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Abstract 16 

In Escherichia coli, citrate-mediated iron transport is a key non-heme pathway for the 17 

acquisition of iron. Binding of ferric citrate to the outer membrane protein FecA induces a 18 

signal cascade that ultimately activates the cytoplasmic sigma factor FecI, resulting in 19 

transcription of the fecABCDE ferric citrate transport genes. Central to this process is signal 20 

transduction mediated by the inner membrane protein, FecR. FecR spans the inner 21 

membrane through a single transmembrane helix, which is flanked by cytoplasmic and 22 

periplasmic-orientated moieties at the N- and C- terminus. The transmembrane helix of 23 

FecR resembles a twin-arginine signal sequence, and substitution of the paired arginine 24 

residues of the consensus motif decouples the FecR-FecI signal cascade, rendering the cells 25 

unable to activate transcription of the fec operon when grown on ferric citrate. 26 

Furthermore, fusion of beta-lactamase C-terminal to the FecR transmembrane helix results 27 

in translocation of the C-terminal domain that is dependent on the twin-arginine 28 

translocation (Tat) system.  Our findings demonstrate that FecR belongs to a select group of 29 

bitopic inner membrane proteins that contain an internal twin arginine signal sequence.  30 

Importance 31 

Iron is essential for nearly all living organisms due to its role in metabolic processes and as a 32 

cofactor for many enzymes. The FecRI signal transduction pathway regulates citrate-33 

mediated iron import in many Gram-negative bacteria, including Escherichia coli. The 34 

interaction of FecR to outer membrane protein, FecA, and cytoplasmic anti-sigma factor, 35 

FecI, has been extensively studied. However, the mechanism by which FecR inserts into the 36 

membrane has not previously been reported. In this study, we demonstrate that targeting 37 

of FecR to the cytoplasmic membrane is dependent on the Tat system. As such, FecR 38 
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represents a new class of bitopic Tat-dependent membrane proteins with an internal twin 39 

arginine signal sequence. 40 

Introduction 41 

Iron is an essential element for virtually all organisms. Despite this, the toxicity, availability 42 

and solubility of iron present major challenges for bacteria, which require specialised iron 43 

transport systems. Escherichia coli K12 encodes two main non-heme pathways for the 44 

acquisition of iron from the environment. The first of these systems involves sequestering of 45 

iron via the siderophores enterobactin and ferrichrome that compete for Fe3+ bound to host 46 

proteins(1), whereas the second system involves ferric citrate uptake(2). Ferric citrate 47 

transport is mediated via the Fec system, which is comprised of a TonB-dependent outer 48 

membrane protein (FecA), a periplasmic-binding protein (FecB), inner-membrane proteins 49 

(FecCD) and ATPase (FecE)(3). The fecABCDE transport genes are induced upon detection of 50 

ferric citrate via the FecR-FecI signal cascade. FecR is an inner membrane protein with both 51 

periplasmic and cytoplasmic globular domains either side of a single trans-membrane 52 

helix(4). Binding of ferric citrate to FecA induces a conformational change, which is detected 53 

by the periplasmic C-terminal domain of FecR (Figure 1A). The signal is transduced across 54 

the membrane whereupon the cytoplasmic N-terminal face of FecR activates and releases 55 

the sigma factor FecI, which in turn recruits RNA polymerase to the fec operon(5, 6). Signal 56 

transduction across the inner membrane is central to this process and a number of key 57 

residues on the periplasmic and cytoplasmic domains of FecR have been identified as 58 

essential for interaction with FecA and FecI, respectively(7, 8). However, the mechanism by 59 

which FecR is inserted into the cytoplasmic membrane has not previously been reported.   60 
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Targeting of proteins to the bacterial cytoplasmic membrane occurs via the action of Sec 61 

machinery, the YidC insertase or the twin-arginine translocation (Tat) translocation 62 

pathway(9, 10). While most Tat substrates are soluble proteins released into the periplasm, 63 

a few substrates remain anchored in the cytoplasmic membrane, usually by an uncleaved N-64 

terminal signal peptide, or a single C-terminal transmembrane helix(11–13). Whereas Sec 65 

exported proteins fold post-export, the Tat system exports proteins that have folded and 66 

matured in the cytoplasm. Tat substrates often contain complex cofactors and may co-67 

export bound partner proteins, or are utilised by bacteria in extreme environments(14–16). 68 

However, some Tat substrates also include a number of monomeric, cofactor-less proteins, 69 

and for example, some halophilic archaea secrete the majority of their proteins via the Tat 70 

system, which may be an adaptive response to the fast-folding kinetics of proteins in a 71 

highly saline environment(17, 18).   72 

Substrates are addressed to the Tat pathway via N-terminal signal peptides with a 73 

distinctive tripartite structure consisting of a basic n-region containing a conserved S/T-R-R-74 

x-F-L-K “Tat motif”, a hydrophobic h-region, and a polar c-region harbouring the signal 75 

peptidase cleavage site(19). They frequently also contain one or more positive charges in 76 

the c-region that are not required for Tat transport but act as a Sec-avoidance motif(20, 21). 77 

Recently the polytopic Rieske protein of Streptomyces coelicolor was shown to be an 78 

unusual Tat substrate because it utilises the Sec machinery for insertion of its first two 79 

transmembrane helices and has an internal Tat signal sequence that forms the third 80 

transmembrane domain and that mediates export of the folded cofactor-containing domain 81 

across membrane(22, 23). Since this initial study, other families of polytopic inner 82 

membrane proteins that are simultaneously targeted to the Sec and Tat pathways have 83 

recently been described(21).  84 
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Here we demonstrate that FecR uses an internal Tat-targeting sequence for export of the 22 85 

kDa C-terminal domain to the periplasm, whilst leaving a 9 kDa N-terminal domain in the 86 

cytoplasm. This is the first example of a class of biotopic Tat-dependent membrane proteins 87 

with an internal twin-arginine signal sequence.   88 

 89 

Results  90 

An internal Tat-motif is conserved amongst FecR orthologues 91 

Previous studies have shown that E. coli K12 FecR spans the cytoplasmic membrane(4), but 92 

the mechanism by which it is inserted into the bilayer has not been described. FecR does 93 

not contain a classical signal sequence within its cytoplasmically orientated N-terminal 94 

domain (residues 1-75). However, a twin-arginine motif with a good match to the Tat 95 

consensus sequence immediately precedes a region of hydrophobicity that corresponds to 96 

the transmembrane domain (Figure 1B). Both features are conserved characteristics of Tat 97 

signal peptides. Similar to other Tat-dependent inner membrane proteins, FecR contains no 98 

predicted cleavage site (Figure 1B). The amino acid sequences of putative FecR orthologues 99 

derived from the eggNOG database(24) were aligned to assess conservation of this putative 100 

Tat-targeting sequence (Figure S1). Out of the 95 predicted orthologues analysed, 93.7% 101 

contained an internal twin-arginine motif. Those without Tat motifs were among those that 102 

displayed the lowest sequence amino acid similarity to E. coli K12 FecR (Table S1) and 103 

clustered independently from the other orthologues (Table S1, Figure S2A), suggesting that 104 

these may not represent true FecR orthologues. Sequence motifs were generated using 105 

Weblogo.3(25) with and without these outliers (Figure 1C and Figure S2B, respectively). 106 

These alignments show clear conservation of the twin arginines, indicating that they may be 107 
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required for function. Furthermore, a high frequency of serine/threonine (-1 position), 108 

leucine (+3 position) and lysine residues (+4 position) was also noted, which are hallmarks of 109 

Tat signal sequences(26). FecR also contains two basic residues adjacent to the c-region that 110 

are known to act as Sec avoidance motifs (Figure 1B)(20, 21). This feature was also 111 

conserved amongst putative FecR orthologues (Figure 1D).   112 

Periplasmic translocation of the FecR C-terminal domain is Tat-dependent 113 

To determine whether membrane integration of FecR is dependent on the Tat export 114 

machinery, we constructed a fusion protein that could be deployed as a reporter for 115 

periplasmic translocation of the C-terminal domain (Figure 2A). The reporter FecR-BlaM was 116 

constructed by fusing the N-terminal domain and membrane-spanning region (amino acid 117 

residues 1-115) of E. coli FecR to β-lactamase (BlaM). This reporter was  expressed under 118 

the transcriptional control of an arabinose inducible promoter in a tat+ E. coli K12 strain 119 

(10β). β-lactamase fusions serve as ideal reporters for periplasmic export because they must 120 

be trafficked beyond the bacterial inner membrane to effectively protect the cell from β-121 

lactam antibiotics. Furthermore, many β-lactamases can be translocated across the inner 122 

membrane via either Sec or Tat systems and are used as a reporter for both pathways(27, 123 

28).   124 

We assessed resistance to the β-lactam antibiotic ampicillin using M.I.C.Evaluator strips and 125 

by spotting serial dilutions on ampicillin plates (Figure S3). Table 1 and Figure 2B 126 

demonstrate that cells producing the FecR-BlaM reporter grew to a concentration of >256 127 

μg ml-1, indicating effective translocation of the β-lactamase to the periplasm. Removal of 128 

arabinose from the plate rendered this strain fully sensitive to ampicillin. To test whether 129 

the twin arginine motif was important for recognition of FecR by the Tat pathway, we 130 
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constructed substitutions of the arginine pair to twin alanine (radical) or twin lysine 131 

(conservative). Cells producing the mutated fusion proteins demonstrated dramatically 132 

increased sensitivity to ampicillin (MIC= 16 μg ml-1) suggesting that almost no β-lactamase 133 

had now been translocated to the periplasm. To further explore the Tat-dependence of this 134 

fusion, the FecR-BlaM reporter was expressed in the Tat-deficient strain, HS3018-AΔtatABC. 135 

Consistent with the notion that insertion of the FecR transmembrane helix was Tat-136 

dependent, this strain demonstrated markedly increased ampicillin sensitivity relative to the 137 

isogenic wild type (Figure 2C). Translation and membrane localisation of the fusion proteins 138 

were not negatively affected by mutation of the twin-arginine motif or deletion of the Tat 139 

system (Figure 3B and C), suggesting that ampicillin sensitivity was the consequence of 140 

ineffective β-lactamase translocation. 141 

Mutation of the twin-arginine motif does not prevent membrane interaction 142 

Next, we determined whether substitutions of the paired arginine residues R79/80 143 

influenced localisation of the FecR and the FecR-BlaM reporter (Figure 3A and B). 144 

Comparison of the relative proportion of FecR and FecR-BlaM in the soluble (Figure 3A) and 145 

membrane fractions (Figure 3B) revealed that the R79/80 substitutions did not prevent 146 

membrane association of the proteins. We also expressed the FecR-BlaM reporter in the 147 

wild type (HS3018-A) and tat mutant (HS3018-AΔtatABC) strains (Figure 3C). Similarly, FecR-148 

BlaM localised to the membrane in the absence of a functional Tat system. To determine 149 

whether FecR-BlaM was fully integrated into the bilayer, membranes of the wild type and 150 

tat strains producing FecR-BlaM were washed with either 0.2M Na2CO3 or 4M urea (which 151 

can displace peripheral membrane proteins by disrupting ionic interactions and disrupting 152 

hydrogen bonding). Fig 3D shows that while carbonate washing had little effect on the 153 
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membrane localisation of FecR-BlaM in either strain, urea washing displaced FecR-BlaM 154 

from the membrane fraction of the tat mutant strain but not the wild type. These results 155 

confirm that FecR-BlaM behaves like an integral membrane protein in the wild type strain, 156 

but not is not correctly membrane integrated in the absence of the Tat machinery.    157 

Mutation of the twin-arginine residues results in downregulation of the fecABCDE operon 158 

No marked difference in growth rate was observed between HS3018-A and the tat mutant 159 

when grown with ferric citrate as a sole iron source (Figure S4), which is consistent with 160 

observations made by Ize et al., 2004(29). Previous characterisation of the Fec system in E. 161 

coli has been performed using strains with an aroB mutation (E. coli strain AA93), which are 162 

unable to synthesise the siderophore enterobactin (which may compensate for the lack of 163 

Fec-mediated ferric iron import)(30, 31). Although these studies have been performed using 164 

different genetic backgrounds, these data indicate that some strains of E. coli K12 can 165 

acquire ferric citrate in the absence of functional FecR.  166 

To explore whether fecR RR to KK mutation influenced recognition of ferric citrate in iron-167 

limiting conditions, transcription of the fecABCDE genes was determined by qPCR analysis.  168 

A strain deficient in the fecR gene (E. coli strain BW25113) was complemented in trans with 169 

either wild-type fecR or fecR R79-80K substitution, which were grown in media 170 

supplemented with 2’2’-dipyridyl and 1 mM sodium citrate. Cells were harvested at early 171 

stationary phase and we observed no difference in final optical density between the strains 172 

tested, suggesting that the fecR mutant could grow using ferric citrate as a sole iron source.  173 

We observed statistically higher expression of fecABCD (but not fecE) in the fecR mutant 174 

relative to the fecR R79-80K, indicating that there is low level of transcription of the fec 175 

genes in this strain. Crucially, we observed significantly increased expression of the 176 
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fecABCDE operon in strain complemented with wild type fecR relative to fecR R79-80K and 177 

the fecR mutant (Figure 4). This is consistent with the notion that the arginine to lysine 178 

mutation prevents periplasmic translocation of the C-terminal domain, which abrogates 179 

FecR binding to citrate-loaded FecA and decouples the FecIR signal cascade.  180 

Discussion 181 

In this study we have addressed the membrane integration pathway for the bitopic 182 

membrane protein FecR. Analysis of the transmembrane domain of FecR homologues 183 

demonstrates that it is preceded by a conserved twin arginine motif, and that several 184 

positive charges are located close to the C-terminal end, a feature which is known to act as a 185 

Sec-avoidance motif. Consistent with this, replacement of the C-terminal extracellular 186 

domain of FecR with beta-lactamase resulted in beta-lactamase translocation that was 187 

dependent on both the twin arginines and the Tat pathway. The Tat system is known to 188 

integrate several classes of membrane protein, including monotopic proteins that are 189 

anchored by a single N- or C-terminal transmembrane domain, and polytopic proteins 190 

where only the final transmembrane domain is Tat-dependent(13, 21, 22, 32, 33). FecR 191 

constitutes a new class of bitopic Tat-dependent membrane proteins with an internal, 192 

uncleaved twin arginine signal sequence that separates two globular domains.  193 

The polytopic Rieske protein of Streptomyces coelicolor, which require concerted action of 194 

Sec and Tat pathways for membrane integration, contains more than one transmembrane 195 

helix and have an odd number of transmembrane helices before the twin arginine residues. 196 

Given that FecR only contains a single helix, it seems unlikely that it is targeted to the 197 

membrane by a similar dual-action mechanism. Our data indicate that FecR associates with 198 

the membrane in the absence of a functional Tat system (Figure 3), which could suggest co-199 
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operation with another pathway for its insertion. However, a study by Gray et al., (2011) 200 

demonstrated that FecR membrane localisation was unperturbed in a yidC mutant(10). The 201 

E. coli Tat substrate, SufI, and some thylakoid proteins have been shown to bind to the 202 

membrane before interaction with the Tat or in the absence of functional Tat 203 

machinery(34–37). Although our data clearly demonstrate that FecR is a Tat substrate, we 204 

do not rule out the possibility that it targets to the membrane via another pathway.  205 

The mechanism by which the Tat system recognises this internal signal sequence is unclear, 206 

but it should be noted that the related thylakoid Tat system is capable of translocating the 207 

substrate protein pOE17 even after deliberate fusion of a large polypeptide domain N-208 

terminal to the Tat signal peptide(38). This indicates that integration of bitopic proteins is 209 

likely to be a common feature of the Tat pathway from different organisms. 210 

Interestingly, some complex Tat substrates have signal peptides that contain greatly 211 

extended n-regions prior to the twin-arginine motif(39). Such extensions are almost 212 

invariably found on substrates that bind redox cofactors and/or partner proteins prior to 213 

export, and they appear to serve as binding sites for dedicated chaperones that co-ordinate 214 

folding and assembly(40–44). FecR is distinct from these Tat substrates since it does not 215 

contain any redox cofactor, and its signal sequence n-region is considerably longer than 216 

other Tat signal peptide n-regions.  It is not clear why FecR should be a Tat substrate, 217 

although feasibly it may be energetically favourable for FecR to fold in the cytoplasm prior 218 

to transport through the Tat machinery. Alternatively, it is conceivable that the FecR N-219 

terminal domain binds FecI, driving cytoplasmic folding before its integration into the 220 

membrane. In conclusion, FecR joins an expanding list of inner membrane proteins that 221 

contain a non-N-terminal Tat signal sequence.  222 
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 223 

 224 

Materials and Methods 225 

Strains and plasmids 226 

Bacterial strains and plasmids used in this study are listed in Tables S2 and S3 respectively. 227 

The ampicillin resistance cassette of plasmid pEC415 was exchanged for a kanamycin 228 

cassette by Gibson assembly (NEBuilder HiFi Assembly master mix, NEB) using the primers 229 

pET28akanF/R (pET28a as template) and pEC415kanF/R (pEC415 as template) to generate 230 

the plasmid pEC415K. 231 

Plasmid pECfecR-blaM was constructed by Gibson assembly using the primers fecRF/fecRR 232 

and pEC415KfecRF/pEC415KfecRR with E. coli genomic DNA and pEC415K as template. 233 

Amino acid residues 79 and 80 were mutated from arginine to alanine or lysine using the 234 

primers fecR R7980A F/ fecR R7980 R and fecR R7980K F/fecR R7980 R, respectively. 235 

5’-phosphorylated primers fecR-blaM His F and R were used to introduce a C-terminal His-236 

tag into fecR-blaM and fecR-R7980K-blaM using pECfecR-blaM and pECfecR-R7980K-blaM as 237 

templates, generating plasmid pECfecR-blaM-His and pECfecR-R7980K-blaM-His, 238 

respectively. Similarly, primers fecR His F and R were used to generate C-terminally His-239 

tagged fecR using pECfecR and pECfecR R7980K as templates to generate pECfecR-His and 240 

pECfecR R7980K-His.  241 

Growth conditions 242 

E. coli strains were cultured in LB broth or agar (Merck, Millipore) at 37oC and 243 

supplemented, when required, with 50 µg ml−1 kanamycin and 100 µg ml−1 ampicillin. 244 
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Susceptibility of the E. coli strains harbouring FecR-BlaM reporter to ampicillin was 245 

investigated by determining the Minimum Inhibitory Concentration (MIC) that prevented 246 

growth. Overnight cultures of each strain was diluted to OD600 0.5 and a bacterial lawn was 247 

grown on LB plates (supplemented with kanamycin) by swabbing. M.I.C Evaluator strips 248 

(Oxoid) were placed on the plates, which were grown overnight at 37oC. Three independent 249 

replicates were performed and representative images are shown.  250 

For transcript and growth kinetic analysis cells were grown at 37oC in Nutrient Broth (Merck) 251 

supplemented with 50 µM 2,2’-dipyridyl and 1 mM citrate.  252 

Membrane extractions 253 

E. coli cells harbouring the plasmid pECfecR-blaM were grown overnight at 37oC in media 254 

supplemented with 0.2% w/v L-arabinose and 50 µg ml−1 kanamycin. Cells were pelleted by 255 

centrifugation (3200 xg) and resuspended in 20 mM Tris-HCl (pH7.5), 200 mM NaCl. Cells 256 

were lysed using a FastPrep homogeniser (MPBio) and unlysed cells and large cell debris was 257 

removed by centrifugation (7000 xg). The resulting clarified lysate was pelleted by 258 

ultracentrifugation (1 hour 150,000 xg) to separate membrane and soluble fractions. 259 

Membrane pellets were resuspended in 50 mM Tris HCl (pH 7.5), 5 mM MgCl2, 10% (v/v) 260 

glycerol.  261 

For membrane interaction assays, cells were resuspended in 50 mM Tris HCl (pH 7.5), 10% 262 

(v/v) glycerol and lysed as described above. Crude lysate was treated with either 0.2M 263 

Na2CO3 or 4M urea for 1 hour, at 4oC, followed by ultracentrifugation at 150,000 xg. 264 

Membrane pellets were resuspended in 50 mM Tris HCl (pH 7.5), 5 mM MgCl2, 10% (v/v) 265 

glycerol. 266 

 on F
ebruary 11, 2020 at LO

N
D

O
N

 S
C

H
O

O
L O

F
 H

Y
G

IE
N

E
 &

 T
R

O
P

IC
A

L M
E

D
IC

IN
E

http://jb.asm
.org/

D
ow

nloaded from
 

http://jb.asm.org/


13 
 

Immunoblot analysis 267 

Total protein concentration of each sample was quantified by Bradford assay and 268 

normalised to equal concentrations. Proteins were resolved by SDS-PAGE with Mini-269 

PROTEAN TGX Stain-Free gels (BioRad) and transferred to nitrocellulose membranes using 270 

the iBlot 2 dry blotting system (ThermoFisher). Prior to transfer, gels were imaged using 271 

BioRad ChemiDoc MP imaging system to determine total protein content loaded in each 272 

well. Primary antibody, Mouse anti-6xHis (Invitrogen, UK, used at 1:10000 dilution), was 273 

suspended in PBS and 0.1% (v/v) Tween 20 and incubated with the membrane for 1 hour. 274 

Membranes were washed three times with PBS and incubated for 45 min with a secondary 275 

goat anti-mouse IgG IRDye680 antibody (LI-COR Biosciences, UK, both at 1:10000 dilution). 276 

Fluorescent signal was detected with the Odyssey LI-COR detection system (LI-COR 277 

Biosciences, UK). 278 

 279 

qPCR  280 

Cells were grown to early stationary phase.  All cells were harvested and stored in RNAlater 281 

(Ambion) at 4oC overnight. Cells were sedimented by centrifugation and RNA was extracted 282 

using the Monarch Total RNA Miniprep kit (NEB) according to the manufacturer’s 283 

instruction. The resulting RNA was used as a template for reverse transcription and 284 

conversion into cDNA using Superscript IV reverse transcriptase (Invitrogen). qPCR was 285 

performed on the cDNA using Power SYBR green (Thermo) according to the manufacturer’s 286 

instructions, with 10 pmol of the appropriate primers (see Table S4). Amplification was 287 

performed using an ABI PRISM 7500 real-time PCR system, and fluorescence data was 288 

processed using SDS software (ABI). Relative gene expression was determined using gyrA 289 
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and rpoS as controls. Three independent biological replicates were performed for each 290 

strain and growth condition.  291 

Bioinformatic analysis 292 

Sequences of theoretical FecR orthologues were retrieved from the eggNOG database of 293 

orthologous groups and functional annotations(24). Sequence alignments were constructed 294 

using ClustlW and ESPript 3.0(45). Phylogenetic trees were generated using Interactive Tree 295 

of Life software(46). Weblogo sequence motifs were generated using weblogo3(25). 296 

 297 
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 427 

Figures legends 428 

Figure 1 429 

A- Schematic representation of FecR-mediated signal transduction. Binding of ferric citrate 430 

to the outer membrane protein, FecA, initiates a signal that is transmitted across the 431 

cytoplasmic membrane by FecR. B- Sequence alignment of the putative internal Tat motif of 432 

FecR (residues 68-109) with the N-terminal Tat motif of TorA (residues 1-52), displayed on 433 
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the figure. The Tat motif is boxed in red, TorA cleavage site is boxed in orange. Region of 434 

hydrophobicity/membrane spanning region indicated green. Positively charged residues 435 

adjacent to the FecR c-region are indicated by arrows and putative Sec avoidance (which 436 

correspond to weblogo shown in Figure 1D) boxed in purple. C- Consensus Tat sequence 437 

motif of predicted FecR eggNOG-derived orthologues, excluding the six sequences that do 438 

not contain a consensus twin-arginine motif. Amino acid position relative to the twin-439 

arginine motif is denoted below. D- Sequence alignment consensus logo of the c-region of 440 

the predicted FecR eggNOG-derived orthologues. Charged amino acid residues are coloured 441 

in blue.  442 

Figure 2 443 

Mutation of twin arginine residues inhibits periplasmic translocation of a FecR-BlaM fusion. 444 

A- Domain architecture of the FecR-BlaM reporter. Ampicillin sensitivity of the FecR-BlaM 445 

reporter with RR to AA and KK substitutions (E. coli strain, 10β) (B) and the FecR-BlaM 446 

reporter expressed in a Tat-deficient strain (E. coli strain, HS3018-A and HS3018-AΔtatABC) 447 

(C) determined using M.I.C.Evaluator strips. Representative images of three biological 448 

replicates are shown.  449 

Figure 3 450 

Cell localisation of FecR-Bla-His reporter and FecR-His with RR to KK substitutions (10β) (A 451 

and B) or FecR-Bla-His expressed in a Tat-deficient strain (HS3018-AΔtatABC) (C). Soluble 452 

and membrane fractions were resolved by SDS-PAGE, transferred to nitrocellulose 453 

membranes probed with an anti-6xHis antibody. All gels were imaged prior to transfer to 454 

determine total protein loaded in each well (shown in lower panel). A- Soluble fractions, 455 

Lane 1: FecR-Bla-His; lane 2: FecR-Bla-His R79/80A; lane 3: FecR-His; lane 4: FecR-His 456 
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R79/80K. B-Membrane fractions- Lane 1: FecR-Bla-His; lane 2: FecR-Bla-His R79/80A; lane 3: 457 

FecR-His; lane 4: FecR-His R79/80K. C- Lane 1: HS3018-A FecR-Bla-His, soluble fraction; lane 458 

2: HS3018-AΔtat FecR-Bla-His, soluble; lane 3 HS3018-A FecR-Bla-His, membrane fraction; 459 

lane 4: HS3018-AΔtat FecR, FecR-Bla-His, membrane fraction. D- Crude cell extracts were 460 

washed with either 0.2M Na2CO3 or 4M urea prior to membrane sedimentation. Lane 1: 461 

HS3018-A FecR-Bla-His, membrane fraction, Na2CO3; lane 2: HS3018-AΔtat FecR-Bla-His, 462 

membrane fraction, Na2CO3; lane 3 HS3018-A FecR-Bla-His, membrane fraction, urea; lane 463 

4: HS3018-AΔtat FecR-Bla-His, membrane fraction, urea. 464 

Figure 4 465 

Relative gene expression of the fecABCDE operon and fecR in iron-limiting conditions. 466 

Quantitative real time PCR of a fecR mutant (strain BW25113) expressing either wild type 467 

fecR or fecR R79/80K substitution and an empty plasmid control was performed on 468 

RNA/cDNA extracted from cell cultures grown in media supplemented with 2’2’-dipyridyl 469 

and 1 mM sodium citrate. Error bars represent the standard deviation from mean derived 470 

from three biological replicates.  471 

Table 1 472 

Effect of amino acid substitutions and a functional Tat system on periplasmic translocation 473 

of the FecR-BlaM fusion and the ability to support growth on ampicillin. Determination of 474 

M.I.C was performed in triplicate and representative images are shown in Figure 2.  475 

Strain FecR-BlaM fusion 

variant 

Mean ampicillin Minimum 

Inhibitory concentration (µg 

ml-1) 
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10β Wild type >256 

10β R79A R80A 16 ± 0.0 

10β R79K R80K 16 ± 0.0 

HS3018-A Wild type >256 

HS3018-AΔtatABC Wild type 2 ± 0.0  

 476 
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