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SUMMARY 28 

Trypanosoma cruzi is the etiological agent of Chagas disease, usually transmitted by triatomine 29 

vectors.  An estimated 20-30% of infected individuals develop potentially lethal cardiac or 30 

gastrointestinal disease.   Sylvatic transmission cycles exist in the southern United States, 31 

involving 11 triatomine vector species and infected mammals such as rodents, opossums and 32 

dogs.  Nevertheless, imported chronic T. cruzi infections in migrants from Latin America vastly 33 

outnumber locally-acquired human cases.  Benznidazole is now FDA-approved, and clinical and 34 

public health efforts are underway by researchers and health departments in a number of states.  35 

Making progress will require efforts to improve awareness among providers and patients, data on 36 

diagnostic test performance and expanded availability of confirmatory testing, and evidence-based 37 

strategies to improve access to appropriate management of Chagas disease in the United States. 38 
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INTRODUCTION 39 

Trypanosoma cruzi is the causative agent of Chagas disease (1, 2).  Infection is lifelong 40 

without treatment; thus, prevalence can be high despite low incidence.  Current estimates of 6 41 

million infections and 1.2 million cases of cardiomyopathy place Chagas disease first in disease 42 

burden among parasitic diseases in the Americas (3)(4).  Trypanosoma cruzi is transmitted when 43 

infected vector feces enter the bite site or mucous membranes of a mammalian host. 44 

Transmission can also occur through blood component transfusion, organ transplantation, food 45 

or beverages contaminated by the vector or vector feces, and in utero from mother to fetus (5).   46 

The classic setting for Chagas disease is rural Latin America, where adobe houses and the 47 

presence of domestic animals favor domestic and peri-domestic vector infestation (2).  However, 48 

transmission in many rural areas has decreased due to vector control programs, and infected 49 

individuals have migrated to Latin American cities (6), the United States and Europe (7, 8). 50 

Unlike Europe, the United States has well-described enzootic T. cruzi transmission, involving 11 51 

triatomine species and a range of mammalian hosts (9).  Nevertheless, the vast majority of T. 52 

cruzi-infected individuals in the United States are Latin American immigrants infected in their 53 

countries of origin.  We will review clinical, epidemiological and public health aspects of Chagas 54 

disease in the United States, with a focus on the most recent relevant publications.   55 

 56 

BIOLOGY AND TRANSMISSION OF TRYPANOSOMA CRUZI  57 

In 1909, Carlos Chagas, a young physician working in rural Brazil, demonstrated the 58 

etiological agent, its vector, several of its reservoir hosts and the salient manifestations of the 59 

disease that now bears his name, a feat unrivaled in medical history (10). He named the parasite 60 

in honor of his mentor, Oswaldo Cruz (11). Chagas proceeded to isolate T. cruzi from the blood 61 
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of a domestic cat, and finally from a symptomatic toddler. This “first patient” remained infected 62 

for life, but never developed chronic manifestations of Chagas disease, and died at 73 from 63 

unrelated causes (12). Finally, Chagas fulfilled Koch’s postulates by reproducing the infection 64 

experimentally in laboratory animals (11).  65 

In the years since 1909, the life cycle has been more fully characterized. In order to 66 

successfully colonize the mammalian host and triatomine vector, T. cruzi assumes three distinct 67 

morphological forms at different developmental stages (Figure 1) (13). Amastigote and 68 

epimastigote forms replicate by binary fission in mammalian cells and the hindgut of the 69 

triatomine vector, respectively. Trypomastigote forms are non-replicative and are present at two 70 

distinct life cycle stages: (i) in the bloodstream of the mammalian host (bloodstream-form 71 

trypomastigotes) and (ii) in the rectum and feces of vectors (infective metacyclic 72 

trypomastigotes).  73 

Infective metacyclic trypomastigotes are deposited on the skin of the mammalian host in 74 

fecal droplets extruded by a blood-feeding triatomine bug. Parasites enter through the bite site, 75 

skin abrasions or mucosa such as the conjunctiva. This mechanism, via the vector feces rather 76 

than mouthparts, is known as stercorarian transmission. Once internalized, motile 77 

trypomastigotes invade nucleated cells via both lysosome-dependent and independent 78 

mechanisms (reviewed by (14, 15)). The parasite is then taken up into a membrane-bound 79 

(parasitophorous) vacuole, which subsequently fuses with a lysosome; exposure to decreasing 80 

pH stimulates parasite differentiation to the intracellular amastigote form and its concomitant 81 

release into the cytosol over a period of 4-5 days. Here, amastigotes multiply asexually to form 82 

pseudocysts, which can arise in a variety of host tissues, but predominantly in cardiac, smooth 83 

and skeletal muscles and reticuloendothelial cells in the liver, spleen and lymphatic system. 84 
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Within pseudocysts, amastigotes differentiate into trypomastigotes that, upon cell lysis, can 85 

either infect adjacent tissues to initiate new replicative cycles, or disseminate throughout the 86 

bloodstream and lymph. Without antitrypanosomal treatment, infection persists for the duration 87 

of the mammalian host’s life. 88 

Triatomine bugs feeding on an infected host may ingest extracellular trypomastigotes, 89 

which pass to the midgut where transformation to an intermediate spheromastigote form occurs. 90 

Differentiation of spheromastigotes into epimastigotes occurs in response to decreasing 91 

environmental glucose levels as the blood meal is digested (13). Epimastigotes multiply by 92 

binary fission in the hindgut and migrate to the rectum where they attach hydrophobically to the 93 

waxy gut cuticle by their flagella and transform into infective metacyclic trypomastigotes, thus 94 

completing the life cycle. 95 

Routes of transmission 96 

Vector-borne transmission.  Vector-borne transmission remains the predominant route of new 97 

human infections in endemic regions.  Historically, vector-borne transmission has occurred in 98 

ecologically determined areas throughout continental Latin America, from Mexico to the 99 

northern 50-60% of the territories of Argentina and Chile (16).  Infected vectors and reservoir 100 

animals are not infrequent in the southern half of the continental United States, but vector-borne 101 

transmission to humans is rarely detected (reviewed in multiple sections that follow).   102 

Congenital transmission. Reported vertical transmission rates are variable, ranging from 0% in 103 

some studies to more than 15%; the pooled transmission risk in a recent meta-analysis was 4.7% 104 

(17). Factors associated with a higher risk include younger maternal age (reflecting more recent 105 

infection), maternal immunological responses, higher maternal parasitemia, twin births and HIV 106 
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co-infection (18-21). Infected infants are regularly detected in screening programs in Spain, and 107 

sporadically in other countries with Latin American immigrant populations (22-24). 108 

Blood-borne transmission. In the early 1990s, T. cruzi infection was found in 1 to 60% of 109 

donated blood units in Latin American blood banks (25).  Since then, blood donation screening 110 

has been established as a major component of Chagas disease control programs (26).  With the 111 

addition of Mexico in 2012, screening of blood components for T. cruzi is now required in all 112 

endemic countries in Latin America, and reported donor prevalence has markedly decreased (26, 113 

27).     114 

Organ-derived transmission. Transplantation of an organ from a T. cruzi-infected donor can 115 

transmit T. cruzi to the recipient, but the risk varies by organ type. In cohorts of kidney recipients 116 

from infected donors in the U.S. and Argentina, transmission occurred in 13% and 19%, 117 

respectively (28, 29). The transmission rate among 10 U.S. liver transplant recipients was 20% 118 

(28). The risk from heart transplant in the same U.S. series was 75% (3 of 4); use of the heart 119 

from an infected donor is contraindicated (28, 30).   120 

Oral transmission. Outbreaks of acute T. cruzi infection due to contaminated fruit or sugar cane 121 

juice have been reported in several countries of Latin America (31, 32).  Most case clusters are 122 

small, affecting family groups in the Amazon and attributed to fruits such as açaí (33). The 123 

largest reported outbreak was associated with a 10% attack rate among students and staff at a 124 

school in Caracas; home-pressed guava juice was implicated (34). 125 

 126 

 127 

 128 

 129 
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EPIDEMIOLOGY AND ECOLOGY 130 

Global burden of Chagas disease 131 

The Chagas disease control initiatives instituted throughout Latin America since 1991 132 

constitute a major public health success story.  Thanks to vector control programs, blood bank 133 

screening, and in some countries, congenital Chagas disease screening programs, global 134 

estimates have decreased from 18 million in 1991 to less than 6 million infected individuals in 135 

2010 (Table 1) (3, 35).  Incidence estimates have fallen from 500,000 in 1991 to 30,000 new T. 136 

cruzi infections per year in 2010 (3). As vectorial transmission has come under increasing 137 

control, the proportion attributable to other routes has grown: currently, 22.5% of incident 138 

infections are estimated to occur through congenital transmission, and in some areas, oral 139 

transmission may be more frequent than the traditional vector-borne route (3, 31).  140 

Triatomine vector biology 141 

More than 130 triatomine species have been reported in the Western Hemisphere, many 142 

known to carry T. cruzi (16, 38).  However, a few species are disproportionately responsible for 143 

T. cruzi transmission to humans, due to their propensity to colonize human houses and/or the 144 

peridomestic environment.  These include Triatoma infestans and Panstrongylus megistus in the 145 

Southern Cone, T. dimidiata in southern Mexico and Central America, and Rhodnius prolixus in 146 

Central America and northern South America (16).  These species have been the major targets of 147 

the regional control initiatives. Elimination of R. prolixus from Central America and the near 148 

elimination of domestic T. infestans from much of the Southern Cone are responsible for the 149 

steep decline in new infections and very low prevalence in children throughout most of the 150 

historic endemic zone (39, 40). However, in the Gran Chaco, an ecological zone that straddles 151 

southern Bolivia, northeastern Argentina and parts of Paraguay, the prevalence of house 152 
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infestation and transmission remain very high (41, 42).   153 

The domestic environment is rich in blood meal sources, both human and animal. 154 

Crevices in adobe walls and dark spaces within animal corrals and poultry nests provide safe 155 

diurnal refuges for triatomines.  Rhodnius species, which nest in palm crowns in the sylvatic 156 

environment, can infest thatch roofs.  Triatomines of both sexes require at least one blood meal 157 

during each of the five nymphal stages, and females need a blood meal to lay eggs.  Thus, both 158 

male and female nymphs and adults may carry T. cruzi, with infection rates increasing with age.  159 

Only adults have wings.  Most domestic triatomine species feed nocturnally, and complete their 160 

blood meals without waking the host (38).  The major Latin American vectors defecate during or 161 

immediately after taking a blood meal (43).  Many sylvatic triatomine species colonize the nests 162 

of their blood meal sources, and are found in close association with specific rodent or marsupial 163 

species (16, 38).  Sylvatic triatomine adults may be attracted by light to invade human dwellings, 164 

and lead to sporadic human infections (44, 45).  Some triatomine species, such as T. dimidiata, 165 

can infest both domestic and sylvatic sites (46).    166 

Triatomine distribution in the United States 167 

Eleven triatomine species have been reported in the United States: Triatoma gerstaeckeri, 168 

T. incrassata, T. indictiva, T. lecticularia, T. neotomae, T. protracta, T. recurva, T. rubida, T. 169 

rubrofasciata, T. sanguisuga, and Paratriatoma hirsuta (Figure 2 and Table 2) (9, 38).  170 

Triatomines are present from coast to coast, across the southern two-thirds of the continental US 171 

(Figure 3).  In field collections, vectors are often found in specific microenvironments 172 

(woodpiles, rock piles, rodent nests, livestock pens, dog kennels) (9).  Natural T. cruzi infections 173 

have been documented in all species except the rarely collected T. incrassata and P. hirsuta (9, 174 

47).   175 
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The two species with the widest geographic distribution in the United States are T. 176 

sanguisuga and T. protracta. The former has been reported from Texas to the Atlantic coast and 177 

as far north as Illinois, the latter from Texas to California (9, 48).  A recent review by the 178 

Wheeling-Ohio County West Virginia Health Department turned up 10 specimens of T. 179 

sanguisuga archived since 1969, and adds this state (long assumed to have the vector) to the 180 

confirmed list (48).  T. sanguisuga was also recently reported in Delaware (49). T. protracta has 181 

been extensively collected in association with its favored blood meal hosts, the woodrats 182 

(Neotoma spp); the prominent above-ground nests of these rodents makes sylvatic collection 183 

relatively straightforward for this species (9, 50).  T. protracta includes three morphologically 184 

distinct subspecies in the United States, T. protracta protracta in California, Nevada, Utah, 185 

Arizona and New Mexico, T. protracta woodi in Texas and T. protracta navajoensis in the Four 186 

Corners area (51).  Thousands of specimens of T. sanguisuga and T. protracta have been 187 

reported in literature dating back to the 1930s, and these species were found in or near the 188 

residences of humans with locally acquired T. cruzi infection in Tennessee, Louisiana, 189 

Mississippi (T. sanguisuga) and California (T. protracta) (9, 52-55).  In field collections, both 190 

species frequently have T. cruzi infection, with rates generally in the 15-30% range (9, 50). 191 

T. gerstaeckeri has a more limited range, encompassing south-central Texas and 192 

southeastern New Mexico, but is one of the most frequently collected species, perhaps in part 193 

because of its propensity to infest dog kennels and other peridomestic structures (56).  T. 194 

gerstaeckeri constituted more than 70% of several thousand vectors submitted through a citizen 195 

science project based at Texas A&M University (57). Collections of T. gerstaeckeri show high 196 

rates of T. cruzi infection, often >60% (9, 57).  Infected T. gerstaeckeri were collected in the 197 

house of a child with acute T. cruzi infection in south Texas in 2006 (58).   198 
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Texas and the southwestern states have the highest triatomine species diversity, with at 199 

least seven species in Texas and six in Arizona (9, 56) (Table 3).  A spatial analysis of bugs 200 

submitted through the Texas citizen science initiative showed geographic overlap among species, 201 

but with T. gerstaeckeri predominantly in south-central Texas, T. sanguisuga in the eastern 202 

portion, T. rubida in west Texas and T. indictiva in a small area of central Texas (56).  T. 203 

gerstaeckeri reports showed earlier seasonality than T. sanguisuga, possibly because of the 204 

earlier arrival of high temperatures in the southern part of the state.  Like all passive surveillance, 205 

there may be reporting biases in these data.  The authors observe that they received few 206 

submissions from west Texas (and perhaps for this reason, few T. protracta). They attribute this 207 

to lower human population density and/or less effective outreach (56), but lower rates of internet 208 

access in rural counties could also play a role.      209 

The ranges of all United States species extend into Mexico with the exception of T. 210 

rubrofasciata (51, 59).  T. rubrofasciata is associated with rats, and is thought to have been 211 

carried from North America globally on sailing ships in the 18
th

 century (60).  In the United 212 

States, this species has been reported in Jacksonville, Florida and Honolulu, Hawaii, consistent 213 

with its predominant distribution in ports.  214 

Allergic reactions to triatomine antigens 215 

T. gerstaeckeri, T. protracta, T. recurva, T. rubida and T. sanguisuga have been 216 

implicated in allergic reactions in the United States (61).  Such reactions are due to vector 217 

salivary antigens, not the infection status of the vector.  Most reactions consist of a pruritic welt 218 

where the bite occurred.  Severe reactions may involve angioedema, urticaria, dyspnea, 219 

gastrointestinal symptoms and/or anaphylaxis (61).  Severe reactions may necessitate treatment 220 

with epinephrine (62). Reports are most frequent in Arizona and California; the most commonly 221 
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identified species are T. protracta and T. rubida, and the most frequent scenario is house 222 

invasion by an adult triatomine (61).  In a study in southern California, allergic reactions 223 

consistent with those provoked by triatomine exposure were reported by 13% of residents of 224 

desert areas with frequent triatomine sightings, compared to 4% of those living in suburban Los 225 

Angeles county (63).  226 

Wild and domestic animal reservoirs 227 

Wildlife reservoirs. Trypanosoma cruzi infection has been reported in more than 150 species of 228 

mammals from eight orders, and it is widely believed that all mammals are susceptible (64).  229 

Birds and cold-blooded vertebrates are refractory to infection (65). The epidemiological 230 

importance of particular species is highly variable, depending on local ecology and parasite 231 

transmission dynamics. Maintenance reservoirs have persistent infection, while amplifier 232 

reservoirs are those that display characteristics that favor transmission, such as high parasitemia 233 

levels (66). As with humans, most infected animals are chronically infected, and therefore 234 

detection may be reliant on a combination of examination of peripheral blood smears, culture 235 

isolation, serological testing and PCR; relative ease of trapping as well as variable performance 236 

of diagnostic assays contribute to bias in reported prevalence levels. Across the endemic range, 237 

Dasypus novemcinctus (nine-banded armadillo) and Didelphis species (opossums) are prominent 238 

sylvatic reservoirs and amplifiers of infection. Trypanosoma cruzi is able to infect almost all 239 

tissues in its mammalian hosts, including atypical sites, such as the cornea of Thrichomys 240 

apereoides (spiny rat) (67) and the anal scent glands of Didelphis species (68), enabling the latter 241 

to function as both host and vector. In addition to vector-borne transmission, many sylvatic 242 

mammals are prone to alternate transmission routes, including oral infection via ingestion of 243 

infected vectors, congenital infection and exposure to contaminated bodily secretions (69). These 244 
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biological features may predispose such hosts to infection with multiple strains, due to high 245 

transmission intensity and efficiency (70, 71).   246 

In the US, T. cruzi infection has been demonstrated in more than 24 wildlife species, 247 

including raccoons, opossums, armadillos, foxes, mice, squirrels, coyotes, skunks and wood rats 248 

(9). Recent studies have expanded this list to include additional rodent (72, 73), bat (74) and deer 249 

species (75). Reported seroprevalence rates fluctuate quite widely within species, ranging in 250 

raccoons from 15 to 90% (72, 76, 77), skunks, 9 to 100% (72, 78), opossums, 8 to 33% (78, 79), 251 

and woodrats and other rodents, 20 to 76% (72, 80-82).  The prevalence varies depending on 252 

ecology, local diversity and density of vector species, and in some cases between sexes, with 253 

female denning activities associated with increased triatomine contact (78, 83). High infection 254 

rates in some mammals, such as wood rats and raccoons, may result from frequent insectivory 255 

(84). Experimental infections studies and the high attack rates in human outbreaks of orally 256 

transmitted Chagas disease suggest that ingestion of infected vectors or vector fecal material is a 257 

very efficient transmission route (34, 84).  In contrast, consumption of raw T. cruzi-infected meat 258 

did not result in experimental infection in one study (84).  259 

Canine Chagas disease.  Dogs are important in peridomestic cycles in Latin America, both as 260 

vector blood meal sources and T. cruzi infection reservoirs (85, 86).  In the hyperendemic Chaco 261 

region of Argentina, dogs have been shown to be highly infective to vectors and are thought to 262 

be a key reservoir sustaining transmission to humans (87).  In the United States, T. cruzi-infected 263 

dogs have been reported from Tennessee, South Carolina, Georgia, Virginia, Louisiana, 264 

California, Oklahoma and Texas (reviewed in (9)).  Infected dogs may develop acute and chronic 265 

manifestations similar to those in humans, including acute myocarditis, arrhythmias, chronic 266 

dilated cardiomyopathy, congestive heart failure and sudden death (89).  Several recent surveys 267 
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in Texas demonstrate widespread canine T. cruzi infection, especially in working dogs and those 268 

living in kennels (90-93).  The prevalence in these surveys varied widely.  Some studies 269 

demonstrated significant discordance between diagnostic tests, and a substantial number of dogs 270 

whose infection status was unresolved with the performed testing (92).  The highest infection 271 

rate, 71% by serology, was reported in the investigation of a Texas kennel where several dogs 272 

had sudden death suspected to be due to acute Chagas disease (90). Triatomines collected in dog 273 

kennels and near houses in Texas show high prevalence of canine blood meals and T. cruzi 274 

infection (90, 94), suggesting that dogs may be an important peridomestic host.    275 

Transmission potential in the United States 276 

With the exception of the rarely collected species T. neotomae, T. incrassata and P. 277 

hirsuta, all US vector species have been reported to invade human dwellings (56, 62). A total of 278 

2,883 specimens of 7 different vector species were submitted to the Texas citizen science project 279 

(56).  Of these, 17% were collected inside human dwellings; the highest proportions were for T. 280 

rubida and T. protracta.   Houses with refuges such as woodpiles, rock piles and brush, and 281 

those with structural gaps through which vectors can pass, are more vulnerable to vector invasion 282 

(52, 62, 95).  Rarely, the presence of T. protracta or T. recurva nymphs has been reported inside 283 

houses, suggesting possible colonization (62).  Window screens, air conditioning and caulking of 284 

gaps in house construction may be protective against such invasion (62). 285 

 Detection of human blood meals is frequent in tested triatomines, especially those 286 

collected in and around human dwellings, and in other spaces where humans congregate.  In a 287 

recent study in Texas, human blood was detected in 59% (30/51) of T. gerstaeckeri; the second 288 

most frequent blood meal was canine (17/51, 33%), followed by more than a dozen other 289 

vertebrate hosts (96).  In this study, collection sites were largely domestic or peridomestic, and 290 
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human blood meals were found in 77% (17/22) of T. gerstaeckeri collected inside homes; mixed 291 

blood meals were frequent.  In another study from Texas, vectors were collected in dog kennels 292 

and woodrat nests, as well as domestic settings (94). In this study, dogs (10/33, 30%) were the 293 

predominant blood meal source for T. gerstaeckeri, followed by woodrats (Neotoma micropus) 294 

(7/33, 21%); human blood was identified in a single bug.  All 40 T. protracta were collected in 295 

woodrat nests and had fed exclusively from Neotoma micropus (94).  In a Louisiana study 296 

conducted near the house of the 2006 autochthonous human infection, 43 T. sanguisuga were 297 

collected; 53% had fed from American green tree frog, 49% from humans and 30% from 298 

raccoons; detection of blood from multiple host species was frequent (97).  In the Arizona-299 

Sonora Desert Zoo, human blood was detected in all 7 T. rubida tested; 5 of 7 had other blood 300 

meal sources detected, including pig, sheep or goat, dog, mouse, rat or woodrat (98).  Human 301 

blood was also detected in 2 of 3 T. recurva collected elsewhere in southern Arizona (98).    302 

 The coincidence of human blood meals and T. cruzi infection in triatomines has been 303 

described as indicating the “potential for Chagas disease” in the United States (96-98). Clearly, 304 

transmission to humans occurs; more investigation is needed to quantify the risk since most 305 

infections likely go undetected.  However, the small number of locally acquired T. cruzi 306 

infections detected in humans stands in contrast to the moderate to high T. cruzi prevalence rates 307 

in dogs, raccoons, opossums and woodrats.  Compared to major South American vectors such as 308 

R. prolixus and T. infestans, North American vectors appear to have somewhat longer time 309 

intervals from blood meal to defecation, and may be less likely to defecate on the host (99-102).  310 

Vectors rarely colonize houses in the United States, and well-constructed houses with window 311 

screens provide effective barriers against domestic invasion.  Perhaps most importantly, 312 

stercorarian transmission is inefficient; mathematical models based on data from the Gran 313 
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Chaco, where transmission to humans is the highest in the world, estimate that a single human T. 314 

cruzi infection requires on average 900 to 4,000 contacts with infected vectors (71). 315 

 316 

MOLECULAR EPIDEMIOLOGY  317 

Trypanosoma cruzi genotypes. Trypanosoma cruzi is a highly genetically diverse parasite, 318 

estimated to have diverged from its most recent common ancestor 3-4 million years ago (103).  319 

Scientific consensus currently defines a minimum of six genetic lineages or discrete typing units 320 

(DTUs: TcI – TcVI) (104), plus a potential seventh, bat-associated genotype (TcBat), most closely 321 

related to TcI (105-108). Multiple molecular markers confirm a largely clonal population structure, 322 

which maintains the identity of major DTUs, interspersed with recombination events (109).  TcI 323 

through TcIV form monophyletic clades, while TcV and TcVI resulted from recent hybridization 324 

of TcII and TcIII (103, 110). Genomic data support this evolutionary model.  TcI to TcIV display 325 

substantial allelic homozygosity resulting from long-term, recurrent and dispersed gene 326 

conversion, whereas TcV and TcVI have natural heterozygosity and minimal distinction, with 327 

shared intact alleles from their parental DTUs (103, 110-114).  328 

Each T. cruzi DTU is characterized by distinct but often overlapping transmission ecologies 329 

(115).  TcI, TcII, TcV and TcVI are commonly associated with domestic cycles and are the 330 

genotypes found in most human infections.  Investigators have long observed that gastrointestinal 331 

Chagas disease is more frequent in the Southern Cone than further north in Latin America, and 332 

hypothesized a connection to different circulating T. cruzi strains (116).  However, there remains 333 

no clear, unequivocal evidence of influence of particular lineages on progression or clinical 334 

outcome of human Chagas disease (reviewed in (117)). Domestic TcI is distributed from the 335 

Amazon Basin northwards and is the principal DTU found in humans in Venezuela, Ecuador and 336 
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Colombia (118-120). TcI also circulates in arboreal ecotopes between Didelphis species and the 337 

triatomine tribe Rhodniini (121, 122), with secondary cycles among rodents and sylvatic Triatoma 338 

species in highland valleys in Bolivia, Peru and Chile (123-126). Sylvatic TcI populations are 339 

characterized by high levels of genetic diversity (127-133), while human infections are associated 340 

with divergent, more genetically homogenous strains (131, 134-136). By contrast, TcII, TcV and 341 

TcVI appear less variable overall (103) and are predominant in domestic cycles in the Southern 342 

Cone (115, 137, 138). However, recent whole genome sequencing of clinical TcII isolates has 343 

revealed more extensive intra-DTU diversity than previously reported (113). Sylvatic reservoirs 344 

of TCII, TcV and TcVI are less well delineated than for TcI, but TcII has been increasingly 345 

detected in Brazilian primates (133, 139, 140). In addition, TcV and TcVI have been 346 

demonstrated in domestic dogs from Argentina to as far north as Colombia (110, 141-144). TcIII 347 

is transmitted by P. geniculatus to D. novemcinctus and other burrowing mammals in terrestrial 348 

transmission cycles from the Amazon Basin to Argentina (145-147). The known host range of 349 

this DTU has expanded to include dogs, grisons and foxes in Brazil (148). TcIV, perhaps the 350 

most neglected DTU, circulates sympatrically with TcI in wild primates in the Amazon (149), 351 

and raccoons and dogs in the United States (150). TcIV can invade the domestic environment in 352 

Venezuela (116, 119) and has been isolated from oral outbreaks in the Brazilian Amazon (149, 353 

151-154) and Colombia (155). Finally, TcBat has been isolated from Chiroptera species across 354 

Brazil (105), Panama (106), Colombia (108) and Ecuador (107), and is potentially infective to 355 

humans (156). 356 

 357 

 358 

 359 
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Trypanosoma cruzi molecular epidemiology in the United States 360 

The majority of genotyping activities have concentrated on vectors and reservoir hosts.  In an 361 

extensive analysis of U.S. vectors and mammalian hosts, all five autochthonous human cases 362 

were reported as TcI (online supplement in (122)). In a more recent series of presumed 363 

autochthonous chronic T. cruzi infections in Texas blood donors, authors were limited by genetic 364 

marker resolution and therefore unable to distinguish among TcII, TcV and TcVI (157). 365 

To date, TcI and TcIV are the only DTUs detected among the six examined triatomine 366 

species, with no absolute associations between parasite genotype and vector (Table 4). Higher 367 

proportions of TcIV have usually been identified in T. sanguisuga, T. indictiva and T. 368 

lenticularia, compared to a predominance of TcI in T. gerstaekeri, T. protracta and T. rubida 369 

(80, 90, 92, 122, 158-160). However, except for studies of vectors collected by the Texas citizen 370 

science initiative (159, 160), samples sizes were far too small to make any meaningful 371 

extrapolations. The observation of potential TcII/V/VI autochthonous human infections in Texas 372 

is noteworthy but challenging to interpret without clear evidence of these genotypes circulating 373 

in local vector species (157).  Similarly, a study of T. protracta collected in California 374 

encountered issues distinguishing among TcII/V/VI and was unable to establish the presence of 375 

infections with these lineages (161). Further investigations are warranted to confirm the presence 376 

of these DTUs in the United States, using a larger panel of more highly resolutive markers, in 377 

conjunction with phylogenetic analyses incorporating all representative T. cruzi DTUs; neither of 378 

these studies examined parasite sequence homology to TcI (157, 161). 379 

Among reservoir hosts, TcI and TcIV are the principal DTUs identified in United States 380 

(Table 5). Similar to vector surveys, sample sizes are insufficient to reveal any strict correlations 381 

between host and parasite genotype; current data demonstrate both lineages circulating among 382 
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mammalian hosts in variable proportions. Finally, a few studies in Louisiana reported rodents 383 

harboring TcII, alongside other mixed TcI, TcIV and TcVI infections (80). Additional sampling 384 

efforts will be necessary to delineate the frequency and ecology of TcII/V/VI in the United 385 

States. 386 

Issues underlying T. cruzi genotyping data collection 387 

To accurately interpret T. cruzi genotypic data, biological and logistical limitations relating to both 388 

parasite infection dynamics and genotyping methodologies must be considered.  Trypanosoma 389 

cruzi genotyping can be conducted on clinical samples (blood or tissue) or parasite axenic cultures, 390 

obtained through hemoculturing or xenodiagnosis.  Due to low levels of peripheral parasitemia, 391 

especially in chronically infected patients, direct genotyping is insensitive, but may be improved if 392 

multiple specimens are tested (162). The principal limitation of parasite isolation is selection bias 393 

for specific clones, due to faster growth rates or culture conditions to begin with (163-165), and 394 

subsequently by loss of diversity from long-term maintenance in axenic culture or animals (166-395 

170). Hemoculture recovery rates are usually less than 30% among chronic patients (171) and 396 

dependent upon parasite load and distribution in the initial inoculum.  Xenodiagnosis can generally 397 

recover more parasite strains but biases may result from variable vector permissibility to specific 398 

strains (172-174).  Furthermore, circulating clones isolated by hemoculture or xenodiagnosis may 399 

be different from those sequestered in tissues due to differential strain tropisms (175-177) and can 400 

vary even between sequential blood samples (178).  Similar biases affect sylvatic T. cruzi 401 

sampling, with certain reservoir species more heavily represented in survey data due to their 402 

relative ease of capture and presence of detectable parasitemia.  403 

The most commonly used genotyping techniques for clinical and field specimens involves 404 

analysis of size polymorphisms in multi-copy genetic markers, particularly the nuclear spliced-405 
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leader intergenic region (SL-IR), 24 rRNA and 18S rDNA (179, 180) (Tables 4 and 5). The 406 

major confounder associated with the use of any multi-copy gene is the level of intra-clone copy 407 

number and undefined chromosomal orthology, which can prevent direct comparability between 408 

strains. The SL-IR is present in many hundreds of copies per parasite genome; the copies are not 409 

necessarily identical, and may instead comprise a predominant haplotype accompanied by a low 410 

abundance of minor paralogous sequence types more closely related in identity to other DTUs, 411 

likely resulting from their shared evolution (113, 181, 182).  In this scenario, it is virtually 412 

impossible to distinguish between a monoclonal DTU infection containing multiple divergent SL-413 

IR sequences and a polyclonal infection consisting of different major DTU parasites. This issue is 414 

minimized when using conventional PCR, as generally the most common gene sequence is 415 

amplified in a reaction. However, recently, a number of deep sequencing studies reported results 416 

based on sequencing millions of copies of the SL-IR locus that seem to indicate the occurrence of 417 

almost all DTUs in infected rodents and primates in the United States (183, 184). Parallel deep 418 

sequencing of appropriate biologically-cloned controls to exclude low abundance haplotypes, has 419 

thus far yielded equivocal evidence; further investigations are essential to define the applicability 420 

of this technique to characterize natural multiclonal infections (185, 186). 421 

 422 

CLINICAL MANIFESTATIONS 423 

Acute T. cruzi infection 424 

 The acute phase begins one to two weeks after vector-borne transmission and lasts 425 

approximately 8 weeks. Patients are most commonly asymptomatic or experience mild, non-426 

specific symptoms such as fever.  A T. cruzi abscess or chagoma may occur at the site of 427 

inoculation. Parasite entry via the conjunctiva may result in unilateral eyelid swelling (the 428 
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Romaña sign) (187).  However, eyelid swelling can be caused by an allergic reaction to 429 

triatomine salivary or fecal antigens; confirmed diagnosis of T. cruzi infection is obligatory, even 430 

in the setting of vector exposure and an apparent Romaña sign.  Severe acute Chagas disease, 431 

including myocarditis, pericardial effusion, and/or meningoencephalitis, is rare, but when it 432 

occurs, mortality risk is high (5, 188).  In the absence of the Romaña sign or severe 433 

manifestations, individual infections are seldom diagnosed during the acute phase.  434 

Orally-transmitted T. cruzi infection has been reported to cause more severe acute 435 

morbidity and higher mortality than vector-borne infection (190, 191).  Micro-epidemics appear 436 

to be fairly frequent in the Amazon basin, due to sylvatic vectors contaminating produce such as 437 

açaì or sugarcane (31).  In the Caracas outbreak, mentioned above, 103 people were infected, of 438 

whom 59% had ECG abnormalities, 20% were admitted to hospital and one person died from 439 

acute Chagas myocarditis (32, 34). Alterations in T. cruzi surface glycoproteins caused by 440 

exposure to gastric acid may increase parasite invasiveness, providing a possible explanation for 441 

the increased severity of orally acquired Chagas disease (192, 193).   442 

Congenital Chagas disease is acute infection in the newborn. Most infected infants are 443 

asymptomatic or have mild findings, but a small percentage present with severe disease or die in 444 

utero (18, 194).  Manifestations may include low birth weight, prematurity, low Apgar scores, 445 

hepatosplenomegaly, anemia and thrombocytopenia (18, 194).  Severely affected neonates may 446 

have meningoencephalitis, gastrointestinal megasyndromes, myocarditis, pneumonitis and/or 447 

respiratory distress (18).  Women who receive antitrypanosomal therapy prior to conception are 448 

significantly less likely to transmit T. cruzi to their infants (23, 195).   449 

 450 

 451 
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Chronic T. cruzi infection 452 

 One to two months after infection, parasitemia falls below levels detectable by 453 

microscopy, and the patient passes into the chronic phase of T. cruzi infection (2, 5).  Chronic T. 454 

cruzi infection without signs or symptoms of Chagas disease is designated the indeterminate 455 

form (2, 5, 196).  Over a period of years to decades, an estimated 20-30% of infected individuals 456 

develop cardiomyopathy (2, 5).  A retrospective cohort analysis of Brazilian blood donors 457 

estimated progression to cardiomyopathy to occur at a rate of 1.85% per year (200).  Chagas 458 

cardiomyopathy features chronic inflammation in all chambers and damage to the conduction 459 

system and cardiac muscle (199). The most frequent early signs are right bundle branch block or 460 

left anterior fascicular block, and segmental left ventricular wall motion abnormalities (188, 198, 461 

199).  Later manifestations appear decades after infection, and include ventricular arrhythmias, 462 

sinus node dysfunction and bradycardia, persistent or intermittent complete heart block, an apical 463 

aneurysm usually in the left ventricle, thromboembolic phenomena and progressive dilated 464 

cardiomyopathy. Patients may experience palpitations, syncope, systemic and pulmonary emboli, 465 

with high risk of sudden death or death from progressive heart failure.  (188, 198, 199).   466 

Gastrointestinal involvement is much less frequent than cardiomyopathy.  Esophageal 467 

manifestations range from asymptomatic motility disorders through mild achalasia to 468 

megaesophagus (204). Patients may experience dysphagia, odynophagia, esophageal reflux, 469 

weight loss, aspiration and regurgitation.  Patients with colonic involvement may have prolonged 470 

constipation, fecaloma, volvulus, bowel ischemia or megacolon. Symptomatic gastrointestinal 471 

disease, like symptomatic cardiac disease, usually appears several decades after infection. 472 

 473 

 474 
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Chagas disease in the immunocompromised host 475 

Organ-derived infection.  Acute T. cruzi infection in organ transplantation recipients may lead 476 

to a relatively severe clinical spectrum, with manifestations that include acute myocarditis and 477 

congestive heart failure (205).  In recent years, as screening of donors has become more frequent, 478 

most donor-derived infections have been detected by PCR monitoring prior to symptom onset, 479 

allowing prompt antitrypanosomal treatment and favorable outcomes (28).  Current 480 

recommendations suggest monitoring the recipient of an organ from an infected donor for at least 6 481 

months, at which point the frequency can be decreased (Table 6) (30). 482 

Reactivation in cardiac transplant recipients.   Cardiac transplantation is an accepted treatment 483 

for end-stage Chagas cardiomyopathy (197, 206). In a large Brazilian cohort, survival of patients 484 

transplanted for Chagas cardiomyopathy was better than among those with idiopathic or 485 

ischemic cardiomyopathy and T. cruzi reactivation was a rare cause of death (207, 208).  Data 486 

from a smaller cohort of patients transplanted for end-stage Chagas cardiomyopathy in the 487 

United States also demonstrated survival similar to that among patients transplanted for other 488 

etiologies (209).  The most common manifestations of reactivation are fever and acute 489 

myocarditis in the transplanted heart. Patients may also develop inflammatory panniculitis and 490 

cutaneous nodules (205).  Central nervous system (CNS) involvement occurs infrequently.  All 491 

patients with dilated cardiomyopathy and a history of significant residence in continental Latin 492 

America should be screened (210). For those found to be infected, post-transplant monitoring 493 

should include histopathology of the explanted heart and subsequent endomyocardial biopsies, 494 

and serial peripheral blood monitoring by quantitative PCR (Table 6) (210).   495 

Reactivation Chagas disease in HIV-co-infected patients. The most common clinical 496 

manifestation of T. cruzi reactivation in HIV-coinfected patients is meningoencephalitis with or 497 
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without a mass lesion (211).  The case-fatality rate for CNS reactivation is very high.  The 498 

presentation is often confused with CNS toxoplasmosis (212, 213); T. cruzi should be considered 499 

in the differential diagnosis of CNS mass lesions in HIV-infected patients (214, 215).  Acute 500 

reactivated myocarditis is another frequent manifestation and may be obscured by pre-existing 501 

chronic cardiomyopathy (216). New arrhythmias or conduction system abnormalities, pericardial 502 

effusions or cardiac decompensation should prompt testing for reactivation.Subcutaneous 503 

nodules resembling erythema nodosum and parasitic invasion of the peritoneum, stomach or 504 

intestine can occur but are uncommon (217).  Five cases of T. cruzi reactivation in HIV-infected 505 

Latin American immigrants have been reported in the United States since 1992; all presented as 506 

CNS syndromes and were treated initially as toxoplasmosis (212, 213, 218-220). 507 

 508 

DIAGNOSTIC TECHNIQUES 509 

The choice of modality to diagnose Chagas disease is determined by the clinical setting and 510 

suspected phase of infection. In general, techniques to detect the parasite are used in the acute 511 

phase and suspected reactivation, whereas IgG serology is the mainstay of diagnosis in the chronic 512 

phase (Table 6).   513 

Microscopy.  In acute, congenital or reactivated infection, trypomastigotes may be detectable by 514 

light microscopy in thick and thin smears from whole blood or buffy coat with routine staining 515 

(e.g. Giemsa) (221).  When acute or reactivation meningoencephalitis is suspected, cerebrospinal 516 

fluid samples should be concentrated by thin-layer cell preparation technique, stained and 517 

examined by light microscopy.  Microscopy is useful due to fast turnaround time, wide availability 518 

and high specificity, but its sensitivity is lower than that of molecular techniques (222, 223).   519 
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Molecular techniques. The highest sensitivity primer sequences originate from satellite or 520 

kinetoplast minicircle DNA (224-226).  A recent publication from CDC outlines an algorithm that 521 

incorporates testing by multiple primer sets in a quantitative assay to optimize performance and 522 

reliability (225).  Several recent initiatives have addressed standardization of extraction, and 523 

conventional and quantitative PCR for clinical use (224, 227).  In acute or early congenital 524 

infection, PCR has substantially higher sensitivity than microscopy and is the diagnostic test of 525 

choice (194, 226).  PCR results are variably positive in chronic T. cruzi infection, depending on 526 

specimen volume, primers, extraction methods and experience of the laboratory (227).  Blood clot 527 

or buffy coat preparations may provide higher sensitivity than whole blood, but these preparations 528 

may not be widely available in routine clinical laboratories (225, 228).  PCR has recently been 529 

utilized in several clinical trials as an early indicator of treatment failure; use in this setting requires 530 

rigorous standardization and criteria for patient inclusion (for example, positive results by PCR in 531 

at least one of 3 pretrial 10-cc specimens) (229, 230).  In chronically infected patients at risk 532 

because of immunosuppression, a rise in parasite load by quantitative PCR in serial specimens is 533 

the earliest indicator of reactivation, enabling treatment before onset of symptoms (231, 232). 534 

Diagnostic serology:  Diagnosis in the chronic phase of Chagas disease relies on detection of host 535 

IgG against T. cruzi antigens (16).  Currently, the main methods in use are ELISA, 536 

immunofluorescence assays (IFA), and immunochromatographic strip or cassette tests.  Confirmed 537 

diagnosis requires positive results by at least two assays, preferably based on different antigens (for 538 

example, parasite lysate and recombinant antigens) (16).  The sensitivity and specificity of the 539 

available assays are not sufficient for a single assay to be used alone for diagnosis, especially in a 540 

low prevalence setting where pretest probability is not high.  The IgG trypomastigote excreted-541 

secreted antigen immunoblot (TESA-blot) is used as a confirmatory test in blood banks and 542 
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clinical practice in Brazil (233, 234).  Preparation of the test strips using antigen from 543 

trypomastigotes in cell culture requires more specialized infrastructure and may be prone to inter-544 

batch and laboratory variability.  The banding pattern may differ by T. cruzi DTU, suggesting 545 

different antigenic characteristics between strains (235).  Conventional serology in cord and infant 546 

blood reflects transferred maternal IgG until around 9 months of age.  547 

IgM-based assays have been evaluated for the diagnosis of acute T. cruzi infection, with a 548 

special focus on use for congenitally infected infants in settings where molecular assays are not 549 

available (233).  IgM TESA-blot showed sensitivity of 58% compared to a consensus definition 550 

of infection, and 80% compared to PCR in congenitally infected infants in Bolivia; in these two 551 

analyses, the specificity was 98% and 94% respectively (194, 236).  The specificity of IgM 552 

assays utilizing whole T. cruzi lysate was <30% in a similar population of congenitally infected 553 

infants (237).  In the United States, PCR is the assay of choice for the diagnosis of acute and 554 

congenital T. cruzi infection (223). 555 

Human cells, tissues and tissue-based products (HCT/P). Serological screening is 556 

recommended for donors of HCT/P with epidemiological risk factors, for example, those who 557 

were born or lived in endemic areas, or whose mothers were born in such areas. Two assays are 558 

approved by FDA for living and cadaveric donor screening, Ortho ELISA (Ortho-Clinical 559 

Diagnostics, Inc, Raritan, NJ) and Abbott PRISM (Abbott Diagnostics, Abbott Park, IL) (238).  560 

These tests are currently available only in blood donor testing laboratories.  The Organ 561 

Procurement and Transplantation Network/United Network for Organ Sharing (OPTN/UNOS) 562 

Disease Transmission Advisory Committee also recommends the use of an FDA-cleared 563 

diagnostic ELISA to test living donors (239, 240).  For living donors, a positive screening test 564 

should prompt referral for appropriate diagnostic testing and clinical evaluation (196). 565 
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Histopathology. Trypanosoma cruzi causes tissue damage through cellular lysis, inflammatory 566 

response, and fibrotic replacement (241).  The spectrum of histopathology related to T. cruzi 567 

infection has been the subject of several recent reviews (242-246).  The most important target 568 

organ is the heart, where chronic pathology includes multichamber damage, most prominent in 569 

the ventricles and often severe enough to form an apical aneurysm (242, 243).  The spectrum of 570 

microscopic pathology includes myofiber degeneration, interstitial fibrosis, and patchy 571 

inflammation predominantly comprised of lymphocytes, macrophages, plasma cells, and 572 

eosinophils; neutrophils are not commonly observed.  The patterns of inflammation and fibrosis 573 

can be focal or diffuse throughout the layers of the myocardium.  Fibrotic plaques may be 574 

observed on the epicardium (242, 243).  Intracellular amastigote pseudocysts are rarely observed 575 

in chronic pathology, especially with limited tissue sampling, but demonstrable parasite 576 

persistence appears to be associated with higher grade inflammation in the chronic phase (243, 577 

247, 248). Histopathology can play an important diagnostic role in the setting of suspected 578 

reactivation.  Careful examination of endomyocardial biopsies for nests of intracellular parasites 579 

can help distinguish rejection from T. cruzi reactivation in cardiac transplant recipients (210, 580 

249).  In immunosuppressed patients with suspected skin manifestations of T. cruzi reactivation, 581 

histopathology may reveal the parasite and confirm the diagnosis (245).  The diagnosis of T. 582 

cruzi reactivation was made on brain biopsy in a patient with HIV and cerebral lesions of 583 

unknown etiology (212). 584 

 585 

ETIOLOGICAL TREATMENT AND CLINICAL MANAGEMENT 586 

Antitrypanosomal drugs.  Benznidazole and nifurtimox are the only drugs with proven efficacy 587 

against Chagas disease (2).   Benznidazole is considered the first line treatment, because of better 588 

tolerance and more comprehensive efficacy data (1, 250).  Benznidazole is a prodrug, which requires 589 
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metabolism by parasite enzymes to become active; metabolites appear to act through multiple 590 

mechanisms to interrupt T. cruzi glutathione and trypanothione pathways (250).  Dermatologic side 591 

effects are frequent, and consist of rashes and photosensitization (251, 252). Dermatitis occurs with 592 

significantly higher frequency in females than males (251).  Most rashes are mild and can be managed 593 

with antihistamines or topical steroids without interrupting treatment (253).  Treatment should be 594 

suspended immediately for severe or exfoliative dermatitis, or dermatitis associated with fever and 595 

lymphadenopathy. The peripheral neuropathy is dose-dependent, usually occurs late in the course of 596 

therapy and should prompt immediate treatment interruption; resolution may take months. Bone marrow 597 

suppression is rare, and requires immediate interruption of treatment.  Clinical and laboratory monitoring 598 

for side effects should occur regularly throughout the course of treatment.  Benznidazole tolerance is 599 

substantially better in children than adults, and in children younger than 7 years compared to older 600 

children (254).  This better safety profile correlates directly with more rapid elimination of the drug in 601 

younger age groups (255).   602 

Benznidazole was approved by the US Food and Drug Administration (FDA) in August 603 

2017 (256), and became commercially available in the United States as of May 14, 2018.  The 604 

drug is marketed in the United States by Exeltis, a US-based division of Insud Pharma 605 

(previously called Chemo Group) (257).  The approval covers treatment of T. cruzi infection in 606 

children 2 to 12 years of age (257); usage for other age groups is off-label.  Prescriptions require 607 

submission of a completed order form, available at http://www.benznidazoletablets.com/  or by 608 

contacting Foundation Care (Phone:  877-303-7181; Fax:  877-620-2849; Email: 609 

FastAccess@Exeltis.com).  Urgent requests for benznidazole should be made by telephone.   610 

Nifurtimox, a nitrofuran, impedes T. cruzi carbohydrate metabolism through the 611 

inhibition of  pyruvic acid synthesis.  The most common side effects are anorexia and weight 612 

loss, experienced by up to 70% of patients. Other frequent adverse effects include nausea, 613 

vomiting, irritability and insomnia (258, 259).  .  Rarely, patients develop peripheral neuropathy, 614 

http://www.benznidazoletablets.com/
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usually manifest as paresthesias.  The peripheral neuropathy is dose-dependent, appears late in 615 

the course of therapy, and requires cessation of the drug.  Nifurtimox is better tolerated by 616 

children than adults.  Nifurtimox is not approved by FDA, but is provided by the CDC under 617 

investigational protocols (404-718-4745; email parasites@cdc.gov), CDC Drug Service (404-618 

639-3670), and, for emergencies outside of business hours through the CDC Emergency 619 

Operations Center (770-488-7100). 620 

Several new drug candidates (posaconazole and the ravuconazole prodrug E1224) have 621 

been tested in recent trials, but so far, none has shown acceptable efficacy (229, 230).  All of the 622 

participants in these trials were from the Southern Cone.  Although the posaconazole trial was 623 

carried out in Spain, 75 of the 78 subjects acquired their infections in Bolivia (230).  Recent 624 

reviews have called for the inclusion of patients from diverse locations within Latin America, 625 

representing all of the major T. cruzi strains that infect humans (260). A novel aspect of these 626 

trials was the use of carefully standardized PCR assays to document treatment failure (261).  Of 627 

those treated with posaconazole, 80 to 90% had detectable parasitemia by 12 months post-628 

treatment, compared to benznidazole failure rates of 6% (per protocol) to 38% (intention to treat) 629 

(230).  Similar results were demonstrated in a Bolivian trial of E1224, a related drug (229).  630 

These trials demonstrated that, with rigorous standardization, PCR may be useful as an early 631 

indicator of treatment failure, at least in populations of patients with infection acquired in the 632 

Southern Cone.  633 

Acute and congenital T. cruzi infection. Acute infection has been an absolute indication for 634 

treatment since the drugs first became available in the 1970s (262).  In acute and early congenital 635 

T. cruzi infection, antitrypanosomal therapy reduces the severity of symptoms, shortens the 636 

clinical course and decreases the duration of detectable parasitemia (262, 263).  In severe acute 637 

mailto:parasites@cdc.gov
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disease, treatment can be life-saving.  Cure rates in acute and congenital infection are estimated 638 

at 80 to 99% (262-265). 639 

Treatment of chronic T. cruzi infection.  Evaluation of antitrypanosomal drug efficacy in 640 

chronic T. cruzi infection is challenging.  PCR, while a potential indicator of treatment failure, is 641 

not a true test of cure, since many persons with chronic T. cruzi infection will have circulating 642 

parasite levels below the threshold of detection of the assay.  Conventional IgG serology is 643 

considered the only sensitive indicator of infection, but requires years to decades to revert to 644 

negative after successful treatment (266). The longer the duration of infection the more durable 645 

the antibody response, with women treated after age 15 taking a median of 27 years to revert to 646 

negative serology (195).  Age is often used as a proxy for infection duration, since in endemic 647 

communities most infections are acquired in childhood.  Experimental lytic antibody assays 648 

convert to negative results more quickly than conventional serology, but still require years, even 649 

in children (267).  In the 1990s, two placebo-controlled trials of benznidazole treatment in 650 

children with chronic T. cruzi infection showed approximately 60% cure rates based on lytic 651 

antibody assays 3-4 years after treatment (268, 269).  These studies made early diagnosis and 652 

antitrypanosomal drug therapy the standard of care for children and prompted establishment of 653 

large-scale pediatric screening programs in high prevalence locations (16, 270).  654 

Treatment of chronic infection in adults remains a topic of debate (271, 272).  The 655 

fundamental question is whether antitrypanosomal therapy decreases the risk that an infected 656 

person will develop cardiac morbidity from T. cruzi.  Observational data published in 2006 657 

suggested that benznidazole treatment significantly decreased progression of Chagas 658 

cardiomyopathy in adults (273).  Since progression only occurs in 20-30% of those with 659 

infection, and takes decades to become clinically evident, the ideal trial would require large 660 
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study populations followed for 20 years or more, a virtually impossible clinical trial design.  The 661 

design of the BENEFIT trial (Benznidazole Evaluation for Interrupting Trypanosomiasis; 662 

ClinicalTrials.gov identifier, NCT00123916), a randomized, double-blinded, placebo controlled 663 

trial, was based on the observation that patients who already have cardiac morbidity are more 664 

likely to have further progression than those with normal cardiac status (274).  Eligible patients 665 

were required to have cardiac findings consistent with established Chagas cardiomyopathy, and 666 

the primary outcome consisted of any of the following: death, resuscitated cardiac arrest, 667 

sustained ventricular tachycardia, insertion of a pacemaker or implantable cardioverter–668 

defibrillator, cardiac transplantation, new heart failure, or other thromboembolic event.  To the 669 

disappointment of many in the Chagas disease community, the trial showed no significant 670 

difference for the primary composite outcome, despite significantly higher conversion to 671 

negative PCR results in the treatment group compared to the placebo group (275). 672 

The patient populations in the observational and trial populations differed substantially. 673 

The non-randomized study subjects had a mean age of 39 and two-thirds had normal cardiac 674 

function at baseline (273). In contrast, the BENEFIT trial population had a mean age of 55, all 675 

had cardiac damage based on electrocardiographic abnormalities and nearly half had decreased 676 

ejection fraction at baseline, indicating ventricular dysfunction (275).  The question of whether 677 

treatment provides clinical benefit for those with no or very early cardiac signs therefore remains 678 

unanswered (276). The only clear take-away messages are that the younger the patient the higher 679 

the probability of benefit, and that active screening is essential to identify infected individuals 680 

before they become symptomatic.  As in earlier publications (196), treatment recommendations 681 

remain stratified by age and clinical status, and require balancing risk of adverse effects with the 682 

probability and uncertainty of benefit (Table 7).  683 
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Management of the immunocompromised host. In organ transplant recipients with reactivation, a 684 

standard course of benznidazole or nifurtimox is effective in ameliorating clinical symptoms and 685 

shortening the duration of microscopically detectable parasitemia.  Prior treatment or post-transplant 686 

prophylaxis has not been shown to decrease the risk of reactivation; post-transplant prophylaxis is not 687 

generally administered in heart transplant centers in Latin America (277).  As no reliable test of cure 688 

exists, treated patients are considered to remain at risk for reactivation (232). Organ recipients at risk of 689 

reactivation should have regular monitoring of blood by quantitative PCR, with treatment based on 690 

demonstration of rising parasite load in blood (Table 6) (232, 278).  T. cruzi reactivation should be 691 

included in the differential diagnosis of febrile episodes and apparent rejection crises, and 692 

endomyocardial biopsies should be examined for evidence of T. cruzi myocarditis in the transplanted 693 

heart.  Reactivation in an HIV-coinfected patient is treated with standard courses of antitrypanosomal 694 

treatment and optimization of antiretroviral therapy (279).  The utility of and optimal regimen for 695 

secondary prophylaxis are unknown.  696 

 697 

HUMAN CHAGAS DISEASE IN THE UNITED STATES 698 

Disease burden among Latin American immigrants 699 

No population-representative data exist to make an unbiased estimate of T. cruzi infection 700 

prevalence in the United States. Several studies of T. cruzi seroprevalence in convenience 701 

samples of Latin American immigrants have been conducted.  In Los Angeles, 59 (1.24%) of 702 

4,755 Latin-American-born residents had confirmed T. cruzi infection (280). The prevalence was 703 

higher among participants older than 40 compared to those 18-40 (1.42% vs 0.95%), and higher 704 

among immigrants from El Salvador than those from Mexico (3.45% vs 0.79%) (280).  A 705 

community health clinic-based program to screen Latin American immigrants in East Boston 706 

reported an overall prevalence of 0.87% (19/2183), with prevalence rising with age (0/101 [0%] 707 
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for age <20, 10/1562 [0.64%] for age 20-39, and 9/507 [1.78%] among those 40 years or older) 708 

(281).   709 

Based on the reported number of immigrants from Chagas disease-endemic countries of 710 

Latin America and estimated national T. cruzi seroprevalence in their countries of origin, there 711 

were an estimated 240,000 to 350,000 infected persons in the United States in 2010; the upper 712 

end of the range includes an estimate for undocumented immigrants, whereas the lower does not 713 

(7).  All estimates of Chagas disease burden in the United States have major uncertainties, and 714 

the method used for these estimates carries several potential biases.  The demographics of Latin 715 

American immigrants in the United States may not reflect those of the general population in their 716 

countries of origin, and their significant exposure risk ended when they left their endemic home 717 

countries years earlier (282).  Chagas disease prevalence is highly heterogeneous in endemic 718 

countries; depending on geographic sources of immigrants, the prevalence in immigrants could 719 

be either higher or lower than the national average.  For example, in Spain, Bolivian immigrants 720 

appear to have a higher prevalence of Chagas disease than the estimated national prevalence, 721 

possibly because they are more likely to come from high prevalence departments such as 722 

Cochabamba and Santa Cruz than from low prevalence departments such as Oruro or Potosí (3, 723 

8).  Similar systematic information for Mexican and Central American immigrants in the United 724 

States is lacking, although data from Los Angeles support the notion that infection prevalence is 725 

higher among immigrants from some Mexican states than others (280).  Finally, the composition 726 

of migrant populations entering the United States has changed in recent years, with a higher 727 

proportion of families and children from Central America, compared to earlier migrations in 728 

which adult men from Mexico predominated (282). National T. cruzi prevalence is higher in El 729 

Salvador, Guatemala and Honduras than in Mexico (3), but the younger age of migrants would 730 
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have the effect of decreasing the likely prevalence in migrants compared to earlier waves of 731 

older migrants.  The success of vector control programs has dramatically decreased the 732 

prevalence of T. cruzi infection among children in Latin America over the past 30 years, and the 733 

limited data from Boston suggest that pediatric Chagas disease is infrequent in Latin American 734 

immigrants in the United States (281).   735 

Autochthonous vector-borne transmission to humans 736 

Available data indicate that autochthonous vector-borne T. cruzi transmission to humans 737 

is rare in the United States (283, 284).  A longitudinal study in repeat blood donors yielded a 738 

point estimate of zero incidence, with an upper 95% confidence limit of 0.61 per million (284).  739 

House colonization is rare, and vector-human contact occurs primarily in peridomestic areas, 740 

when vectors invade houses, or when humans spend time in sylvatic sites with enzootic T. cruzi 741 

transmission (9, 285).   742 

Prior to initiation of blood bank screening in 2007, all reported vector-borne infections in 743 

the United States were detected because of acute symptoms and/or the presence of a vector in the 744 

vicinity of the case (Table 8).  Four infections were reported in Texas, and one each in 745 

California, Tennessee and Louisiana.  Five of seven cases occurred in infants or small children, 746 

and six were in the acute phase at the time of detection.  In retrospect, one of the Texas 747 

infections, reported to be in a 2- to 3-week old infant with no other details provided, may 748 

actually have been congenital (286).  In California, a contemporaneous survey demonstrated 749 

positive complement fixation results in 6 (2.5%) of 241 residents of the community of the 1982 750 

case tested compared to one (0.2%) of 637 persons surveyed in a major urban area (55).   751 

Since 2007, blood bank screening has resulted in the publication of an additional 35 752 

putative autochthonous T. cruzi infections (52, 287-292). All were in the chronic phase and 753 
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detected on serological screening by blood centers.  States postulated to be sources of infection 754 

include Mississippi, Texas, Louisiana, Arizona and California, but with the exception of the 755 

CDC investigation (52), all were either individual case reports or focused on a single state, 756 

raising the likelihood of sampling bias.  The CDC investigation estimated that locally acquired T. 757 

cruzi infection was likely to account for between 5.5% and 7.5% of confirmed positive blood 758 

donations (52).  Unlike earlier case reports, all of these putative autochthonous infections were in 759 

adults in the chronic phase; thus, the location and timing of transmission events are unknown.  760 

Some reports speculate on potential sources of triatomine contact, including hiking, camping, 761 

hunting and peri-domestic woodpiles and brush (52, 289, 290, 292).  In other cases, infected 762 

individuals had exposure in multiple states with known sylvatic cycles and no hypotheses could 763 

be formed as to which was the most likely site of acquisition (287, 289).     764 

 765 

Blood donor screening and transfusion transmission  766 

Prior to institution of blood donor screening, five transfusion-associated T. cruzi 767 

infections were documented in the United States, two in 1988, one in 1989, one in 1997 and one 768 

in 2002 (Table 9) (9, 293).  Look-backs at the recipients of blood components from infected 769 

donors identified two additional transmission events in 2004 and 2006, from separate donations 770 

from the same donor (294).  Most infected recipients had underlying malignancies and were 771 

immunosuppressed (9, 294).  Donors from the Southern Cone were implicated in 5 of the 6 cases 772 

where the source was known.  In two cases, the blood component was unknown; in all others, the 773 

implicated units were platelets.  Based on tracing of 350 recipients of blood components from 774 

infected donors, the risk associated with a platelet unit was estimated to be 13.3% (95% 775 

confidence interval (CI) 5.6 - 25.7) compared to zero for packed RBCs (95% CI 0 - 0.15) and 776 

frozen plasma/cryoprecipitate (95% CI 0 - 3.7) (293). Several of the acutely infected recipients 777 
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had severe manifestations of Chagas disease, including acute myocarditis, acute atrioventricular 778 

block, severe congestive heart failure, pericarditis with T. cruzi in the pericardial fluid and 779 

possible meningoencephalitis.   780 

Blood donation screening began in January 2007 using the Ortho ELISA, which had been 781 

licensed by FDA the previous month, with the radioimmune precipitation assay (RIPA) as the 782 

confirmatory test (295).  The FDA licensed the Abbott PRISM chemiluminescent immunoassay 783 

(ChLIA) as a screening test in 2010, and the Abbott ESA as a supplemental test in 2011.  784 

Guidance from the FDA in 2010 recommended screening of all donations, regardless of previous 785 

screening results (296).  Universal screening enabled an analysis of results from two or more 786 

serial specimens from 4.22 million repeat donors representing 6.06 million person-years of 787 

follow-up (284, 297).  No incident T. cruzi infections were detected, corresponding to zero 788 

autochthonous transmission incidence, with an upper 95% confidence limit of 0.61 incident case 789 

per million person-years (284).    In 2017, final FDA guidance endorsed a one-time screening 790 

approach, recommended against use of donor questions to assess risk based on low sensitivity, 791 

and required further testing of screen-positive donations with the Abbott ESA (298, 299).  792 

Screening was estimated to cover 75 to 90% of the U.S. blood supply as of 2008 (301).  793 

Several ancillary studies were conducted during the early years of blood donor screening.  794 

In an analysis of approximately 14 million blood donations in 2008, the overall seroprevalence 795 

was 1/27,500, with the highest rates in Florida (1/3800), followed by California (1/8300) (301).  796 

Of 104 T. cruzi-infected donors with epidemiological data, 29 (28%) were born in Mexico, 27 797 

(26%) in the United States, 17 (16%) in El Salvador and 11 (11%) in Bolivia; the remaining 20 798 

donors were born in nine other countries of Central and South America.  In a subsequent study of 799 

22 million donations collected between 2007 and 2011, 717 donations were confirmed 800 
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seropositive by RIPA, corresponding to a seropositive rate of 1/31,000 (222).  Among 263 801 

donors who provided 30-cc blood specimens, 18 (6.8%) had positive results by hemoculture and 802 

17 had parasite genotyping results.  Only two (1.3%) of 157 donors from areas where TcI 803 

predominates (Mexico, Central America and northern South America) had positive hemocultures 804 

(both TcI). By contrast, T. cruzi grew in cultures from 13 (34.2%) of 38 donors from the 805 

Southern Cone (one TcII, ten TcV, one TcVI, one not typed). Three donors born in the United 806 

States had positive results by hemoculture, two TcV and one TcVI; no data were available to 807 

determine the likely source of their infections.  Together with the predominance of Southern 808 

Cone donors implicated in recognized transfusion transmissions, these data support the 809 

hypothesis that TcII/V/VI infections result in higher parasite loads, and therefore higher blood-810 

borne transmission risk, compared to TcI (222, 293).    811 

As of August 1, 2019, a total of 2434 confirmed seropositive donors in 47 states have 812 

been detected in screening (302).  Over the period 2007 to 2016, the mean prevalence in first-813 

time donors was 64 per million donors overall and 3.64 per 10,000 donors in southern California, 814 

and showed a non-significant decreasing trend (284).  The highest number of positive donations 815 

by calendar year was 420 in 2008; since 2014, yearly detections have ranged from 84 to 98 816 

(302).   817 

Organ donor-derived transmission and organ donor screening 818 

A total of 14 investigations, involving organs from 14 T. cruzi infected donors 819 

transplanted to 32 recipients between 2001 and 2011, were reported in a recent review (28).  820 

Transmission occurred to 9 recipients of organs from six donors; no transmission occurred from 821 

the remaining 8 donors (Table 10) (28).  Transmission risk differs by organ type: 3 (75%) of 4 822 

heart, 2 (20%) of 10 liver and 2 (13%) of 15 kidney recipients became infected.   823 



38 

 

The earliest reported instances of transmission in 2001 and 2006 were not suspected until 824 

at least one recipient presented with symptomatic acute Chagas disease (303, 304).  More 825 

recently, some organ procurement organizations have begun selective or universal screening of 826 

donated organs (30, 305).  Four subsequent published transmission events (in a liver recipient in 827 

2006, two heart recipients in 2006 and 2010, and a bilateral lung recipient in 2011) were detected 828 

through systematic laboratory monitoring.  Three of these patients were treated and survived 829 

their T. cruzi infection (28). The bilateral lung transplant recipient died two years post 830 

transplantation from respiratory failure; his T. cruzi PCR was intermittently positive despite 831 

prolonged benznidazole therapy, and Chagas disease was considered a possible contributing 832 

factor in his death (28, 306).  833 

In the US, screening of donors has been based largely on risk assessment; donors born in or 834 

with significant periods of residence in Latin America, born of women from Latin America and/or 835 

noted to have clinical findings such as cardiomegaly consistent with Chagas disease, should be 836 

screened by IgG serology (30).  Some organ procurement organizations contract with a blood bank 837 

for donor testing, as the Abbott PRISM and Ortho ELISA have approval for use in specimens from 838 

living and cadaveric organ donors (238). 839 

The recipient of an infected organ donor should be monitored by microscopy and/or PCR 840 

in serial specimens (28, 30). Seroconversion may be delayed or never occur in 841 

immunocompromised individuals.  Positive results by PCR occur days to weeks before parasites 842 

are detectable by microscopy (225).  The incubation period of transplant-transmitted T. cruzi 843 

infection is typically 2-3 months, but detection may be delayed as long as 6 months (28). A 844 

frequently recommended monitoring schedule consists of weekly specimens for two months, 845 

every 2 weeks up to 4 months, then monthly afterwards (Table 6) (28, 30).  In the absence of 846 
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other indications and assuming no evidence of infection has been detected, the monitoring 847 

interval can be lengthened after six months post-transplantation. 848 

Chagas cardiomyopathy and heart transplantation for Chagas heart disease in the US 849 

 Chagas heart disease has been recognized in U.S. health care facilities for nearly 30 years 850 

(307).  Ten years ago, we estimated that there were 30,000 to 45,000 patients with Chagas 851 

cardiomyopathy in the United States (308).  Recent studies have confirmed that Chagas disease is 852 

frequent among Latin American-born patients with cardiac signs: 13% (5/39) of patients with left 853 

ventricular ejection fraction (LVEF) <45% without evidence of ischemic heart disease in New 854 

York City (309); 19% (25/135) of patients with LVEF <40% without evidence of ischemic heart 855 

disease in Los Angeles (310); 5.3% (17/327) patients with any bundle branch block in Los Angeles 856 

(311); 7.5% (6/80) patients with pacemaker implantation in Los Angeles (312).   As in studies 857 

from Latin America (313, 314), the most common conduction system abnormalities were right 858 

bundle branch block, left anterior hemiblock and the combination of the two (311, 315), and 859 

Chagas cardiomyopathy was associated with more rapid progression than other cardiac etiologies 860 

to severe disease requiring transplantation or resulting in death (310, 315, 316).  Data from 17 861 

Texas blood donors suggest that locally-acquired Chagas disease can also result in 862 

cardiomyopathy, but data are insufficient to assess the relative risk for autochthonous vs imported 863 

infection (288).  864 

In Brazil and Argentina, heart transplantation is an accepted modality to treat end-stage 865 

Chagas cardiomyopathy, and survival for those transplanted for Chagas heart disease is the same or 866 

better than that of recipients of cardiac transplants for other etiologies (207, 208, 317, 318).  The 867 

incidence of T. cruzi reactivation in Latin American heart transplant cohorts varies widely, from 868 

20-90% (232).  In the United States, data are published for 40 patients who underwent heart 869 
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transplantation for end-stage Chagas cardiomyopathy since 2006 (206, 232).   In one review from a 870 

Los Angeles medical center, 31 of 405 patients who received heart transplants between 2006 and 871 

2012 were born in Latin America; 20 of the 31 had serological testing for T. cruzi and 11 (2.7% of 872 

the total number of 405) had positive results (206).  Only two of the T. cruzi-infected transplant 873 

recipients received their diagnosis prior to the transplant, both in their home countries.  Two 874 

(18.2%) patients were diagnosed with T. cruzi reactivation when they experienced dysfunction of 875 

the transplanted heart; their infections had not previously been suspected, and one died of 876 

cardiogenic shock.  One additional patient was asymptomatic but treated based on the finding of 877 

parasites in the explanted heart.  One of the patients in the Los Angeles cohort is included in the 878 

CDC’s comprehensive review of 31 patients that underwent heart transplantation for Chagas 879 

cardiomyopathy from 2012-2016; 19 (61%) had reactivation (232).  In the CDC review, 880 

reactivation was defined by rising parasite load by quantitative PCR in peripheral blood, a finding 881 

that precedes both microscopically detectable parasitemia and development of symptoms (225). 882 

Only one instance of reactivation was symptomatic at the time of diagnosis, and all patients with 883 

reactivation were alive at the end of follow-up.   884 

Congenital Chagas disease in the United States 885 

Based on births to Latin American-born women in the United States and T. cruzi infection 886 

prevalence in their home countries, it was estimated that between 60 and 315 congenitally infected 887 

infants are born in the United States each year (308).  Nevertheless, only two congenital infections 888 

have been reported, both in infants of Bolivian women (319, 320). The first infant was delivered by 889 

caesarian section at 29 weeks gestation because of fetal hydrops (a classic presentation of severe 890 

congenital Chagas disease) (18).  The diagnosis was not suspected until the mother reported a prior 891 

diagnosis of Chagas disease (320).  The second infant was also delivered by caesarian section at 30 892 
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weeks due to placental abruption, had a pericardial effusion, ascites and respiratory distress 893 

requiring intubation until the 10
th
 day of life (319).  The diagnosis was made on histopathological 894 

examination of the placenta.  Both infants were successfully treated with antitrypanosomal therapy.   895 

 896 

 897 

SPECIAL CONSIDERATIONS IN THE US 898 

An adequate public health response to Chagas disease in the United States faces critical challenges, 899 

including limited patient and provider awareness of the disease; societal, economic and health 900 

system barriers to patient access; and sparse diagnostic options with an inadequate evidence base to 901 

assess performance.   902 

Physician awareness. Surveys indicate that the majority of physicians practicing in the United 903 

States have limited knowledge of Chagas disease and seldom consider the diagnosis, even when 904 

caring for Latin American-born patients at high risk or with typical clinical syndromes (321, 322).  905 

In one survey, 23% of cardiologists, 47% of obstetrician/gynecologists and 25% of transplantation 906 

specialists reported that they had never heard of Chagas disease (321).  In a survey of more than 907 

400 obstetrician/gynecologists, 78% reported that they never considered the diagnosis of Chagas 908 

disease in their Latin American patients and fewer than 10% were cognizant of the risk of vertical 909 

transmission to the infant (322).   910 

Patient awareness and access. Awareness and knowledge of Chagas disease are also limited 911 

among those at risk.  Of Latin American immigrants interviewed in community outreach settings in 912 

southern California, 86% had never heard of Chagas disease, even though 62% reported having 913 

seen triatomines in their countries of origin (323).  Patients with Chagas disease encounter multiple 914 

barriers to health care access in general, not just for Chagas disease: these patients 915 

disproportionately live below the poverty line, have less than a high school education, lack health 916 
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insurance, and have difficulty taking time off from work for medical appointments (324).  Even 917 

legal immigrants have lower access than citizens to publically funded health insurance in most 918 

states; concerns about revealing immigration status may make patients reluctant to seek care (324). 919 

Diagnostic issues. There are currently four commercial IgG serological tests cleared by FDA for 920 

diagnostic use in the United States, three ELISA kits (Hemagen [Hemagen Diagnostics, Waltham 921 

MA], Chagatest Recombinante 3.0 [Wiener Laboratories, Rosario, Argentina] and Ortho [Ortho-922 

Clinical Diagnostics, Inc, Raritan,  NJ]) and one point-of-care test (ChagasDetectPlus [InBios 923 

International, Seattle, WA]) (325).  With the exception of the Ortho ELISA, which is also licensed 924 

for blood donor screening (222, 284, 326), there is a paucity of data on the performance of these 925 

assays in specimens from populations in the US, or in the likely predominant countries of origin of 926 

infected U.S. residents (Mexico, El Salvador, Guatemala, Honduras) (280, 301, 308).  Discordant 927 

serology has been reported as a particular problem in Mexico (327).  Some recombinant tests with 928 

excellent performance in the Southern Cone show discordance or low sensitivity when applied in 929 

some TcI-predominant areas (328, 329).  In addition, no commercial laboratory in the United 930 

States currently offers more than one validated IgG serological assay. The diagnosis of chronic T. 931 

cruzi infection requires positive results by two distinct IgG assays and is therefore not possible 932 

with commercial testing alone (16). Currently, the only laboratory that conducts multiple IgG 933 

serological assays under CLIA is the CDC Division of Parasitic Diseases and Malaria (DPDM) 934 

laboratory.   935 

FDA approval of benznidazole and resulting changes. Until May 2018, when benznidazole 936 

became commercially available, prescribing antitrypanosomal treatment necessitated a consultation 937 

with CDC epidemiologists (330).  Confirmation of the diagnosis, recommendations for treatment, 938 

and advice on side effects monitoring and management were necessary components of these 939 
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consultations, and reporting of adverse events was mandatory under the investigational protocol.  940 

Ensuring appropriate diagnostic confirmation, judicious treatment decisions and adequate side 941 

effects monitoring going forward will require efforts to raise provider awareness and knowledge 942 

about Chagas disease and antitrypanosomal therapy.  943 

From October 2011 to May 2018, CDC released benznidazole for 365 patients with 944 

confirmed T. cruzi infection (330). Four (1.1%) patients had acute phase infection, two organ-945 

derived, one congenital and one presumed to be vector-borne.  Treatment was administered for T. 946 

cruzi reactivation in 35 (9.6%) patients, comprising 29 organ transplant recipients, five HIV-co-947 

infected patients and one on chemotherapy for malignancy. The vast majority of patients were 948 

adults, 236 (64.7%) aged 19-50 and 97 (26.6%) older than 50 years. Only 2 (0.5%) of 365 treated 949 

patients were aged 2-12 years, the age range for which FDA approved benznidazole.   950 

Insud Pharma’s approach to FDA approval and drug marketing represents a new 951 

paradigm in the United States, with patient access and affordability as central concerns (257).  952 

The FDA Priority Review Voucher (PRV) program was established in 2008 to provide an 953 

incentive for new drug development for neglected tropical diseases (NTD), but has had limited 954 

impact and unintended negative consequences (331).  In one recent example, FDA approval of 955 

miltefosine, a drug used for leishmaniasis, was followed by an astronomical price increase, and 956 

the company ceased production after receiving and selling the PRV, leading to a global shortage 957 

(332).  In contrast, the Insud Pharma / Exeltis Patient Assistance Program, funded in part by the 958 

PRV, ensures that the cost to the patient will not exceed $60 per course (257).   959 

Public health surveillance and response. As of 2017, Chagas disease was a reportable 960 

condition in six states, Arizona, Arkansas, Louisiana, Mississippi, Tennessee and Texas (333); 961 

Utah added Chagas disease to its notifiable disease list recently.  All of these states except 962 
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Arkansas and Utah have had published reports of locally-acquired T. cruzi infection (52-54, 287, 963 

289, 290).  Most of the states focus on autochthonous transmission and incident cases, and 964 

several have provisions for submission of triatomines for identification (333).  In Texas, the 965 

Department of State Health Services (DSHS) provides extensive on-line guidance and data to 966 

health care providers and the public, including a summary of reported Chagas disease case data; 967 

of 124 cases reported from 2013-2017, all were chronic infections and 22 were judged to have 968 

resulted from local transmission (334).  These figures likely overlap substantially with the 969 

published locally acquired infections detected in blood donors in recent years (289, 290).  The 970 

Texas Chagas Taskforce, which includes the DSHS and several universities, addresses many 971 

public health aspects of Chagas disease, including provider and patient resources, and 972 

educational materials on local vectors (335).     973 

 974 

PUBLIC HEALTH APPROACHES 975 

 Public health approaches to Chagas disease comprise primary prevention (prevention of 976 

transmission), secondary prevention (early treatment of infection to prevent sequelae) and tertiary 977 

prevention (medical and surgical management of morbidity to improve survival and quality of life) 978 

(Table 11) (318).   In Latin America, primary prevention through vector control is responsible for 979 

the vast majority of the decrease in estimated annual incidence from 500,000 in 1991 to 30,000 980 

today (35).  Primary prevention through vector control is virtually impossible in the United States 981 

since the vectors are sylvatic; however, barriers to house invasion, elimination of microhabitats 982 

close to houses, and improved awareness among those living in areas of risk could help decrease 983 

the likelihood of autochthonous transmission.  Blood bank screening has also been highly 984 
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successful in both Latin America and the United States. The last detected blood component-985 

derived infection in the United States occurred in 2006, before screening was instituted (284, 294).   986 

In Latin America, secondary prevention efforts include congenital Chagas disease 987 

screening programs, and mass testing and treatment of children in high prevalence zones (270, 988 

336).  Prenatal and congenital screening programs are attractive for several reasons.  Cure rates are 989 

>90% in infected infants and drug tolerance is excellent (264, 265); treatment of infected women, 990 

once lactation ends, significantly decreases the risk of transmission in future pregnancies (195); 991 

and detection of maternal infection provides a screening opportunity for her other children, who 992 

are also at risk for T. cruzi infection (196).  However, congenital screening programs are also 993 

complicated.  With current diagnostic modalities, effective congenital Chagas disease screening 994 

requires a multistep algorithm consisting of prenatal serology in women and testing of infants of 995 

seropositive mothers 2 or 3 times (parasitological or molecular testing in the first months of life, 996 

and for those who test negative, serological testing at 9-12 months) (223).  Even in Bolivia, where 997 

infection prevalence in women is often 15% or higher and awareness is high, congenital Chagas 998 

disease detection is challenging, because of low sensitivity of microscopy and >80% loss to 999 

follow-up for the 9-12 month visit (337).   1000 

A pilot study in a hospital in Houston screened 4000 women, of whom 75% were born in 1001 

Latin America (338).  Ten (0.25%) women had confirmed T. cruzi infection; no infected infants 1002 

were detected.  A recent analysis concluded that in the United States, universal congenital Chagas 1003 

disease screening and treatment would be cost-saving with congenital transmission rates > 0.001% 1004 

and maternal prevalence >0.06% (339). The results vary substantially depending on the cost and 1005 

performance of the maternal screening test; thus, it will be essential to ascertain the currently 1006 

unknown sensitivity of available serological assays in at-risk populations in the United States.   1007 
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The effectiveness of secondary prevention strategies depends strongly on the effectiveness 1008 

of antitrypanosomal treatment to prevent development and progression of cardiac disease, which 1009 

remains a controversial topic without a clear answer (276). Current practice in Latin America 1010 

prioritizes diagnosis and treatment of children 15 years old or younger, but the vast majority of 1011 

infected individuals in the United States are adults.  In the sparse available community screening 1012 

data, the T. cruzi prevalence in Latin American adults 40 years or younger was 0.64 to 0.95% 1013 

compared to 1.42 to 1.78% among those older 40 years (280, 281).  In limited community 1014 

screening to date, no infections have been detected among children (281).   1015 

 Tertiary prevention has had a major impact on the survival and quality of life of persons 1016 

living with T. cruzi infection in Latin America (340), and the experience of a dedicated center of 1017 

excellence based in the cardiology service of a large Los Angeles hospital confirms this model in 1018 

the United States (310, 311, 341-343). Expanding this effort will require outreach efforts to 1019 

cardiologists and primary care physicians, and making accurate diagnostic testing more widely 1020 

available.    1021 

 1022 

CONCLUSIONS 1023 

Chagas disease causes disease of the heart and/or gastrointestinal tract in 20 to 30% of those 1024 

infected by T. cruzi. The southern half of the United States contains enzootic cycles of T. cruzi, 1025 

involving 4 major and 7 minor triatomine vector species. T. cruzi infection has been detected in 1026 

multiple mammalian species, including raccoons, opossums, woodrats and dogs. Locally 1027 

acquired Chagas disease has been increasingly recognized in the United States over the past 10 1028 

years, largely due to screening of blood donations and investigations of infected blood donors 1029 

without exposure in Latin America.  Nevertheless, imported chronic T. cruzi infections in 1030 
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migrants from Latin America vastly outnumber autochthonous human cases, and locally acquired 1031 

infection is rarely detected in the acute phase. Benznidazole is now FDA-approved, and clinical 1032 

and public health efforts are underway by researchers and some state health departments to 1033 

broaden access to diagnosis and treatment.  1034 

Making progress will require work on many fronts, including innovative ways to improve 1035 

the knowledge base among providers, expand availability of high quality diagnostic and 1036 

confirmatory testing, and pilot public health screening data to develop evidence-based targeting 1037 

strategies.  However, increased awareness of Chagas disease is crucial to all aspects of this effort.  1038 

Providers with awareness of the disease can screen those at risk when they present for clinical care, 1039 

with the highest priority for children and women of child-bearing age, since the benefit of 1040 

antitrypanosomal therapy is clear for these groups. The appropriate index of suspicion saves lives 1041 

when reactivation of chronic infection and donor-derived T. cruzi are recognized in a timely 1042 

fashion.  Diagnosis of T. cruzi infection and follow-up for onset or progression of cardiomyopathy 1043 

or gastrointestinal disease can mitigate morbidity and improve survival and quality of life.   1044 
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FIGURE LEGENDS 2218 

 2219 

Figure 1. Trypanosoma cruzi morphological forms: (A) The replicating epimastigote form in 2220 

culture (Giemsa stain).  (B) Trypomastigote in a peripheral blood smear from a patient with 2221 

acute Chagas disease (Giemsa stain). (C) Nest of amastigotes within a cardiac myocyte in a 2222 

patient with chronic Chagas disease (hematoxylin-eosin). Courtesy of the Division of Parasitic 2223 

Diseases and Malaria, US Centers for Disease Control and Prevention. 2224 

 2225 

Figure 2. Photographs of U.S. triatomine species of the genera Triatoma and Paratriatoma. 2226 

Image size relative to the scale bar represents the average length of each species.  Courtesy of E. 2227 

Barrera Vargas (Triatoma incrassata), R. Hoey-Chamberlain and C. Weirauch (T. recurva, 2228 

Paratriatoma hirsuta), G. Lawrence (DPDM/CDC) (T. protracta protracta); S. Kjos (all other 2229 

species).      2230 

 2231 

Figure 3. Range of the four most frequent triatomine species in the continental U.S.  Based on 2232 

references provided in Table 2.  2233 

 2234 

2235 
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Table 1.  Countries endemic for Chagas disease, and estimates of national seroprevalence and 2236 

number of infected inhabitants.  Vector-borne T. cruzi transmission occurs, or occurred until 2237 

recently, in parts of these countries. 2238 

 2239 

  

   Estimated T. cruzi infection prevalence
1 

Region Country % N 

North America United States NDA 240,000 to 350,000
2 

 

Mexico 0.779% 876,458 

Central America Belize 0.330% 1,040 

 

Costa Rica 0.170% 7,667 

 

El Salvador 1.298% 90,222 

 

Guatemala 1.230% 166,667 

 

Honduras 0.918% 73,333 

 

Nicaragua 0.523% 29,300 

 

Panama 0.515% 18,337 

South America Argentina 3.641% 1,505,235 

 

Bolivia 6.104% 607,186 

 

Brazil 0.606% 1,156,821 

 

Chile 0.700% 119,660 

 

Colombia 0.956% 437,960 

 

Ecuador 1.380% 199,872 

 

French Guyana & 

Surinam  0.839% 12,600 

 

Paraguay 2.130% 184,669 

 

Peru 0.440% 127,282 

 

Uruguay 0.238% 7,852 

 

Venezuela 0.710% 193,339 

Total 

 

1.056% 5,742,167
3 

1Disease burden estimates are for the year 2010, based on references (3, 7).  NDA = no data available.  2240 
2The figure for the United States reflects the estimated number of infected immigrants from endemic countries of 2241 
Latin America. No estimate of locally-acquired infections is currently available. 2242 
3Excluding the United States. 2243 
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Table 2.  Triatomine vectors in the United States1 2244 

Species Frequency 

of collection 

Range2 Ecological associations T. cruzi prevalence 

T. sanguisuga Frequent AL, AR, DE, FL, GA, IL, IN, KS, 

KY, LA, MD, MO, MS, NC, NJ, 

OH, OK, PA, SC, TN, TX, VA, WV 

 

Highly diverse; woodrats, other rodents, armadillos, 

opossums, dogs, chickens, horses; frequent in 

peridomestic settings; invades houses 

Moderate prevalence, very 

widespread 

T. gerstaeckeri Very 

frequent 

Eastern NM, central TX Sylvatic and peridomestic settings, dog kennels, 

rodent burrows; frequently invades houses 

High prevalence, especially in 

dog kennel collections 

T. protracta Frequent AZ, CA, CO, NM, NV, west TX, UT Close association with woodrats (Neotoma spp); 

attracted by lights 

Moderate prevalence, 

widespread 

T. rubida Frequent AZ, southern CA, NM, southwest 

TX 

Woodrat nests, disturbed environments in AZ and 

Mexico; reports of house colonization in Sonora, 

Mexico 

Usually low, but focal 

collections with high 

prevalence 

T. lecticularia Infrequent FL, GA, MO, NM, OK, SC, TN, TX, 

UT3 
Houses, dog kennels, woodrat nests in TX; 

peridomestic settings 

Can be high in collections 

from woodrat nests 

T. indictiva Infrequent AZ, NM, TX Found in woodrat nests and near lights Moderate in sparse data 

T. recurva Infrequent Southern half of AZ Associated with rodents, especially rock squirrels Low to moderate 

T. neotomae Rare TX Found in woodrat nests Can be high in collections 

from woodrat nests 

T. incrassata Rare Southern AZ Unknown No naturally infected 

specimen reported 

P. hirsuta Rare CA, AZ, NV Found in woodrat nests, near lights, and invading 

houses 

No naturally infected 

specimen reported 

T. rubrofasciata Rare Jacksonville FL, Honolulu HI Roof rats (Rattus rattus); found in houses in FL and 

HI, chicken coops in HI 

2 infected bugs in HI report 

1Based on our review of literature from 1939 to 2011 (9) plus new data in (48, 49, 344).  2245 
2Frequency and range based on published reports; absence of reports from a given area often reflects lack of field research rather than true absence of vectors.  Ranges of 2246 
all species except T. rubrofasciata extend into Mexico. 2247 
3Several other states are listed for T. lenticularia in (47) and reproduced by (285), but were not confirmed in our 2011 review (9). We follow the approach advocated by 2248 
Ryckman (51) in which reports prior to Usinger 1944 are treated with caution in the absence of later verification.  UT added based on the recent report in (344).  2249 
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Table 3. Triatomine vectors and Trypanosoma cruzi-infected mammals by state in published reports. 2250 

State Vectors reported 
T. cruzi-infected 

vectors 
T. cruzi-infected wildlife 

T. cruzi-infected 

dogs 

AL T. sanguisuga Yes Raccoon, opossum 
 

AR T. sanguisuga 
   

AZ 
T. protracta, T. rubida, T. indictiva, 

T. recurva, T. incrassata, P. hirsuta 
Yes 

Raccoon, ringtail, skunk, 

woodrats, other rodents  

CA T. protracta, T. rubida, P. hirsuta Yes 
Skunk, woodrats, other 

rodents  
Yes 

CO T. protracta 
   

DE T. sanguisuga    

FL 
T. sanguisuga, T. lecticularia, T. 

rubrofasciata 
Yes 

Raccoon, opossum, skunk, 

gray fox  

GA T. sanguisuga, T. lecticularia Yes 

Raccoon, opossum, skunk, 

gray fox, bobcat, coyote, 

feral swine 

Yes 

HI T. rubrofasciata Yes 
  

IL T. sanguisuga 
   

IN T. sanguisuga Yes 
  

KS T. sanguisuga Yes 
  

KY T. sanguisuga 
 

Raccoon, opossum 
 

LA T. sanguisuga Yes 
Opossum, nine-banded 

armadillo 
Yes 

MD T. sanguisuga 
 

Raccoon, opossum 
 

MO T. sanguisuga, T. lecticularia Yes Raccoon 
 

MS T. sanguisuga Yes 
  

NC T. sanguisuga 
 

Raccoon, opossum 
 

NJ T. sanguisuga 
   

NM 
T. lecticularia, T. protracta, T. 

gerstaeckeri, T. rubida, T. indictiva 
Yes Woodrats, other rodents  

 

NV T. protracta, P. hirsuta 
   

OH T. sanguisuga 
   

OK T. sanguisuga, T. lecticularia Yes Raccoon, opossum Yes 

PA T. sanguisuga 
   

SC T. sanguisuga, T. lecticularia 
 

Gray fox Yes 

TN T. sanguisuga, T. lecticularia Yes Raccoon Yes 

TX 

T. sanguisuga, T. lecticularia, T. 

protracta, T. gerstaeckeri, T. rubida, 

T. indictiva, T. neotomae 

Yes 

Raccoon, opossum, nine-

banded armadillo, skunk, 

American badger, coyote, 

woodrats, other rodents, bat  

Yes 

UT T. protracta, T. lecticularia 
   

VA T. sanguisuga Yes Raccoon, opossum, coyote Yes 

WV T. sanguisuga       

 2251 
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Table 4.   Trypanosoma cruzi genotypes reported in triatomine vectors in the United States 2252 

Location Vector species 
Total 

examined 

T. cruzi +   

N (%) 
Typed N 

TcI             

n (%) 

TcIV                    

n (%) 

TcI/IV                   

n (%) 
Genotyping method 

Reference/s

ource 

TX T. gerstaekeri 16 16 (100) 16 10 (63) 4 (25) 2 (13) 
SL-IR; TcSC5D and SNPs 

in subset 
(90) 

TX T. gerstaekeri 897 574 (64) 548 294 (54) 189 (34) 65 (12) TcSC5D; SL-IR on subset (159) 

S. TX T. gerstaekeri 18 9 (50) 9 6 (67) 1 (11) 2 (22) SL-IR (92) 

TX T. gerstaekeri 11 1 (9) NR 100% 
 

NR SL-IR (160) 

TX T. gerstaekeri NR NR 3 2 (67) 0 1 (33) 
SL-IR, 24S α rRNA, 18S 

rRNA 
(122) 

TX T. gerstaekeri 19 13 (100) 13 13 (100) 0 0 18S rRNA sequencing (73) 

TX T. gerstaekeri 

 
 

1 1 (100) 0 0 SL-IR (345) 

TX T. indictiva 67 32 (48) 28 9 (32) 17 (61) 2 (7) TcSC5D; SL-IR on subset (159) 

TX T. lenticularia 66 44 (67) 42 9 (21) 25 (60) 8 (19) TcSC5D; SL-IR on subset (159) 

TX T. lenticularia 2 2 (100) 2 2 (100) 
  

18S rRNA sequencing (73) 

TX T. protracta 19 3 (16) 2 2 (100) 0 0 TcSC5D; SL-IR on subset (159) 

Southwest3 T. protracta 14 1 (7) 1 1 (100) 0 0 TcSC5D; SL-IR on subset (159) 

N. CA T. protracta 29 16 (55) 13 13 (100) 0 0 

RFLP (HPS60, GPI), SL-IR, 

24S α rRNA, sequencing of 

Rb19, TR and COII-ND1 

(50) 

S. CA T. protracta 68 21 (31) 9 7 (78) 2 (22) 0 

RFLP (HPS60, GPI), SL-IR, 

24S α rRNA, sequencing of 

Rb19, TR and COII-ND1 

(50) 

S. CA T. protracta 161 34 (21.1) 25 0 0 0 24S α RNA (161) 

TX T. protracta 9 4 (44) NR 100% 
 

NR SL-IR (160) 

TX T. rubida 64 11 (17) 7 6 (86) 1 (14) 0 TcSC5D; SL-IR on subset (159) 

Southwest4 T. rubida 40 7 (18) 5 5 (100) 0 0 TcSC5D; SL-IR on subset (159) 

S. TX T. rubida 2 0 0 0 0 0 SL-IR (92) 

TX T. rubida 299 69 (23) NR 100% 
 

NR SL-IR (160) 

W. TX T. rubida 39 24 (62) 24 24 (100) 0 0 TcSC5D (158) 

TX T. sanguisuga 20 13 (65) 13 2 (15) 9 (69) 2 (15) 
SL-IR; TcSC5D and SNPs 

in subset 
(90) 

TX T. sanguisuga 315 158 (50) 135 21 (16) 107 (79) 7 (5) TcSC5D; SL-IR on subset (159) 

Southeast1 T. sanguisuga 45 12 (27) 12 2 (17) 10 (83) 0 TcSC5D; SL-IR on subset (159) 

Midwest2 T. sanguisuga 7 4 (57) 3 0 3 (100) 0 TcSC5D; SL-IR on subset (159) 

FL, GA  T. sanguisuga 

 
 

4 4 (100) 0 0 SL-IR, 24S α rRNA, 18S (122) 
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rRNA 

LA T. sanguisuga 12 8 (67) 6 6 (100) 0 0 
SL-IR, 24S α rRNA, 18S 

rRNA 
(80) 

1AL, FL, GA, KY, LA, NC, TN, VA.  2IN, KS, MO, OH, OK.  3AZ, CA, NM.  4AZ, NM. 5Typed as II/VI2253 
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Table 5. Trypanosoma cruzi genotypes reported in mammalian hosts in the United States 2254 

Locations Host species 

Total 

Genotyped  

TcI  

(%) 

TcIV 

(%) 

TcI/IV 

(%) Other reported  Genotyping method Reference/source 

CA (2), LA 

(1), TX (2) Humans 5 5 (100) 0 0 

 

SL-IR, 24S a rRNA, 

18S rRNA (122) 

TX Humans 6 0 0 0 

TcII-V-VI (4), TcI/TcII-

V-VI (2)* 

PCR-RFLP (SL-IR, 24S 

a rRNA, 18S rRNA), 

sequencing (157) 

CA (1), OK 

(1), SC (2), 

TN (1), 

Unknown (2) 

Canis lupus familiaris 

(domestic dog) 7 0 6 (86) 1 (14) 

 

SL-IR, 24S a rRNA, 

18S rRNA (122) 

TX 

Canis lupus familiaris 

(domestic dog) 2 1 (50) 0 1 (50) 

 

SL-IR   (92) 

TX 

Canis lupus familiaris 

(domestic dog) 15 9 (60) 5 (33) 1 (7) 

 

SL-IR, sequencing of 

TcSC5D (90) 

TX 

Canis lupus familiaris 

(domestic dog) 4 4 (100) 0 0 

 

SL-IR (345) 

TX 

Canis lupus familiaris 

(domestic dog) 6 5 (83) 1 (17) 0 

 

SL-IR, 24S a rRNA, 

18S rRNA, COII (91) 

FL (16), GA 

(45), MD (1), 

TN (1), SC (1) 

Procyon lotor 

(raccoon) 64 2 (3) 61 (95) 1 (2) 

 

SL-IR, 24S a rRNA, 

18S rRNA (122) 

GA  

Procyon lotor 

(raccoon) 5 0 5 (100) 0 

 

SL-IR, confirmatory 

sequencing (72) 

TX 

Procyon lotor 

(raccoon) 11 10 (91) 0 1 (9) 

 

TcSC5D (77) 

TX 

Procyon lotor 

(raccoon) 2 0 2 (100) 0 

 

SL-IR, 24S a rRNA, 

18S rRNA, COII (346) 

IL 

Procyon lotor 

(raccoon) 5 0 5 (100) 0  

SL-IR, 24S a rRNA, 

confirmatory 

sequencing (347) 

KY 

Procyon lotor 

(raccoon) 2 0 2 (100) 0  

SL-IR, 24S a rRNA, 

confirmatory 

sequencing (347) 

MO 

Procyon lotor 

(raccoon) 1 0 1 (100) 0  

SL-IR, 24S a rRNA, 

confirmatory 

sequencing (347) 
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GA  

Lemur catta (ring-

tailed lemur) 3 0 3 (100) 0 

 

SL-IR, 24S a rRNA, 

18S rRNA (122) 

GA (1), 

Unknown (1) 

Macaca mulatta 

(rhesus macaque) 2 1 (50) 0 1 (50) 

 

SL-IR, 24S a rRNA, 

18S rRNA (122) 

Tx 

Macaca mulatta 

(rhesus macaque) 33 18 (55) 13 (39) 2 (6) 

 

SL-IR, 24S a rRNA, 

18S rRNA, COII (346) 

AL (1), FL 

(6), GA (6), 

LA (2) 

Didelphis virginiana 

(opossum) 15 

15 

(100) 0 0 

 

SL-IR, 24S a rRNA, 

18S rRNA (122) 

TX 

Didelphis virginiana 

(opossum) 4 4 0 0 

 

SL-IR, 24S a rRNA, 

18S rRNA, COII (346) 

GA (1), LA 

(2) 

Dasypus novemcinctus 

(nine-banded 

armadillo) 3 2 (67) 1 (33) 0 

 

SL-IR, 24S a rRNA, 

18S rRNA (122) 

GA  

Mephitis mephitis 

(striped skunk) 1 0 1 (100) 0 

 

SL-IR, 24S a rRNA, 

18S rRNA (122) 

GA  

Mephitis mephitis 

(striped skunk) 4 1 (25) 3 (75) 0 

 

SL-IR, confirmatory 

sequencing (72) 

TX 

Mephitis mephitis 

(striped skunk) 2 1 (50) 1 (50) 0 

 

SL-IR, 24S a rRNA, 

18S rRNA, COII (346) 

TX 

Neotoma micropus 

(Southern plains 

woodrat) 23 10 (43) 13 (57) 0 

 

SL-IR, confirmatory 

sequencing (72) 

TX 

Neotoma micropus 

(Southern plains 

woodrat) 1 1 (100) 0 0  18S rRNA sequencing Aleman 

GA  

Sigmodon hispidus 

(hispid cotton rat) 2 0 2 (100) 0 

 

SL-IR, confirmatory 

sequencing (72) 

GA  

Otospermophilus 

variegatus (rock 

squirrel) 1 0 1 (100) 0 

 

SL-IR, confirmatory 

sequencing (72) 

TX 

Peromyscus leucopus 

(white-footed mouse) 3 3 (100) 0 0  18S rRNA sequencing  (73)  

TX 

Chaetodipus hispidus 

(hispid pocked mouse) 1 1 (100) 0 0  18S rRNA sequencing (73) 

TX 

Sigmodon hispidus 

(hispid cotton rat) 1 1 (!00)  0 0  18S rRNA sequencing (73) 
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TX 

Baiomys taylori 

(northern pygmy 

mouse) 1 1 (100) 0 0  18S rRNA sequencing (73) 

TX 

Liomys irroratus 

(Mexican spiny pocket 

mouse) 1 1 (100) 0 0  18S rRNA sequencing (73) 

LA 

Peromyscus gossypinus 

and Mus musculus 

(mouse spp) 20 16 (80) 0 0 

TcII (2), TcI/TcII (1), 

TcII/TcIV (1) 

SL-IR, 24S a rRNA, 

18S rRNA (80) 

LA Neotoma floridana 3 2 (67) 0 0 TcII/TcIV (1) 

SL-IR, 24S a rRNA, 

18S rRNA (80) 

TX 

Nycticeius humeralis 

(evening bat) 1 1 (100) 0 0 

 

SL-IR, 24S a rRNA, 

18S rRNA, COII (74) 

2255 
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Table 6.  Chagas disease diagnostic testing by clinical context  2256 

Clinical Scenario Testing modalities, specimen and schedule 

Suspected chronic T. cruzi infection  

All persons (symptomatic or symptomatic) with epidemiological 

risk factors1; high priority to screen children and women of 

child-bearing age especially if pregnant or planning pregnancy 

IgG serology2 by two distinct assays, preferably based on different antigens 

(16) 

  

Persons at risk for acute T. cruzi infection  

Suspected contact with infected vector PCR (microscopy)3 in blood between 2 and 8 weeks post exposure, IgG 

serology at 6 to 8 weeks 

Infant of T. cruzi-infected mother PCR (microscopy)3 in blood at birth and 1-3 months; IgG serology at 9-12 

months (223) 

Recipient of blood components, organ or tissue from infected 

donor 

Serial PCR in blood: Months 1-2: weekly, months 3-4: every 2 weeks, months 

5-6: monthly, then based on clinical scenario (30)  

Laboratory accident Serial PCR (microscopy)3 in blood weekly for 6-8 weeks, IgG serology at 6 to 

8 weeks (348) 

  

Persons at risk for T. cruzi reactivation  

Prospective organ or tissue recipient with risk factors IgG serology by two distinct assays (349, 350) 

Transplant recipient with chronic T. cruzi infection Serial quantitative PCR in blood4: Months 1-2: weekly, months 3-4: every 2 

weeks, months 5-6: monthly, then based on clinical scenario (210)  

 For heart transplant patients, histology in endomyocardial biopsy, especially in 

setting of suspected rejection  

HIV-T. cruzi co-infected patient with signs of reactivation  PCR4, microscopy in tissue, blood, CSF as clinically indicated  

T. cruzi infected patient with iatrogenic immunosuppression 

(chemotherapy, corticosteroids) and signs of reactivation 

PCR4, microscopy in tissue, blood, CSF as clinically indicated 

1Epidemiological risk factors for T. cruzi infection include birth or residence, or maternal birth or residence, in a country with endemic vectorial transmission (see Table 1); 2257 
residence in areas of the US with high rates of vector-human contact, especially if the patient reports triatomine bites and/or house invasion. 2258 
2Plasma is not an approved biospecimen for some FDA-cleared tests; serum is acceptable for all FDA-cleared tests. 2259 
3PCR is substantially more sensitive than microscopy in peripheral blood. 2260 
4Positive PCR in blood does not diagnose reactivation; rising parasite load in blood is generally the first indication. Positive PCR in CSF indicates reactivation. 2261 

2262 
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Table 7. Recommendations for antitrypanosomal drug treatment according to Chagas disease phase and form, patient age, and clinical status. 2263 

 2264 

Antitrypanosomal drug treatment by Chagas disease phase, form and demographic group Strength of recommendation;  

quality of evidence
1 

Should always be offered  

  Acute T. cruzi infection (including congenital infection in first months of life) Strong; moderate 

  Children < 12 years old with chronic T. cruzi infection Strong; high 

  Children 13 - 18 years old with chronic T. cruzi infection Strong; low 

  Reactivated T. cruzi infection in immunosuppressed patient  Strong; moderate 

  Reproductive-age women planning future pregnancies Strong; moderate 

May be offered with consideration of potential risks and benefits, uncertainties and patient preferences  

  Adults with normal ECG and cardiac function Discretionary; weak 

  Adults with early signs of cardiomyopathy Discretionary; weak 

  

Recommendation against treatment  

  During pregnancy Strong; weak 

  During lactation Weak; weak 

  Patients with advanced cardiomyopathy Strong; moderate 

  Patients with gastrointestinal Chagas disease that impairs absorption Weak; weak 

1Based on the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system (351). The GRADE system offers only two grades of 2265 
recommendations: “strong” and “weak” or “discretionary”. Strong recommendations are provided when the balance of desirable vs undesirable effects is clear.  Weak or 2266 
discretionary recommendations require an assessment of the evidence, and decision-making based on a consideration of potential risks and benefits, uncertainties and 2267 
patient preferences (352).   2268 

  2269 
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Table 8. Reported autochthonous vector-borne Trypanosoma cruzi infection in the United States 2270 

Residence 

State 

Age Sex Diagnosis Phase Detection 

year 

Infection 

year 

Evidence of autochthonous vector-borne 

origin; putative state of acquisition 

Reference/source 

TX 10 months F microscopy of peripheral 

blood 

acute 1955 1955 Peridomestic infestation; TX (353) 

TX 2-3 weeks M not reported acute 1955 1955 No details provided - perhaps congenital, 

given reported age; TX 

(286) 

CA 56 years F microscopy of peripheral 

blood 

acute 1982 1982 Adult uninfected T. protracta in house; CA (55, 354) 

TX 7 months M histology of cardiac tissue acute 1983 1983 No vectors found, but search made in 

winter; house in poor condition; TX 

(355) 

TN 18 months M T. cruzi PCR in peripheral 

blood 

acute 1998 1998 T. cruzi-infected T sanguisuga found in 

child’s crib; TN 

(54) 

TX 12 months M microscopy of pericardial 

fluid 

acute 2006 2006 Mother uninfected; T. cruzi-infected T. 

gerstaeckeri near house; TX 

(58)  

LA 74 years F Serology and hemoculture chronic 2006 unknown T. sanguisuga infestation; 10/18 positive by 

T. cruzi PCR; LA 

(53) 

MS 44 years M Blood donor screening chronic 2007 unknown T sanguisuga found on property; also 

extensive hunting of known Tc reservoir 

species; MS 

(52) 

NR1 NR1 NR1 14 cases detected on blood 

donor screening 

chronic 2006-2010 unknown Blood donors not from Latin America and 

not primarily Spanish speaking 

(52) 

TX 59 years M Blood donor screening chronic 2007 unknown rural TX including deer hunting in a place 

with infected T. gerstaekeri 

(289) 

TX 69 years M Blood donor screening chronic 2007 unknown rural TX, some travel to Mexico (289) 

TX 47 years F Blood donor screening chronic 2007 unknown residence in rural TX and LA (289) 

TX 72 years M Blood donor screening chronic 2010 unknown residence in rural TX  (289) 

TX 21 years M Blood donor screening chronic 2011 unknown extensive camping in TX and MO (289) 
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TX 83 years M Blood donor screening chronic NR1 unknown former/current residence considered high 

risk; TX 

(290) 

TX 61 years F Blood donor screening chronic NR1 unknown former/current residence considered high 

risk; TX 

(290) 

TX 71 years M Blood donor screening chronic NR1 unknown occupation considered high risk; TX (290) 

TX NR1 NR1 Blood donor screening chronic NR1 unknown camping considered likely risk; TX (290) 

TX 19 years M Blood donor screening chronic NR1 unknown former/current residence considered high 

risk; TX 

(290) 

TX 60 years M Blood donor screening chronic NR1 unknown former/current residence considered high 

risk; TX 

(290) 

TX 56 years F Blood donor screening chronic NR1 unknown former/current residence considered high 

risk; TX 

(290) 

TX 52 years M Blood donor screening chronic NR1 unknown current residence, occupation, hunting 

considered moderate risk; TX 

(290) 

TX 25 years F Blood donor screening chronic NR1 unknown former/current residence considered high 

risk; TX 

(290) 

TX 51 years F Blood donor screening chronic NR1 unknown former/current residence considered high 

risk; TX 

(290) 

TX 52 years F Blood donor screening chronic NR1 unknown former/current residence considered high 

risk; TX 

(290) 

CA 19 years M Blood donor screening chronic 2009 unknown lack of international travel, extensive 

camping history; TX 

(292) 

TX 28 years M Blood donor screening chronic 2014 unknown Reported vectors near childhood home in 

AZ; TX resident at time of detection 

(291) 

AZ 16 years F Blood donor screening chronic NR1 unknown T. cruzi infected T. rubida found near 

home; AZ 

(287) 

1NR, not reported 2271 

  2272 
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Table 9. Published reports of transfusion-related Trypanosoma cruzi transmission in the United States.  2273 

 Year of 

transmission 

State Recipient characteristics  Implicated blood component, 

donor origin 

Reference/source 

1988 NY 11-year-old girl with Hodgkin lymphoma, developed 

fever and pericarditis, trypomastigotes seen on blood 

smear; treated with nifurtimox and recovered 

Platelets, Bolivia (357) 

1988 CA 17-year-old male post bone marrow transplant with 

fulminant acute Chagas disease 

Not specified, Mexico (358) 

1989 TX 59-year-old female with metastatic colon cancer on 

chemotherapy, granulocytopenic, disseminated 

intravascular coagulation; developed fever, pulmonary 

infiltrates, bradycardia and AV block; parasites seen on 

bone marrow aspirate; died within 36 hours of diagnosis 

Unknown; had received >500 

units including RBC, platelets 

(359) 

1997 FL 60-year-old female with multiple myeloma; T. cruzi-

infected donor unit detected during research study; 

recipient asymptomatic, treated with nifurtimox; died of 

underlying disease several years later.  

Platelets, Chile (360) 

2002 RI 3-year-old female with Stage 4 neuroblastoma on 

chemotherapy, neutropenic, fever, trypomastigotes seen 

on blood smear; treated with nifurtimox but died of her 

underlying disease 

Platelets, Bolivia (361) 

2004 NY 64-year-old male with non-Hodgkins lymphoma and 

chemotherapy induced thrombocytopenia; found on 

serological testing during look-back study  

Platelets, Argentina (294) 

2006 NY 62-year-old male found on serological testing during 

look-back study 

Platelets, Argentina (294) 

 2274 

 2275 

2276 
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Table 10. Published reports of organ transplant-derived cases of Chagas disease in the United States.   2277 

 2278 

 Year State of organ 

harvest 

Donor origin Implicated 

organ 

Recipient characteristics and outcome Reference/source 

2001 GA El Salvador Kidney-

pancreas 

37-year-old female with fever 6 weeks post transplant and T. 

cruzi on blood smear, died of Chagas myocarditis 7 months 

post transplant despite prolonged course of nifurtimox  

(303) 

2001 GA El Salvador Kidney 69-year-old female, asymptomatic, T. cruzi hemoculture 

positive; diagnosis sought because of recipient 1 above; 

treated with nifurtimox, survived. 

(303) 

2001 GA El Salvador Liver 32-year-old female, asymptomatic, T. cruzi hemoculture 

positive; diagnosis sought because of recipient 1 above; 

treated with nifurtimox but died of unrelated causes. 

(303) 

2005 CA US-born (mother 

from Mexico) 

Heart 64-year-old male with anorexia, fever, diarrhea diagnosed 

with organ rejection treated with steroids; 8 weeks post-

transplant T. cruzi found on blood smear.  PCRs became 

negative on nifurtimox. Died of rejection 20 weeks post-

transplant. 

(304) 

2006 CA El Salvador Heart 73-year-old male with fever, fatigue, rash, T. cruzi on blood 

smear 7 weeks post-transplant; parasitemia cleared with 

nifurtimox; switched to benznidazole because of tremors. 

Died of heart failure 25 weeks post-transplant. 

(304) 

2006 PA Bolivia Liver 56-year-old male detected on PCR monitoring; died from GI 

bleed 244 weeks post-transplant.  

(28) 

2006 PA Bolivia Bilateral 

kidney 

73-year-old female detected on PCR monitoring; died from 

kidney failure 15 weeks post-transplant.  

(28) 

2010 NY Mexico Heart 20-year-old female detected on PCR monitoring and 

successfully treated with benznidazole; survived at least to 24 

months post-transplant. 

(28) 

2011 TN El Salvador Bilateral lung 36-year-old male with cystic fibrosis; detected on PCR 

monitoring. Completed course of benznidazole but 

intermittent post-treatment positive PCR. Chagas disease 

possible contributing factor to death 2 years post-transplant.   

(306) 

 2279 

  2280 
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Table 11. Public health screening options for Chagas disease in the United States 2281 

 2282 

Target population Screening Methods  Primary goal Secondary goal Intervention details and effectiveness Published estimates of screening 

yield 

Blood donors Serologic screening Prevent transmission Refer infected 

persons for 

management 

Discard screen-positive donations; 

highly effective 

~1/15,000 first-time donors, up 

to 1/2700 in high risk area (284) 

Organ donors Screening, serologic 

or risk based 

Prevent transmission  Heart from infected donor not used; use 

of other organs with appropriate 

monitoring; highly effective 

0.9% in combined risk-based and 

serologic donor screening (305) 

Pregnant women 

from Latin America; 

infants of infected 

women 

Maternal serology, 

serial testing of 

infants; serology in 

siblings 

Detect infected 

infants early  in life 

Refer infected 

women and 

their other 

children for 

treatment 

Early treatment of infants; treatment of 

women after lactation ends; treat infected 

siblings; highly effective in infants and 

children, moderate in young women 

~10 mothers, <1 infected child 

per 4000 high risk women 

(majority born in Latin America) 

(338) 

Latin American 

immigrants 

Serological 

screening and 

confirmatory testing   

Detect asymptomatic 

infected individuals 

 Treatment of infected individuals; 

effectiveness high in children, uncertain 

in adults 

0.5 to 1% in high risk 

populations; many of those 

detected were >50 in whom 

treatment not generally 

recommended (280, 281) 

Patients from Latin 

America with non-

ischemic cardiac 

syndromes 

Serological 

screening and 

confirmatory testing   

Detect symptomatic 

infected individuals 

 Standard cardiac management; if 

transplant recipient, prospective 

monitoring for reactivation; effective in 

improving survival and quality of life 

Latin American-born patients 

with bundle branch blocks, 5%; 

pacemakers, 7.5%; depressed LV 

ejection fraction, 13-19%  (309-

312) 
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