantly affect drug 

release into surrounding tissues, both before and after reaching cells at the 

uptake site (114). Generally, the efficacy of these DDs against CL depends on 

the administration route (Fig 1.16), for example in 1997,  the intravenous 

administration once a day on six alternate days of AmBisome® (liposomal 

AmB) in a BALB/c L. major model of CL produced a dose-response effect, 

while the treatment was ineffective by the subcutaneous route (51). Liposomal 

SbV by the intravenous route is effective (116).  

 

Table 1.5. Experimental studies using nanosystems for CL treatment copied from 
(115). 

Routes Drug Nanosystem Parasite Efficacy 

Parenteral 

Amphotericin 

B 

Chitosan and 
chondroitin 
sulphate 

nanoparticles 

L. amazonensis Yes 

Amphotericin 

B 

Poloxamer 407-

micelles 
L. amazonensis Yes 

Amphotericin 

B 

PLGA-DMSA 

nanoparticles 
L. amazonensis Yes 

Amphotericin 

B 
Liposome L. tropica No 

Amphotericin 

B 

Liposome 

(AmBisome® ) 
L. major Yes 

Amphotericin 

B 

DSHemsPC-

liposome 
L. major Yes 
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Amphotericin 

B 
Nanodisks L. major Yes 

Amphotericin 

B 

PADRE-
derivatizeddendrimer 

complexed with 
liposome 

L. major Yes 

Chalcone 

DMC 
PLA Nanoparticles L. amazonensis Yes 

Nanoselenium 
Inorganic 

nanoparticle 
L. major Yes 

Paromomycin 
Solid lipid 

nanoparticle 
L. major Yes 

Paromomycin 
Solid lipid 

nanoparticle 
L. tropica Yes 

Pentamidine 
Methacrylate 

nanoparticles 
L. major Yes 

Pentavalent 
antimonial 

Nanohybrid 

hydrosols 
L. amazonensis Yes 

Sodium 
stibogluconate 

Liposome 
L. mexicana /L. 

major 
Yes 

Oral 

Quercetin 
Lipid-core 

nanocapsules 
L. amazonensis Yes 

Meglumine 
antimoniate 

Beta-cyclodextrin L. amazonensis Yes 

Meglumine 
antimoniate 

Polarity-sensitive 
nanocarrier 

L. amazonensis Yes 

Topical 

Amphotericin 

B 
Liposome L. mexicana NO 

Amphotericin 

B 
Gamma-cyclodextrin L. amazonensis Yes 

Chalcone CH8 Liposome L. amazonensis Yes 

Paromomycin Liposome L. major Yes 

Paromomycin Liposome L. major Yes 

Meglumine 
antimoniate 

Liposome L. major Yes 

Nano silver 
Inorganic 

nanoparticles 
L. major No 

Nano silver 
Inorganic 

nanoparticles 
L. major No 

Intralesional 

Amphotericin 

B 

Liposome 

(AmBisome®) 
L. major No 

Chalcone CH8 PLGA microparticles L. amazonensis Yes 

Nano silver 
Inorganic 

nanoparticles 
L. amazonensis Yes 

Meglumine 
antimoniate 

Liposome L. major No 

Miltefosine Liposome L. major Yes 

Paromomycin Liposome L. major No 

Paromomycin 
Solid lipid 

nanoparticle 
L. tropica Yes 
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Sodium 
stibogluconate 

Liposome 
L. mexicana/   

L. major 
Yes 

Note: Chalcone DMC – 2’,6’-dihydroxy-4’-methoxychalcone; Chalcone CH8 – 3-
nitro-2’-hydro-4’,6’-dimethoxychalcone; DMSA – dimercaptosuccinic acid; 
DSHemsPC – 1,2-distigmasterylhemi-succinoyl-sn-glycero-3-phosphocholine; 
PADRE – pan DR-binding epitope; PLA – poly(D,L-lactide); PLGA – poly(lactic-
co-glycolic acid); UVB – ultraviolet B radiation. 

 

 

Figure  1.16. Administration routes of DDs and anatomical barriers. A. Intravenous 
route. B. Subcutaneous, intramuscular and intraperitoneal route. C. Oral route. D. 
Topical route. E. CL causes regional inflammation is associated with leaky 
vasculature. In this situation, particles in blood circulation can permeate barrier to 
become close to the infected cells. F. Particles in blood circulation (67). 

 

Despite the promising effectivity against leishmaniasis and the safety profile 

of liposomal formulations, their high cost decreases their use in the 

leishmaniasis field. Subsequently, more attention has been paid recently to 

polymeric nanoparticles, Carvalho et al found that a nanoparticle delivery 

system (consisting of free deoxycholate AmB encapsulated in polylactic-co-

glycolic acid (PLGA)) was more active in the treatment of experimental 

cutaneous leishmaniasis (L. amazonensis) in C57BL/6 mice than free drug 

(117). Kumar et al demonstrated that PLGA-PEG (poly(D,L-lactide–co–
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glycolide)–block–poly(ethylene glycol)) encapsulated amphotericin B 

nanoparticles were significantly more effective than free amphotericin B 

against L. donovani strain MHOM/IN/83/AG83 in both in vitro and in vivo 

(Female hamsters) studies (117). Similarly, Ahmed et al found that a 

noncovalent complex of amphotericin B (AmB) and poly (α-glutamic acid) 

(PGA) with a size of ~100 nm, to be significantly less toxic against KB-cells in 

comparison with free amphotericin B and amphotericin B deoxycholate 

(Fungizone™) whilst keeping the same anti-leishmanial activity against L. 

major (MHOM/SA/85/JISH118) or L. donovani (MHOM/ET/67/HU3) 

intracellular amastigotes (118). Unfortunately, most of these delivery systems 

required organic solvents or heat for preparation - using these solvents or 

temperatures is not ideal as they can influence the integrity of the polyenic 

substances used and besides increase the toxicity of the DDs (119). In 

contrast, ionotropic gelation is a widely used method for preparing polymer 

nanoparticles and this method does not require the use of organic solvents or 

heat (120). In this method, nanoparticles are prepared by the interaction 

between two oppositely charged groups (120). Some benefits of this method 

are the ease of preparation, aqueous environment, low toxicity and protection 

of the chemical structure of the encapsulated drug (120).  

Recently, a nanoparticle delivery system for AmB has been developed using 

the ionotropic gelation method with chitosan as a positive molecule and 

chondroitin sulphate (glycosaminoglycans in the extracellular matrix of 

cartilage) as a negative one. These loaded nanoparticles were 10 times less 

toxic than unincorporated AmB against murine macrophages and showed in 

vitro anti-leishmanial activity against L. infantum and L. amazonensis 

promastigotes and amastigotes. The efficacy of these AmB-loaded 

nanoparticles against L. amazonensis-infected BALB/c mice have been 

evaluated and showed a significant reduction in parasite load at 1 

mg/kg/day/intravenously for 10 days. These nanoparticles induced 

significantly higher levels of IFN-γ and IL-12 in the mice (121, 122). 

Chitosan is a widely used compound in drug delivery systems because of its 

interesting structure - chitosan has a cationic feature , is soluble in acidic 

media and has mucoadhesive properties (123). Chitosan is reported to have 
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immune-stimulatory effects which include inducing NO and ROS production 

(124, 125, 126) and antimicrobial and anti-leishmanial activity (127, 128, 129). 

Chitosan can be used in various formulations in the drug delivery systems and 

these forms are summarised in Table 1.6 with some example of associated 

loaded drugs (130, 131, 132) and molecules (133, 134). Chitosan 

nanoparticles are biocompatible and biodegradable, important properties for 

drug safety and controlled release, and are increasingly being considered for 

a variety of biomedical applications, e.g. would healing (130, 135). Chitosan 

nanoparticles can be prepared in different sizes and different charges, and are 

suitable for different routes of administrations (123) (more details later).   

 

Table 1.6. Chitosan-based drug delivery systems.   

DDs Method of preparation Drug References  

Tablets Matrix 

theophylline, 

mesalamine, glipizide 

and diclofenac 

sodium 

(120, 136, 

137, 138, 

139) 

Capsules Capsule shell insulin (140) 

Microspheres/ 

Microparticles 

Emulsion cross-linking, 

Coacervation/precipitation, 

Spray-drying 

clarithromycin, 

propranolol HCl, 

gentamicin sulphate, 

famotidine and 

cimetidine 

(141, 142, 

143, 144, 

145) 

Nanoparticles 

Emulsion-droplet 

coalescence, Ionotropic 

gelation, Reverse micellar 

method, Coacervation/ 

precipitation 

doxorubicin, 

cyclosporin A, 

gadopentetic acid, 

levofloxacin, 

amphotericin B and 

miltefosine 

(120, 146, 

147, 148, 

149, 150) 

Beads Coacervation/ precipitation insulin (151) 

Films Solution casting 
ofloxacin and 

paclitaxel 
(152, 153) 

Gel Cross-linking 5-Fluorouracil (154) 

 

1.10. Nanoparticles and their interaction with skin lesions 

The ease of administration and reduced systemic side effects of topical 

formulations prioritise them over systemic therapy for uncomplicated CL (30). 

Topical formulations for CL encounter different barriers in the skin and some 
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are shown in Fig 1.17. Nanoparticle carriers have been widely used in topical 

formulations to treat skin disease such as fungal infections, psoriasis and, for 

cosmetic purposes (155). The penetration of nanoparticles through the skin 

can occur by one of these three routes: intercellularly in between corneocytes, 

intracellularly through corneocytes or via dermal structures like the hair follicles 

(Fig 1.18) (155).  

 

Figure  1.17. Factors to be considered in topical delivery (30). 
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Figure  1.18. Pathways of skin nanoparticles penetration. 1) via hair follicles, 2) 
intracellularly through corneocytes and 3) intercellularly around corneocytes 
(155) . 

The biological effects (toxicity, immune interactions), depth and mechanism of 

skin penetration of the nanoparticles are based on their structure and 

properties such as size, zeta potential, aggregation, solubility in the skin, skin 

lipid composition and drug release from these nanoparticles. The condition of 

the skin, healthy or otherwise, influences nanoparticle permeation. Current 

dogma avers that biodegradable polymeric nanoparticles accumulate in the 

hair follicle and on the surface (stratum corneum) of healthy skin (156). In CL, 

drug permeation may be influenced by the morphology of ulcers, such as 

necrotic centres and high borders to the lesion. CL causes an inflammation 

response involving higher permeability and vasodilatation of blood vessels of 

the dermis at the infection site, and moreover several types of immune cells, 

including macrophages, are infiltrated to the infection site and this could 

promote the permeation of the topical drug through the damaged epidermis 

(157), see Fig 1.19. 

Despite this ease of drug permeation caused by the local inflammation in CL, 

the location of Leishmania parasites in the dermis, instead of the superficial 

portions of the epidermis where most fungi typically reside, forms a major 

impediment to the permeation of topical drugs (157). 
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The most favourable drug formulation for topical treatment of CL is the one in 

which the drug has a high anti-leishmanial activity and can permeate through 

the skin to reach Leishmania parasites located in the dermis, in high enough 

concentrations to act (115).  

Chitosan nanoparticles have been reported to (i) improve the drug permeation 

into skin in comparison to other vehicles and, (ii) provide a sustain drug release 

from these nanoparticles. Moreover, chitosan has wound healing effects, 

mucosal adhesion properties and antimicrobial activity (158). Many clinical 

studies demonstrated the positive effects of using chitosan as wound dressing 

in accelerating the rapid wound re-epithelialisation and the regeneration of the 

granular layer, haemostasis in patients undergoing plastic surgery (159), skin 

grafting (160, 161) and endoscopic sinus surgery (162). Chitosan 

nanoparticles have been repeatedly administered for topical skin delivery; 

retinol encapsulated in chitosan-TPP nanoparticles showed less toxicity than 

unloaded retinol and potential activity for acne and anti-wrinkle treatment 

(163). Acyclovir (an antiviral medication) loaded chitosan-TPP nanoparticles 

caused an increase in the drug stability and stimulated drug penetration 

through porcine skin (164). Chitosan–dextran sulphate nanoparticles also 

showed mucoadhesive properties and potent activity in the treatment of ocular 

surface infections (165). Therefore, these encouraging properties make 

chitosan a suitable candidate for further studies in terms of topical treatment 

of CL.   
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Figure  1.19. Interaction of nanoparticles with lesions of CL (156). A high parasitic 
load, low lymphocytes infiltrate and small tissue necrosis is observed in nodular 
lesions. On the contrast, the parasite load is low with higher lymphocytes infiltrate 
and tissue injury. While in the necrotic tissue the neutrophils are gathered, infected 
macrophages and lymphocytes are situated in the border of the ulcers. In nodular 
lesions, nanoparticles are applied to the epidermis. Based on their physiochemical 
properties they either (i) stay on the surface, (ii) penetrate the epidermis (small, 
deformable NPs), and/or(iii) fuse with the epidermis. After which a drug release will 
occur and diffuse to the dermis to meet the infected macrophage and then this drug 
being eliminated by lymphatic and blood clearance. The time of retention in the 
dermis is crucial for the treatment efficacy.  However, these drug carriers encounter 
fibrotic and necrotic dermal tissue with infiltration of neutrophils in the centre of the 
ulcer. The chance to reach infected macrophages is higher in ulcerative lesions. 
Nanoparticles can promote stress and proinflammatory signalling that enable the 
elimination of parasites and accelerate the wound healing and according to the 
nanoparticles physicochemical properties this can be happened by either direct 
influence on macrophages or indirectly by their effects in keratinocytes and 
neutrophils. The design of these nanoparticles should take into consideration the 
maximal eradication of parasites and lowering the tissue injury.  

1.10.1. Mathematical models of skin permeability 

Small uncharged drug molecules mainly permeate through skin by passive 

diffusion in which, move from an area of higher concentration to an area of 

lower concentration (Fig 1.20 ) (166).  

Infinite dose permeation experiment is usually used to examine the 

permeation behaviour of a compound or to determine the influences of 

penetration enhancer on percutaneous permeation. Infinite dose is applied to 
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keep a steady rate of absorption of the compound through the skin, that is 

called the steady state flux and will produce a cumulative permeation amount 

of compound permeated through a unit area of membrane over time (166, 

167).   

 
  
Figure  1.20. The passive diffusion of drug through a membrane (168) 

 

Fick’s first law can give the main equation (Equation 1) to identify the skin 

permeation after exposing the skin membrane to the diffusing molecules on 

one side of the skin when steady state conditions have been reached. This 

equation states the amount of molecule (Q) permeating the skin membrane of 

area (A) over a period of time (T) with the steady concentration gradient across 

the skin membrane, ΔCs (in mol/cm3) and it relates the diffusion coefficient in 

the skin membrane, D (diffusion coefficient) (in cm2/s), and the path length, h(in 

cm) (166, 169). 

Equation (1) 𝑄 =
DAT ΔCs

h
  , ΔCs= C0 - Ci (C0 represents the concentration of 

compound applied to the skin surface and Ci stands for the concentration of 

compound inside the skin) 

This equation assumes that the skin barrier (stratum corneum (SC)) is acting 

as a pseudo homogenous membrane and no changes happen in SC 

properties with time and position.  

Fick’s first law, applied when steady state conditions have been reached, 

states that the rate of transfer of the diffusing molecules per unit area is 

proportional to the concentration gradient measured across the membrane 

(Equation 2). Therefore, equation 2 is indicated as the flux of the permeant per 

unit area (in mol/(cm2·s)) (166, 169), 
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Equation (2) 𝐽 =
Q

AT
=

K.D.ΔCs

h
   , J is the flux of the permeant per unit area (in 

mol/(cm2·s))             

As in most practical situations C0 >>>Ci therefore equation 2 becomes: 

Equation (3) 𝐽 =
Q

AT
=

K.D.C0

h
 

Additionally, the permeability coefficient (kp) is described as the flux of the 

permeant per unit area normalised by the concentration gradient and by 

characterising the skin as a single pseudo-homogenous membrane therefore 

kp (in cm/s) is identified as 

Equation (4) 𝑘𝑝 =
K.D

h
  , K is the stratum corneum-formulation partition 

coefficient 

Accordingly, from both equations 3 and 4, the flux of the permeant per unit 

area (in mol/(cm2·s)) is: 

Equation (5) J = Kp.C0 (166, 169) 
 

Several assumptions should be taken into consideration before applying these 

equations to skin permeation into the experimental design including: 

1- The stratum corneum forms the rate-limiting barrier 

2- The stratum corneum is considered isotropic and its natures is not 

altered by the application of the vehicle of the drug formulation  

3- The drug diffusion is not based on time, concentration or distance 

4- The diffusing compound dissolves in the stratum corneum 

However, in the clinical situations, patients mostly apply finite dose of the 

formulation. The amount of permeated compound through stratum corneum 

will accomplish a peak and stay constant (equation 6) and the diffusion is 

determined as bellow: 

Equation (6) 
𝜕𝐶

∂T
= D

𝜕2𝐶

𝜕𝑥2   , c is the concentration of the permeating molecule at 

time t at depth x within the skin. This equation is applied just by presuming a 

unidirectional diffusion through an isotropic membrane (166, 167, 169). 

1.11. Pharmacokinetics of ant-leishmanial drugs  

Pharmacodynamic (PD) refers to the link between drug concentration and the 

influences on the biological system and illustrates how the drug influences the 
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parasite and can be determined in regards with effectivity (EC50, EC90), 

potency (maximal effect) and the kill rate (time-dependence of the effect) (70, 

71). While pharmacokinetic (PK) refers to the study of time course of the drug 

absorption, distribution, metabolism and excretion (ADME). The basic PK 

parameters are summarised in Table 1.7. Some concepts that affect 

importantly PK of CL drugs encompass: i) the target site of CL drug as 

Leishmania parasites survive and multiply in the macrophages of the dermis 

of the skin lesion and ii) the route of drug administration, for example, a topical 

drug should have the ability to penetrate through the stratum corneum of the 

epidermis and to retain in the dermis of the lesion. Moreover, iii) the 

metabolism of the parasite or the host (in macrophages, skin and liver) can 

activate or inactivate the drug. Drugs are divided into three groups according 

to PK/PD profile: 1- concentration-dependent antimicrobial effect -, 2- time-

dependent antimicrobial effect or 3- dependent on both time and concentration 

(70, 71). 

  

Table 1.7. Basic PK parameters copied from (71) 

Parameter Symbol Description 
Unit 

(example) 
Formula 

Dose D the dose of drug 
administered 

Mg Design 
parameter 

Dose 
interval 

Τ once per day (QD)                  

twice per day (BD)                            

trice per day (TID) 

Per hour, 
per day 

Design 
parameter 

Cmax Cmax the maximal concentration in 
a specific matrix (usually in 
plasma, but can be in any 
part of the body) after drug 
administration 

µg/ml Direct 
measurem
ent 

tmax tmax the time corresponding to 
Cmax 

Hours Direct 
measurem
ent 

Volume of 
distribution 

Vd the apparent volume in which 
a drug is distributed. Relates 
drug concentration to the 
amount of drug in the body 
and can give information 
about tissue distribution 

Litre =D/C0 

Elimination 
rate 
constant 

Ke the rate at which a drug is 
removed from the system 

Per hour = Cl/VD 
= ln 
(2)/T1/2 
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Clearance CLr the volume of body fluid 
cleared per time unit 
quantifies drug elimination 
from the system by kidney, 
liver and other organs 

litre/hour = Vd.Ke 
=D/AUC 

Half-life t1/2 the time needed for the 
concentration to fall to half of 
its 
previous value 

Hours = ln (2)/Ke 

AUC AUC the area under the curve, an 
expression of total exposure 

mg/liter.ho
ur 

= [∫∞0 C. 

𝑑𝑡] 

Bioavailabili
ty 

F oral bioavailability, the 
fraction of the administered 
dose that reaches the 
systemic circulation. 

N/A 
(fraction) 

=AUC (po)/ 

AUC(i.v.) 
x 
Dose(i.v.)/Dos
e(po) 

 

Regarding the pharmacokinetic of leishmaniasis drugs, pentavalent antimony 

has a long terminal half-life because of the intracellular conversion of SbV to 

SBIII which forms with the quick renal excretion the main characterisations of 

this drug pharmacokinetics. Miltefosine pharmacokinetics are characterised 

mainly by the accumulation in peripheral blood mononuclear cells (PBMCs) 

and long terminal half-life (70). However, paromomycin is characterised by the 

fastest excretion by the kidneys from the body in comparison with other 

leishmaniasis drugs. On the other hand, AmB pharmacokinetics have not been 

evaluated widely in leishmaniasis. It has been reported that the renal and 

faecal excretion of liposomal AmB (AmBisome®) is much slower than AmB 

deoxycholate (Fungizone) excretion which leads to higher exposure (70, 71). 

Wijnant et al reported that liposomal AmB (AmBisome®) caused a higher 

plasma peak and systemic exposure compared with AmB deoxycholate 

(Fungizone, after a single dose of 1 mg/Kg/ i.v. in L. major-infected mice) (170) 

and Table 1.8 summarizes the PK of leishmaniasis drugs including 

pentavalent antimonial, paromomycin, miltefosine, Fungizone and 

AmBisome® in clinical and mouse model studies. The application of PK and 

PD comprehension and understanding the relation between PK and PD 

produce a fundamental base for detecting the optimal dosage and effective 

therapeutic management of drugs for CL treatment and will be helpful in 

antileishmanial drugs combination to increase in an attempt to improve drug 

efficacy and decrease the duration of treatment (70, 170)
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Table 1.8. Pharmacokinetic profile of leishmaniasis drugs (70, 170) 

Patients 
Weight 

(kg) 
Daily dose 

Sampling 
day 

Cmax ( 
µg / 
ml) 

Ctrough ( 
µg / 
ml) 

tmax 
(h) 

ka (h-1) Vd/F (L) 
CLr/F 
(L/h) 

AUC 
(mg.h/L) 

t1/2 (h) 

S
b
V

 

(CL) 
Humans 
Adults: 

 

62 (56–
120) 

20 
mg/kg/days, 

20 days 
(IM) 

Day 19 
38.8 ± 

2.1 
0.198 ± 
0.023 

1.0 
(1.0–
2.0) 

NA 
0.30 ± 
0.01b,c 

0.106 ± 
0.006b 

AUC24: 
190 ± 10 

t1/2,β: 1.99 
± 0.08 

t1/2,24–48 h: 
20.6 ± 1.8 

(CL) 
Humans 
Children: 

 

15 (13–
18) 

20 
mg/kg/day, 

20 days 
(IM) 

Day 19 
32.7 ± 

0.9 
0.113 ± 
0.015 

0.875 
(0.5–
1.5) 

NA 
0.39 ± 
0.03b,c 

0.185 ± 
0.013b 

AUC24:                                 
111 ± 7 

t1/2,β: 1.48 
± 0.02 

P
a

ro
m

o
m

y
c
in

 

(VL) 
Humans 

35.5±11
.8a 

15 mg/kg 
(11 mg/kg 
base), 21 
days (IM) 

Day 1 
20.5 ± 
7.01 

4.53 ± 
6.71 

NA 
2.11 

(7.68%)e 
15.3 

(2.27%)e 
4.06 

(3.05%)e 
NA 2.62 

Day 21 
18.3 ± 
8.86 

1.31 ± 
4.16 

      

Data given as either mean ± standard deviation or median (range), unless indicated otherwise AUC area under the concentration–time curve, AUC24 
AUC from time zero to 24 h, , CLr clearance, Cmax peak plasma concentration, Ctrough trough plasma concentration 24 h after dose, F bioavailability, 
ka absorption rate constant, NA not available, t1/2 plasma elimination half-life,  t1/2, β elimination half-life,  t1/2,24–48 h apparent half-life between 24 and 48 
h (an approximation of the c-elimination half-life), tmax time to Cmax, Vd volume of distribution.  b Per kg, c Vβ apparent volume of distribution during the 
b-elimination phase and  e Mean (% standard error) 
 

Patients 
Weight 

(kg) 
Daily dose 

Css
a 

(µg/ml) 
ka 

(day-1) 
tmax 
(h) 

Vcentral/ 
F (L 

CLr/ 
F 

(L/day) 

Vperipheral/ 
F (L) 

Q 
(L/day) 

AUCb 
(µg.day/ml) 

t1/2 (days) 
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M
ilte

fo
s
in

e
 

(CL) 
Humans 
Adults: 

70.84 ± 
11.73 

2.11 ± 0.16 
mg/ 

kg/day, 28 
days 

(Orally) 

31.9 
(17.2–
42.4) 

NA NA NA NA NA NA 
628 

(213–861) 

34.4 
(9.5–
46.15) 

(CL) 
Humans 
Children: 

 

26.22 ± 
7.62 

2.27 ± 0.16 
mg/ 

kg/day, 28 
days 

(Orally) 

22.7 
(17.0–
29.3) 

NA NA NA NA NA NA 
448 

(304–583) 

37.1                      
(7.4–
47.0) 

Patients 
Weight 

(g) 
Daily dose 

Cmax 

(µg/ml) 

AUC 
(h · 

µg/ml) 

Clearance 
(ml/h/kg) 

t1/2 (h) 
V 

(ml/kg) 
    

F
u
n

g
iz

o
n
e

 

L. major-
infected 

mice 
20 

a single i.v. 
1-mg/kg 

dose 
1 30.2 18.9 39.7 1075     

A
m

B
is

o
m

e
®
 

L. major-
infected 

mice 
20 

a single i.v. 
1-mg/kg 

dose 
8.2 71 13.5 8.5 143     

AUC area under the concentration–time curve, CLr clearance, Css steady-state concentration, F bioavailability, ka absorption rate constant, NA not 
available, Q intercompartmental clearance, tmax time to Cmax within one dosing interval, V volume of distribution, t plasma elimination half-life, V central 
volume of distribution of the central compartment, Vperipheral volume of distribution of the peripheral compartment.  a Miltefosine accumulates during 
treatment and reaches Css during the last week of treatment 
b AUCD28 (AUC from start to end of treatment) unless indicated otherwise 
c Unclear whether this is the mean Css or the maximum Css 
d AUC from start of treatment to infinity (AUC∞) 
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1.12. Treatment challenges 

As described in this chapter, currents treatments for CL have drawbacks , for instance 

high toxicity (nephrotoxicity, cardiotoxicity, hepatoxicity etc), the high cost (such 

liposomal amphotericin B), instability, or sometimes low cure rates etc and this draws 

the attention to the need for new safe, effective, economically feasible new treatments 

for CL. Drug discovering and developing is a long, slow and very expensive process 

(71).  

Drug delivery system is considered one of the effective strategies to overcome the 

cost and long process of developing new drugs in which DDs of already know active 

drugs and can be used to increase the activity of loaded drugs and to reduce their 

toxicity.  

Chitosan has shown promising features in therapeutic delivery systems because of 

its biocompatibility, biodegradability, cationic structure, mucoadhesive properties, 

wound healing effects and the antimicrobial activity (130, 135). Therefore, chitosan 

has been chosen in this study as a carrier for AmB and the potential to treat CL, AmB 

is a high active drug against CL but its use has been decreased because of the toxicity 

and we aimed to improve the therapeutic window of AmB by using chitosan as a 

nanocarrier (171).  

There are different methods for chitosan nanoparticles preparation and the ionotropic 

gelation method was chosen in this study as this method is a simple and quick method 

and can be used to synthesize spherical nanoparticles with different sizes and 

charges. Moreover, this method has been reported to produce very stable chitosan 

nanoparticles with sustainable drug release (171). 

In literatures, chitosan nanoparticles showed encouraging properties as DDs for the 

treatment of leishmaniasis. However, there is just a study used the ionotropic gelation 

method and used chitosan nanoparticles with positive surface charge and with size 

of size= 136±11 nm and these studies need more detailed and controlled studies (83, 

122).  

Topical treatments have many advantages over systemic treatment for instance, (i) 

increasing the compliance with patients, (ii) affording a high local concentration of the 

drug at the lesion site and (iii) reduce the toxic effects of systemic drugs (158). 

Therefore, the possibility of use AmB loaded chitosan nanoparticles in this route could 

be of interest to benefit from the small size of the nanoparticles, mucoadhesive and 

wound healing effects of chitosan.   
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1.13. Aims and objectives  

The overall aim of this project was to optimise an effective, safe and 

economically feasible nanoparticle delivery system of amphotericin B with the 

potential to treat cutaneous leishmaniasis.  

- Hence, the aim of the first experimental chapter (chapter 2) was to: 

I. Determine the in vitro anti-leishmanial activity of chitosan and its 

derivatives against L. major and L. mexicana promastigotes and 

intracellular amastigotes at two different pH values of the culture 

medium (the medium pH 7.5 and at lower pH 6.5) 

II. To evaluate the in vitro role of chitosan in the activation of macrophage 

and M1 proinflammatory phenotype, via the measurement of NO, ROS 

and TNF-α production by host cells and by measuring parasite survival 

III. Investigate chitosan uptake by macrophages to explain activity against 

intracellular amastigotes.  

 

- The purpose of the second experimental chapter (chapter 3) was to: 

I.  Prepare two types of chitosan nanoparticles by using the inotropic 

gelation method; one with a positive surface charge using 

tripolyphosphate sodium (TPP) and the other with a negative surface 

charge, using dextran sulphate.  

II. Evaluate the characterisations of blank and amphotericin B loaded 

chitosan TPP or dextran sulphate nanoparticles by studying their 

physicochemical properties (size, morphology, zeta-potential and 

stability). The optimal conditions for nanoparticle preparation were 

chosen with regard to the smallest sizes and different charges. 

III. Determine amphotericin B loading and drug release from the 

amphotericin B loaded chitosan TPP or dextran sulphate nanoparticle 

 

- The third experimental chapter aimed to (chapter 4): 

I. Evaluate the in vitro effectiveness of blank and amphotericin B loaded 

chitosan TPP or dextran sulphate nanoparticles against L. major and L. 

mexicana promastigotes and amastigotes after evaluating their 

haemolytic activity and cytotoxicity against KB-cells.  
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II. Evaluate the intravenous activities of blank and amphotericin B loaded 

chitosan TPP or dextran sulphate nanoparticle in vivo in BALB/c mice 

infected with L. major. 

III. Measure the permeation of blank and amphotericin B loaded chitosan 

TPP or dextran sulphate nanoparticle through uninfected and L. major 

infected mouse BALB/c skin by In vitro Franz diffusion cell permeation 

studies. 

 

-  The fourth experimental chapter (chapter 5) aimed to:  

I. Study the effects of media perfusion on the in vitro host cell 

phagocytosis and macropinocytosis. 

II. Study the effects of the flow on the in vitro anti-leishmanial activity of 

chitosan solution and blank and amphotericin B loaded chitosan TPP 

or dextran sulphate nanoparticles 
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2. Activity of chitosan and its derivatives against Leishmania 

major and mexicana in vitro. 

2.1. What is chitosan? 

Chitosan is produced by the deacetylation of chitin (Fig 2.1). Chitin is the 

second most abundant natural polysaccharide and originates from the shells 

of crustaceans and the cell walls of fungi (172). Chitosan is a biodegradable, 

biocompatible and positively charged nontoxic mucoadhesive biopolymer 

(172, 173). 

  

Figure  2.1. Structure of chitin and chitosan and method of preparation chitosan 
from raw materials (172, 174).  

2.2. Chitosan solubility 

Chitosan is insoluble at alkaline pH but is soluble in dilute acidic solvents like 

glacial acetic acid and acid solvents to form a cationic polymer (–NH3+ groups) 

(Fig 2.2). Chitosan in acidic media has a positive charge and the ability to form 

gels at low pH values because it is hydrophilic and can retain water in its 

structure (175). Chitosan pKa is approximately 6.3 and therefore, the 

approximate ionisation degree of chitosan is a 61% and 6% at pH 6.5 and 7.5 

respectively. 
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Figure  2.2. Schematic illustration of chitosan’s versatility (135).  

2.3. Chitosan toxicity 

Chitosan is widely considered as a non-toxic, biological polymer and has been 

approved by the FDA for use in wound dressings. Chitosan has been 

recognized by FDA as GRAS (Generally Recognized As Safe, GRAS Notice 

No. GRN 000073, EU 2011) (176) and approved for use in dietary applications 

in Italy and France (173). The lethal dose, 50% (LD50 ) of chitosan for mice 

and rats are orally 16000 and 1500 mg/kg respectively (177).  

2.4. Chitosan in wound healing 

Chitosan has a similar chemical structure to hyaluronic acid and additionally 

enhances the functions of inflammatory cells such as polymorphonuclear 

leukocytes (PMN) (phagocytosis, production of osteopontin and leukotriene 

B4), macrophages (phagocytosis, production of interleukin (IL-1), transforming 

growth factor and platelet-derived growth factor) and fibroblasts (production of 

IL-8) (135, 175). Because of these properties, chitosan promotes skin wounds 

granulation with improving collagen production, angiogenesis and re-

epithelialization of skin tissue. As a result, chitosan induces wound healing 

and produces less scarring. Also using chitosan hydrogel will provide a 

painless, antimicrobial and ideal dressing for wounds (135, 175).  

2.5. Chitosan derivatives 

The poor solubility of chitosan and the loss of the cationic nature charge at 

neutral and alkaline pH are two of the major obstacles to the usefulness 

consideration of chitosan as a useful antimicrobial material. Recently, the 
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chemical modification of chitosan to produce various derivatives to improve its 

solubility and widen its application, has gained a great attention. The presence 

of certain functional –NH2 and –OH groups on chitosan structure provides the 

basis for many methods of structural modification. The most used method is 

graft copolymerization (an attractive technique to conjugate bioactive 

molecules on the surface). Derivation of chitosan can be used to improve its 

antimicrobial activity, solubility and the mucoadhesive properties (178, 179). 

2.6. Antimicrobial activity of chitosan 

Many reports mention that chitosan has a potential activity against microbes 

(detailed in Table 2.1) but the actual mechanism has not yet been fully 

elucidated [35]. Three mechanisms have been suggested to explain this 

activity. The first one is the interaction between the protonated NH3+ groups of 

chitosan and the negative cell membrane of microbes. This interaction leads 

to change the permeability of the microbes’ membrane wall, causes osmotic 

imbalances, and as a result prevents the growth of the microbes (174, 180). 

Another mechanism is that chitosan binds to microbial DNA and inhibits DNA 

transcription and mRNA synthesis (180, 181). The third mechanism is the 

chelation of metals and binding the basic nutrients for microbes. These three 

mechanisms lead to killing of the microbes (124). A fourth indirect mechanism 

of action may be related to the known pro-inflammatory activity effect of 

chitosan on macrophages. This involves stimulation of tumour necrosis factor 

(TNF-α), interleukin 6 (IL-6), nitric oxide (NO), reactive oxygen species (ROS) 

and interferon gamma (IFN-γ) which play critical roles in the proinflammatory 

response against intracellular microbes (by enhancing the production of 

microbicidal reactive nitrogen species)  (125, 126, 182, 183, 184).  
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Table 2.1. The antimicrobial activities of chitosan and its derivatives (173, 185, 186, 
187) 

Microbe MIC of chitosan or derivative 

Escherichia coli Chitosan 8 μg/ml; chitosan nanoparticles 0.0625 

μg/ml; Cu loaded chitosan nanoparticles 0.0313 

μg/ml 

Pseudomonas aeruginosa Chitosan 0.0125%(w/v); chitosan-Zn complex 

0.00625%(w/v); N, N-diethyl-N-methyl-chitosan 

32 μg/ml 

Proteus mirabilis Chitosan 0.025%(w/v); chitosan-Zn complex 

0.00625%(w/v) 

Salmonella enteritidis Chitosan 0.05%(w/v); chitosan-Zn complex 

0.00625%(w/v) 

Enterococcus faecalis Chitosan 8 μg/ml; chitosan-Zn complex 0.125; 

N, N-diethyl-N-methyl-chitosan 16 μg/ml 

Staphylococcus aureus Chitosan 0.025%(w/v); chitosan-Zn complex 

0.0125%(w/v); N-methyl-chitosan 16 μg/ml 

Candida albicans Chitosan 5 μg/ml; chitosan-Zn complex 

0.1%(w/v) 

2.7. Anti-leishmanial activity of chitosan 

A few researchers have evaluated the activity of chitosan against Leishmania 

parasites under different conditions and the results are summarised in Table 

2.2. It was observed that chitosan presented an anti-leishmanial activity with 

EC50 (50% effective concentration) values ranging from around 50 to 240 

μg/ml against different strains of Leishmania promastigotes and amastigotes. 

In these studies, there are inconsistent values of the activity of chitosan 

against Leishmania parasites. Accordingly, a lot of clarification and detailed 

controlled studies are needed to determine whether chitosan is a suitable 

candidate to find new chemotherapeutic alternatives for the treatment of 

leishmaniasis. The aim of this chapter was to:  (i) determine the in vitro anti-

leishmanial activity of chitosan and its derivatives against L. major and L. 

mexicana promastigotes and intracellular amastigotes at two different pH 

values (the culture medium pH of 7.5 and a lower pH of 6.5, which are both 

suitable for macrophage and parasite growth (188, 189, 190), (ii) to evaluate 
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the in vitro role of chitosan in the activation of macrophage and M1 

proinflammatory phenotype, via the measurement of NO ,ROS and TNF-α 

production by host cells and by measuring parasite survival and (iii) investigate 

chitosan uptake by macrophages to explain its activity against intracellular 

amastigotes. 

  



53 
 

Table 2.2. The anti-leishmanial activity of chitosan 

Strain Drug Type of study Results 

L. infantum Chitosan solution in 
acetic acid 

In vitro, against promastigotes and 
amastigotes 

- EC50=112.64-μg/ml promastigotes 
- EC50= 100.81 μg/ml amastigotes (127) 

L. amazonensis Chitosan solution in 
acetic acid 

In vitro, against promastigotes and 
amastigotes 

- EC50= 73.00 μg/ml promastigotes. 

-100 μg/ml: Percentage of infected 

macrophages after treatment 66% (122) 

L. amazonensis Chitosan nanoparticles In vitro, against promastigotes and 
amastigotes 

- EC50= 52 μg/ml promastigotes. 
-100 μg/ml: Percentage of infected 
macrophages after treatment 39% (122) 

L. chagasi Chitosan solution in 
acetic acid 

In vitro, against promastigotes EC50= 67 μg/ml promastigotes (122). 

L. chagasi Chitosan nanoparticles In vitro, against promastigotes EC50= 46 μg/ml promastigotes (122). 

L. infantum Chitosan solution In vitro, against promastigotes EC50= 240 μg/ml (128) 

L. major nanochitosan film In vivo study, female BALB/c mice were 
treated with nano-chitosan film four times/day 

There was no significant difference between 
nanochitosan and Glucantime in reduction 
of lesion size of L. major infected mice (191) 

L. major Chitosan microparticles In vivo, (100 μg/100 μl) were subcutaneously 
injected in the infected BALB/c mice) with 
two-day intervals until two weeks 

Lesions of L. major infected mice were 
significantly smaller in chitosan treated 
groups (1.2 ± 0.8 mm) than in the control 
group (6.2 ± 1.7 mm) (129) 

L. major Chitosan solution in 
acetic acid 

In vivo (BALB/c mice), chitosan 200 and 400 
μg/ml were applied topically for 28 
continuous days 

Lesion size L. major infected mice was 8.47 
mm for untreated group and 2.07 and 1.05 
mm in groups treated with the 200 and 400 
μg/ml of chitosan, respectively (192). 
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A pilot clinical 

study for 10 

patients with CL 

(patients did not 

respond to 

traditional 

treatment) 

poly (vinyl alcohol)/ 
chitosan/clay 
nanocomposite film 

Chitosan films were applied on the lesion for 
7 days. This dressing was repeated every 
week until the complete healing. 

Lesions were completely cured after 16 
weeks with no side effects or recurrences 
(193). 
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2.8. Materials and methods 

2.8.1. Drugs and chemicals 

Stocks of amphotericin B deoxycholate (5.2 mM [aq]) (Fungizone; Gibco, UK) 

were prepared, aliquoted, and kept at -20°C until use. Chitosan with three 

different molecular weights and its derivatives were used and are summarised 

in Table 1. Solutions of chitosan and derivatives were prepared by dissolving 

1 g in 100 ml of 1% (v/v) acetic acid solution at room temperature with 

continuous stirring for 24 hours until a clear solution was obtained. The pH of 

the solution was adjusted to approximately 6 by adding sodium hydroxide 2N 

(NaOH, Sigma, UK) solution with a pH meter (Orion Model 420A). The 

chitosan solutions were autoclaved (121 °C; 15 mins). Phosphorylcholine 

substituted chitosan was kindly provided by Prof F Winnik (Montreal 

University, Canada) generated through reductive amination of PC-

glyceraldehyde with primary amines of deacetylated chitosan (57 KDa). 

Percentage of substitution was controlled and determined by NMR (194). In 

our study, two pH values have been used: 7.5 is the medium culture pH and a 

lower pH 6.5. pH 6.5 is a suitable and safe pH for both macrophages and 

parasites, while pH<6.5 affects the growth of both macrophages and 

intracellular amastigotes.  

Chitosan pKa is approximately 6.3 and therefore, the approximate ionisation 

degree of chitosan is a 61% and 6% at pH 6.5 and 7.5 respectively.  

Table 2.3. Details of chitosan and its derivatives used in the study 

Compounds Properties Supplier 

HMW (source: crustacean 

shells) 
MW=310-375 KDa Sigma, UK 

MMW (source: crustacean 

shells) 
MW=190-310 KDa Sigma, UK 

LMW (source: crustacean 

shells) 
MW=50-190 KDa Sigma, UK 

Fungal chitosan (white 

mushroom) 
MW=110-150 KDa Dr Somavarapu 
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Chitosan 

oligosaccharide(synthetic) 
MW=≤ 5KDa Dr Somavarapu 

Chitosan oligosaccharide 

lactate (synthetic) 

MW=average Mn 5, 

oligosaccharide 60% 
Dr Somavarapu 

Chitosan- HCl (synthetic) MW= 47 - 65 KDa Dr Somavarapu 

Carboxymethyl chitosan 

(synthetic) 

MW=543.519 Da, level of 

substitution is 95% 

Dr Somavarapu 

PC1-CH (Phosphorylcholine 

substituted chitosan) 

(synthetic) 

MW=33 KDa, PC(mol%)= 

30 

Prof Winnik 

(194) 

PC2-CH (synthetic) MW=108 KDa, PC(mol%)= 

20 

Prof Winnik 

(194) 

PC3-CH (synthetic) MW=109 KDa, PC(mol%)= 

30 

Prof Winnik 

(194) 
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Figure  2.3. The structure of chitosan and its derivatives (194, 195, 
196, 197) 

 

2.8.2. Ethics statement.  

All animal work is carried out under a UK Home Office project licence 

according to the Animal (Scientific Procedures) Act 1986 and the new 

European Directive 2010/63/EU. The Project Licence (70/8427) has been 

reviewed by LSHTM Animal Welfare & Ethical Review Board prior to 

submission and consequent approval by the UK Home Office.  

2.8.3. Cell lines  

Preparation of macrophages 
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- Peritoneal mouse macrophages (PEMs) were obtained from 8-12-

week-old female CD1-mice (Charles River Ltd, UK). Two ml of a 2% 

(w/v) starch solution in phosphate-buffered saline (PBS, Sigma, UK) 

was injected intraperitoneally (i.p.). After 24 h, the animal was sacrificed 

and the PEMs were harvested by peritoneal lavage with cold RPMI 

1640 medium (Sigma, UK) containing 200 units penicillin and 0.2 mg 

streptomycin/ml (PenStrep; Sigma, UK). Subsequently, PEMs were 

centrifuged at 450 g at 4°C for 15 min and then the pellet was 

resuspended in RPMI 1640 with 10% (v/v) heat-inactivated fetal calf 

serum (HiFCS; Gibco, UK).  

- Bone marrow-derived macrophages (BMMs) were obtained from 

femurs of 8-12-week-old female BALB/c mice (Charles River Ltd). 

Briefly, the bone marrow cells were carefully flushed from the bone with 

Dulbecco’s Modified Eagle’s Medium (DMEM; Thermofisher, UK) with 

10% (v/v) HiFCS, 100 U/ml penicillin and 100 mg/ml streptomycin 

(Sigma, UK). Cells were pelleted by centrifugation (450 g, 10 min) and 

re-suspended in 10ml DMEM with 10% (v/v) HiFCS and human 

macrophage colony stimulating factor 50ng/ml (HM-CSF; 

Thermofisher, UK). After plating out in T175 flasks (Greiner Bio-One, 

Stonehouse, UK), BMMs were kept at 37°C, 5% CO2 for 7-10 days after 

which they were harvested, counted and used. 

- THP-1 cell is a human leukemic monocyte-like derived cell line. THP-1 

cells were cultured in RPMI 1640 medium supplemented with L-

glutamine and 10% HiFCS. THP-1 cells were incubated in RPMI 1640 

plus 10% (v/v) HiFCS and 20 ng/ml phorbol 12-myristate 13-acetate 

(PMA; Sigma, UK) at 37°C and 5% CO2 for 72 h to induce maturation 

transformation of these monocytes into adherent macrophages (198). 

Human squamous carcinoma (KB) cells are adherent cells derived from 

epidermal carcinoma from the mouth. KB cells were cultured in RPMI 1640 

medium 10% HiFCS (199). 

The number of cells and macrophages was estimated by counting with a 

Neubauer haemocytometer by light microscopy (x 400 total magnification). 
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2.8.4. Parasites 

Four Leishmania species; two GFP labelled species (L. major 

(MHOM/SU/73/5ASKH) and L. mexicana (MNYC/BZ/62/M379), kindly 

donated by Dr G Getti (University of Greenwich, UK) were used for the 

fluorescence microscope study. They were cultured in Schneider’s insect 

medium (Sigma, UK) with 23% (v/v) HiFCS, 1× penicillin-streptomycin-

glutamine (Gibco-Invitrogen) and supplemented with 700 μg/ml G418 (an 

aminoglycoside antibiotic, Sigma, UK).  L. major (MHOM/SA/85/JISH118) and 

L. mexicana (MNYC/BZ/62/M379) were used for other experiments as 

described, minus the G418. Promastigotes were incubated at 26°C, maximum 

passage number used = 7.  

2.8.5. In vitro cytotoxicity assays 

Re-suspended KB cells (4 x 104 /100 µl) were allowed to adhere to the bottom 

of 96-well plate overnight and then exposed to specific concentrations of the 

compounds for 72 h at 37°C and 5% CO2 incubator. Podophyllotoxin (Sigma, 

UK) was included as a positive control at a starting concentration of 0.05 μM. 

Cytotoxicity was evaluated by a cell viability assay using the resazurin sodium 

salt solution (AlamarBlue, Sigma, UK) which was prepared according to the 

manufacturer’s instructions. 20μL of the resazurin solution was added to each 

well of the plates and fluorescence (cell viability(200)) was measured over a 

period of 1 to 24 h using a Spectramax M3 plate reader (EX/EM 530 / 580 nm 

and 550 nm cut off). Results were expressed as percentage inhibition = (100 

– x)% viability (means ± standard deviation ). Cytotoxicity was evaluated in 

RPMI 1640 at two pH values (at normal pH of RPMI 7.5 and at a lower pH 

6.5). The pH of RPMI 1640 was reduced from 7.5 to 6.5 by adding 0.05M acidic 

buffer, 2-N-morpholino ethanesulfonic acid (MES, Sigma, UK). RPMI 1640 

plus MES (0.05M) at pH=6.5 did not show any toxicity to KB-cells. 

2.8.6. In vitro 72-hour activity of chitosan and its derivatives against 

extracellular L. major and L. mexicana promastigotes 

Promastigotes in RPMI 1640 medium were tested while in the exponential 

growth phase. The promastigotes were diluted to a density of 5x106 



60 
 

promastigotes/ml and then exposed to different concentrations of (HMW, 

MMW, and LMW) chitosan, chitosan derivatives and Fungizone (positive 

control) in 96 well plates for 72 h at 26°C. The activity of the compounds 

against promastigotes was evaluated using the Alamar Blue assay as 

previously described.  pH plays a critical role in the solubility and protonation 

of chitosan, so the activity against promastigotes was evaluated at two 

different pH values (pH=7.5 and a lower pH of 6.5 by adding MES). In addition 

to the colorimetric method of measuring parasite viability, promastigotes were 

manually counted microscopically in a Neubauer haemocytometer. Results 

were expressed as percentage inhibition= 100% - x% viability (means ± SD).  

2.8.7. In vitro 72- hour activity of chitosan and its derivatives against 

intracellular amastigotes of L. major and L. mexicana 

One hundred microliters of PEMs culture at 4 ₓ 105 cells/ml, dispensed into 

each well of a16-well LabTek tissue culture slide (Thermo Fisher, UK) at pH 

7.5 or pH 6.5 and incubated for 24 h at 37 °C in 5 % CO2. After 24 h, the wells 

were washed with fresh culture medium to remove non-adherent cells. 

Stationary phase, low-passage-number Leishmania promastigotes were then 

added at a ratio of 5 :1 PEM. This infection ratio was previously found to give 

sufficiently high and reproducible infection levels. Slides were incubated for 

another 24h at 34 °C to mimic dermal temperatures in 5 % CO2 (201). Any 

free, extracellular parasites were removed by washing the wells with cold 

culture medium. One slide was fixed with 100 % methanol for >30sec and 

stained with 10 % Giemsa for 5 minutes. The number of PEMs infected with 

Leishmania amastigotes per 100 macrophages was microscopically counted.  

All the experiments were conducted at macrophages infection levels above 

80% prior to addition of chitosan.  Chitosan, its derivatives and Fungizone ( 

a micellar suspension) at a range of concentrations (in quadruplicate) were 

added to the wells (100µl) and the slides were incubated for 72 h at 34 °C in 5 

% CO2. After 72 hours, the slides were fixed with 100% methanol for >30sec 

and stained with 10% Giemsa for 5 min. The slides were examined and the % 

of macrophages which were infected was counted. The anti-leishmanial 

activity of compounds was expressed as percentage reduction in infected 
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macrophages compared to untreated control wells (202). RPMI 1640 plus 

MES (0.05M) with pH=6.5 had no activity against Leishmania amastigotes 

2.8.8. Influence of the origin of the host cell on the in vitro activity of 

HMW chitosan against L. major amastigotes  

A further two host cell types, THP-1 and BMMs were infected with L. major 

and the activity of HMW chitosan was assessed. THP-1 cells (were cultured in 

RPMI 1640with 10% HiFCS) and BMMs (were cultured in DMEM with 10% 

HiFCS) were used to assess the host cell dependence of the anti-leishmanial 

activity of HMW chitosan (198). The experiment was conducted as described 

in section (vii) at pH 6.5.  

2.8.9. Influence of incubation duration on chitosan activity against L. 

major amastigotes  

The experiment was conducted using L. major amastigotes in BMMs host cell 

at pH 6.5 as described in section 2.8.7 after 4, 24, 48 and 72h of incubation 

with HMW chitosan and Fungizone as a positive control. 

2.8.10. The role of HMW chitosan on BMMs activation  

One hundred microliters of BMMs, PEMs and THP-1 macrophages (4 x 

105/ml) in DMEM (BMMs) or RPMI (PEMs and THP-1) at pH=6.5 were plated 

in each well of 96 well plates (standard clear plates for nitric oxide assay and 

black wall/clear bottom plates for ROS and TNF-α assay) and incubated for 

24 hours at 37 °C in 5 % CO2. Plates were washed with DMEM (BMMs) or 

RPMI (PEMs and THP-1) to remove non-adherent macrophages. L. major at 

1:5 ratio (5 parasites per host cell) was then added to the wells and the plates 

were incubated for 24h at 34 °C in 5 % CO2 to allow infection of the adherent 

macrophages. After 24h incubation with macrophages infection rate more than 

80%, the immune stimulatory effects of HMW chitosan was determined by 

quantifying the release of TNF-α, ROS and NO by the macrophages, as 

described below at pH 6.5. Then We have chosen BMMs to evaluate if the 

immunostimulatory effects of HMW chitosan have any important role in its anti 

-amastigotes activity as these macrophages are more homogenous than 
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PEMs and THP-1 cells (203). Both PEMs and BMMs have been reported to 

have a similar acidic pH ≈ 5.5 of parasitophorous vacuoles of L. amazonensis 

infected PEMs and BMMs (204, 205, 206).    

2.8.10.1. Measurement of TNF-α                                                           

HMW chitosan at a range of concentrations (1.64, 4.9,14.8, 44.4, 133.3 and 

400 µg/ml ) was added to infected and uninfected macrophages and the plates 

were incubated for 4 and 24 h at 34°C in 5% CO2 . Lipopolysaccharides from 

Escherichia coli O26:B6 (LPS, 100ng/ml; Sigma, UK) was used as a positive 

control and inducer. TNF-α release by the macrophages was measured using 

a mouse TNF-α ELISA kit (ab208348, abcam, UK) according to the 

manufacturer's instructions using a Spectramax M3 microplate reader 

(wavelength 450 nm) to determine if HMW chitosan stimulates T helper 1 or T 

helper 2 cells.  

2.8.10.2. Measurement of ROS  

ROS was measured using a 2′,7′–dichlorofluorescein diacetate (DCFDA, 

cellular reactive oxygen species detection assay kit, abcam, UK). Uninfected 

and infected macrophages were treated with 25 µM DCFDA in in phosphate-

buffered saline (PBS) buffer for 45 min at 37°C and then washed once in 

buffer. The cells were cultured at 34°C in 5% CO2 for 0.5, 1, 2, 4,8 and 24 h, 

with a range of concentrations (1.64, 4.9,14.8, 44.4, 133.3 and 400 µg/ml) of 

HMW chitosan or in the presence of H2O2 (25mM) (Thermofisher, UK) as a 

positive control in DMEM (BMMs) or RPMI (PEMs and THP-1) + 10% HiFCS 

(pH=6.5) in quadruplicate wells. In some experiments, cells were pre-treated 

with a selective inhibitor of ROS, N-acetyl-L-cysteine (NAC, 5mM; Sigma, UK), 

for 2 hours before the addition of the inducer or chitosan.  At 0.5, 1, 2, 4, 8 and 

24 h the plates were read, using a Spectramax M3 microplate reader 

(Ex=485nm, Em=535nm).  

2.8.10.3. Measurement of NO  

NO was measured by the Griess reagent (Thermofisher, UK). HMW chitosan 

at a range of concentrations (1.64, 4.9,14.8, 44.4, 133.3 and 400 µg/ml) was 
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added to infected and uninfected macrophages and the plates were incubated 

at 4 and 24 h at 34°C in 5% CO2. LPS (100ng/ml) was used as a positive 

control. In some experiments, cells were pre-treated with a selective inhibitor 

of nitric oxide with NG-methyl-L-arginine acetate salt (0.4 mM, L-NMMA; 

Sigma, UK) for 2 hours before the addition of LPS. NO was quantified 

according to the kit protocol, Briefly, 150 μl of the cell culture supernatants 

(particulates were removed by centrifugation) was mixed gently with 150μl of 

the Griess reagent in a 96 well plates and the mixture was incubated for 30 

mins at room temperature. The absorbance was measured using a 

Spectramax M3 plate reader (wavelength 548 nm). Sodium nitrite (Sigma, UK) 

at different concentrations was used to create a standard curve(207).  

2.8.11. Uptake of chitosan by macrophages 

The uptake of HMW chitosan was evaluated using two methods. The first 

method used two endocytosis inhibitors: cytochalasin D (1µg/ml , Sigma, UK) 

which is a phagocytosis inhibitor and dynasore (30 µg/ml, Sigma, UK) which 

inhibits pinocytosis (clathrin-mediated endocytosis (CME) by blocking GTPase 

activity of dynamin) (208, 209, 210) . The second method used dynasore and 

rhodamine-labelled chitosan (MW 200 kDa, Creative PEGWorks, USA) to 

track cellular uptake of chitosan over time by fluorescence microscopy. We 

chose BMMs to evaluate the uptake of chitosan by macrophages as these 

macrophages are more homogenous than PEMs (203). 

2.8.11.1. Activity of chitosan after inhibition of the endocytic pathway of 

BMMs 

One hundred microliters of BMMs culture (4 x 105/ml) in DMEM at pH 6.5 or 

pH=7.5 were dispensed into each well of 16-well LabTek culture slides and 

were infected with stationary phase L. major promastigotes. Some of the 

infected BMMs were pretreated with dynasore (30 µg/ml) or cytochalasin D 

(1µg/ml) for two hours. Subsequently, HMW chitosan was added to each well 

at concentrations of 1.64, 4.9,14.8, 44.4, 133.3 or 400 µg/ml and macrophages 

were incubated for 4 or 24 h at 34 °C in 5 % CO2.  After each point, the slides 

were examined as described in section (vii).The inhibition activity of the uptake 
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(phagocytosis or pinocytosis) of the two inhibitor was evaluated by using a 

fluorescence plate reader, by using fluorescent latex beads and pHrodo™ Red 

dextran  (211). We showed that cytochalasin caused 94% and 84% 

phagocytosis inhibition of fluorescent latex beads (Sigma-Aldrich, UK) after 4 

h and 24 h respectively and dynasore caused 95% and 90% pinocytosis 

inhibition of pHrodo™ Red dextran (Mw= 10,000 MW, Thermo Fisher, UK) 

after 4h and 24h respectively. 

2.8.11.2. Microscopic imaging of the cellular uptake of rhodamine-

labelled chitosan 

The qualitative characterisation of chitosan uptake of cells was carried out by 

wide-field microscopy (Nikon Ti-E inverted microscope). Briefly, after deriving 

BMMs, 500μl of the BMMs (in DMEM plus 10% HiFCS at pH 6.5, 4 x 104 

macrophages per ml) was seeded on each well of a 4-well LabTek tissue 

culture slide (Thermo Fisher, UK) and incubated for 24h at 37°C in 5% CO2. 

Subsequently, 5 µg/ml of Hoechst 33342 stain (Ex/Em = 350⁄461 nm, 

Thermofisher, UK) as a nuclear dye was added and the slides were incubated 

for 30 min at 37°C in 5% CO2. The macrophages were washed with PBS, L. 

major-GFP of L. mexicana-GFP was then added, at a ratio of 10:1 and further 

incubated for 24h at 34°C in 5% CO2 (We used 10:1 ratio not 5:1 as previously 

as at this experiment different species of L. major-GFP and L. mexicana-GFP 

were used and the ratio 10:1 was sufficient to obtain a high infection rate). 

Macrophages were then washed with PBS and 500 µl of LysoTracker® far 

Red (50 nM, Ex/Em;647/668nm; Thermo Fisher, UK) was added to each well. 

The labelled, infected macrophages were then exposed to 30 µg/ml 

rhodamine-labelled chitosan (MW 200kDa, Creative PEGWorks, USA) in 500 

µl of fresh DMEM plus 10% HiFCS pH 6.5 and incubated for 4 h and 24h at 

37°C with live imaging at each time point.  In some experiments, infected 

BMMs were pre-incubated with dynasore 30 µg/ml for 2 h before adding 

rhodamine-labelled chitosan. All the images were collected using a Nikon Ti-

E inverted microscope equipped with (63x objective) using Nikon Elements 

software. Three images for each experiment were then analysed using ImageJ 

software (v 1.52, National Institutes of Health, USA). The degree of correlation 
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between pixels in the red and green channels was assessed by the 

Colocalization Colormap plugin in the ImageJ software. This plugin enables 

quantitative visualisation of colocalization by calculating the normalized mean 

deviation product (nMDP) in a colour nMDP scale (from -1 to 1): negative 

refers (cold colours) to no co-localization while indexes more than 0 display 

co-localization and the higher number refers to more colocalization (212, 213).  

2.8.12. Statistical analysis.  

Dose-response curves and EC50 values were calculated by using GraphPad 

Prism version 7.02 software and the corresponding sigmoidal dose-response 

curves were established by using a nonlinear fit with variable slope models. 

Results represent means ± SD. EC50 values were compared by using extra-

sum-of-squares F tests. ANOVA and t-test were used to compare differences 

between two groups means or more. p values of 0.05 were considered 

statistically significant.  

 

 

 

 

 

2.9. Results 

2.9.1. Cytotoxicity of chitosan and its derivatives against KB cells in 

RPMI (pH 7.5 and pH 6.5) 

The cytotoxicity of chitosan and its derivatives against KB cells was clearly 

observed in a dose-dependent manner at two pH values (6.5 and 7.5) as 

shown in Fig 2.4. Chitosan and its derivatives had a low toxicity toward KB 

cells at both pH values and there was no significant difference in the 

cytotoxicity at these two pH values (p<0.05 by an extra sum-of-squares F test) 

(Table 2.4). No significant difference in the cytotoxicity was observed between 
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the chitosans and the derivatives with LD50 ≈ 800 μg/ml, except carboxymethyl 

chitosan with LD50 ≈ 1100 μg/ml was significantly lower toxic (p<0.05 by an 

extra sum-of-squares F test).  

Table 2.4. In vitro cytotoxicity of chitosan and its derivatives against KB cells at 
two pH values after 72h of incubation 

Compound 
pH=7.5*,** pH=6.5*,** 

LD50 µg/ml LD90 µg/ml LD50 µg/ml LD90 µg/ml 

Podophyllotoxin 0.8 ± 0.03 2 ± 0.3 0.8 ± 0.04 2 ± 0.4 

Fungizone 61 ± 8 228 ± 9 58 ± 8 190 ± 9 

HMW chitosan 751 ± 88 3146 ± 377 752 ± 90 3022 ± 366 

MMW chitosan 752 ± 87 3033 ± 410 758 ± 89 3019 ± 400 

LMW chitosan 811 ± 93 3095 ± 425 803 ± 90 3088 ± 420 

Fungal chitosan 734 ± 95 3046 ± 377 759 ± 91 3134 ± 380 

Chitosan Oligosaccharide 727 ± 97 3115 ± 402 765 ± 93 3232 ± 400 

Chitosan Oligosaccharide- 
lactate 

777 ± 98 3134 ± 388 754 ± 92 3058 ± 390 

Chitosan HCL 748 ± 90 3340 ± 409 781 ± 92 3589 ± 405 

PC1-CH 757 ± 91 3398 ± 388 756 ± 93 3364 ± 398 

PC2-CH 794 ± 90 3613 ± 400 800 ± 92 3709 ± 410 

PC3-CH 777 ± 90 3484 ± 357 786 ± 93 3719 ± 378 

Carboxymethyl chitosan 1183 ± 89 3800 ± 488 1184 ± 99 3999 ± 500 

Experiments were conducted in triplicate cultures, data expressed as mean +/- 
SD (experiment was reproduced further two times with confirmed similar data and 
data not shown). Chitosan and its derivatives had a low toxicity at both pH values 
(6.5 and 7.5) toward KB-cells and there was no significant difference in the 
cytotoxicity at these two pH values (p <0.05 by t-test).  ** No statistically significant 
difference was found in LD50 (50% lethal dose) values between three types of 
chitosan and other derivatives against KB-cells (except carboxymethyl chitosan 
which is the least toxic) (p>0.05 by an extra sum-of-squares F test).   
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Figure  2.4. Dose-response curves of the cytotoxicity of chitosan and its derivatives against KB cells at pH=7.5 (A) and 6.5 (B). KB cells were 
cultured in the presence of different concentrations of chitosan and its derivatives. The toxicity of drugs was measured after 72 hours by 
measuring the inhibition of metabolic activity. Values are expressed as % inhibition of KB cells relative to untreated controls. No statistically 
significant difference was observed in LD50 values of chitosan and its derivatives against KB cells between pH=6.5 and pH=7.5 (p>0.05 by an 
extra sum-of-squares F test). 
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2.9.2. Analysis of anti-promastigotes activity 

Anti-leishmanial activity (against promastigotes) of high, medium and low 

molecular weight (HMW, MMW and LMW respectively) chitosan and its 

derivatives (a total of 11) was tested. Dose-dependent activity (Fig 2.5) against 

Leishmania promastigotes was observed for chitosan and its’ derivatives 

except for carboxymethyl chitosan which showed no activity against parasites 

within the experimental parameters tested (pH 7.5 or 6.5 and concentrations 

up to 400 µg/ml). Chitosan and its derivatives showed a higher anti-leishmanial 

activity (with around 7-20 times) at low pH compared with higher pH. 

Furthermore, (HMW, MMW and LMW) chitosan from crustacean source and 

fungal chitosan at pH= 6.5 showed a remarkable activity against L. major and 

L. mexicana promastigotes and were more active than other derivatives 

(p<0.05 by an extra sum-of-squares F test) as shown in Table 2.5. 
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Table 2.5. In vitro activity of chitosan and its derivatives against promastigotes at two pH values after 72h of incubation 

Compound 

pH=7.5 * 
L. major 

pH=7.5* 
L. mexicana 

pH=6.5*,** 
L. major 

pH=6.5*,** 
L. mexicana 

EC50 µg/ml EC90 µg/ml EC50 µg/ml EC90 µg/ml EC50 µg/ml EC90 µg/ml EC50 µg/ml EC90 µg/ml 

Fungizone 0.05 ± 0.01 0.2 ± 0.02 0.14 ± 0.01 0.3 ± 0.03 0.07 ± 0.02 0.3 ± 0.1 0.13 ± 0.07 0.3 ± 0.02 

HMW chitosan 105 ± 12 1549 ± 525 140 ± 12 2187 ± 928 5.9 ± 0.5 37 ± 9 10.4 ± 1.6 98 ± 33 

MMW chitosan 113 ± 9 1277 ± 580 150 ± 12 2223 ± 681 6.2 ± 0.3 43 ± 8 10.9 ± 1.4 96 ± 27 

LMW chitosan 118 ± 11 1238 ± 582 157 ± 13 2225 ± 723 6.7 ± 0.3 40 ± 8 10.2 ± 1.5 84 ± 28 

Fungal chitosan 118 ± 11 1228 ± 560 150 ± 13 1991 ± 580 6.2 ± 0.3 42 ± 6 10.5 ± 1.3 61 ± 17 

Chitosan Oligosaccharide 153 ± 15 1680 ± 506 190 ± 20 2366 ± 461 62.5 ± 4 446 ± 92 77 ± 2.7 452 ± 36 

Chitosan Oligosaccharide- 
lactate 

98 ± 9 1226 ± 130 125 ± 14 765 ± 83 14 ± 0.1 135 ± 2 23 ± 1.4 311 ± 25 

Chitosan HCL 96 ± 7 1189 ± 211 110 ± 24 746 ± 169 13.2 ± 1 118 ± 34 20.8 ± 2.4 264 ± 61 

PC1-CH 111 ± 20 1875 ± 230 176 ± 14 2832 ± 412 19.9 ± 2.8 187 ± 90 32 ± 2.2 328 ± 48 

PC2-CH 104 ± 6 1485 ± 259 170 ± 8 2744 ± 377 16.5 ± 2.7 138 ± 49 28 ± 2.4 296 ± 53 

PC3-CH 119 ± 19 1860 ± 365 187 ± 16 3175 ± 580 23.3 ± 2.5 218 ± 44 37 ± 2.5 442 ± 65 

Carboxymethyl chitosan 
 
 
 

No activity up to 400 µg/ml 

Experiments were conducted in triplicate cultures, data expressed as mean +/- SD (experiment was reproduced further two times with 
confirmed similar data and data not shown). *Statistically significant differences were found for the EC50 values of chitosan and its 
derivatives at pH=6.5 and pH=7.5 (p<0.05 by using t-test). ** L. major promastigotes were significantly more susceptible to chitosan and 
derivatives than L. mexicana ((p<0.05 by an extra sum-of-squares F test)). Amphotericin B deoxycholate (Fungizone) was used as a 
positive control. Both pH of 6.5 and chitosan solvent did not show any activity against promastigotes. Both RPMI alone pH 6.5 and 
chitosan solvent did not show any activity against promastigotes.    
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Figure  2.5. Dose-response curves of the activity of chitosan and its derivatives 
against Leishmania promastigotes at two pH values. A: L. major at pH=7.5; B: L. 
mexicana at pH = 7.5; C: L. major at pH = 6.5; D: L. mexicana at pH = 6.5. 
Promastigotes were cultured in the presence of different concentrations of chitosan 
and its derivatives. The activity of drugs was measured after 72h by measuring the 
inhibition of metabolic activity. Values are expressed as % inhibition of 
promastigotes relative to untreated controls. Statistically significant difference was 
observed in EC50 values of chitosan and its derivatives against L. mexicana and L. 
major promastigotes between pH=6.5 and pH=7.5 (p<0.05 by t-test). Both RPMI 
alone pH 6.5 and chitosan solvent did not show any activity against promastigotes.   

 

2.9.3. Analysis of anti-amastigotes activity in PEMs  

Anti-leishmanial activity (against amastigotes) of high, medium and low 

molecular weight (HMW, MMW and LMW respectively) chitosan and its 

derivatives (a total of 11) was tested. Dose-dependent activity (Fig 2.6) against 

Leishmania amastigotes was observed for chitosan and its’ derivatives except 

for carboxymethyl chitosan which showed no activity against amastigotes 
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within the experimental parameters tested (pH 7.5 or 6.5 and concentrations 

up to 400 µg/ml). In the 72 hour assays, chitosan and its derivatives were 

significantly more active (with around 7-20 times) against intracellular L. major 

and L. mexicana amastigotes at pH 6.5 than pH 7.5 (p<0.05 by a paired t-test) 

as shown in Fig 2.6. (HMW, MMW and LMW) chitosan from crustacean source 

and fungal chitosan exhibited a significantly higher activity against L. major 

and L. mexicana intracellular amastigotes (EC50 ≈ 12 µg/ml against L. major 

and 16 µg/ml against L. mexicana) than other derivatives at pH= 6.5 (p<0.05 

by an extra sum-of-squares F test) as shown in Table 2.6.  
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Table 2.6. In vitro activity of chitosan and its derivatives against amastigotes infecting PEMs after 72h of incubation 

Compound 

pH 7.5* pH 7.5* pH 6.5* pH 6.5* 

L. major L. mexicana L. major L. mexicana 

EC50 µg/ml EC90 µg/ml EC50 µg/ml EC90 µg/ml EC50 µg/ml EC90 µg/ml EC50 µg/ml EC90 µg/ml 

Fungizone 0.07 ± 0.01 0.13 ± 0.05 0.19 ± 0.05 1.5 ± 0.2 0.06 ± 0.01 0.11 ± 0.06 0.18 ± 0.06 1.7 ± 0.3 

HMW chitosan 98 ± 6 1635 ± 245 119 ± 9 1804 ± 304 11.4 ± 1 69 ± 18 15.4 ± 2 103 ± 28 

MMW chitosan 103 ± 8 1652 ± 287 125 ± 10 1793 ± 323 12.9 ± 1 81 ± 18 16.3 ± 2 122 ± 34 

LMW chitosan 102 ± 7 1651 ± 282 125 ± 10 1795 ± 320 12.1 ± 1 74 ± 14 16.1 ± 2 116.6 ± 33 

Fungal chitosan 102 ± 7 1650± 276 124 ± 9 1796 ± 316 12.6 ± 3 92 ± 27 16.9 ± 2 144 ± 44 

Chitosan Oligosaccharide 145 ± 12 2473 ± 500 175 ± 14 2543 ± 505 73 ± 4 260 ± 32 86.2 ± 6 288 ± 39 

Chitosan 
Oligosaccharide- lactate 

93 ± 7 1957 ± 174 120 ± 9 2365 ± 239 39 ± 1 201 ± 16 47 ± 2 245 ± 23 

chitosan HCl 97 ± 11 2080 ± 516 121 ± 15 2402 ± 667 40 ± 2 210 ± 23 47.9 ± 3 243 ± 33 

PC1-CH 144 ± 10 1292 ± 217 169 ± 12 1365 ± 212 68 ± 3 246 ± 26 81.7 ± 6 274 ± 38 

PC2-CH 133 ± 6 1005 ± 194 159 ± 6 1705 ± 170 60 ± 3 202 ± 22 71.9 ± 5 237 ± 36 

PC3-CH 163 ± 11 1052 ± 144 187 ± 10 1107 ± 142 71 ± 4 251 ± 30 83.5 ± 6 286 ± 41 

Carboxymethyl chitosan 
 

No activity up to 400  µg/ml 

Experiments were conducted in quadruplicate cultures, data expressed as mean +/- SD (experiment was reproduced further two times 
with confirmed similar data and data not shown). *Statistically significant differences were found between the EC50 values of chitosan 
and its derivatives at pH=6.5 and pH=7.5 (p<0.05 by using t-test). Both pH of 6.5 and chitosan solvent did not show any activity against 
amastigotes.  Both RPMI alone pH 6.5 and chitosan solvent did not show any activity against amastigotes.     
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Figure  2.6. Dose-response curves of the activity of chitosan and its derivatives against 
Leishmania amastigotes at two pH values. A: L. major at pH=7.5; B: L. mexicana at pH 
= 7.5; C: L. major at pH = 6.5; D: L. mexicana at pH = 6.5. PEMs were infected with 
stationary-phase promastigotes and exposed to various concentrations of chitosan and 
its derivatives, followed by microscopic counting of the number of infected 
macrophages*. Values are expressed as % inhibition of infection relative to untreated 
controls. Chitosan and its derivatives are significantly more active in pH 6.5 than in pH 
7.5 (p<0.05 by t-test). * Macrophage infection rate was >80% after 24h. Both RPMI 
alone pH 6.5 and chitosan solvent did not show any activity against amastigotes.   

To allow like-for-like comparison, EC50 values were recalculated in terms of 

molarity using estimated molecular weights (HMW: MW= 342.5 KDa, MMW: 

MW=250 KDa, LMW: MW= 120 KDa and fungal chitosan MW=130 KDa) at pH = 

6.5. Based on molarity (Table 2.7 and 2.8 ), HMW chitosan was significantly more 
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active against L. major and L. mexicana promastigotes and amastigotes and 

hence used in all subsequent studies. Fig 2.7 observes the morphology of infected 

macrophages before and after treatment with HMW chitosan is taken by a 

microscope provided with a digital camera. 

Table 2.7. In vitro activity of chitosans against promastigotes based on molarity 

Compound 

pH=6.5*,** 
L. major 

pH=6.5*,** 
L. mexicana 

EC50 µM EC90 µg/ml EC50 µM EC90 µM 

HMW chitosan 0.017 ± 0.001 0.10 ± 0.02 0.03 ± 0.005 0.28 ± 0.1 

MMW chitosan 0.024 ± 0.001 0.172 ± 0.03 0.04 ± 0.005 0.38 ± 0.1 

LMW chitosan 0.05 ± 0.001 0.33 ± 0.06 0.08 ± 0.005 0.7 ± 0.2 

Fungal chitosan 0.05 ± 0.003 0.31 ± 0.005 0.08 ± 0.01 0.5 ± 0.1 

Data expressed as mean +/- SD HMW chitosan is significantly more active against 
Leishmania promastigotes than other types (p <0.05 by one-way ANOVA) 

A 

 

B 

 

C 

 
Figure  2.7. Morphology of infected (PEMs) with L. major and L. mexicana after 
treatment with HMW chitosan. Slides were fixed with 100% methanol for 5 minutes 
and stained with 10 % Giemsa for 5 minutes. These figures have been taken by a 
microscope attached to a digital camera. A: L. major infected macrophages before 
treatment (L. major amastigotes with tight vacuoles). B: L. mexicana infected 
macrophages before treatment (L. mexicana amastigotes with large vacuoles). C: L. 
major infected macrophages after treatment with HMW chitosan.  

 

Table 2.8. In vitro activity of chitosans against amastigotes based on molarity  

Compound 

pH 6.5* 
L. major 

pH 6.5* 
L. mexicana 

EC50 µM EC90 µM EC50 µM EC90 µM 

HMW chitosan 0.03 ± 0.01 0.2 ± 0.05 0.04 ± 0.005 0.3 ± 0.08 

MMW chitosan 0.05 ± 0.04 0.32 ± 0.07 0.06 ± 0.008 0.5 ± 0.1 

LMW chitosan 0. 1 ± 0.008 0.6 ± 0.1 0.13 ± 0.01 0.97 ± 0.3 

Fungal chitosan 0.09 ± 0.002 0.7 ± 0.2 0.13 ± 0.01 1.1 ± 0.3 

Data expressed as mean +/- SD HMW chitosan is significantly more active against 
Leishmania promastigotes than other types (p <0.05 by one-way ANOVA) 
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2.9.4. Host cell dependence of antileishmanial activity of HMW chitosan and 

time to kill assay on amastigotes at pH 6.5 

We aimed to assess the host cell dependence of anti-leishmanial activity of HMW 

chitosan and Fungizone by evaluating the in vitro activity against L. major 

amastigotes in three different host cells (PEMs, BMMs and THP-1). EC50 and 

EC90 values of HMW chitosan and Fungizone against amastigotes infecting three 

different macrophage populations are summarized in Table 2.9. As can be seen, 

there was a significant difference in the activity of HMW chitosan and Fungizone 

depending on the type of the host cells (p < 0.05 by one-way ANOVA) and both 

HMW chitosan and Fungizone displayed higher activity in PEMs and BMMs than 

in differentiated THP-1 cells. The results in Fig 2.8 clearly show that both HMW 

chitosan and Fungizone had time-dependent effects against intracellular 

amastigotes in RPMI with pH=6.5.  

Table 2.9. HMW chitosan activity against L. major amastigotes in three different 
macrophage cultures after 72 h 

Host cell/infection 
rate % at 24h 

HMW chitosan Fungizone 

 EC50 µg/ml EC90 µg/ml EC50 µM EC90 µM 

PEMs / > 80% 10.31 ± 1.22* 89.07 ± 20.46 0.02 ± 0.004** 0.27 ± 0.07 

BMMs / > 80% 14.60 ± 1.79* 145.7 ± 36.2 0.04 ± 0.005** 0.43 ± 0.1 

THP-1/ > 80% 24.28 ± 2.87* 200.1 ± 48.8 0.08 ± 0.006** 1.15 ± 0.37 

Experiments were conducted in quadruplicate cultures, data expressed as mean +/- 
SD (experiment was reproduced further two times with confirmed similar data and data 
not shown).,*,**  statistically significant difference in EC50 values between the three 
types of cells (Fungizone and were significantly more active in PEMs and BMMs 
compared with THP-1 cells) (p<0.05 by an extra sum-of-squares F test) taking into 
consideration that infection levels were higher in PEMs and THP-1 than BMMs. % 
infection rate gives the percentage of infected macrophages.. Both pH of 6.5 and 
chitosan solvent did not show any activity against amastigotes.   
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Figure  2.8. Influence of incubation duration on the chitosan and Fungizone activity 
against L. major intracellular amastigotes in BMMs. BMMs were infected with 
stationary-phase promastigotes and exposed to fixed concentrations of chitosan HMW 
and Fungizone for 4, 24, 48 and 72 h, followed by microscopic counting of the number 
of infected macrophages. (A) In vitro time-to-kill for Fungizone (B) In vitro time-to-kill 
for chitosan HMW. Results shown are the means ± SD of quadruplicates and represent 
one experiment of three performed 

2.9.5. Effects of HMW chitosan on the production of TNF-α by uninfected or 

L. major infected macrophages at pH = 6.5 

The activation of M1 macrophages by Th1 lymphocyte plays an important role in 

the control of CL (14, 15, 16) therefore, we measured TNF-α production by 

macrophages stimulated by HMW chitosan. Following the stimulation by HMW 

chitosan, the TNF-α production by macrophages (BMMs, PEMs and THP-1) was 

found to be in a dose-dependent manner in both infected and uninfected cells as 

shown in Fig 2.9. After 24 h, the levels of TNF-α in the culture fluid of 

macrophages (both infected and uninfected BMMs, PEMs and THP-1) containing 

concentrations of HMW chitosan (14.8, 44.4 and 133.3 µg/ml) was significantly 

higher than untreated macrophages, with TNF- α being highest at 44.4 µg/ml 

chitosan. While at other concentrations (1.64, 4.9 and 400 µg/ml), HMW chitosan 

did not stimulate macrophages to produce TNF-α (p < 0.05 by t-test). HMW 

chitosan at concentrations 14.8, 44.4 and 133.3 μg/ml stimulated uninfected 

BMMs to produce TNF-α with 87± 4.5 - 712± 9 - 48±3 pg/ml, uninfected PEMs 

with 67± 5 - 570± 8 - 33±3 pg/ml and uninfected THP-1 with 47± 3.5 - 412± 10 - 

A Fungizone B Chitosan 
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22±3 pg/ml respectively and 56± 3.5 - 464± 10 - 32±4 pg/ml, 46± 5 - 400± 7 - 

22±4 pg/ml and 36± 2 - 310± 10 - 15±4 pg/ml in L. major infected BMMs, PEMs 

and THP-1 respectively. In other words, HMW chitosan stimulated less amount of 

TNF-α in L. major infected than uninfected macrophages (p < 0.05 by t-test) and 

BMMs produced higher levels of TNF-α after the stimulation in comparison with 

PEMs and THP-1(p < 0.05 by one-way-ANOVA). Less TNF-α was generated 

when the chitosan concentration was increased to 133.3 µg/ml and above.  

Lipopolysaccharides from Escherichia coli O26:B6 (LPS; positive control) 

stimulated TNF-α production in both uninfected and infected BMMs, PEMs and 

THP-1 after a 24 h incubation period and at a significantly higher level than 

chitosan (p < 0.05 by t-test).  Our results indicated that HMW chitosan activated 

M1 macrophages.   
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Figure  2.9. TNF-α production in uninfected and L. major infected BMMs, PEMs and 
THP-1 macrophages* after 24 h of exposure to 1.64, 4.9,14.8, 44.4, 133.3 and 400 
µg/ml of chitosan at pH = 6.5. The dose-response in both uninfected and L. major 
infected macrophages was bell-shaped. TNF- α production was significantly decreased 
(p < 0.05 by t-test) by infecting the cells with L. major. TNF-α stimulation was higher 
with the rank BMMs, PEMs and THP-1.  Experiments were conducted in quadruplicate, 
data are expressed as mean +/- SD (experiment was reproduced further two times with 
confirmed similar data and data not shown). Positive control= macrophages treated 
with LPS 10 µg/ml. Negative control = macrophages not exposed to chitosan. *Initial 
macrophage infection rate was >80% after 24 h. Chitosan solvent did not cause any 
TNF-α production. 

2.9.6. Effects of HMW chitosan on the production of ROS by macrophages 

at pH = 6.5  

ROS plays an important role in the killing of intracellular amastigotes (14, 15, 16) 

therefore, we measured ROS production by macrophages stimulated by HMW 

chitosan. HMW chitosan (at concentrations 14.8, 44.4 and 133.3 µg/ml) increased 

the production of ROS (indicated by H2DCFDA fluorescence) after 4 h of 

incubation but did not stimulate ROS after 8 h of incubation (Table 2.10). Other 

concentrations of HMW chitosan (1.64, 4.9 and 400 µg/ml) did not stimulate 

BMMs, PEMs or THP-1 to produce ROS after 4 h or 8 h of incubation. 

The ROS response in both uninfected and infected BMMs, PEMs and THP-1 was 

in bell shaped – similar to that seen with TNF-. Increasing chitosan concentration 

(more than 14.8 μg/ml) increased ROS production until concentration 44.4 μg/ml 

(the maximum production of ROS), after which increasing concentration reduced 
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ROS production. In addition, we showed that ROS production by macrophages 

was significantly decreased (p < 0.05 by t-test) by infecting the cells with L. major 

as shown in Fig 2.10. BMMs produced higher levels of ROS after the stimulation 

in comparison with PEMs and THP-1(p < 0.05 by one-way-ANOVA).   

Table 2.10. ROS production in uninfected and L. major infected BMMs after 8 h 
of exposure to different concentrations of HMW chitosan at pH=6.5 

 ROS (Relative Fluorescence Intensity) in: 

Chitosan µg/ml Uninfected BMMs Infected BMMs 

1.64 4000 ± 100 2650 ± 100 

4.9 3999 ± 200 2550 ± 150 

14.81 4020 ± 150 2650 ± 100 

44.4 4050 ± 100 2750 ± 200 

133.3 4000 ± 200 2564 ± 150 

400 3959 ± 100 2400 ± 100 

Negative control = 
BMMs not exposed 
to chitosan 

4750 ± 100 2850 ± 100 

Experiments were conducted in quadruplicate, data is expressed as mean +/- 
SD (experiment was reproduced a further two times with confirmed similar data 
(not shown). Chitosan solvent alone did not cause any ROS production. 
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Figure  2.10. ROS production in uninfected and L. major infected BMMs, PEMs and THP-1 
macrophages * after 4 h of exposure to 1.64, 4.9,14.8, 44.4, 133.3 and 400 µg/ml of HMW 
chitosan at pH=6.5. High levels of ROS were induced by both uninfected and L. major 
infected macrophages exposed to HMW chitosan compared to those that were not (P <0.05 
by t-test). Maximum production of ROS occurred at 44.4 μg/ml of chitosan. ROS production 
by L. major infected macrophages was significantly lower compared to uninfected cells (p < 
0.05 by t-test). ROS stimulation was higher with the rank BMMs, PEMs and THP-1.  
Experiments were conducted in quadruplicate, data is expressed as mean +/- SD 
(experiment was reproduced a further two times with confirmed similar data (not shown). 
Positive control = macrophages treated with H2O2 25 mM (a known ROS inducer). Negative 
control = macrophages not exposed to chitosan. *Initial macrophage infection rate was >80% 
after 24 h. Chitosan solvent did not cause any ROS production. 

 

We found that HMW chitosan had an in vitro stimulatory effect on BMMs ROS 

production after 4h of incubation. We therefore investigated whether this ROS 

plays any role in the activity of HMW chitosan against intracellular amastigotes. 

For these experiments, the 4 h post treatment time point was taken because ROS 
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peaked at this point in BMMs in response to chitosan treatment at a time when 

chitosan does not induce NO in BMMs (ibid).  Scavenging of ROS by the ROS 

scavenger, 5mM N-acetyl-L-cysteine (NAC), had no significant impact on the 

activity of chitosan against intracellular amastigotes (p > 0.05 by t-test) – see Fig 

2.11. ROS scavenger (N-acetyl-L-cysteine (NAC), 5mM) caused a complete 

scavenging of ROS after 4 h (Table 2.11). and had no cytotoxicity against KB cells 

or leishmanicidal against L. major amastigotes. Even though chitosan stimulated 

ROS production but this did not play a role in the anti-leishmanial activity of 

chitosan. 

 

 

 
Figure  2.11. Activity of HMW chitosan against L. major amastigotes in BMMs* after 4 
h, with and without ROS scavenger at pH = 6.5. Infected macrophages were pre-
incubated with 5 mM NAC for 2 h, after which HMW chitosan at concentrations 1.64, 
4.9,14.8, 44.4, 133.3 and 400 µg/ml was added and the cells were incubated for a 
further 4 h. Chitosan activity against intracellular amastigotes was evaluated as 
described in section (vii). Values are expressed as % inhibition of infection relative to 
untreated controls. After 4h, there was no significant difference in the anti-leishmanial 
activity of chitosan after scavenging of ROS (p >0.05 by t-test). Experiments were 
conducted in quadruplicate, data is expressed as mean +/- SD. Experiment was 
reproduced further two times with confirmed similar data (not shown). *Initial 
macrophage infection rate was >80% after 24 h. 
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Table 2.11. ROS production in uninfected and L. major infected BMMs after 
exposure to chitosan in the presence of ROS scavenger  

 
ROS (Relative Fluorescence Intensity) 

after 4 h in: 

Chitosan µg/ml 
Uninfected BMMs pre-

treated with ROS 
scavenger 

Infected BMMs 
pre-treated with 
ROS scavenger 

1.64 4700 ± 200 2850 ± 150 

4.9 4800 ± 250 2750 ± 200 

14.81 4750 ± 100 2950 ± 150 

44.4 4800 ± 100 2750 ± 100 

133.3 4900 ± 150 2864 ± 100 

400 4950 ± 100 2600 ± 100 

Positive control (ROS) = 
BMMs treated with 25 mM 

H2O2 
4800 ± 250 2750 ± 100 

Negative control =  BMMs not 
exposed to chitosan or to 

H2O2 
4800 ± 100 2900 ± 100 

Experiments were conducted in quadruplicate, data is expressed as mean +/- 
SD (experiment was reproduced a further two times with confirmed similar data 
(not shown). ROS was measured after 4 h of exposure to HMW chitosan. 

2.9.7. Effects of HMW chitosan on the production of NO by macrophages at 

pH = 6.5 

NO plays an important role in the killing of intracellular amastigotes (14, 15, 16) 

therefore, we measured NO production by macrophages stimulated by HMW 

chitosan. We showed that chitosan did not have a stimulatory effect on BMMs, 

PEMs and THP-1 NO production after 4 h of incubation (Table 2.12). However, 

after a 24 h incubation, HMW chitosan at pH=6.5 had a stimulatory effect on 

BMMs, PEMs and THP-1 NO production in a clear bell-shaped dose-dependent 

manner. HMW chitosan at concentrations 14.8, 44.4 and 133.3 μg/ml induced 

uninfected BMMs to produce NO with 14.9± 0.3 - 34±1.2 - 11±1 μM, uninfected 

PEMs with 10.9± 0.4 - 26±1.2 - 8.5±1 μM and uninfected THP-1 with 8.9± 0.2 - 

20±1- 6.1±0.5 μM respectively and 11 ±1- 26 ± 2.5 - 8 ± 1.2 μM, 8 ±1 - 20 ± 2 - 6 

± 1.2 μM and 6± 0.1 - 14±1 - 4.1±0.5 μM  in L. major infected BMMs, PEMs and 

THP-1 respectively, NO being highest at 44.4 μg/ml. While other concentrations 

of HMW chitosan (1.64, 4.9 and 400 µg/ml) did not stimulate macrophages to 

produce NO after 24 h of incubation. In other words, HMW chitosan stimulated a 
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lower quantity of NO in infected than uninfected macrophages (p < 0.05 by t-test) 

and BMMs produced higher levels of NO after the stimulation in comparison with 

PEMs and THP-1(p < 0.05 by one-way-ANOVA) (Fig 2.12). 

LPS caused significantly higher NO production compared to HMW chitosan (p < 

0.05 by t-test) in both uninfected and infected BMMs, PEMs and THP-1. The 

levels of NO produced by L. major infected BMMs exposed to LPS (positive 

control) or HMW chitosan were significantly lower than levels produced by 

uninfected macrophages (p < 0.05 by t-test) (Fig 2.12). 

Table 2.12. NO production in uninfected and L. major-infected BMMs after 4h of 
exposure to different concentrations of HMW chitosan at pH=6.5 

 NO production (uM) in: 

Chitosan µg/ml Uninfected BMMs Infected BMMs 

1.64 0 0 

4.9 0 0 

14.81 0 0 

44.4 0.05 ± 0.01 0 

133.3 0.06 ± 0.01 0.05 ± 0.01 

400 0.05 ± 0.01 0.04 ± 0.01 

Negative control =  
BMMs not exposed 

to chitosan 
0.07 ± 0.01 0.05 ± 0.01 

Experiments were conducted in quadruplicate, data is expressed as mean +/- SD 
(experiment was reproduced a further two times with confirmed similar data (not 
shown). Chitosan solvent alone did not cause any NO production. 
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Figure  2.12. NO production in uninfected and L. major infected BMMs, PEMs and THP-
1 macrophages * after 24 h of exposure to 1.64, 4.9,14.8, 44.4, 133.3 and 400 µg/ml of 
chitosan at pH = 6.5. The response in both uninfected and infected macrophages was 
bell-shaped in relation to chitosan concentration. Maximal production of NO was 
stimulated by 44.4 μg/ml of chitosan. NO production was significantly decreased (p < 
0.05 by t-test) when the cells had been infected with L. major. NO stimulation was higher 
with the rank BMMs, PEMs and THP-1.  Experiment was conducted in quadruplicate 
cultures, data expressed as mean +/- SD (experiment was reproduced a further two 
times with confirmed similar data and data not shown). Positive control = macrophages 
treated with LPS 10 µg/ml. Negative control = macrophages not exposed to chitosan.  
*Initial macrophage infection rate was >80% after 24 h. Chitosan solvent did not cause 
any NO production.  

 
As HMW chitosan had an in vitro stimulatory effect on BMMs NO production after 

24h of incubation we investigated further whether NO has any role in the activity 

of HMW chitosan against intracellular amastigotes. Inhibition of NO production by 

the NO inhibitor NG-methyl-L-arginine acetate salt (L-NMMA) at 0.4mM, had no 
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significant influence on the activity of chitosan against intracellular amastigotes (p 

> 0.05 by t-test) (Fig 2.13). The NO inhibitor (L-NMMA, 0.4 mM) caused 90% 

reduction in NO production (Table 2.13) after 24 h and had no cytotoxicity effects 

against KB cells and no leishmanicidal against intracellular L. major amastigotes. 

Even though chitosan stimulated NO production but this did not play a role in the 

anti-leishmanial activity of chitosan. 

 
Figure  2.13. Activity of HMW chitosan against L. major -infected BMMs* after 24 h in 
the presence or absence of an NO inhibitor at pH = 6.5. Infected macrophages were 
pre-incubated with the NO inhibitor L-NMMA (0.4 mM) for 2 h, following which HMW 
chitosan at concentrations 1.64, 4.9,14.8, 44.4, 133.3 and 400 µg/ml was added and 
the cells were incubated for a further 24 h. Chitosan activity against intracellular 
amastigotes was evaluated as described in section (vii). Values are expressed as % 
inhibition of infection relative to untreated controls. After 24 h, there was no significant 
difference in the activity of chitosan after inhibition of NO (p >0.05 by t-test). Experiment 
was conducted in quadruplicate cultures, data expressed as mean +/- SD. Experiment 
was reproduced a further two times and confirmed the results (data not shown). *Initial 
macrophage infection rate was >80% after 24 h.  

Table 2.13. NO production in uninfected and L. major infected BMMs after 
exposure to chitosan in the presence of NO inhibitor at pH=6.5 

 NO μM after 24 h in: 

Chitosan µg/ml 

Uninfected BMMs pre-

treated with NO 
inhibitor 

Infected BMMs pre-

treated with NO 
inhibitor 

1.64 1.4 ± 0.4 0.15 ± 0.1 

4.9 1.5 ± 0.3 0.16 ± 0.1 

14.81 1.9 ± 0.5 0.17 ± 0.1 

44.4 1.6 ± 0.2 0.15 ± 0.1 

133.3 1.2 ± 0.4 0.14 ± 0.1 

400 1.0 ± 0.6 0.15 ± 0.1 
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Positive control (NO) = 
BMMs treated with 10 

µg/ml LPS 
1.4 ± 0.3 0.16 ± 0.1 

Negative control =  
BMMs not exposed to 

chitosan or to LPS 
1.7 ± 0.3 0.13 ± 0.1 

Experiments were conducted in quadruplicate, data is expressed as mean +/- SD 
(experiment was reproduced a further two times with confirmed similar data (not 
shown). NO was measured after 24 h of exposure to HMW chitosan. 

2.9.8. Cellular uptake of HMW chitosan and inhibition of endocytosis 

We found that the activation of M1 macrophages by HMW chitosan did not play a 

role in its activity against intracellular amastigotes therefore, we investigated 

whether the anti-leishmanial effects of HMW chitosan against intracellular 

amastigotes after 4 h and 24 h exposure were dependent on the direct activity of 

chitosan following its entry into the macrophages at pH=6.5.  No significant 

difference was observed in the activity of chitosan against intracellular 

amastigotes when it was added after prior phagocytosis inhibition with 

cytochalasin D (p > 0.05 by t-test). In contrast, dynasore (an inhibitor of 

pinocytosis, a clathrin-mediated endocytosis (CME) inhibitor) did significantly 

affect chitosan mediated parasite killing at pH = 6.5 as shown in Fig. 33(p< 0.05 

by t-test). The same activity was seen at pH 7.5. – see Fig 2.14, panel C.  We 

found that cytochalasin caused 94 and 84% phagocytosis inhibition of fluorescent 

latex beads (Sigma-Aldrich, UK) after 4 h and 24 h respectively and dynasore 

caused 95 and 90% pinocytosis inhibition of pHrodo™ Red dextran (Mw= 10,000 

MW, Thermo Fisher, UK) after 4h and 24h respectively (Table 2.14), The two 

inhibitors had no activity against intracellular L. major amastigotes at the 

concentrations used. Pinocytosis (CME) played a critical role in the efficacy of 

HMW chitosan against intracellular amastigotes. 
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Figure  2.14. Activity of HMW chitosan against L. major infected BMMs* after 4 h, 
pH=6.5 (A), 24 h, pH=6.5 (B) and at 24 h, pH=7.5 with or without phagocytosis inhibitor 
or pinocytosis (CME) inhibitor. We found that chitosan requires pinocytosis (CME) not 
phagocytosis by BMMs for killing of L. major amastigotes at pH = 6.5 and 7.5. BMMs 
were infected with stationary-phase promastigotes. Some of the infected macrophages 
were pre-incubated with cytochalasin D (phagocytosis inhibitor) or dynasore 
(pinocytosis (CME) inhibitor) and exposed to various concentrations (1.64, 4.9,14.8, 
44.4, 133.3 and 400 µg/ml ) of chitosan for 4 h and 24 h, followed by microscopic 
counting of the number of infected macrophages. There was no significant difference 
in the activity of HMW chitosan after inhibition of phagocytosis (p >0.05 by t-test). While 
a significant inhibition of chitosan mediated parasite killing occurred in the presence of 
dynasore at two pH values (p >0.05 by t-test). Values are expressed as % inhibition of 
infection relative to untreated controls. Experiment was conducted in quadruplicate 
cultures, data expressed as mean +/- SD>. Experiment was reproduced a further two 
times and confirmed the results (data not shown). *Initial macrophage infection rate 
was >80% after 24 h. 
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Table 2.14. Phagocytosis and pinocytosis by L. major infected BMMs in the 
presence of the uptake inhibitors 

 
Number of latex beads ± SD *105/mg 

protein 

Concentration of dextran ± 

SD µg/mg protein 

Time/Hour 
Without 

cytochalasin D 

With            

cytochalasin D 

Without 

dynasore 

With 

dynasore 

4 108 ± 8 6 ± 1 4.9 ± 0.5 0.2 ± 0.1 

24 456 ± 30 73 ± 8 18.9 ± 1 1.8 ± 0.2 

Experiments were conducted in triplicate, data is expressed as mean +/- SD (experiment was 

reproduced a further two times with confirmed similar data (not shown). 

 
 

2.9.9. Fluorescence microscopy of the uptake of chitosan by macrophages 

Rhodamine-labelled chitosan was used to track the delivery of chitosan to the 

parasitophorous vacuole (PV) of Leishmania infected macrophages. Fig 2.15 

illustrates the cellular uptake of chitosan by L. major-GFP- or L. mexicana-GFP- 

infected BMMs after 4 h and 24 h rhodamine-labelled chitosan exposure. There 

was co-localization of chitosan and intracellular amastigotes after 4 h and 24 h 

with nMDP colour index 0.7 and 1 respectively (see nMDP material and methods). 

The uptake of chitosan increased in a time-dependent manner. Fig 2.15 (Panels 

D and E) shows this uptake after 4 h and 24 h respectively, and the accumulation 

of chitosan in PVs (shown as yellow that indicates co-localization of rhodamine 

and GFP). Fig 2.15 (Panel F) also shows that the inhibition of pinocytosis (CME) 

with dynasore prevented the uptake of chitosan with a negative nMDP colour 

index that represents no co-localization of chitosan and amastigotes. This is also 

supporting evidence for the uptake by pinocytosis as seen in Fig 2.14. 
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Figure  2.15. Fluorescence microscopy images of the cellular uptake of rhodamine-
labelled chitosan over 4 and 24 h at pH=6.5 by BMMs infected with L. major (XA) or 
with L. mexicana (XB). Green represents intracellular amastigotes, red represents 
labelled chitosan and yellow represents merged red chitosan and green Leishmania.  
Panels A-F represent the following: Infected BMMs unexposed to chitosan after 4 h 
(panel A) or 24 h (panel B); Infected BMMs exposed to chitosan after 4 h (panel D) or 
24 h (panel E); Infected BMMs unexposed to chitosan after 24 h (panel C) and Infected 
BMMs exposed to chitosan and pinocytosis inhibitor (dynasore) after 24 h (panel F) 
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2.10. Discussion 

The literature on the anti-leishmanial activity of chitosan and its derivatives is 

limited, especially pertaining to its mechanism of action (124, 214, 215). In this 

study, we assessed the anti-leishmanial activity of various forms of chitosan, 

including low, medium and high molecular weight chitosan, and chitosan 

derivatives. Chitosan derivatives are generally produced by chemical 

modification of the amino or hydroxyl groups of chitosan for the optimization 

of the physicochemical properties. We found that chitosan and its derivatives 

had minimal cytotoxicity against KB-cells with LD50 values ≥700 µg/ml and 

other macrophages (PEMs, BMMs and THP-1) at pH 7.5 or 6.5. This data 

supports previous reports of chitosan’s low cytotoxicity against CCRF-CEM 

(human lymphoblastic leukaemia) and L132 (human embryonic lung) cells with 

similar LD50 values (173).  

We determined that a lower pH 6.5, compared to 7.5, enhanced by 7-20 times 

the anti-leishmanial activity of chitosan and its derivatives against L. major and 

L. mexicana promastigotes and amastigotes. This higher activity of chitosan 

at the lower pH 6.5 could be due to its greater ionisation (protonation of the 

amino groups; PKa of chitosan≈6.3). The greater positive charge could 

increase the chitosan antimicrobial activity by interacting with the negatively 

charged microbial membrane – in accordance with the first postulated 

mechanism of antimicrobial activity (124, 174). A higher chitosan activity at 

lower pH (pH ≈ 5) has previously been reported against Escherichia coli and 

Salmonella typhimurium (216, 217). Our study is the first to show the pH 

dependence of the anti-leishmanial activity of chitosan and its derivatives and 

could explain why literature reports of the anti-leishmanial activity of chitosan 

have shown such variability, with EC50 values ranging from 70 to 240 μg/ml 

against L. infantum, L. amazonensis and L. chagasi promastigotes and 

amastigotes (122, 127, 129, 191, 218, 219). For example, in one study, the 

EC50 of chitosan against L. infantum amastigotes (in PEMs) in RPMI 1640 

medium was 100.81 μg/ml, but the pH at which the experiment was conducted 

was not mentioned (127). Moreover, Malli et al (2019) reported that chitosan 

solution (LMW) showed no activity until 100 µg/ml against L. major 
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promastigotes or amastigotes without mentioning the pH of the 

experiment(220).  

Influence of pH was also seen when the anti-leishmanial activity of chitosan 

(of the different molecular weights) and chitosan derivatives were compared. 

While the different chitosans and derivatives showed minor differences in their 

anti-leishmanial activity at pH 7.5, the derivatives were 3 to 5 times less active 

than the HMW, MMW, LMW and fungal chitosan at lower pH 6.5. This reduced 

activity could be due to the lower number of amino groups on the chitosan 

derivatives (see Fig 2.3). These derivatives are more soluble at a higher pH 

and have similar activity to chitosan, but at a lower pH the higher protonation 

of the chitosan improves the anti-leishmanial activity significantly (221, 222). 

Carboxymethyl chitosan had no anti-leishmanial activity - most of the amino 

groups on this derivative have been substituted by carboxymethyl moieties 

making the molecule negatively charged (223) . 

HMW, MMW, LMW and fungal chitosan have a wide range of molecular 

weights. To allow like-for-like comparison, EC50 values were recalculated in 

terms of molarity using estimated molecular weights (HMW: MW= 342.5 KDa, 

MMW: MW=250 KDa, LMW: MW= 120 KDa and fungal chitosan MW=130 

KDa) at pH = 6.5. Based on molarity (Table 2.7 and 2.8), HMW chitosan was 

significantly more active against L. major and L. mexicana promastigotes and 

amastigotes and further studies were conducted using HMW chitosan. The 

higher anti-leishmanial activity of HMW chitosan compared to MMW and LMW 

chitosan mirrors its greater antibacterial activity in another study against 

Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus (224). 

HMW has a long chain, and therefore more glucosamine units, and possesses 

more amino groups (Fig 2.3) resulting in more protonated groups (-NH 3+) than 

MMW and LMW(224) which could explain its greater potency. 

We also showed that the anti-leishmanial activity of chitosan is significantly 

greater against L. major infected PEMs or BMMs compared to differentiated 

THP-1 cells in the order PEMs>BMMs>THP-1 cells underlining the need to 

take the host cell into consideration when conducting similar experiments.  
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In order to understand the potential anti-amastigote mechanism(s) of chitosan, 

we investigated whether the activity of HMW chitosan against the intracellular 

amastigotes was via direct uptake into the host cell and localisation in the 

parasitophorous vacuole or indirectly via the activation of M1 macrophages,, 

given that the cellular immune responses in cutaneous leishmaniasis play a 

critical role in self-cure (225, 226).                                                                                                                                                                                                                                 

The activation of M1 macrophages by Th1 lymphocyte subpopulation, which 

produces different cytokines, primarily IFN-γ and TNF-α is crucial for the 

elimination of the intracellular Leishmania via the triggering of an oxidative 

burst and therefore, the host cells increase the production of ROS and NO 

which are responsible for killing of the parasite (38, 39). We found that HMW 

chitosan stimulated TNF-α production by macrophages and this would be 

expected to be an indicator of an M1 macrophage that would have greater 

leishmanicidal activity. Our results show that chitosan stimulated BMMs, 

PEMs and THP-1 ROS production with a peak after 4 h and led to a significant 

increase in the TNF-α and NO production after 24 h in a bell-shaped response. 

Similar findings have been reported showing that HMW chitosan had in vitro 

stimulatory effect on PEMs (from male rats) NO production (126) and LMW 

chitosan stimulated RAW264.7 macrophage TNF- α production (184). Another 

study demonstrated that LMW chitosan induced ROS production in an 

epithelial, human breast cancer cell line (227). The bell-shaped responses are 

consistent with a study that showed that chitosan stimulated NO and TNF-α 

production in peritoneal macrophages in a dose-dependent manner and their 

levels tended to decrease at higher concentrations of chitosan (320μg/ml 

)(228). This type of response has also been reported previously for tucaresol 

for both its immunomodulatory and activity against experimental L. donovani 

infections, albeit at lower doses (229). We found that BMMs had high levels 

expression of TNF-α, NO and ROS and this could be explained as BMMs are 

more homogenous than PEMs, and they are characterised with their high 

yield, homogeneity and long lifespan (230). 

BMMs were chosen to evaluate if the anti-leishmanial activity of HMW chitosan 

is through indirect way (through the immunostimulatory effects) or direct way 

(by the uptake of chitosan by macrophages) or both of them, as these 
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macrophages are more homogenous than PEMs cells (203). Despite the 

observed chitosan-induced ROS and NO production there was no evidence 

that this contributed to the anti-leishmanial activity in our study – the inhibitors 

we used to mitigate their production had no effect on the ability of chitosan to 

kill intracellular Leishmania amastigotes (Figs 2.11 and 2.13).  This led us to 

investigate the cellular uptake of HMW chitosan and its relationship to the anti-

leishmanial activity.   

The uptake of the large charged molecule HMW chitosan has not been 

systematically studied before and there is no clear evidence of its penetrating 

cell membranes or of its uptake mechanism. Macrophages are known to take 

up extracellular materials and plasma by endocytosis. Endocytosis mainly 

occurs via two different cellular uptake mechanisms: pinocytosis or 

phagocytosis, where pinocytosis is fluid-phase endocytosis and phagocytosis 

is the process of engulfing large particles (231). Inhibition of pinocytosis (CME) 

significantly reduced the anti-leishmanial activity of HMW chitosan. Therefore, 

in our study pinocytosis (CME) was considered to be the main mechanism for 

the uptake of HMW chitosan by BMMs, indicating a direct anti-leishmanial 

effect of this molecule against amastigotes. Other researches have also 

reported pinocytosis as the pathway for the uptake of chitosan of different 

molecular weights by HEK293 epithelial cells  (232). The fluorescence imaging 

in our study showed that in BMMs HMW chitosan is taken up into the 

parasitophorous vacuole (PV) where the Leishmania amastigotes reside, with 

the labelled chitosan being internalized within 4 h and increasing up to 24 h 

later. This scenario is consistent with another study where rhodamine 

isothiocyanate- chitosan (RITC-chitosan 98-10 K) was found to be directly 

delivered to the U937 macrophage lysosome after 24 h (233). The 

accumulation of chitosan in the PV might be due to chitosan's relatively high 

pKa 6.3, making it more soluble and protonated in the acidic contents of the 

vacuole. This is consistent with a study using bafilomycin to inhibit acidification 

and prevent chitosan accumulation within macrophages (233). 

In summary, our studies indicate that chitosan and its water-soluble derivatives 

showed anti-leishmanial activity against both L. major and L. mexicana 

promastigotes and amastigotes in a pH-dependent manner. At pH 6.5 HMW 
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chitosan is more active than MMW and LMW chitosan and chitosan 

derivatives, in particular those where the amino groups are substituted. In 

addition, HMW chitosan activated M1 macrophages, stimulating them to 

produce NO and ROS. However, the anti-leishmanial activity of chitosan was 

not due to such immune activation, as an NO inhibitor and a ROS scavenger 

failed to reduce the anti-leishmanial activity. Instead, the anti-leishmanial 

activity was related to direct uptake of chitosan into the parasitophorous 

vacuole by pinocytosis (CME). HMW chitosan demonstrated effective in vitro 

anti-leishmanial activity with minimal cytotoxicity and future work will focus on 

in vivo studies, formulations and routes for drug administration. 
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3. Preparation and characterisation of amphotericin B loaded 

chitosan nanoparticles  

3.1. Introduction  

As mentioned in Chapter 1, the polyene antibiotic AmB (a standard treatment 

for systemic fungal infections) was classified as a second line treatment for VL 

and MCL, particularly for pentavalent antimonial resistant Leishmania. 

However, the toxic side effects of AmB restrict its use. Great efforts have been 

spent to develop drug delivery systems (DDs) of AmB, to reduce its toxicity 

and improve the efficacy of the drug, such as AmBisome®, a liposomal 

formulation of AmB, which is significantly less toxic than the free drug and is 

effective against VL and CL and then has been promoted as first line for VL in 

the Indian subcontinent (ISC), However, the drawbacks are (i) high cost, where 

donated free of charge by WHO for VL, not for CL and (ii) need for cold chain 

due to stability guaranteed only up to 25oC (54, 55, 56, 58, 234). Polymeric 

nanoparticles technology has also gained a great interest in the DDs field, 

giving opportunities for controlled drug release, drug protection of enzymatic 

degradation and retention period of drug. We mentioned in Chapter 1 that 

chitosan nanoparticles are gaining a lot of attention in DDs in the medical field 

as they are both biodegradable and biocompatible (119). There are different 

methods for the preparation of chitosan nanoparticles and they are 

summarised in Fig 3.1.   
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Figure  3.1. Preparation methods of chitosan nanoparticles. (A) Emulsion cross-
linking in which chitosan is stabilized by s surfactant and then is emulsified in an oil 
phase (water-in-oil emulsion) such as chitosan aqueous solution in toluene, using 
Span 80® as emulsifier) and is then reacted with an appropriate cross linking agent 
(e.g. formaldehyde, glutaraldehyde, genipin, glyoxal etc.) followed by washing and 
drying of the nanoparticles, (B) ionotropic gelation which represents the method we 
used and will be described in details, (C) emulsion-droplet coalescence in which 
chitosan solution is dispersed in liquid paraffin oil to prepare an emulsion and then 
sodium hydroxide solution is added to the first emulsion under high speed mixing 
which produces nanoparticles which are centrifuged and dried, (D) precipitation in 
which a compressed air nozzle is used to inject chitosan solution into basic organic 
solvent (sodium hydroxide, NaOH methanol or ethanediamine) , (E) reverse 
micelles in which a surfactant (e.g. sodium 10 bis (ethyl hexyl) sulfosuccinate or 
cetyl trimethylammonium bromide) is dissolved into an organic solvent (e.g. n-
hexane) to which aqueous chitosan solution is added under continuous stirring. 
Subsequently, a cross-linking agent (e.g. glutaraldehyde) is added and maintained 
under stirring overnight, and the organic solvent is removed by evaporation(F) 
spray drying in which an aqueous acetic acid solution of chitosan is prepared then, 
drugs are suspended or dissolved in the chitosan solution and then a cross-linking 
agent (glutaraldehyde or sodium tripolyphosphate. Small droplets are formed upon 
the atomization and the formation of flowing particles with evaporation of solvent. 
These techniques except ionotropic gelation frequently require the use of organic 
solvents or heat, which are undesirable steps and may affect encapsulated drug 
and may increase cytotoxicity effects (171, 235, 236)  

 

 
The ionotropic gelation method is described as an easy and simple technique 

in which, nanoparticles are formed by an electrostatic interaction between the 

cationic amino groups of chitosan and negatively charged anions of other 

compounds (such as tripolyphosphate sodium (TPP), dextran sulphate, 

chondroitin sulphate, etc) with mechanical stirring at room temperature leading 

to spherical nanoparticles. The use of different pH values of media and ratios 

F) 
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of chitosan and polyanions can result in the synthesis of particles at different 

sizes and surface charges. This technique has many advantages such as the 

usage of aqueous condition, low toxicity and not changing the chemistry of the 

encapsulated drug (120, 237). Moreover, these nanoparticles can be prepared 

in small and different sizes and charges, they can be used for different routes 

of administration and offer a sustained drug release (112).  

All nanoparticles used in our study were prepared using the inotropic gelation 

method. Chitosan nanoparticles were prepared via the interaction between the 

oppositely charged groups of chitosan (positive amino groups) and TPP 

(polyanions) or dextran sulphate (negative groups) (Fig 3.2, give structure of 

TPP and dextran sulphate). Dextran sulphate is a biodegradable and 

biocompatible polysaccharide with a negative charge and is soluble in water. 

These properties enable dextran sulphate to produce nanoparticles when 

interacts  with positively charged molecules to give positively or negatively 

charged nanoparticles according to the mass ratios used (238). Because of 

the biodegradability, biocompatibility and the possibility of dextran to interact 

with chitosan to produce negative charged nanoparticles, we chose dextran 

suphate as a cross-linker.  

 Tripolyphosphate sodium (TPP) is a popular and commonly used polyanion 

to prepare chitosan nanoparticles because of its safety (TPP is approved as 

safe by the FDA; Sec. 182.1810 sodium tripolyphosphate (239)) and gelation 

properties and furthermore, TPP has a role in the stability of nanoparticles 

(122, 240). Because of the safety profile and the ability of TPP to interact with 

chitosan to produce positive charged nanoparticles, we chose TPP as an 

another cross-linker.  

There are several possible mechanisms for drug (AmB) release from chitosan 

nanoparticles as shown in Fig 3.3 and chitosan nanoparticles show a pH-

dependent drug release because of its solubility. Therefore, the aims of this 

chapter were (i) to produce two types of chitosan nanoparticles containing 

AmB, one by using TPP to obtain positively charged nanoparticles and the 

other with dextran sulphate to obtain negatively charged nanoparticles, both 

with smallest possible sizes. After optimizing the preparation parameters, the 
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aims were (ii) to characterise the produced blank and AmB loaded 

nanoparticles in terms, of size, charge, morphology and stability and (iii) to 

evaluate the amphotericin B loading and drug release from the amphotericin 

B loaded chitosan TPP or dextran sulphate nanoparticle. 

 

 
 

 
 

Figure  3.2. Chemical structure of TPP and dextran sulphate (241) 

 

 

 

 
Figure  3.3. Mechanisms of drug release from chitosan nanoparticles. a) In 
diffusion release, a permeation of the drug is happening through the interior of the 
matrix of polymer to the near medium, b) in the swelling release, an absorption of 
water into the polymer is occurred until the dissolving of polymer, c): erosion release 
which can be homogenous (at the same rate throughout the matrix) and 
heterogeneous (erosion of the polymer from the surface towards the inner core). 
Polymer degradation may be due to the surrounding media or the presence of 
enzymes.  (120)  

 
 

 

 

 

Dextran sulphate  TPP 
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3.2. Material and methods 

3.2.1. Preparation of blank chitosan nanoparticles  

Nanoparticles were prepared by inotropic gelation by mixing positively 

charged chitosan with negatively charged TPP or dextran sulphate as shown 

schematically in Fig 3.4. 

1- HMW chitosan (MW=310-375 KDa, Sigma, UK) was dissolved at various 

concentrations (0.33, 1, 3 and 9 mg/ml) in 1% aqueous acetic solution 

(Sigma, UK). The pH of the resulting chitosan solution was adjusted to 

pH of 3, 4, 5, 6 and 7 by adding NaOH solution (Sigma, UK) and this 

enabled investigation into the influence of pH on particles formation.  

2- The sodium tripolyphosphate (TPP, Mw= 367.85 g/mol,Fisher scientific, 

US) and dextran sulphate (Mw= 40 kDa, Sigma, UK) solutions were 

prepared by dissolving TPP or dextran sulphate in double-distilled 

water at various concentrations 

3- The nanoparticles were formed at chitosan: TPP or chitosan: dextran 

sulphate mass ratios of 3:1, 5:1, 10:1, 20:1, 1:1, 1:3, 1:5 ,1:10 and 1:20). 

TPP or dextran sulphate aqueous solution (10 ml) was added dropwise 

using a 10 ml syringe into the chitosan solution (10ml) under magnetic 

stirring (Fig 3.4). Directly after adding the TPP or dextran sulphate 

solution, the nanoparticles suspension was sonicated to reduce the 

particles size by using a probe sonicator Soniprep 150 (Richmond 

Scientific Ltd, Lancashire, UK); the diameter of the microprobe was 

3mm, operating at an output frequency of 23kHz with an amplitude of 

14-16 nm for 15 mins (15 mins was found to be the optimal time after 

testing for 1, 5, 15 and 20 min) with 1 min rest after every 5 min of 

sonication to decrease possible overheating of the sample and resulting 

degradation of the AmB. Subsequently, the nanoparticle suspension 
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was filtered through a 0.2 µm size syringe filter (Millex, Merck Millipore, 

UK) to remove aggregates and larger particles. The nanoparticles were 

concentrated by centrifugation (8,000 x g) using high recovery 

centrifugal filters (Spin-X UF concentrators,20 ml, 30 kDa, Corning, 

UK).  

4- The nanoparticles suspension was analysed directly by using a 

Zetaziser (Malvern Instruments Ltd., UK) to determine the size, 

polydispersity index (PDI) and zeta potential of the nanoparticles. 

Nanoparticles were then lyophilised using a freeze dryer (Micro 

Modulyo, Richmond Scientific, UK). In this process, D-mannitol (Mw= 

182.17 g/mol, Sigma, UK) 5% or sucrose (Mw=342.3 g/mol, Sigma, UK) 

5% v/v was used as a cryoprotectant to protect the nanoparticles from 

the freezing and desiccation stresses (the stress of freezing and 

dehydration) (242). After 48 hours, lyophilized nanoparticles were 

collected, weighed and stored at 4°C for further analysis. The 

lyophilized blank nanoparticles were white cotton-like substance.  

3.2.2. Preparation of AmB loaded chitosan nanoparticles  

The optimal parameters determined for producing blank nanoparticles which 

gave the smallest sizes and PDI (which refers to homogeneity of  nanoparticle 

size (243)) were chosen to prepare the AmB loaded chitosan nanoparticles 

(Fig 3.4). 

1-  10 mg of AmB (Purity ≥ 95%, Cambridge Bioscience, UK) was 

dissolved in 0.5 ml of DMSO (high-performance liquid chromatography 

grade; Fisher Chemical, United Kingdom) and sonicated in a Camlab 

TransSonic T460/H water bath for 15 min at room temperature. 

- AmB is insoluble in water at pH 6 to 7. It is soluble in DMSO (30–40 

mg/ml) and in dimethylformamide (2–4 mg/ml). Molecular weight of 

AmB is 924.08 g/mol and logP is -0.66.  

2-  To prepare AmB loaded chitosan-TPP nanoparticles, AmB solution 

(0.5 ml of 10 mg) was added to 10 ml of TPP solution (6 mg in 10 ml 

distilled water) and this solution was added dropwise to 10 ml of HMW 
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chitosan solution (30 mg in 10 ml AC 1%) of pH of 5 under magnetic 

stirring.  

3- To prepare AmB loaded chitosan-dextran sulphate nanoparticles, AmB 

solution (0.5 ml of 10 mg) was added to 10 ml of dextran solution (30 

mg in 10 ml double distilled water) and this solution was added 

dropwise to 10 ml of HMW chitosan solution (10 mg in 10 ml AC 1%) of 

pH of 5 under magnetic stirring. 

4-  Subsequently, nanoparticle suspension was sonicated directly after 

adding the gelation material, filtered, purified and freeze dried (using a 

cryoprotectant) as described for blank nanoparticles in section 3.3.1. 

The lyophilised AmB loaded nanoparticles were yellow cotton-like 

material. Each experiment was repeated three times. 
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Figure  3.4. Schematic representation for Blank nanoparticles and AmB loaded 
chitosan nanoparticles with TPP or dextran sulphate (244, 245) 

3.2.3. Physicochemical properties of the nanoparticles (size, charge and 

morphology) 

1- The size of the nanoparticles was measured by dynamic light scattering 

(DLS) using a Zetaziser ( Malvern Instruments Ltd., UK) with the 

following parameters: dispersant: water, dispersant refractive indices 

(RI): 1.33, viscosity (cP):0.8872, material RI: 1.33, temperature 

(°C):25.0,  measurement position (mm):3 and attenuator: 9. The result 

is expressed as Z-Average (nm) and polydispersity index (PDI). Z -

average reflects the intensity weighted mean hydrodynamic size of the 

particles measured by DLS. PDI represents the distribution of the 

nanoparticles sizes in the sample (243). DLS is identified as technique 

for measuring the size and size distribution of molecules and particles 

which are dispersed or dissolved in liquid and measures hydrodynamic 

diameter based on the light dispersion properties of samples Tyndall 

effect (light scattering) and Brownian motion (the random motion of 

particles suspended in a fluid because of the bombardment by the 

solvent molecules that surround them). DLS gives the PDI value which 

reflects the size distribution of the nanoparticles which is classified to 

monomodal (one population) or plurimodal (several populations) and 

monodisperse (narrow distribution) or polydisperse (broad distribution) 

assuming that lower PDI less than 0.4 refers to a homogenous 

population and 0.1 or less to higher homogeneity in the particle 

population (246, 247). 

2- Zeta-potential (representing surface charge of nanoparticles) of the 

nanoparticles was measured by the Zetaziser with same parameters 

for the sizing except for measurement position being (mm):2 mm and 

attenuator:11. Zetaziser measures the zeta potential through the 

monitoring of the mobility of charged particles on the surface of the 

nanoparticles by application of an electrical potential (248). Data 

analysis was performed using the Malvern ZetaSizer software. 
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Measurements were repeated three times for sizes and 6 times for zeta-

potential for each sample. 

3- The morphology of the nanoparticles was examined using a scanning 

electron microscopy (SEM, UCL, School of Pharmacy ) and a 

transmission electron microscopy (TEM, UCL, School of Pharmacy) 

For the SEM, a fragment of sample was attached to a self-adhesive 

carbon disc mounted on a 25 mm aluminium stub. The stub was coated 

with 25 nm of gold using a sputter coater. The stub was then placed 

into a FEI Quanta 200 FEG SEM for imaging at 5kV accelerating 

voltage using secondary electron detection (249).  

Liquid samples for TEM were dropped with a Pasteur pipette onto a 

copper grid coated with a carbon/formvar support film. After 15 

seconds, a filter paper was blotted off to remove the excess sample. 

Then a drop of negative stain (1% uranyl acetate) was added and 

blotted after 15 seconds. The grid was placed into a specimen holder 

and inserted into a Phillips/FEI CM 120 BioTwin TEM for imaging at 

200kV (250).  

3.2.4. Stability of nanoparticles regarding size and zeta potential  

This stability was evaluated by keeping nanoparticles in distilled water, PBS 

or RPMI (pH 7.5 or pH 5) and in mouse (BALB/c) plasma (pooled female, 

BioIVT, UK) in rubber-capped glass vials at temperatures of 4, 34 or 37 °C for 

30 days. Particle sizes and zeta-potential were measured after 0, 1, 7 and 30 

days.  

Stability of dried nanoparticles was identified by resuspending them in water 

after 0, 1, 7 and 30 days and measuring their size and charge and they were 

highly stable.   

3.2.5. Determination of drug encapsulation efficiency and AmB loading 

and release 

Nanoparticles were prepared as described in section 4-2-2. Following 

sonication of the suspensions in the probe sonicator and filtration, the AmB 
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loaded nanoparticle suspension was centrifuged (8,000 x g) to remove the free 

AmB by using High recovery centrifugal filters (Spin-X UF concentrators,30 

kDa, Corning, UK). Filtrates and supernatants were collected and analysed for 

AmB concentrations by HPLC as described in section 3.3.6.1. Because of the 

molecular weight cut-off of the filtration tubes, only the free drug could pass 

through the membrane. The encapsulation efficiency (EE), drug loading (122) 

and yield (118) were calculated using the following equations: 

                   Mass of total AmB – mass of free AmB 

EE% =                                                                                        ₓ 100 

                                 Mass of total AmB 

                                       Mass of total AmB – mass of free AmB 

Drug loading % =                                                                                         ₓ 100                         

                                     Mass of chitosan + dextran sulphate or TPP 

 

 

 

                          Mass of nanoparticles after freeze-drying  

Yield % =                                                                                       ₓ 100                                          

                  Mass of AmB + chitosan+ dextran sulphate or TPP 

 

Additionally, the AmB loading was evaluated again after freeze drying by 

dissolving the yielded yellow powder in DMSO, in acidic pH 3 (by using 1% 

(v/v) acetic acid), and then by measuring the quantity of AmB by HPLC as 

described previously in Chapter 3, in section 3.3.6.1. There was no significant 

difference in the loading value between these two methods, and the data in 

the thesis will be expressed according to the first method (using High recovery 

centrifugal filters).  

3.2.6. In vitro release of AmB 

The release of AmB from chitosan-TPP or chitosan-dextran sulphate 

nanoparticles was evaluated by the dialysis method. One ml of the 

nanoparticles suspension (1 mg/ml AmB equivalent prepared in double 

distilled water) was added to either one ml of PBS containing 5% DMSO or 
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one ml of mouse (BALB/c) plasma (pooled female, BioIVT, UK) containing 

DMSO (5%) (for the solubility of AmB) (118). Subsequently, this 2 ml was 

placed in a dialysis bag (molecular mass cut off =12−14 kDa, Sigma, UK) and 

dialyzed against 50 ml of PBS containing 5% DMSO at pH of 7.5, 6.5 or 5. 

After immersing the dialysis bag in the release medium, the dialysis set up was 

left under stirring at 4, 34 or 37 °C for 168 h. The temperatures 4, 34 and 37 

°C were chosen to mimic the storage, skin and body temperatures 

respectively, while pH 5 was chosen to simulate the release in the endosomal 

compartment of macrophages,  pH 7.4 to simulate physiological conditions 

(251) and pH 6.5 to mimic our in vitro study (anti-leishmanial activity) 

conditions.  

 After 6, 24, 48, 72, 96,120, 144 and 168 h the total dialysis medium was 

replaced with fresh medium to avoid saturation of AmB, (maintaining strict sink 

conditions throughout the experiment). Release media was processed to 

quantify the released AmB using HPLC as described in section3.3.6.1. The 

results were expressed as a cumulative percentage release of the total amount 

of AmB (%w/w) versus time according to the equation. 

 

                                                                          Mass of released AmB at time t (mg) 
Cumulative release (%) =                                                                                                       ₓ100 

                                                                              Mass of total AmB (1 mg) 
 

 

Mass of released AmB at time t is a cumulative amount. For instance, mass of 

released AmB after 48h is the total amount released at 6, 24 and 48 h.   

3.2.6.1. Quantification of AmB by HPLC  

AmB was analysed by using a 1260 Infinity Agilent HPLC system. The column 

and settings used in our study are summarized in Table 3.1 (252). A stock 

solution of AmB was prepared by dissolving 1 mg of AmB in DMSO. Standard 

solutions were achieved by diluting this stock solution in PBS containing 5% 

DMSO.  
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Table 3.1. HPLC parameters for AmB quantification  

HPLC column 

Injection 
volume 

(μL) 
 

Flow 
rate 

(ml/min) 
Mobile phase 

Detector 
wavelength 

nm 

Retention 
time 
(min) 

Phenomenex; 
Synergi–Hydro RP 

(250x4.6 mm; 5 μm) 
20 1 

5mM 
EDTA•2Na in 

methanol 
450 7.65 

 

3.3. Results 

3.3.1. Effects of the initial concentration of chitosan and sonication 

time on the quality of the nanoparticles 

3.3.1.1. Conditions that resulted in poor quality nanoparticles  

Precipitation and poor quality of both types of nanoparticles were shown at pH 

values of 7 and 3 of chitosan solution at all tested conditions. Chitosan 

solutions at concentrations (0.3 or 9 mg/ml), at all tested pH with different mass 

ratios and after sonication of the nanoparticles suspension for 1, 5, 15 or 20 

mins, gave poor quality nanoparticles with (high PDI>0.8) and with different 

peaks as seen in Table 3.2. Similarly, chitosan solutions at concentrations (1 

or 3 mg/ml) at all pH values with different mass ratios and after sonication of 

the nanoparticles suspension for 1 or 5 mins produced poor quality 

nanoparticles (Table 3.2). Finally, chitosan solutions at concentrations (1 or 3 

mg/ml) at all pH values with a mass ratio between chitosan and TPP (20:1, 

1:1, 1/3, 1:5, 1:10 or 1:20) or a mass ratio between chitosan and dextran 

sulphate (1:5, 1:10, 1:20, 10:1 or 20:1) and after sonication for 1, 5 , 15 or 20 

mins caused a precipitation of particles or poor quality nanoparticles with a 

high PDI of 1.
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Table 3.2. Conditions which did not produce good quality nanoparticles 

Chitosan 
mg/ml 

pH 
Chitosan: TPP or chitosan: 
dextran sulphate mass ratio 

Sonication 
time mins 

Resulted nanoparticles 
Related 
figure 

0.3 
3, 4, 
5, 6 
or 7 

3:1, 5:1, 10:1, 20:1, 1:1, 1:3, 1:5 
,1:10 and 20:1 

1, 5, 15 or 
20 

Poor quality nanoparticles, had a high polydispersity regarding 
sizes. These samples were deemed not suitable for further 
study as they might contain large particles or aggregates 

3.5, a) 

1 
 

3 or 
7 

3:1, 5:1, 10:1, 20:1, 1:1, 1:3, 1:5 
,1:10 and 20:1 

1, 5, 15 or 
20 

Poor quality nanoparticles, had a high polydispersity regarding 
sizes. These samples were deemed not suitable for further 
study as they might contain large particles or aggregates 

 

4, 5 
or 6 

3:1, 5:1, 10:1, 20:1, 1:1, 1:3, 1:5 
,1:10 and 20:1 

1 or 5 
Poor quality nanoparticles with high PDI and very large 
nanoparticles with size≈ 800nm 

3.5, b) 

4, 5 
or 6 

Chitosan: TPP (20:1, 1:1, 1:3, 1:5, 
1:10 or 1:20) 

Chitosan: dextran sulphate (1:5, 
1:10, 1:20, 10:1 or 20:1) 

15 or 20 

A precipitation of particles or poor quality nanoparticles with 
high PDI of 1 

 

 
3 

3 or 
7 

3:1, 5:1, 10:1, 20:1, 1:1, 1:3, 1:5 
,1:10 and 20:1 

1, 5, 15 or 
20 

Poor quality nanoparticles, had a high polydispersity regarding 
sizes. These samples were deemed not suitable for further 
study as they might contain large particles or aggregates 

 

4, 5 
or 6 

3:1, 5:1, 10:1, 20:1, 1:1, 1:3, 1:5 
,1:10 and 20:1 

1 or 5 
Poor quality nanoparticles with high PDI and very large 
nanoparticles with size≈ 800nm 

3.5, b) 

4, 5 
or 6 

Chitosan: TPP (20:1, 1:1, 1:3, 1:5, 
1:10 or 1:20) 

Chitosan: dextran sulphate (1:5, 
1:10, 1:20, 10:1 or 20:1) 

15 or 20 

A precipitation of particles or poor quality nanoparticles with 
high PDI of 1 

 

9 
3, 4, 
5, 6 
or 7 

3:1, 5:1, 10:1, 20:1, 1:1, 1:3, 1:5 
,1:10 and 20:1 

1, 5, 15 or 
20 

Poor quality nanoparticles, had a high polydispersity regarding 
sizes. These samples were deemed not suitable for further 
study as they might contain large particles or aggregates 

3.5, c) 

Experiment was reproduced further two times with confirmed similar data 
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Figure  3.5. Poor quality nanoparticles at different conditions. a) at initial chitosan concentration 0.3 mg/ml and all other different 
parameters, b) at initial chitosan concentration 1 or 3 mg/ml and sonication for 1 or 5 mins and c) at initial chitosan concentration 9 
mg/ml other different parameters. There are several populations of particles, some are small in size e.g. less than 100 nm and some 
are large about 1 µm. Each colour represents one measurement as each sample was measured 3 times.   

 

a) b) 

c) 
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3.3.1.2. Conditions that resulted in good quality nanoparticles   

Chitosan solutions at concentrations (1 or 3 mg/ml) at pH (4, 5 or 6) with a 

mass ratio between chitosan and TPP (3:1, 5:1 or 10:1) or a mass ratio 

between chitosan and dextran sulphate (1:3, 1:1, 3:1 or 5:1 ) and after 

sonication of the nanoparticles suspension for 15 mins gave good quality 

nanoparticles with (low PDI<0.4) (lower PDI means more homogenous and 

stable nanoparticles (210))  with one peak; with different Z-Averages according 

to the conditions that would be discussed later (Fig 3.6 and Fig 3.7). Sonication 

of the nanoparticles suspension for more than 15 mins (for example 20 mins) 

produced no significant changes in the quality (PDI) or physicochemical 

properties (sizes and charges) of the nanoparticles. 

 

 
Figure  3.6. Good quality chitosan-dextran sulphate nanoparticles with one peak 
(one population of nanoparticles at initial chitosan concentration 3 mg/ml and 
sonication for 15 mins. Chitosan-dextran sulphate nanoparticles  (Size = 145.8 nm, 
PDI =0.2). Each colour represents one measurement as each sample was done in 
three measurements. 
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Figure  3.7. Good quality chitosan-TPP nanoparticles with one peak (one 
population of nanoparticles at initial chitosan concentration 3 mg/ml and sonication 
for 15 mins. Chitosan – TPP nanoparticles (Size = 43.47 nm, PDI =0.2). Each colour 
represents one measurement as each sample was done in three measurements. 

Our results indicated that the optimal parameters to obtain good quality 

nanoparticles (for both types of nanoparticles with TPP or with dextran 

sulphate) are: initial concentration of chitosan with 1 or 3 mg/ml and sonication 

time of the nanoparticles suspension for 15 mins as sonicating for more than 

15 mins gave same results regarding quality (PDI), size and charge.   

3.3.2. Effects of pH of chitosan solution and the mass ratio on the size 

and charge of good quality nanoparticles   

Chitosan and TPP with parameters (chitosan 3 mg/ml at pH 5 and TPP 0.6 

mg/ml) produced the smallest and most quality nanoparticles of chitosan-TPP 

nanoparticles (with lowest PDI, homogenous suspension) with size 48 ± 6 nm, 

PDI = 0.1 ± 0.03 and positive charge (zeta potential = 32.1 ± 1.2 mv) (Table 

3.3). However, chitosan and dextran sulphate with parameters (chitosan 1 

mg/ml at pH 5 and dextran sulphate 3 mg/ml) produced the smallest and most 

quality nanoparticles of chitosan-dextran sulphate nanoparticles with size 145 

± 6 nm, PDI = 0.1± 0.05 and negative charge (zeta potential = -15.5 ± 1mv) 

(Table 3.4).   
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Table 3.3. Effect of pH and concentration of chitosan and mass ratio of the reactants on the physicochemical properties of blank 
chitosan-TPP nanoparticles 

Chitosan TPP 
Ch:TPP mass ratio Ch:TPP Molarity ratio pH Particle sizes nm PDI Zeta potential mv 

mg/ml µM mg/ml µM 

 
1 
 

0.002 

0.3 0.81 3:1 1:405 
4 
 

100 ± 9 0.3 ± 0.1 17 ± 1 

0.2 0.53 5:1 1:265 120 ± 8 0.3 ± 0.1 18.9 ± 1 

0.1 0.27 10:1 1:135 170 ± 9 0.3 ± 0.1 19.8 ± 0.9 

0.3 0.81 3:1 1:405 
5 
 

95 ± 10 0.3 ± 0.1 13.5±1 

0.2 0.53 5:1 1:265 108 ± 11 0.2 ± 0.05 17.5±0.5 

0.1 0.27 10:1 1:135 169 ± 9 0.3 ± 0.1 19.2±0.3 

0.3 0.81 3:1 1:405 
6 
 

135 ± 11 0.2 ± 0.05 11.2±0.2 

0.2 0.53 5:1 1:265 149 ± 12 0.3 ± 0.1 15.5±2 

0.1 0.27 10:1 1:135 190 ± 9 0.2 ± 0.04 17.5±0.9 

 
3 
 

0.008 

1 2.72 3:1 1:340 

4 

141 ± 10 0.2 ± 0.05 23.9 ± 1.2 

0.6 1.6 5:1 1:200 99 ± 6 0.2 ±0.02 34.3 ± 0.9 

0.3 0.81 10:1 1:101 220 ± 15 0.2 ±0.02 44.8 ± 1.9 

1 2.72 3:1 1:340 
5 
 

140 ± 9 0.2±0.03 22.9 ± 1.8 

0.6 1.6 5:1 1:200 48 ± 6 0.1 ±0.03 32.1 ± 1.2 

0.3 0.81 10:1 1:101 178 ± 12 0.3±0.02 40.2 ± 1.3 

1 2.72 3:1 1:340 
6 
 

174 ± 9 0.1 ±0.05 16.2 ± 1.2 

0.6 1.6 5:1 1:200 155 ± 8 0.2 ± 0.02 18.3 ±1.1 

0.3 0.81 10:1 1:101 340 ± 19 0.3 ± 0.1 18.7 ±1.1 

Data expressed as mean +/- SD (experiment was reproduced three times with confirmed similar data). The smallest size and PDI of these nanoparticles 
were 48 ± 6 nm and 0.1 ± 0.03 with positive surface charge (zeta potential = +32.1 ± 1.2) 
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Table 3.4. Effect of pH and concentration of chitosan and mass ratio of the reactants on the physicochemical properties of blank chitosan-dextran 
sulphate nanoparticles 

Chitosan (Ch) Dextran sulphate(Dx) 
Ch:Dx mass ratio Ch:DX Molarity ratio pH sizes nm PDI Zeta potential mv 

mg/ml µM mg/ml µM 

1 0.002 

3 0.075 1:3 1:37.5 

4 

160 ± 6 0.2 ± 0.05 -17.5 ± 1 

1 0.025 1:1 1:12.5 177 ± 9 0.3 ± 0.1 -8 ± 0.5 

0.3 0.007 3:1 1:3 190 ± 9 0.3 ± 0.1 +6 ± 1 

0.2 0.005 5:1 1:2.5 185 ± 8 0.3 ± 0.1 +8 ± 0.1 

3 0.075 1:3 1:37.5 

5 

145 ± 6 0.1 ± 0.05 -15.5 ± 1 

1 0.025 1:1 1:12.5 169 ± 9 0.3 ± 0.1 -7 ± 0.7 

0.3 0.007 3:1 1:3 170 ± 5 0.2 ± 0.04 +4 ± 1 

0.2 0.005 5:1 1:2.5 185 ± 8 0.3 ± 0.1 +5± 0.1 

3 0.075 1:3 1:37.5 

6 

230 ± 6 0.2 ± 0.04 -12 ± 1 

1 0.025 1:1 1:12.5 200 ± 6 0.4 ± 0.1 -6 ± 0.5 

0.3 0.007 3:1 1:3 210 ± 7 0.3 ± 0.1 +3 ± 0.5 

0.2 0.005 5:1 1:2.5 220 ± 5 0.4 ± 0.1 +4 ± 1 

3 0.008 

9 0.225 1:3 1:28 

4 

340 ± 12 0.3 ± 0.1 -33±7 

3 0.075 1:1 1:9.3 307 ± 12 0.3 ± 0.1 -10 ± 2 

1 0.025 3:1 1:3 332 ± 9 0.2 ± 0.04 +8 ± 2 

0.6 0.015 5:1 1:1.8 303 ± 6 0.4 ± 0.1 +10 ± 3 

9 0.225 1:3 1:28 

5 

270 ± 10 0.2 ± 0.05 -35±7 

3 0.075 1:1 1:9.3 279 ± 11 0.3 ± 0.1 -15 ± 4 

1 0.025 3:1 1:3 290 ± 11 0.3 ± 0.1 +6 ± 2 

0.6 0.015 5:1 1:1.8 285 ± 10 0.2 ± 0.05 +7 ± 1 

9 0.225 1:3 1:28 

6 

380 ± 10 0.2 ± 0.05 -39±7 

3 0.075 1:1 1:9.3 400 ± 11 0.3 ± 0.1 -19 ± 4 

1 0.025 3:1 1:3 380 ± 11 0.2 ± 0.05 +3 ± 2 

0.6 0.015 5:1 1:1.8 450 ± 10 0.2 ± 0.03 +4 ± 1 

data expressed as mean +/- SD (experiment was reproduced three times with confirmed similar data). The smallest size and PDI of these nanoparticles 
were 145 ± 6 nm and 0.1 ± 0.05 with negative surface charge (zeta potential = -15.5 ± 1) 
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3.3.3. Effects of AmB loading and freeze-drying with and without 

cryoprotectants on physicochemical properties and the morphology of 

the nanoparticles  

1- AmB loading increased the size of blank chitosan-TPP and dextran 

sulphate nanoparticles by 18.75% and 13% respectively. However, 

such loading did not cause any significant change to the zeta potential 

and PDI of both types of nanoparticles (Table 3.5) (p >0.05 by t-test). 

Freeze drying process without the use of a cryoprotectant (sucrose or 

D-mannitol) resulted in poor quality nanoparticles with various sizes 

for both blank and AmB loaded chitosan-TPP and chitosan-dextran 

sulphate nanoparticles. In contrast, the use of sucrose as a 

cryoprotectant produced good quality nanoparticles and caused 

39.5%, 17%, 21% and 6% increase in size for blank chitosan-TPP 

nanoparticles, blank chitosan-dextran sulphate nanoparticles, loaded 

AmB chitosan-TPP nanoparticles and loaded AmB chitosan-dextran 

sulphate nanoparticles respectively and did not lead to a significant 

difference in the zeta potential or PDI (p >0.05 by t test).  

2- D-mannitol as a cryoprotectant produced good quality nanoparticles, 

but caused 108%, 38%, 73% and 15.8% increase in size for blank 

chitosan-TPP nanoparticles, blank chitosan-dextran sulphate 

nanoparticles, loaded AmB chitosan-TPP nanoparticles and loaded 

AmB chitosan-dextran sulphate nanoparticles respectively and did not 

lead to a significant difference in the zeta potential (p >0.05 by t test). 

When the two cryoprotectants are compared, sucrose produced 

significantly smaller nanoparticles with lower PDI for both types of 

nanoparticles, p < 0.05 t-test) (Table 3.5, Fig 3.8).  

3- The morphological characteristics of blank chitosan-TPP or chitosan-

dextran sulphate nanoparticles and AmB loaded nanoparticles were 

examined using TEM and SEM which showed a spherical structure for 

both chitosan-TPP or chitosan-dextran sulphate nanoparticles. The 
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TEM and SEM measured size of the four formulations, which was 

comparable to values measured by DLS. The incorporation of AmB 

into the nanoparticles did not change the shape of these 

nanoparticles, just increased the sizes (Fig 3.9 and Fig 3.10).  

 

Table 3.5. Effect of cryoprotectants used during freeze drying on the 
physicochemical properties of unloaded and AmB loaded chitosan nanoparticles 

 

 

Nanoparticles  

Chitosan 
-TPP 

AmB 
loaded 

chitosan
– TPP 

Chitosan 
– dextran 
sulphate 

AmB 
loaded 

chitosan 
– 

dextran 
sulphate 

Size 
nm 

Before lyophilizing 48 ± 6 57 ± 7 145 ± 6 164 ± 5 

After 
lyophilizat

ion 

+ 
sucros
e 5% 

67 ± 7 69 ± 8 170 ± 9 174 ± 8 

+ D-
mannit
ol 5% 

100 ± 9 99 ± 9 200 ±10 200 ± 6 

PDI 

Before lyophilizing 0.1 ± 0.01 0.1 ± 0.03 
0.15 ± 
0.01 

0.16 ± 
0.01 

After 
lyophilizin

g 

+ 
sucros
e 5% 

0.25 ± 
0.05 

0.2 ± 0.01 
0.29 ± 
0.04 

0.26 ± 
0.01 

+ D-
mannit
ol 5% 

0.39 ± 
0.07 

0.4 ± 0.01 
0.42 ± 
0.06 

0.45 ± 
0.05 

Zeta 
potenti
al mv 

Before lyophilizing 32.1 ± 1.2 29 ± 2 -15.5 ± 1 -14 ± 2 

After 
lyophilizin

g 

+ 
sucros
e 5% 

28.5 ±1.9 25.5 ± 1 -12.9 ± 3 -11 ± 1 

+ D-
mannit
ol 5% 

27 ± 2 24 ± 1 -12.5 ± 2 -12 ± 2 

Data expressed as mean +/- SD (experiments were repeated three times with 
confirmed similar data). Sucrose more effectively protected the nanoparticles in 
comparison with D-mannitol (p < 0.05 by t-test). 
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Figure  3.8. Effectiveness of sucrose 5% and D-mannitol 5% as a cryoprotectant 
for freeze drying of blank and AmB loaded chitosan nanoparticles suspensions. 
1: Blank chitosan-TPP nanoparticles before lyophilizing, 2: Blank chitosan-TPP 
nanoparticles after lyophilizing + sucrose 5%, 3: Blank chitosan-TPP 
nanoparticles after lyophilizing + D-mannitol 5%, 4: AmB  loaded chitosan-TPP 
nanoparticles before lyophilizing, 5: AmB loaded chitosan-TPP nanoparticles 
after lyophilizing + sucrose 5%, 6: AmB loaded chitosan-TPP nanoparticles after 
lyophilizing + D-mannitol 5%, 7: Blank chitosan-dextran nanoparticles before 
lyophilizing, 8: Blank chitosan-dextran nanoparticles after lyophilizing + sucrose 
5%, 9: Blank chitosan-dextran after lyophilizing + D-mannitol 5%, 10: AmB 
loaded chitosan-dextran nanoparticles before lyophilizing, 11: AmB loaded 
chitosan-dextran after lyophilizing + sucrose 5%, 12: AmB  loaded chitosan-
dextran nanoparticles after lyophilizing + D-mannitol 5%. data expressed as 
mean +/- SD (experiment was reproduced three times with confirmed similar 
data).   
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Figure  3.9. TEM micrographs of unloaded and amphotericin B loaded chitosan  
nanoparticles. A: Unloaded chitosan–TPP nanoparticles, B: AmB loaded chitosan–
TPP nanoparticles, C: Unloaded chitosan – dextran sulphate nanoparticles, D: AmB 
loaded chitosan–dextran sulphate nanoparticles. TEM images indicate the 
nanoparticles to be spherical. Magnification: 40000x  

 

A B 

C D 
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3.3.4. Stability of physicochemical properties of AmB loaded chitosan 

nanoparticles 

Both AmB loaded chitosan-TPP and chitosan-dextran sulphate nanoparticles 

did not show any significant change in their size or zeta potential at 

temperatures of 4, 34 and 37 °C when incubated in different media (water, 

PBS or RPMI at pH 7.5 or 6.5) or in mouse (BALB/c) plasma at 4 °C for a 

period of 30 days which indicated a high stability of these nanoparticles 

(Tables 3.6 and 3.7, Fig 3.11). Moreover, no significant difference in PDI was 

identified after 30 days in these different conditions.  

  

  
Figure  3.10. SEM micrographs of unloaded and amphotericin B loaded chitosan 
nanoparticles. A: Unloaded chitosan–TPP nanoparticles, B: AmB loaded 
chitosan–TPP nanoparticles, C: Unloaded chitosan – dextran sulphate 
nanoparticles, D: AmB loaded chitosan–dextran sulphate nanoparticles. SEM 
images indicate the nanoparticles to be spherical and with similar sizes with the 
zetasizer . Magnification 50000x 

A B 

C D 
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Figure  3.11. Size of AmB loaded chitosan-TPP nanoparticle (A) and AmB loaded 
chitosan-dextran sulphate nanoparticle (B) in different media over time. The 
nanoparticles were stable in size after 30 days of storage in different media and 
temperatures. Data expressed as mean +/- SD (experiment was reproduced three 
times with confirmed similar data). 
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Table 3.6. Variations of physicochemical properties of AmB loaded chitosan-TPP nanoparticles in different media upon storage at different 
temperatures 

 

Day 0 Day 1 Days 7 Days 30 

Size 
nm 

PDI 
Zeta 

potential 
mv 

Size 
nm 

PDI 
Zeta 

potential 
mv 

Size 
nm 

PDI 
Zeta 

potential 
mv 

Size 
nm 

PDI 
Zeta 

potential 
mv 

Water at 4, 
34 or 37 ° C 

70 ± 6 0.1± 0.02 25.5 ± 1 74 ± 5 0.2 ± 0.01 23.4 ± 1 73 ± 5 0.2 ± 0.1 24.0 ± 1 76 ± 5 0.2 ± 0.1 23.9 ± 1 

PBS at 4, 34 
or 37 ° C 

73± 5 0. ± 0.01 23.3 ± 1 75 ± 4 0.1 ± 0.02 22.9 ± 2 77 ± 4 0.2 ± 0.1 22.5 ± 1 79 ± 5 0.2 ± 0.1 21.9 ± 1 

RPMI 
(pH=7.5) at 
4, 34 or 37 ° 

C 

75 ± 6 0.2 ± 0.1 24.1± 1 79 ± 7 0.2 ± 0.05 22.9 ± 1 80 ± 7 0.2 ± 0.1 22.8 ± 1 81± 6 0.2± 0.1 22.1 ± 1 

RPMI 
(pH=6.5) at 
4, 34 or 37 ° 

C 

68 ± 7 0.1 ± 0.01 32 ± 6 74 ± 5 0.2 ± 0.09 30 ± 4 77 ± 5 0.1 ± 0.1 29 ± 3 77 ± 9 0.2± 0.1 30 ± 3 

Plasma at 4 
° C 

75 ± 7 0.1 ± 0.01 29 ± 6 77 ± 6 0.2 ± 0.03 30 ± 4 79 ± 8 0.2 ± 0.1 29 ± 3 80 ± 7 0.3 ± 0.1 29 ± 4 

data expressed as mean +/- SD (experiment was reproduced three times with confirmed similar data). No significant difference was shown in the 
size, PDI or zeta potential between two types of the nanoparticles after 30 days storage (p >0.05 by t – test). 
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Table 3.7. Variations of physicochemical properties of AmB loaded-chitosan dextran sulphate nanoparticles in different media upon storage at 
different temperatures 

 

Day 0 Day 1 Days 7 Days 30 

Size 
nm 

PDI 
Zeta 

potential 
mv 

Size 
nm 

PDI 
Zeta 

potential 
mv 

Size 
nm 

PDI 
Zeta 

potential 
mv 

Size 
nm 

PDI 
Zeta 

potential 
mv 

Water at 4, 
34 or 37 ° C 

180 ± 6 0.2± 0.1 -14 ± 5 187 ± 5 0.2± 0.1 -16 ± 5 186 ± 5 
0.2± 
0.1 

-17 ± 5 
186 ± 

5 
0.2± 0.1 -17 ± 5 

PBS at 4, 34 
or 37 ° C 

177 ± 5 0.2 ± 0.1 -15 ± 5 178 ± 4 0.2 ± 0.1 -14 ± 5 183 ± 4 
0.2 ± 
0.1 

-17 ± 5 
182 ± 

4 
0.2 ± 0.1 -17 ± 5 

RPMI 
(pH=7.5) at 
4, 34 or 37 ° 

C 

180 ± 6 0.2 ± 0.1 -20 ± 5 183 ± 7 0.2 ± 0.1 -17 ± 5 183 ± 7 
0.2 ± 
0.1 

-19 ± 5 
180 ± 

7 
0.2 ± 0.2 -19 ± 5 

RPMI 
(pH=6.5) at 
4, 34 or 37 ° 

C 

175 ± 7 0.2 ± 0.1 -11 ± 5 178 ±5 0.2 ± 0.1 -14 ± 5 177 ± 5 
0.2 ± 
0.1 

-13 ± 5 
181 ± 

5 
0.2 ± 0.1 -13 ± 5 

Plasma at 4 
° C 

177 ± 7 0.2 ± 0.1 -15 ± 5 179 ±5 0.2 ± 0.1 -17 ± 5 181 ± 5 
0.3 ± 
0.1 

-13 ± 5 
187 ± 

6 
0.2 ± 0.1 -14 ± 5 

data expressed as mean +/- SD (experiment was reproduced three times with confirmed similar data). No significant difference was shown in 
the size, PDI or zeta potential between two types of the nanoparticles after 30 days storage (p >0.05 by t – test). 
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3.3.5. Nanoparticles loading and encapsulation properties 

Both types of nanoparticles had a high encapsulation efficiency of more than 

90%. The fluffy yellow yield was more than 90% for both types (Table 3.8). 

There was no significant difference in AmB loading between chitosan TPP and 

dextran sulphate nanoparticles (p>0.05 by t-test) (Fig 3.12). 

 

Table 3.8. Percentage of AmB loading, encapsulation and yield 

Type of nanoparticles EE %  AmB loading %  Yield %  

AmB loaded chitosan-TPP nanoparticles 94 ± 5 26 ± 1 93 ± 6 

AmB loaded chitosan-dextran sulphate  
nanoparticles 

92 ± 8 23 ± 2 92 ± 6 

data expressed as mean +/- SD (experiment was reproduced three times with 
confirmed similar data). No significant difference was shown between AmB loaded 
chitosan-TPP and dextran sulphate nanoparticles (p>0.05 by t-test). AmB loaded 
chitosan-TPP nanoparticles size= 69 ± 8 nm and AmB loaded chitosan-dextran 
sulphate nanoparticles size= 174 ± 8 nm  

 

The encapsulation efficiency AmB loading Yield  
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Figure  3.12. Comparison of AmB encapsulation, loading and yield of the two types 
of nanoparticles. No significant difference was shown between AmB loaded 
chitosan-TPP and dextran sulphate nanoparticles regarding the encapsulation, 
loading and yield (p>0.05 by t-test). Data expressed as mean +/- SD (experiment 
was reproduced three times with confirmed similar data). AmB loaded chitosan TPP 
nanoparticles size= 69 ± 8 nm and AmB loaded chitosan dextran sulphate 
nanoparticles size= 174 ± 8 nm  



124 
 

3.3.6. In vitro release of AmB from the nanoparticles 

AmB release from the two types of nanoparticles is shown in Fig 3.13 and 

Table 3.9. The chitosan-TPP and chitosan-dextran sulphate nanoparticles 

showed a slow release within 7 days in PBS (at two pH values of 7.5 and 6.5) 

at three temperatures 4, 34 and 37 ° C and in mouse (BALB/c) plasma at 37 ° 

C. Chitosan-TPP nanoparticles released AmB significantly quicker than 

chitosan-dextran sulphate nanoparticles at the different conditions 

(nanoparticle suspended in plasma or PBS and at different pHs and 

temperatures) (p<0.05, one-way-ANOVA). Neither AmB loaded chitosan-TPP 

nanoparticles nor AmB loaded chitosan-dextran sulphate nanoparticles 

showed any significant difference in the drug release after storing at 34 ° C or 

37 ° C (p>0.05 by t -test) (Fig 3.13, Table 3.9). However, the pH influenced the 

drug release significantly with both types of nanoparticles, showing higher 

cumulative releases at the lower pH of 5 than at higher pH of 6.5 or 7.5 (p<0.05 

by t-test) (Table 3.9 and Fig 3.13).  
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Table 3.9. In vitro cumulative release of AmB from the two formulations at different conditions 

Type 
6 h 
% 

24 h 
% 

48 h 
% 

72 h 
% 

96 h 
% 

120 h 
% 

144 h 
% 

168 h 
% 

AmB loaded chitosan–dextran 
sulphate nanoparticles 

 
PBS, pH 

7.4 

4 °C 0.1 ±0.05 1±0.05 2.2±0.4 5.2±1 7.5±2 9.5±2 11±2 15±2 

34 ° C 0.3±0.1 2.5±0.2 5.2±1 8.5±2 10±3 13.5±2 16.4±3 20±3 

37 ° C 0.1±0.02 2±0.1 4.4±1 6.9±1 9.1±2 12.5±3 15.5±3 18.5±2 

PBS, pH 
6.5 

4 ° C 0.2±0.02 2±0.2 3.1±1 4.9±1 6.9±1 8.9±1 11.5±2 15.9±2 

34 ° C 0.4±0.1 4±0.5 7.3±2 9.2±3 13.1±3 15±2 17.2±4 21.2±2 

37 ° C 0.1±0.05 2.9±0.4 5.4±1 7.9±2 10.1±2 12.2±2 16.5±3 19.5±3 

PBS, pH 
5 

4 ° C 0.2±0.05 3.5±1 9.5±2 16.1±4 17.2±3 20.2±3 21.1±4 32.2±4 

34 ° C 0.5±0.1 7.5±2 14.5±3 20.9±5 23±4 24.9±3 27.5±4 41.9±5 

37 ° C 0.3±0.1 6.5±1 13.5±3 20.1±4 21.2±5 24.2±3 26.1±3 38.2±4 

Plasma 37 ° C 0.2±0.05 4.1±1 8.1±1 9.2±2 10.1±2 12±2 14.9±2 22.9±3 

AmB loaded chitosan –TPP 
nanoparticles 

PBS, pH 
7.4 

4 ° C 0.5±0.1 5.1±1 9.2±1 11.5±2 13.8±2 15.9±1 18.9±2 22.9±3 

34 ° C 1.2±0.3 9.9±2 15.6±2 20.6±3 24.5±5 26±4 28.9±5 32.5±2 

37 ° C 1 ±0.2 10 ±2 14.9 ±3 19.5 ±2 23.5 ±5 24.5 ±3 27.5 ±4 31.5 ±5 

PBS, pH 
6.5 

4 ° C 0.3±0.1 4.1±1 10.2±2 12.5±2 15.8±5 17.9±2 19.9±3 24.5±3 

34 ° C 1.5±0.3 10.5±2 16.4±4 21.9±4 26.3±5 27.8±3 29.8±5 32.5±3 

37 ° C 1.2±0.4 9.8±1 15.2±3 20.2±3 24.1±5 25.6±4 28±4 32.6±2 

PBS, pH 
5 

4 ° C 0.9±0.2 16.5±3 19.8±3 25.5±4 26.2±4 34.5±4 40.2±6 47.5±4 

34 ° C 1.5±0.4 21.2±4 27.2±5 31.2±3 34.6±6 39.8±5 41.9±5 50.8±6 

37 ° C 1.7±0.4 20.2±3 26.5±6 30.2±4 33.1±4 40.2±5 45.2±5 51.2±6 

Plasma 37 ° C 1.7±0.3 11.2±2 14.5±4 20.9±2 25.3±3 27.3±4 29.9±4 33.6±5 

AmB solution 

PBS, pH 
7.4 

4 ° C 84±2 100±1 0 0 0 0 0 0 

34 ° C 85±2 100±2 0 0 0 0 0 0 

37 ° C 86±3 100±2 0 0 0 0 0 0 

PBS, pH 
6.5 

4 ° C 83±1 100±1 0 0 0 0 0 0 

34 ° C 86±2 100±3 0 0 0 0 0 0 

37 ° C 88±4 100±2 0 0 0 0 0 0 

4 ° C 84±1 100±2 0 0 0 0 0 0 
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PBS, pH 
5 

34 ° C 85±1 100±2 0 0 0 0 0 0 

37 ° C 87±2 100±2 0 0 0 0 0 0 

Plasma 37 ° C 85±2 100±2 0 0 0 0 0 0 

Data expressed as mean +/- SD (experiment was reproduced three times with confirmed similar data). Both types of nanoparticles showed 
significantly more cumulative release in the low pH of 5 than in higher pH of 6.5 or 7.5(p<0.05 by t-test). The AmB release from chitosan-
TPP nanoparticles was faster than chitosan dextran sulphate nanoparticles (p < 0.05 by t – test).  AmB loaded chitosan-TPP nanoparticles 
size= 69 ± 8 nm and AmB loaded chitosan-dextran sulphate nanoparticles size= 174 ± 8 nm  
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Figure  3.13. In vitro release profile of AmB loaded chitosan nanoparticles at 37 ° C. A: AmB loaded chitosan-dextran sulphate nanoparticles 

in PBS (pH of 5, 6.5 or 7.5) and mouse (BALB/c) plasma, B: AmB loaded chitosan-TPP nanoparticles in PBS (pH of 5, 6.5 or 7.5) and mouse 

A - dextran sulphate  B - TPP 

C - comparison 
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(BALB/c) plasma and C:  comparison of AmB release from AmB solution, AmB loaded chitosan-TPP nanoparticles and AmB loaded chitosan 

dextran sulphate nanoparticles in PBS at pH 5 and 7.5. Data expressed as mean +/- SD (experiment was reproduced three times with 

confirmed similar data). AmB loaded chitosan-TPP nanoparticles size= 69 ± 8 nm and AmB loaded chitosan-dextran sulphate nanoparticles 

size= 174 ± 8 nm 
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3.4. Discussion 

Blank and AmB loaded chitosan-TPP and chitosan-dextran sulphate 

nanoparticles were successfully produced via the inotropic gelation method. 

Homogeneously dispersed nanoparticles with different sizes from 50 nm to 

around 400 nm, with low PDI, and with positive or negative surface charge 

were synthesised. The effects of experimental conditions and parameters 

(initial concentration of chitosan, chitosan: TPP or chitosan: dextran sulphate 

mass ratios, pH of chitosan solution and sonication time) on the 

physicochemical properties of the nanoparticles (size, PDI and charge) were 

determined. The aim was to create positively and negatively charged 

nanoparticles with the smallest size and lowest PDI. The PDI value indicates 

dispersion homogeneity and the distribution of the nanoparticles sizes in the 

sample and high PDI means variable ranges of sizes in the sample while lower 

PDI reflects constantly sized nanoparticles (253). We aimed and succeeded 

in synthesising the smallest sizes for both types of nanoparticles, as smaller 

nanoparticles with size 100 nm showed a 2.5-fold higher uptake in Caco-2 

cells than larger particles with size 1 µm and a 6-fold higher uptake than 

particles sized 10 µm (254). Additionally, nanoparticles with small size have 

exhibited maximum deposition of their content in the skin dermis (after topical 

application) and small nanoparticles can facilitate macrophage targeting 

residence in the skin (after intravenous injection) (32, 246, 255, 256). 

Subsequently, smaller nanoparticles in literatures offered higher uptake rates, 

more permeability through skin and higher targeting to skin and these 

properties are substantial in CL treatment.  

A paper reported that negatively charged nanoparticles are taken up 

significantly more than positively charged nanoparticles by Caco-2 epithelial 

cells (257).   

This encouraged us to prepare two types of chitosan nanoparticles (positive 

and negative charged nanoparticles with smallest possible size).  

 

Influence of reactant mass ratio on the nanoparticles  
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We indicated that the optimal mass ratio to obtain good quality nanoparticles 

with smallest size and lowest PDI was 5:1 for chitosan: TPP (at chitosan 3 

mg/ml) and this was consistent with literatures (258, 259). It was shown that 

at this ratio, TPP anions are adequately incorporated into chitosan and as a 

result, a further boost in the cross-linking and tightening of the chitosan chains 

within the particle result, which explains the decrease in the nanoparticles 

sizes, as previously speculated by Masarudin et al (2015) (253). Regarding 

dextran sulphate, a mass ratio 1:3 of chitosan: dextran sulphate (at chitosan 1 

mg/ml) gave the smallest nanoparticles size and the lowest PDI and this is 

similar with another published report published by Tiyaboonchai et al (238). 

As a more concentration of dextran sulphate in comparison with chitosan might 

increase the level of complexation of the nanoparticles and the chitosan chains 

can become entangled to a great extent (238, 260).  

 

Influence of initial concentration of chitosan on the nanoparticles  

We showed that using a high initial concentration of chitosan (9 mg/ml) led to 

poor quality and aggregation of nanoparticles and this was in agreement with 

a previously published report (261). At this high concentration of chitosan, 

more molecules of chitosan tend to entangle with each other and crosslink with 

counter ion (TPP) or sulphate groups of dextran sulphate to form larger 

particles (261) and moreover, this aggregation could be attributed to the higher 

number of positive groups as these positive groups can make the chitosan 

chain to stretch because of the intra chitosan chain repulsion (133, 262, 263). 

  

Influence of pH of chitosan solution on the nanoparticles  

Additionally, the pH of chitosan solution played an important role in the quality 

of the nanoparticles. The synthesized nanoparticles were aggregated and of 

poor quality at pH 3 and pH 7. At pH 3, chitosan is highly protonated with high 

charge density. While at pH 7, chitosan has a low charge and is partially 

solubilized. The greater positive charge at pH 3 can make the chitosan chain 

stretch because of the intra molecular repulsion while at higher pH of 7, there 

is a large reduction in the protonation degree of the nanoparticles and that 

large leads to reduce the inter particles electrostatic repulsion among these 
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nanoparticles. Therefore, there is a higher possibility of the aggregation (133, 

262).  

 

Zeta potential of the nanoparticles and the Influence of sonication 

duration on the nanoparticles  

Zeta potential of the nanoparticles increased with increasing concentration 

and with decreasing pH of the initial chitosan solution used. This increase in 

zeta potential values could be explained as; the higher concentration of 

chitosan leads to more total amino groups and consequently more protonated 

positive -NH3+ on the surface of the nanoparticles and lower pH of chitosan 

solution results in more positive amino groups (133, 262). To assess the 

influence of sonication time on the physicochemical characteristics of 

nanoparticles, the prepared nanoparticle dispersions were subjected to 

sonication for 1, 5, 15 and 20 mins. The sonication duration had a critical role 

in the quality of nanoparticles as sonicating for 15 mins resulted in favoured 

nanoparticles and this was in accordance with other reports. Too little 

sonication duration is insufficient to break the aggregation of the nanoparticles 

and after 20 mins the aggregation cannot be further broken so size and PDI 

remain constant (264, 265, 266). 

 

The freeze drying process of the nanoparticles  

The freeze drying process causes many stresses related to freezing and 

dehydration and these stresses can destabilize the nanoparticles suspensions 

and lead to poor quality and aggregation of the nanoparticles (242). This is 

what we found in our study. Therefore, it is recommended to use protectants 

for the nanoparticles to protect them from the freeze and dry stress. The most 

common cryoprotectants used in literatures are sugars as they can form a 

glassy matrix that can protect the nanoparticles from the mechanical stress 

and avoid aggregation, so we used D-mannitol and sucrose in our study. We 

determined that sucrose had a greater protective (2-3 x) effect on both types 

of nanoparticles than D-mannitol. A similar finding has previously been 

reported that sucrose is more successful than D-mannitol in protecting the 

nanoparticles from the lyophilisation (267) possibly due to the fact that sucrose 
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does not crystallize during lyophilisation process, unlike D-mannitol, as 

previously reported (242). 

 

Stability of the nanoparticles and their AmB encapsulation and loading 

properties  

We found that blank and AmB loaded chitosan-TPP or chitosan-dextran 

sulphate nanoparticles were stable in terms of size and zeta potential for 30 

days at different temperatures (4, 34 and 37 ° C) and in different media (water, 

PBS, RPMI and mouse (BALB/c) plasma). Another published report showed 

that sizes of AmB loaded chitosan-TPP nanoparticles were stable for 6 months 

in water at 4° C and at room temperature and chitosan-dextran nanoparticles 

were stable in terms of sizes and zeta potential for 4 weeks (240, 268). The 

encapsulation efficacy of AmB in both types of nanoparticles was around 90% 

and similar data was reported for AmB encapsulation in chitosan nanoparticles 

with TPP (80%) or with chondroitin sulphate (90%) (122, 240). While the 

loading of AmB was 23% and 26% w/w for chitosan-TPP and chitosan-dextran 

sulphate nanoparticles respectively with two times more loading in comparison 

with chitosan chondroitin sulphate nanoparticles (122). 

 

AmB release from the nanoparticles  

The release profiles of AmB from AmB solution (as a control) through synthetic 

membrane was significantly higher than from AmB loaded chitosan-TPP or 

chitosan-dextran sulphate nanoparticles (p<0.05 by t test). The nature of the 

complexation agent (TPP or dextran sulphate) did not influence the slow AmB 

release from both types of nanoparticles in PBS and mouse plasma. The 

nanoparticles stability in plasma (size and charge) and slow release of AmB in 

plasma would ensure that AmB does not bind to low density plasma 

lipoproteins thereby avoiding any potential AmB toxicity. This is consistent with 

another study of stability of a noncovalent complex of amphotericin B (AmB) 

with poly(α-glutamic acid) (PGA) in mouse CD/1 serum (118). Both types of 

chitosan nanoparticles exhibited a pH-dependent AmB release, with a greater 

release at a low pH of 5 than at higher pH of 7.5. This is likely to be due to the 

higher solubility of chitosan in acidic media (269). 
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Drug release from chitosan-TPP nanoparticles was faster than from chitosan-

dextran sulphate nanoparticles and this could be explained as chitosan-TPP 

nanoparticles are significantly smaller than chitosan-dextran sulphate 

nanoparticle. The resulting larger surface area to volume ratio of chitosan-TPP 

nanoparticles would allow greater AmB release from the surface of the 

nanoparticles as more of the drug is closer to the surface (254). The negatively 

charge of chitosan-dextran sulphate nanoparticles would also play a role in 

slower release which reported previously of insulin release (270).   

3.4.1. Conclusion 

In summary, we successfully prepared two different types of AmB loaded 

chitosan nanoparticles, one smaller size nanoparticle with positive surface 

charge and the other with larger size and negative charge. The synthesized 

nanoparticles were able to efficiently encapsulate AmB. Different parameters 

such as chitosan concentration, chitosan: TPP or chitosan: dextran sulphate 

mass ratio and chitosan solution pH significantly affected the physicochemical 

characterization of the nanoparticles. Both positive and negative nanoparticles 

showed a high stability in terms of size and at different temperatures. As 

expected, these nanoparticles exhibited a prolonged AmB release. Therefore, 

they appear to be good candidates for further investigation into their anti-

leishmanial activity by different routes of administration.  
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4. In vitro and in vivo activity of chitosan formulations in 

experimental cutaneous leishmaniasis 

4.1. Introduction 

The intravenous AmB (as mentioned in the introduction) is one of the available 

second-line drugs for leishmaniasis which acts by forming pores in the cell 

membrane of Leishmania via complexation with ergosterol. However, the use 

of the conventional deoxycholate amphotericin B (Fungizone) is clinically 

limited because of the infusion-related side effects such as, fever, nausea, 

vomiting, rigours and two more serious effects: anaemia and nephrotoxicity 

(271, 272). A great interest of research to develop the drug delivery system of 

AmB in leishmaniasis treatment arises. Accordingly, liposomal formulation 

(AmBisome®, size= 70-80 nm (272, 273)) with a better tolerated profile and 

low toxicity issues was developed and approved by FDA for the treatment of 

VL. It has showed clinical effectivity in CL patients, in multiple doses (3 mg/kg 

daily for a total of 21 mg/kg) (272, 274). Although AmBisome® is on the WHO 

Essential Medicines List, this formulation has some limitations in terms of the 

high price (at least 200 USD$ per vial of 50 mg, is donated by Gilead via WHO 

for free for VL, not for CL ), the need for cold chain, shelf-life related issues, 

slow infusion and the difficult to access the drug in many countries (170, 275, 

276). Moreover, AmBisome® has a complex production process and an 

increase in particles size and a change in the drug content upon storage of 

AmBisome® have been reported (during 72 h of storage) (276, 277). 

Other drug delivery systems (DDs) used in the Leishmania field encounter 

some disadvantages summarised in Table 4.1, in addition to accumulation of 

lipid in liver and spleen caused by the lipidic formulations that may cause 

pathological conditions (278).  
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Table 4.1. Disadvantages of different DDs (67, 112, 279, 280, 281, 282, 283, 
284) 

DDs Disadvantages 

Liposomes 
High cost, low stability and using an organic solvent in the 
preparation 

Niosomes 
Instability, leaking of entrapped drug and Hydrolysis of 
encapsulated drugs which limiting the shelf life of the 
dispersion 

Nanodiscs 
Lack of size control, using an organic solvent and other 
drawback is the precipitation under low pH<6 

Emulsions 
The need to use a high concentration of surfactants and 
cosurfactant, stability highly influenced by pH and 
temperatures and desorption of surfactants  

Solid lipid 
nanoparticle 

Organic solvent, low drug loading efficiency, fast drug burst 
release and the possibility of drug expulsion during storage 
because of the crystalline structure  

 

Polymeric nanoparticles, prepared by inotropic gelation method (formed by 

interactions between two oppositely charged molecules ), have gained a great 

interest in the DDs, with advantages over other DDs as their preparation is 

usually at lower costs, simple, quick ,does not require the use of organic 

solvents (generally) and the long shelf life of these nanoparticles at room 

temperature (114)  

In Chapter 3, we successfully synthesised two types of AmB loaded 

nanoparticles (one was positively charged by using TPP and the other was 

negatively charged by using dextran sulphate) by using ionotropic gelation 

methods without using any organic solvents. This process was fast, simple 

and with low cost of 55 USD$ approx. for 1 g of AmB nanoparticles. These 

nanoparticles, in contrast to liposomal formulations, showed a high stability in 

different media (water, PBS, RPMI and mouse (BALB/c) plasma) at different 

temperatures for a period of 30 days, and they showed a slow drug release in 

these media. All these characteristics of AmB loaded chitosan nanoparticles 

(the high stability for a long time in different conditions in terms of size and 

charge, slow drug release, easy preparation method and low cost etc), made 

them a suitable candidate for further investigations for CL treatment.  

In the literature, chitosan nanoparticles have shown a good activity against a 

wide range of microbes and are sometimes more active than chitosan solution 

(MMW and HMW) (Table 4.1). Some studies showed that both chitosan 
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solution and chitosan nanoparticles have the same antimicrobial mechanism 

i.e. by interacting with microbial cell membrane or binding with microbial DNA 

(285). AmB encapsulated in different types of chitosan nanoparticles has been 

evaluated against leishmaniasis with promising results in vitro and in vivo and 

the studies are summarised in Table 4.2. Most of these studies used positively 

charged nanoparticles with a size greater than 100 nm. In contrast, we decided 

to investigate smaller nanoparticles (for possible skin permeation, and as 

smaller size of nanoparticles facilitates a passive transport from blood vessels 

to tissues when administrated intravenously and can enhance the 

extravasation in the inflamed lesions on the skin and can facilitates 

macrophage targeting residence in the skin (255, 256) ), with positive charge 

(when prepared with TPP) or negative charge (when prepared with dextran 

sulphate) to identify any influence of nanoparticle charge.   

Therefore, this chapter aimed to evaluate: 

(i) the in vitro activity of blank and amphotericin B loaded chitosan TPP 

or dextran sulphate nanoparticles against L. major and L. mexicana 

promastigotes and amastigotes  

(ii) the in vivo anti-leishmanial activity of blank and amphotericin B 

loaded chitosan TPP or dextran sulphate nanoparticles (through 

intravenous route) in murine models of CL caused by L. major  

(iii) the permeation of these nanoparticles and chitosan solution through 

BALB/c skin by a Franz diffusion study.  

We did not include HMW chitosan solution in the intravenous route of the in 

vivo study as its diluted acid solutions were too viscous and this makes it very 

difficult and not suitable for mice intravenous route (HMW chitosan viscosity is 

800-2000 cP, 1 wt. % in 1% acetic acid) (286, 287).  
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Table 4.2. Antimicrobial activity of chitosan nanoparticles (285) 

Nanoparticles Microbes Results 

Chitosan nanoparticles 
(Chitosan, MW 220 
KDa) 

Staphylococcus aureus 
Escherichia coli 

Chitosan nanoparticles were 
more effective than chitosan 
solution and 
doxycycline(288) 

Chitosan nanoparticles 
(LMW) 

Streptococcus mutans 
 

Inhibited biofilm formation 
(289) 
 

Chitosan-silver 
nanocomposites 
(HMW) 

Staphylococcus aureus 
 

A synergistic antimicrobial 
activity between chitosan 
and silver nanomaterials 
(290) 

Chitosan nanoparticles 
(Chitosan, MW 310 
KDa) 

Candida albicans 
 

Chitosan nanoparticles were 
more active than chitosan 
with lower MIC50 (291) 

AmB loaded chitosan 
nanoparticles (LMW) 

Candida albicans 
 

Chitosan nanoparticles 
showed similar activity to 
AmB with 
higher corneal 
penetration(292) 
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Table 4.3. Anti-leishmanial activity of AmB loaded chitosan nanoparticles 

DDS Preparation method Nanoparticles 
properties 

Toxicity Ant-leishmanial activity 

Nanoemulsion 
based chitosan 
nanocapsule 
entrapping AmB 

First, an oil-in-water 
(o/w) nanoemulsion 
was formulated by 
modified spontaneous 
emulsification solvent 
evaporation. Secondly 
nanocarrier was 
generated by coating 
with chitosan 
deposition on the 
water-oil surface 

Size= 146 ± 9 nm 
Zeta potential= 
+29±0.8 mV 

AmB DDS was 
significantly less 
toxic against the 
J774A cell line 
 

In vitro: EC50 for AmB DDs, AmBisome® 

and Fungizone was 0.19±0.04, 0.29 ± 0.03 
and 0.48 ± 0.05 μg/ml respectively against 
L. donovani promastigotes 
 
In vivo: L. donovani infected hamster 
model received (i.p.) AmB-loaded 
formulations at 1 mg/kg on 5 consecutive 
days. AmB DDS, AmBisome® and 
Fungizone caused 86 ±2%, 
70 ±3 % and 56 ±4% inhibition of 
amastigotes in spleen. (219) 
 

Chitosan-coated solid 
lipid nanoparticles were 
developed and loaded 
with 
amphotericin B 

Solvent emulsification-
evaporation 

Size= 159 ±25 nm In mice model, 
AmB DDS was 
significantly ten-
fold less toxic than 
pure AmB solution 
and was safe up to 
AmB concentration 
equivalent to 5 
mg/kg body weight. 
 

In vitro: EC50 of AmB DDs, AmBisome® 

and Fungizone was 0.046±0.02, 
0.157±0.03 and 0.320±0.08 μg/ml 
respectively against L. donovani 
amastigotes infecting adherent mouse 
macrophage cell line J774A.1 (259) 

AmB loaded pluronic 
F127 (PF 127) micelles 
coated with chitosan 

Thin film hydration Size= 139 ± 3 to 
170 ± 53 nm                               
Zeta potential= 
+11.0 ± 2 to +53 ± 
5 mV 

AmB DDS was ten-
fold less toxic than 
pure AmB solution 
against J774A.1 
cell 

In vitro: EC50 of AmB DDS, and AmB 
solution 0.05 and 0.09 μg/ml respectively 
against L. donovani amastigotes infecting 
macrophage cell line J774A.1(293) 
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AmB loaded chitosan 
nanoparticles 

Inotropic gelation 
method (between 
chitosan positively 
charged and 
chondroitin sulphate 
negatively charged 

Size= 136±11 nm 
Zeta potential= 
+8.4 to +30.2 mV 

Cytotoxicity against 
murine 
macrophages of 
AmB DDs was 
nearly ten-fold less 
compared to pure 
AmB solution 

In vitro: EC50 of AmB DDS and AmB was 
1±0 and 0.1±0 respectively (AmB DDS 
was less active) against L. amazonensis 
and 0.1±0 and 0.1±0 μg/ml respectively 
against L. chagasi (AmB DDS had similar 
activity to AmB). AmB DDs and AmB 
caused 90% and 89% 
reduction of L. amazonensis internalized 
macrophages (%)(122) 

AmB loaded chitosan 
nanoparticles 

Inotropic gelation 
method (between 
chitosan positively 
charged and 
chondroitin sulphate 
negatively charged 

Size= 136±11 nm 
Zeta -potential= 
+8.4 to +30.2 mV 

Cytotoxicity against 
murine 
macrophages of 
AmB DDs was 
nearly ten-fold less 
compared to pure 
AmB 

In vivo: L. amazonensis infected BALB/c 
mice received (i.v.)1 mg of drug/kg daily 
for 10 days. AmB DDs treated mice 
showed a smaller lesion size which was 
sustained up to 30 days after the 
treatment compared with AmB treated 
group(83) 

AmB loaded chitosan 
nanoparticles 

Phase separation 
method by mixing 
chitosan - TPP 
nanoparticles with AmB 
solution under stirring 
for 7 days 

Size= 112 nm 
Zeta potential= 
+8mV 

Mortality in mice 
received (i.p.) AmB 
solution 10 mg/kg 
was 10% while 0% 
in mice received 
AmB nanoparticles 
(10 mg/kg AmB 
equivalent) every 
other day for 3 
weeks 

In vitro: L. major promastigote killing (%): 
82% at 20 µg/mL. L. major amastigote 
killing (%): 78% at 20 µg/mL. 
In vivo: L. major infected BALB/c mice 
received (i.p.) AmB nanoparticles of 10 
mg/kg while the positive control mice 
received AmBisome® of 50mg/kg. There 
was no significant difference in the efficacy 
of the two formulations and caused 100% 
reduction of lesion size. (294) and 
https://www.dovepress.com/comparative-
analysis-between-four-model-
nanoformulations-of-amphoteric-peer-
reviewed-article-IJN 
 

https://www.dovepress.com/comparative-analysis-between-four-model-nanoformulations-of-amphoteric-peer-reviewed-article-IJN
https://www.dovepress.com/comparative-analysis-between-four-model-nanoformulations-of-amphoteric-peer-reviewed-article-IJN
https://www.dovepress.com/comparative-analysis-between-four-model-nanoformulations-of-amphoteric-peer-reviewed-article-IJN
https://www.dovepress.com/comparative-analysis-between-four-model-nanoformulations-of-amphoteric-peer-reviewed-article-IJN
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4.2. Material and methods 

4.2.1. Preparation of blank and AmB loaded chitosan nanoparticles 

All nanoparticles in this study were prepared and characterised as described 

in Chapter 3 in sections 3-2-1- and 3-2-2-, within the parameters (10 ml of 

HMW chitosan solution (30 mg in 10 ml AC 1%),10 mg of AmB (Purity ≥ 95%, 

Cambridge Bioscience, UK) dissolved in 0.5 ml of DMSO (pure AmB), 10 ml 

of TPP solution (6 mg in 10 ml DS water) or 10 ml of dextran solution (30 mg 

in 10 ml double distilled water). After freeze drying the nanoparticle 

suspension, the white (blank nanoparticles) or yellow (AmB loaded 

nanoparticles) product was reconstituted in double distilled water. After this, 

these nanoparticles were characterised by size, charge and AmB loading as 

described in Chapter 3. Additionally, the AmB loading was evaluated again 

after freeze drying by dissolving the yielded yellow powder in DMSO, in acidic 

pH 3 (by using 1% (v/v) acetic acid), and then measuring the quantity of AmB 

by HPLC as described previously in Chapter 3, section 3.3.6.1. There was no 

significant difference in the loading value between this method and the 

previously used one in Chapter 3, section 3-2-5- (p<0.05 by t-test).  

AmB (Purity ≥ 95%, Cambridge Bioscience, UK) dissolved in DMSO at a 10 

mM stock and diluter for proper concentrations in RPMI-1640 with 10% HiFCS 

(pure AmB). 

AmBisome® (a liposomal formulation of AmB, Gilead Sciences international 

Ltd, UK) was prepared according to the manufacturer’s instructions. Briefly, a 

suspension of AmB liposome was prepared in cold sterile MilliQ water to obtain 

an initial concentration of 4 mg/ml. The suspension was shaken and incubated 

at 65ºC for 10 mins and then cooled to room temperature. Further dilution to 

the required concentration of AmBisome® was done with 5% dextrose (w/v) 

(71). 

4.2.2. Red blood cells haemolysis  

Blood samples were obtained from two human donors (O+) (volunteers, Queen 

Mary, University of London) drawn directly into EDTA tubes to prevent 

coagulation. Blood samples were centrifuged at 500 x g for 5 min and the 
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plasma aspirated and discarded. The remaining red blood cells (RBCs) were 

then washed three times in buffered saline (10 mM Tris, 150 mM NaCl, pH 

7.4) prior to the assay. The RBCs were diluted to a density of 5x108 cells/ml 

and exposed to 1000, 500, 250, 125, 65.5, 31.25, 15.62 and 7.81 μg/ml of 

chitosan solution (HMW chitosan), blank chitosan-TPP nanoparticles, AmB 

loaded chitosan-TPP nanoparticles (AmB equivalent), blank chitosan-dextran 

sulphate nanoparticles, AmB loaded chitosan-dextran sulphate nanoparticles 

(AmB equivalent) and pure AmB in 96 well plates (200 μl in each well) for 1 h 

at 37°C. The plate was centrifuged for 5 mins at 500 x g to pellet intact RBCs.  

100 μl of supernatant from each well was transferred into a clear, flat-bottomed 

96-well plate and cell lysis was determined spectrophotometrically (540 nm). 

Phosphate buffer was used as a negative control and 20% Triton X-100 was 

used as a positive control representing 100% haemolysis. The results were 

expressed as the mean percentage reduction in human red blood cells 

compared with non-treated control wells, and represented by the 50% 

haemolytic concentration (RBC50) (295) 

4.2.3. In vitro cytotoxicity assays 

Cytotoxicity of chitosan formulations against KB cells was evaluated at 

concentrations of 2000, 1000, 500, 250, 125, 65.5, 31.25 and 15.62 μg/ml of 

blank chitosan-TPP nanoparticles, blank chitosan-dextran sulphate 

nanoparticles, AmB loaded chitosan-TPP nanoparticles (AmB equivalent) and 

AmB loaded chitosan-dextran sulphate nanoparticles (AmB equivalent). 

Cytotoxicity was evaluated in RPMI 1640 at two pH values (at normal pH of 

RPMI 7.5 and at a lower pH 6.5). Pure AmB, AmBisome® and chitosan solution 

(HMW chitosan) were included in this experiment for comparison. 

Podophyllotoxin (Sigma, UK) was included as a positive control at a starting 

concentration of 0.05 μM. Cytotoxicity was evaluated by a cell viability assay 

using the resazurin sodium salt solution (AlamarBlue, Sigma, UK) as 

described in Chapter 2, section 2.8.5. 
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4.2.4. In vitro 72-hour activity of chitosan and its derivatives against 

extracellular L. major and L. mexicana promastigotes 

The activity of chitosan formulations against L. major and L. mexicana 

promastigotes was evaluated at concentrations 486, 162, 54, 18, 6, 2, 0.66, 

0.22, 0.072, 0.024 and 0.008 μg/ml of blank chitosan-TPP nanoparticles, blank 

chitosan-dextran sulphate nanoparticles, AmB loaded chitosan-TPP 

nanoparticles (AmB equivalent) and AmB loaded chitosan-dextran sulphate 

nanoparticles (AmB equivalent). The anti-leishmanial activity was evaluated in 

RPMI 1640 at two pH values (7.5 and 6.5). Pure AmB, AmBisome® and 

chitosan solution (HMW chitosan) were included in this experiment for 

comparison. See Chapter 2, section 2.8.6 for full details.  

4.2.5. In vitro 72- hour activity of chitosan and its derivatives against 

intracellular amastigotes of L. major and L. mexicana 

The activity of chitosan formulations against L. major and L. mexicana 

intracellular amastigotes was evaluated at concentrations 486, 162, 54, 18, 6, 

2, 0.66, 0.22, 0.072, 0.024 and 0.008 μg/ml of blank chitosan-TPP 

nanoparticles, blank chitosan-dextran sulphate nanoparticles, AmB loaded 

chitosan-TPP nanoparticles (AmB equivalent) and AmB loaded chitosan-

dextran sulphate nanoparticles (AmB equivalent). The anti-leishmanial activity 

was evaluated in RPMI 1640 at two pH values (7.5 and 6.5). Pure AmB, 

AmBisome® and chitosan solution (HMW chitosan) was included in this 

experiment for comparison. PEMs were used as a macrophage model of 

intracellular amastigotes. See Chapter 2, section 2.8.7 for full details.  

 

Similarly, the host cell dependence of the anti-L. major amastigotes activity 

of chitosan formulations (blank chitosan-TPP nanoparticles, AmB loaded 

chitosan-TPP nanoparticles and AmB loaded chitosan-dextran sulphate 

nanoparticles) was evaluated by using two further host cell types (bone 

marrow macrophages (BMMs) and differentiated THP-1 cells). See Chapter 2, 

section 2.8.8 for full details.  
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4.2.6. Evaluation of the in vivo anti-leishmanial activity of chitosan 

formulations 

A pre-toxic study of AmB loaded nanoparticles was done before starting the 

treatment. This toxic study was done by using female BALB/c mice aged 6 to 

8 weeks, at 18-20g (Charles River, UK) and these mice were injected 

intravenously with 100 μL of AmB loaded chitosan-TPP nanoparticles or AmB 

loaded chitosan-dextran sulphate nanoparticles starting with concentration 20 

mg/kg of AmB and then 2-fold decrease. All mice monitored closely and 

immediately after administration and then regularly until 48 hours post-dose 

for two weeks. The safest doses were chosen for the treatment; 5 mg/kg of 

AmB for AmB loaded chitosan-TPP nanoparticles and 10 mg/kg of AmB 

loaded chitosan-dextran sulphate nanoparticles. 

4.2.6.1. In vivo L. major model of CL 

Female BALB/c mice aged 6 to 8 weeks, at 18-20g, were purchased from 

Charles River Ltd. These mice were maintained under specific conditions (they 

were kept in controlled rooms with humidity of 55% and temperature of 26°C 

and fed water and rodent food ad libitum). Luciferase-expressing L. major 

JISH118 (Ppy RE9H+L. major JISH118) amastigotes were harvested and 

isolated from mouse skin lesions previously infected with Leishmania 

promastigotes (at a low passage number). Harvested amastigotes were 

transformed to promastigotes by keeping them at 26°C in Schneider’s insect 

medium + 10% HiFCS. Promastigotes were passaged every week and used 

at a low passage number ( ≤3) to infect experimental mice due to the potential 

decrease in virulence with increasing passage number and extended culture 

(166). 

For this study, mice were shaved and then infected with 200 μl of 4x107 of 

stationary-phase luciferase-expressing L. major JISH118 (Ppy RE9H+L. major 

JISH118) promastigotes subcutaneously on the rump above the tail. After 7 

days of infection, small nodules started to be visible at the site of injection and 

the lesion size was recorded daily by using a digital calliper; 10 days post 

infection the lesions measured 5 mm approximately in diameter. The infected 
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mice were allocated in 8 groups (5 mice in each group) with similar average 

lesion diameters (P >0.5, one-way-ANOVA) after which, the administration of 

formulations was started as described below: 

 in vivo experiment 1 

Group 1 Negative control: untreated, uninfected 

Group 2 The positive control group (G2): mice received 10 doses of 100 μL of 

paromomycin at a dose of 50 mg/kg intraperitoneally (i.p.) for 10 

consecutive days, a regimen with proven efficacy in this CL model 

(77, 202)   

Group 3 Group 3 (G3): mice received 5 doses of 100 μL of AmBisome® ( size= 

70-80 nm) (272, 273), 10 mg/kg intravenously (i.v.) over 10 days, 

alternate day dosing on days 0, 2, 4, 6, and 8. 

Group 4 Group 4 (G4): mice received 5 doses of 100 μL of blank chitosan-

TPP nanoparticles (equivalent to AmB-loaded) intravenously (i.v.) 

over 10 days, alternate day dosing 

Group 5 Group 5 (G5): mice received 5 doses of 100 μL of AmB loaded 

chitosan-TPP nanoparticles (5 mg/kg of AmB) intravenously (i.v.) 

over 10 days, alternate day dosing 

Group 6 Group 6 (G6): mice received 5 doses of 100 μL of blank chitosan-

dextran sulphate nanoparticles (equivalent to AmB-loaded) 

intravenously (i.v.) over 10 days, alternate day dosing 

Group 7 Group 7 (G7): mice received 5 doses of 100 μL of AmB loaded 

chitosan-dextran sulphate nanoparticles (10 mg/kg of AmB) 

intravenously (i.v.) over 10 days, alternate day dosing 

Group 8 Group 8 (G8): mice received 5 doses of 100 μL of chitosan 

nanoparticle vehicles (water) intravenously (i.v.) for over 10 days, 

alternate day dosing 

 

At day 9 (one day after the last dose was administered), the experiment was 

terminated, mice were humanely killed and skin samples were harvested by 

surgical removal from the areas containing the localized CL lesion and non-

CL-infected skin on the back (control site) of the same mouse ( Fig 4.1 ), stored 
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at -80oC for further experiments (the biodistribution of AmB and for qPCR and 

determination of burden). Treatment efficacy was evaluated by measuring the 

lesion size progression and parasite load (bioluminescence signal).  

A second, repeated in vivo experiment was conducted with 35 mice were used 

(in vivo experiment 2). This experiment was performed for reproducibility and 

to study the dose-response effect of AmB loaded chitosan-TPP nanoparticles. 

Ten days post infection, the lesions measured 5 mm approximately in diameter 

and mice were allocated to 7 different experimental groups to ensure 

comparable lesion sizes in each group (5 mice in each group).  

Mice were then treated for 10 days, receiving injections containing one of the 

following regimens: 

Group 1 Control group (G1): untreated, infected mice 

Group 2 The positive control group (G2): mice received 10 doses of 100 

μL of paromomycin 50 mg/kg intraperitoneally (i.p.) for 10 

consecutive days, a regimen with proven efficacy in this CL model 

(77, 202) 

Group 3 mice received 5 doses of 100 μL of AmBisome® 10 mg/kg 

intravenously (i.v.) over 10 days, alternate day dosing on days 0, 

2, 4, 6, and 8. 

Group 4 mice received 5 doses of 100 μL of AmB loaded chitosan-TPP 

nanoparticles (5 mg/kg of AmB) intravenously (i.v.) over 10 days, 

alternate day dosing 

Group 5 mice received 5 doses of 100 μL of AmB loaded chitosan-TPP 

nanoparticles (2.5 mg/kg of AmB) intravenously (i.v.) over 10 

days, alternate day dosing 

Group 6 mice received 5 doses of 100 μL of AmB loaded chitosan-TPP 

nanoparticles (1.25 mg/kg of AmB) intravenously (i.v.) over 10 

days, alternate day dosing 

Group 7 mice received 5 doses of 100 μL of blank chitosan-TPP 

nanoparticles (equivalent to 5 mg/kg AmB-loaded) intravenously 

(i.v.) over 10 days, alternate day dosing 
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After which the experiment was carried out as previously described.  

Both blank and AmB loaded chitosan nanoparticles were suspended in 

distilled water, characterizes (size, charge, AmB loading) and used freshly for 

the in vivo study.  

- Fungizone (a conventional deoxycholate formulation of AmB) was not 

included in both in vivo experiments as controls, because Wijnant et al 

(2017) found that the highest tolerated dose of Fungizone was 1 

mg/kg/i.v. (which did not cause acute toxicity to BALB/c mice) and 

demonstrated that Fungizone (1 mg/kg/QAD for 10 days; i.v.) did not 

cause a significant reduction in lesion sizes or parasite load in murine 

(BALB/c) models of L. major (170).  

 

Figure 4.1. Schematic representation of skin samples used in the study (166) 

4.2.6.2. Measurement of lesion size 

The lesion size was measured daily using digital calipers by determining the 

width and length of the lesion and then calculating the average (mm). One -

way ANOVA with post-hoc Tukey test was performed to analyse the statistical 

differences between the average diameters per group (166). 
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4.2.6.3. Measurement of the bioluminescence signal 

The luciferase substrate; luciferin (D-Luciferin potassium salt, Xenogen, CA 

and Gold Biotechnology, St. Louis, MO) was injected (sc) into the mice at 10 

mins before the acquiring of bioluminescent signal. After 7 mins of injection, 

the mice were anaesthetized by inhalation with 3% isoflurane with 100% 

oxygen at a flow rate of 2.5 l/min until no movement was shown (3 mins 

approx.). Mice were then imaged and the images were acquired by using a 

Living Image software (version 4). Emitted photons were gathered by auto 

acquisition with a charge couple device (CCD) camera (PerkinElmer IVIS 

Spectrum In vivo Imaging System) using the medium resolution (medium 

binning) mode. A circular region of interest (ROI) encompassing the nodular 

area on the rump was drawn to quantify the bioluminescence, expressed as 

radiance and results were expressed in numbers of photons/sec (296). 

4.2.6.4. Quantification of AmB in skin samples  

Each frozen skin sample was cut into fine, long pieces, weighed and then 

inserted into microcentrifuge tubes. A spatula of 2 mm zirconium oxide beads 

(Next Advance, United Kingdom) (about 100 mg) was added with 1 ml of PBS 

to each tube. After which, the skin sample was homogenised in 3 cycles of 30 

seconds of 6800 rpm using a Precellys 24 homogenizer (Bertin Technologies, 

France) to obtain a smooth homogenate. Then 100 ul of the homogenate was 

added to 250ul of a mixture of methanol: DMSO (84:16) plus 200 ng/ml 

tolbutamide (analytical standard; Sigma, United Kingdom) for drug extraction 

and tolbutamide was used for protein precipitation, in 96-well plates. Then, 

these 96-well plates were shaken for 10 mins at 200 rpm and centrifuged at 

4°C at 6600 rpm for 15 mins. Two hundred microliters of supernatant were 

stored at -80°C until further analysis for quantification of AmB by HPLC as 

described previously in Chapter 3, in section 3.3.6.1. A calibration curve for 

the HPLC was prepared of AmB concentrations in untreated healthy skin 

homogenate (this homogenate was prepared as described by grinding the skin 

by using the zirconium oxide beads and the blender, shaking and centrifuging 

the samples) (170).  
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4.2.7. Skin permeation study by Franz diffusion cell (FDC) assay 

25 female BALB/c mice (6 to 8 weeks old) at 18-20g, were shaved and infected 

with 200 μl of 4x107 of stationary phase L. major JISH118 promastigotes 

subcutaneously on the rump above the tail. After 7 days of infection small 

nodules started to be visible at the site of injection and the lesion size was 

recorded daily by using a digital calliper. Ten days post infection, the lesions 

measured approximately 5 mm in diameter. The mice were humanely killed 

and 2 circular discs of skin (infected and uninfected skin- 15mm diameter 

approximately) were excised per mouse; the infected skin piece containing the 

Leishmania lesion was cut from the dorsal area above the tail and the 

uninfected piece above the lesion on the higher back of same mouse was 

collected (Fig 4.1). Forceps were used to gently remove fat and muscle from 

the skin samples and these samples were stretched carefully on Whatman 

filter papers. They were then mounted between the donor and receptor 

compartment of the Franz cell device (Fig 4.2.) and kept in place by a clamp. 

PBS with 2% hydroxypropyl-β-cyclodextrin (CD, Sigma, UK) was sonicated for 

30 mins then added to the receptor compartment (as AmB is soluble in CD at 

37 μg/ml) together with a small magnetic stirrer. The Franz cells were 

incubated in a warm water bath on a magnetic stirrer plate set at a speed of 

800 rpm until the skin reached temperature 34°C. The Franz cells were 

examined for air bubbles and leakage (166). 100 µl of each formulation (Pure 

AmB as a control (3.96 ± SD mg of amphotericin B/ml), AmB loaded chitosan 

TPP nanoparticles (3.93 ± SD mg of amphotericin B/ml)) and AmB loaded 

chitosan dextran sulphate nanoparticles (3.84 ± SD mg of amphotericin B/ml)) 

was applied to each donor compartment. 100 µl of receptor fluid was taken at 

regular time intervals and was replaced with 100 µl of fresh PBS with 2% CD 

and stored at -80oC to be analysed later by HPLC to quantify AmB. After 24 h 

the experiment was terminated, and the Franz cells were disassembled. Donor 

chambers were washed with 1 ml of methanol: DMSO (84:16) which was then 

stored at -80oC for further AmB analysis by HPLC. A dry cotton swab was used 

to remove any residual AmB on the surface of skin.  This was then stored at -

80oC for further quantification of AmB. The skin samples were also stored at -

80oC for further experiments. The cumulative amount of drug permeated as a 
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function of time was plotted and the linear portion of the graph was used to 

calculate the flux and lag time (Fig 4.14). the permeability coefficient (Kp) was 

calculated by using Equation 5.  

 

 

 

Figure 4.2. Franz diffusion cell used for the permeation studies (166) 

4.2.7.1. Quantification of AmB by HPLC  

The amount of AmB in the wash was quantified by HPLC using parameters 

described in Chapter 3 in section 3-2-7- ; standard solutions of AmB were 

achieved by diluting AmB in methanol: DMSO (84:16) solution.  

The amount of AmB in the cotton swab was quantified by HPLC using 

parameters described in Chapter 3 in section 3-2-7-. Firstly, the cotton swab 

was soaked in 1 ml of methanol: DMSO (84:16) solution for 24 h and then 

analysed.  For the calibration curve, a dry cotton swab was soaked in 1 ml of 
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methanol: DMSO (84:16) solution for 24 h and then this solution was used to 

prepare a standard solution of AmB. 

To extract AmB from the skin disc, the skin was homogenised as described 

below:  

Each frozen skin sample was cut into fine, long pieces, weighed and then 

inserted into microcentrifuge tubes. A spatula-full of 2 mm zirconium oxide 

beads (Next Advance, United Kingdom) (about 100 mg) was added with 1 ml 

of PBS to each tube. The skin sample was homogenised in 3 cycles of 30 

seconds at 6800 rpm using the Precellys homogeniser (Bertin Technologies) 

to obtain a smooth homogenate. 100 ul of homogenate was then added to a 

250 µl of mixture of methanol: DMSO (84:16) plus 200 ng/ml tolbutamide 

(analytical standard; Sigma, United Kingdom) for drug extraction protein 

precipitation in 96-well plates. These 96-well plates were shaken for 10 mins 

at 200 rpm then centrifuged at 4°C at 6600 rpm for 15 mins. 200uL of 

supernatant was stored at -80°C until further analysis for quantification of AmB 

by HPLC as described previously in Chapter 3. A calibration curve for the 

HPLC was prepared with AmB concentrations in untreated healthy skin 

homogenate (this homogenate was prepared as described by grinding the skin 

using the zirconium oxide beads and the Precellys blender, shaking and 

centrifuging the samples) (170).  

4.2.7.2. Fluorescence microscopy of skin sections post formulation 

application 

To visualise the nanoparticles, formulations with rhodamine-labelled chitosan 

were prepared in a similar manner to unlabelled particles and then were 

characterised regarding size and zeta-potential using the Zeta-sizer and 

applied to infected and uninfected mouse skin using FDC (blank rhodamine-

labelled chitosan-TPP nanoparticles equivalent to 3.93 ± SD mg of 

amphotericin B/ml loaded in AmB loaded chitosan TPP nanoparticles and 

blank rhodamine-labelled chitosan-dextran sulphate nanoparticles equivalent 

to 3.84± SD mg of amphotericin B/ml loaded in AmB loaded chitosan TPP 

nanoparticles) as described above. After the experiment, the cells were 
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dismantled and skin tissue fixed in tris-zinc fixative overnight as described by 

Accart et al (2014) (297). After 24 hours the skin samples were embedded in 

gelatin and immersed in OCT before storage at -80°C. Cryosections of 5 µm 

were cut using a cryostat (Leica CM1950). 

For immunohistochemistry, the sections were defrosted and submerged in 

PBS (37°C) for 30 minutes to dissolve the gelatine after which they were 

submerged in PBS for 5 minutes, counterstained with DAPI and mounted in 

Prolong Gold (Thermofisher Scientific). Sections were examined using a Zeiss 

Axio Scan Z1 with a x 20 objective.  

4.2.8. Statistical analysis.  

For the efficacy experiment, ANOVA (1-way for parasite load and 

intralesional AmB levels, 2-way repeated measures for lesion size) followed 

by Tukey’s multiple comparison test were used. A P value of <0.05 was 

considered statistically significant. All analyses were performed with 

GraphPad Prism version 7.02.   
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4.3. Results 

4.3.1. Haemolysis activity of chitosan nanoparticles  

The haemolytic activity of blank and AmB loaded chitosan TPP or dextran 

sulphate nanoparticles was clearly observed in a dose-dependent manner as 

shown in Fig 4.3. Pure AmB was significantly more haemolytic (around 18-

fold) than both types of AmB loaded nanoparticles (p<0.05 by an extra sum-

of-squares F test) (Table 4.4). On the other hand, AmBisome® is less toxic 

against RBCs than both types of AmB loaded nanoparticles (p<0.05 by an 

extra sum-of-squares F test) (Table 4.4). 

 

Table 4.4. In vitro haemolytic activity of chitosan formulations after 1h of 
incubation 

Compound Properties RBC50 µg/ml RBC90 µg/ml 

Amphotericin B (pure 
AmB) 

Purity ≥95%, 
MW 924.1 

11.3 ± 2 40.88 ± 5 

AmBisome® 
Liposomal AmB, 
Size= 70-80 nm 

525.8 ± 6 1782 ± 8 

HMW chitosan 
MW=310-375 

KDa 
810.1 ± 7 3367 ± 9 

Blank chitosan-TPP 
nanoparticles 

Size= 67 ± 7 nm, 
Zeta potential= 
28.5 ±1.9 mv 

623.7 ± 6 3639 ± 10 

AmB loaded chitosan-TPP 
nanoparticles 

Size= 69 ± 8 nm, 
Zeta potential= 

25.5 ± 1 mv 
209.5 ± 5 1129 ± 10 

Blank chitosan-dextran 
sulphate nanoparticles 

Size= 170 ± 9 
nm, Zeta 

potential= -12.9 
± 3 mv 

621.4 ± 8 3341 ± 16 

AmB loaded chitosan-
dextran sulphate 

nanoparticles 

Size= 174 ± 8 
nm, Zeta 

potential= -11 ± 
1mv 

202.8 ± 8 931.4 ± 8 

Experiments were conducted in triplicate cultures, data expressed as mean +/- SD 
(experiment was reproduced further two times with confirmed similar data and 
data not shown). A statistically significant difference was found in RBC50 values 
between AmB loaded chitosan nanoparticles and pure AmB (p<0.05 by an extra 
sum-of-squares F test). 
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Figure 4.3. Dose-response curves of haemolytic activity of chitosan nanoparticles (blank and AmB loaded nanoparticles) after 1h of 
incubation. Data are expressed as means ± SD from triplicates, statistically significant difference in RBC50 values between pure AmB 
and AmB loaded nanoparticles (pure AmB is significantly more toxic AmB loaded nanoparticles) (P <0.05 by an extra sum-of-squares 
F test)). 
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4.3.2. Cytotoxicity of blank and AmB loaded chitosan nanoparticles 

against KB cells in RPMI (pH 7.5 and pH 6.5) 

The cytotoxicity of blank and AmB loaded chitosan TPP or dextran sulphate 

nanoparticles against KB cells was clearly observed in a dose-dependent 

manner at two pH values (7.5 and 6.5) as shown in Fig 4.4. No significant 

difference in the cytotoxicity was observed for all formulations at pH of 7.5 and 

pH of 6.5 (pH did not have an effect on the cytotoxicity) (p>0.05 by t-test) 

(Table 4.5). Both types of blank chitosan nanoparticles showed a significantly 

less cytotoxicity than AmB loaded chitosan nanoparticles (p<0.05 by an extra 

sum-of-squares F test). AmB loaded chitosan TPP or dextran sulphate 

nanoparticles were significantly less toxic than pure AmB (6-fold less toxic 

against KB cells) (p<0.05 by an extra sum-of-squares F test). However, no 

significant difference was observed in the cytotoxicity between AmB loaded 

nanoparticles and AmBisome® (p>0.05 by an extra sum-of-squares F test) 

(Table 4.5).  

 

 

Table 4.5. In vitro cytotoxicity of chitosan formulations against KB cells at two pH 
values after 72h of incubation 

Compound 

 pH=7.5 pH=6.5 

Properties 
LD50 

µg/ml 
LD90 

µg/ml 
LD50 

µg/ml 
LD90 µg/ml 

Podophyllotoxin  0.7 ± 0.03 2 ± 0.3 0.8 ± 0.04 2 ± 0.4 

Amphotericin B (pure 
AmB) 

Purity ≥95%, 
MW 924.1 

59 ± 2 228 ± 2 60 ± 2 225 ± 3 

AmBisome® 

Liposomal 
AmB, Size= 
70-80 nm 

401 ± 2 1568 ± 2 401 ± 3 1568 ± 2 

HMW chitosan 
MW=310-
375 KDa 

894 ± 4 2840 ± 3 825 ± 2 2864 ± 2 
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Blank chitosan-TPP 
nanoparticles 

Size= 67 ± 7 
nm, Zeta 

potential= 

28.5 ±1.9 
mv 

728 ± 2 2858 ± 4 696 ± 3 2588 ± 4 

AmB loaded chitosan-
TPP nanoparticles 

Size= 69 ± 8 
nm, Zeta 
potential= 

25.5 ± 1 mv 

356 ± 5 1354 ± 5 348 ± 3 1318 ± 5 

Blank chitosan-
dextran sulphate 

nanoparticles 

Size= 170 ± 
9 nm, Zeta 

potential= -
12.9 ± 3 mv 

949 ± 6 2915 ± 6 917 ± 2 2806 ± 1 

AmB loaded chitosan-
dextran sulphate 

nanoparticles 

Size= 174 ± 
8 nm, Zeta 

potential= -
11 ± 1mv 

366 ±3 1113 ± 3 366 ± 3 1131 ±4 

TPP 
MW= 

367.864 
g/mol 

840± 8 1400± 8 850± 8 1500± 8 

Dextran sulphate MW= 40 KDa >1200  >1200  

Experiments were conducted in triplicate cultures, data expressed as mean +/- SD (experiment 
was reproduced further two times with confirmed similar data and data not shown). Blank or 
AmB loaded chitosan nanoparticles had a similar toxicity at both pH values (6.5 and 7.5) toward 
KB-cells (p >0.05 by t-test).  A statistically significant difference was found in LD50 (50% lethal 
dose) values between AmB loaded chitosan nanoparticles and pure AmB (p<0.05 by an extra 
sum-of-squares F test). 
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Figure 4.4. Dose-response curves of the cytotoxicity against KB-cells. KB cells were cultured in the presence of different concentrations 
of chitosan formulations. The toxicity of drugs was measured after 72 hours by measuring the inhibition of metabolic activity. Values are 
expressed as % inhibition of KB cells relative to untreated controls. Statistically significant difference in LD50 values between pure AmB 
and AmB loaded nanoparticles against KB-cells (AmB is significantly more toxic AmB loaded nanoparticles) (P <0.05 by an extrasum-of-
squares F test)). 
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4.3.3. Activity of blank and AmB loaded chitosan nanoparticles against 

L. major and L. mexicana promastigotes in RPMI (pH 7.5 and pH 6.5) 

Both chitosan solution and blank chitosan TPP nanoparticles were significantly 

more active at lower pH (6.5) than at higher pH (7.5) (p< 0.05 by t-test), 

chitosan solution was more active than blank chitosan-TPP nanoparticles at 

two pH values (p< 0.05 by t-test) (Fig 4.5.). Blank chitosan-dextran sulphate 

nanoparticles had no activity against Leishmania promastigotes up to a 

concentration of 486 µg/ml at two pH values. At both pH values (7.5 and 6.5) 

pure AmB, AmB loaded chitosan-TPP nanoparticles and AmB loaded 

chitosan-dextran sulphate nanoparticles showed a similar anti-promastigote 

activity without a significant difference in their activity at these two pH values 

(p >0.05 by t-test). They were significantly more active against Leishmania 

promastigotes than AmBisome® (p<0.05 by an extra sum-of-squares F test) 

(Table 4.6). L. major promastigotes were more sensitive than L. mexicana to 

pure AmB, AmB loaded chitosan-TPP nanoparticles and AmB loaded 

chitosan-dextran sulphate nanoparticles (p<0.05 by an extra sum-of-squares 

F test).   
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Table 4.6. In vitro activity of chitosan formulations against promastigotes at two pH values 

Compound 
 

Properties 
 

pH=7.5 * pH=6.5* 

L. major** L. mexicana** L. major** L. mexicana** 

EC50 µg/ml EC90 
µg/ml 

EC50 µg/ml EC90 
µg/ml 

EC50 µg/ml EC90 
µg/ml 

EC50 µg/ml EC90 
µg/ml 

Amphotericin B 
(pure AmB) 

Purity ≥95%, MW 
924.1 

0.06 ± 0.003 0.3 ± 0.02 0.2 ± 0.004 0.4 ± 0.03 0.06 ± 0.003 0.3 ± 0.02 0.2 ± 0.004 0.4 ± 0.03 

AmBisome® 
Liposomal AmB, 
Size= 70-80 nm 

1 ± 0.08 7 ± 0.3 1.8 ± 0.1 7 ± 0.07 1.1 ± 0.08 7 ± 0.1 1.9 ± 0.1 7 ± 0.01 

HMW chitosan MW=310-375 KDa 106 ± 7 539 ± 31 141 ± 31 556 ± 5 7.1 ± 0.5 56 ± 4 13.5 ± 0.8 163 ± 27 

Blank chitosan-
TPP nanoparticles 

Size= 67 ± 7 nm, 
Zeta potential= 

28.5 ±1.9 mv 

164 ± 6 443 ± 10 185 ± 10 443 ± 0.8 28 ±1.5 169 ± 11 38 ± 0.8 173 ± 10 

AmB loaded 
chitosan-TPP 
nanoparticles 

Size= 69 ± 8 nm, 
Zeta potential= 

25.5 ± 1 mv 

0.08 ± 0.003 0.5 ± 0.02 0.3 ± 0.02 0.7 ± 0.02 0.06 ± 0.003 0.4 ± 0.02 0.2 ± 0.004 0.4 ± 0.02 

Blank chitosan-
dextran sulphate 

nanoparticles 

Size= 170 ± 9 nm, 

Zeta potential= -
12.9 ± 3 mv 

No activity up to 486 

AmB loaded 
chitosan-dextran 

sulphate 
nanoparticles 

Size= 174 ± 8 nm, 

Zeta potential= -11 
± 1mv 

0.09 ± 0.003 0.4 ± 0.01 0.5 ± 0.02 1 ± 0.07 0.06 ± 0.003 0.3 ± 0.02 0.4 ± 0.02 1.5 ± 0.04 

TPP 
MW= 367.864 

g/mol 
No activity up to 486 

Dextran sulphate MW= 40 KDa No activity up to 486 

Experiments were conducted in triplicate cultures, data expressed as mean +/- SD (experiment was reproduced further two times with confirmed similar data 
not shown). *Statistically significant differences were found for the EC50 values of chitosan or blank chitosan-TPP nanoparticles at pH=6.5 and pH=7.5 
(p<0.05 by using t-test). **L. major promastigotes were significantly more susceptible to pure AmB and AmB loaded chitosan nanoparticles than L. mexicana 
((p<0.05 by an extra sum-of-squares F test)). Pure AmB and AmB loaded chitosan TPP or dextran sulphate nanoparticles had a similar anti-leishmanial 
activity. 
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Figure 4.5. Dose-response curves of the activity of blank and AmB loaded chitosan nanoparticles against Leishmania promastigotes at two 
pH values. A: L. major; B: L. mexicana. Promastigotes were cultured in the presence of different concentrations of chitosan nanoparticles. 
The activity of drugs was measured after 72h by the resazurin solution. Values are expressed as % inhibition of promastigotes relative to 
untreated controls. No statistically significant difference was observed in EC50 values of AmB loaded chitosan nanoparticles and pure AmB 
against L. mexicana or L. major promastigotes (p>0.05 by t-test). 
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4.3.4. Activity of blank and AmB loaded chitosan nanoparticles against 

L. major and L. mexicana amastigotes infecting PEMs 

Both chitosan solution and blank chitosan-TPP nanoparticles were 

significantly more active at lower pH (6.5) than at higher pH (7.5) (p< 0.05 by 

t-test) (Fig 4.6.). Chitosan solution was more effective against amastigotes 

than blank chitosan-TPP nanoparticles at higher pH of 7.5 (p<0.05 by an extra 

sum-of-squares F test), However, both have a similar activity against 

Leishmania amastigotes at lower pH of 6.5 (p>0.05 by an extra sum-of-

squares F test). Blank chitosan-dextran sulphate nanoparticles had no activity 

against Leishmania amastigotes to concentration up to 486 µg/ml at two pH 

values. Pure AmB, AmB loaded chitosan-TPP nanoparticles and AmB loaded 

chitosan-dextran sulphate nanoparticles showed similar anti-amastigotes 

activity against both L. major and L. mexicana amastigotes at two pH values 

(7.5 and 6.5) without a significant difference in their activity at these two pH 

values (p >0.05 by t-test) and they were significantly more effective against 

Leishmania amastigotes than AmBisome® (p<0.05 by an extra sum-of-

squares F test). Pure AmB and AmB loaded chitosan-TPP nanoparticles and 

AmB loaded chitosan-dextran sulphate nanoparticles showed higher anti 

amastigote activity against L. major than L. mexicana (p<0.05 by an extra sum-

of-squares F test) (Table 4.7).   
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Table 4.7. In vitro activity of chitosan formulations against intracellular amastigotes at two pH values 

Compound 
 

Properties 
 

pH=7.5 * pH=6.5* 

L. major** L. mexicana** L. major** L. mexicana** 

EC50 µg/ml EC90 
µg/ml 

EC50 µg/ml EC90 µg/ml EC50 µg/ml EC90 
µg/ml 

EC50 
µg/ml 

EC90 µg/ml 

Amphotericin B 
(pure AmB) 

Purity ≥95%, MW 
924.1 

0.09± 0.003 0.5 ± 0.04 0.3 ± 0.003 0.7 ± 0.02 0.09 ± 0.003 0.5 ± 0.02 0.5 ± 0.04 0.6 ± 0.04 

AmBisome® 
Liposomal AmB, 
Size= 70-80 nm 

1.2 ± 0.07 8 ± 0.3 1.8 ± 0.08 12 ± 1 1.3 ± 0.08 7 ± 0.1 1.8 ± 0.07 13 ± 1 

HMW chitosan MW=310-375 KDa 105 ± 7 1192± 58 123 ± 5 2206 ± 5 10 ± 0.3 127 ± 5 16 ± 0.7 165 ± 27 

Blank chitosan-TPP 
nanoparticles 

Size= 67 ± 7 nm, 

Zeta potential= 28.5 
±1.9 mv 

162 ± 10 828 ± 43 177 ± 7 4020 ± 352 13 ± 0.5 122 ± 19 21 ± 0.9 284 ± 10 

AmB loaded 
chitosan-TPP 
nanoparticles 

Size= 69 ± 8 nm, 

Zeta potential= 25.5 
± 1 mv 

0.14± 0.009 1 ± 0.09 0.5 ± 0.01 1.8 ± 0.1 0.06 ± 0.003 0.5 ± 0.08 0.3 ± 0.01 1.8 ± 0.02 

Blank chitosan-
dextran sulphate 

nanoparticles 

Size= 170 ± 9 nm, 

Zeta potential= -12.9 
± 3 mv 

No activity up to 486 

AmB loaded 
chitosan-dextran 

sulphate 
nanoparticles 

Size= 174 ± 8 nm, 

Zeta potential= -11 ± 
1mv 

0.16± 0.008 1.4 ± 0.02 0.5 ± 0.01 1.8 ± 0.05 0.16 ± 0.007 0.9 ± 0.04 0.4 ± 0.01 1.8 ± 0.05 

TPP MW= 367.864 g/mol No activity up to 486 

Dextran sulphate MW= 40 KDa No activity up to 486 

Experiments were conducted in quadruplicate cultures, data expressed as mean +/- SD (experiment was reproduced further two times with confirmed similar 
data not shown). *Statistically significant differences were found for the EC50 values of chitosan or blank chitosan TPP nanoparticles at pH=6.5 and pH=7.5 
(p<0.05 by using t-test). ** L. major amastigotes were significantly more susceptible to pure AmB and AmB loaded chitosan nanoparticles than L. mexicana 
((p<0.05 by an extra sum-of-squares F test)). Pure AmB, AmB loaded chitosan TPP and dextran sulphate nanoparticles had a similar anti-leishmanial activity. 
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4.6. Dose-response curves of the activity of blank and loaded chitosan nanoparticles against Leishmania amastigotes at two 
pH values. A: L. major; B: L. mexicana. PEMs were infected with stationary-phase promastigotes and exposed to various 
concentrations of chitosan and its derivatives, followed by microscopic counting of the number of infected macrophages*. 
Values are expressed as % inhibition of infection relative to untreated controls. No statistically significant difference was 
observed in EC50 values of AmB loaded chitosan nanoparticles and pure AmB against L. mexicana or L. major amastigotes 
at pH=6.5 or pH=7.5 (p>0.05 by t-test). 
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4.3.5. Host cell dependence of the anti-leishmanial activity of chitosan 

nanoparticles at pH of 6.5   

EC50 and EC90 values of blank chitosan-TPP nanoparticles, AmB loaded 

chitosan-TPP nanoparticles and AmB loaded chitosan-dextran sulphate 

nanoparticles against amastigotes infecting three different macrophage 

populations are summarized in Table 4.8. There was a significant difference 

in the activity of chitosan formulations depending on the type of macrophage; 

as blank chitosan-TPP nanoparticles, AmB loaded chitosan-TPP 

nanoparticles and AmB loaded chitosan-dextran sulphate nanoparticles were 

significantly more active against intracellular amastigotes in PEMs and BMMs 

compared to differentiated THP-1 cells (p<0.05 by an extra sum-of-squares F 

test) (Table 4.8). 
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Table 4.8. Activity of chitosan formulations against L. major amastigotes in three different macrophage cultures after 72 h at 
pH of 6.5 

 Pure AmB 
AmB loaded chitosan-

dextran sulphate 
nanoparticles 

AmB loaded chitosan-
TPP nanoparticles 

blank chitosan-TPP 
nanoparticles 

Host cell / 
infection 

rate %             
at 24 h 

EC50 µg/ml EC90 µg/ml EC50 µg/ml EC90 µg/ml EC50 µg/ml EC90 µg/ml EC50 µg/ml EC90 µg/ml 

PEMs /         
> 80% 

0.08 ± 0.01 0.4 ± 0.1 0.08 ± 0.004 0.4 ± 0.1 0.09 ± 0.004 0.5 ± 0.1 12 ± 1 156 ± 9 

BMMs /               
> 80% 

0.09 ± 0.02 0.6 ± 0.1 0.09 ± 0.02 0.6 ± 0.1 0.09 ± 0.01 0.5 ± 0.1 14 ± 2 207± 14 

THP-1/             
> 80% 

0.2 ± 0.05 3.4 ± 0.4 0.2 ± 0.06 3.3 ± 0.3 0.2 ± 0.06 2.9 ± 0.4 26 ± 4 306 ± 9 

Experiments were conducted in quadruplicate cultures, data expressed as mean +/- SD (experiment was reproduced further two times 
with confirmed similar data and data not shown), statistically significant difference in EC50 as chitosan formulations were significantly more 
active in PEMs and BMMs compared with THP-1 cells (p<0.05 by an extra sum-of-squares F test). % infection rate gives the percentage 
of infected macrophages.  
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4.3.6. In vivo anti-leishmanial activity (intravenous route route) 

We assessed the efficacy of blank and AmB loaded chitosan nanoparticles 

(two types) in murine models of CL caused by L. major, by analysing the lesion 

sizes and bioluminescence signal progression among the groups.  

4.3.6.1. In vivo experiment 1 

4.3.6.1.1. Evaluation of the lesion size progression  

Fig 4.7. shows the progression of the mean lesion size for each group as a 

function of time. Blank chitosan-dextran sulphate nanoparticles and 

nanoparticles vehicles did not cause any reduction in the progression of the 

lesion size compared to the untreated controls. Both AmBisome® (10 

mg/kg/QAD for 10 days; i.v.) and blank chitosan-TPP nanoparticles reduced 

the lesion size at the end of the treatment with 36% and 34% respectively, 

reduction compared to the untreated controls without a significant different in 

their efficacy (p>0.05 by one-way ANOVA). AmB loaded chitosan-TPP 

nanoparticles (5 mg/kg/QAD for 10 days; i.v.) were the most effective 

compared with other chitosan formulations and caused a 87% reduction of 

lesion sizes and was significantly more effective than AmBisome® with 2.4 

times greater activity (p<0.05 by one-way ANOVA). There was no significant 

difference in the anti-leishmanial efficacy between AmB loaded chitosan-TPP 

nanoparticles (5 doses) and paromomycin (50 mg/kg,10 doses, positive 

control, 10 doses) with 87% and 93% respectively, reduction of lesion sizes 

(p>0.05 by one-way ANOVA). 

Group 7 received one dose of AmB loaded chitosan-dextran sulphate 

nanoparticles (10 mg/kg, i.v.) for the reason that the day following this dose, 

mice looked unwell and showed signs of a piloerection and weight loss. 

Therefore, no more doses were administered. After two days, two mice had 

died and without any signs of potential CL-related mortality such as severe 

ulceration, dissemination of the lesion. We just kept monitoring the lesion sizes 

of the other three mice.  
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Figure 4.7. Amphotericin B nanoparticles efficacy in the lesion cure model in BALB/c mice infected with luciferase-expressing L. major 
parasites.  Female BALB/c mice were infected with stationary-phase promastigotes in the rump above the tail (n = 5 per group).  At 10 days 
post-inoculation, animals presenting with CL nodules were dosed with paromomycin (G2) as a positive control (50 mg/kg/QD for 10 days; i.p.), 
AmBisome® (G3) as a comparison group (10 mg/kg/QAD for 10 days; i.v.), blank chitosan-TPP nanoparticles equivalent to AmB loaded 
nanoparticles(G4) (QAD for 10 days; i.v.), AmB loaded chitosan-TPP nanoparticles (G5) (5 mg of AmB/kg/QAD for 10 days; i.v.), blank chitosan-
dextran sulphate nanoparticles equivalent to AmB loaded nanoparticles (G6) (QAD for 10 days; iv), AmB loaded chitosan-dextran sulphate 
nanoparticles (G7) (10 mg of AmB/kg/ one dose; i.v.) or the nanoparticles vehicle (G8) (distilled water, QAD for 10 days; i.v.). (G1) represents 
untreated infected group. During treatment, lesion size was measured daily. The average lesion size represents the mean ± SD. ANOVA (1 
way for parasite load and repeated measures for lesion size) followed by Turkey’s multiple-comparison tests was used to compare outcomes 
among the groups. A p-value < 0.05 was considered statistically significant ((*) p<0.05, (**) p<0.05 and (***) p>0.05). (A) represents mean 
lesion size progression in function of time since the start of treatment, (B) represents the mean lesion size at day 9 (one day after the last dose 
was administered), (C) represents the % reduction in lesion size compared with G1 (untreated infected group) at day 9, (D) represents images 
of untreated group on day 9 (lesions are circled) and (E) represents images of G4 on day 9 (infection sites are circled and it is clear the healing 
effects of treatment on the lesions). 
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4.3.6.1.2. Evaluation of the parasite load (bioluminescent signal)  

Bioluminescence signal progression in all treatment groups is shown in Fig 

4.8. The reduction of parasite loads in the skin followed a similar trend of the 

lesion size with a good correlation between lesion size and bioluminescent 

signal identified by Pearson correlation coefficients (using GraphPad Prism). 

AmB loaded chitosan-TPP nanoparticles (5 mg/kg/QAD for 10 days; i.v.) were 

the most effective compared with other chitosan formulations with 99% 

reduction in parasite loads (bioluminescent signal) at the end of the treatment 

compared to the untreated controls and with similar reduction to the Group 2 

treated with the positive control (paromomycin, 50 mg/kg,10 doses; i.p.) 

(p>0.05 by one-way ANOVA). There was no significant difference between 

AmBisome® (10 mg/kg/QAD for 10 days; i.v.) and blank chitosan-TPP 

nanoparticles with 72% and 62% respectively, reduction (p>0.05 by one-way 

ANOVA). Blank chitosan-dextran sulphate nanoparticles did not cause any 

reduction in the signal at the end of treatment. We did not image Group 7 as 

the mice did not look healthy to be anaesthetized and imaged.  
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Figure 4.8. Amphotericin B nanoparticles efficacy as measured by the bioluminescence signal (parasite load) at the infection site in BALB/c 
mice infected with luciferase-expressing L. major parasites. Female BALB/c mice were infected with stationary-phase promastigotes in the 
rump above the tail (n = 5 per group).  At 10 days post-inoculation, animals presenting with CL nodules were dosed with paromomycin (G2) 
as a positive control (50 mg/kg/QD for 10 days; i.p.), AmBisome® (G3) as a comparison group (10 mg/kg/QAD for 10 days; i.v.), blank chitosan-
TPP nanoparticles equivalent to AmB loaded nanoparticles(G4) (QAD for 10 days; i.v.), AmB loaded chitosan-TPP nanoparticles (G5) (5 mg 
of AmB/kg/QAD for 10 days; i.v.), blank chitosan-dextran sulphate nanoparticles equivalent to AmB loaded nanoparticles (G6) (QAD for 10 
days; i.v.), or the nanoparticles vehicle (G8) (distilled water, QAD for 10 days; i.v.). (G1) represents untreated infected group. The 
bioluminescence signal was measured three times: start of treatment, after two doses of treatment and lastly on the day after the administration 
of the last dose. The data represents the mean ± standard error. ANOVA (1 way for parasite load and repeated measures for lesion size) 
followed by Turkey’s multiple-comparison tests was used to compare outcomes among the groups. A p-value < 0.05 was considered 
statistically significant ((*) p<0.05, (**) p<0.05 and (***) p>0.05). (A) represents the bioluminescence signal in function of time since the start 
of treatment, (B) represents the bioluminescence signal on the day after the administration of the last dose (day 9). (C) represents the % 
reduction in the signal compared with G1 (untreated infected group) at day 9. (D) represents the correlation between lesion size and the 
bioluminescence signal on the day after the administration of the last dose and (E) represents the bioluminescent images of mice on day 9 
(24 h after the last drug dose administration). Emitted photons were gathered by auto acquisition with a charge couple device (CCD) camera 
(PerkinElmer IVIS Spectrum In vivo Imaging System) using the medium resolution (medium binning) mode. 

E 
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4.3.6.1.3. Intralesional amphotericin B levels 

We measured the levels of the active compound (AmB) within the infected 

lesion (rump skin) and control skin (uninfected skin, back skin) at the end of 

the experiment (Fig 4.9.). AmB levels were significantly higher (between 13 

and 20-fold) in lesions sites (rump skin) compared to control skin (uninfected 

skin, back skin) in both Group 3 and Group 5 (p<0.05 by one-way ANOVA). 

After multiple dosing of either AmBisome® (G3, 10 mg/kg/QAD for 10 days; 

i.v.) or AmB loaded chitosan-TPP nanoparticles (G5, 5 mg of AmB/kg/QAD for 

10 days; i.v.), intralesional AmB levels were significantly lower (6.8-fold) in 

Group 3 than in Group 5 (p<0.05 by one-way ANOVA). We could not detect 

any AmB levels as expected in samples from untreated group (G1) and 

positive control (G2). 

 

 
Figure 4.9. Multiple dose skin pharmacokinetics of AmB loaded chitosan-TPP 

nanoparticles and AmBisome®. L. major-infected BALB/c mice received 
intravenous doses of AmBisome® (G3, 10 mg/kg/QAD for 10 days; i.v.) and AmB 
loaded chitosan-TPP nanoparticles (G5, 5 mg of AmB/kg/QAD for 10 days; i.v.).  
24 hours after the last dosing, AmB levels in skin were determined. The CL lesion 
was localized on the rump, while the back skin of same mice was used as lesion-
free, healthy control site. Each point represents the mean and standard error of the 
mean (n=5 per group). (A) represents intralesional AmB and (B) represents a 
comparison between infected and uninfected skin AmB concentration. The data 
represents the mean ± standard error. ANOVA followed by Turkey’s multiple-
comparison tests was used to compare outcomes among the groups. A p-value < 
0.05 was considered statistically significant ((*) p<0.05 and (**) p<0.05).  
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4.3.6.2. In vivo experiment 2 (dose-response effect) 

4.3.6.2.1. Evaluation of the lesion size progression  

Fig 4.10. shows the progression of the mean lesion size for each group as a 

function of time. Our data were similar and reproducible with previous in vivo 

experiment 1 regarding the efficacy of AmB loaded chitosan-TPP 

nanoparticles (5 mg of AmB/kg/QAD for 10 days; i.v.). In a mouse model of CL 

caused by L. major, AmB loaded chitosan-TPP nanoparticles efficacy showed 

a dose-response activity in reduction of lesion sizes at doses of 1.25, 2.5 and 

5 mg of AmB/kg/QAD for 10 days; i.v., which caused 29%, 40% and 83% 

respectively, reduction in lesion sizes at the end of the treatment compared to 

the untreated controls. Similar to in vivo experiment 1, there was no significant 

difference in the efficacy of AmBisome®, blank chitosan-TPP nanoparticles 

and AmB loaded chitosan-TPP nanoparticles (2.5 AmB/kg/QAD for 10 days; 

i.v.) with 40%, 35% and 40% respectively, reduction of lesion sizes (p>0.05 by 

one-way ANOVA). Paromomycin (positive control) and AmB loaded chitosan-

TPP nanoparticles (5 AmB/kg/QAD for 10 days; i.v.) were the most effective 

in reduction of lesion sizes and there was no statistically significant difference 

between the two treated groups with 89% and 83% respectively, reduction of 

lesion sizes at the end of the treatment compared to the untreated controls 

(p>0.05 by one-way ANOVA). 
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Figure 4.10. Amphotericin B nanoparticles efficacy in the lesion cure model in BALB/c mice infected with luciferase-expressing L. major 
parasites.  Female BALB/c mice were infected with stationary-phase promastigotes in the rump above the tail (n = 5 per group).  At 10 days 
post-inoculation, animals presenting with CL nodules were dosed with paromomycin (G2) as a positive control (50 mg/kg/QD for 10 consecutive 
days; i.p.), AmBisome® (G3) as a comparison group (10 mg/kg/QAD for 10 days; i.v.), AmB loaded chitosan-TPP nanoparticles (G4) (5 mg of 
AmB/kg/QAD for 10 days; i.v.), AmB loaded chitosan-TPP nanoparticles (G5) (2.5 mg of AmB/kg/QAD for 10 days; i.v.), AmB loaded chitosan-
TPP nanoparticles (G6) (1.25 mg of AmB/kg/QAD for 10 days; i.v.) and blank chitosan-TPP nanoparticles equivalent to AmB loaded 

A B 

C 
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nanoparticles (5 mg/kg) (G7) (QAD for 10 days; i.v.). (G1) represents untreated infected group. During treatment, lesion size was measured 
daily. The average lesion size represents the mean ± standard error. ANOVA (1 way for parasite load and repeated measures for lesion size) 
followed by Turkey’s multiple-comparison tests was used to compare outcomes among the groups. A p-value < 0.05 was considered 
statistically significant ((*) p<0.05, (**) p>0.05, (***) p<0.05 and (****) p>0.05). (A) represents mean lesion size progression in function of time 
since the start of treatment, (B) represents mean lesion size on the day after the administration of the last dose and (C) represents the % 
reduction in lesion size compared with G1 (untreated infected group) at day 9. 
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4.3.6.2.2. Evaluation of the parasite load (bioluminescent signal)  

Bioluminescence signal progression in all treatment groups is shown in Fig 

4.11. The reduction of parasite loads in the skin follows a similar trend of the 

lesion size with a good correlation between lesion size and bioluminescent 

signal identified by Pearson correlation coefficients (using GraphPad Prism). 

In a mouse model of CL caused by L. major, AmB loaded chitosan-TPP 

nanoparticles efficacy showed a dose-response activity in reduction of the 

parasite loads at doses of 1.25, 2.5, and 5 mg of AmB/kg/QAD for 10 days; 

i.v., which caused 48%, 75% and 99%, respectively, reduction in parasite 

loads (bioluminescent signal) at the end of the treatment compared to the 

untreated controls. Paromomycin and AmB loaded chitosan-TPP 

nanoparticles (5 mg of AmB/kg/QAD for 10 days; i.v.) were the most effective 

compounds with 99% reduction of the signal at the end of the treatment.  

There was no significant difference in the efficacy of AmBisome® and AmB 

loaded chitosan-TPP nanoparticles (2.5 AmB/kg/QAD for 10 days; i.v.) in 

reducing parasite load with 80% and 75% respectively, reduction of 

bioluminescent signal (p>0.05 by one-way ANOVA). Blank chitosan-TPP 

nanoparticles caused a 65% reduction in parasite loads (bioluminescent 

signal). 
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Figure 4.11. Amphotericin B nanoparticles efficacy on the bioluminescence signal (parasite load) at the infection site in BALB/c mice infected with 
luciferase-expressing L. major parasites. Female BALB/c mice were infected with stationary-phase promastigotes in the rump above the tail (n = 5 per 
group).  At 10 days post-inoculation, animals presenting with CL nodules were dosed with paromomycin (G2) as a positive control (50 mg/kg/QD for 10 
consecutive days; i.p.), AmBisome® (G3) as a comparison group (10 mg/kg/QAD for 10 days; AmB loaded chitosan-TPP nanoparticles (G4) (5 mg of 
AmB/kg/QAD for 10 days; i.v.), AmB loaded chitosan-TPP nanoparticles (G5) (2.5 mg of AmB/kg/QAD for 10 days; i.v.), AmB loaded chitosan-TPP 
nanoparticles (G6) (1.25 mg of AmB/kg/QAD for 10 days; i.v.) and blank chitosan-TPP nanoparticles equivalent to AmB loaded nanoparticles (5 mg/kg) 
(G7) (QAD for 10 days; i.v.). (G1) represents untreated infected group. During treatment, lesion size was measured daily. The bioluminescence signal was 
measured three times: start of treatment, after two doses of treatment and lastly on the day after the administration of the last dose.  The data represents 
the mean ± standard error. ANOVA (1 way for parasite load and repeated measures for lesion size) followed by Turkey’s multiple-comparison tests was 
used to compare outcomes among the groups. A p-value < 0.05 was considered statistically significant ((*) p<0.05, (**) p>0.05, (***) p<0.05 and (****) 
p>0.05). (A) represents the bioluminescence signal in function of time since the start of treatment, (B) represents mean the bioluminescence signal on the 
day after the administration of the last dose (day 9), (C) represents the % reduction in the signal compared with G1 (untreated infected group) at day 9. (D 
represents the correlation between lesion size and the bioluminescence signal on the day after the administration of the last dose and (E) represents the 
bioluminescent images of mice on day 9 (24 h after the last drug dose administration). Emitted photons were gathered by auto acquisition with a charge 
couple device (CCD) camera (PerkinElmer IVIS Spectrum In vivo Imaging System) using the medium resolution (medium binning) mode. 

E 
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4.3.6.2.3. Intralesional amphotericin B levels 

We measured the drug levels of the active compound AmB within the infected 

lesion (rump skin) and control skin (uninfected skin, back skin) at the end of 

the experiment (Fig 4.12.). After multiple dosing of either AmBisome® (G3) or 

AmB loaded chitosan-TPP nanoparticles (G4 or G5 or G6), intra-lesional AmB 

levels were significantly lower (6.7-fold) in Group 3 (received AmBisome® at 

10 mg/kg/QAD for 10 days) than in Group 4 (received AmB loaded chitosan-

TPP nanoparticles at 5 mg of AmB/kg/QAD for 10 days; i.v.) (p<0.05 by one-

way ANOVA). There was no significant difference in the intra-lesional AmB 

levels between Group 3 and Group 5 (received AmB loaded chitosan-TPP 

nanoparticles at 2.5 mg of AmB/kg/QAD for 10 days; i.v.) (p>0.05 by one-way 

ANOVA) and these levels of AmB were significantly higher in these two groups 

than in Group 6 (received AmB loaded chitosan-TPP nanoparticles at 1.25 mg 

of AmB/kg/QAD for 10 days; i.v.) (p<0.05 by one-way ANOVA). AmB levels 

were significantly higher in lesions sites (rump skin) compared to control skin 

(uninfected skin, back skin) (p<0.05 by one-way ANOVA) for all treated groups 

with AmB formulations. We could not detect any AmB levels as expected in 

samples from untreated group (G1) and positive control (G2).  
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Figure 4.12. Multiple dose skin pharmacokinetics of AmB loaded chitosan-TPP nanoparticles and AmBisome®. L. major-infected BALB/c mice 
received intravenous doses of AmBisome® (G3, 10 mg/kg/QAD for 10 days; i.v.), AmB loaded chitosan-TPP nanoparticles (G4, 5 mg of 
AmB/kg/QAD for 10 days; i.v.), AmB loaded chitosan-TPP nanoparticles (G5, 2.5 mg of AmB/kg/QAD for 10 days; i.v.) and AmB loaded 
chitosan-TPP nanoparticles (G6, 1.25 mg of AmB/kg/QAD for 10 days; i.v.).  24 hours after the last dosing, AmB levels in skin were determined. 
The CL lesion was localized on the rump, while the back skin of same mice used as lesion-free, healthy control site. Each point represents the 
mean and standard error of the mean (n=5 per group). (A) represents intralesional AmB and (B) represents a comparison between infected 
and uninfected skin AmB concentration. The data represents the mean ± standard error. ANOVA followed by Turkey’s multiple-comparison 
tests was used to compare outcomes among the groups. A p-value < 0.05 was considered statistically significant ((*) p<0.05, (**) p>0.05 and 
(***) p<0.05).  

A B 
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4.3.6.2.4. Dose concentration-response of AmB loaded chitosan-TPP 

nanoparticles in L. major-infected mice  

The intralesional AmB levels were related to the dose levels of treatment with 

AmB loaded chitosan-TPP nanoparticles at concentrations (5 (G4) or 2.5 (G5) 

or 1.25 (G6) mg of AmB/kg/QAD for 10 days; i.v.) (Fig 4.13.a) and to the 

response (indicated by lesion size and parasite load) (Fig 4.13.b and 4.13.c, 

respectively). Fig 3d shows the nonlinear-fit sigmoidal dose-response curve 

plotting the logarithm of these intralesional AmB levels versus relative 

reductions in parasite load and lesion size compared to the untreated controls 

(0 mg/kg). Fig 4.13.e shows the % of relative reduction of lesion size and 

parasite load related to the doses per kg of AmB.  

Correlation was strong between dose concentration and concentration 

response for relative reduction in parasite load and lesion size (identified by 

Pearson correlation coefficients (using GraphPad Prism)). We calculated ED50 

(The required dose to achieve 50% of maximum effect) and ED90 (The required 

dose to achieve 90% of maximum effect) after plotting the logarithm of the 

dose level against percentage response (lesion size or parasite load). ED50 

and ED90 were 2.5 and 8.9 mg/kg, respectively for lesion size. ED50 and ED90 

were 1.3 and 3.8 mg/kg, respectively for parasite load (bioluminescent signal). 

 

  



181 
 

 
Figure 4.13. Dose concentration-response relationship of AmB loaded chitosan-TPP nanoparticles in experimental CL. L. major-infected BALB/c mice 
received intravenous doses of AmB loaded chitosan-TPP nanoparticles 0 or 1.25 or 2.5 or 5 of AmB/kg/QAD for 10 days (n = 5 per group).  ; (a) represents 
the resulting intralesional amphotericin B levels, (b) lesion size, and (c) parasite load on the day after the last dose. (d) Outcomes are linked in a logarithmic-
scale dose-response curve plotting drug concentrations against relative reduction in lesion size and parasite load. (e) is the relation between the dose in 
mg/kg and % of reduction of lesion size and parasite load.  Each point represents the means ± SD(n =5 per group). ANOVA followed by Turkey’s multiple-
comparison tests was used to compare outcomes among the groups. A p-value < 0.05 was considered statistically significant. 
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4.3.7. Ex vivo permeability of Leishmania-infected skin in Franz diffusion 

cells   

The permeability of uninfected and L. major infected skin for AmB loaded 

chitosan nanoparticles and fluorescence images of the nanoparticles 

distribution were evaluated in Franz diffusion cells. The cumulative 

concentration of AmB from AmB-loaded chitosan-TPP nanoparticles and 

AmB-loaded chitosan-dextran sulphate nanoparticles in the receptor 

compartment of Franz diffusion cells permeated as a function of time is shown 

in Fig 4.14. When applied as solution, pure AmB did not permeate through 

uninfected or infected skin throughout the 24 h permeation experiment. This 

was in contrast to the nanoparticle formulations, for which AmB could be 

detected in the receptor fluid. At the end of the 24 h experiment, both types of 

AmB loaded chitosan nanoparticles showed approximately a two-fold higher 

permeation of AmB through infected skin than uninfected skin (p<0.05 by t-

test). AmB from AmB loaded chitosan-TPP nanoparticles permeated with 

almost two times more than from AmB loaded chitosan-dextran sulphate 

nanoparticles through both uninfected and infected skin ( p<0.05 by t-test).   
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Figure 4.14. The cumulative amount of AmB permeated per surface area (ug/cm2) 
through uninfected BALB/c mouse skin (n=5) and L. major infected BALB/c mouse 
skin (n=5). Infected skin was more permeable to both types of AmB loaded chitosan 
nanoparticles than uninfected skin (p<0.05 by t-test). The use of AmB loaded 
chitosan-TPP nanoparticles enhanced AmB penetration through both healthy and 
infected skin in more amount than AmB loaded chitosan-dextran sulphate 
nanoparticles (p<0.05 by t-test). 

Lag time, flux and permeability coefficients of the formulations are shown in 

Table 4. 9. There was no significant difference in the lag time for both types of 

AmB nanoparticles between uninfected and infected skin ( p>0.05 by t-test) 

and no significant difference was observed between AmB loaded chitosan-

TPP nanoparticles and AmB loaded chitosan-dextran sulphate nanoparticles 

( p>0.05 by t-test). The flux was 2 times higher for both types of AmB loaded 

chitosan nanoparticles in infected skin compared to uninfected skin. The 

permeability coefficient was 1.75 and 2.5 times higher for AmB loaded 

chitosan-TPP nanoparticles and AmB loaded chitosan-dextran sulphate 

nanoparticles respectively in infected skin compared with uninfected skin. All 

the above indicated that L. major infection of the skin enhanced the permeation 

of both types of nanoparticles and the permeation of AmB nanoparticles is 

slow and poor. 
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Table 4.9. Flux, lag time and the permeability coefficient (kp) for AmB loaded chitosan nanoparticles  

Compounds 
Flux (μg/cm2/h) Lag time (h) Kp (cm/h) 

Uninfected 
skin 

Infected 
skin 

Uninfected 
skin 

Infected 
skin 

Uninfected skin Infected skin 

AmB loaded 
chitosan-TPP 
nanoparticles 

0.06 ± 0.002 0.12 ± 0.005 20 ± 0.1 19.8 ± 0.3 1.8E-05 ± 0.05E-05 3.15E-05 ± 0.15E-05 

AmB loaded 
chitosan-dextran 

sulphate 
nanoparticles 

0.04 ± 0.002 0.09 ± 0.002 20.5 ± 0.1 20.3 ± 0.02 0.9E-05 ± 0.05E-05 2.3E-05 ± 0.06E-05 

Pure AmB 0   0 

Data expressed as mean +/- SD, n=5. No statistically significant difference of lag time was observed between uninfected and infected skin 
for both formulations ( p>0.05 by t-test). Statistically significant differences of flux and kp were observed between uninfected and infected 
skin for both formulations ( p<0.05 by t-test). 
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Table 4.10 shows the distribution of topical AmB from AmB loaded chitosan 

nanoparticles and pure AmB into healthy and L. major infected skin. After the 

24 h permeation experiment, more than 90% of pure AmB stayed on the skin 

without any drug in the receptor fluid. Regarding both types of AmB loaded 

chitosan nanoparticles only a limited amount of AmB passed through the skin 

with 0.23% and 0.42% of AmB from applied AmB loaded chitosan-TPP 

nanoparticles through uninfected and infected skin respectively and 0.12% 

and 0.28% of AmB from applied AmB loaded chitosan-dextran sulphate 

nanoparticles through uninfected and infected skin respectively.  

Table 4.10. Disposition of topically applied AmB loaded chitosan nanoparticles 
on healthy and L. major infected BALB/ c mice skin using Franz diffusion cells 

Applied compounds 

Average % recovered of 
AmB (±SD) 

 

Uninfected 
skin 

L. major 
infected 

skin 

P 
value 

Pure AmB  

on skin (in wash and 
cotton swab) 

94.65 ± 2 92.32 ± 1 >0.05 

in skin (extracted from 
skin homogenate) 

5.35 ± 0.2 7.68 ± 0.2 >0.05 

through skin after 24h (in 
receptor fluid) 

0 0 >0.05 

AmB loaded 
chitosan-

TPP 
nanoparticles 

on skin (in wash and 
cotton swab) 

69.92 ± 1 61.49 ± 1 <0.05 

in skin (extracted from 
skin homogenate) 

29.85 ± 1 38.09 ± 0.5 <0.05 

through skin after 24h (in 
receptor fluid) 

0.23 ± 0.02 0.42 ± 0.05 <0.05 

AmB loaded 
chitosan-
dextran 
sulphate 

nanoparticles 

on skin (in wash and 
cotton swab) 

81.65 ± 2 73.14 ± 2 <0.05 

in skin (extracted from 
skin homogenate) 

18.23 ± 1 26.58 ± 1 <0.05 

through skin after 24h (in 
receptor fluid) 

0.12 ± 0.02 0.28 ± 0.02 <0.05 

The total amount of AmB per Franz diffusion cell recovered at the end of the 
experiment was considered 100%. The amounts of AmB recovered from the 
different sites were expressed as a fraction of this amount. The average (±SD) 
percent for 5 infected mice is shown. p values were determined by a t test. 

 

Fluorescence microscopy of skin sections showed no evidence for the 

penetration of rhodamine labelled chitosan-TPP nanoparticles (size= 72 ± 7 

nm, Zeta potential= 22 ± 2) or rhodamine labelled chitosan-dextran sulphate 

nanoparticles (size= 174 ± 7 nm, Zeta potential= -14 ± 2) or rhodamine labelled 

chitosan solution in excised uninfected and L. major infected mouse skin. The 
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microscope study Indicates that the nanoparticles act as drug delivery vehicle 

and release the AmB rather than permeating alongside the AmB molecules 

(Fig 4.15). 

 

  
Figure 4.15. Fluorescence images of skin penetration (uninfected and L. major 
infected skin) of blank rhodamine labelled chitosan nanoparticles (A) and rhodamine 
labelled chitosan solution (B). We found the same scene for both types of 
nanoparticles and in both uninfected and infected skin. The red signals (refer to 
rhodamine labelled chitosan) indicated that the three formulations remained on the 
surface of skin. 
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4.4. Discussion  

In vitro haemolytic activity and cytotoxicity of chitosan formulations 

Haemolytic activity of chitosan formulations was determined by using freshly 

obtained human RBCs (295). Pure AmB showed a serious and significant toxic 

effect to RBCs after 1h of incubation. Loading the drug into both types of 

chitosan nanoparticles mitigated these effects, presumably by entrapping and 

retaining the AmB, allowing for slow release of drug. Similar findings have 

been reported for blank and AmB loaded chitosan- chondroitin sulphate 

nanoparticles (122). To evaluate the cytotoxicity of chitosan formulations in 

more details we found that both types of AmB loaded chitosan nanoparticles 

were around 6-fold less toxic than pure AmB against KB-cells and there was 

no significant difference in the cytotoxicity between these AmB loaded 

chitosan nanoparticles and AmBisome® for same reasons mentioned 

previously in terms of drug entrapment and slow release. Chitosan solution 

and blank chitosan nanoparticles (both types) showed a similar cytotoxicity 

against KB-cells and were significantly less toxic than AmB loaded 

nanoparticles. This data supports previous reports of less cytotoxicity of AmB 

loaded chitosan- chondroitin sulphate nanoparticles (136±11 nm, positive 

charge) compared to pure AmB against murine macrophages and the low 

toxicity of chitosan solution and blank nanoparticles against murine 

macrophages (122). Similarly, Jain et al reported that chitosan-coated AmB-

loaded solid lipid nanoparticles (158.9±7.1 nm, positive charge) showed 

significantly less toxic effects against macrophages (J774A.1 cells in 

exponential growth phase) compared to amphotericin B deoxycholate 

(Fungizone) (259). 

 

In vitro anti-leishmanial activity of chitosan formulations 

Consistently with previous data in Chapter 2, lowering pH of RPMI medium 

from 7.5 to 6.5 increased by 7-20 times, the anti-leishmanial activity of chitosan 

solution and blank chitosan-TPP nanoparticles against L. major and L. 

mexicana promastigotes and amastigotes due to the greater ionisation at 

lower pH for both chitosan solution and blank chitosan-TPP nanoparticles 

(positive surface charge). As mentioned in the Chapter 2, increasing the 
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positive charge could enhance the chitosan antimicrobial activity by interacting 

with the negatively charged microbial membrane – in accordance with the first 

postulated mechanism of antimicrobial activity described in the introduction.  

Regarding blank chitosan-TPP nanoparticles, they showed less anti-

leishmanial activity than chitosan solution against L. major and L. mexicana 

promastigotes due to the lower positive charge of these nanoparticles as few 

numbers of the amino groups have been substituted by TPP groups.  On the 

other hand, blank chitosan-TPP nanoparticles showed similar anti-leishmanial 

activity to chitosan solution against L. major and L. mexicana amastigotes at 

a lower pH due to the significant higher uptake of these nanoparticles by 

macrophages than chitosan solution (254). 

Blank chitosan-dextran sulphate nanoparticles did not present any activity 

against L. major and L. mexicana promastigotes and amastigotes at both pH 

values- these nanoparticles have a negative surface charge as the positive 

amino groups on chitosan have been substituted by negatively charged 

sulphate groups.  

However, AmB loaded chitosan nanoparticles (both types, positive or negative 

charged nanoparticles) showed a similar anti-leishmanial activity L. major and 

L. mexicana promastigotes and amastigotes at two pH values due to the high 

activity of AmB and this anti-leishmanial activity was similar to the activity of 

pure AmB and significantly higher than AmBisome®. Ribeiro et al (2014) 

reported that the anti-leishmanial activity of AmB loaded chitosan-chondroitin 

sulphate nanoparticles (136±11 nm, positive charge) was similar in 

comparison to pure AmB against L. amazonensis and L. chagasi 

promastigotes with similar EC50 values to our study (83). Additionally, our EC50 

values against L. major and L. mexicana amastigotes were in accordance with 

another report that found the EC50 values of chitosan-coated AmB-loaded solid 

lipid nanoparticles (158.9±7.1 nm , positive charge), AmBisome® and 

Fungizone were 0.022±0.07, 0.086±0.04, and 0.253±0.03 μg/ml, respectively, 

against L. donovani amastigotes infecting mouse macrophage cell line 

J774A.1 after 72 h of incubation (259).  
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Ribeiro et al (2014) showed that chitosan solution had EC50 values of  66±1 

and 71±1 µg/ml and blank chitosan nanoparticles had EC50 values of  52 ±2 

and 46 ±6 µg/ml against L. amazonensis and L. chagasi promastigotes, 

respectively and these values are different from EC50 values in our study at 

two pH values (Table 4.8 ) and this could be explained as Ribeiro et al used 

different Leishmania species, 48h incubation of compounds with Leishmania 

and did not mention the pH of the experiment (83).  

We were able to develop AmB loaded chitosan-TPP nanoparticles (69 ± 8 nm, 

positive surface charge) and AmB loaded chitosan-dextran sulphate 

nanoparticles (170 ± 9 nm, negative surface charge) which showed similar 

anti-leishmanial activity to pure AmB and higher activity than AmBisome® 

against promastigotes and amastigotes. These nanoparticles did not show 

significant haemolytic activity against RBCs and they were 6-fold less cytotoxic 

against KB-cells than pure AmB. This encouraged us to evaluate their in vivo 

anti-leishmanial activity using the mouse module.  

 

In vivo anti-leishmanial activity of chitosan formulations  

We assessed the efficacy of the chitosan formulations in murine models of CL 

caused by L. major, when administrated intravenously. 

We evaluated the skin distribution of AmB following intravenous dosing with 

AmB loaded chitosan-TPP nanoparticles (1.25, 2.5 or 5 mg of AmB/ml/QAD 

for 10 days; i.v.) and AmBisome® (10 mg/kg/QAD for 10 days; i.v.). AmB 

accumulated in significant higher levels in the localized lesion compared to 

those in healthy skin tissue of the same infected mice; revealing the influence 

of CL skin infection on the drug accumulation. This could be explained by 

localized inflammatory immune response caused by L. major parasites 

multiplying within dermal macrophages of CL infected skin. Therefore, at the 

site of infection, the leaky vasculature could enhance permeability and 

retention effect of the drug and this may promote the local drug accumulation 

(170, 298) and these small nanoparticles could facilitate extravasation through 

the leaky capillaries in the inflamed lesion skin while in the healthy skin, the 

impairment in the extravasation (continuous endothelium with small vessel 
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pores of 6- to 12-nm diameter) could decrease the drug accumulation (299). 

Another explanation is because of the immune response to the CL, phagocytic 

monocytes immigrate from the bloodstream to the infection site (skin lesion) 

and these cells can act as drug reservoirs (16, 19, 300). Similar finding was 

reported by Wijnant et (2018) as AmB levels were 5- to 20-fold higher in L. 

major infected BALB/c mice skin than in healthy skin from same infected mice 

following dosing with AmBisome® or Fungizone.  

However, AmB loaded chitosan-TPP nanoparticles (5 mg/ml/QAD for 10 days; 

i.v.) resulted in significant higher levels of AmB accumulation in infected skin 

than AmBisome® (10 mg/kg/QAD for 10 days; i.v.). There was no difference in 

the quantity of AmB in lesion skin following dosing of AmB loaded chitosan-

TPP nanoparticles (2.5 mg/ml/QAD for 10 days; i.v.) and AmBisome® (10 

mg/kg/QAD for 10 days; i.v.). Similarly, Sarwar et al (2017) reported that the 

oral administration of mannose-anchored thiolated chitosan amphotericin B 

nanocarriers ( 400 nm, positive surface charge) resulted in more AmB levels 

in the systemic circulation and higher pharmacokinetic parameters (AUC,t1/2 

and Cmax) in comparison with same dose of AmBisome® or pure amphotericin 

B (301). Moreover, the same study showed mannose-anchored thiolated 

chitosan amphotericin B nanocarriers (400 nm, positive surface charge) 

promoted the cellular uptake of AmB by 70- and 23-fold in comparison to pure 

AmB and AmBisome®, respectively (301). This could be explained as the 

chitosan nanoparticles are able to retain the AmB inside the macrophages for 

the longer period of time compared AmBisome® and AmB and as mentioned 

that these macrophages could serve as reservoirs for the drug to target the 

infection site (301).  

Blank chitosan-dextran sulphate nanoparticles did not cause any reduction in 

lesion size or parasite load (bioluminescent signal) of the infected mice. 

However, blank chitosan-TPP nanoparticles showed a similar activity in regard 

of lesion size and parasite load (bioluminescent signal) to AmBisome®. Ribeiro 

et al (2014) reported that blank chitosan-chondroitin sulphate nanoparticles 

(104±11 nm, positive charge) caused a significant reduction in lesion size of 

L. amazonensis infected BALB/c mice, when administrated intravenously (83).  
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AmB loaded chitosan-TPP nanoparticles (5 mg/ml/QAD for 10 days; i.v.) 

showed a high effectivity against CL in the mouse module and similar to the 

positive control (paromomycin, 50 mg/kg/QD for 10 consecutive days; i.p.), 

and caused a significant reduction on lesion development and parasite load 

(bioluminescent signal). Additionally, AmB loaded chitosan-TPP nanoparticles 

(2.5 mg/ml/QAD for 10 days; i.v.) resulted in a similar reduction of lesion size 

and parasite load (bioluminescent signal) to AmBisome® (10 mg/kg/QAD for 

10 days; i.v.). The superior efficacy of AmB loaded chitosan-TPP nanoparticles 

(5 mg/ml/QAD for 10 days; i.v.) compared to AmBisome® (10 mg/kg/QAD for 

10 days; i.v.) could be related to higher intralesional drug concentrations 

(described previously) and the effectivity of chitosan nanoparticles against CL.  

Ribeiro et al (2014) reported that AmB loaded chitosan- chondroitin sulphate 

nanoparticles (136±11 nm, positive charge) caused significant reductions in 

the lesion size and in the parasite burden of L. amazonensis infected BALB/c 

mice, when administrated intravenously (1 mg/kg/day for 10 days) and were 

more active than pure AmB at same doses (121).  

There was a good correlation between levels of intralesional AmB 

accumulation and the therapeutic outcomes of AmB loaded chitosan-TPP 

nanoparticles as the anti-leishmanial activity of AmB has a concentration-

dependent response and this due to the concentration-dependency of AmB 

antimicrobial activity (302) and this consistent with Wijnant et al (2018) for 

AmBisome® in CL mouse module (170). 

 

Chitosan formulations for topical administration – skin penetration 

As we mentioned that topical treatment offers several advantages over 

systemic treatment regarding side effects, the direct target for infected lesions, 

less need for patient follow up and better compliance by the patients (303, 304, 

305, 306). Thus, the aim was to develop topical nanoparticles formulations 

(positive and negative charged nanoparticles) containing AmB. There are four 

fundamental factors that control the efficacy of topical treatment of CL: 

(i) The intrinsic efficacy of the compound against Leishmania   
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(ii) The permeability of the compound through the skin to reach the 

dermis where the Leishmania infected macrophages reside (30) 

(iii) Disposition of the drug in the skin  

(iv) The release of the active compound from formulation in the PV of 

infected macrophages in the dermis of infected skin (306) 

Both AmB chitosan-TPP nanoparticles and AmB chitosan-dextran sulphate 

nanoparticles showed a high activity against Leishmania promastigotes and 

amastigotes. Therefore, we investigated their in vitro permeation 

characteristics through uninfected and L. major infected mice skin using Franz 

diffusion cells. 

By using Franz diffusion cells, pure AmB did not permeate through 

uninfected or L. major infected skin. This is consistent with other reports 

(307, 308, 309, 310) and this could be explained as AmB is a big molecule 

(924 g/mol ) and is not soluble in water (307). 

 Briefly to optimise permeation, a given drug should comply with the following 

physicochemical properties : 

 molecular weight < 500 g/mol 

 log p between 1 – 3 

 aqueous solubility > 1 mg/ml 

 hydrogen bonding groups < 2. 

Accordingly AmB is not a a good candidate for topical route,  as its molecular 

weight is > 500 g/mol and log p of AmB is -0.66 and it is not the acceptable 

range for skin permeation (log P between 1-3) and has  12 H-bond donors and 

18 H-bond acceptors (311, 312).This impermeability of AmB through healthy 

or infected skin clarified the unsuccessful treatment after the topical application 

of AmB on L. major infected mice (313). In addition, AmBisome® (liposomal 

AmB) was not efficient delivery topical systems for CL (314) and did not 

present a significant AmB skin deposition, in vitro study (Excised human skin 

from Caucasian female patients) (315).   

In vitro permeation study showed a limited and slow permeation of AmB across 

healthy and infected mice skin when both types of AmB loaded chitosan 



193 
 

nanoparticles applied on the skin samples with a long lag time of about 20 h 

indicating a long time for the steady state flux to be reached (which indirectly 

means slow permeation across the stratum corneum). These data were 

confirmed by imaging the permeation of rhodamine labelled chitosan-TPP 

nanoparticles and rhodamine labelled chitosan-dextran sulphate 

nanoparticles across uninfected and L. major infected skin using laser 

microscope which showed that these nanoparticles stayed on the surface of 

skin. Our results were consistent with other reports; Vogt et al reported that 

most of applied 42–300 nm fluorescent silica nanoparticles stayed in the upper 

layers of the excised human skin using conventional fluorescence microscopy 

of skin sections(316). 

Try et al observed a negligible penetration of poly (L-lactide-co-glycolide) 

nanoparticles with two sizes 70 and 300 nm in healthy male Swiss mice skin 

by using confocal laser scanning microscopical examination of skin biopsies 

while nanoparticles have been visualised in the epidermis in inflamed skin 

(inflammation induced by the application of oxazolone to develop atopic 

dermatitis like lesions) (317). Moreover, our data are in agreement  with the 

study of Campbell et al who reported no penetration of fluospheres 

nanoparticles ( carboxy-modified, fluorescent, polystyrene nanoparticles with 

three sizes 20, 100 and 200 nm) through pig skin and these nanoparticles 

remained in the top layers of the stratum corneum after 16 h of the application 

in Franz diffusion cells by using a laser scanning confocal microscopy (318). 

Similar observation regarding the limited permeation of chitosan nanoparticles 

was noticed by Nair et al, that curcumin-encapsulated chitosan nanoparticles 

with sizes ranged from 167.3 ± 3.8 nm to 251.5 ± 5.8 nm had a slow 

permeation and with low amounts using Franz diffusion cells through Strat-M® 

membrane (Strat-M is made of polyester sulfone arranged as multiple layers 

mimicking the skin structure including a tough outer layer manufactured by 

Merck) and the cumulative amount of curcumin permeated at 72 h was 34.3 ± 

1.6 μg cm−2 and 27.7 ± 1.7 μg cm−2 for nanoparticles with sizes 251.5 and 

167.3nm , respectively (319) . Malli et al (2019) reported that the topical 

application of chitosan-Coated Poly (isobutyl cyanoacrylate) ( size=187nm , 

zeta potential =53.8 mv) nanoparticles (prepared by anionic emulsion 
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polymerization method) gelified by pluronic F127 daily for 3 consecutive weeks 

to BALB/c mice infected with L. major, resulted in partial and not complete 

healing of lesion and could be due to a physical effect of the F127 hydrogel 

(220). 

AmB loaded chitosan nanoparticles offered more permeation of AmB through 

infected than uninfected skin when applied topically and this was consistent 

with another report that showed more permeation of caffeine and ibuprofen 

through L. major infected than uninfected BALB/c mouse skin, using Franz 

diffusion cells (166). The same study reported no permeation of paromomycin 

sulphate through uninfected mice skin while a high permeation through L. 

major infected skin was observed using Franz diffusion cells (166). This could 

be explained as CL lesions cause a damage to the skin barrier and this 

alteration in skin could enhance the penetration of nanoparticles (320). 

Moreover, Leishmania infected skin is characterised by the presence of 

abundant inflammatory cells in the infection site and this could disarrange the 

consistency of the epidermal and dermal skin layers and by ulceration and 

necrosis (307, 310, 321). Trans-epidermal water loss (TEWL) was significantly 

higher in L. major infected skin and this reduced the barrier function of the skin 

and subsequently increased the accumulation of fluid in the interstitial spaces 

cause an oedema that could enhance the permeation of water-soluble 

compounds  (307).  

AmB loaded chitosan-TPP nanoparticles (size= 68 ± 7 nm, Zeta potential= 30 

± 2) presented more permeation of AmB than AmB loaded chitosan-dextran 

sulphate nanoparticles ( size= 168 ± 7 nm, Zeta potential= -15.5 ± 2). Similarly, 

Try et al reported a higher penetration of smaller poly(L-lactide-co-glycolide) 

nanoparticles (70nm) than bigger ones (300 nm) in healthy male Swiss mice 

skin and could be explained as smaller sized nanoparticles can penetrate for 

more distance compared with bigger ones (317). 

Another explanation of this higher penetration as the positive surface charge 

of chitosan-TPP nanoparticles could interact with negative charges in the skin 

and confirm close contact with the skin and make an occlusive barrier that 

enhance the hydration and this facilitates the nanoparticles permeation 

through the skin (322, 323).  



195 
 

All of the above regarding the limited and slow permeation of AmB from AmB 

loaded nanoparticles made these nanoparticles unsuitable candidates for 

topical administration. On this basis we did not pursue in vivo evaluation of the 

antileishmanial activity of topical route of these formulations.  

In conclusion, AmB loaded chitosan-TPP nanoparticles showed efficient, 

stability properties and target oriented drug delivery system in an experimental 

model cutaneous leishmaniasis when administered by the i.v. route, these 

nanoparticles were significantly more active than AmBisome® against the 

murine model (female BALB/c mice) of L. major even with lower doses of these 

nanoparticles. AmB loaded chitosan-TPP nanoparticles can specifically target 

the CL lesions more than AmBsiome as they resulted in a higher concentration 

of AmB in the lesion sites in comparison to AmBisome®.  However, Franz 

diffusion cell studies showed poor drug permeation into and through the skin 

of both types of AmB loaded chitosan nanoparticles suggesting that these 

formulations are not an appropriate candidate for topical treatment for CL. Our 

results indicate the need for more extensive studies using the intravenous 

route using different Leishmania species, different mammalian models and 

further extensive toxicity studies. Finally, skin samples from the in vivo study 

are stored for qPCR determination of parasite load and this work fell beyond 

the time line of this project. 
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5. Comparison of in vitro static and dynamic culture systems 

to evaluate the macrophages functions and the anti-

leishmanial efficacy of chitosan formulations ** 

** research in this chapter was performed in collaboration with Alec O’Keeffe, 

who showed in a published paper (I am one of the co-authors) that the infection 

of macrophages by L. major was significantly reduced under slow medium flow 

and faster medium flow (to match the interstitial fluid flow rate in human skin) 

compared to macrophages under static conditions. The replication of 

Leishmania amastigotes and two functions of macrophages (phagocytosis and 

macropinocytosis) were also reduced under two media perfusion conditions, 

see publication, Appendix 2 (Paper 1).  

Alec O’Keeffe completed his PhD on the development of novel predictive 2D 

and 3D in vitro models for ant-leishmanial drug testing, studying the activity 

and accumulation of anti-leishmanial drugs under these different flow 

conditions. Some of his results are included in the discussion for reference.  

5.1.  Media perfusion system: an introduction 

The important effects of fluid flow (blood flow, interstitial flow, etc) on cell 

signalling and morphogenesis have been widely recognized. Cells in the 

mammalian body are residing in highly complex microenvironments and 

encounter many signals that vary in time and space. Tissues are in direct 

contact with moving body fluids, which encompass the haemolymphatic 

system, the digestive system and cerebrospinal fluid. These fluids play a 

significant role in the body cells such as the provision and delivery of nutrients, 

oxygen, cell signalling components and the removal of waste. The flow of 

blood and other bodily fluids within the body exerts mechanical stress on cells 

(324). Different rates of body fluid flow have been recorded, from fast plasma 

flow of 9.8 ml/min in the portal vein of the rat (325) to slow rates of 0.19 μl/min 

of interstitial fluid drainage from rat brains (326). 20% of the human body’s 

mass is estimated to be made up of interstitial fluid which is in all tissues, 

including skin; derived from the normal leakage of plasma from blood vessels 
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and has a similar structure to that of blood plasma (327). Leishmania 

amastigotes reside and survive in the phagolysosome of mammalian 

macrophages and in CL, these infected macrophages are exposed to 

interstitial fluid in the skin. The flow of interstitial fluid in uninfected human skin 

has been recorded to be in the order of 0.1–2 μm/s but this flow in CL infected 

skin has not been determined  (327, 328, 329). 

Most in vitro studies, in the Leishmania field (on drug discovery, host cell 

transport and immunology), have been conducted on macrophages in static 

culture, typically using 4-, 12-, 16-, 24-, 48-, and 96-well plates with a culture 

medium overlay. This static system does not provide the mechanical stress, 

and O2 tension, amongst other things, to that of cells within a mammalian body 

(98). Consequently, a static system has a major limitation when evaluating 

cellular parameters in vitro, such as infection rate, drug activity, and 

macrophage functions such as phagocytosis and pinocytosis, offering a poor 

mechanistic understanding and predictive value (98, 324). Increasing the 

complexity of a culture system could produce, potentially, a more biologically 

relevant system. Additionally, the issues surrounding the use of animal models 

in terms of welfare, time and cost constraints, and the limits of non-human 

models in predicting outcomes in humans, make developing a more predictive 

in vitro culture system a high priority (324).  

A first step is transforming static cultures systems to flow systems where the 

culture medium constantly flows, to imitate the flow conditions in the 

mammalian body (330). Microfluidic (Fig 5.1.) and macrofluidic systems (Fig 

5.2.) are the main two types of media perfusion systems to conduct in vitro 

assays.  

Many “microbioreactor” systems have been described for cell culture which 

range from laminar flow, membrane systems to rotating vessel systems.  Most 

of these bioreactors require the use of particular seeding methods with narrow 

dimensional specifications (331, 332, 333). Microfluidic systems can be 

adjusted to mimic physiological conditions and deliver nutrients, dissolved 

gases and remove waste products. The advantage of a microfluidic system is, 

that less reagents are used overall helping to lower experimental costs. 
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However, microfluidic systems do have a number of disadvantages – they are 

typically very small and require significant technical ability and care when 

setting up (98). In microfluidic systems, just a few thousand cells can be 

seeded on the tiny culture surface (0.5–0.8 mm2) and this low number of 

seeded cells cannot predict precisely the in vivo pathophysiology. Another 

drawback of these systems includes the “edge effect” in which a high 

proportion of cultured cells will be located on the outer circumference of the 

chamber. These cells will be organised differently as medium evaporates at a 

higher rate at the edges compared to the central area of the chamber, affecting 

cell seeding. An uneven cell layer can skew the results (334). Another 

disadvantage, when using micro systems, is that small hydrophobic molecules 

can be adsorbed by the material that either the chamber system or the 

connecting tubes are composed of (335, 336).  A micro system will also have 

a high surface area to volume ratio and surface adsorption which will cause 

an increase in metabolic consumption rates and depletion of nutrition for the 

cells (335, 336, 337). Air bubble formation can pose problems within these 

systems, disrupting flow and affecting sheer stress (338).  

Macrofluidic systems (for example, Quasi Vivo, Kirkstall Ltd, Fig 5.2) offer 

many advantages over microfluidic systems - a higher volume of liquid is used 

which eases the preparation of low concentration compounds without wasting 

compounds through dilution. These systems can keep the shear stress 

consistently similar to the shear stress in most physiological environments 

(324). Moreover, macrofluidic systems can run for a longer time than micro 

system cultures and have a lower surface area to volume ratio, overcoming 

the major disadvantage of high metabolic consumption seen in micro systems 

(324). 
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Figure  5.1. Microfluidic system (A) The integrated perfusion culture micro-
chamber array chip. (B) Enlarged view of a micro-chamber array unit (339). 

 
 

  

 
Figure  5.2. Kirkstall LTD. Quasi Vivo 900 media perfusion system in use circulating 
RPMI 1640 media(340). 
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Our study used QV900, as described by O'Keeffe A et al (2018) with two flow 

rates, in which one rate mimics the interstitial tissue flow rate in the skin. 

Modelling of the flow rate at the cell surface and O2 tension was made by a 

collaboration between The London School of Hygiene & Tropical Medicine 

(Alec O'Keeffe and Simon L Croft) and University of Glasgow (Lauren 

Hyndman and Sean McGinty) (100).  

Here, this Chapter describes the impact of flow on host cell phagocytosis and 

macropinocytosis and how increasing the complexity of in vitro model 

influences the anti-leishmanial activity of chitosan formulations (chitosan 

solution, blank chitosan-TPP -nanoparticles and AmB loaded chitosan-TPP 

nanoparticles) against intracellular L. major amastigotes, these formulations 

showed a high in vitro activity against L. major amastigotes using static culture 

system (Chapter 4) 
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5.2. Material and methods 

Kirkstall Ltd (Rotherham, UK), established in 2006 by Dr J Malcolm Wilkinson 

in 2006, has developed cell culture technology into a commercially available 

inter-connected cell culture system, known as Quasi Vivo®, by introducing 

flow into the cell cultures to increase physiological relevance and create more 

confidence in the data produced. The Quasi Vivo system includes QV500 (an 

individual chamber system) and QV900 and their specifications are 

summarised in Table 5.1.  

 
Table 5.1. Specifications of QV500 and QV900 media perfusion system(340, 341, 
342) 

 
Features 

QV500 QV900 

Chamber width 15 mm internal 15 mm internal 

Chamber depth 
10 mm from culture surface 

to top of chamber base 
22 mm 

Materials 

Chamber: PDMS 
Tubing: Tygon 

Luers and reservoir bottle: 
Polypropylene 

Chamber: 
Base: Altuglas SG7 – Acrylic 

Resin 
Lids: Melifex  M8706 – 

Styrene TEP 
Tubing: Tygon/PTFE & FEP 
Luers and reservoir bottle: 

Polypropylene 

Overall dimensions 
23 mm height x 37 mm 

diameter 
23 mm height x 37 mm 

diameter 

Diameter of tubing 
Inlet: 1/16” ID 

Outlet: 3/32” ID 
Inlet: 1/16” ID 

Outlet: 3/32” ID 

Volume of 
chamber 

2 ml 4 ml 

 

5.2.1. Preparation of chitosan solution and blank and AmB loaded 

chitosan nanoparticles 

 All nanoparticles in this study were prepared and characterised as described 

in chapter 3 in sections 3-2-1- and 3-2-2-. After freeze drying the nanoparticle 
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suspension, the white (blank nanoparticles) or yellow (AmB loaded 

nanoparticles) product was reconstituted in double distilled water (ddH2O). 

The nanoparticles were then characterised by size, charge and AmB loading 

(see Chapter 3). A solution of HMW chitosan was prepared by dissolving 1 g 

in 100 ml of 1% (v/v) acetic acid solution at room temperature with continuous 

stirring for 24 hours until a clear solution was obtained. The pH of the solution 

was adjusted to ~ pH 6 by adding sodium hydroxide 2N (NaOH, Sigma, UK) 

solution using a pH meter (Orion Model 420A). The chitosan solutions were 

autoclaved (121 °C; 15 mins). 

5.2.2. QV900 and media perfusion system  

QV900 is a 6-chamber optical tray which can be connected together in any 

combination, providing a high degree of flexibility and the potential to culture 

cells in a defined set of conditions. QV900 is more suited to high-throughput 

testing than QV500. A 3D printed block (9mm) composed of Nylon 12 (Kirkstall 

Ltd) can be added to the chamber which will alter the depth of the chambers 

and can be used to adjust the level of oxygen and flow rates, the cells are 

subjected to. A peristaltic pump (Parker Hannifin,UK), external to the CO2 

incubator, continuously circulated culture media through the system is used.  

A constant flow rate of 360 μl/min of culture media was used. The cells 

(infected or uninfected macrophages) were cultured either at the base of a 

perfusion chamber or raised on 9 mm high inserts. This resulted in a cell 

surface flow rate of 1.33 x 10−9 at the base of the chamber or 1.17 x 10−7 (m/s) 

on an insert which is in line within the reported range for interstitial flow in the 

human skin (100). 

5.2.3. Macrophages 

Macrophages were plated on 12mm round glass coverslips (Bellco, US) 

placed in 24 well plates (Corning, UK) at a density of 4 x 105 cells per well in 

RPMI-1640 media (PEMs and THP-1) or DMEM (BMMs) supplemented with 

10% (v/v) HiFCS. 

- THP-1 cells were incubated in RPMI 1640 plus 10% (v/v) HiFCS and 

20 ng/ml phorbol 12-myristate 13-acetate (PMA; Sigma, UK) at 37°C 
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and 5% CO2 for 72 h to induce maturation transformation of these 

monocytes into adherent macrophages. 

5.2.4. Infection of macrophages by L. major promastigotes 

Macrophages 4 x 105/ml in RPMI-1640 media (PEMs and THP-1) or DMEM 

(BMMs) medium supplemented with 10% (v/v) HiFCS were plated in 24 well 

plates (Corning, UK) (1 ml per well) on 12mm round glass coverslips (Bellco, 

US) placed in 24 well and incubated for 24 hours at 37 °C in 5 % CO2. After 

24 hours, wells were washed by fresh culture medium to remove non-adherent 

cells. After washing, stationary phase L. major (MHOM/SA/85/JISH118 )  

promastigotes were added into the wells at a ratio of 5:1 (5 parasites: 1 host). 

Plates were incubated for another 24 hours at 34 °C in 5 % CO2. 

Subsequently, free parasites were removed by washing with the medium. One 

infected coverslip slide was fixed with 100 % methanol for 5 minutes and 

stained with 10 % Giemsa for 5 minutes. The number of infected macrophages 

per 100 macrophages was microscopically counted. If the initial infection was 

higher than 80 %, the assay was suitable for the experiments. Subsequently, 

two thirds of the glass coverslips were transferred to the media perfusion 

system (at the base of chamber or on the 9 mm insert) and maintained under 

flow conditions at a flow speed of 360 μl/min for 72 hours. The remaining 

coverslips were used for the static control. 

5.2.5. Measurement of macrophage functions.  

5.2.5.1. Phagocytosis  

Phagocytosis by macrophages (PEMs, BMMs and THP-1 ) was initially 

evaluated using 0.5,1 and 2 μm diameter fluorescent red labelled latex beads 

(carboxylate-modified polystyrene) (Sigma-Aldrich, UK) (343, 344). 2 μm 

beads were eventually selected as they showed maximal signal. Macrophages 

were infected with L. major promastigotes, then transferred to the three flow 

conditions as described above. To each well, 2μm beads (9.12 x 107 latex 

beads/ml) were added and the cells were incubated for 0.5, 1, 2, 4 and 24 

hours at 34 ˚C under the three different flow conditions. The experiment was 

terminated by washing the cells 4 times with ice-cold PBS pH 7.4 to remove 



204 
 

non-internalized latex beads, followed by the addition of 1 ml of 0.5% Triton 

X100 in 0.2 M NaOH to lyse the cells. Phagocytosis was quantified by the 

analysis of the cell lysate using a fluorescence plate reader (Spectramax M3, 

at excitation and emission wavelengths set at 575 and 610 nm), calibrated with 

standard solutions containing different number of latex beads in a cell lysate 

mixture. Uptake was expressed as the number of latex beads associated per 

mg of cellular protein, the protein content of the cell lysate being measured 

using a Micro BCA protein kit (Thermo Fisher, UK) assay as per supplier’s 

instructions. For control studies, 1 μg/ml cytochalasin D was used as a 

phagocytosis inhibitor (Sigma-Aldrich, UK) by incubation with macrophages 

for 2 hours prior to addition of the latex beads. Phagocytosis was completely 

inhibited after 0.5, 1, 2 and 4 hours of incubation with cytochalasin D and 90% 

after 24 hours.  

5.2.5.2. Macropinocytosis  

Macropinocytosis was measured using a fluorescence-labeled dextran dye 

(pHrodo Red dextran, average molecular weight of dextran 10,000 MW, 

Thermo Fisher, UK) (345). This dye has a pH-sensitive fluorescence emission 

that increases in intensity with increasing acidity while exhibiting a minimal 

fluorescence at neutral pH. Macrophages (PEMs, BMMs and THP-1 ) were 

infected with L. major promastigotes and then transferred to the three flow 

conditions as described above. Macrophages were washed 3 x by Live Cell 

Imaging Solution (Thermofisher, UK) and the cells were returned to RPMI 

1640 + 10% hiFCS containing 40 μg/ml pHrodo Red dextran (1 ml for each 

well) and incubated at 34 ˚C / 5% CO2 for 0.5, 1, 2, 4 and 24 hours under the 

three different flow conditions. At each time point, the cells were washed with 

Live Cell Imaging Solution and macropinocytosis was analysed by a 

Spectramax M3 at excitation and emission wavelengths set at 560 and 585 

nm respectively. Chlorpromazine hydrochloride 10 μg/ml, a known inhibitor 

(Sigma-Aldrich, UK), was used as a control and was incubated with 

macrophages for 2 hours prior to addition of fluorescence-labeled dextran dye. 

Macropinocytosis was completely inhibited after 0.5, 1, 2 and 4 hours of 

incubation with chlorpromazine hydrochloride and by 90% after 24 hours. 
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5.2.6. Evaluation of the anti-leishmanial activity of chitosan solutions, 

blank and AmB loaded chitosan TPP nanoparticles in the media 

perfusion system at pH 6.5 

PEMs were infected with L. major promastigotes, then transferred to the three 

flow conditions as described above. This experiment was conducted at pH 6.5. 

After 72 hours, the coverslips were fixed using methanol and stained with 

Giemsa and drug activity was evaluated by microscopically counting the 

number of infected and uninfected cells per 100 macrophages comparing with 

the control (Fig 5.3.) (324). The anti-leishmanial activity of compounds was 

expressed as percentage reduction in infected macrophages compared to 

untreated control wells. 

 
Figure  5.3. Schematic overview of evaluation of the anti-leishmanial activity in 
static and flow culture systems.  
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5.3. Results 

As previously mentioned, O'Keeffe A et al (2018) have described the Quasi 

Vivo QV900 macro-perfusion system and briefly, found that a 85±3% infection 

rate of macrophages at 72 hours in static cultures decreased to 62±5% for 

cultures under slow medium flow and 55±3% under fast medium flow and 

media perfusion also decreased amastigote replication and both macrophage 

phagocytosis (by 44±4% under slow flow and 57±5% under fast flow compared 

with the static condition) and macropinocytosis (by 40±4% under slow flow and 

62±5% under fast flow compared with the static condition). Mathematical and 

computational modelling were used to estimate the effect of speed of medium 

flow on infection rate, shear stress and oxygen concentration. For further 

details see publication Annex 1. 

 

5.3.1.  Macrophage functions  

5.3.1.1.  Phagocytosis.  

Phagocytosis of latex beads by uninfected and infected macrophages (PEMs, 

BMMs or THP-1) showed a clear time dependent response (Fig 5.4.), with 

phagocytosis increasing with duration of incubation. Phagocytosis was 

significantly higher in infected cells (infection rate of > 80%) compared to 

uninfected ones after 24 hours under static conditions (p<0.05 by t-test) (Table 

5.2 and Fig 5.4). PEMs and BMMs showed significantly higher phagocytosis 

of latex beads than THP-1 (p<0.05 by one- way ANOVA ). 
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Table 5.2. Phagocytosis of fluorescent latex beads (2 μm) by uninfected and infected PEMs, BMMs and THP-1 in static culture 
system. 

 Number of latex beads ± SD *105/mg protein 

 Uninfected cells - static system infected cells - static system 

Time/Hour PEMs BMMs THP-1 PEMs BMMs THP-1 

0.5 2.42 ± 0.2 2.3 ± 0.2 1 ± 0.2 3.45 ± 0.04 3 ± 0.04 1.8 ± 0.04 

1 6.93 ± 0.8 6.2 ± 0.8 5.2 ± 0.8 11.56 ± 0.02 10.9 ± 0.02 8 ± 0.02 

2 61.18 ± 1.5 60 ± 1 41 ± 1 76.58 ± 0.4 74 ± 0.2 59 ± 0.2 

4 106.74 ± 7.7 95 ± 5 66 ± 5 142.96 ± 3.9 139 ± 2 90 ± 2 

24 421.27 ± 30 396 ± 27 265 ± 27 530 ± 30 519 ± 25 398 ± 22 

Experiments were conducted in triplicate cultures, data expressed as mean +/- SD (experiment was reproduced further two times 
with confirmed similar data not shown). Phagocytosis was significantly higher (p<0.05 by t-test) in infected macrophages compared 
to uninfected ones. Phagocytosis was significantly higher (p<0.05 by t-test) in infected macrophages compared to uninfected ones.  
Initial macrophage infection rate was >80% after 24 h. 
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Figure  5.4. Phagocytosis of fluorescent latex beads (2 μm) by uninfected and 
infected PEMs (A), BMMs (B) and THP-1 (C) in static culture system. There is a 
significant increase in phagocytosis by infected macrophages compared to 
uninfected ones (p<0.05 by t-test). The data show means ± standard deviations 
(SD), N = 3. Infection rate was > 80%. 

After which, the effects of media perfusion systems on phagocytosis function 

of L. major- infected macrophages were evaluated. Flow conditions caused a 

significant reduction in phagocytosis by infected macrophages as shown in Fig 

5.5 - after 24 h of incubation, phagocytosis had significantly decreased from 

530± 30 x 105, 519± 30 x 105 and 398± 22 x 105 beads/mg protein by PEMs, 

BMMs and THP-1, respectively in static cultures to 304± 32 x 105 , 299.9± 24 

x 105  and 200± 30 x 105 beads/mg protein by PEMs, BMMs and THP-

1,respectively at slow flow speed (1.45 x 10-9 m/s ) and this phagocytosis 

decreased more at faster flow speed (1.23 x 10-7 m/s) to 231± 28 x 105 , 227.6± 

25 x 105  and 144± 18 x 105 beads/mg protein by PEMs, BMMs and THP-

1,respectively (p<0.05 by one-way ANOVA) (Table 5.3). 

(A) (B) 

(C) 



209 
 

Table 5.3. Phagocytosis of fluorescent latex beads (2 μm) by infected PEMs, BMMs and THP-1 in the three culture systems (static, slow flow 
rate 1.45 x 10⁻⁹ m/s and fast flow rate 1.23 x 10-7 m/s ).  

 
Number of latex beads ± SD *105/mg protein 

 
infected cells - static system Infected cells - 1.45 x 10-9 m/s Infected cells - 1.23 x 10-7 m/s 

Time/Hour PEMs BMMs THP-1 PEMs BMMs THP-1 PEMs BMMs THP-1 

0.5 3.45 ± 0.04 3 ± 0.04 1.8 ± 0.04 1.06 ± 0.02 1 ± 0.02 1 ± 0.02 0.54 ± 0.1 0.45 ± 0.1 0.3 ± 0.1 

1 
11.56 ± 

0.02 
10.9 ± 0.02 8 ± 0.02 6.59 ± 0.1 5.9 ± 0.1 3 ± 0.1 3.92 ± 0.06 3.89 ± 0.06 1.5 ± 0.06 

2 76.58 ± 0.4 74 ± 0.3 59 ± 0.2 40.24 ± 0.4 39 ± 0.25 22 ± 0.25 28.18 ± 0.2 27 ± 0.2 15 ± 0.2 

4 
142.96 ± 

3.9 
139 ± 3 90 ± 2 75.92 ± 5.5 73.9 ± 5 49 ± 1 53.55 ± 4.9 50 ± 4 33 ± 3 

24 
530.05 ± 

32.9 
519 ± 30 398 ± 22 

303.88 ± 
27.5 

299.9 ± 24 200 ± 30 231.11 ± 30 227.6 ± 25 144 ± 18 

Experiments were conducted in triplicate cultures, data expressed as mean +/- SD (experiment was reproduced further two times with confirmed 
similar data not shown). Flow conditions caused a significant reduction in phagocytosis by infected macrophages (p>0.05 by one-way ANOVA).  
Initial macrophage infection rate was >80% after 24 h. 
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Figure  5.5. Phagocytosis of fluorescent latex beads (2 μm) by infected PEMs (A), 
BMMs (B) and THP-1 (C) in the three culture systems (static, slow flow rate 1.45 x 
10−9 m/s and fast flow rate 1.23 x 10−7 m/s). Phagocytosis is significantly higher in 
static than in flow system (p<0.05 by one-way ANOVA). The data are means ± 
standard deviations (SD), N = 3. Infection rate > 80%. 

 

5.3.1.2. Macropinocytosis 

Macropinocytosis of pHrodo Red dextran by uninfected and infected 

macrophages (PEMs, BMMs or THP-1) showed a clear time dependent 

response with macropinocytosis increasing with duration of incubation (Fig 

5.6.). Macropinocytosis was significantly increased in infected macrophages, 

(A) (B) 

(C

) 
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from 19.02 ± 1.1, 16.5± 1.1 and 8±1.1 μg/mg protein of pHrodo Red dextran 

by uninfected PEMs, BMMs and THP-1, respectively to 25.3 ± 0.9, 23±0.8 

and 13.5±0.8 μg/mg protein of pHrodo Red dextran in infected PEMs, BMMs 

and THP-1, respectively after 24h in static conditions (p<0.05 by t-test) (Table 

5.4).  
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Table 5.4. Macropinocytosis of pHrodo™ Red dextran by uninfected and infected PEMs, BMMs and THP-1 in static culture system. 

 Concentration of dextran ± SD µg/mg protein 

 Uninfected cells - static system infected cells - static system 

Time/Hour PEMs BMMs THP-1 PEMs BMMs THP-1 

0.5 0.43 ± 0.01 0.3 ± 0.01 0.15 ± 0.01 0.92 ± 0.1 0.6 ± 0.1 0.3 ± 0.1 

1 1.28 ± 0.3 1.1 ± 0.3 0.55 ± 0.3 2.8 ± 0.2 2.2 ± 0.1 1.6 ± 0.1 

2 2.77 ± 0.5 2.5 ± 0.5 0.99 ± 0.5 3.78 ± 0.5 3.4 ± 0.3 1.8 ± 0.3 

4 4.83 ± 0.9 4.1 ± 0.9 2.5 ± 0.9 7.1 ± 0.8 5.9 ± 0.7 3.9 ± 0.7 

24 19.02 ± 1.1 16.5 ± 1.1 8 ± 1.1 25.3 ± 0.9 23 ± 0.8 13.5 ± 0.8 

Experiments were conducted in triplicate cultures, data expressed as mean +/- SD (experiment was reproduced further two times with 
confirmed similar data not shown). Macropinocytosis was significantly higher (p<0.05 by t-test) in infected macrophages compared to 
uninfected ones. Macropinocytosis was significantly higher (p<0.05 by t-test) in infected macrophages compared to uninfected ones.  Initial 
macrophage infection rate was >80% after 24 h. 
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Figure  5.6. Macropinocytosis of pHrodo Red dextran by uninfected and infected 
PEMs (A), BMMs (B) and THP-1 (C) in static culture system. There is a significant 
increase in macropinocytosis by infected PEMs compared to uninfected ones 
(p<0.05 by t- test). The data are means ± standard deviations (SD), N = 3. Infection 
rate was > 80%. 

After which, the effects of media perfusion systems on macropinocytosis 

function of L. major- infected macrophages were evaluated. Macropinocytosis 

was significantly reduced under flow conditions (Fig 5.7.), with higher speed 

of culture medium flow causing the greatest reduction, as after 24 hours of 

incubation with pHrodo Red dextran, macropinocytosis was reduced from 25.3 

± 0.9, 23± 0.8 and 13.5± 0.8 μg of pHrodo Red dextran /mg protein by PEMs, 

BMMs and THP-1, respectively under static to 15.1 ± 1, 14.99± 0.3 and 9± 0.3 

μg/mg protein by PEMs, BMMs and THP-1, respectively under low flow (1.45 

x 10-9 m/s) and more reduction occurred by higher flow (1.23 x 10-7 m/s ) to  

(A) (B) 

(C) 
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9.54 ± 1.2, 9± 1 and 5.5± 1 by PEMs, BMMs and THP-1 μg/mg protein, 

respectively (p<0.05 by one-way ANOVA) (Table 5.5).
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Table 5.5. Macropinocytosis of pHrodo™ Red dextran by infected PEMs, BMMs and THP-1 at the three culture systems (static, slow flow 

rate 1.45 x 10⁻⁹ m/s and fast flow rate 1.23 x 10⁻7 m/s ). 

 Concentration of dextran ± SD µg/mg protein 

 infected cells - static system Infected cells -1.45 x 10-9 m/s Infected cells - 1.23 x 10-7 m/s 

Time/Hour PEMs BMMs THP-1 PEMs BMMs THP-1 PEMs BMMs THP-1 

0.5 0.92 ± 0.1 0.6 ± 0.1 0.3 ± 0.1 
0.29 ± 
0.01 

0.2 ± 0.01 0 ± 0.01 0 ± 0.0 0 ± 0.02 0 ± 0.02 

1 2.8 ± 0.2 2.2 ± 0.1 1.6 ± 0.1 0.68 ± 0.5 0.55 ± 0.5 0.25 ± 0.5 
0.13 ± 
0.06 

0.1 ± 0.05 0 ± 0.05 

2 3.78 ± 0.5 3.4 ± 0.3 1.8 ± 0.3 1.75 ± 0.5 1.5 ± 0.5 0.7 ± 0.5 1.32 ± 0.2 1.1 ± 0.1 0.35 ± 0.1 

4 7.1 ± 0.8 5.9 ± 0.7 3.9 ± 0.7 3.17 ± 0.9 3 ± 0.7 1.5 ± 0.7 2.29 ± 0.7 2 ± 0.55 0.9 ± 0.5 

24 25.3 ± 0.9 23 ± 0.8 13.5 ± 0.8 15.1 ± 1 14.9 ± 0.3 9 ± 0.3 9.54 ± 1.2 9 ± 1 5.5 ± 1 

Experiments were conducted in triplicate cultures, data expressed as mean +/- SD (experiment was reproduced further two times with confirmed 
similar data not shown). Flow conditions caused a significant reduction in macropinocytosis by infected macrophages (p>0.05 by one-way 
ANOVA).  Initial macrophage infection rate was >80% after 24 h. 

 



216 
 

 

Figure  5.7. Macropinocytosis of pHrodo Red dextran by infected PEMs (A), BMMs 
(B) and THP-1 (C) at the three culture systems (static, slow flow rate 1.45 x 10−9 m/s 
and fast flow rate 1.23 x 10−7 m/s). Macropinocytosis is significantly higher in static 
than in flow systems (p<0.05 by one-way ANOVA). The data are means ± standard 
deviations (SD), N = 3. Infection rate was > 80.  

5.3.2. Effects of media perfusion system on the anti-leishmanial activity 

of chitosan formulations 

Dose-dependent anti-leishmanial activity (Fig 5.8.) was observed for all 

formulations (chitosan solution, blank chitosan-TPP nanoparticles and AmB 

loaded chitosan-TPP nanoparticles) across two media velocities and static 

culture. In the 72 h assays, the data showed that the addition of media 

perfusion reduced the anti-leishmanial activity of these three chitosan 

formulations. Chitosan solution, blank chitosan-TPP nanoparticles and AmB 

loaded chitosan-TPP nanoparticles showed a significantly higher activity in 

static culture (flow of 0 m/s) than in the QV900 system both at the base of the 

chamber (flow of 1.45 x 10−9 m/s) and on an insert (flow of 1.23 x 10−7 m/s) 

(A) (B) 

(C

) 
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(p<0.05 by an extra sum-of-squares F test). The three formulations, chitosan 

solution, blank chitosan-TPP nanoparticles and AmB loaded chitosan-TPP 

nanoparticles, were 2.08 times, 2 times and 4 times respectively, more active 

against intracellular L. major amastigotes in static culture in comparison with 

the flow of 1.45 x 10−9 m/s. Similarly, increasing the velocity of culture media 

from flow of 1.45 x 10−9 m/s to flow of 1.23 x 10−7 m/s by using the insert 

reduced the activity of chitosan solution, blank chitosan-TPP nanoparticles 

and AmB loaded chitosan-TPP nanoparticles against L. major amastigotes by 

2.4 times, 1.8 times and 2.75 times respectively (Table 5.6). Regarding pure 

AmB, we did not find a significant difference in EC50 values between the three 

culture systems (p>0.05 by an extra sum-of-squares F test). In contrast, a 

significant difference was observed in EC90 values of pure AmB as increasing 

the media perfusion decreased the effectivity of AmB against 90% of 

amastigotes (p<0.05 by an extra sum-of-squares F test) (Table 5.6). 

Table 5.6. In vitro activity of chitosan solution and nanoparticles against L. major 
amastigotes in RPMI medium (pH=6.5) at different flow rates 

Compound 

Static- 0 m/s 
Flow - 1.45 x 10−9 

m/s 
Flow - 1.23 x 10−7 

m/s 

EC50 EC90 EC50 EC90 EC50 EC90 

µg/ml 

Chitosan 
solution 

10.9 ± 1 165 ± 5 22.7 ± 1 230 ± 15 55.3 ± 2 455 ± 9 

Blank 
chitosan-TPP 
nanoparticles  

14.6 ± 4 241 ± 26 29.3 ± 3 299 ± 35 53.7 ± 4 459 ± 69 

AmB loaded 
chitosan-TPP 
nanoparticles 

0.1± 
0.01 

1 ± 0.1 
0.4 ± 
0.01 

2.5 ± 0.1 
1.1 ± 
0.02 

3.5 ± 0.3 

AmB solution 
(Pure) 

0.09 ± 
0.01 

0.5 ± 
0.02 

0.1 ± 
0.01 

0.9 ±  
0.1 

0.1 ± 
0.02 

1.5 ± 0.1 

Experiments were conducted in triplicate cultures, data expressed as mean +/- SD 
(experiment was reproduced further two times with confirmed similar data not 
shown). *Statistically significant differences were found for the EC50 values of 
chitosan solution, blank chitosan-TPP nanoparticles and AmB loaded chitosan-
TPP nanoparticles at static culture (flow of 0 m/s), flow of 1.45 x 10−9 m/s and flow 
of 1.23 x 10−7 m/s (p<0.05 by an extra sum-of-squares F test). Initial macrophage 

infection rate was >80% after 24 h. 
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Figure  5.8. Dose-response curve of the activity of chitosan solution (A), blank 
chitosan-TPP nanoparticles (B), AmB loaded chitosan-TPP nanoparticles (C) and 
AmB solution (pure) (D) against L. major amastigotes infecting PEMs in pH=6.5 
under different flow conditions. Quasi Vivo QV900 system has been used as a flow 
culture system. Values are expressed as % amastigotes inhibition relative to 
untreated controls. Data are representative of one experiment in in triplicate 
cultures, data is expressed as mean +/- SD (experiment was reproduced further 
two times with confirmed similar data and data not shown).  
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5.4. Discussion 

 

The QV900 culture flow system was used to overcome some fundamental 

limitations of in vitro static culture system when investigating cellular 

responses and anti-leishmanial activity of compounds and formulations. Static 

culture systems are unable to provide dynamic chemical or physical stimuli to 

cells, such as concentration gradients, flow, pressure, or mechanical stress 

caused by movement of fluids around them, which are physiologically relevant 

(100). 

This study found a significant increase in cell functions (phagocytosis and 

macropinocytosis) in L. major-infected macrophages (PEMs, BMMs and THP-

1) compared to uninfected cells - consistent with results described elsewhere, 

for example macrophages infected with either L. donovani or L. mexicana had 

greater pinocytic rates than uninfected macrophages, as measured by a 

fluorescent probe (fluorescein isothiocyanate dextran) (204). Similar 

observations have been reported with RAW 264.7 macrophages infected with 

L. major showing increased uptake of fluorescently labelled liposomes (204). 

This might be due to morphological changes of the infected cells or the 

parasitic infection may alter both the metabolic activity of the macrophages 

and their ability to ingest particulate material (346).  

This study found that PEMs and BMMs showed significantly higher 

phagocytosis and macropinocytosis than THP-1, and this could be explained 

as BMMs and PEMs are more homogenous than THP-1, and they are 

characterised with their homogeneity and long lifespan (230).  

We evaluated the effects of media perfusion rates on host cell phagocytosis 

and macropinocytosis. We found that phagocytosis and macropinocytosis 

were significantly decreased by media flow and increasing the media flow 

speed caused a further reduction in the uptake. This is consistent with previous 

reports of decreased uptake of fluorescein isothiocyanate (FITC)-poly 

(ethylene glycol) diacrylate particles (200 nm diameter) by human umbilical 

vein endothelial cells in a dynamic cell culture system exposed to shear stress 
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of 10 dynes/cm2 compared to the uptake in static cultures (347). Similar 

findings were also seen with a lower cellular uptake of solid silica particles 

(350 nm) by RAW 264.7 macrophages under dynamic condition compared to 

the uptake in static cultures (348). One explanation given was that the static 

system conditions might cause a sedimentation of the latex beads on the cell 

surface or exposure to higher concentrations of pHrodo Red dextran resulting 

in a local increase in their concentrations (349). In contrast, medium flow 

prevents such localization of materials with subsequently reduced uptake 

(350). 

We also showed that the media perfusion system had a significant influence 

on the anti-leishmanial activity of chitosan solution, blank chitosan-TPP 

nanoparticles and AmB loaded chitosan-TPP nanoparticles- increasing the 

flow rates caused a significant decrease in their activity. Similarly, O’Keeffe 

reported that the anti-leishmanial activity of miltefosine and paromomycin 

against L. major amastigotes was reduced under these two flow rates (high 

and slow) (324). 

This decrease in the anti-leishmanial activity of chitosan formulations under 

flow system could be attributed to a number of factors: (i) in a static system, 

waste products (because of catabolic and xenobiotic metabolism) accumulate 

in the culture medium and can cause an oxidative stress and lead to the loss 

of cellular function and viability during the culture time in vitro. On the other 

hand, culture under dynamic conditions can overcome these issues by the 

distribution of nutrients, waste products, and tested substances within the cell 

culture (351, 352, 353). (ii) It has been reported that static system conditions 

can cause a sedimentation of the drug on the cell surface resulting in a local 

increase in the drug concentrations (Fig 5.9). However, a flow method for the 

exposure of cells to the drugs can overcome this problem and leads to 

homogenous dispersion of the drugs and prevention of sedimentation (351, 

352, 353).  
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Figure  5.9. Sedimentation under a) static conditions, b) homogeneous distribution 
of drugs under flow conditions(353) 

 

(iii) The effects of the two media perfusion conditions used in our study on the 

accumulation of anti-leishmanial drugs (amphotericin B and miltefosine) have 

been previously reported by O’Keeffe et al (2017) - the accumulation of both 

drugs was significantly higher in the static system compared to the media 

perfusion system (Fig 5.10) , after 24 hours and this could be due to a 

reduction in the rate of drug uptake (324). 

The study described here also showed that cell uptake (phagocytosis and 

micropinocytosis) is reduced significantly by the application of flow compared 

with static culture conditions. Therefore, this reduction in drug accumulation 

and macrophage functions (phagocytosis and micropinocytosis) are 

contributing factor to the reduced anti-leishmanial activity seen (Fig 5.5, 5.7 

and 5.8)
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Figure  5.10. Accumulation of amphotericin B (left) and miltefosine (right) in peritoneal 
macrophages at three culture systems using the QV900 over time. Static and  two flow 
rates (1.33 x 10−9  at the base of the chamber or 1.17 x 10−7 (m/s) on an insert) (324) 

Broussou et al (2019) reported in vitro time-kill studies for a combination of 

amikacin and vancomycin against Staphylococcus aureus in static conditions 

and dynamic conditions ( fluctuating antibiotic concentrations, by using A 

Hollow-Fibre model (Fig 5.11)) and reported a significant difference in the 

efficacy of the combination between static and dynamic conditions (354).  

 

Figure  5.11. A Hollow-Fibre model (355)  

  

Both EC50 and EC90 values of AmB loaded chitosan-TPP nanoparticles against 

intracellular amastigotes significantly increased as the speed of media 
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perfusion increases and this pattern was not obvious when comparing EC50 

values of pure AmB however, the EC90 values diminished with increasing flow 

rate. Similar finding was reported by O’Keeffe et al (2017) in terms of EC50 and 

EC90 values of AmB solution at these three culture systems, could be due to 

the high activity of AmB against Leishmania amastigotes (324).  

The difference between AmB nanoparticles and AmB solution (EC90 values, at 

three culture systems) could be due to that nanoparticles are uptaked at higher 

rates compared with solution and therefore a significant less amount of AmB 

nanoparticles entered the macrophages under flow system compared with 

AmB solution (353).   

 

In conclusion, in the media perfusion culture system, flow speed was observed 

to influence the anti-leishmanial activities of the tested formulations. This could 

influence the development of new drugs for cutaneous leishmaniasis 

particularly by considering the possible higher flow rates in inflammatory sites. 

The collateral effects of flow on pathogen replication rate and on host cell 

metabolism, as indicated by reduction in phagocytosis and macropinocytosis, 

introduces new avenues of research and how these models could be used in 

studies on immune response and drug and vaccine discovery. This combined 

experimental and modelling approach permits future hypothesis testing and 

development of more complex/advanced/predictive models for drug discovery 

and development. 
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6. General discussion  

6.1. Discussion and conclusion 

Although cutaneous leishmaniasis (CL) is not fatal, it does have a significant 

impact on the health and well-being impact of those infected. The large 

numbers involved, in at least 149 tropical and sub-tropical countries, have a 

detrimental impact on the economy of low- and middle-income countries where 

this disease is found (356, 357).  

The available therapies for CL have acknowledged limitations which include 

adverse side effects/toxicity, are poorly tolerated, variable effectiveness 

against Leishmania species and are expensive in terms of both cost of drugs 

and care and other associated costs. Despite the clear need, new treatments 

for CL have not been forthcoming (51, 52).  Drug discovery is a long and costly 

process which can take 10 to 20 years from a molecule to a usable drug, with 

an associated investment of a possible 2.6 billion USD$ before a new active 

compound is identified, developed for clinical applications and brought to the 

market (358, 359). CL could be regarded as one of the more neglected of the 

NTDs, typified by a general lack of interest in pursuing and funding drug 

development, both by Pharma and other actors, for this disease. Some anti-

leishmanial drugs developed for VL that are in the current pipeline may be 

considered for the treatment of CL in the future (360).  

 

One of the strategies to address the barriers of high cost and long 

developmental time-lines is the employment of drug delivery systems with an 

already known effective drug with established clinical activity. Drug delivery 

systems give an opportunity to manage the solubility and other 

pharmacokinetic parameters of a drug, such as bioavailability, half-life and 

biodistribution, and can serve to protect a drug from degradation. All this can 

result in both reducing toxicity and enhancing efficacy.  

Amphotericin B (AmB), a polyene antibiotic, is considered the second most 

common treatment for leishmaniasis and is very effective against different 

Leishmania species experimentally, but its clinical use is limited due to its 
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inherent acute toxicity. AmB is one of the most-studied drugs for the 

development of new drug delivery strategies in the field of leishmaniasis (118, 

361). 

One of these promising drug delivery systems is AmBisome® (a liposomal 

formulation of AmB) which is effective against VL and CL. AmBisome® is less 

toxic than free AmB and the clinically used amphotericin B deoxycholate 

formulations (Fungizone©) and is recommended by the World Health 

Organization for the treatment of  VL (60).  AmBisome® has some limitations 

which include (i) the high cost (200 $ per vial of 50 mg, and is donated free for 

VL in endemic countries, not for CL), (ii) is the need for a cold chain (unstable 

over 25oC) and (iii) some renal toxicity and infusion-related reactions. In a 

recent study of CL and MCL in travellers coming back from both Old- and New-

World countries AmBisome® treatment showed only 63% positive outcome 

and 53% of them experienced renal toxicity and infusion-related reactions (59) 

and (iv) higher rates of relapse have been observed in immunocompetent 

patients with VL treated with AmBisome® (60, 61). 

There is an urgent need for new treatments which can eliminate the parasites, 

improve the healing process, are safe, reliable and also field-adaptable for use 

in diverse healthcare systems. 

Chitosan has shown promising features in effective therapeutic delivery 

systems due to its cationic structure, biocompatibility, biodegradability, 

controlled drug release, mucoadhesive, wound healing and antimicrobial 

properties. Both chitosan in solution and nanoparticles showed interesting 

antimicrobial and antileishmanial activity with variable effective values across 

different published studies.  These properties make chitosan an appropriate 

candidate for further studies to evaluate its suitability for the treatment of CL. 

In Chapter 2, pH was demonstrated to play a critical role in the anti-leishmanial 

activity of chitosan and its derivatives (except carboxymethyl chitosan which 

showed no activity at both pH values), as all showed a higher anti-leishmanial 

effectivity at a lower pH. To date, there is no literature available on the anti-

leishmanial activity of all of these derivatives or on the role of pH on the anti-

leishmanial activity of chitosan. In this chapter, HMW chitosan demonstrated 
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a higher anti-leishmanial activity against L. major and L. mexicana 

promastigotes and amastigotes than other types and derivatives of chitosan. 

Accordingly, HMW chitosan was chosen for further studies. After which, the 

aim was to investigate whether the anti-leishmanial efficacy of HMW chitosan 

is related to indirect activity (through the activation of macrophages M1 pro-

inflammatory phenotype) or via a direct way (through direct uptake of chitosan 

into the parasitophorous vacuole (PV) where the Leishmania amastigotes 

reside). Interestingly, it was shown that HMW chitosan acted by direct effect 

on the intracellular amastigotes; this has not been reported previously in any 

other literatures. 

The results pointed towards the possibility of using HMW chitosan as a drug 

delivery component for CL treatment, harnessing the benefits of both anti-

leishmanial activity of chitosan itself and to improve the therapeutic window of 

AmB (enhancing AmB anti-leishmanial activity and reducing its toxicity). AmB 

encapsulated in different types of chitosan nanoparticles has shown a 

promising in vitro and in vivo anti-leishmanial activity, see Table 4.3. Most of 

these studies used positively charged nanoparticles with a size greater than 

100 nm. Therefore, in Chapter 3, we endeavoured to prepare two types of 

AmB-loaded chitosan nanoparticles; a positively charged type with TPP and a 

negatively charged type with dextran sulphate with the smallest possible sizes. 

The goal was to obtain the smallest sizes in an attempt to improve the topical 

delivery of AmB into the dermal layer of the skin. On the other hand, smaller 

nanoparticles when administrated intravenously, show a higher permeation 

through body membranes compared to larger nanoparticles, and smaller size 

of nanoparticles facilitates a passive transport from blood vessels to tissues 

(255).  

The nanoparticle preparation parameters were optimised and two types of 

spherical blank and AmB loaded nanoparticles using the inotropic gelation 

method were successfully produced. One type of chitosan nanoparticles with 

a positive charge by using TPP as a crosslinker and this resulted in blank 

chitosan-TPP nanoparticles (size= 67 ± 7 nm, zeta potential= 28.5 ±1.9 mv) 

and AmB loaded chitosan-TPP nanoparticles ( size= 69 ± 8 nm, zeta potential= 

25.5 ± 1 mv). The other type with a negative charge by using dextran sulphate 
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as a crosslinker and this resulted in blank chitosan-dextran sulphate 

nanoparticles (size= 170 ± 9 nm, zeta potential= -12.9 ± 3 mv) and AmB loaded 

chitosan-dextran sulphate nanoparticles (size= 174 ± 8 nm, zeta potential= -

11 ± 1mv). Also, the importance of using cryoprotectants and the advantage 

of sucrose over D-mannitol in protecting the nanoparticles were identified 

during the freeze drying process. Then, the encapsulation efficacy and AmB 

loading were approximately 90% and 25%, respectively of both types of 

nanoparticles. In addition, these nanoparticles showed a high stability in terms 

of size and charge, in different conditions (different media (water, PBS, RPMI 

and mouse plasma) and at different temperatures (4, 34 or 37 ° C)). Both types 

of nanoparticles displayed a slow release of AmB in PBS or mouse plasma. 

All previous promising properties of our nanoparticles made them suitable 

candidates for further studies in terms of evaluating the anti-leishmanial 

efficacy of blank chitosan nanoparticles or AmB loaded chitosan nanoparticles 

(as delivery vehicles) and the possibility of using them in CL mouse model 

either topically or intravenously.  

The fourth chapter investigated the anti-leishmanial activity of chitosan 

formulations in vitro and in vivo. Firstly, both types of blank nanoparticles 

showed neither a significant haemolytic activity against human RBCs nor 

cytotoxicity against KB-cells. With regard to AmB loaded chitosan 

nanoparticles, both produced around 18-fold less haemolytic activity and 6-

fold less toxicity against KB cells than pure AmB.  Blank, positively surfaced 

charged, nanoparticles showed an in vitro activity against L. major and L. 

mexicana promastigotes and amastigotes at two pH’s of 7.5 and 6.5, with a 

higher activity at the lower pH. Encouragingly, AmB loaded chitosan-TPP 

nanoparticles and AmB loaded chitosan-dextran sulphate nanoparticles 

presented a similar anti-leishmanial activity to pure AmB against L. major and 

L. mexicana promastigotes and amastigotes, and a higher activity than 

AmBisome®. The little in vitro cytotoxicity and high effectivity against in vitro 

Leishmania parasites led to the evaluation of the anti-leishmanial activity of 

chitosan formulations in vivo L. major model of CL via the intravenous route of 

administration. A safe dosing regimen was established in BALB/c mice of AmB 

loaded chitosan-TPP nanoparticles and AmB loaded chitosan-dextran 
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sulphate nanoparticles via i.v. route -  5 mg/kg (AmB equivalent) and 10 mg/kg 

(AmB equivalent), respectively. Promisingly, AmB loaded chitosan-TPP 

nanoparticles (5 mg of AmB/kg/QAD for 10 days, i.v.) showed a higher in vivo 

anti-leishmanial effectivity than AmBisome® (10 mg of AmB/kg/QAD for 10 

days, i.v) and was similar to the activity of paromomycin used as the positive 

control (50 mg/kg/QD for 10 consecutive days; i.p.) in terms of reducing lesion 

size and bioluminescence signal (parasite load). This anti-leishmanial activity 

of AmB loaded chitosan-TPP nanoparticles was in a dose-response manner. 

Levels of AmB within the infected lesion (rump skin) and control skin 

(uninfected skin, back skin) were assessed at the end of the experiment and 

a good correlation between the doses of AmB loaded chitosan-TPP 

nanoparticles and the intralesional AmB and the relative reduction in parasite 

load and lesion size was found. Additionally, AmB loaded chitosan-TPP 

nanoparticles resulted in higher drug accumulation in the lesions in 

comparison with a higher dose of AmBisome®. Parasite load was determined 

via in vivo imaging (by using bioluminescent L. major strain) and compared 

with untreated controls. Previous studies have strongly correlated parasite 

load determined by both quantitative PCR and bioluminescent signal (199). 

qPCR determination of parasite load will be determined on the harvested and 

stored tissues from this study – this work fell beyond the time line of this 

project. To conclude, AmB loaded chitosan-TPP nanoparticles were more 

stable than AmBisome® and had a more sustainable drug release than 

AmBsiome (The release of AmB was 5%  from AmB loaded chitosan-TPP 

nanoparticles and 75% from AmBisome® (362) in 24 h). Moreover, AmB loaded 

chitosan-TPP nanoparticles were significantly more active than AmBisome® against 

L. major in mice even though with lower doses of these nanoparticles than 

AmBisome®.  

The possibility of using these nanoparticles as topical formulations was 

evaluated. The permeability of the nanoparticles (blank and AmB loaded 

nanoparticles) through uninfected and L. major infected mouse skin 

performing in vitro Franz cell diffusion studies was determined. Both types of 

nanoparticles acted as a drug delivery vehicle and released the AmB rather 

than permeating alongside the AmB molecules. For both types of 
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nanoparticles, AmB permeation was limited and slow, but interestingly higher 

in infected skin than uninfected, albeit in low concentrations (Kat ref). These 

outcomes in the permeation study indicate the poor suitability of these 

particular formulations as credible topical formulations to treat CL. 

The effect of media perfusion on macrophage functions and on the anti-

leishmanial activity of chitosan formulations was assessed in Chapter 5 in an 

attempt to simulate some of the more complex interactions between the 

parasite and macrophages in the mammalian host. For this purpose, a QV900 

media perfusion system was used, as described by O'Keeffe et al (2017), with 

similar flow rates to mimic the interstitial tissue flow rate in the skin. Media 

perfusion significantly decreased both phagocytosis and macropinocytosis of 

different types of macrophages (PEMs, THP-1 and BMMs). This described 

how the additional complexity of each in vitro model could improve the 

predictivity of the assay and how drug properties based on static assays can 

give rise to misleading data. The aim of this perfusion model was to develop a 

more predictive in vitro model (compared to the current static 2D one), which 

could ultimately lead to a reduction in animal use and save both time and 

expenditure evaluating poor compounds. Interestingly, the anti-leishmanial 

activity of chitosan formulations was significantly less in the media perfusion 

systems compared to the static culture system.  

6.2. Future work 

AmB loaded chitosan-TPP nanoparticles were effective in the murine model 

(female BALB/c mice) of L. major, when administrated intravenously. 

Many parts are associated with the scale-up of these nanoparticles from bench 

to the market. For instance, nature of material, procedure of nanoparticle 

development, cost,  in vivo biodegradability of nanoparticles and acceptability 

of finished product both by clinicians and patients. On account of their 

economic feasibility, AmB loaded chitosan-TPP nanoparticles are better 

because they are made of chitosan and TPP whose production scale up is 

significantly less expensive then phospholipids in liposomal AmB. 
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The evaluation of anti-leishmanial activity of AmB loaded chitosan-TPP 

nanoparticles in vivo using a New World species (for example L. mexicana) 

might be of interest for future work. Assessment of the activity of these 

nanoparticles in other models of Leishmania infection, such as self-curing 

model would be interesting (363) . Further extensive toxicity studies in animals 

would also be required.  

The therapeutic index of these nanoparticles could be improved by either 

loading two active drugs into the nanoparticles, e.g. miltefosine (or other 

known active anti-leishmanials ) and AmB, or by using a combination of 

therapy, e.g. using these nanoparticles via the i.v. route and other topical 

treatment (including thermotherapy or cryotherapy or paromomycin ointment) 

or other commercially available drugs. Both of these ways could develop more 

effective, lower-dose, and shorter treatments. It would be interesting to 

evaluate the in vitro and in vivo efficacy of AmB loaded chitosan-TPP 

nanoparticles in the treatment of VL. Another important experiment would be 

evaluating the distribution of the nanoparticles among different organs and 

study their uptake by lymphocytes, APCs and neutrophils. 
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8. Appendix 

8.1. Appendix 1: Validation of HPLC methods  

Table 8.1. HPLC validation parameters 

Parameter Value 

Accuracy 100.15 ± 0.22 

Slope 108.11 

Intercept 0.31 

Linearity range 0.5-300 µg/ml 

SE of intercept 0.2 

SD of intercept 0.52 

LOD (limit of detection) =3.3*(SD of 

intercept/Slope) 

0.015 µg/ml 

LOQ (limit of quantification) =10*(SD 

of intercept/Slope) 

0.048 µg/ml 

 

- Precision 

Accuracy can be defined as the degree to which a measured value conforms 

to the true value. In pharmaceutical analysis, an assay is said to be accurate 

if the mean result is the same as the true value. On the other hand, precision 

is described as the variability of a set of measurements. Unlike accuracy, this 

does not provide any indication of the closeness of the obtained results from 

the true value. High precision is indicative of low variability in measurements 

usually demonstrated by low standard deviation values. This is usually 

reported as a percentage relative standard deviation. 

 

 

 (%RSD): SD/Drug*100  

 

The precision of the method was determined by repeatability (intra-day) and 

intermediate precision (inter-day). Repeatability was determined by 

performing three repeated analysis of the same standard solution on the same 

day, under the same experimental conditions. The intermediate precision of 

the HPLC methods was assessed by carrying out the analysis on three 

different days (inter-day). For each drug, the percentage relative standard 
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deviation (%RSD) and the percentage recovery of the standard solutions are 

reported for each drug. 

Table 8.2. The precision of AmB HPLC assay 

Standard 

concentration 

µg/ml 

Intra-day 

calculated 

concentration 

(μg/ml) 

Inter-day 

Calculated 

concentration 

(μg/ml) 

Intra-day 

% RSD 

Inter-day 

% RSD 

300 300.03± 0.21 300.33± 0.15 0.05 0.07 

100 99.91± 0.16 100.10± 0.17 0.17 0.16 

33.3 33.26± 0.05 33.29± 0.04 0.11 0.14 

11.1 11.10± 0.09 11.27± 0.14 1.26 0.81 

3.7 3.71± 0.02 3.70± 0.05 1.28 0.41 

1.23 1.24± 0.02 1.23± 0.02 1.24 1.24 

0.4 0.39± 0.02 0.4± 0.02 5.25 3.88 

 

 
Figure Calibration curve of amphotericin B 
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8.2. Appendix 2: Paper 1  
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8.3. Appendix 3: Paper 2 
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