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Abstract

Background: Antimalarial clinical efficacy studies for uncomplicated Plasmodium falciparum malaria frequently
encounter situations in which molecular genotyping is unable to discriminate between parasitic recurrence, either
new infection or recrudescence. The current WHO guideline recommends excluding these individuals with
indeterminate outcomes in a complete case (CC) analysis. Data from the four artemisinin-based combination (4ABC)
trial was used to compare the performance of multiple imputation (MI) and inverse probability weighting (IPW)
against the standard CC analysis for dealing with indeterminate recurrences.

Methods: 3369 study participants from the multicentre study (4ABC trial) with molecularly defined parasitic
recurrence treated with three artemisinin-based combination therapies were used to represent a complete dataset.
A set proportion of recurrent infections (10, 30 and 45%) were reclassified as missing using two mechanisms: a
completely random selection (mechanism 1); missingness weakly dependent (mechanism 2a) and strongly
dependent (mechanism 2b) on treatment and transmission intensity. The performance of M, IPW and CC
approaches in estimating the Kaplan-Meier (K-M) probability of parasitic recrudescence at day 28 was then
compared. In addition, the maximum likelihood estimate of the cured proportion was presented for further
comparison (analytical solution). Performance measures (bias, relative bias, standard error and coverage) were
reported as an average from 1000 simulation runs.

Results: The CC analyses resulted in absolute underestimation of K-M probability of day 28 recrudescence by up to
1.7% and were associated with reduced precision and poor coverage across all the scenarios studied. Both Ml and
IPW method performed better (greater consistency and greater efficiency) compared to CC analysis. In the absence
of censoring, the analytical solution provided the most consistent and accurate estimate of cured proportion
compared to the CC analyses.
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weighting

Conclusions: The widely used CC approach underestimates antimalarial failure; IPW and MI procedures provided
efficient and consistent estimates and should be considered when reporting the results of antimalarial clinical trials,
especially in areas of high transmission, where the proportion of indeterminate outcomes could be large. The
analytical solution estimating the cured proportion could provide an alternative approach, in scenarios with
minimal censoring due to loss to follow-up or new infections.
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Background

The primary endpoint in efficacy studies for antima-
larials in uncomplicated Plasmodium falciparum mal-
aria is the risk of recrudescence, defined as the
recurrence of peripheral parasitaemia genetically iden-
tical to the parasites present before treatment. Mo-
lecular analysis of the parasite samples collected at
pre-treatment and on the day of recurrence is used to
discriminate homologous (recrudescent) from heterol-
ogous (new) infections [1]. When paired analysis of
the pre- and post-treatment parasite cannot be deter-
mined reliably, treatment outcome is defined as inde-
terminate (Additional file 1, Section A).

The current WHO guideline for dealing with indeter-
minate outcomes in antimalarial efficacy trials is to ex-
clude them from the analysis, that is, to carry out a
complete case (CC) analysis [2]. This implicitly assumes
that the indeterminate cases are a representative random
sample of the study population, ignoring the fact that
these indeterminate recurrences must be either a recru-
descence or new infection, and may depend on other
measured and unmeasured patient and parasite charac-
teristics. The CC analysis is usually supplemented with
two extreme sensitivity analyses representing the worst
and best scenarios, where all indeterminate recurrences
are assumed to be either recrudescences or new infec-
tions. As well as biased, such ad hoc single imputation
approaches consider the imputed datum as the ‘known
observed’ value and uncertainty regarding not knowing
the reason for parasite recurrence isn’t fully accounted
for. This yields inferences that are over-precise, i.e.
standard errors are too small rendering the associated
hypothesis tests as invalid [3-5].

Under the multinomial assumption, the maximum
likelihood estimate of the proportion of patients with
parasitic recrudescence can be obtained as outlined by
Little and Rubin (2002) [6]. Let, # be the total number
of patients who received antimalarial drug, of whom
noy were cured, m; developed new infection, m, were
recrudescent, and r recurrences were indeterminate at
the end of the planned follow-up. The maximum like-
lihood estimate of proportion of who failed is then ob-
tained as:

R 1245) I’l—l’lo)
=(—. 1
PmL (Wl1 T m2> ( p (1)
The complement of equation (1) provides an estimate
of the cured proportion:

o { () ) e

In the absence of censoring, equation 2 provides a con-
sistent estimate of failure proportion compared to the CC
approach (Additional file 1, Section B). When there are
censored observations (e.g: due to lost to follow-up or due
to new infection), the Kaplan-Meier (K-M) method can be
used. The K-M approach is currently the WHO recom-
mended approach for measuring antimalarial failure,
whereby individuals with indeterminate parasite recur-
rence are excluded and individuals with new infections or
loss to follow-up are censored [2].

Alternative approaches for dealing with an indetermi-
nant parasite recurrence outcome are multiple imput-
ation (MI) and inverse probability weighting (IPW),
which are statistically principled approaches for handling
missing data [7—11] under the assumption that the miss-
ing data depends on observed variables. In antimalarial
clinical efficacy studies, variables that are commonly re-
corded and may affect whether or not a recurrence is
indeterminant, are transmission intensity, the number of
molecular markers used, density of the parasites on day
of recurrence and antimalarial treatment administered.
Background allelic diversity of the parasite strain is
rarely known or reported and therefore it is not possible
to test if this variable influences the determination of
homologous (recrudescence) or heterologous (new infec-
tion) parasite recurrences. As such, MI and IPW assume
that the occurrence of indeterminant recurrences does
not depend on allelic diversity of the parasite strain and
any other unmeasured variables.

The basic principle of MI is to impute the missing
values based on the distribution of the observed data
and repeat this m times in order to account for the un-
certainty in missing values [12, 13]. This is essentially a
two-step procedure. In the first step, incomplete data are
replicated multiple times from a suitable imputation
model where values are drawn from the posterior
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predictive distribution (imputation step) [14]. In the sec-
ond (analysis) step, the substantive model (target ana-
lysis) of interest is carried out on each of the completed
datasets (observed plus imputed data). The final esti-
mates and standard errors are then derived by combin-
ing estimates across each of the multiply imputed
datasets using Rubin’s combination rules, which incor-
porates uncertainties within and between imputations
[13]. For IPW, complete cases are weighted by the in-
verse of their probability of being a complete case, i.e.
up-weighting the data from participants who have a low
probability of being observed thus creating a pseudo-
population [9]. The final analysis is then carried out
using only the complete observations (i.e. for this ex-
ample indeterminate recurrences are not included), but
they are now weighted to rebalance the set of complete
cases so that it is representative of the whole sample.
Like MI, the IPW approach is also a two-step estimator.
In the first step, a missingness model is constructed to
estimate the probability of an observation being a
complete case and the inverse of these probabilities are
used as the weights in the analysis (step 2) of the
complete cases.

Multiple Imputation and inverse probability weighting
has been increasingly used in the medical and statistical
literature in the past decade [9, 10, 15]. Yet only a hand-
ful of studies have considered these missing data
methods when dealing with indeterminate outcomes in
derivation of antimalarial efficacy in uncomplicated P.
falciparum malaria (only three studies to our knowledge)
[16-18]. Machekano et al. (2008) compared the per-
formance of MI and IPW approaches against the CC
analysis using a randomised study in Uganda in estimat-
ing drug efficacy using proportions [16]. Mukaka et al.
(2016) compared MI against CC when estimating the
risk difference between two antimalarial regimens [17].
In the PREGACT study (2017), MI was used as a sensi-
tivity analysis to assess the robustness of the derived es-
timate of cured proportion [18]. None of the studies to
date have compared the utility of MI and IPW ap-
proaches in handling indeterminate outcomes when de-

riving Kaplan-Meier (K-M) ( S/Kz ) estimates of drug
efficacy for antimalarial regimens.

The aim of this simulation study was to assess the per-
formance of MI and IPW approaches for handling inde-
terminate recurrences when estimating the day 28
proportion of parasitic recrudescence following antimal-
arial treatment using K-M survival analysis against those
derived using the widely used CC approach. Specifically,
the evaluation is based on a large multi-centre trial of four
artemisinin-based combination therapies (4ABC trial) [19]
in which we redraw and assign a set proportion (10, 30
and 45%) of known recurrences (recrudescences and new
infections) to indeterminate (i.e. missing).
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Methods

Motivating study

The four artemisinin-based combinations (4ABC) trial was
a large multi-centric study (4116 patients enrolled) con-
ducted at 12 sites in seven sub-Saharan African countries
between 2007 to 2009 [19]. Four regimens were assessed:
artemether-lumefantrine  (AL), artesunate-amodiaquine
(ASAQ), dihydroartemisinin-piperaquine  (DP)  and
chlorproguanil-dapsone-artesunate (CDA). Patients were
followed actively for up to 28 days. CDA was discontinued
partway through the study due to reports from another
phase III study of severe haemolysis. For this reason, data
from only the AL, ASAQ and DP arms were considered in
this simulation (n = 3431, Table 1). The trial is one of the
largest antimalarial studies ever conducted and well suited
to study the utility of MI and IPW approaches for handling
indeterminate recurrences. The primary analysis of the
4ABC trial was the estimation of antimalarial drug efficacy
at day 28, using the Kaplan-Meier (K-M) (Sxy;) method for
each of the treatment regimens.

In total there were 62 (1.8%) indeterminate outcomes
in the motivational study which were excluded and the
remaining data (3369 observations) with known out-
comes (81 recrudescence, 455 new infection, and 2833
who reached the planned end of the study (i.e. day 28)
without observing any recurrence) were considered as a
complete dataset for the purpose of this simulation study
(referred to full data here onwards). The K-M estimates
and associated standard errors (SEs) and the estimates of
the cured proportions (SEs) estimated from the “full
data” before inducing missingness are presented in
Table 2 and referred to as the full data estimate here-
after. In the derivation of the K-M estimates, new infec-
tions were censored on the day of recurrence whereas
they were considered as treatment success when deriving
the cured proportion as recommended by the WHO [2].
The former estimates were used for evaluating the per-
formance measures of the CC, IPW and MI approaches
for estimating probability of day 28 cure whereas the lat-
ter estimates were used for evaluating the performance
measures of the analytical solution (equation 2).

Rationale of the simulation design

The underlying mechanisms of parasitic recrudescence
and new infection represents a complex biological
process and simulating data which appropriately reflects
this mechanism is difficult. Hence, this simulation study
used a real motivational dataset to explore the ap-
proaches for handling missing outcome data unique to
antimalarial trials. The simulation approach used in this
study has been previously described and applied by
Brand et al. [20], Rodwell et al. [21], and Rombach et al.
[22]. We used the “full data” and simulated the missing
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Table 1 Antimalarial treatment outcomes for the 4ABC Trial [19]

Treatment Cured Missing outcome (indeterminate recurrence) Recrudescence New Infection Total
AL 847 (73.0%) t 29 (2.5%) 41 (3.5%) 243 (21.0%) 1,160
ASAQ 744 (81.8%) 20 (2.2%) 18 (2.0%) 127 (14.0%) 909
DP 1,242 (91.2%) 13 (1.0%) 22 (1.6%) 85 (6.2%) 1,362

AL artemether-lumefantrine , ASAQ artesunate-amodiaquine , DP dihydroartemisinin-piperaquine

tPercentages are out of total patients treated with that regimen

data process by repeatedly setting a set proportion of the
indeterminant recurrences as missing under two differ-
ent mechanisms (Fig. 1).

Mechanisms and models for simulating missingness

The terms missing completely at random (MCAR) and
missing at random (MAR) are widely used in the statis-
tical literature to describe the missingness mechanisms.
Since missingness of outcomes in antimalarial studies is
conditional on a recurrence being observed, we have not
used the generic terms of MCAR and MAR when refer-
ring to the missing data scenarios simulated in our
study. The missing data process was simulated by re-
peatedly setting a proportion of the recurrent cases to
missing under two different mechanisms (mechanisms
1 and 2). The following proportions of recurrent cases
resampled from the full data were set as missing: 10, 30
and 45% of the full data and for each of these missing
fractions, 1000 datasets were simulated. The value of
10% was chosen to mimic the percentage of indetermin-
ate recurrences (among all recurrent infections)

Table 2 Full data estimate of cure at day 28 follow-up using
the Kaplan-Meier method and cured proportion

Treatment Estimate  95% Confidence Interval SE SEF
Full data K-M ®
AL 0.960 0.948—0.972 00061  0.1559
ASAQ 0.979 0.969—0.989 0.0049 0.2367
DP 0.983 0.977—0.990 0.0035 02082

Full data cured proportion °

AL 0.964 0.951—0.973 0.0056  0.1562
ASAQ 0.980 0.968—0.987 00047  0.2357
DP 0.984 0.975—0.989 0.0034 02132

AL artemether-lumefantrine , ASAQ artesunate-amodiaquine , DP
dihydroartemisinin-piperaquine , SE standard error

1 Standard error after complementary log-log transformation. The cloglog
transformation was applied as the Ml estimates were computed on
complementary log-log scale for the application of Rubin’s combination rules
to be valid.

2 For the derivation of the K-M estimates, new infections were considered as
censored on the day of recurrence

PThe estimates of cured proportion (total cured/total number of patients
treated) was computed by considering those with new infections as cured.
The variance for cured proportion (p) for a total number of patients (n) was
calculated as p(1-p)/n. The variance was converted to the cloglog scale using
the delta method presented in Additional file 1, Section C. The 95%
confidence interval was derived using Wilson’s method using binom.confint
routine in binom package R.

observed in the 4ABC trial (a realistic scenario), and 30
and 45% were chosen to represent moderate and ex-
treme scenarios. The overall design of this simulation
study is presented in Fig. 1.

For mechanism 1, it was posited that missingness was
a truly random process among the 536 patients with re-
current infections with 10, 30, and 45% of these patients
randomly being reclassified as having indeterminate out-
comes [17]. The missingness was induced as follow:

i. For each subject i with recurrent parasitaemia,
generate a random number (x;) from a uniform
distribution [0;1]

w~U0,1);i=1,2,3,..,536

ii. Set the desired proportion (p) of the smallest u; as
having missing outcome; p = 0.10, 0.30, 0.45

For mechanism 2, the probability of indeterminate
outcome was assumed to depend on transmission inten-
sity and treatment regimen. This assumption was based
on regression modelling of the original 4ABC dataset
(62 indeterminate recurrences, 81 recrudescences, 455
new infections and 2833 cured) to determine the predic-
tors associated with indeterminate outcomes (see Add-
itional file 1, Section A). Malaria prevalence was
estimated from data from the Malaria Atlas Project
(MAP) according to latitude, longitude and the year of
the study [23]. Transmission settings were categorised as
low if MAP estimate were less than or equal to 0.10,
moderate if >0.10 and <0.40, and high if greater than
0.4. Missingness was induced in a two-step approach as
described below:

i) For each subject i with recurrent parasitaemia, the
probability of their outcome being missing (i;) was
estimated using a logistic regression model based on
the treatment regimen and the transmission level of
the site the subject came from:

2
logit(n(6; =1)) =, + Z/)’lk*tmnsmissionik
k=1

2
+ Z B, jxtreatment;;
=1
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I: Start with full data: Save K-M (SE)
The 4ABC Trial (n=3,369) ™| (Full data estimates)

l

Sample to induce
missingness
(n=536 differentiated
recurrences)

l

II: Impose missingness on
10%, 30% and 45% of the
recurrent cases resampled
with replacement

l

IV: Calculate
performance
measures

Repeat for 1,000 simulation runs

11I: Apply the three different Save K-M (SE)
analysis approaches: . for each
Ml, IPW & CC scenario/dataset

Fig. 1 The design of the simulation study.

the estimates obtained from the full data before missingness was induced

Legend: Ml = Multiple Imputation; IPW = Inverse Probability Weighting; K-M = Kaplan-Meier estimate; SE = Standard Error. The truth was defined as

where J; is an indicator variable for missing outcome for
individual i, and k =1 and 2 for low and moderate trans-
mission respectively (k =0 for high settings as reference
category), and j =1 and 2 for antimalarial treatments
ASAQ and DP respectively (j =0 for AL as reference
arm).

ii) Generate a Bernoulli outcome (y;) for missingness
for subject i based on the probability of outcome
being missing (77;) estimated in step (i) as:

y; ~ Bernoulli(m;); i = 1,2,3, ...,536

Under mechanism 2, two different scenarios were
studied representing weak and strong relationship be-
tween the covariates and missingness. The coefficients
(Bus B2) used for assigning missingness for the weak
scenario (mechanism 2a) and strong scenario (mech-
anism 2b) are detailed in Table 3 and the generating
model used are given below:

Table 3 Specification of the logistic regression model used to impose missingness

Log (Odds Ratio)t Odds Ratio
Mechanism 2a Mechanism 2b Mechanism 2a Mechanism 2b
Treatment By By exp(B,) exp(B,)
AL (reference) 0.00 0.00 1.00 1.00
ASAQ -0.05 -0.10 0.95 0.90
DP -0.20 -0.40 0.82 0.67
Transmission Bk Bk exp(Bix) exp(Bix)
High (reference) 0.00 0.00 1.00 1.00
Low -0.25 -0.50 0.78 0.61
Moderate -0.15 -0.30 0.86 0.74

AL artemether-lumefantrine , ASAQ artesunate-amodiaquine , DP dihydroartemisinin-piperaquine
1The intercept of the logistic regression (o) was chosen by iteration to achieve the desired proportion of missingness conditional on recurrence status. This was
-2.10, -0.75 and -0.11 for 10%, 30% and 45% respectively under missingness mechanism 2a, and -2.03, -0.68 and -0.02 respectively for 10%, 30% and 45%

missingness under mechanism 2b.
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Mechanism 2a (Weak scenario) logit(im(5; = 1)) = yo + ¢
where

2
By xtransmission + E B, j*treatment;;
k=1 j=1

2
l// =
and yo= -2.10,-0.75, - 0.11 for approximately 10, 30,
and 45% missingness respectively.
Mechanism 2b (Strong scenario) logit(m(d; = 1)) = o + ¢
where

2 2
Y= § By xtransmission + E B, jxtreatment;;
k=1 j=1

and y,= -2.03, - 0.68, - 0.02 for approximately 10, 30,
and 45% missingness respectively.

For the strong scenario, the strength of the associ-
ation between transmission, treatment and missingness
was 2-fold higher than that of the weak scenario, to rep-
resent a more extreme case. The constant y, was chosen
by iteration to approximately achieve the desired propor-
tions of missing outcomes. Under this generating model,
patients treated with ASAQ and DP were progressively
less likely to be assigned indeterminate outcomes, reflect-
ing the increasingly longer elimination half-lives with
these drug regimens which prevents some of the recur-
rences to be fully observed by 28 days; and similarly, pa-
tients in the moderate and low transmission settings were
progressively less likely to have indeterminate outcomes
compared to those in high settings as the genotyping
method is less likely to fail as clonal competition is lower
due to reduced parasitic diversity in low transmission
areas.

Table 4 Outline of the imputation and missingness models
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Methods for handling missing data

Three different approaches were used for handling miss-
ing data: complete case analysis, multiple imputation
and inverse probability weighting. In addition to these
three methods, the simulated datasets were also analysed
using the analytical approach outlined in equation 2.
The estimate of the variance of the analytical solution is
presented in Additional file 1 (Section B2). Each of these
three methods was applied to the same 1000 independ-
ent datasets generated. From each simulated dataset, the
target K-M estimates, and associated standard errors
were extracted and stored. The construction of the im-
putation and missingness model is detailed below.

Multiple imputation (M)

Missing outcomes were imputed using a logistic regres-
sion restricted to patients with recurrent parasitaemia
(81 recrudescences and 455 new infections) using the
MICE algorithm in R. For each observation with simu-
lated missing outcome (6; = 1), the missing values were
modelled based on the covariate set outlined in the im-
putation model (Table 4). The imputation model in-
cluded all the variables in the target analysis, that is,
treatment regimen and the observed time to parasite re-
currence since the substantive analysis is a survival ana-
lysis, plus auxiliary variables identified in the clinical
literature [24—27]. In addition, predictors of missingness
were also added to the imputation model to reduce the
between-imputation variability [8, 28]. Since the study
was carried out in multiple centres, study site was also
included in the imputation model. Interactions or non-
linear relationships between the variables in the imput-
ation model and the missing outcome were not consid-
ered. Our approach of using a parametric imputation
model (ie. logistic regression for imputing missing out-
come event) and a non-parametric method for carrying

Model Response

Predictors

Imputation Model y 1 if recrudescence

0 if new infection

Missingness model 1
Yobs =

0 if outcome is indeterminate

if outcome is observed

« age (years)

- mg/kg dose of partner drug

- transmission intensity °

- treatment regimen

- time of recurrence

« parasitaemia (log)

- study sites

- parasite density (log) on the day of recurrence

- age (years)

- mg/kg dose of partner drug
- transmission intensity °

- treatment regimen

- time of recurrence

- recurrence status (yes/no) ©

@ Transmission settings were categorised as low if Malaria Atlas Project estimate were less than or equal to 0.10, moderate if >0.10 and < 0.40, and high if greater

than 0.40

b Study site was not added in the missingness model as it led to convergence issues

€ Excluded in the IPW-E approach
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out the substantive analysis (i.e. estimating 28 day para-
sitic recrudescence using the Kaplan Meier function) has
been evaluated in other simulation studies with minimal
bias observed despite the incompatibility between the
imputation and substantive models (Lee et al. (2011),
Lee, Dignam and Han (2014)) [29, 30].

The number of imputations (m = 50) were selected fol-
lowing the recommendation that m should be at least
equal to the percentage of missing cases when the frac-
tion of missing information is less than 50% [11, 31].
Since the missingness was restricted to recurrences only
(sample size for imputation stage reduced to 284, 145,
and 107 for AL, ASAQ and DP respectively), imputation
was not performed separately by treatment arms. An
overall imputation was carried out by including treat-
ment regimen as a covariate in the imputation model.
For each of the analyses, 50 multiply imputed datasets
were created and the derived estimates of K-M and asso-
ciated standard errors were pooled using Rubin’s rules
to obtain an overall MI estimate and standard error [14].
Rubin’s combination rules require that the estimated
parameter are asymptotically normally distributed [11,
32, 33]. Therefore, the K-M estimates were complemen-
tary log-log transformed (cloglog) { log(- log(.S{K;I(t)))}
using Taylor’s series expansion as detailed below (further
details in Additional file 1, Section C):

Skm

var{ In (- In (Seu(®)) ) } = {ﬁ}z.vﬂ( In (Sku(®)))

wvar{ (- 1 (50) } - { . @(t))} b ver(ste)

Inverse Probability Weighting

A missingness model (selection model) was constructed
to estimate the probability of a patient having an ob-
served treatment outcome (cure/recrudescence/new in-
fection) using a logistic regression as specified in
Table 4. Patients who were cured (i.e. did not observe
recurrence) received a weight of one, while those who
had a recurrence status received weights which were the
inverse of their estimated missingness probability. As for
the imputation model, interactions or non-linear rela-
tionships between variables were not considered in the
missingness models. For the estimate of the standard er-
rors of the IPW approach to be valid, uncertainties re-
garding the estimation of the weight should be fully
accounted for. Therefore bootstrapping with 200 resam-
ples was undertaken to obtain the standard error as de-
scribed by Austin et al. 2016 [34]; (see Additional file 1,
Section D for a comparison of the standard errors
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obtained from the naive approach to the one obtained
from bootstrapping method). Efficacy studies for antima-
larials are unique in that indeterminate outcomes can
arise only if a patient experiences parasitic recurrence-
and thus recurrence is a perfect predictor. Two different
strategies for handling this perfect predictor were con-
sidered; by including (IPW) and excluding it (IPW-E) in
the missingness model (Table 4).

Performance measures for evaluating different methods
Let 0 be the true value of the “fixed” estimand of interest

derived from the full dataset and HAS is the estimate of 6
generated from the s™ simulation. The estimand of pri-
mary interest was the Kaplan-Meier estimate of 28 day

parasitic recrudescence, .S{K;I(t), derived from the full data
(shown in Table 2) (which considered new infection as
censored). In addition, a second estimand of interest was
cured proportion (which considered new infection as suc-
cess) (Table 2). The performance measures of the derived
estimator were assessed in terms of bias, efficiency and
coverage compared to the “true estimands” as described in
Table 6 of Morris et al. [35].

Bias was defined as the difference between the aver-

age of the estimates (é\s) obtained from the 1000 data-
sets with simulated missingness and the ‘fixed’ full data
estimate (). The bias was expressed as relative percent-
age bias, which is bias relative to the full data estimate :

(%45) % 100%. Model based standard error (ModSE) was
calculated as the square root of the average variance
across 1000 datasets and the empirical standard error
(EmpSE) was calculated as the square root of the vari-
ance of the estimated K-M across 1000 datasets. Root
mean squared error (RMSE), which combines the bias
and variance of the estimate, was reported as a measure
of overall accuracy. The expression for bias, ModSE and
EmpSE are given below:

Nsim
Bias = (6,-9) s Ui = 1,000
sim =1
ModSE = V. 6 s Mg = 1,000
Y nsim; dr( s) 5 Msim

1 Hsim ~
EmpSE = \/ (—Z (6.-6)"; 1y = 1,000

nsim_l) =1

1 Msim

~ 2
RMSE = (0,-6)" : Hgipy = 1,000

Hsim —1

The coverage probability was estimated as the propor-
tion of the 1000 datasets where the estimated 95%
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confidence interval (CI) included the point estimate of
the K-M derived from the full dataset (‘fixed’ full data
estimate) before inducing missingness. For a 95% confi-
dence interval, the theoretical coverage is expected to
fall between 93.6 to 96.4% with 1000 simulated datasets.
A drop in coverage below 90% is regarded as problem-
atic [28]. Finally, Monte Carlo standard error (MCSE),
which represents the noise attributable to the finite
number of simulations used was reported for each of the
performance measures reported [36].

Software

Multiple imputation was carried out using mice library
and Kaplan-Meier estimates were generated using sur-
vival library in R statistical software [37].

Results

There were a total of 598 (17.4%, 598/3431) recurrences
of which 81 were recrudescences, 455 new infections
and 62 indeterminate outcomes after performing geno-
typing (Table 1). While the percentage of indeterminate
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outcomes out of the total sample size is low (1.8%, 62/
3431), this represents 10.4% (62/598) of the total recur-
rences. For the purpose of the analysis, 62 indetermin-
ate outcomes were excluded and the remaining 3369
study participants with molecularly defined parasitic
recurrence were used to represent a complete dataset
(full data). Of these, 49% (1645) of patients were from
areas of high transmission, 31% (n =1033) from
moderate and 21% (n =691) from the areas of low
transmission settings from a total of 10 different
study sites. The median baseline parasitaemia was 28,
855/uL and was similar between the treatment regi-
mens. On the recurrence day, the median parasit-
aemia was 6080/pL for recrudescences and 4600/pL
for new infections.

Performance measures

The result of the different performance measures for the
different methods used for handling missing data are
presented in Tables 5 and 6, Figs. 2, 3, 4, 5 and 6, and in
Section E of Additional file 1. Since the “true values” from

Table 5 Performance measures of various methods for handling 45% missingness in recurrences for individuals treated with

artemether-lumefantrine

Full data Kaplan-Meier estimate of day 28 cure (SE) = 0.960 (0.1559)

MI

IPW IPW-E

Complete case analysis
Mechanism 1
Bias 0.0159 (0.0165)
Relative bias 1.65 %

Model based SE

0.2152 (0.0007)

Empirical SE 0.2032 (0.0045)
Coverage 134 % (1.1)
RMSE @ 0.5732 (0.0079)

Mechanism 2a (Weak scenario)

Bias
Relative bias
Model based SE

0.0163 (0.0173)
1.70 %
0.2176 (0.0008)

Empirical SE 0.2053 (0.0046)
Coverage 123 % (1.0)
RMSE @ 0.5907 (0.0085)

Mechanism 2b (Strong scenario)

Bias
Relative bias
Model based SE

0.0167 (0.0169)
1.74 %
0.2200 (0.0008)

Empirical SE 0.2060 (0.0046)
Coverage 10.1 % (1.0)
RMSE @ 0.6085 (0.0082)

-0.0026 (0.0079)
-0.27 %

0.2001 (0.0008)
0.1854 (0.0041)
944 % (0.7)
0.1914 (0.0014)

-0.0022 (0.0084)
-0.23 %

0.2041 (0.0008)
0.1901 (0.0044)
955% (0.7)
0.1938 (0.0018)

-0.0026 (0.008)
-0.27 %

0.2060 (0.0008)
0.1978 (0.0043)
945 % (0.7)
0.2031 (0.0016)

0.0002 (0.0075)
0.02 %

0.2097 (0.0009)
0.2015 (0.0045)
954 % (0.7)
0.2028 (0.0023)

0.0001 (0.0077)
0.01 %

0.2123 (0.0009)
0.2028 (0.0046)
95.7 % (0.6)
0.2039 (0.0024)

0.0001 (0.0076)
0.01 %

02151 (0.0009)
0.2051 (0.0045)
95.7 % (0.6)
0.2063 (0.0023)

0.0039 (0.0097)
041 %

0.2536 (0.0014)
0.2582 (0.0058)
85.1 % (1.1)
0.2918 (0.0044)

0.0039 (0.0104)
041 %

0.2594 (0.0017)
0.268 (0.0062)
83.7% (1.2)
0.3019 (0.0051)

0.004 (0.0102)
041 %

0.2659 (0.0016)
0.2772 (0.006)
83.1% (1.2)
03119 (0.0046)

MI Multiple Imputation, IPW Inverse Probability Weighting, IPW-E Inverse Probability Weighting with recurrence status excluded; SE= Standard Error; RMSE= Root

Mean Squared Error; K-M = Kaplan-Meier estimates
#=Monte Carlo error for the RMSE presented on mean squared error scale
Monte Carlo Standard Errors shown in parentheses
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Table 6 Performance measures of complete case and
maximum likelihood estimator for handling 45% missingness in
recurrences for individuals treated with artemether-lumefantrine
in estimating day 28 cured proportion

Full data estimate of day 28 cure proportion (SE) = 0.9637 (0.1561) °

Complete Case analysis Maximum Likelihood Estimator

Mechanism 1
Bias 13724 (0.0145) 0.0000 (0.0075)
Relative Bias 1.42% -0.00%
Model 0.2153 (0.0007) 0.2100 (0.0008)
based SE
Empirical SE 0.2177 (0.005) 0.2159 (0.0048)
Coverage 21.4% (1.3%) 93.1% (0.8%)
RMSE ° 0.5503 (0.0077) 0.2169 (0.0022)

Mechanism 2a (Weak scenario)

Bias 14093 (0.0149) -0.0004 (0.0077)
Relative Bias 1.46% -0.04%

Model 0.2179(0.0008) 0.2123 (0.0008)
based SE

Empirical SE 0.2227 (0.0049)
19.2% (1.2%)
0.5686 (0.0082)

0.2185 (0.0049)
93.4% (0.8%)
0.2186 (0.0023)

Coverage
RMSE ®

Mechanism 2b (Strong scenario)

Bias 14437 (0.0152) -0.0009 (0.0079)
Relative Bias 1.50% -0.09%
Model 0.2202 (0.0008) 0.2143 (0.0008)

based SE

Empirical SE 0.2248 (0.0050)
Coverage 17.2% (1.2%) 93.8% (0.8%)
RMSE ° 0.5844 (0.0084) 0.2203 (0.0023)

RMSE Root Mean Squared Error, AL artemether-lumefantrine, AS-AQ artesunate-
amodiaquine, DP dihydroartemisinin-piperaquine

@ The “true” estimates of cured proportion (total cured/total number of
patients treated) before missingness was induced. Those with new infections
were counted as cured. The variance for cured proportion (p) for a total
number of patients (n) was calculated as p(1 — p)/n. The variance was
converted to the cloglog scale using the equation presented in Additional file
1, Section C.

P Monte Carlo error for the RMSE presented on mean squared error scale.
Monte Carlo Standard Errors shown in parentheses

0.2204 (0.0049)

the full data set before inducing missingness were slightly
different for the K-M estimate (which considered new in-
fection as censored) and cured proportion (which consid-
ered new infection as success) (Table 2), the performance
measures are discussed separately for these two estimands.
As the primary aim of this simulation was to evaluate the
performance measures of different missing data ap-
proaches in deriving K-M estimates, much of the results
and discussion is focussed on this estimand.

Bias
In all of the scenarios studied, the CC analysis resulted in
an upwards biased estimate of day 28 K-M estimate of
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probability of cure, which was incremental with increasing
missingness, irrespective of the treatment regimen and
missingness mechanism studied. For example, in the AL
arm, the bias was 0.34, 1.04 and 1.59% when respectively
10, 30 and 45% of the recurrences were set to missing
under mechanism 1. The IPW approach, which included
recurrence status as a predictor (IPW) in the missingness
model provided the most consistent estimate of all ap-
proaches (Table 5). IPWs calculated from a missingness
model that excluded recurrence status (IPW-E) produced
larger biases compared to standard IPW and MI ap-
proaches. In general, MI estimates were slightly negatively
biased whereas the IPW estimates exhibited positive bias.
The MI and IPW approaches led to smaller biases
under mechanisms 2a and 2b compared to mechan-
ism 1, although this magnitude was negligible. Simi-
larly, there was no clear trend in the direction of bias
for mechanisms 2a and 2b. The MC error, which is
the noise from the finite number of simulations,
didn’t exceed 0.008 for MI and IPW (Table 5).

The analytical solution outlined in equation 2 was a
consistent estimator of the cured proportion whereas
CC approach was upwards biased in all scenarios studied
(Table 6 and Additional file 1 Tables 7, 8, 9).

Model based and empirical standard errors
The variance of the K-M estimates increased as the pro-
portion of missing outcomes increased for all the ap-
proaches used for handling missing data. When 10% of
the recurrences were missing, estimates of model based
SE were similar across the methods, with differences ob-
served only at the third decimal place. When missingness
was 230%, there was a clear trend in efficiency. IPW-
Exclude had the largest SE followed by the CC analysis.
MI and standard IPW had smaller standard errors com-
pared to other approaches with MI performing the best
across all scenarios studied. It was also found that the
IPW implementation which didn’t fully account for uncer-
tainty associated with estimating weights (naive estimator)
resulted in SEs which were (falsely) smaller than the MI
estimates. The comparison of SEs for IPW using the naive
approach and bootstrap method are presented in Add-
itional file 1 (See Section D). The average gain in precision
(model based SE) with IPW compared to the CC analysis
over all missingness mechanism were 1.9, 4.7, and 6.9%
for 10, 30 and 45% of missingness respectively. With MI,
these were 2.9, 9.0, 16.9% for 10, 30 and 45% missingness re-
spectively. Similar results were observed with empirical SEs.
Like with the K-M estimates, the model based SEs and
empirical SEs were progressively larger with increasing
proportion of missingness for the analytical solution for
estimating cured proportion (Table 6). At 10% missing-
ness, the EmpSE and ModSE were similar across the two
methods. At 30% or larger missing proportion, there was
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Fig. 2 Average estimate of Kaplan-Meier survival probability on day 28 across 1000 simulated datasets for different missing data methods,
missing data mechanisms and percentages of indeterminate recurrences Legend: CC = Complete Case; IPW = Inverse Probability Weighting; IPW-
E = Inverse Probability Weighting with recurrence status excluded; Ml = Multiple Imputation; AL = artemether-lumefantrine; ASAQ = artesunate-
amodiaquine; DP = dihydroartemisinin-piperaquine. The dotted line represents the estimates derived from the full data estimate before

a small gain in precision with the analytical solution
compared to the CC method (Table 6 and Additional file
1 Tables 7, 8, 9).

Coverage probability of the true value

Figure 5 shows the coverage probability for different
missing data methods in derivation of K-M estimates for
different missingness proportion. The CC approach suf-
fered from poor coverage in all the scenarios under con-
sideration and this deteriorated rapidly with increasing
proportion of missingness. The IPW and MI implemen-
tation resulted in coverage probability close to the nom-
inal 95% level irrespective of the missingness scenarios
studied. The IPW-Exclude approach was also associated
with coverage that was lower than the nominal level
across the entire simulation scenarios studied. The MC
error for the coverage ranged between 0.5 to 1.6%. For
the analytical solution (equation 2), the coverage ranged
from 93.1-93.8% across different scenarios whereas the

CC estimator for cured proportion suffered from sub-
stantial under-coverage (Table 6 and Additional file 1
Tables 7, 8, 9).

Root mean squared error (RMSE)

The CC approach had the least overall accuracy of all
the missing data methods followed by IPW-Exclude
across all missingness mechanisms. For all the missing
data methods, the overall accuracy decreased with in-
creasing proportion of missingness. MI and IPW ap-
proach both provided similar estimates of accuracy.
With MI and IPW approach, the accuracy was higher
under missingness mechanism 2 compared to the
mechanism 1. The overall accuracy of the estimator is
presented in Fig. 6. Similarly, the CC approach for esti-
mating cured proportion had the largest RMSE whereas
the analytical solution (equation 2) had superior overall
accuracy for estimating the cured proportion (Table 6
and Additional file 1 Tables 7, 8, 9).
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Discussion

Missing data in clinical trials can pose analytical chal-
lenges, including undermining the validity and interpret-
ation of the results. In antimalarial studies, indeterminate
recurrences resulting from genotyping failure are fre-
quently encountered, especially in the areas of high trans-
mission intensity, where multiple infections are common.
Principled approaches for handling missing data have pro-
liferated the medical and statistical literature in recent
years [9, 10, 38], yet the most common approach used by
malaria researchers and recommended by the WHO for
handling indeterminate cases is to simply exclude these
from the analysis. In this article, the performance of MI
and IPW were evaluated for handling indeterminate out-
comes in the context of estimation of antimalarial efficacy
using one of the largest antimalarial studies (the 4ABC
study) [19]. The use of a real dataset to represent the
complete (full) data avoided arbitrary choices usually
made in simulating covariates and survival data, and

provided a rich dataset from multiple endemic settings,
with auxiliary covariates for implementation of IPW and
MI approaches, thus making the generalisability of results
for antimalarial trials more plausible.

Two different missingness mechanisms were investi-
gated and differences in estimates compared for scenar-
ios in which 10, 30 and 45% of the known recurrences
were reclassified as missing. In all these scenarios, the
current recommendation of excluding indeterminate
cases resulted in an upwards biased estimate of day 28
probability of cure (K-M method) by up to a maximum
of 1.7% (see Additional file 1, Section E), the magnitude
of which was correlated with the proportion of recurrent
outcomes classified as indeterminate. Similar findings
were observed in Machekano et al. (2008) who reported
an absolute overestimation in efficacy of 3.2% by CC ap-
proach compared to IPW and MI methods for the anti-
malarial regimen of chloroquine (CQ) + sulphadoxine-
pyrimethamine (SP) and by up to 1.7% for the regimen
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amodiaquine (AQ) + SP when the observed proportion
of missing recurrences were 33% in the CQ + SP arm
and 17% for AQ + SP arm [16]. Like for the estimation
of the K-M of probability of cure, the CC analysis was
associated with overestimation of proportion cured at
day 28. The analytical solution outlined in equation 2
provided the most consistent estimate of the proportion
cured compared to the CC estimator.

For the derivation of K-M estimate of day 28 probabil-
ity of cure, MI and IPW approaches were generally con-
sistent under all missingness scenarios and resulted in
an increased precision. The IPW approach provided
consistently the least biased estimate of K-M probability
of cure of all the approaches for all proportions of miss-
ingness; however, it came at a price of marginally in-
flated standard errors compared to the MI approaches
which also corroborate well with the observations of
Machekano and colleagues [16]. However, the current
study had two important differences. First, the Kaplan-

Meier method, which is currently the preferred approach
for estimating drug efficacy, was used (as opposed to the
proportion cured reported in Machekano and col-
leagues). Second, when constructing the missingness
model for the IPW implementation, recurrence status
was included as a predictor in this analysis. In antimalar-
ial studies, a missing outcome is only possible once a pa-
tient experiences recurrent parasitaemia, thus leading to
a scenario where recurrence status is a predictor of miss-
ing outcome. It was found that the IPW approach where
missingness models excluded the predictor recurrence
was associated with an increased bias and inflated stand-
ard error. This suggests that recurrence should always
be included in the missingness model to obtain valid in-
ferences for the IPW estimate.

Like for the IPW, the validity of the inferences derived
from MI relies on the correct implementation of the im-
putation model, hence this approach should include the
correct functional form and specify any interactions. Failure
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to do so could lead to invalid inferences being drawn, espe-
cially when the fraction of missing information is large [11,
31, 39]. In practice, all imputation models are likely to be
mis-specified to some extent. Arguably specifying the miss-
ingness model correctly is an easier task compared to speci-
fying a correct imputation model [9, 40], thus making the
IPW approach a feasible alternative for handling indetermin-
ate outcomes in estimation of efficacy in antimalarial studies.
However, it is important to account for the uncertainty asso-
ciated with estimation of weights in IPW as the naive esti-
mate of the standard error ignores this uncertainty, leading
to the IPW approach paradoxically appearing far more effi-
cient than MI (See Additional file 1, Section D) [34]. In
addition to being biased and inefficient, the CC estimates
also suffered from poor coverage for the estimation of K-M
probability compared to MI and IPW methods and for esti-
mation of cured proportion compared to the analytical solu-
tion (equation 2). When the missingness was greater than
30%, the coverage for CC approach deteriorated rapidly and
fell below 90% for all the missingness mechanisms

(regardless of choice of the estimand) whereas for MI, IPW
and the analytical approach, the coverage remained near the
nominal 95% level.

The current WHO guidelines require that a new regi-
men should demonstrate at least 95% efficacy to be in-
cluded in the antimalarial treatment policy, and further
investigations are warranted when treatment failure ex-
ceeds 10% to examine the possibility of drug resistance
[2]. The results of this study, taken together with the
findings of Machekano et al. [16] highlights that CC ap-
proach provides an optimistic view of the treatment effi-
cacy and this can have potentially deleterious
consequences when the estimate is at the cusp of these
WHO thresholds (in a study where a large proportion of
outcomes are indeterminate). From a public health per-
spective, the false sense of confidence generated from
these studies regarding the current status of antimalarial
regimens can have important ramifications for the evolu-
tion of antimalarial drug resistance. The prolonged usage
of a less optimal regimen provides a constant drug
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selection pressure to the parasites; a scenario highly con-
ducive for emergence of de novo drug resistance. Given
the paucity of alternative regimens currently available
and the spread of artemisinin resistance across South
East Asia [41], it is important that researchers and policy
makers alike are aware of the pitfalls associated with the
CC estimate of efficacy when drawing conclusions from
routine surveillance studies. The analytical solution out-
lined in equation 2 provided the most consistent esti-
mate of the failure and could be a useful alternative in
scenarios where there is minimal or no censoring. How-
ever, when there is censoring (due to lost-to-follow up
or when new infection is considered as censored), the K-
M approach through the use of principled approaches of
MI and IPW would be the most appropriate method for
estimation of the day 28 proportion of recrudescences.
This simulation study has a number of limitations.
First, it was assumed that the genotyping outcome re-
flects the true treatment outcomes. The genotyping pro-
cedure is prone to misclassification error, particularly in

areas of intense transmission where polyclonal infections
present formidable challenge [42-45]. A thorough con-
sideration of genotyping adjusted efficacy should incorp-
orate the population allele diversity, which is often
unmeasured or not presented; however the potential
confounding from this remains beyond the scope of the
current analysis. Second, IPW and MI are not the only
available approaches for handling missing data. Likeli-
hood based approaches, which use expectation-
maximisation (EM) algorithms are alternative ap-
proaches, but at present are not implemented in stand-
ard software [46]. The pseudo-value method is
increasingly being used and its utility in the context of
antimalarial research is yet to be evaluated [47-50].
Third, this simulation study has evaluated the perform-
ance of MI and IPW approaches in derivation of K-M
estimates and the application of these principled
methods for other statistical approaches for estimating
efficacy (e.g: competing risk survival analysis approach)
was not considered [51-53]. Finally, this study doesn’t
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represent every missing-data problem which can be en-
countered in practice and a single method cannot be
universally recommended but rather the choice of the
method should be guided by the research question and
the context of the study.

In the presence of missing data, no statistical
methods, simple or sophisticated, can supersede the re-
sult, which could have been derived had the data been
fully observed. Thus best possible efforts should be made
to minimise the missingness through careful design,
study management, and adherence to standardised pro-
tocols [54-57]. Diligence in sample collection in the
field, use of better genotyping method (e.g. capillary
based) including appropriate quality control measures
through a regular proficiency testing program should
be deployed [58]. Missing data should be anticipated in
advance and researchers should strive to collect data on
variables which might be related to variables expected
to exhibit missing data such as background allelic fre-
quency. When using MI and IPW, researchers should
clearly report the details of modelling approaches in-
cluding the construction of imputation and missingness
models [8, 59].

The definition of recrudescence and new infection de-
pends on the how different sized bands are binned and
classified as being the same or different alleles. For ex-
ample, Cattamanchi et al. (2003) [60] considered the al-
leles to be the same if the molecular weights were within
10 base-pair length for merozoite surface protein (msp)-
2 genes whereas Rouse et al. (2008) reported that an
identical msp-2 allele could be different by up to 18 base
pairs [61]. The definition adopted for defining recrudes-
cence or a new infection is critical and researchers
should always endeavour to publish the fragment length
of the alleles in the pre- and post-treatment samples as
done by Plucinski et al. (2017) (see Additional file 1:
Table 1 of [62]).

Conclusions

The widely used approach of excluding indeterminate
outcomes results in underestimation of antimalarial
failure. In the example studied, the incorporation of
missing data through correctly implemented IPW (in-
cluding recurrence status as the predictor and using
bootstrapping to estimate the standard error) and MI
approaches and the analytical solution outlined in
equation 2 greatly reduced bias. The IPW and MI ap-
proaches were associated with the smallest standard
errors and provided superior coverage probability of
the derived estimates of day 28 recrudescence. IPW
and MI approaches are easily implementable in stand-
ard statistical software and should be considered for
handling indeterminate outcomes in the derivation of
antimalarial failure.
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treated with artemether-lumefantrine Table S6. Performance measures of
complete case and maximum likelihood estimator for handling 45% miss-
ingness in recurrences for individuals treated with artemether-
lumefantrine in estimating day 28 cured proportion Figure S1. Thera-
peutic responses post antimalarial treatment in P. falciparum malaria.
Adapted from White NJ: The assessment of antimalarial drug efficacy.
Trends Parasitol 2002, 18:458-464.°
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