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Abstract 
 

Strongyloidiasis, caused by the gut nematode Strongyloides stercoralis, and visceral 

leishmaniasis (VL), caused by the protozoa Leishmania donovani and L. infantum, are two 

potentially fatal parasitic diseases with wide global distribution and close association with 

poverty. Although both infections are treatable, it is imperative to validate cure after 

treatment. Available diagnostics for both infections have reasonable to high sensitivity for 

current infection but cannot easily distinguish cure. There is a need for diagnostic tests that 

are rapid, simple to use and deployable in field conditions to diagnose infection and 

validate cure. 

 

This project aimed to identify candidate coproantigens of S. stercoralis and urine antigens 

of L. donovani, and to investigate the utility of IgG1 serology for determining cure versus 

relapse after treatment for VL. For Strongyloides coproantigen discovery, open access 

‘omic’ data were analysed using computational tools. For Leishmania urine antigen 

discovery, antibodies were used to capture parasite antigens from VL urine, which were 

then identified by mass spectrometry. For Leishmania IgG1 serology, paired sera from pre- 

and post-treatment (cured) VL were compared with relapse sera in ELISA and with novel 

IgG1 specific rapid diagnostic tests (RDTs). 

 

This work identified over 40 candidate coproantigens of Strongyloides that satisfied the 

required characteristics. Seven L. donovani proteins were identified in VL urine, within 

which 22 protein sequences were indicated as having high epitope potential and specificity 

to L. donovani. In VL serology, IgG1 was able to differentiate between cure and relapse of 

VL in both ELISA and RDT assays. With development and optimisation, the candidate 

antigens and IgG1 assays presented here have potential to contribute to disease control for 

these parasitic infections. The computational method of antigen selection used here for S. 

stercoralis can be applied to multiple parasitic helminth infections using the wealth of open 

access ‘omic’ data.  
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CHAPTER 1: Introduction, Literature Review, Aim, Objectives 
1.1  General Introduction 

1.1.1 Diagnostics development 
 
Diagnosis is fundamental to appropriate treatment of individuals as well as to wider disease 

control for public health. Diagnostic methods for infectious agents, including parasites, can 

detect either the disease agent itself or the host immune response to it. In both cases, 

development of the test relies on knowledge of the target organism- morphologically, 

molecularly and ecologically. 

Diagnostic methods detecting the disease agent itself include nucleic acid detection by 

polymerase chain reaction (PCR), quantitative PCR (qPCR), loop-mediated amplification 

(LAMP) or recombinase polymerase assay (RPA), and immunoassays capturing antigens 

shed by the organism. Diagnostics detecting the host immune response include serological 

immunoassays for anti-pathogen antibodies and assays for host immune factors such as 

cytokines. This thesis focuses on immunoassays targeting both parasite antigens and host 

antibody responses (Figure 1). 

 

Figure 1. The different formats of immunoassays detecting (A) antibodies (serology) and (B) 

pathogen antigens in biological samples. 

 

Immunoassays can be developed in several formats including: enzyme-linked 

immunosorbent assay (ELISA) which is ideal for screening large numbers of samples under 

laboratory conditions and can provide a quantitative result; rapid diagnostic tests (RDT) 
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which, with minimal sample preparation, can usually be carried out in the field in less than 

30 minutes and most often provide a qualitative result. Additional formats include the 

luciferase immunoprecipitation system (LIPS), which involves expression of a synthetic 

protein comprising the antigen of interest fused with luciferase1, and the Luminex platform, 

both of which provide high dynamic range quantification and assays that can be 

multiplexed. Technological developments in the field of diagnostics are making rapid test 

devices smaller, with cheaper materials such as paper and with the potential for 

multiplexing. In addition, there is a drive to associate diagnostic tests with mobile phone 

technology to quantify, record and share results2-4. 

Developing any immunoassay requires access to the antigen for optimisation of the assay, 

either immobilised on a surface in the case of serology, or to raise antibodies and assess 

their performance in the case of an antigen capture assay. Following initial development 

and determination of the lower limit of detection, well-characterised biological samples, 

both negative and positive for the target infection, are needed in order to assess 

background reactivity, cross-reactivity, and to determine positivity thresholds that give 

appropriate sensitivity and specificity. 

Assays may be developed to detect a specific known antigen or an uncharacterised antigen 

or antigens. Equally, serology may detect antibodies against a known antigen, or an 

unprocessed mixture of antigens in a whole organism lysate for example. Both methods 

have advantages and disadvantages: a crude mixture contains a wide range of epitopes, 

potentially conferring higher sensitivity, however, this can also increase the chance of 

cross-reactivity of the assay with other parasite species. Availability of native parasite 

material must also be considered and can be a limitation to standardising and scaling-up 

production of an assay. Therefore, an optimal immunoassay uses a defined antigen/epitope 

which is both specific to the target parasite and can be optimised to give a highly sensitive 

assay. 

In this thesis, these aspects of diagnostic development are considered in the context of the 

neglected parasitic diseases strongyloidiasis and visceral leishmaniasis. 

 

1.1.2 Strongyloides stercoralis and strongyloidiasis 
 
Strongyloides stercoralis is a parasitic nematode (roundworm) primarily of humans and 

occasionally of dogs and great apes5, 6. It has a complex life cycle involving two reproductive 
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phases: parthenogenesis, the laying of unfertilized yet viable eggs, which occurs inside the 

host gut; and a facultative sexual phase in the environment which increases the number of 

infective larvae in the soil7, 8. Infection is acquired when infective stage larvae penetrate the 

skin. Inside the host, they migrate, coming to reside in the duodenum where the adult 

female digests host tissue and lays eggs which hatch before leaving the host, therefore 

larvae are passed in stool. Larvae may also reach infective stage prior to being excreted and 

will penetrate the host gut or perianal skin to restart the parasitic life cycle, termed 

autoinfection, which leads to the potential for lifelong infection. This unusual feature 

among human nematodes means that infection may persist for decades after a person has 

left an endemic area. 

Symptoms of strongyloidiasis may be mild and non-specific. However, in cases of 

immunosuppression the autoinfective cycle may amplify to become hyperinfection, or 

dissemination if larvae spread to organs beyond their normal migration route, often 

accompanied by bacterial infection. Diagnosis of uncomplicated S. stercoralis infection can 

be made by: microscopy, using Strongyloides-specific methods to concentrate the larvae 

from a stool sample; DNA detection in stool; or serology. 

 

1.1.3 Leishmania donovani and visceral leishmaniasis 
 
Leishmania donovani is an intracellular protozoan parasite, transmitted by the 

phlebotomine sand fly. It causes the disease visceral leishmaniasis (VL) (also known as kala-

azar (KA), meaning ‘black fever’ in Hindi) which occurs focally in parts of Africa and Asia. 

The closely-related species L. infantum is the disease agent in parts of Europe, the Middle 

East and South America. L. infantum and African L. donovani have animal reservoirs but in 

Asia the parasite is considered anthroponotic. Without successful treatment, VL is 

considered fatal. It has historically caused large epidemics in both India and eastern Africa 

which have had high fatality rates9, 10. 

In the vast majority of cases, VL is a disease of poverty due to poor housing conditions 

which allow proximity to sand flies, and poor nutrition11, 12. In turn, the productive time lost 

due to sickness and medical treatment place additional financial burden on affected 

families due to lost income and associated costs of medical care11. However, the first-line 

drug in India, liposomal amphotericin B (AmBisome), is donated free-of-charge to the 

World Health Organization by the manufacturer Gilead13. 
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Disease control is based on control of the vector by indoor residual spraying of insecticide, 

early case detection and completed treatment as well as surveillance and health system 

capacity strengthening14. As yet there is no vaccine in use. Factors complicating the control 

of VL are the large proportion of infected people who remain asymptomatic15, the 

possibility of disease relapse in inadequately treated individuals16, post kala-azar dermal 

leishmaniasis (PKDL)17 and the atypical presentation of VL in human immunodeficiency 

virus (HIV)-coinfected individuals18. 

1.2   Literature Review 
 
1.2.1 Strongyloides stercoralis  
 
Life cycle 
 
Strongyloides stercoralis is a parasitic gut nematode (roundworm) of humans (Figure 2). 

 

Figure 2. Strongylodies stercoralis taxonomy. 

After penetrating the skin, infective stage (iL3) larvae progress through two further moults 

as they migrate inside the host via the bloodstream, penetrating into the lungs and 

ascending the airways to be swallowed into the digestive tract where they become 

parasitic adult females (Figure 3).  



 

20 

 

 

Figure 3. Strongyloides stercoralis life cycle. Adapted from Tefé-Silva et al. (2012)19 under a 
Creative Commons license. (1) Infection is acquired when infective stage iL3 filariform 
larvae penetrate the skin. (2) Within the host, larvae migrate via the bloodstream to the 
airways where they ascend the trachea and are swallowed into the digestive system, during 
their migration they pass from iL3 to L4 larvae. (3) In the duodenum, adult parasitic female 
worms burrow into the epithelium where they digest host tissue and lay eggs by 
parthenogenesis. (4) Eggs hatch before leaving the host gut and larvae are passed in stool. 
(5) Some larvae become iL3 before leaving the host and penetrate the gut to re-commence 
their life cycle. If autoinfection is deregulated by host immunosuppression, it may result in 
hyperinfection. (6) Larvae that enter the environment may follow the indirect cycle of 
becoming adult male and female worms that undergo sexual reproduction and lay eggs 
which hatch through L1 to iL3, or alternatively, larvae in stool may develop directly to iL3 to 
infect a new host.  

 

Only the adult female is parasitic. In the duodenum, it embeds itself in the epithelium, 

digesting host tissue and laying viable eggs by parthenogenesis, which hatch while still 

within the host gut (Figure 4). Larvae are passed in stool and may be at L1, L2 or L3/iL3 

stages by this point. Larvae reaching iL3 may penetrate the gut or perianal area and 

continue development within the host or remain developmentally arrested in the 

environment until they are able to infect a new host. Alternatively, larvae ending up in the 

environment may continue to develop from L3, to L4 and into free-living dioecious adults 



 

21 

 

which undergo sexual reproduction. In the case of S. stercoralis, eggs laid following sexual 

reproduction mature into the developmentally arrested iL3 (Figure 3)20. 

 

Figure 4. Strongyloides stercoralis parasitic adult females and eggs embedded in the 
epithelium of the duodenum where they cause damage to the microvilli. Photo by the 
author, slide of infected gut section kindly provided by Claire Rogers. 

The unusual ability of S. stercoralis to complete its life cycle without leaving the host, 

termed ‘autoinfection’, means that once infected, a person may remain so for years or 

decades unless treated. This is reflected in the epidemiology where prevalence increases 

with age21-23. 

The free-living phase of the life cycle enables the parasite to amplify its numbers in the 

environment where there are humid and warm soil conditions. These conditions occur 

from tropical and sub-tropical to temperate regions throughout the world, enabling focal 

transmission22, 24. 

There are about 50 known species of Strongyloides, infecting a wide range of vertebrate 

hosts and with high host specificity25. Other species relevant to this work are S. ratti, a 

natural parasite of rats which is often used as a model for S. stercoralis due to the ability to 

maintain it in laboratory animals; S. venezuelensis, also a parasite of rats; S. papillosus 

which has a wider host range including sheep, cattle, goats and other ungulates; 

Parastrongyloides trichosuri, a parasite of certain possum species in Australia26. S. 

stercoralis has also been found in non-human primates and dogs, which may overlap with 

human infection5, 27. In addition to S. stercoralis, the species S. fuelleborni fuelleborni and S. 

fuelleborni kelleyi infect humans, the former is a potential zoonotic infection from non-
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human primates5, 6, 28 and the latter a severe infection in Papua New Guinea29, 30 which has 

been proposed to form a separate species (i.e. S. kelleyi), rather than a subspecies31. 

Nematode anatomy has been well studied in Caenorhabditis elegans, the soil-dwelling 

model organism which is also in the order Rhabditida, along with Strongyloides and various 

bacteria-eating nematodes, both free-living and parasitic. Rhabditida are classified by their 

double-bulbed (rhabditoid) pharynx which in Strongyloides is a feature of stage 1 and 2 

larvae (L1 and L2) whereas L3/iL3 larvae have a filariform (straight) pharynx (Figure 5). 

Features of the diagnostic stage larvae are the shallow buccal cavity (mouthparts) and tri-

forked tail which distinguish them from hookworm larvae in stool microscopy (Figure 5).  

S. stercoralis ranges from 0.5 to 2 mm in length at different stages of its life cycle, with L1 

larvae being the smallest and parasitic females the longest. Free-living life stages are 

shorter and wider than their parasitic counterparts. 

 

 

 

 

Figure 5. Strongyloides stercoralis morphology. A) Bulbed rhabditiform and straight 
filariform pharynx. Image copyright Karin Christensen, reproduced with permission. B) 
Diagnostic features to differentiate S. stercoralis from hookworm by microscopy: 
rhabditoid (L1) (top) and filariform (L3) (bottom) morphologies, showing the short buccal 
cavity and blunt tail of S. stercoralis (left), compared to the long buccal cavity and pointed 
tail of hookworm (right). Photographs from www.tropicalmed.eu32 with permission. 
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Genomics 
 
The genomes of 4 Strongyloides species were published in 201633. These revealed that 

particular gene families had expanded in parasitic species when compared to non-parasitic 

Rhabditoid nematodes and therefore that certain proteins are closely linked to survival of 

the nematode in the host34. The currently available genomic data is based on analysis of S. 

stercoralis reference strain PV0001 (also known as PV001). This was derived from strain 

UPD (University of Pennsylvania, dog)35 which originated in a naturally-infected dog from 

Pennsylvania, USA (36 and Thomas Nolan, personal communication). 

The closely related S. stercoralis and S. ratti each have 2 pairs of autosomes and XX/XO sex 

chromosomes where diploid males have only one X chromosome, and thus only 5 

chromosomes in total (Figure 6). The ratio of male to female offspring of parthenogenesis 

is controlled by environmental factors so that more males are produced if the host immune 

response is strong37. This would favour environmental (indirect) development and sexual 

reproduction in order to maintain the species. Conversely, all progeny of free-living adults 

are female, which may arise from defective X-deficient sperm and mortality among male 

embryos, among other causes, so that all larvae become infective37 (Figure 6). This genomic 

feature accounts for the limited number of free-living generations seen in S. stercoralis and 

the obligate parasitism compared with P. trichosuri which differs in life cycle and can 

maintain free-living generations indefinitely26. 

 

Figure 6. Strongyloides stercoralis and S. ratti chromosome arrangement where two 
autosomes are accompanied by two X chromosomes in females and a single X in males. 
Parasitic females produce both male and female offspring by parthenogenesis. Free-living 
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male and females reproduce sexually but all surviving offspring are female. 
*Parthenogenesis is not documented in free-living S. stercoralis or S. ratti but has been 
shown to occur in S. planiceps38. 

 

1.2.2 Strongyloidiasis 
 
Clinical presentation 
 
Uncomplicated strongyloidiasis is often quoted as being asymptomatic, possibly because 

symptoms are non-specific and because it is under-diagnosed in endemic regions. 

However, in a study by Becker et al. (2011)21, frequent stomach ache was associated with S. 

stercoralis infection and a majority of infected respondents had wheezing, abdominal pain 

and general malaise. These findings concur with an earlier study of 192 patients presenting 

to the Hospital for Tropical Diseases in London, UK, where 71-78% of infected people had a 

strongyloidiasis-related symptom including abdominal or skin symptoms39. 

Hyperinfection occurs when the nematode replicates uncontrolled inside the host. As a 

result of the within-host migration, larvae can cause damage to lungs and gut as they pass 

through in large numbers40, 41. Dissemination of larvae may also occur into organs distant 

from the understood migration path including spinal fluid, kidneys and liver, among others7, 

42. In addition, the compromising of internal membranes by larvae may cause bacterial 

infections, such as meningitis, which add additional complexity to the diagnosis and 

treatment of these urgent cases42. 

 

Epidemiology  
 
Epidemiological data on strongyloidiasis is lacking, largely due to the fact that Strongyloides 

is not detected by the diagnostic methods routinely used for other soil transmitted 

helminth (STH) surveys. Estimates of global strongyloidiasis prevalence range from 30-100 

million22, to 370 million43, which vary due to the lack of epidemiological studies using 

reliable and Strongylodies-specific diagnostic methods. This has led to the call for high 

quality epidemiological data to inform disease control and prevent potentially fatal 

hyperinfection43, 44. 

Regions with endemic transmission are those with the particular conditions of soil humidity 

and temperature, as well as unsanitary conditions, to support the nematode’s life cycle. 

However, with the movement of people as refugees and migrants, there is evidence of 
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Strongyloides-infected people moving into non-endemic regions45-48. S. stercoralis has also 

been reported in a small number of travellers49, 50. As well as the humid tropics, the 

infection also occurs in more temperate areas and has been detected at high altitude in 

Bolivia23, regions of Europe24, 51 and the USA52. 

Risk factors for acquiring S. stercoralis infection are predominantly linked to poverty53. 

These include not wearing shoes54, and open defecation. Latrine use and improved 

sanitation could reduce cases sustainably55-57. In addition, alcoholism and HIV are risk 

factors for strongyloidiasis. Once infected with S. stercoralis, risk factors for developing 

potentially fatal hyperinfection and dissemination syndrome are: immunosuppression, 

often by corticosteroid treatment of an unrelated, or presumed unrelated, condition19; 

solid organ transplant58, 59; co-infection with human T-cell lymphotropic virus (HTLV-1)60; 

alcoholism61; certain cancers. Hyperinfection and disseminated strongyloidiasis are fatal in 

up to 70% of cases due to the advanced state of illness by the time of correct diagnosis, 

inappropriate treatment and complications caused by underling health problems or 

bacterial co-infection7, 42, 62-64.  

 

 

Immune response 
 
S. stercoralis infection, as other parasitic helminths, induces a TH2 immune response. 

Various mechanisms are involved which together act to directly kill migrating larvae and 

the embedded parasitic adult worms, prevent attachment of the nematode to the gut by 

increasing mucus secretion, and promote smooth muscle contractility to expel the 

parasite19. However, the response is characterised by a regulatory predominance which 

enables worms to survive in the host and leads to interaction with other infections. 

Eosinophilia (>500 eosinophils/µl of blood) is frequently a clinical finding that leads to 

diagnosis of asymptomatic strongyloidiasis65-68 but which commonly resolves soon after 

successful treatment69, 70. Eosinophilia is mostly absent in hyperinfection and disseminated 

infection7, 42. These cells defend against pathogens that are too large to be phagocytosed by 

binding to the surface and targeting release of cytotoxic proteins71. Conversely, eosinophils 

may promote helminth survival by reducing the production of nitric oxide by macrophages 

and neutrophils71, 72. They may also initiate the anti-helminth antibody response which is 
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particularly IgG4 and IgE73. IgG4 dampens the immune response to frequently encountered 

immunogens, facilitating worm survival74.  

In the host, parasitic helminths produce excretory and secretory (E/S) products; a complex 

mixture of proteins, glycans, small molecules and vesicles75-78. Together, this material has 

direct interaction with the host immune system, inhibiting dendritic cells, promoting 

regulatory T-cells (Treg) and stimulating the humoral response79. 

Along with TH2 upregulation, the TH1 response is suppressed during helminth infection. 

Studies on S. stercoralis co-infections indicate that this suppression can exacerbate the co-

infection. Two of the most prevalent infectious causes of mortality worldwide, tuberculosis 

(TB) and malaria, share endemic regions and populations with S. stercoralis80. Both 

pathogens primarily stimulate a TH1 immune response but the interaction between them 

and helminth co-infections is less clear-cut. 

Malaria, caused by the intracellular parasite Plasmodium spp., has a complex 

immunological interaction with helminth co-infections and contradictory outcomes have 

been reported, including susceptibility to, and protection from, severe malaria81, 82. 

Immune interaction with malaria appears to vary by species of helminth. Specifically, fewer 

malaria episodes occurred in those with Ascaris lumbricoides infection83. However, many 

other factors may influence the interaction82. 

TB appears to have a more direct interaction with helminth infections as the two diseases 

exacerbate each other, including in the case of S. stercoralis84. In addition, helminth 

infections are known to reduce the efficacy of the Bacille Calmett-Guérin (BCG) vaccine 

against TB, an effect that may be reversed upon successful anthelminthic treatment85. 

As well as malaria and TB, Trypanosoma cruzi promotes a TH1 immune response which is 

suppressed by Strongyloides co-infection. This was found in one study where T. cruzi was 

more likely to be detected in the blood of individuals who were also positive for S. 

stercoralis than those without the helminth86. Similarly, Leishmania braziliensis symptoms 

were more severe and more difficult to treat in nematode-infected individuals87. In 

addition to infectious interactions, helminth infection interacts with human fertility due to 

the TH2 bias induced by both conditions, and different nematode species have been found 

to either enhance or decrease host fertility88. Following effective treatment, immunity to S. 

stercoralis is not complete and re-infection is commonplace54. 
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Immunology of hyperinfection  
 
In hyperinfection, the immune mechanisms to control the autoinfective cycle of the worm 

are weakened. This may be triggered by various factors, primarily Human T cell 

lymphotropic virus type 1 (HTLV-1) co-infection, corticosteroid medication and alcoholism. 

HTLV-1 co-infection is a major risk factor for developing severe strongyloidiasis. The 

retrovirus infects T cells and induces their proliferation and secretion of TH1 cytokines, 

particularly interferon gamma (IFN-γ). In fewer than 5%, HTLV-1 causes potentially fatal 

lymphoma. However, the potent TH1 predominance in turn reduces TH2 cytokine 

production, leading to loss of control of S. stercoralis in the co-infected host60. Despite their 

similarities, HIV co-infection does not promote hyperinfection as HTLV-1 does, although it is 

associated with increased S. stercoralis infection prevalence22. This is likely to be due to the 

TH1 suppressive effect of HIV which preserves and even stimulates the TH2 response, in 

contrast to the TH1 enhancing/TH2 inhibiting effect of HTLV-189.  

Corticosteroid medication is increasingly used to control inflammatory disease in conditions 

including allergy and autoimmunity, organ transplant, and even symptoms caused by 

undiagnosed strongyloidiasis itself42. Corticosteroids act within cell nuclei, inhibiting gene 

expression, particularly of TH2 cytokines90, 91. In addition, the drugs prevent recruitment and 

maturation of multiple immune cell types, having a broad inhibitory effect on both TH1 and 

TH2 cell populations90. 

Alcoholism predisposes to Strongylodies hyperinfection by its multiple interconnected 

impacts on an affected person. Alcohol intoxication activates endogenous corticosteroid 

production by the adrenal glands, and thus has a similar immunosuppressive effect to 

corticosteroid drugs. Additional effects of alcoholism are malnutrition, poor hygiene and 

decreased intestinal integrity, all of which facilitate the S. stercoralis autoinfective cycle61. 

 

Treatment 
 
Ivermectin, an oral drug given in one or two doses of 200 mg/kg, is the first line treatment 

for strongyloidiasis. To treat hyperinfection or disseminated strongyloidiasis, ivermectin is 

given daily until the patient has been free of larvae in the stool for at least 2 weeks92. This 

ensures that all internally-migrating larvae are also killed.  
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Ivermectin, in the avermectin chemical group, is derived from the soil bacterium 

Streptomyces avermictilis. It binds to the glutamate-gated sodium channels of invertebrate 

nerve cells which leads to hyperpolarisation, paralysis and death93 (Figure 7). Ivermectin is 

used on an individual patient basis and in research, against S. stercoralis but has been used 

more widely for mass drug administration (MDA) for the control of the nematode diseases, 

lymphatic filariasis and onchocerciasis94. In these areas, the MDA has also reduced the 

prevalence of strongyloidiasis95, 96. There is a plea to initiate MDA with ivermectin 

specifically for strongyloidiasis in high prevalence areas due to the potential for fatal 

hyperinfection43, however, the drug remains unlicensed for human use in many countries, 

although it is used for livestock44. 

 

 

Figure 7. Ivermectin. A) molecular structure and B) binding in the invertebrate glutamate-
gated chloride channel which irreversibly opens the channel. Image A from Ménez et al. 
(2012)97, reproduced under a Creative Commons license, image B from Wolstenholme 
(2012)98, copyright the authors, reproduced with permission. 

While there are limited accounts of drug resistance of Strongyloides to ivermectin in vivo99, 

it is known that the standard dosing regimen is not always sufficient to achieve complete 

clearance, which may indicate emerging resistance70. However, the poor sensitivity of 

stool-based diagnostics and lack of a timely test-of-cure preclude the identification of drug 

resistance as distinct from re-infection. The intensive use of ivermectin and other 

anthelminthics in agriculture has driven resistance in various livestock helminths, including 

Strongylodies species, suggesting that this may also occur in humans100, 101. Conversely, this 

may simply be a result of insufficient dosing and incomplete killing of unhatched and 

internally-migrating larvae. 
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To avoid the development of drug resistance to the avermectins, the combination of 

ivermectin and albendazole has been tested, which would also be beneficial for controlling 

the other STH102, 103. However, albendazole has lower efficacy than ivermectin against S. 

stercoralis therefore this combination would still rely on ivermectin to treat 

strongyloidiasis104. 

Other anthelminthics are two other ‘azoles’; mebendazole and thiabendazole. The latter 

has equivalent efficacy to ivermectin against S. stercoralis but is not recommended due to 

frequent adverse reactions104, 105. The choice of drug must be made considering risk of Loa 

loa co-infection, where ivermectin could lead to fatal encephalopathy, and patients with 

neurocysticersosis, cystic Taenia solium infection, for whom albendazole may increase risk 

of complications. 

Moxidectin, in the milbemycin class is chemically related to the avermectins and also binds 

to glutamate-gated chloride channels. Moxidectin has shown similar performance to 

ivermectin in a non-inferiority trial106. Therefore, this drug, commonly used for veterinary 

helminth treatment may be an alternative to ivermectin for human strongyloidiasis, 

pending further validation. In addition to existing anthelminthics, screening of 

neuromodulatory drugs has identified three promising candidates for repurposing as 

anthelminthics107. 

 

 

 

Diagnosis 
 
There is no single gold standard or single reference test for strongyloidiasis but instead a 

combination is used. The methods that are in use are rarely standardised between 

laboratories, countries and research studies108. Definitive diagnosis is based on visualising 

larvae in a stool sample, however the commonly-used methods of stool microscopy for 

other STH, such as Kato Katz, are unsuitable for detecting S. stercoralis because larvae are 

scanty and do not survive well in solutions used to concentrate eggs. Therefore S. 

stercoralis specific methods are required. 

Microscopy 
Specific methods for microscopically visualising S. stercoralis exploit the natural mobility of 

the larvae and the free-living life stage. Samples are usually stool but in hyperinfection and 
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dissemination, larvae may be seen in sputum109. Stool microscopy techniques include the 

Koga agar plate culture, in which several grams of stool are incubated in the centre of an 

agar plate for up to 5 days, during which time tracks are made by migrating larvae and a 

10% formalin solution is used to collect the larvae for detailed microscopic identification110. 

The second of the most widely used microscopic methods is the Baermann funnel; several 

grams of stool are suspended in a sieve in warm water and larvae that migrate into the 

water sink to a collection tube and are examined microscopically (Figure 8). 

 

Figure 8. Stool-based definitive diagnostic methods for isolating S. stercoralis larvae. A) 
Koga agar plate, B) Baermann funnel. Images from Strkolcova et al. (2017)111 and 
Encyclopedia of Parasitology112, both with permission. 

 

Sensitivity of microscopic techniques is limited due to low and irregular larval excretion but 

is increased when more than one stool sample is examined on consecutive days113, or by 

taking multiple samples from the same stool114. Schar et al. (2014)115 found that two 

consecutive samples increased sensitivity from 75% to 95% in low intensity infections (≤1 

larva per gram of stool) (Table 1). 

PCR and qPCR 
Real-time polymerase chain reaction (qPCR) is used in high-income countries on DNA 

extracted from stool. The most widely used assay, developed by Verweij et al. (2009)116 

detects a region of the 18S rRNA gene. This assay has been widely used on DNA extracted 

from fresh, frozen or ethanol preserved stool samples with sensitivity higher than 

microscopy but highly dependent on the diagnostic reference method and whether this 
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includes serology (Table 1). Methods of stool preservation and DNA extraction vary 

between labs and studies and include DNA extracted by various commercial kits or in-

house methods117. The DNA extraction method has a significant impact on the apparent 

sensitivity of qPCR118. Regarding specificity, molecular methods are superior to microscopy 

because hookworm larvae may occasionally be mistaken for S. stercoralis; one cause of 

microscopy positive, qPCR negative results119. As an alternative and more readily-available 

sample type, urine has been assayed for S. stercoralis DNA with sensitivity of 74.7%, making 

it worthy of additional study as a diagnostic option120 (Table 1). 

Serology 
Serology for detection of anti Strongyloides IgG has the highest sensitivity for active 

infection of the existing diagnostic methods. The antigen used is not standardised and 

various Strongyloides species are used to produce in-house seroantigen, including S. ratti or 

S. venezuelensis from laboratory rat infections, or S. stercoralis from previous human or 

dog infections121, 122. A comparison of S. stercoralis and S. ratti antigen revealed equivalent 

sensitivity for human strongyloidiasis123. Therefore these assays are likely to be useful for 

increasing diagnostic sensitivity when used in conjunction with other tests. However, 

serological assays based on crude lysate antigens have been found to cross-react 

occasionally, with infections with trematodes Opisthorchis and Fasciola123, and filarial 

nematodes such as Mansonella, Loa and Onchocerca but also T. cruzi124. Apparent false 

positives could also be due to otherwise undetected strongyloidiasis if other methods are 

not used to confirm the diagnosis125. Detection of IgG in urine has proven somewhat 

successful in two studies in Thailand where urine ELISAs using various antigen preparations 

were about 80% sensitive and 40%-55% specific, slightly lower than serum tested by the 

same assay but of potential use in initial population screening126, 127. 

In addition to high sensitivity, serology has the highest negative predictive value so that if a 

person is negative by serology, they are almost certainly not infected. However, there are 

instances where this is not the case and an infected person may present with negative 

serology and atypical symptoms/clinical findings128, particularly newly-infected travellers, 

as opposed to chronically exposed individuals39. 

A Strongylodies specific seroantigen termed NIE was identified by Ravi et al. (2002)129 using 

immuno-screening of a genomic library of S. stercoralis L3 larvae. The 31 kDa protein was 

later found to be related to insect venom allergens130 but remains uncharacterised in 

Strongyloides. In LIPS assay format, NIE had 100% specificity and 97% sensitivity. An 
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additional recombinant protein antigen ‘S. stercoralis immunoreactive antigen’ (SsIR) was 

incorporated into a LIPS assay along with NIE, increasing both sensitivity and specificity to 

100%131 (Table 1). The LIPS assay involves a synthetic fusion protein comprising the antigen 

of choice and the enzyme luciferase, expressed from a mammalian cell expression system1. 

The fusion protein is incubated with the serum sample, followed by incubation with protein 

A or G coated beads to capture IgG from the serum, beads are washed to remove all 

unbound material, a luciferase substrate is added and light output is measured. LIPS 

produces low background and a higher dynamic range than ELISA, giving clearer separation 

between positive and negative samples131.  

IgG4, an IgG antibody sub-class particularly stimulated by parasitic infections, showed 

improved specificity over total IgG in NIE assays125, as did IgG1, IgG4 and IgE with S. ratti 

somatic antigen122. However, IgG4 had lower sensitivity than IgG in another NIE LIPS 

study131. Anti Strongyloides IgA has been detected in saliva, although this was not 

sufficiently sensitive to replace conventional IgG serology132. Another potential 

seroantigen, termed ‘rSs1a’, was recently identified using a similar genomic library 

screening strategy to NIE. It had 96% sensitivity and 93% specificity in initial testing133. 

Therefore, serology for strongyloidiasis is a growing field and is becoming widely 

recognised for its advantages. 

Challenges with serology include defining seropositivity cut-offs, particularly in light of 

inadequate reference tests and non-standardised antigens134. Secondly, S. stercoralis 

serology has limited utility for monitoring treatment outcome and although a declining 

antibody titre is seen, this is measurable only several months after treatment135. This 

makes most serology unsuitable for monitoring treatment outcome in the very short term, 

prior to immunosuppression or organ transplant for example, but useful in epidemiological 

studies where a subsequent round of sampling can be performed136. However, this may not 

differentiate treatment failure from re-infection. In HIV co-infected individuals, serology is 

less accurate in the severely immunocompromised thus empiric treatment with ivermectin 

has been recommended where travel history and eosinophilia suggest infection137.  

Antigen detection 
Assays detecting Strongyloides antigens are as yet limited to early development in 

research. Several assays have been developed against rat-infective Strongyloides species, 

the first of which, by Nageswaran et al. (1994)138, used somatic adult and larval worm 

antigens, with the anti-adult worm assay tracking the progression of infection in rats. 
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However, as the authors concluded, a better defined antigen or monoclonal antibody 

would have increased sensitivity. 

Goncalves et al. (2010)139 used L3 larvae of S. venezuelensis to raise a polyclonal antibody 

which was used successfully to capture and detect antigen in infected rat faeces. This was 

possible from early in the infection and even when faecal egg output fell as the infection 

progressed and eggs were not detected microscopically (unlike S. stercoralis, S. 

venezuelensis eggs are seen in faeces). 

Rabbit anti S. ratti E/S material was also successful when used by Sykes and McCarthy 

(2011)140 on a S. stercoralis infected human stool sample and was negative with E/S 

material of certain other helminths. This highlights the advantage of using a polyclonal 

antibody, but the down side was cross-reactivity with rat gut components which had been 

carried over into the antigen preparation used to raise the antibody. 

In addition to stool antigens, immune complexes of Strongyloides antigen with attached 

host antibody, have been detected in blood141 and saliva142 with limited sensitivity. 

However, the pilot coproantigen assays are proof of principle and show promising results 

but emphasise the need for known antigen targets and more specific antibodies. 

Diagnostic sensitivities 
Table 1 presents examples of the sensitivities and specificities of the various methods for 

diagnosing strongyloidiasis. In the absence of a single reference test, different methods are 

used as reference standard, which have a large effect on the apparent sensitivity. 

Specificity is not always calculated due to the difficulty in guaranteeing absence of 

infection. The recommended practice for diagnosing strongyloidiasis is a combination of 

serology and stool microscopy, confirmed with qPCR, dependent on the circumstances117. 

For epidemiological screening and diagnostic test evaluation, a composite reference 

standard or latent class analysis should be used to measure the sensitivity of the individual 

techniques and the true prevalence in a population117, 143. 
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Table 1. Sensitivity of different techniques for diagnosing strongyloidiasis, illustrating the 

many variables and the absence of a single reference method. P, parasitological (includes 

any microscopic method); S, serology; CRS, composite reference standard (including 

various combinations of methods); w/o, without; LCA, latent class analysis; CrAg, crude 

antigen; IFAT, immunofluorescence antibody test. 

Diagnostic 

method 

Sensitivity (%)  

(95% Confidence 

interval (CI)) 

Specificity  

(%) 

Reference 

method 

Reference 

 

Baermann 

funnel 

86.3 (76.7-92.9) 2 

samples 

Not stated CRS (w/o 

S) 

Barda et al. (2018)118 

83.6 (71.2-92.2) Presumed 

100 

CRS (w/o 

S) 

Knopp et al. (2014)144 

43.6 (25.7-70.4) 97.9 (96.5-

98.9) 

LCA Krolewiecki et al. (2018)120 

37.5 (24.9-51.5) Not stated CRS (w/o 

S) 

Becker et al. (2015)145 

Koga agar 

plate 

21.4 (11.6-34.4) Not stated CRS (w/o 

S) 

Becker et al. (2015)145 

 

qPCR 

77.5 (66.8-86.1) Not stated CRS (w/o 

S) 

Barda et al. (2018)118 

76.8 (63.6-87.0) Not stated CRS (w/o 

S) 

Becker et al. (2015)145 

66.2 Not stated CRS (w/o 

S) 

Kristanti et al. (2018)146 

64.4 (46.2-77.7) 93.9 (90.3-

96.3) 

P Buonfrate et al. (2018)117 

56.5 (39.2-72.4) 95.4 (91.7-

97.5) 

P + S Buonfrate et al. (2018)117 

31.0 (21.3-42.6) Not stated CRS (w/o 

S) 

Barda et al. (2018)118 

30.9 96.2 CRS (w/o 

S) 

Knopp et al. (2014)144 

 

PCR 

Urine  74.7 (53.8-

91.8) 

77.1 (71.7-

83.7) 

LCA Krolewiecki et al. (2018)120 

Stool 71.8 (52.2-

85.5) 

93.5 (90.4-

95.6) 

P Buonfrate et al. (2018)117 
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61.8 (42.0-

78.4) 

95.3 (92.0-

97.2) 

P + S Buonfrate et al. (2018)117 

 

Table 1 continued. 
Diagnostic method Sensitivity 

(%)  
(95% CI) 

Specificity  
(%) 

Reference 
method 

Reference 

 
 
Serology 
 
 
 
 
 
 
 
 
 
  

IFAT 94.6 (90.7-
98.5) 

87.4 (83.4-
91.3) 

CRS Bisoffi et al. (2014)124 

NIE LIPS 97.8 100 P Krolewiecki et al. (2010)134 
97 100 P Ramanathan et al. (2008)131 
83.9 (77.5-
90.1) 

99.6 (98.9-
100) 

CRS Bisoffi et al. (2014)124 

SsIR LIPS 97 97 P Ramanathan et al. (2008)131 
NIE/SsIR 
LIPS  

100  100 P Ramanathan et al. (2008)131 
91.2 100 P Krolewiecki et al. (2010)134 

NIE 
Luminex 

93 (88-96) 95 (93-97) P Rascoe et al. (2015)125 

NIE IgG4 
ELISA 

95 (92-97) 93 (90-96) P Rascoe et al. (2015)125 

 
NIE 
ELISA 

97 95 P Ramanathan et al. (2008)131 
84 100 P Krolewiecki et al. (2010)134 
76.7 (67.1-
85.1) 

71.6  
(65.7-77.4) 

LCA Krolewiecki et al. (2018)120 

72.3 (61.8-
80.8) 

93.6 (88.2-
96.6) 

CRS Fradejas et al. (2018)147 

70.8 (63.0-
78.6) 

91.1 (87.7-
94.5) 

CRS Bisoffi et al. (2014)124 

CrAg 
ELISA 
(various) 

37.5-100 73.4-100 various Levenhagen and Costa-Cruz 
(2014)148 (review) 

77.1% 
(serum) 
80.0% (urine) 

61.4% 
(serum) 
55.1% 
(urine) 

CRS Eamudomkarn et al. (2018)126 

89.2 (80.7-
94.2) 

89.3 (83.1-
93.4) 

CRS Fradejas et al. (2018)147 
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1.2.3  Leishmania donovani 
 
The Leishmania donovani complex 
 
There are approximately 20 species of Leishmania that infect humans and cause a wide 

range of clinical manfestations including cutaneous lesions, mucosal destruction and 

visceral disease, the last is addressed by this thesis and is caused by members of the 

Leishmania donovani complex (Figure 9). This includes two species: L. donovani and L. 

infantum. However, they have different phlebotomine sand fly vector species and their 

geographic distribution differs in that L. donovani is present in Africa and Asia while L. 

infantum occurs in the Middle East, Europe and South America. 

Kinetoplastida Trypanosomatidae

Trypanosoma

Leishmania

Viannia

L. guyanensis L. guyanensis
L. panamensis

L. braziliensis L. braziliensis
L. peruviana

Leishmania

L. mexicana
L. mexicana

L. amazonensis
L. venezuelensis

L. aethiopica L. aethiopica

L. major L. major

L. tropica L. tropica
L. killicki

L. donovani L. donovani
L. infantum

Sauroleishmania L. tarentolae
L. gymnodactyli

6 other genera

Order                          Family                            Genus                         Subgenus                Species complex                 Species

 

Figure 9. Taxonomy of Leishmania. Yellow, genera and subgenera which contain human-
infective species; purple, species causing visceral leishmaniasis; green, species causing 
cutaneous leishmaniasis outside of the Americas; blue, species causing cutaneous or 
mucocutaneous leishmaniasis in the Americas. Box with thick outline indicates the species 
addressed in this report. Figure made by the author, based on information from Real et al. 
(2013)149. 

 

Leishmania was identified as a parasite and the causative agent of ‘Dum Dum fever’ by 

Major William Boog Leishman150 and separately, Captain Charles Donovan151 in 1903, in 

Indian patients and British miltary personnel formerly stationed in Dum Dum (near 

Calcutta), India. The following year, the same parasite was confirmed in humans in 

Sudan152. Genetic analysis of Leishmania has indicated separation between the different 

populations of L. donovani in Africa and Asia153. However, molecular analysis proved that L. 

infantum, formerly known as L. chagasi, in South America orignated from Europe in recent 
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history, possibly making the sea voyage several times in infected dogs on board the ships of 

European settlers154. 

Life cycle 
 
Infection is initiated by a bite from an infectious female phlebotomine sand fly, during 

which the highly motile promastigote form of the parasite is injected into the host skin 

where it enters a macrophage (Figure 10).  

 

Figure 10. Life cycle of Leishmania spp. as motile promastigotes in the sand fly vector and 
intracellular amastigotes in the mammalian host. Image from Harhay et al. (2011)155, 
reproduced with permission. 

 

The parasite evades destruction in the macrophage by inhibiting cell signalling pathways 

which would otherwise trigger its destruction, turning a phagosome into a parasitophorous 

vacuole. In this parasitophorous vacuole, Leishmania transforms into the non-flagellated 

amastigote which replicates by binary fission156 (Figure 11). Among other mechanisms, 

Leishmania evades macrophage killing by release of its surface-bound metalloprotease, 

GP63156. 
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Figure 11. Diagram of a Leishmania cell in promastigote form, left, and amastigote form, 
right. When appropriately stained, the nucleus and kinetoplast DNA (dark blue) form 
characteristic diagnostic features of a large diffuse spot and a small, dense bar, inset. 
Diagram from Besteiro et al. (2007)157, reproduced under a Creative Commons license. 
Inset photo by the author from a Giemsa stained impression smear kindly provided by 
Claire Rogers. 

 

1.2.4  Visceral leishmaniasis 
 
Pathology and immunology 
 
The majority of L. donovani and L. infantum infections are asymptomatic. Often defined as 

seropositivity, asymptomatic individuals outnumber VL cases by 4-18 to 1158-160. However, 

circulating parasites and parasite DNA have also been recovered from asymptomatic 

individuals, including from skin microbiopsies, indicating the potential of asymptomatic 

individuals to transmit to sand flies161-165. Of those that develop disease, the clinical 
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features are fever of long duration (>2 weeks; often weeks or months if untreated), 

enlargement of the spleen and/or liver (spenomegaly/ hepatomegaly), wasting and 

weakness, and in advanced cases, skin hyperpigmentation and immune compromise 

leading to bacterial co-infections166. 

As an intracellular pathogen, an effective reponse to Leishmania is the initiation of a TH1 

inflammatory response which destroys the parasite via nitric oxide (Figure 12)167. Such an 

immune response leads to immune memory so that the majority of cured individuals will 

not be re-infected, but inadequate parasite clearence and weaker immunity can lead to 

relapse of VL. In the case of a dominant TH2 humoral response this leads to 

hypergammaglobulimemia, a common characteristic of VL, which can result in immune 

complex damage to the kidneys and is ineffective at overcoming the infection168. The 

negative impact of a strong serological response is supported by the observation that 

recent, strong seroconversion is associated with disease169.  

 

Figure 12. The contribution of TH1 and TH2 polarised immune responses to susceptibility or 
resistance to Leishmania infection. Figure adapted from Dunning (2009)167 under a Creative 
Commons license. CD, cluster of differentiation; MHC, major histocompatibility complex; 
TH, T helper cell; IL, interleukin; TNF-α/β, tissue necrosis factor alpha/beta; IFN-γ, interferon 
gamma, TGF-β, transforming growth factor beta; Ig, immunoglobulin. 

 

HIV-VL co-infection leads to more severe VL disease which does not achieve complete cure, 

even following multiple treatement rounds18, 170. In turn, VL exacerbates HIV progression171. 
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This synergistic effect is in part due to the destruction of a beneficial TH1 response by HIV 

which could otherwise confer resistance to Leishmania (Figure 12). 

In addition to infectious disease interaction, VL is worse in malnourished individuals. In 

particular low meat protein consumption, and retinol (vitamin A) and zinc deficiencies have 

also been found in VL patients158, 172. Zinc is a co-factor in over 300 enzymes and its 

deficiency is known to have detrimental effects on many types of immune cells173. 

Providing zinc to Leishmania-infected mice was both therapeutic and prophylactic174. The 

contribution of vitamin A is less well-defined than that of zinc but it may play a role in 

immune regulation175. However, very little evidence is available on the effect of providing 

nutritional supplements with VL treatment in humans, and a Cochrane Review on the 

subject in 2018 failed to identify any eligible studies, therefore more research is needed176. 

Occurence of PKDL, which tends to appear on sun-exposed parts of the body, may be 

related to endogenous production of vitamin D3 which has potent immune interaction177. 

 

Epidemiology and control 
 
Leishmaniasis is endemic in about 98 countries, however in 2014, 90% of reported VL cases 

were from just six countries: Brazil, India, Bangladesh, Ethiopia, South Sudan and Sudan178, 

179 (Figure 13).  
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Figure 13. Global visceral leishmaniasis endemicity in 2016, as reported to the World 
Health Organization. From World Health Organization (2018)180, with permission. 

 

Risk factors for VL include poverty and malnutrition, with a tendency for younger children 

to be affected more than older people, males more than females, and a possible role of the 

proximity of cattle to the household12, 181. Cases of VL and asymptomatic infection, cluster 

at village and household level158.  

VL has historically caused large epidemics as it emerges in a susceptible population. A very 

severe epidemic occured in South Sudan as a result of the movement of infected people 

into a previously non-endemic region due to armed conflict. VL caused approximately 

100,000 deaths, one third of the population, in a ten year period from 19849. An epidemic 

cycle of about 8-10 years has now developed in parts of Sudan182. In India and neighbouring 

countries, epidemics have occurred on a cyclic basis for over a century183. This cycle, 

recently of about 15 years, is likely to be related to herd immunity with cases increasing as 

the younger, previously unexposed, population reach sufficient numbers. This is evidenced 

by incidence peaks of both VL and PKDL in children and young adults aged from 5-29 years, 

and increasing cellular immunity (i.e., disease resistance) with age in adults, as determined 

by the leishmanin skin test159, 184-186. In addition, or alternatively, to herd immunity, the 

cyclic incidence may be a consequence of withdrawal of insecticide spraying campaigns and 

other factors10, 183. According to the most recent data, India is continuing to see a reduction 

in the number of VL cases and Bangladesh is on track to meet its elimination goal (Figure 

14)187. However, to what extent this decline is due to control efforts, or the inter-epidemic 

period, is not yet clear. 
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Figure 14. Number of VL cases reported to the World Health Organization (WHO) by the 6 
countries accounting for 90% of global cases. Reporting methods changed in 2013 to 
separate autochthonous from imported cases, only the former is shown here from 2013. 
Data from the World Health Organization (2017)188. 

 

Relapse 
Relapse of VL after apparently successful treatment i.e. resolution of clinical symtoms, is 

reported in up to 10% of cases in the Indian subcontinent and fewer than 4% in regions of 

eastern Africa189. These patients undergo repeated biopsy to confirm the disease and then 

repeated treatment, which may require hospitalisation. Relapse is more common in cases 

of HIV co-infection, even when the patient is taking anti-retrovirals18, 190. In 

immunocompetent VL patients in India, the majority of relapses occur 6 to more than 12 

months post-treatment with AmBisome16 but within 6 months after miltefosine 

treatment191. In Sudan, relapse rates increased when a short course of SSG and PM was 

used for VL treatment, instead of longer duration SSG alone192. Therefore incomplete 

treatment is likely a factor contributing to relapse, which may not be due to drug resistance 

in the parasite193. 

PKDL 
PKDL is a non-painful but potentially temporarily disfiguring sequel of VL, occuring mostly 

after treatment but also during, or without, a prior VL episode194. It is characterised by skin 

pathoglogy (nodules, macules and/or papules), typically beginning on sun-exposed areas 

such as the face184, and proven to be a source of infection for sand flies195, 196. Therefore, 

PKDL is one mechanism by which the parasite is maintained in a human population 

between epidemics181. Presentation of PKDL differs between Africa and Asia, occuring 

months to years after VL treatment in the Indian subcontinent194 but weeks to months 
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after, or during, treatment in Sudan197. In both regions, it may occur without prior VL, 10% 

in Sudan and up to 23% of cases in India182, 198. PKDL is much less reported in L. infantum 

endemic areas199. Treatment of PKDL in the Indian subcontinent is lengthy, requiring weeks 

or months of regular injections, however, it may self-heal over months to years if 

untreated184. In Sudan, PKDL is largely self-healing and usually not treated197, 200. 

Asymptomatic VL and progression 
Asymptomatic individuals may be another reservoir of parasites as 2%-3.5% of these will 

progress to VL disease201, 202, a number that can rise to 12% among those with a high anti-

Leishmania antibody titre169. Asymptomatic infection is most often characterised as 

seropositivity in the absence of previous VL, a state which outnumbers VL cases at between 

4-10 to 1169 and may cluster around households with VL cases, although evidence is 

conflicting198, 203. However, seropositivity alone does not necessarily indicate presence of 

circulating parasites in the blood and over 80% of seropositive individuals revert to 

seronegative within a year201. Given that recent seroconversion and high titre seropositivity 

have been identified as risk factors for progression to VL169, and that asymptomatics are 

not treated, these individuals need to be identified and followed so that when disease 

manifests, they can be treated without delay to avoid morbidity, mortality and onward 

disease transmission. 

Zoonotic VL 
The epidemiology of VL varies greatly across its geographic range. This is because L. 

infantum is a zoonotic parasite with a main reservoir in domestic dogs, whereas L. donovani 

in the Indian subcontinent is considered anthroponotic, but may have less-well 

characterised animal reservoirs204 and L. donovani transmission in Sudan has moderate 

influence of sylvatic animal reservoirs182, as well as dogs205. 

Control 
VL control measures differ across the different geographies. In Brazil, where VL is zoonotic, 

animal reservoir control, for example, culling of seropositive dogs has been attempted, but 

proved ineffective as well as higly unpopular206. A vaccine for dogs is available to pet 

owners with about 70% efficacy207. Reducing the contact between sand flies and dogs by 

the use of insecitide-releasing collars is also practiced. However, Brazil in particular 

experienced a rise in VL morbidity and mortality between 1990 and 2016208. In some 

regions this was particularly associated with HIV/AIDS co-incidence, although improved 

nutrition and overall vaccination coverage (of standard childhood vaccines) in children has 

reduced incidence in younger age groups209. Since these figures were released, the Pan 
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American Health Organization set goals to reduce mortality from VL by strengthening 

surveillance, diagnosis and treatment systems210. However, weak political will, the low 

perception of VL as a problem, and the need for extensive research on transmission 

dynamics and vaccine development, could continue to hinder control programs in Brazil211. 

In the Mediterranean region where L. infantum infects dogs, sylvatic mammals and 

humans, control is based on case detection and treatment, both of infected dogs and 

humans206. Injecting drug users, immunosuppressed, and HIV positive individuals are at 

increased risk of VL212, 213. An unusual outbreak of (human) VL in Madrid in 2009-15 was 

traced to wild hares in an urban park214, thus the culling of hares and rabbits in the park, 

use of insecticide-impregnated dog collars and complete treatment of infected individuals 

brought the outbreak under control215. 

VL is targeted for elimination as a public health problem in India, Bagladesh and Nepal, a 

region where there is presumed to be no animal reservoir. Priorities of the elimination 

strategy are: early VL case detection with complete treatment, for which the drug 

AmBisome is donated by the manufacturer Gilead; and vector control using indoor residual 

spraying (IRS) of pyrethroid insecticides14. Additionally, health system strengthening and 

community engagement have been important in Bangladesh187. Historically, VL in India was 

reduced to negligible levels during extensive DDT insecticide spraying to control malaria in 

the 1950s and 60s, which had a knock-on effect on sand flies, demonstrating that intensive 

vector control is effective. However, by the 1970’s, when DDT spraying had been ceased, 

VL cases returned. Likewise, long-term success of the current control program must focus 

on PKDL which is likely to be a reservoir of parasites between outbreaks of VL, is 

underreported due to being asymptomatic and involves lengthy treatment that may not be 

tollerated by patients182. In addition to IRS for vector and transmission control, bed nets 

have shown benefit in protecting against VL when used consistently during summer 

months, even if they were not insecticide treated158. 

VL control in eastern Africa relies primarily on diagnosis and treatment to prevent 

morbiditity and mortality. Many treatment centres across the region are provided by 

Médecins Sans Frontières (MSF) and face challenges of high HIV-coinfection rates, and in 

some areas, disruption due to armed conflict216. A study of the most effective treatments in 

African VL identified the now first-line combination therapy which reduced treatment 

time217. In addition, a large collaborative and internationally-funded project ‘KalaCORE’ is 
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supporting country efforts to increase capacity for VL control in East Africa addressing 

diagnosis, treatment, vector control and supply chains, among other requirements218. 

 

Treatment 
 
There are many drugs available against Leishmania; antimonials, pentamidine, 

paromomycin, amphotericin B and miltefosine (Figure 15). The first class of drugs, used for 

VL treatment from 1912,  was based on the element antimony (Sb, latin: stibium) which 

was since developed into sodium stibogluconate (SSG)219. This pentavalent antimonial 

continues to be used for VL in regions where the parasite remains susceptible, although it 

has potentially fatal cardio-toxicity which must be monitored during the month-long 

treatment219. 

 

Figure 15. Timeline of drugs in use against visceral leishmanianisis in India, 1977 until 2011. 
SbV: pentavalent antimony. Red blocks indicate the cessation of use of these drugs as 
monotherapies in India. Figure adapted from Muniaraj (2014)10 under a Creative Commons 
license.  

 

Paromomycin (PM) is used in combination with SSG as first-line treatment in South Sudan 

given as intramuscular injections; the combination shortens treatment from 30 to 17 days 

but has been associated with higher relapse rates192, 220. Amphotericin B, formulated into 

liposomes as the brand AmBisome, is the safest drug for VL and is donated by the 

manufacturer Gilead for the VL control programmes in India, Bangladesh, Nepal, South 

Sudan and Sudan13. In India, single dose intravenous liposomal amphotericin B is a first line 

treatment221. Amphotericin B was first discovered in the 1950s from the soil bacterium 

Streptomyces nodosus222. Also functional as an antifungal agent, amphotericin B acts on 
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Leishmania membrane sterols and increases permeability so that the cells leak223 (Figure 

16). 

 

Figure 16. Amphotericin B. (A) Molecular structure and binding to ergosterol. (B) Mode of 
action by creating pores in the cell membrane. Images from Gray et al. (2012)224 with 
permission. 

 

Miltefosine is the only oral drug available for VL treatment. However it has teratogenic 

effects which limit its use in women of childbearing age and drug resistance is emerging in 

the parasite225. To avoid additional drug resistance, combinations of existing drugs are 

increasingly used, including AmBisome and miltefosine in the Indian subcontient, among 

other combinations226, 227. 

 

Diagnosis 
 

Microscopy 
Diagnosis of VL is made primarily by serological testing, either by RDT, ELISA, direct 

agglutination test (DAT) or immunofluorescence antibody test (IFAT), the choice of which 

differs between countries and regions. Positive serology is followed by parasitological 

confirmation to visualise amastigotes in aspirated fluid from the spleen, bone marrow or 

lymph nodes (Figure 17)228. 
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Figure 17. Amastigotes of L. donovani (arrowed) alongside red blood cells in a Giemsa 
stained Indian splenic aspirate. Scale bar is approximately 10 um. Photograph by the 
author. 

 

Serology 
The discovery of K39, a highly sero-reactive antigen with high specificity to VL was made by 

screening a genomic library of L. infantum with the serum of an infected patient229. This 

protein, a 298 amino acid (aa) section of a kinesin, consists of 6.5 repeats of a 39 aa 

sequence (Figure 18). The discovery and production of recombinant K39 (rK39) 

revolutionised VL diagnosis due to its high sensitivity and specificity, and field applicability 

in RDT format230.  

 

Figure 18. Representation of the rK39 and rK28 serological antigens of Leishmania 
donovani, used to diagnose VL. Yellow shades indicate sequences derived from kinesin 
proteins and green indicates HASPB derived sequences.  

 

Highly effective in the Indian subcontinent, rK39-based serological assays have sensitivity 

and specificity in the range of 93-100%228. However, this antigen has lower accuracy in 
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eastern Africa, ranging between senstivities of 75-85% and specificities of 70-92% in 

Ethiopia, Kenya and Sudan231. The poorer performance of rK39 for African VL is due to a 

combination of differences in human serological responses and parasite antigen sequence 

differences between Africa and Asia231-233. To address the need for a reliable seroantigen in 

eastern Africa, a 253 aa fusion protein termed rK28 was created from a synthetic gene that 

combines repeats of an African L. donovani rK39 orthologue with sections of two antigenic 

HASPB proteins234, 235 (Figure 18). An rK28-based RDT tested in Sudan had specificity of 

100% and 97.6% with whole blood and serum respectively. Corresponding sensitivitites 

were 92.5% and 94.5%236. Beyond eastern Africa, rK28 performed equally to rK39 when 

tested in India237 and Bangladesh234. In Brazil, rK28 serology has proven useful for 

identifying seropositive dogs, a key component of zoonotic VL control in that region238. 

rK39 serology has also shown high sensitivity and specificity in Brazil, including 100% 

negativity in patients with cutaneous leishmaniasis239, 240. However, both rK39 and rK28-

based diagnostic tests had much reduced sensitivity (61-67%) in HIV co-infected individuals 

in Brazil241. 

The detection of antibodies has also been evaluated using urine samples, against 

recombinant antigens: rKRP42 with 94% sensitivity and 99.6% specificity242; rK39 with 

96.4% sensitivity but insufficient specificity of 62% in one study243 but similar sensitivity and 

100% specificity in another study244. rK28 had 95.4% sensitivity and specificity of at least 

93% with urine245. The reason for the presence of anti-Leishmania antibodies in urine is not 

well defined and given the variable results in various studies, the use of urine with rapid 

diagnostic tests or ELISA would need additional validation prior to incorporation into 

control programs or for individual diagnosis. 

PCR and qPCR 
Molecular diagnostics for VL include PCR and qPCR of DNA extracted from periferal blood, 

bone marrow, or buffy coat (a white cell and platelet layer formed when blood is separated 

by centrifugation). However, molecular tests are mostly limited to highly resourced 

laboratories due to the need for advanced equipment, and methods are not standardised. 

Commonly used PCR targets are the 18S rRNA gene and the kinetoplast, among others246, 

247. The most sensitive PCR amplifies the minicircles, DNA circles within the kinetoplast, 

which occur at about 10,000 copies per parasite247. In immunocompetent VL patients, PCR 

of blood and bone marrow have almost equal sensitvity246. In India, PCR of DNA from blood 

yielded sensitivity and specificity of 96.4% and 98.5% respectively, and in Bangladesh, 

amplification of buffy coat DNA had sensitivity and specificity of 90.7% & 100% 



 

49 

 

respectively247. qPCR, has been found to distinguish between asymptomatic and active 

infection based on the quantity of circulating parasite DNA248. VL urine has also been tested 

by qPCR and although it had lower sensitivity than serological and parasitological methods, 

it became negative soon after treatment249. 

Despite these promising results in research trials, PCR and qPCR are expensive, therefore, 

they are generally not used in clinical practice in endemic areas where they do not add 

additional value above existing tests228. However, PCR may be a solution for diagnosis of VL 

in HIV positive individuals in whom serology is less reliable, and as regions move towards 

elimination, when a measure of active infection will be needed. According to a meta 

analysis, PCR of buffy coat or bone marrow in HIV-VL co-infection, both have high 

sensitivity and specificty of around 93% and 96% respectively246. 

LAMP 
Alternatives to PCR and qPCR are methods that rely on isothermal (single-temperature) 

DNA amplification. Loop-mediated isothermal amplification (LAMP) is one such technique 

that uses 4 or 6 primers giving high specificity, and is carried out in a single tube at about 

60°C, after which results can be observed visually. For VL, a LAMP assay had the ability to 

detect less than 1 parasite’s worth of L. donovani DNA and had very high sensitivity and 

specificity with DNA from human blood and bone marrow samples250. The assay was also 

positive with a small number of post-treatment samples from patients who went on to 

relapse. In Sudan, a commercial LAMP kit was evaluated for VL diagnosis and had very high 

sensitivity using DNA extracted from blood or buffy coat by either a commercial kit, or a 

low-cost method using common lab reagents and equipment, indicating its potential 

application to confirm infection in lower-resourced settings251. Although LAMP removes the 

need for a thermocycler and fluorescence detection equipment, which theoretically would 

make it more field-applicable, it still requires the DNA to be purified from the sample, is 

susceptible to enzyme inhibitors carried through from samples, and is complex to develop 

due to the large number of primers. 

RPA 
As well as LAMP, the recombinase polymerase amplification (RPA) technique is another 

isothermal nucleic acid amplification method with the advantage of working at lower 

temperatures, including ambient temperature. RPA involves not only primers and 

polymerase, but also a recombinase enzyme that first binds to the primers and catalyses 

their attachment to the template. This removes the need for temperature cycles. While the 
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recombinase technology is provided by the manufacturing company, TwistDx, RPA assays 

(primers) have been developed for many infectious agents, including Leishmania. 

Castellanos-Gonzalez et al. (2015)252 detected L. infantum in dog blood and mucosal 

samples using their RPA and demonstrated high specificity, and sensitivity similar to qPCR. 

An additional advantage of RPA is the possibility to provide a visual result readout on a 

lateral flow strip, thus giving the technique the potential to be used closer to point of care. 

To make the RPA truly field-applicable, Mondal et al. (2016)253 incorporated all the 

components needed for an RPA into a ‘suitcase laboratory’ for detection of L. donovani in 

blood, buffy coat or PKDL skin biopsies. DNA extraction was performed in 20 minutes from 

one suitcase and RPA from another, taking another 20 minutes and powered with 

electricity from a battery and solar panel. As with the L. infantum RPA, the target was 

minicircle DNA, and 100% sensitivity and specificity was achieved on a small sample set, 

equalling that of qPCR. The same suitcase RPA was applied to samples from Sri Lanka 

where L. donovani causes cutaneous lesions254. Specificity remained at 100% but although 

sensitivity was lewer at 65.5%, the method was more sensitive than microscopy and was 3 

times cheaper than PCR. 

Antigen detection 
Antigen detection is an alternative to serology and molecular diagnostics. Detecting 

parasite antigens in urine has the advantage of being non-invasive, and theoretically of 

indicating cure in a timely way, being effective in HIV-VL co-infected patients, and being 

cheaper and more field-applicable than PCR. The KAtex test is the only urine antigen test 

that has been assessed widely for VL diagnosis. It is a latex agglutination test comprising 

antibody coated latex particles which when mixed with an infected urine sample on a card, 

agglutinate to indicate the presence of a Leishmania antigen. Uptake of the KAtex in VL 

control programs has been hampered by the variable and often low sensitivity of 35.8% to 

94%, overall assessed as 63.6% (95% CI: 40.9-85.6%) by a meta-analysis255, despite high 

specificity of close to 100%231, 256. In addition, there is a need to boil urine samples before 

processing to remove false positive reactions. However, the carbohydrate antigen has been 

well characterised and a monoclonal antibody against it has been developed into ELISA 

format, which removed the need for boiling samples and had 94.1% sensitivity and 100% 

specificity257. 

Studies reported in the literature have identified Leishmania infantum antigens in VL urine, 

including nuclear transport factor 2, tryparedoxin and iron superoxide dismutase258. 

Abeijon et al. (2012)258 developed ELISAs to capture these antigens but with limited 
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sensitivity. This was improved by combining the three analytes259 and successfully detected 

a drop in antigen levels immediately at the end of treatment at day 30 compared with pre-

treatment, in a small pilot study in India260. The assay has since been developed further by 

the use of more robust camelid antibodies261. 

In an alternative approach to urine antigen detection, Vallur et al. (2015)262 used an 

antigen-affinity purified polyclonal antibody against crude Leishmania lysate which was 

developed into a standardised ELISA kit for commercialisation. This kit had 88-100% 

sensitivity which varied by region, and 100% specificity, for VL from Africa, South America 

and Asia262, indicating very good potential for wider validation and use, but potentially 

limited by the need for polyclonal antibodies. 
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1.3 Aims and Objectives 
 

1.3.1  Strongyloides 
 

Aim 
To identify protein antigens of S. stercoralis that can contribute to development of a 

coproantigen rapid diagnostic test. 

Objectives 
a) Gather appropriate open access ‘omics’ data sets and analyse these for candidate 

antigens, based on: likely presence in stool; specificity to Strongyloides or S. 

stercoralis; antigenicity.  

b) Investigate relative gene expression, sequence homology, predicted epitopes and 

glycosylation, 3D structure and other features of the candidate antigens. 

c) Compile a shortlist of candidate coproantigens meeting the above criteria, and 

synthesise peptide coproantigens to be used to raise antibodies. 

d) Investigate gene and protein sequence diversity/conservation of candidate 

coproantigens from diverse geographical regions, by designing primers and 

amplifying and sequencing regions of interest from S. stercoralis-infected stool DNA 

from regions of Africa and Asia. 

e) Collect stool samples from a community in Guinea Bissau, storing samples in 

ethanol for DNA analysis, and in formalin for antigen analysis for development of 

assays to detect coproantigen and to test prototypes. 

 

1.3.2  Visceral leishmaniasis 
Aim 
Contribute to development of diagnostic assays for visceral leishmaniasis through 

assessment of the capacity of IgG1 anti-L. donovani responses to discriminate between 

different VL disease states, and to identify L. donovani protein antigens in human urine 

from VL cases, which may be the targets of a urine antigen capture assay. 

 

Objectives 
f) Assess the ability of different diagnostic assays for IgG1 anti-L. donovani, to 

distinguish between active or progressive VL and asymptomatic carriers; post-
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chemotherapy relapse versus cure, and to diagnose PKDL, with sera from Sudan 

and India, including results of laboratory research performed at Banares Hindu 

University, Varanasi, India. 

g) Use western blot and mass spectrometry to investigate the different antigens 

involved in individual anti-L. donovani IgG1 responses of active, aymptomatic, 

cured, relapsed and PKDL individuals. 

h) Immunocapture L. donovani antigens from VL patient urine using anti L. donovani 

antibodies and Indian and Sudanese urine. Identify proteins in the captured 

material from urine using mass spectrometry, and analyse this for potential 

Leishmania-specific candidate antigens and epitope regions. 
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CHAPTER 2: Comparative ‘omics’ discovery of Strongyloides 
stercoralis coproantigens for diagnostic development 

 
Marlais T, Talavera-López C, Le H, Chowdhury F, Miles MA. Comparative ‘omics’ discovery 

of diagnostic coproantigens for Strongyloides stercoralis infection. 

 

Key points, novel results and implications 

x A novel analysis of open access genomic, transcriptomic and proteomic data, 

literature on existing seroantigens and published genomic analysis, using online 

computational tools for the discovery of coproantigens of Strongyloides stercoralis. 

x The result is a rationally selected collection of S. stercoralis candidate 

coproantigens that are being synthesised as peptides, and others that can be 

expressed as recombinant proteins, and used to raise antibodies for the 

development of a coproantigen assay. 

x These results can assist in the development of a coproantigen capture assay for 

strongyloidiasis, which would be a valuable basis for a rapid and robust diagnostic 

assay. 

x In addition, this study provides a model for the application of this method to 

numerous other helminths of medical and veterinary importance, especially those 

that are difficult to culture. 

 

Candidate’s contribution 

The candidate co-wrote the project proposal for the funding application then co-developed 

the detailed methodology. The candidate performed the literature review followed by 

bioinformatic and computational processes and associated analyses including, but not 

limited to: selecting and downloading all relevant datasets from online databases; 

constructing phylogenetic trees; sequence alignments; epitope prediction; 3D protein 

modelling; custom BLAST database creation and searching. The candidate compiled all 

results and figures, made the final selection of candidate antigens and prepared the 

manuscript. The candidate was assisted with the initial transcriptomic data analysis and 

received advice on which tools to use throughout the project but worked largely 

independently. 
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Contributions of co-authors 

Carlos Talavera-López, Wellcome Sanger Institute, designed the bioinformatics approach 

and provided the candidate with the basic knowledge to carry out this work. Carlos 

performed the differential gene expression analysis of the transcriptomic data which 

formed the starting point of further analysis by the candidate. He also recommended 

particular bioinformatics tools used for other analyses and advised the candidate on their 

use. 

Hai Le, LSHTM, designed primers and carried out PCR and sequencing, and qPCR of 

Strongyloides genes. 

Fatima Chowdhury, LSHTM, began the initial process of identifying S. ratti E/S orthologues 

in S. stercoralis before the improved Hunt et al. (2016) genomic dataset was available. 

Michael Miles, LSHTM, co-wrote the funding application and supervised the project. 
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Abstract 10 
Background: Infection with the gut nematode Strongyloides stercoralis persists unless 11 

effectively treated and is potentially fatal in immunosuppression. In addition, detailed 12 

epidemiological data are lacking due to inadequate diagnostic options. A rapid antigen 13 

detection test is needed to screen populations, to validate cure after treatment and prior 14 

to immunosuppressive therapy.  15 

Method: We analysed open access ‘omics’ data sets and existing seroantigens, and used 16 

online predictors to identify S. stercoralis proteins that are likely to be present in infected 17 

human stool, Strongyloides-specific, and antigenic. 18 

Results: Transcriptomic data from gut- and non-gut-dwelling life stages of S. stercoralis 19 

revealed 328 proteins differentially expressed. Excreted and secreted (E/S) proteome data 20 

of S. ratti were ‘converted’ to S. stercoralis, giving 1,057 orthologues. Two effective 21 

seroantigens and seven parasitism-associated protein families were compared 22 

phylogenetically between S. stercoralis and outgroups. Proteins with least homology to 23 

outgroups were selected. Proteins that overlapped the datasets were analysed by multiple 24 

sequence alignment, epitope prediction and 3D structure modelling to reveal 25 

peptides/protein sequences that form a selection of candidate coproantigens for S. 26 

stercoralis. A subset of short peptide antigen candidates are being synthesised for assay 27 

development. 28 

Conclusions: We detail multiple candidate antigens for S. stercoralis coproantigen detection 29 

assay development, identified using open access data and freely-available protein analysis 30 



Chapter 2: Strongyloides coproantigen discovery 

57 

 

tools. This powerful approach has potential to be applied to multiple neglected parasitic 31 

infections with available ‘omic’ data to speed up the development of rapid, specific, 32 

diagnostic assays for laboratory and field use. 33 

Introduction 34 
Biology 35 

The nematode Strongyloides stercoralis is a soil transmitted helminth (STH) occurring in 36 

faecally-contaminated humid soils in tropical and sub-tropical regions. Strongyloidiasis is 37 

estimated to affect up to 40% of people in endemic regions, where it is particularly a 38 

disease of poverty 1, 2. Infection occurs when infective third stage (iL3) larvae penetrate the 39 

skin and migrate within the host via the bloodstream and airways, before being swallowed 40 

into the digestive tract. The parasitic adult female burrows into the epithelium of the 41 

duodenum where it feeds on host tissue. Clinical signs and symptoms of strongyloidiasis 42 

may be eosinophilia, digestive pain or discomfort, urticaria and respiratory symptoms 3-5. 43 

S. stercoralis is unusual among human parasitic nematodes as it can complete its life cycle 44 

within the host and thus sustain infection for many years or decades if untreated 6-8. 45 

Autoinfection occurs when larvae reach iL3 stage before leaving the host and penetrate the 46 

gut or perianal skin to complete development. However, during immunosuppression, 47 

particularly due to corticosteroid treatment of co-morbidities, or HTLV-1 co-infection, very 48 

large numbers of larvae may undergo this autoinfective cycle, causing hyperinfection or 49 

dissemination 9, 10. These conditions are frequently diagnosed late due to their non-specific 50 

presentations, are difficult to manage, and have a fatality rate of over 60% 10-12. Diagnosis 51 

of strongyloidiasis and validation of cure after treatment are therefore imperative.  52 

Treatment with the first-line drug ivermectin, is well tolerated and has a reported efficacy 53 

of between 57% and 100%, with two doses preferred over a single dose. However, accurate 54 

determination of cure depends on follow-up and the diagnostic method used8, 12, 13. 55 

Albendazole and mebendazole, used to treat infection with other STH (Ascaris 56 

lumbricoides, hookworm and Trichuris trichiura), are less effective, or ineffective, against 57 

Strongyloides14. However, albendazole and ivermectin might be used together for joint 58 

benefits, pending further validation15, 16. In addition to ivermectin, moxidectin has shown 59 

equivalent effectiveness against S. stercoralis in early trials17. 60 

  61 
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Diagnosis 62 

Diagnosis of strongyloidiasis can be made by microscopy using agar plate culture18 or 63 

Baermann funnel, both of which isolate larvae from fresh stool. qPCR on extracted stool 64 

DNA is used in research and highly resourced laboratories and improves sensitivity over 65 

microscopy19-22. However, sensitivity may be reduced by polymerase inhibitors present in 66 

stool23, low stool volume used in testing (as little as 0.1 g compared to 1 gram or more used 67 

for culture or larval concentration methods), and irregular larval excretion13. Serology, 68 

detecting antibodies against either whole worm or recombinant antigens NIE and SsIR, has 69 

sensitivity of 70-98% and high specificity24 but cannot distinguish cure in a timely way as it 70 

remains positive for months to years after treatment25-27. Therefore, there is a need for a 71 

rapid diagnostic test (RDT) that detects parasite material and can be used for screening as 72 

well as for confirmation of cure. Pilots of such assays have shown proof of principle under 73 

research conditions using antibodies against Strongyloides ratti and Strongyloides 74 

venezuelensis somatic or excretory/secretory (E/S) antigens28-30. However, none of these 75 

studies has identified specific S. stercoralis proteins antigens that would enable production 76 

of standardised diagnostic tests at large scale. 77 

Reverse vaccinology 78 

The wealth of ‘omic’ data now available in the public domain, coupled with online protein 79 

analysis tools, enables a computational approach to antigen discovery. This concept was 80 

termed reverse vaccinology when used in vaccine candidate discovery31. The approach 81 

begins with genomic analysis, as opposed to biochemical or serological methods and it also 82 

has significant potential in diagnostic antigen discovery. It has the advantages of not 83 

requiring culture of the organism and of revealing antigens that may be less abundant or 84 

difficult to purify in vitro. Incorporation of transcriptomic data can inform candidate 85 

gene/protein selection in parasites with multiple life stages, such as S. stercoralis31.  86 

Our approach was facilitated by the publication of the genomes of S. stercoralis and three 87 

related species32. Here, we have applied a series of computational analyses to open access 88 

transcriptomic, genomic and proteomic data from Strongyloides species and other 89 

helminths. We have used common bioinformatic tools to identify Strongyloides protein 90 

antigens that may be diagnostic targets detectable in human stool in a coproantigen 91 

capture RDT. We focus on 8 protein families and suggest that the method could be used to 92 

explore other protein families of significance in parasitism. 93 

 94 
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Methods 95 
 96 

Data sources 97 

This study used data obtained from public databases, as detailed in Supplementary file S1. 98 

S. stercoralis transcript sequences identified by the prefix ‘SSTP’ can be obtained via 99 

UniProtKB (www.uniprot.org) or WormBase ParaSite (WBPS: www.parasite.wormbase.org).  100 

 101 

Overview of method 102 

Three criteria were applied for candidate antigen selection: presence in infected stool; 103 

specificity to Strongyloides and/or S. stercoralis; antigenicity, to facilitate raising sensitive 104 

antibodies. Datasets and analyses used to make this selection are shown in Figures 1 and 2, 105 

and detailed subsequently. 106 

 107 

Figure 1. Three requirements of a S. stercoralis coproantigen candidate (filled boxes, top 108 

row), and the analyses and open-access data sets used to assess against each criterion (un-109 

filled boxes).  110 

  111 

Figure 2. Starting data and analyses applied towards selection of Strongyloides stercoralis 112 

candidate coproantigens. 113 

Parasitism-associated proteins 114 

Protein families reportedly associated with parasitism, ‘priority protein families’, formed 115 

our focus for identifying coproantigens. Analysis of the Strongyloides genomes by Hunt et 116 

al. (2016)33 revealed seven protein families associated with parasitic as opposed to free-117 

living environmental nematodes. Of the seven, four protein families contained more genes 118 

in S. stercoralis than in S. ratti. Additional evidence for particular protein families 119 

containing potential coproantigens was found in published literature on the E/S proteomes 120 

of various parasitic helminth species. 121 

 122 

Transcriptomics 123 

http://www.uniprot.org/
http://www.parasite.wormbase.org/
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Stoltzfus et al. (2012)34 analysed the transcriptome of 7 life stages of S. stercoralis (Figure 124 

3). For the present study, these RNA data34 were downloaded from the National Centre for 125 

Biotechnology Information (NCBI) Sequence Read Archive (SRA) and grouped by potential 126 

location of the life stage, either in the host gut or not, in order to represent parasite life 127 

stages which could be excreting or secreting antigens into human stool (Table 1). Each life 128 

stage consisted of triplicate RNA reads. 129 

 130 

Figure 3. S. stercoralis life stages. Asterisks indicate life stages for which transcriptomic 131 

data were obtained by Stoltzfus et al. (2012)34. For the present study, transcriptomic data 132 

were grouped into two groups: those potentially present in the host gut, indicated by 133 

boxed asterisks, and those outside the host gut. Figure modified from Stoltzfus et al. 134 

(2012)34, under a CC BY license. P Females, parasitic females; PP, post parasitic; FL, Free-135 

living; PFL, post free-living; L1, stage 1 larva; L3, stage 3 larva; iL3, infectious third stage 136 

larva; L3+, tissue-migrating larva; L3a, autoinfective L3. 137 

Table 1. Grouping of transcriptomic data from Stoltzfus et al. (2012) into gut and non-gut 138 

life stages. Accession numbers are given for NCBI SRA for the triplicate reads. 139 

Gut Non-gut 
Life stage Accession 

numbers 
Life stage Accession 

numbers 
Parasitic female ERR146959 

ERR146960 
ERR146961 

Free-living female ERR146941 
ERR146942 
ERR146943 

Post-parasitic L1 
larvae 

ERR146953 
ERR146954 
ERR146955 

Post free-living L1 larvae ERR146950 
ERR146951 
ERR146952 

Post-parasitic L3 
larvae 

ERR146956 
ERR146957 
ERR146958 

iL3 (environmental 
infectious larvae) 

ERR146947 
ERR146948 
ERR146949 

  L3+ (tissue-migrating 
larvae) 

ERR146944 
ERR146945 
ERR146946 

 140 

We calculated relative abundance of transcripts using RSEM and bowtie235 and 141 

subsequently grouped RNA data from the 4 non-gut-dwelling stages and 3 gut-dwelling 142 

stages separately to give two groups. We then analysed differential gene expression 143 

between these two groups using ebseq in RSEM35. We selected only the genes with 144 
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normalized read count differences that we could be 100% confident were differentially 145 

expressed (DE) between the two groups of life stages. 146 

DE protein family identification  147 

ClustalW36 alignment of the DE genes was used to perform a multiple alignment and 148 

produce a phylogenetic tree which was annotated with iTOL37. The tree, labelled only with 149 

S. stercoralis gene accession numbers, facilitated the grouping of these DE genes into 150 

protein/gene families but protein identities remained unknown at this stage. 151 

DE proteins were identified by two methods. In the first, amino acid sequences of selected 152 

clusters on the tree were submitted to three domain-finding tools: Delta BLAST38, InterPro39 153 

and ExPASy Prosite40, 41 and a consensus of all three was used to obtain a probable protein 154 

identity. The second method was to submit all DE protein sequences to BlastKOALA42. 155 

BlastKOALA protein identities were considered alongside the previously obtained 156 

consensuses or were used if there was no existing identity from the first three tools.  157 

E/S proteomics 158 

Source of proteomic data 159 

Soblik et al. (2011)43 submitted excretory/secretory (E/S) material of S. ratti parasitic 160 

females to mass spectrometry and identified the constituent proteins. However, this was in 161 

the absence of a detailed Strongyloides genome against which to search the mass spectra. 162 

Therefore, in their 2016 publication of the Strongyloides genomes, Hunt et al. (2016)32 re-163 

analysed these spectral data and obtained protein identities from the corresponding 164 

genomic data of S. ratti. We acquired the list of parasitic female E/S proteins, with S. ratti 165 

genome accession numbers and protein identities, from Supplementary Table 19 of Hunt et 166 

al. (2016)32 and subsequently obtained the amino acid sequences for these accession 167 

numbers from the S. ratti protein file (WBPS v8) using samtools44. 168 

S. stercoralis orthologues to the S. ratti E/S proteome 169 

At the time of conducting this study, there were no E/S proteomic data available for S. 170 

stercoralis, therefore we obtained S. stercoralis orthologues of the S. ratti E/S proteins. To 171 

do this, we searched the S. ratti E/S proteins against a custom blast+ database consisting of 172 

the S. stercoralis protein file (WBPS v8). We used blastp with word size 2 and e-value -50. S. 173 

stercoralis hits, in the form of accession numbers, were extracted from the resulting table 174 

and duplicated hits were removed. Corresponding S. stercoralis amino acid sequences were 175 

extracted from the S. stercoralis protein file using samtools. VENNY 2.145 was used to reveal 176 
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the S. stercoralis accession numbers that occurred in both the DE proteins and the E/S 177 

orthologues. All the E/S orthologues were submitted to BlastKOALA as before, to obtain 178 

protein family identities, as well as matching them with the protein identities reported for 179 

the original S. ratti E/S proteins by Hunt et al. (2016)32. Separately, differential gene 180 

expression data from analysis of the Stoltzfus et al. (2012)34 transcriptomic dataset was 181 

extracted for the E/S orthologues that occurred in both datasets. 182 

SignalP 183 

Signal peptide prediction, which provides evidence that a protein is secreted, was carried 184 

out on the S. stercoralis DE proteins and E/S orthologues using SignalP 4.146. 185 

Phylogenetic diversity 186 

We used phylogenetic comparison to indicate S. stercoralis proteins with least homology to 187 

those of other relevant species, followed by sequence alignment to identify exact regions 188 

of specificity. 189 

Selecting outgroups 190 

A custom blast+ database was created from the genome-derived proteomes of selected 191 

outgroup species (Table 2). The outgroups were selected to represent parasitic and non-192 

parasitic nematodes, as well as trematodes, cestodes and human.  193 

  194 
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Table 2. Outgroup species used for phylogenetic comparison to S. stercoralis.  195 

Species Rationale for selection 

1 Ancylostoma duodenale Hookworm. Prevalent nematode of humans 

2 Ascaris lumbricoides Prevalent nematode of humans 

3 Caenorhabditis elegans Free-living nematode and model organism 

4 Clonorchis sinensis Trematode of humans 

5 Enterobius vermicularis Prevalent nematode of humans 

6 Homo sapiens* Human, present in all samples 

7 Necator americanus Hookworm. Prevalent nematode of humans 

8 Onchocerca volvulus Non-gut nematode of humans 

9 Parastrongyloides trichosuri Relative of S. stercoralis. Facultative parasite of 

possums 

10 Strongyloides ratti  Close relative of S. stercoralis. Serological cross-

reactivity with S. stercoralis47. 

11 Strongyloides venezuelensis Close relative of S. stercoralis 

12 Strongyloides papillosus Close relative of S. stercoralis  

13 Syphacia muris Nematode of mice and rats. Serological cross-

reactivity with Strongyloides in experimental animal 

infections48. 

14 Taenia solium Cestode of humans 

15 Trichuris trichiura Prevalent nematode of humans 

*Human protein/coding sequence (CDS) data were provided by the Human Genome 196 

Project at the Wellcome Trust Sanger Institute and can be obtained from Ensembl via 197 

ftp://ftp.ensembl.org/pub/release-87/fasta/homo_sapiens/pep/Homo_sapiens.GRCh38.pep.all.fa.gz. Accession numbers for all 198 

data are available in Supplementary file S1. 199 

 200 

Specificity of DE proteins to S. stercoralis 201 

ftp://ftp.ensembl.org/pub/release-87/fasta/homo_sapiens/pep/Homo_sapiens.GRCh38.pep.all.fa.gz
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S. stercoralis DE proteins were searched as separate families, against the custom outgroup 202 

database with blast+ criteria: word size 2 and e-value of -5 or -10, as appropriate, to obtain 203 

about 100 to 1,000 hits (S2 file). In cases where there were very few DE proteins in a 204 

particular family, the DE protein(s) were also searched against a custom database 205 

consisting of only S. stercoralis genome-derived proteins (S2 file). This was intended to 206 

increase the number of S. stercoralis proteins to enable species-specific clusters to be 207 

revealed on phylogenetic trees. 208 

Protein hits from each outgroup, and the additional S. stercoralis hits where appropriate, 209 

were aligned with their respective original blast queries by multiple sequence alignment 210 

(MSA) using ClustalW, and phylogenetic trees were constructed. Trees were annotated 211 

with iTOL37 to show proteins from each species in a different colour. S. stercoralis proteins 212 

which formed a distinct cluster, or clusters, on each phylogenetic tree were viewed in MSA 213 

along with the most and least similar proteins from each of the outgroups on that tree. 214 

These ClustalW alignments were analysed by eye for Strongyloides and S. stercoralis-215 

specific regions which were submitted to BLASTP search against the NCBI non-redundant 216 

(nr) database to validate their specificity. 217 

Antigenic potential 218 

Existing seroantigens 219 

Published literature was searched for uses of specific antigens for the serodiagnosis of 220 

strongyloidiasis, which therefore have proven antigenicity. Relevant proteins were 221 

submitted to analysis alongside other proteins, as described here. 222 

Epitope prediction 223 

BepiPred 1.049 and Bcepred50 were used to predict epitopes within the DE proteins and E/S 224 

proteome orthologues. Both tools give a score to each amino acid residue signifying its 225 

likelihood of being part of an epitope. A BepiPred threshold of 1.3 (range -4 to 4) was 226 

selected for maximum specificity of 96%, with corresponding 13% sensitivity51, in order to 227 

minimise the chance of false positive epitope predictions. Minimum length was 9 amino 228 

acids with no maximum. In the DE proteins, longer sequences with an overall very high 229 

epitope score were allowed to contain small regions scoring below 1.3.  230 

Bcepred criteria were based on the reported highest accuracy of 58.7%, which was 231 

achieved using a threshold of 2.38 for the average score of four amino acid properties: 232 

hydrophobicity, flexibility, polarity and exposed surface 52. In addition to BepiPred 1.0 and 233 
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Bcepred, we also used BepiPred version 2.0 for certain candidate antigens. This version 234 

became available only after the majority of the analysis, and offered improved prediction 235 

of conformational epitopes. BepiPred 2.0 was used with the same epitope length criteria 236 

and an epitope score threshold of 0.55 (range 0 to 1) which provided specificity of 81.7% 237 

and sensitivity of 29.2% on epitope predictions. 238 

Outputs from the two prediction tools were compared, initially for proteins present in both 239 

outputs. The predicted epitope regions of these proteins were then examined for sequence 240 

overlap. Prior to selection as candidate antigens, predicted epitopes were assessed for 241 

their specificity to Strongyloides. Sequences were searched using BLASTP against the NCBI 242 

nr database. The “expect threshold” in BLASTP was increased if no results were obtained 243 

with default parameters. BLAST output was examined by eye for the sequence identity and 244 

biological relevance, i.e. likelihood of presence in a human stool sample, of non-245 

Strongyloides results in the list. 246 

3D modelling 247 

Selected proteins of interest i.e. containing predicted epitopes, Strongyloides-specific 248 

regions and in a priority protein family or an existing seroantigen, were submitted to 249 

Phyre253 for 3D structure modelling against known crystal structures, using the intensive 250 

mode. UCSF Chimera54 was used to visualise and annotate 3D models to highlight specific 251 

sequences of interest on the model. Chimera is developed by the Resource for 252 

Biocomputing, Visualization, and Informatics at the University of California, San Francisco 253 

(supported by NIGMS P41-GM103311). 254 

Glycosylation prediction 255 

N-linked glycosylation was predicted with NetNGlyc55 to account for the potential of a 256 

glycan to obscure protein antigen regions, or conversely to contribute to antigenicity. The 257 

prediction tool identified asparagine (N) residues with a high probability of being 258 

glycosylated via their amide nitrogen. Prediction was based on the motif N-X-S/T, where X 259 

is any residue except proline (P), and along with the presence of a signal peptide or trans-260 

membrane domain on that protein, indicates that potential glycosylation sites are likely to 261 

be glycosylated. Intracellular, intramembrane regions, or signal peptides of a protein are 262 

unlikely to be glycosylated. If present, a glycosylation site close to a candidate antigen 263 

region on the 3D protein could indicate that the protein is less likely to be accessible to 264 

antibodies in a capture assay and therefore a lower priority candidate, pending in vitro 265 
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screening. Alternatively, glycosylated proteins may be investigated as antigens, however, 266 

this was not a focus of this study. 267 

Results 268 
 269 

Priority protein families 270 

Seven protein families were found to be associated with Strongyloides parasitism by Hunt 271 

et al. (2016)33: sperm-coating-proteins/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS), astacin, 272 

transthyretin-like (TTL), acetylcholinesterase (AChE), prolyl oligopeptidase (POP), trypsin-273 

like inhibitors and aspartic peptidases. The first four of these have more proteins per family 274 

in S. stercoralis than S. ratti33. We included all seven protein families in initial analysis, 275 

although two, astacin and trypsin-like inhibitors, were not used to generate candidate 276 

coproantigens. In total, we identified 46 candidate coproantigens from the other 5 priority 277 

protein families and existing seroantigens. These candidate antigens match some or all of 278 

our criteria: antigenicity; specificity to Strongylodies; presence in stool. 279 

Differential gene expression in gut life stages 280 

Of a total of 13,098 S. stercoralis genes identified in RNA-seq data, we found 328 which we 281 

could be 100% confident were DE between gut-dwelling and non-gut-dwelling life stages 282 

(Figure 4). Of these, 203 were expressed more in gut-dwelling life stages than non-gut (S3 283 

file). As well as the 7 parasitism-associated priority protein families, we also included 284 

collagen in further analysis due to its occurrence in the DE dataset and high number of 285 

predicted epitopes (Figure 4). Along with these 8, another 20 protein families were 286 

identified among the DE proteins, accounting for 193 (58.8%) of the proteins, with the 287 

remainder either not identified (22%), or given a disorder prediction (19.2%) indicating that 288 

they do not have a fixed conformation and are difficult to assign to a particular function or 289 

family. 290 

  291 

Figure 4. S. stercoralis proteins differentially expressed with 100% certainty between gut-292 

dwelling compared to non-gut-dwelling life stages, excretory/secretory (E/S) orthologues 293 

and predicted epitopes. Colours refer to different protein families or features, those 294 

containing several proteins are labelled. Protein families of particular interest as sources of 295 

coproantigens are in bold, underlined font. Dark grey markers on the three outermost 296 

circles of the tree indicate (from inside to outside): proteins orthologous to S. ratti E/S 297 
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proteins; proteins containing predicted epitopes according to BepiPred (middle circle) and 298 

Bcepred (outermost circle) respectively. 299 

Excreted/Secreted proteome 300 

We identified 1,057 S. stercoralis proteins that had high homology to the 584 proteins in 301 

the published E/S proteome of S. ratti 32. Original S. ratti E/S proteins were given as 582 302 

accession numbers, however two were found to have alternative isoforms, which we also 303 

included here. Multiple sequence alignment indicated that 550 (94.2%) of the S. ratti E/S 304 

proteins had a S. stercoralis orthologue at the selected similarity level (e-value 1E-50) and 305 

that 284 (51.6%) of these had multiple homologues in S. stercoralis (S4 file).  306 

In order to identify possible S. stercoralis E/S proteins among the DE gut stage proteins 307 

already listed, we compared the 1,057 S. stercoralis orthologues with the 328 identified as 308 

DE in the transcriptomic data. Seventy seven proteins were shared between both data sets, 309 

of which 58 were shared between the 203 gut-stage DE proteins and the E/S orthologues.  310 

To investigate gene expression of the E/S orthologues, we extracted the differential 311 

expression data for these 1,057 proteins from the DE analysis which included all 13,098 312 

active S. stercoralis genes. Protein families were assigned by a combination of BlastKOALA, 313 

which identified 537 (50.8%) of the E/S orthologues, and the original Hunt et al. (2016)32 314 

protein identities (S5 file). Proteins in the seven ‘priority protein families’ were identified 315 

among the protein datasets. 316 

Predicted epitopes 317 

Within the 328 DE proteins, BepiPred and Bcepred jointly predicted epitopes in 104 318 

proteins; 78 and 62 proteins respectively, with 36 proteins containing epitopes predicted 319 

by both tools (Figure 4 and S3 file). Within the 78 proteins, BepiPred predicted 125 320 

epitopes, and within 62 proteins Bcepred predicted 108 epitopes (Table 3). Fifty six 321 

epitopes contained overlap or identity between the two prediction tools (S6 file). Predicted 322 

epitopes ranged from the selected minimum of 9 residues to entire proteins of up to 651 323 

aa with BepiPred and 8 to 66 aa with Bcepred (S7 file). These regions were given greater 324 

scrutiny in the context of species specificity and antibody accessibility. 325 

S. stercoralis orthologues (n = 1,057) of S. ratti E/S proteome were also submitted to 326 

BepiPred and Bcepred, which predicted 747 and 62 epitope regions respectively, in a total 327 
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of 324 of the proteins. These ranged from 9 to 99 residues and contained 49 epitope 328 

sequences that overlapped, originating from 40 proteins (S6 and S7 files). 329 

 330 

 331 

 332 

 333 

Table 3. Number of S. stercoralis proteins in differentially expressed (DE) and E/S 334 

orthologous protein datasets containing predicted epitopes according to two different 335 

prediction tools and number of predicted epitopes within those proteins. 336 

Dataset Number of Epitopes predicted by Total 

BepiPred 
only 

Bcepred 
only 

Both 
tools 

DE proteins  

(n = 328) 

Proteins 
containing 
epitopes 

42 26 36 104 

Epitopes 98  

(125 total) 

81  

(108 total) 

56a 233  

(125 + 108) 

E/S 
orthologues  

(n = 1,057) 

Proteins 
containing 
epitopes 

280 4 40 324 

Epitopes 728 
unique 
(747 total) 

59 unique 

(62 total) 

49a  787  

(728 + 59) 

a Overlapping sequences but not necessarily identical lengths. 337 

 338 
 339 
S. stercoralis-specific candidates identified by phylogenetic comparisons 340 

S. stercoralis protein families linked to parasitism and represented in the DE proteins, and 341 

collagen, were analysed for S. stercoralis genus or species specificity. Separate BLAST 342 

searches of each protein family against 15 outgroups revealed which S. stercoralis proteins 343 

were most likely to contain specific regions (Figure 5). 344 

 345 
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 346 

Figure 5. Strongyloides stercoralis proteins (dark green) cluster to indicate possible species 347 

specificity (arrowed). Each circular tree is a different S. stercoralis protein family. Each 348 

colour represents a different outgroup species. S. stercoralis proteins were differentially 349 

expressed between gut and non-gut dwelling life stages and were aligned with BLAST hits 350 

from outgroups. Colours reaching the outer edge represent Strongyloides species whereas 351 

shorter colour bands are non-Strongyloides outgroups. A) SCP/TAPS, B) transthyretin-like 352 

(TTL), C) acetylcholinesterase (AChE), D) aspartic peptidase, E) prolyl oligopeptidase (POP), 353 

F) astacin-like metallopeptidase, G) trypsin-like inhibitor, H) collagen.  354 

 355 

S. stercoralis proteins from the clusters identified in the phylogenetic trees were examined 356 

in alignment with outgroup-representative homologues with the most and least similarity. 357 

From the alignments, the S. stercoralis regions with least homology to outgroups were 358 

selected as candidate antigens. In some cases this included the whole protein. Results of 359 

this analysis are detailed below. 360 

SCP/TAPS coproantigen candidates 361 

Seven of the 19 SCP/TAPS proteins in the DE dataset formed a cluster (Figure 5A, arrowed). 362 

Multiple sequence alignment and BLAST searching showed that SCP/TAPS proteins 363 

contained several regions of possible S. stercoralis species specificity (S8 file) where most 364 

regions were within the NIE-homologous region as described below. It also revealed that 365 

the sequence HGVPPLTY was conserved across many species and should therefore be 366 

excluded from any candidate antigen. 367 

Of the 7 clustered SCP/TAPS proteins, four were predicted to contain epitopes and among 368 

these were several with high similarity to the seroantigen ‘NIE’ (GenBank accession 369 

AAD46493)56, indicating high potential antigenicity. These included SSTP_0001008900, 370 

SSTP_0000511800 and SSTP_0001008500 (Figure 6). The region from amino acid (aa) 1-126 371 

of protein 1008900 was species-specific according to sequence alignment with outgroups. 372 

BepiPred 1.0-predicted epitopes in this protein were in the region aa 280-376 which does 373 

not include the NIE homologous region (not shown), whereas Bcepred did not predict any 374 

epitopes in these proteins. BepiPred 2.0 was used with protein SSTP_0001008900 and did 375 

predict an epitope within the NIE region from residues 64-101, as well as at aa 240-457. 376 

 377 
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Figure 6. Amino acid sequence similarity between regions of three S. stercoralis SCP/TAPS 378 

proteins identified from transcriptomic data and the existing S. stercoralis serological 379 

antigen NIE (AAD46493). 380 

S. stercoralis SCP/TAPS protein SSTP_0000511800 was modelled to the 3D protein model of 381 

a pathogenesis-related protein 1-like (PR-1-like) protein (Figure 7). The Phyre2-generated 382 

model, based on two templates, covered 236 residues (91%; residues 17-252) of the 383 

sequence with >90% confidence (high probability that sequence and model are 384 

homologous). Regions outside the template were modelled ab initio which is highly 385 

unreliable. Residues 1-22 are a predicted signal peptide sequence on this protein and in 386 

SSTP_0001008900. 387 

 388 

Figure 7. An S. stercoralis SCP/TAPS protein with high homology to seroantigen NIE. Views 389 

of the modelled protein (accession number SSTP_0000511800) to illustrate BepiPred 2.0 390 

predicted epitopes spanning the following residues: yellow, 23-33; orange, 41-61; blue, 64-391 

110; red, 156-166; green, 193-204; purple, 242-251. A signal peptide sequence from 392 

residues 1-22 that would not be present on the secreted protein is coloured dark grey.  393 

 394 

SCP/TAPS protein and NIE homologue, SSTP_0000511800, contained only one potential N-395 

linked glycosylation site at position 2, however this was within the signal peptide (residues 396 

1-22) (Figure 7) and would therefore not be present on the secreted molecule. Eight of the 397 

SCP/TAPS, including NIE homologues, also appeared as S. stercoralis orthologues of S. ratti 398 

E/S proteins where they were labelled as CAP domain-containing proteins (S5 file). 399 

SCP/TAPS protein sequences, including NIE-homologues, that form candidate 400 

coproantigens are detailed in Supplementary files S8 and S9. 401 

 402 

TTL coproantigen candidates 403 

Of ten TTL proteins (Fig 5B, arrowed) viewed in alignment, five (SSTP_0000700800, 700900, 404 

701300, 701400 and SSTP_0001222100) appeared to have no sequence similarity to any of 405 

the outgroup homologues. Other proteins (SSTP_0001133200, 1222000, 1222200, 1222300 406 

and 0485800) contained one or more regions of species or genus specificity. A total of 11 407 

potential species-specific sequences/peptides were selected (S8 file). BLAST search of these 408 
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peptides against the NCBI nr database revealed candidates for S. stercoralis specific 409 

sequences (Table 4 and S8 file). In addition, it revealed that the amino acid sequence 410 

VTCDGKPL in protein SSTP_0000485800 is conserved across many nematode genera and 411 

should therefore be avoided in a candidate antigen. 412 

TTL protein SSTP_0000700800 was 3D modelled to a template generated from TTR-52 413 

protein of C. elegans (PDB accession: 3UAF) (Figure 8). This model aligned to 89 residues 414 

(aa 2-90; 50% of the sequence) with 99.9% confidence. This protein contained a predicted 415 

glycosylation site at position N165 and although it was not predicted to have a signal 416 

peptide, it was indicated as an ‘extracellular or secreted’ protein by UniProt (uniprot.org) 417 

and is a known E/S protein family, therefore it is more likely to be glycosylated. 418 

 419 

Figure 8. A transthyretin-like (TTL) protein of S. stercoralis showing surface-exposed 420 

antigen regions and N-linked glycosylation sites. Accession number SSTP_0000700800. 421 

Blue, BepiPred predicted epitope aa’s 124-143; pink, Bcepred predicted epitope aa’s 99-422 

123; green, predicted N-linked glycosylation site at N165 in the motif NVS. The Bcepred 423 

epitope (pink) extends to residue 141 but has been shortened to show the BepiPred 424 

epitope (blue) which overlaps with it. 425 

 426 

AChE coproantigen candidates 427 

DE proteins in the AChE family formed two distinct clusters when aligned with BLAST hits 428 

from outgroups, one of 4 S. stercoralis proteins, the other of 10 (arrowed in Figure 5C). The 429 

cluster of 4 consisted of SSTP_0000274700, SSTP_0000671000, SSTP_0000638700 and 430 

SSTP_0000670800, all of which contained several regions of potential S. stercoralis 431 

specificity (examples in S8 file). Equally, the 10 proteins within the other cluster contained 432 

multiple regions of possible specificity.  433 

AChE protein SSTP_0000509400 was modelled with 100% confidence to 6 templates which 434 

jointly covered aas 17-551 (95%). Peptides with potential S. stercoralis species specific 435 

sequences were annotated on the model to view their surface exposure (Figure 9).  436 

BepiPred 1.0 and Bcepred both failed to identify epitopes. However, BepiPred 2.0 did 437 

identify epitope regions, with moderate specificity and surface exposure (Figure 9). AChE 438 

protein SSTP_0000509400 contained multiple potential glycosylation sites, three of which, 439 
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at positions 38, 89 and 319, were predicted with high confidence on this known 440 

glycoprotein (Figure 9).  441 

  442 

 443 

Figure 9. S. stercoralis acetylcholinesterase showing surface-exposed epitope regions and 444 

N-linked glycosylation sites. Accession number SSTP_0000509400. Predicted features 445 

indicated in colour: blue, BepiPred 2.0 predicted epitope at residues 85-103; and yellow at 446 

390-411; green, predicted N-linked glycosylation sites at N38 (NVT), N89 (NFS) and N319 447 

(NLT). The site at N89 is within the blue epitope sequence. 448 

Aspartic peptidase coproantigen candidates 449 

Only 2 aspartic peptidases appeared in the DE proteins therefore these were analysed for 450 

S. stercoralis specificity alongside homologous proteins from S. stercoralis itself and the 451 

outgroups (Figure 5D, arrowed). These two DE proteins (SSTP_0000164500 and 164700) 452 

had little sequence similarity with each other and did not cluster with other S. stercoralis 453 

BLAST hits. However, BLAST of possible species-specific regions from the alignment against 454 

NCBI nr revealed higher similarity with other gut nematodes and microflora than we found 455 

for other proteins analysed here. One peptide was identified from SSTP_0000164500 that 456 

was specific to S. stercoralis (Table 4 and S8 file). This protein was modelled with less 457 

reliability as only 63% (526 residues) was modelled with confidence, therefore a large part 458 

was modelled ab initio and was not deemed reliable for selecting epitope regions. No 459 

epitopes were predicted in either of the DE aspartic peptidases. 460 

 461 

Astacin-like metallopeptidase coproantigen candidates 462 

The phylogenetic tree for the DE astacin-like metallopeptideases did not reveal any 463 

significant clustering of S. stercoralis proteins (Figure 5F) and no candidate coproantigens 464 

or individual proteins were analysed from the astacin-like protein family. However, all S. 465 

stercoralis proteins were on branches with proteins from other Strongyloides species and 466 

the closely-related Parastrongyloides, separate from other outgroups, and therefore have 467 

potential for genus specificity. In addition, this family of proteins was highly represented in 468 

the S. stercoralis orthologues of S. ratti E/S proteome, accounting for 197 (18.6%) of the 469 

1,057 and is one of the protein families with more members in S. stercoralis than S. ratti.  470 

 471 
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Prolyl oligopeptidase coproantigen candidates 472 

In the phylogenetic tree, all 5 S. stercoralis DE POP proteins clustered with other 473 

Strongyloides proteins and away from non-Strongyloides outgroups, but did not form a 474 

single cluster (Figure 5E). Four of these proteins (SSTP_0000289100, 0001108800, 475 

0001108500, 0001019400) were indicated to have more species-specificity, clustering with 476 

other S. stercoralis BLAST hits (as arrowed in Figure 5E). Of these 4 POP proteins, 477 

SSTP_0000289100 contained two Bepipred epitopes and was very highly expressed in 478 

parasitic females, as well as being in the E/S orthologues (S3 file). However, the epitope 479 

regions had moderate sequence identity to other nematodes, a Staphylococcus species and 480 

to Plasmodium vivax, suggesting widespread conservation. Therefore, although listed in the 481 

candidate coproantigen table (S8 file) for completeness, these peptides may not be 482 

sufficiently specific to Strongylodies. 483 

The other four DE POP family proteins (other than 0000289100), were highly expressed in 484 

parasitic females and among the E/S orthologues, despite only two containing a signal 485 

peptide. However, they did not contain predicted epitopes (S3 file). One of these 486 

(SSTP_0001108800) was analysed for species-specific regions by MSA and subsequently 487 

BLASTP against NCBI nr and nematoda (taxid: 6231) databases, which revealed several 488 

regions of high specificity for S. stercoralis. These are therefore possible coproantigens 489 

(Table 4 and S8 file). Amino acid motifs conserved across genera were removed from the 490 

sequences originally selected from the MSA, these included: DKLEN, KTDSK, RNAH and 491 

DIFAFI. 492 

 493 

Other predicted epitopes and existing serological antigens 494 

Among the DE gut-stage proteins identified here, SSTP_0001226800 contained two 495 

BepiPred-predicted epitope peptides, one of these, pep120, had high homology to existing 496 

seroantigens, including S. stercoralis immunoreactive antigen ’SsIR’. It was therefore 497 

considered a potential coproantigen for its high antigenicity potential and specificity to 498 

Strongyloides. This protein was not initially assigned to a protein family but instead given a 499 

disorder prediction by BlastKOALA. However 77% of residues were modelled at >90% 500 

confidence to ‘collagen I alpha 1’ protein by Phyre2 with 86% of the sequence predicted to 501 

be disordered (Figure 10). Homology, as analysed by a BLAST search through the WBPS 502 

website revealed similarity to a protein described as acetylcholinesterase collagenic tail 503 

peptide, also known as ColQ, further supporting the identity of the model template. 504 
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 505 

Figure 10. S. stercoralis candidate coproantigen, a collagenic tail peptide of 506 

acetylcholinesterase- ColQ (accession number SSTP_0001226800) with homology to 507 

seroantigen ‘SsIR’. [A] BepiPred predicted epitopes ‘pep120’ (blue) and ‘pep119’ (yellow); 508 

green, N-linked glycosylation site at N-terminus. [B] Residues coloured to indicate repeat 509 

regions; pale blue, proline; purple, glutamic acid.  510 

The S. stercoralis protein, SSTP_0001226800, identified here with high similarity to SsIR as a 511 

collagenic tail of AChE, contained a trans-membrane domain or signal peptide and a 512 

glycosylation site at residue 53, which would be extracellular and therefore likely to be 513 

correctly predicted (Figure 10). 514 

 515 

Summary of candidate coproantigens 516 

Table 4 presents selected candidate coproantigen protein regions which satisfy the criteria 517 

of being present in stool, specific to Strongyloides or S. stercoralis and being antigenic. A 518 

complete list of candidates resulting from this analysis is given in Supplementary file S8 and 519 

amino acid sequences in fasta format in file S9. 520 

  521 
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Table 4. Selected candidate coproantigens of S. stercoralis based on importance and 522 

upregulation in parasitism, amino acid sequence specificity to Strongyloides or S. stercoralis 523 

and one or both of the following: containing a predicted epitope, or homology to existing 524 

seroantigens. Gene accession numbers are given for WormBase ParaSite or UniProtKB. 525 

Additional candidate coproantigens are given in file S8 and full sequences for all are in file 526 

S9. 527 

Protein family Gene Residues Length Evidence/Rationale for 
selection as potential 
coproantigen 

SCP/TAPS SSTP_0001008900 

SSTP_0000511800 

1-256 

1-255 

256 

255 

Known highly antigenic, 
species specific (NIE 
antigen homologues), E/S 
orthologues 

TTL SSTP_0000700800 1-177 177 Contains predicted 
epitopes, surface exposed 

AChE SSTP_0000274700 

 

SSTP_0000509400 

187-207 

 

390-411 

21 

 

21 

DE in gut stages, high 
Strongyloides specificity, 
E/S orthologue. Predicted 
epitope,  

surface exposed 

POP SSTP_0001108800 221-266 46 E/S orthologue, high 
expression in parasitic 
female, high Strongyloides 
specificity 

Aspartic 
peptidase 

SSTP_0000164500 107-140 34 E/S orthologue, high 
Strongyloides specificity 

ColQ protein SSTP_0001226800 174-266 93 SsIR seroantigen 
homologue, 

Predicted epitope 

Collagen SSTP_0001040300 1-123 123 Predicted epitope, likely 
antigenic coil structure 

 528 

Short peptide sequences from within the candidate antigen list have been synthesised and 529 

are listed in Table 5. Longer candidate coproantigens will be expressed as recombinant 530 

proteins. 531 
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Table 5. Peptides being synthesised commercially for testing as coproantigens. Accession 532 

numbers are given for WBPS (‘SSTP’) or GenBank (‘AA’). 533 

 Protein 
family 

Parent protein Residu
es 

Lengt
h 

Peptide  

1 SCP/ 
TAPS 

SSTP_00005118
00 

41-61 21 NGNDYDTKEKLEDAIQKDYPD  

2 156-
166 

11 DLEHDPNNEIE 

3 193-
204 

12 LYDFSKQGHSAE 

4 TTL SSTP_00011332
00 

109-
123 

15 LPFGKITQKPGKDLI 

5 POP SSTP_00002891
00 

101-
127 

27 KPPYCKPPPCKPIPPPTCEPVPPPTCE 

6 143-
175 

33 LKPSKPSKPPKPSTPQKPSTPQKPKTTP
KGTTT 

7 ColQ / 
‘SsIR’ 

AAB97359 1-27 27 NSARVENQDQKDQLENQDQKDQLEN
QD  

8 28-54 27 QKNQLKNQSENQDQKNQLKNQSENQ
DQ 

9 55-79 25 KKPIKKPIKKPGPKPIRPIVKPKPK 

1
0 

SSTP_00012268
00 

183-
212 

30 PEEPEGPEEPEGPEEPEGPEGPEEPEGP
EE 

1
1 

240-
252 

13 PEEPEGPAGPEEP 

1
2 

253-
266 

14 RDDDDGVDEEDERD 

1
3 

SCP/TA
PS ‘NIE’ 

AAD46493 18-32 15 DYDTKEAMEDAIQRD 

1
4 

39-53 15 TFGGDNNNGKKRKID 

1
5 

58-73 16 KGNNTFSNKIFDEIWE 

 534 

 535 
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Discussion 536 
 537 

Diagnostic needs 538 

The paucity of data on S. stercoralis infection prevalence and its low profile compared with 539 

the other STH species are largely due to inadequate diagnostics and lack of a single gold 540 

standard method. While serology has the highest sensitivity for active disease, it is 541 

unsuitable for monitoring treatment outcome or defining cure in a timely manner, 542 

remaining positive for months to years57. Inadequate treatment and reinfection post-543 

treatment may occur8, 58, 59. Therefore, this study aimed to identify specific diagnostic 544 

targets from the nematode itself that could be captured by a rapid antigen detection test 545 

for use on stool samples. Such coproantigen assays are commercially available for Giardia 546 

and Cryptosporidium and have been developed for a wide range of human and animal 547 

parasites including Fasciola60, Echinococcus61, Strongyloides ratti28, S. venezuelensis30, 548 

Opisthorcis62 Toxocara63 and Entamoeba histolytica64, among others. These assays have 549 

been developed using either somatic, E/S material, or known antigens as targets and many 550 

have shown high sensitivity for active infection, as well as high specificity using both 551 

polyclonal and monoclonal antibodies. 552 

 553 

Protein families and E/S proteomes 554 

We used open access data sources, published literature and freely-accessible online protein 555 

analysis tools to shortlist candidate antigens based on three requirements: presence in 556 

infected stool; Strongyloides or S. stercoralis specificity; antigenicity. We focused on 557 

proteins that were differentially expressed between gut-dwelling and non-gut-dwelling life 558 

stages of S. stercoralis in RNA-seq data produced by Stoltzfus et al. (2012)34 and that were 559 

from particular protein families. Seven of these protein families were identified by other 560 

studies as expanded in the genomes of parasitic nematodes, and upregulated in parasitic 561 

life stages33. In addition, a study of the hookworm, Ancylostoma, E/S proteome identified 562 

some of the same protein families, namely: SCP/TAPS, various proteases and TTL protein 563 

family members, adding evidence that they are likely to be detectable in stool65. We also 564 

obtained S. stercoralis orthologues of the S. ratti E/S proteome as published by Soblik et al. 565 

(2011)43 and Hunt et al. (2016)32. 566 
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We found limited overlap of 77 proteins (5.9% of the total) between E/S orthologues and 567 

DE proteins. This could be due to post-transcriptional gene regulation32 which means that 568 

gene expression does not equal presence of protein, therefore the use of DE proteins 569 

would have low specificity for selecting candidate coproantigens.  Conversely, our possible 570 

oversimplification of the transcriptomic dataset by grouping together life stages with very 571 

different gene expression profiles could have underestimated the number of candidates if 572 

high expression was not shared by all gut life stages. This would lead to low sensitivity of 573 

the method for detecting candidate coproantigens.  574 

E/S proteomics may be a more reliable starting point for coproantigen discovery. However, 575 

when we investigated this by viewing gene expression data for all the E/S orthologues, 576 

there was no single life stage that accounted for all the parasitic female E/S proteome 577 

orthologues and some genes showed very low expression across all life stages. This 578 

indicated that although the E/S orthologues were broadly representative of the S. ratti E/S 579 

proteome dataset, there may be limitations due to species-specific differences. This was 580 

evident in the large number of orthologues in S. stercoralis (1,057) compared to the original 581 

550 from S. ratti which had BLAST hits.  582 

Alternative approaches, in the absence of the E/S proteome of the exact species of interest, 583 

would be to exclude orthologues with very low gene expression or no signal peptide, thus 584 

focusing on the E/S orthologues that also have transcriptomic evidence and are more likely 585 

to be secreted. In addition, applying a more stringent e-value to the BLAST search would 586 

ensure only orthologues with the highest identity to E/S proteins are selected. If the E/S 587 

proteomic data contains the semi-quantitative relative abundance information, as the data 588 

from Hunt et al. (2016)32 does, the highly abundant proteins could be prioritised for 589 

identifying orthologues. This was not accounted for in our analysis but there does not 590 

appear to be correlation between protein abundance in S. ratti E/S proteome and 591 

transcription level in S. stercoralis orthologues. Therefore differential gene expression 592 

between species is also likely to be a complicating factor and ultimately, the E/S proteome 593 

of the species of interest would be most desirable for coproantigen discovery. However, 594 

shared epitopes between these closely related species still warrant the use of all available 595 

data47. 596 

Priority protein families and species specificity 597 
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Phylogenetic trees of S. stercoralis DE proteins, and their homologues in a selection of 598 

outgroups enabled focused analysis of proteins within the priority protein families that may 599 

contain genus or species-specific regions.  600 

SCP/TAPS  601 

The SCP/TAPS protein family is among the CAP domain-containing proteins and is proposed 602 

to have a role in modulating the host immune response33. In this study we identified 21 603 

SCP/TAPS proteins and 6 additional CAP-domain-containing proteins in the DE proteins. 604 

Several of these were homologues or potential parent proteins of the serological antigen 605 

NIE in the S. stercoralis transcriptome. NIE was originally identified by genome library 606 

panning56 and subsequently shown to have homology with insect venom allergens66. These 607 

allergens in turn are in the CAP domain-containing proteins67, 68. We investigated NIE as a 608 

potential coproantigen due to its high immunogenicity and specificity to Strongyloides. 609 

We used the transcriptomic dataset to determine the likelihood of NIE being present in 610 

infected stool. The closest sequence homology was with proteins expressed at their highest 611 

in infectious larvae from the environment and the subsequent tissue-migrating stage, 612 

suggesting that this family of proteins is highly important during skin penetration by the 613 

nematode and generates a strong antibody response during the passage of the larvae via 614 

host blood and tissue. This may also be the case in autoinfective larvae which would be 615 

present and detectable in stool, although these were not represented in the transcriptomic 616 

data. However, their presence in E/S orthologous proteins makes NIE and other SCP/TAPS 617 

proteins good candidates that can meet all three of our requirements for a coproantigen. 618 

The closest homologue of NIE was modelled to an Ancylostoma caninum SCP/TAPS 3D 619 

structure originally generated by Osman et al. (2012)69. However, despite being the best 620 

match available, the structure model did not include the NIE region at the start of this 621 

protein. This could be because the A. caninum protein is only a partial protein, or that this 622 

region is not present in this hookworm species, thus contributing to its high S. stercoralis 623 

specificity in serology70, 71. In addition, it was unexpected that neither epitope predictor 624 

identified the NIE region (in SSTP_0001008900) as an epitope. This is supported by the fact 625 

that conformation of epitopes is of utmost importance for B-cell antigens, and suggests 626 

that linear sequence should not be relied on alone to guarantee species-specificity. 627 

However, computational tools are constantly being improved upon and an updated version 628 

of BepiPred (2.0), released after the majority of the present analysis, takes better account 629 

of conformational epitopes72 and did predict an epitope region within the NIE sequence. 630 
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A comparison was made by Ramanathan et al. (2008)57 of the serological performance of 631 

two NIE-based assays: ELISA and luciferase immunoprecipitation system (LIPS). The full-632 

length protein (229 aa) was used in ELISA and a luciferase fusion protein in the LIPS, 633 

comprising 88 residues of NIE. The comparison revealed that better specificity was 634 

achieved with the LIPS which may suggest that the full-length antigen generated false 635 

positive reactions. Therefore, as a coproantigen, the shorter sequence may also be a more 636 

specific target. In addition, co-infecting nematodes which may cause serological cross 637 

reactivity e.g. filarial worms, are less likely to produce coproantigens due to their location 638 

outside the host gut. 639 

Acetylcholinesterase 640 

Secreted AChE has a possible role in enabling certain parasitic helminths to evade host 641 

expulsion mechanisms from mucosal surfaces33, 73. The transcriptomic and E/S proteomic 642 

data strongly supported this, with AChE family proteins in the E/S orthologues being 643 

expressed almost exclusively in the parasitic female life stage (S5 file). Secreted AChE 644 

differs from the neuromuscular protein in structure, gene family and substrate, being less 645 

specific to acetylcholine73. We found moderate homology between the predicted epitope 646 

regions of a S. stercoralis AChE and other nematode species, however, nematode secreted 647 

AChE commonly contains an amino acid sequence insertion (when compared with the well-648 

studied AChE of Torpedo californica, the Pacific electric ray) which is surface exposed and 649 

differs between species73. In the S. stercoralis protein analysed here by 3D model 650 

(SSTP_0000509400), this region may be the 13 residues at 351-363 (SNLHDYIYNCKLD) 651 

which is on the surface, close to the predicted epitope region and glycosylation site. 652 

However, this ‘insertion’ was not sufficiently unique to Strongyloides to merit its use as an 653 

antigen. 654 

Collagen as a coproantigen 655 

Collagens identified in the DE proteins were also highly represented in the predicted 656 

epitopes and contain a similar proline-repeat-induced coil structure and flexibility to ColQ 657 

protein.  658 

Sequence similarity of SSTP_0001226800 was also found with four immunoreactive 659 

peptides identified by Ramachandran et al. (1998)74 as well as to ‘SsIR’57 (Figure 11). Other 660 

homologous DE proteins were SSTP_0000270800 and 0000811600. Ramachandran et al. 661 

(1998)74 identified several sequences from a S. stercoralis cDNA library using sera from 662 
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infected patients originating from Vietnam, Cambodia and Laos75. These antigens were 663 

named 5a, 8a, 12a and 19a with original accession numbers AAB65139, AAB65140, 664 

AAB65141 and AAB65142 respectively, and varied between 90 and 152 residues in length. 665 

Subsequently Ramanathan et al. (2008)57 reported the use of SsIR (AAB97359) of 156 aa, 666 

for serodiagnosis and as a potential vaccine. We found that SsIR is most similar to peptides 667 

5a and 8a (Figure 11). Through a literature survey we found that Peptide 5a was identified 668 

among peptides digested from the surface of L3 larvae in a proteomic study76.  669 

 670 

Figure 11. Epitope peptide 120 (pep120) from S. stercoralis ColQ protein 671 

SSTP_0001226800, aligned with seroreactive antigens 5a, 8a, 12a, 19a (Ramachandran et 672 

al., 1998) and SsIR (Ramanathan et al., 2008). 673 

 674 

Collagen has not been found as a secreted protein but is instead a main component of the 675 

nematode cuticle77. Analysis of the DE transcriptome revealed that collagen was most 676 

highly expressed in iL3 and L3+ life stages (S3 file), possibly linked with moults between 677 

larval stages77 but oddly not upregulated in all larval stages. As a coproantigen, collagen 678 

could enable detection of components of whole or parts of excreted worms. We have 679 

suggested a collagen sequence as a coproantigen (S8 and S9 files). However the nematode 680 

cuticle is also glycan rich78, therefore cuticle collagen protein antigens may not be freely-681 

accessible to antibodies, whereas the glycans may form a better target coproantigen in this 682 

case. 683 

Epitope prediction 684 

We performed epitope prediction on the DE proteins and E/S proteome homologues using 685 

two open access online tools that yielded many predicted epitope peptides. An alternative 686 

to this would be to scan the entire genome for epitopes, a method applied to vaccine 687 

candidate discovery79. The challenge faced by this approach is the complexity of 688 

conformational epitopes compared with linear peptide epitopes. Antibodies frequently 689 

bind to conformational epitopes formed by the 3D structure of the antigen which therefore 690 

cannot easily be detected by sequence analysis alone72. The use of information on existing 691 

seroantigens is beneficial in informing antigenicity but does not confirm their presence in 692 

stool, indeed the SsIR and NIE homologues were expressed at very high levels in infectious 693 

L3 and tissue migrating larvae and much less in gut dwelling life stages, therefore the 694 
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availability of E/S proteome data to validate life stage protein secretion is crucially 695 

important to the search for coproantigens. 696 

The availability of 3D protein models can assist with selecting conformational epitopes by 697 

modelling a sequence onto the structure of a homologous protein and revealing adjacent 698 

amino acids on the surface of the protein80. Models do not necessarily have high sequence 699 

identity to the query sequence but this does not decrease the confidence in the model. 700 

Confidence in 3D models of >90% indicates that the protein adopts the overall folds of the 701 

model but may differ from the native protein in surface loops53, thus this method is not 702 

guaranteed, but provides a good indication for selecting candidate antigens. Ab initio-703 

modelled regions, where the sequence was not covered by the model, have very poor 704 

accuracy and should therefore be interpreted with caution and not used as the sole basis 705 

for selecting conformational epitopes. 706 

Differences in predicted epitopes were seen based on a computational versus ‘by eye’ 707 

approach to selecting epitope regions. The DE protein dataset contained longer predicted 708 

epitopes due to the decision, where relevant, to extend predicted epitopes across a short 709 

region of lower epitope score whereas the computational selection worked only on the 710 

exact score threshold and would not join two adjacent high scoring regions. 711 

Glycoprotein antigens were not considered in this study, apart from potential N-linked 712 

glycosylation sites on candidate protein antigens. Glycans form existing species-specific, 713 

highly antigenic diagnostic antigens, including CCA and CAA of Schistosoma mansoni and 714 

Schistosoma genus trematodes respectively81, LAM of Mycobacterium tuberculosis82 and 715 

have been implicated in lysate seroantigen of S. stercoralis83. In helminths, glycan 716 

structures may not only be species-specific, but also life-stage specific84. Glycans may 717 

obscure some of the protein epitopes predicted here, particularly in the secreted AChE, 718 

which is highly glycosylated. This is to be expected as glycans form many of the host-719 

parasite interactions84. In addition, secreted candidate antigens may also contain O-linked 720 

glycans, via oxygen atoms of serine or threonine, which are not easily predicted. Although 721 

we have excluded potential glycan epitopes, they could be accounted for to some extent by 722 

expressing antigens of interest, ideally in a closely-related system, potentially C. elegans or 723 

even Strongyloides itself85. As an alternative, glycans could be excluded altogether by 724 

synthesising peptides or expressing recombinant proteins in bacteria, thus focusing the 725 

antigen search purely on proteins, as we have done here. 726 
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Disorder prediction and antigenicity 727 

Disordered proteins are proteins with a mobile structure that may alter conformation 728 

depending on interactions with other molecules86. For this reason, their structures and 729 

epitopes may be less reliably predicted87. We identified a disordered protein containing a 730 

signal peptide and predicted epitope region. This protein did not occur in the E/S 731 

orthologues but had very high gene expression in iL3 larvae. Further evidence for its high 732 

antigenicity came from sequence similarity to the serological antigen ‘SsIR’. SsIR and the 733 

identified matches/parent proteins contained repeats of the proline-rich sequence PEEPEG, 734 

suggesting a twisting or helical structure due to the distortion provided by proline. This was 735 

confirmed by the 3D model template, an AChE collagenic tail peptide. These peptides, also 736 

known as ColQ, bind to AChE in the neuromuscular junction and link it to an anchoring 737 

protein, MuSK, in the cell membrane88. However, immunoreactive peptide ‘5a’ (NCBI 738 

accession 2290388/ AAB65139), a homologue of SsIR, was identified in a trypsin digest of 739 

undamaged whole larvae76, and antiserum against SsIR was seen to bind to the outside of 740 

the nematode cuticle89, both suggesting that ColQ is exposed on the worms surface and 741 

would thus be an ideal target as a coproantigen. 742 

Epitope regions were predicted in the SsIR homologous sequences, probably due to its 743 

twisting structure and repeated sequence, both of which are known to create strong 744 

epitopes and are a feature of other serological antigens including rK39 for visceral 745 

leishmaniasis diagnosis, and immunoreactive Trypanosoma cruzi proteins90, 91. ColQ in 746 

neuromuscular junctions is a coil of three molecules therefore, conformational epitopes 747 

may be formed by the proximity of these, rather than, or as well as, those on a single 748 

protein. The mammalian (rat) ColQ protein consists of a proline-rich sequence, however, 749 

the intervening amino acids differ from those in S. stercoralis, therefore the conformational 750 

epitopes of this triple helix are also likely to differ92. This ColQ was predicted with high 751 

reliability to be glycosylated via residue N53, which may create additional epitopes but 752 

seems unlikely to obscure predicted protein epitopes due to the physical separation. 753 

Future work 754 

The next stage in coproantigen assay development using the protein and peptide 755 

candidates detailed here in Table 4 and Supplementary file S8 is the synthesis of those that 756 

are short peptides, up to 30 residues, or, if longer to express and purify them as 757 

recombinant proteins in a bacterial expression system. To target correctly glycosylated 758 
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antigens, the coproantigens could potentially be expressed and purified from nematode 759 

systems but we have not assessed the potential specificity of glycans in the present study.  760 

The antigens could then be screened for immuno-reactivity, as a proxy for antigenicity, 761 

using known positive human serum or serum from a laboratory infected animal in a simple 762 

direct ELISA format. Highly reactive candidates would then be synthesised at sufficient 763 

quantity and high purity, and inoculated into mice or rabbits to generate antiserum. 764 

Antibodies should be purified from the serum and can be affinity purified against the 765 

original antigen for better specificity, prior to being developed into an antigen capture pair. 766 

As the target format of this assay is a rapid dipstick test, the successful antibody pair(s) 767 

would be optimised in a lateral-flow format on nitrocellulose and gold or latex 768 

nanoparticles. In addition, the assay could be optimised in ELISA format. Antigen targets 769 

may also be combined to increase sensitivity and specificity of the coproantigen assay. 770 

The approach presented here to identify candidate diagnostic antigens using open access 771 

‘omic’ data could feasibly be applied to other nematode and indeed non-nematode 772 

helminth infections, including animal parasites. Genomic data availability is improving and 773 

increasing at a rapid pace. Alongside this are proteomic studies of E/S material from 774 

multiple helminths. This data, and other genome analysis, have revealed protein families 775 

common to the E/S proteome of many parasitic species: SCP/TAPS, astacins and TTL, 776 

among others. 777 

Other potential proteins of interest for coproantigen detection assays include those 778 

identified in E/S material of other helminths. For example: enolase, common to 779 

Schistosoma japonicum93, Echinostoma and Fasciola94, Onchocerca95 and Trichuris96, as well 780 

as in the S. stercoralis E/S orthologous proteins reported here and with constitutive high 781 

expression across all life stages (S5 file); protein 14-3-3 from E/S and somatic extract of 782 

Strongyloides, Ascaris, Schistosoma and Ancylostoma65, 76, 93, 97, 98. A summary of E/S 783 

proteomic studies is presented by Ditgen et al. (2014)99 which collectively may reveal other 784 

common E/S protein family candidates. Other proteins have been tested as vaccine 785 

candidates against S. stercoralis: sodium potassium ATPase (SsEAT), tropomyosin, and a 786 

galectin (LEC-5)89, 100 suggesting that these may also generate effective antibodies for 787 

antigen capture, providing they are detectable in stool. In addition, as-yet uncharacterised 788 

genes32 may encode ideal targets because of their potential species specificity due to low 789 

homology with known proteins. 790 
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Arifin et al. (2018)101 identified a previously unreported seroantigen with high sensitivity 791 

and specificity to IgG4 of S. stercoralis infected individuals. As with the discovery of NIE and 792 

SsIR, they screened a cDNA library, in this case identifying the reactive protein as similar to 793 

S. ratti immunoglobulin binding protein 1 (BiP) in the TAP42-like family, which they 794 

designated ‘rSs1a’. This is a cytoplasmic phosphatase-associated protein, involved in 795 

translational control in C. elegans102 and unless it has multiple purposes in parasitic 796 

nematodes, seems unlikely to be secreted. We found that the S. ratti homologue of this 797 

protein, as given by Arifin et al. (2018)101 (CEF66010.1), contained multiple alpha helices 798 

when modelled to a protein phosphatase subunit template, which was confirmed by 799 

structural studies of the Saccharomyces yeast TAP42103. We identified a single orthologue 800 

of the S. ratti protein, encoded in the S. stercorlais genome (SSTP_0000328000). The highly 801 

coiled structure suggests that one or more of these regions could form possible epitopes 802 

for a coproantigen assay that may detect somatic worm antigen in faeces. 803 

Stool-based rapid immunoassays could potentially be adapted to detect parasite antigens 804 

in more readily available samples such as urine, which has been found to contain antigens 805 

of other helminth infections104 and Strongyloides DNA105. Whatever the sample type, there 806 

is a need for well-characterised sample collections in order to pursue diagnostics 807 

development, particularly in this case, stool samples preserved in 10% formalin stored at -808 

20°C or below for preservation of protein antigens28. 809 

In addition to coproantigen assay development, which can be informed by existing 810 

seroantigens, the analysis conducted here of antigenicity, species specificity and life stage 811 

expression of proteins can indicate potential seroantigens. The development of a 812 

coproantigen assay will include an antigenicity screening step where candidates are 813 

screened in ELISA format against well-characterised seropositive and seronegative sera, 814 

prior to raising antibodies. This will reveal potentially strong seroreactive antigens. Other 815 

DE proteins that were not present in the parasitic female E/S orthologues and have highest 816 

expression in non-gut dwelling life stages could also be pursued as potential seroantigens. 817 

Antigenic variation should be taken into account when an antigen has been selected, due 818 

to geographic differences between nematode strains106. This has impacted on diagnosis 819 

and vaccination for other parasitic infections107, 108 and can be investigated by amplifying 820 

and sequencing the genes of interest from a wide geographic range of samples. For S. 821 

stercoralis, this is especially relevant as the reference genome strain PV001 (also 822 
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sometimes denoted PV0001 or PV1) originates from a dog infection with UPD (University of 823 

Pennsylvania dog) strain109, which may differ from human-infective strains110. 824 

Summary 825 

This work presents detailed analysis of S. stercoralis proteins leading to the selection of 826 

diagnostic coproantigens. We have identified multiple S. stercoralis candidate protein 827 

antigen sequences with evidence for their specificity to Strongyloides or S. stercoralis from 828 

phylogenetic and sequence comparison with relevant other species, as well as serological 829 

specificity reported in the literature. Evidence supporting their presence in infected stool 830 

was assessed by belonging to parasitism-associated protein families, upregulation in gut-831 

dwelling life stages, presence in E/S material of other helminths and in S. stercoralis 832 

orthologues of the S. ratti E/S proteome. Antigenicity was predicted using epitope 833 

prediction tools, information from existing seroantigens and 3D structure modelling. Short 834 

peptide candidate antigens analysed and presented here are currently being synthesised 835 

for screening as coproantigens. Longer peptides and proteins form promising candidates 836 

for expressing as recombinant proteins, raising antibodies against and capturing S. 837 

stercoralis antigen in stool. 838 
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Key points, novel results and implications 

x This manuscript further investigates the potential of IgG1 to be a marker of cure, 

relapse and PKDL after treatment of VL, and for the first time, applies the assay to 

paired sera taken pre- and post-treatment. Further validation of the assay in rapid 

diagnostic test (RDT) format is presented after testing with Indian and Sudanese VL 

sera. 

x 78% of 104 Indian VL patients were positive by the IgG1 RDT before treatment. 84% 

of these had reduced or negative IgG1 levels at 6 months when deemed cured. 85% 

of 33 Indian relapse sera were IgG1 RDT positive, a significant difference from those 

deemed cured. 78% of 63 PKDL patients were positive by IgG1 RDT. 

x The RDT was more likely than IgG1 ELISA to be positive pre-treatment and negative at 

6 months post-treatment. 

x This IgG1 RDT could contribute to VL disease control by indicating those at greater 

risk of relapse after treatment and assisting with the diagnosis of relapse and PKDL. 

These are major diagnostic gaps in the current tools available to control programmes. 
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Background: There is a recognised need for an improved diagnostic test to assess post-26 

chemotherapeutic treatment outcome in visceral leishmaniasis (VL) and to diagnose post 27 
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kala-azar dermal leishmaniasis (PKDL). We previously demonstrated by ELISA and a prototype 28 

novel rapid diagnostic test (RDT), that high anti-Leishmania IgG1 is associated with post-29 

treatment relapse versus cure in VL. 30 

Methodology: Here, we further evaluate this novel, low-cost RDT, named VL Sero K-SeT, and 31 

ELISA for monitoring IgG1 levels in VL patients after treatment. IgG1 levels against L. 32 

donovani lysate were determined. We applied these assays to Indian sera from cured VL at 6 33 

months post treatment as well as to relapse and PKDL patients. Sudanese sera from pre- and 34 

post-treatment and relapse were also tested. 35 

Results: Of 104 paired Indian sera taken before and after treatment for VL, when deemed 36 

clinically cured, 81 (77.9%) were positive by VL Sero K-SeT before treatment; by 6 months, 68 37 

of these 81 (84.0%) had a negative or reduced RDT test line intensity. ELISAs differed in 38 

positivity rate between pre- and post-treatment (p = 0.0162). Twenty eight of 33 (84.8%) 39 

Indian samples taken at diagnosis of relapse were RDT positive. A comparison of Indian VL 40 

Sero K-SeT data from patients deemed cured and relapsed confirmed that there was a 41 

significant difference (p < 0.0001) in positivity rate for the two groups using this RDT. Ten of 42 

17 (58.8%) Sudanese sera went from positive to negative or decreased VL Sero K-SeT at the 43 

end of 11-30 days of treatment. Forty nine of 63 (77.8%) PKDL samples from India were 44 

positive by VL Sero K-SeT.  45 

Conclusion: We have further shown the relevance of IgG1 in determining clinical status in VL 46 

patients. A positive VL Sero K-SeT may also be helpful in supporting diagnosis of PKDL. With 47 

further refinement, such as the use of specific antigens, the VL Sero K-SeT and/or IgG1 ELISA 48 

may be adjuncts to current VL control programmes. 49 

 50 

Words: approx. 4,800     Figures: 2       Tables: 2 51 

 52 

Introduction 53 
Visceral leishmaniasis (VL; kala-azar), is caused by the protozoan parasites Leishmania 54 

donovani in Asia, Africa and the Middle East and Leishmania infantum in Europe and South 55 

America. These parasites are transmitted by blood-feeding female phlebotomine sand flies. 56 

Symptomatic VL is usually fatal if untreated. Symptoms include prolonged fever >14 days, 57 

wasting, splenomegaly, hepatomegaly and anaemia (Sundar and Rai, 2002). While VL is 58 

present in about 75 countries, the majority (90%) of cases in 2015 occurred in India, Sudan, 59 

South Sudan, Ethiopia, Somalia, Kenya and Brazil (World Health Organization., 2017), where it 60 
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is closely linked to poverty, both as cause and effect (Boelaert et al., 2009; Sarnoff et al., 61 

2010). 62 

 63 

Following clinical suspicion of VL, serology is used for diagnosis. Techniques vary by region 64 

and include the immunofluorescence antibody test (IFAT), direct agglutination test (DAT), 65 

enzyme linked immunosorbent assay (ELISA), and detection of IgG against recombinant 66 

antigens rK39 or rK28 (Singh and Sundar, 2015). In India the DAT and rK39 serology are used, 67 

with a positive result in either test indicative of exposure to infection with L. donovani. For 68 

confirmatory parasitological diagnosis, seropositive individuals undergo spleen, bone marrow 69 

or lymph node biopsy to search for the intracellular amastigote stage in films of Giemsa-70 

stained aspirates. These are invasive, costly and potentially hazardous techniques with low 71 

and variable sensitivities ranging from 53-99% (Singh and Sundar, 2015). 72 

VL is treated with antimonials, miltefosine, paromomycin, amphotericin B, liposomal 73 

amphotericin (AmBisome) or drug combinations (World Health Organization, 2010). 74 

Currently, post-treatment outcome is determined by assessment of clinical signs and 75 

symptoms, initially on the last day of drug treatment and, in India, again six months after 76 

administration of the last dose (World Health Organization, 2010). Possible outcomes are: 77 

cure; relapse; death (by VL or not); post kala-azar dermal leishmaniasis (PKDL); loss to follow 78 

up. However, recent studies from India and Nepal have reported relapse rates of between 79 

1.4% and 20%, including up to and beyond 12 months following the end of treatment (Burza 80 

et al., 2013; Rijal et al., 2013; Burza et al., 2014). In Sudan, relapse rates around 6% have been 81 

reported (Gorski et al., 2010; Atia et al., 2015). Patients who relapse face a further biopsy 82 

procedure to confirm the presence of parasites. 83 

PKDL is a non-painful sequela of VL occurring in over 50% of cases in Sudan (Zijlstra et al., 84 

2003) but is far less prevalent in South Asia (Zijlstra et al., 2003; Uranw et al., 2011). PKDL is 85 

less reported in L. infantum endemic regions where cases have mostly been associated with 86 

HIV/AIDS (Ridolfo et al., 2000; Bittencourt et al., 2003; Celesia et al., 2014), other co-87 

infections (Trindade et al., 2015) or immune suppression (Roustan et al., 1998). PKDL 88 

manifests between 0.5 months to one or more years after apparently successful VL treatment 89 

(Musa et al., 2002; Uranw et al., 2011; Singh et al., 2012; Moulik et al., 2017) and may 90 

occasionally occur without a prior episode of VL (el Hassan et al., 1992; Zijlstra et al., 2003; 91 

Das et al., 2012; Das et al., 2016). PKDL is suspected based on dermal manifestations that are 92 

non-specific and diagnosis is made on previous VL treatment history and confirmed 93 

parasitologically by microscopy of slit skin smear or biopsy or PCR (Zijlstra et al., 2017). 94 
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Conventional serology is likely to remain positive from the earlier VL and there is no test in 95 

use to predict PKDL (Gidwani et al., 2011). The high parasite density in PKDL skin provides a 96 

source of infection to sand flies and thus sustains long term transmission and endemicity 97 

(Molina et al., 2017; Mondal et al., 2018). 98 

An unresolved crucial question is how to identify asymptomatic infected individuals simply 99 

and reliably (as defined by seropositivity, lack of clinical symptoms and no prior history of VL) 100 

who will progress to active VL. High DAT and/or rK39 ELISA titres have been associated with 101 

increased risk of progression in the Indian subcontinent but as yet there is no single rapid test 102 

in use for this purpose (Hasker et al., 2014; Chapman et al., 2015). To improve outcome 103 

monitoring of VL and disease control, the World Health Organization has identified the vital 104 

need for a marker of post-chemotherapeutic cure, and the high priority incorporation of such 105 

a biomarker into a point-of-care rapid diagnostic test (RDT) (World Health Organization, 106 

2012). Such a test should meet the “ASSURED” criteria of being: affordable; sensitive (few 107 

false negatives); specific (few false positives); user-friendly, requiring minimal training; rapid; 108 

robust, not requiring cold-storage; equipment-free, and deliverable to those who need it 109 

(Peeling et al., 2006). 110 

We have previously shown that high anti-Leishmania IgG1 ELISA titres are associated with 111 

treatment failure, whereas, in cases deemed to be cured following chemotherapy, IgG1 levels 112 

diminish significantly by six months post-treatment and only IgG1 gave this level of 113 

discrimination (Bhattacharyya et al., 2014a). We demonstrated this by ELISA against L. 114 

donovani whole cell lysate, and then adapted the assay to a prototype lateral flow 115 

immunochromatographic RDT. Here, we present further evaluation of this RDT, called VL Sero 116 

K-SeT, to indicate cure after VL treatment in a larger, paired, sample set and to confirm 117 

relapse. We also performed western blot on the same sample set. Additionally we show the 118 

potential utility of VL Sero K-SeT and other IgG1 assays to confirm PKDL. 119 

Methods 120 
Ethics statement 121 

In India, the collection of samples was approved by the Ethics Committee of Banaras Hindu 122 

University, Varanasi. In Sudan approval was by the Ethical Research Committee, Faculty of 123 

Medicine, University of Khartoum and the National Health Research Ethics Committee, 124 

Federal Ministry of Health, Sudan. Written informed consent was obtained from adult 125 

subjects included in the study or from the parents or guardians of individuals less than 18 126 

years of age. In Nepal, informed consent was obtained from all the participants and the 127 

ethical committee of the B.P. Koirala Institute of Health Sciences (BPKIHS) approved the 128 
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study. This research was also approved, as part of the EC NIDIAG project, by the London 129 

School of Hygiene and Tropical Medicine Ethics Committee. 130 

Sources of sera/plasma 131 

We retrospectively selected sera or plasma from an archive of different VL disease states. 132 

Samples had been collected in VL endemic regions, namely Muzaffarpur in Bihar, India after 133 

2007 and in 2013 in Gedaref, Sudan. Sample sizes used during this evaluation were 134 

dependent on availability of appropriate samples and reagents. 135 

In India, cases of VL had been diagnosed by positive rK39 serology and/or parasitologically by 136 

microscopy of splenic aspirates. In Sudan active cases of VL had been diagnosed by 137 

microscopy of bone marrow or lymph node aspirates in conjunction with serological assays. 138 

These diagnoses were made according to their respective national procedures, prior to the 139 

present study. Sera/plasma were stored at -80°C until use. All patients were HIV negative. We 140 

have previously observed that serum and plasma derived from the same sample show no 141 

difference in IgG titre in ELISA against L. donovani lysate (unpublished observations), although 142 

we have not specifically assessed IgG1 with both sample types. 143 

India 144 

Indian sample types are described in Table 1. We have previously found that in Indian VL, 145 

IgG1 titre up to day 30 post-treatment initiation is not statistically significantly different from 146 

pre-treatment (Bhattacharyya et al., 2014a) and therefore we consider these as ‘pre-147 

treatment’ in paired samples for the purposes of this study. Treatment of VL was with single-148 

dose AmBisome alone or with 10 days of miltefosine. PKDL was treated with miltefosine for 149 

84 days. DAT and rK39 ELISA were conducted prior to the present study as part of standard 150 

diagnostic procedures in India. 151 

Sudan 152 

Sudanese paired serum samples (n = 17 pairs) were taken on day of diagnosis of VL and at the 153 

end of treatment at 11 days (AmBisome), 17 days (sodium stibogluconate (SSG) + 154 

paromomycin) or 30 days (SSG only). These samples were previously tested for IgG1 by ELISA 155 

(Bhattacharyya et al., 2014a). Additional Sudanese serum samples used in the present study 156 

were unpaired treated individuals (n = 2) taken an unknown time after treatment, and 157 

relapse (n = 1). Sudanese EHC samples had previously been tested by the IgG1 ELISA using the 158 

same antigen and were negative (Bhattacharyya et al., 2014a) but were not retested here. 159 

Antigen production 160 
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Whole cell lysate of L. donovani strain MHOM/IN/80/DD8 isolated from India, and 161 

MHOM/SD/97/LEM3458 isolated from Sudan, was prepared as described previously 162 

(Bhattacharyya et al., 2014a). Lysate antigen was used for VL Sero K-SeT development (strain 163 

LEM3458), ELISA and western blot (strain DD8). Antigen preparation for western blot strips 164 

contained 50 µl of protease inhibitor cocktail (P8340, Sigma, UK) per 1 ml of L. donovani cells; 165 

centrifugation after sonication was 16,160 x g for 45 min at 4°C. 166 

ELISA for IgG1 anti L. donovani 167 

Duplicate ELISA plates were coated overnight at 4°C with L. donovani DD8 strain antigen 168 

prepared as above, at 2 µg/ml in coating buffer (35 mM NaHCO3, 15 mM NaCO3, pH 9.6), 100 169 

µl/well. Plates were washed 3 times with phosphate buffered saline (PBS) + 0.05% Tween 20 170 

(PBST) prior to blocking with 200 µl/well PBS + 2% w/v non-fat milk powder (Premier 171 

International Foods, UK) (PBSM) for 2 hours at 37°C, followed by three PBST washes. 172 

Sera/plasma were diluted 1/100 in PBST+ 2% w/v non-fat milk powder (PBSTM) and applied 173 

at 100 µl/well, incubated for 1 hour at 37°C then washed 6 times with PBST. Mouse anti 174 

human IgG1-horse radish peroxidase (HRP) (ab99774, Abcam, UK) was diluted 1:5,000 in 175 

PBSTM and incubated at 100 µl/well, 37°C for 1 hour. Plates were washed 6 times with PBST 176 

before the addition of 100 µl/well of freshly prepared substrate solution (50 mM citric acid, 177 

50 mM Na2HPO4, 2 mM o-phenylenediamine HCl, 0.009% H2O2). Plates with substrate were 178 

incubated in the dark at room temperature for 10-15 minutes when the reaction was stopped 179 

with 100 µl/well of 1 M H2SO4 and absorbance read at 490 nm. Each plate contained an EHC 180 

sample as a negative serological control for determining the positivity cut-off and a known 181 

seropositive VL sample as positive control. All ELISA results reported are the mean A490 of 182 

duplicate plates. 183 

RDT production and use 184 

Whole cell lysate was prepared as described previously (Bhattacharyya et al., 2014a) from L. 185 

donovani strain MHOM/SD/97/LEM3458. The VL Sero K-SeT lateral flow 186 

immunochromatographic tests were developed at Coris BioConcept and consisted of a 187 

cassette with a nitrocellulose membrane, a sample pad, a conjugate pad and an absorbent 188 

pad, backed with a plastic strip. The nitrocellulose membranes were sensitized with the L. 189 

donovani lysate antigen and anti-human IgG1-specific antibody labelled with colloidal gold 190 

was dried on the conjugate pad. This strip was housed in a plastic cassette with two windows: 191 

the smaller buffer well and the long central test window. 192 

To perform the test, 3.5 μl of serum/plasma was applied to the test window at the point 193 

indicated by a dot (•) on the cassette, followed immediately by 120 μl of supplied running 194 
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buffer to the buffer well (Figure 1). Devices were incubated flat, at ambient temperature for 195 

15 minutes before being assessed visually. Any test line at position T was considered a 196 

positive result if a control line was also present at position C. Positive test line intensity was 197 

assessed visually for samples from pre- and post-treatment VL (Figure 1). A subset of samples 198 

was tested on different batches of the VL Sero K-SeT. Readers of the RDTs were blinded to all 199 

the corresponding ELISA results. 200 

Western blotting 201 

Western blots were performed to visualise antigen recognition in patients from the different 202 

clinical groups, as described in Supplementary Material S1. Briefly, tricine SDS-PAGE gels were 203 

made as per Schägger (2006). L. donovani DD8 lysate was used as antigen with sera/plasma 204 

diluted 1 in 300 (Sudan) or 1 in 400 (India) and detection was by mouse anti human IgG1-205 

HRP. 206 

Statistical analysis 207 

We performed a two-tailed Fisher’s exact test on Indian VL Sero K-SeT and IgG1 ELISA data to 208 

calculate p-values between samples from pre- and matched 6 months post-treatment 209 

(deemed cured), separately between post-treatment and relapse, and between post-210 

treatment and PKDL. Cut-off for the IgG1 ELISA was calculated as the mean absorbance of the 211 

EHC samples plus 3 standard deviations. 212 

 213 

Results 214 
IgG1 diminishes by 6 months in cured VL patients 215 

Samples taken from Indian patients before or at the outset of therapy, were compared by VL 216 

Sero K-SeT and IgG1 ELISA with paired samples taken 6 months later when the individuals 217 

were deemed cured. Both IgG1 assay methods showed a statistically significant difference in 218 

positivity rate between pre- and post-treatment samples (p = 0.0162 and p < 0.0001 for ELISA 219 

and RDT respectively) (Figure 2). A consistent and strongly significant difference was also 220 

observed between cured versus relapsed samples (p < 0.0001), again with both IgG1 assay 221 

methods (Figure 2). 222 

A subset of pre- and post-treatment of the cured pairs samples (n = 87) was tested on 223 

different batches of the VL Sero K-SeT, with agreement between individual RDTs of 92.0% 224 

(80/87).  225 

Changes in IgG1 levels by ELISA and VL Sero K-SeT 226 
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ELISA absorbance and corresponding VL Sero K-SeT results for individual samples are given in 227 

Supplementary Material S2. Of the 80 Indian paired samples tested for anti L. donovani IgG1 228 

by ELISA, 54 (67.5%) were positive before treatment. Of these, 51/54 declined in titre: 21/51 229 

(representing 26.3% of the total 80) went from positive to negative and 30/51 (representing 230 

37.5% of the total 80) had reduced IgG1 at 6 months when deemed cured (Figure 2 and Table 231 

2). Twenty one (26.3%) paired cured sera were negative by IgG1 ELISA before treatment and 232 

remained so at 6 months.  233 

Overall, including those negative at the start, at 6 months after treatment 79/104 (76.0%) 234 

were negative by VL Sero K-SeT (Table 2). VL Sero K-SeT results were additionally assessed 235 

according to whether the Indian 6 month post-treatment (cure) sample had a decreased or 236 

not decreased test line intensity compared to the paired pre-treatment sample. Of the 104 237 

paired samples tested by VL Sero K-SeT from deemed cured Indian VL patients, 81 (77.9%) 238 

were positive at start of treatment (Table 2); of these, 68/81 (84.0%) had either become 239 

negative or had a visibly reduced test line intensity at 6 months when deemed cured. 240 

Thirteen (12.5%) initially RDT positive individuals showed no visible decrease in RDT band 241 

intensity at 6 months, despite being deemed cured, and none became positive from negative.  242 

Ninety four percent of samples positive by ELISA at pre-treatment, decreased in 243 

seropositivity; for VL Sero K-SeT, this proportion was 84%. However, at 6 months post-244 

treatment, the ELISA was more likely to remain positive than the RDT, using the cut-off value 245 

established for the IgG1 ELISA.  246 

Seventy nine Indian samples were tested by both VL Sero K-SeT and ELISA. Of these samples, 247 

the RDT was more likely than the ELISA to be positive with the Day 0 samples (78.5% versus 248 

67.1%) and negative with the 6 month samples (78.5% versus 53.2%). Of samples which 249 

remained positive at 6 months by both methods (n = 14), the change in intensity of RDT test 250 

line generally mirrored the change in ELISA absorbance value for the same sample. Three of 251 

the Indian samples increased markedly in IgG1 titre by ELISA at 6 months (Figure 2). Two of 252 

these accorded with a corresponding rise in VL Sero K-SeT test line intensity; for the third 253 

sample, both pre-treatment and 6 month RDTs were negative (Figure 2A).  254 

Sudanese paired samples taken before and immediately after treatment (11 to 30 days later) 255 

were similarly assessed (Table 2). For Sudanese paired samples prior to treatment, 13/17 256 

(76.5%) were positive by VL Sero K-SeT and at completion of treatment, 10/13 (76.9%) had a 257 

negative or reduced test line intensity (Table 2). If taken as a single time point at the end of 258 

treatment, 10/17 (58.8%) Sudanese VL patients had negative VL Sero K-SeT result. Four 259 

(23.5%) of the Sudanese treated individuals were negative pre-treatment, similar to the 260 
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proportion of Indian samples (22.1%). Two additional un-paired treated Sudanese samples 261 

were negative by RDT (not shown). 262 

IgG1 western blot confirmed negative/declined RDT in cure 263 

For a subset of 25 of the paired Indian samples, western blots mirrored the VL Sero K-SeT RDT 264 

findings, in that IgG1 declined dramatically in all but one VL patient at 6 months follow up 265 

after treatment (Supplementary Material S3). As with the RDT, the blots showed that samples 266 

that were positive and detecting many antigens before treatment had become negative or 267 

reduced in intensity by 6 months. Corresponding RDT images are shown in Supplementary 268 

Material S4. 269 

Elevated IgG1 in VL relapse  270 

For 33 Indian patients for whom we had unpaired samples at the time of relapse, the VL Sero 271 

K-SeT was 84.8% (28/33) positive and ELISA 91.3% (21/23) positive, confirming relapse. Of the 272 

23 samples tested by ELISA that were also tested by RDT, 19 gave the same result by both 273 

assays (Supplementary Material S2). The single available Sudanese relapse sample was IgG1 274 

positive (Supplementary Material S5). Twenty five of the Indian samples and the single 275 

Sudanese sample were also tested on western blot for IgG1 against L. donovani lysate antigen 276 

and showed concordance between the RDT and blots (Supplementary Material S2 and S5). 277 

For two of the 33 Indian relapse samples, a paired pre-treatment sample was available. Both 278 

individuals were VL Sero K-SeT positive at both time points.  279 

All samples from other diseases, namely malaria, tuberculosis, dengue fever, rheumatoid 280 

arthritis and multiple myeloma were negative by VL Sero K-SeT, as were all samples from 281 

endemic healthy controls. 282 

VL Sero K-SeT can provide evidence for PKDL but not for its cure 283 

Of the 63 PKDL samples tested, 49 (77.8%) were positive by VL Sero K-SeT and of the subset 284 

of 45 tested by IgG1 ELISA, 43 (95.6%) were positive (Supplementary Material S2). A subset of 285 

10 VL Sero K-SeT-positive PKDL samples were tested by western blot, of which 9 showed 286 

discernible bands. Images of the blots and their corresponding VL Sero K-SeT RDTs are shown 287 

in Supplementary Material S6. There was a highly statistically significant difference between 288 

post-treatment cured samples at 6 months and PKDL by both VL Sero K-SeT and IgG1 ELISA 289 

(Fisher’s exact p < 0.0001 for both assays). 290 

Seventeen of the 63 individuals with PKDL provided between 1 and 5 additional sequential 291 

follow-up samples over intervals ranging from 15 to 365 days post-treatment. These PKDL 292 

post-treatment sequential samples retained the initial RDT result in 12/17 (70.6%) cases, 293 
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decreased in 3/17 (17.6%), increased slightly in one case (5.9%) and varied between positive 294 

and negative over time in one case (5.9%).  295 

IgG1 can indicate progression from asymptomatic status 296 

When samples from asymptomatic seropositive individuals who later progressed to 297 

symptomatic disease (progressors, n = 4) were tested on the VL Sero K-SeT, all gave a positive 298 

test result (Supplementary Material S7). In contrast, 4 individuals who were seropositive but 299 

did not develop symptomatic VL were negative by VL Sero K-SeT. Thus, in our limited sample 300 

size, elevated IgG1 levels, as detected by VL Sero K-SeT, were associated with progression to 301 

symptomatic disease. This result was corroborated by ELISA and western blot 302 

(Supplementary Material S7). 303 

 304 

Discussion 305 
Conventional serology for VL diagnosis relies on detecting the overall IgG response. This has 306 

been reported to remain elevated, often for years, after treatment (Bhattarai et al., 2009; 307 

Gidwani et al., 2011; Srivastava et al., 2013). This makes current serology unsuitable for 308 

timely monitoring of treatment outcome. We have previously found using ELISA that a 309 

decreased or negative anti Leishmania IgG1 titre at 6 months post-treatment can be 310 

indicative of VL cure, whereas elevated IgG1 levels are associated with post-311 

chemotherapeutic relapse (Bhattacharyya et al., 2014a). 312 

Monitoring of post-treatment outcomes 313 

Here we used a larger panel of paired samples to assess the IgG1 response as detected by the 314 

rapid test, VL Sero K-SeT, where 77.9% of Indian samples were positive before treatment and 315 

of these 69.1% had become negative 6 months later when deemed cured (Table 2). In total, 316 

76% of 6 month samples were negative, a significant difference from pre-treatment (p < 317 

0.0001). Of those still positive at 6 months using this RDT, we found that a diminished test 318 

line intensity was also consistent with cure. This decline was corroborated by ELISAs, and 319 

despite slight differences in the antigen preparations. We have found no difference in 320 

performance of the VL Sero K-SeT when DD8 strain antigen is used instead of LEM3458 321 

(unpublished observations). Thus, the VL Sero K-SeT is a promising innovation, although there 322 

is a need to improve further its discriminative capacity. 323 

Sudanese samples declined from positive to negative or decreased VL Sero K-SeT test line 324 

intensity in 76.9% of patients immediately after treatment, no more than 30 days after the 325 

first sample. This apparently rapid drop in IgG1 was not seen in Indian samples and could be 326 
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due to the overall lower IgG titre observed in Sudanese samples (Bhattacharyya et al., 2014b; 327 

Abass et al., 2015). Thus, a small drop in IgG1 titre could have taken these samples below the 328 

detection limit of the VL Sero K-SeT. This may suggest that the VL Sero K-SeT can be used 329 

before 6 months to indicate cure or relapse in eastern Africa. The unexpectedly low 330 

sensitivity of the VL Sero K-SeT at the start of treatment for both Indian (77.9%) and 331 

Sudanese (76.5%) samples does not hinder the subsequent assessment of cure at 6 months, 332 

because a negative IgG1 result at 6 months can indicate cure. In addition, we do not propose 333 

to use IgG1 assays as a diagnostic for active VL but rather to assist with confirming cure, 334 

relapse and PKDL, all of which currently lack an appropriate diagnostic test. With Indian 335 

samples, where there was discrepancy between VL Sero K-SeT and ELISA, the RDT was 336 

generally more accurate, being positive with pre-treatment and negative with 6 month 337 

samples (Supplementary Material S2). As for the Indian sera, the strength of RDT test line 338 

intensity broadly corresponded with ELISA signal for an individual sample. 339 

Elevated levels of IgG1 were associated with VL relapse in both assays here for Indian 340 

samples. Likewise, the single Sudanese relapse patient was positive by VL Sero K-SeT, whilst 2 341 

treated individuals were negative. We do not know the length of time between treatment 342 

and relapse for relapsed individuals (India and Sudan), or the outcome of treated Sudanese 343 

individuals. Burza et al. (2014) advised that patient follow-up should be extended from 6 to 344 

12 months as 50-85% of relapses have been found to occur 6 to ≥ 12 months post-treatment 345 

(Rijal et al., 2013; Burza et al., 2014). Our evaluations of a limited number Nepalese relapse 346 

samples eluted from filter paper indicated that, although encouraging, elution volumes and 347 

conditions need further optimisation before they can be more extensively used with VL Sero 348 

K-SeT (data not shown). 349 

We found that in Indian cases who relapsed, the RDT positivity rate was significantly different 350 

from 6 month samples from patients deemed cured (p < 0.0001). Thus the VL Sero K-SeT, 351 

with Indian samples, can contribute to distinguishing patients deemed cured from those who 352 

have relapsed. Of the 13 Indian patients deemed cured at 6 months but who had no clear 353 

decrease in VL Sero K-SeT test line intensity (Table 2), none is known to have relapsed with 354 

VL. However, the quantitative ELISA did detect an IgG1 decrease in these samples, consistent 355 

with cure. Apparent relapses might however, occasionally include re-infections given the 356 

highly endemic locations (Morales et al., 2002). Although beyond the scope of the present 357 

study, the inclusion of parasite genotyping in a future study would be an advantage.  358 

Cases co-infected with HIV and VL were not included in the present study. Serological 359 

diagnosis is less reliable in HIV/VL co-infection (Cota et al., 2012; Abass et al., 2015) and the 360 
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dynamics of IgG1 response in HIV/VL co-infections need to be determined. Other techniques 361 

such as a loop mediated isothermal amplification (LAMP) or qPCR detecting parasite DNA 362 

might have the potential to discriminate cure from relapse in HIV/VL patients but are 363 

currently less accessible than immunological tests (Mukhtar et al., 2018).  364 

PKDL 365 

Indian individuals with PKDL tested here were defined as being with or without a previous 366 

history of VL, presenting with a dermal macular, papular or nodular rash often starting on the 367 

face with further spread to other parts of the body without loss of sensation. VL Sero K-SeT 368 

and IgG1 ELISA results suggest that these assays might contribute to PKDL case detection, as 369 

found by a study by Saha et al. (2005), whereas conventional serology may be of limited 370 

utility (Gidwani et al., 2011). Our data did not assess the predictive value of IgG1 for 371 

development of PKDL. 372 

Where the information was available with our sample set, we did not observe an association 373 

between elevated IgG1 and macular versus polymorphic PKDL presentation, this is in contrast 374 

to the report of Mukhopadhyay et al. (2012). For a subset of these PKDL samples, we also 375 

tested sequential samples taken up to one year after the initial sample. We did not observe a 376 

consistent decrease in IgG1 after PKDL treatment. 377 

Progression from asymptomatic to active VL  378 

Asymptomatic, seropositive cases outnumber active VL cases (Bern et al., 2007; Ostyn et al., 379 

2011; Hasker et al., 2013; Hirve et al., 2016; Saha et al., 2017) but a proportion are at 380 

elevated risk of progressing to active VL (Gidwani et al., 2009; Topno et al., 2010; Ostyn et al., 381 

2011). Asymptomatics have been reported to occasionally have detectable parasites by PCR 382 

or culture of blood (le Fichoux et al., 1999; Costa et al., 2002; Bhattarai et al., 2009; Srivastava 383 

et al., 2013). Therefore, neither standard seropositivity nor parasitaemia are indicators of 384 

progression to clinical disease. Gidwani et al. (2009) found that this progression to VL 385 

occurred up to 2 years after serological positivity. 386 

Our limited sample size of seropositive asymptomatic individuals were identified during a 387 

community serological screening study, before the present study. Those who later progressed 388 

to clinical VL were positive by VL Sero K-SeT and ELISA, whilst those who did not progress 389 

were negative by both assays. High titres in both DAT and rK39 ELISA have been indicative of 390 

progression in larger studies (Ostyn et al., 2011; Hasker et al., 2014). However, this 391 

combination of tests requires laboratory facilities, therefore it would be desirable to have an 392 

RDT that could predict progression.  393 
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Additional validation of the VL Sero K-SeT should compare larger cohorts who do and do not 394 

progress to VL. 395 

Potential clinical application of IgG1 tests 396 

On the basis of the IgG1 responses reported here by VL Sero K-SeT and ELISA, we propose 397 

that IgG1 levels may contribute to monitoring the therapeutic outcome of VL, irrespective of 398 

whether there is a pre-treatment sample or result. With further development and validation, 399 

IgG1 assays, including the VL Sero K-SeT, which can be produced in large-scale at a cost of a 400 

few Euros per test, can be used as an adjunct to the clinical assessment of VL status following 401 

treatment. A negative, or defined decrease in IgG1 result at 6 months post treatment in India 402 

could be supportive of the clinical assessment of cure. Conversely, an un-paired positive or 403 

non-decreased paired positive result at 6 months could indicate the need for additional 404 

follow-up. In Sudan, the test may be applicable for defining cure before 6 months. A positive 405 

IgG1 result in suspected PKDL or relapse could support the presence of leishmaniasis 406 

compared to differential diagnoses. Although western blots were supportive of the use of 407 

IgG1, we did not specifically assess banding patterns, and do not propose their use in VL 408 

diagnosis. However, we are investigating the discriminative diagnostic potential of antigens 409 

separated on acrylamide gels. 410 

Recommendations for further validation of IgG1 assays 411 

We propose that a prospective study, with extended follow-up of a larger cohort of treated 412 

VL patients, should be used to validate the use of IgG1 ELISA and the VL Sero K-SeT for 413 

confirming cure in all endemic areas and defining the optimal time for testing, which may 414 

differ between regions. This longer follow-up would also indicate the potential of elevated 415 

IgG1 to predict relapse and PKDL and in turn, link these with different treatment regimens. A 416 

more extensive study of PKDL is required to determine the potential role of IgG1 in 417 

identifying PKDL as distinct from leprosy and fungal skin diseases (Saha et al., 2005; Mondal 418 

and Khan, 2011). In addition, use of the IgG1 assays on a much larger panel of seropositive 419 

asymptomatic individuals would help to define its role in predicting progression to VL. In all 420 

cases, comparison with existing diagnostics, including definitive parasitological methods, 421 

would directly assess the advantage of IgG1 assays.   422 

Technical refinement of the VL Sero K-SeT should consider the use of electronic RDT readers 423 

to give an objective assessment of test band intensity. In addition, the identification of 424 

specific antigens suitable to replace the use of parasite lysate would obviate issues regarding 425 

batch-to-batch variation. These developments could improve precision of IgG1 readings and 426 

reproducibility. A comparison of whole blood and serum/plasma is also required for point-of-427 
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care use, although a study in Bangladesh on various VL RDTs did find high agreement 428 

between the two sample types (Ghosh et al., 2015). 429 

Conclusion 430 

IgG1 assays, particularly in the VL Sero K-SeT RDT format, may be a useful adjunct in the 431 

assessment of VL treatment outcome and diagnosis of PKDL, which have been identified as 432 

research priorities for VL (World Health Organization, 2012). With additional refinement and 433 

validation, the VL Sero K-SeT and IgG1 ELISA could contribute to life-saving follow-up of 434 

treated patients and to control programme monitoring, surveillance, and targeting of 435 

strategies for long-term control of VL.  436 
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Tables and Figures 661 
Table 1. Indian sample types and total numbers tested by IgG1 assays. 662 

Sample type Definitions n 

Pre- and post-

treatment pairs, 

deemed cured 

Treated for VL, with improvement in clinical 

symptoms and no evidence of relapse at any time 6 

months after treatment. Samples were taken at or 

around the start of treatment and at 6 months. 

105 pairs 

Relapse VL treated and subsequently relapsed to active disease. 

Sampled at the time of relapse diagnosis. 

33 

PKDL Samples taken at or up to 30 days after diagnosis of 

PKDL. Parasite infection was confirmed by PCR or a 

slit-skin smear or biopsy. 

63 

Asymptomatic Asymptomatic seropositive, on the basis of DAT and/or 

rK39 ELISA, without symptoms or history of VL. Progressors 

(n = 4) developed VL after sampling. Non-progressors (n= 

4) did not develop VL during follow-up of at least 3 years. 

8 

Other diseases Malaria (n = 5); tuberculosis (n = 5), rheumatoid arthritis (n 

= 1); dengue (n = 1); multiple myeloma (n = 1). 

13 

Endemic healthy 

control 

Resident in VL endemic area, seronegative by DAT and 

rK39 ELISA, no history of VL, healthy. 

30 

 663 

 664 
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Figure 1. Representative examples of VL Sero K-SeT test line intensity. C: control line, T: test 665 

line, dot (•) indicates where sample is applied. Test strip manufacture was identical despite 666 

being housed in different cassettes. Image is best viewed in digital, colour format. 667 

 668 

Figure 2. IgG1 anti L. donovani assays with Indian VL samples detect differences according to 669 

treatment outcome. (A) ELISA A490 change between paired pre-treatment samples and at 6 670 

months post-treatment when deemed cured. Dashed line indicates cut-off (A490 = 0.128). 671 

Positivity rates with paired pre-treatment and cured samples at 6 months (6 mth), and non-672 

paired relapse (Rel) for (B) ELISA, (C) VL Sero K-SeT. * p < 0.0001, ** p = 0.0162.  673 

 674 

Table 2. Change in IgG1 response of pre- and post-treatment paired samples from India and 675 

Sudan.  676 

Change in IgG1 

response 

ELISA A490 VL Sero K-SeT test line 

intensity 

India n (%) India n (%) Sudan n (%) 

Positive to negative 21 (26.3%) 56 (53.8%) 7 (41.2%) 

Positive clear decrease 30 (37.5%) 12 (11.5%) 3 (17.6%) 

Positive no clear 

decrease 

3 (3.8%) 13 (12.5%) 3 (17.6%) 

Negative no change 21 (26.3%) 23 (22.1%) 3 (17.6%) 

Negative to positive 5 (6.3%) 0 (0%) 1 (5.9%) 
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Total 80 (100%) 104 (100%) 17 (100%) 

677 
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CHAPTER 4: Capture and identification of Leishmania donovani 
protein antigens in human urine during visceral leishmaniasis 
 

Marlais T, Bhattacharyya T, Pearson C, Gardner BL, Marhoon S, Airs S, Singh OP, Reed SG, El-
Safi S, Sundar S, Miles MA. Capture and identification of Leishmania donovani protein 
antigens in human urine during visceral leishmaniasis. Submitted. 

 

Key points, novel results and implications 

x Immuno-capture methods were used to concentrate L. donovani antigens from urine 

of VL patients prior to identification of proteins by mass spectrometry and 

subsequent Leishmania-specific epitope identification within these proteins using 

online tools. 

x Seven L. donovani proteins were identified which have not previously been identified 

in VL urine. 

x This manuscript presents a rationally-selected list of potential protein antigens 

specific to Leishmania that can be synthesised and used to raise antibodies for 

development of a urine antigen capture assay.  

x This work furthers the available information on VL urine antigens and can contribute 

to the development or improvement of a non-invasive diagnostic test for VL which 

could be used to diagnose and confirm cure. This has implications to improve long-

term VL disease control among the poorest and most neglected communities. 

 

Candidate’s contribution 

The candidate performed all laboratory components on Sudanese VL urine. This included: 

rabbit antibody purification from serum; analysing the response of the rabbit antibody by 

ELISA; conjugating rabbit antibody to an affinity column; urine preparation and 

immunocapture; SDS PAGE gels and western blot; conjugating rabbit antibodies to the 

enzyme horseradish peroxidase. The candidate wrote the method and co-supervised the 

laboratory work with Indian urine. Preparation and submission of all samples to Oxford 

University for mass spectrometry was by the candidate, as was the large majority of mass 

spectrometry data analysis, all computational protein analysis, and manuscript writing. 

Sudanese urine processing was carried out prior to the candidate’s PhD registration. Indian 
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urine processing, mass spectrometry data analysis, computational protein analysis and 

manuscript writing were carried out during the candidate’s PhD.  

Contribution of others 

Tapan Bhattacharyya, supervised lab work in India and contributed to revision of the 

manuscript. 

Callum Pearson, Bathsheba Gardner and Stephanie Airs, carried out lab work in India. 

Safiyyah Marhoon, assisted with interpretation and analysis of mass spec data. 

Om Prakash Sing, Steven Reed, Sayda El Safi, Shyam Sundar provided materials including 

human urine samples and antibodies. 

Michael Miles co-ordinated the study. 
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Abstract 19 
Background and Aim: Diagnosis of visceral leishmaniasis (VL) relies on invasive and 20 

risky aspirate procedures, and confirmation of cure after treatment is unreliable. 21 

Detection of Leishmania donovani antigens in urine has the potential to provide both a 22 

non-invasive diagnostic and a test of cure. We searched for L. donovani antigens in 23 

urine of VL patients from India and Sudan to contribute to the development of urine 24 

antigen capture immunoassays. 25 

Method: VL urine samples from India and Sudan were incubated with immobilised 26 

anti-L. donovani polyclonal antibodies and captured material was eluted. Sudanese 27 

eluted material and concentrated VL urine were analysed by western blot. 28 

Immunocaptured and immunoreactive material from Indian and Sudanese urine was 29 

submitted to mass spectrometry for protein identification. 30 
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Results: We identified seven L. donovani proteins from VL urine. Named proteins 31 

were 40S ribosomal protein S9, kinases, and others were hypothetical. Thirty five 32 

epitope regions were predicted with high specificity in the 7 proteins. Of these, 22 33 

were highly specific to Leishmania spp. 34 

Conclusion: We identified L. donovani protein antigens in VL urine from Indian and 35 

Sudanese patients. Predicted epitope regions of these proteins are highly suitable for 36 

raising antibodies for the subsequent development of an antigen capture assay. We 37 

provide the amino acid sequences of these epitopes. Combining these antigens for 38 

antibody generation, or as assay targets, could improve sensitivity and specificity of 39 

the prospective assay. 40 

Introduction 41 
Visceral leishmanisis (VL) is most commonly caused by Leishmania donovani in the 42 

Indian subcontinent and East Africa, whereas L. infantum is the agent in the 43 

Mediterranean, Middle East and South America. Both species are transmitted by 44 

female phlebotomine sand flies and symptomatic infection is considered fatal if 45 

untreated, therefore accurate diagnosis is crucial to patient outcome. India, 46 

Bangladesh and Nepal are aiming to eliminate VL as a public health problem and this 47 

relies on rapid case detection and confirmation of cure after treatment (1). 48 

Diagnosis of VL is based on serology, commonly using the recombinant rK39 or rK28 49 

antigens, followed by microscopic visualisation of the parasite in spleen, bone marrow 50 

or lymph node aspirate as confirmation. Conventional serology, which detects anti-51 

Leishmania IgG antibodies, has several drawbacks: it is ineffective at confirming cure 52 

or relapse because it can remain positive for many years after successful treatment 53 

(2-6); it is also less reliable in HIV co-infected cases where a negative result does not 54 

rule out leishmaniasis (7). 55 

An ideal diagnostic for both primary VL cases and validating cure is the detection of 56 

parasite material in non-invasive samples such as urine or saliva, or a serological test 57 

that is specific for active infection (8). As well, there is the need for low-cost, rapid and 58 

equipment-free diagnostics that can be used in low-resource settings at point-of-care 59 

with minimal training.  Such assays may detect parasite DNA, for example by loop-60 

mediated isothermal amplification (LAMP) (9, 10) or by recombinase polymerase 61 

amplification (RPA) (11), or may detect parasite antigens. 62 

Several urine antigen capture immunoassays have been developed with the best 63 

established being the KAtex, a latex particle agglutination test that detects a 64 

carbohydrate antigen (12, 13). The KAtex has a specificity of 84-100%, but poorer 65 

sensitivity of 47-87% (14-17) with the drawback that urine samples must be boiled 66 
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before testing. However, the test is rapid, giving a result in less than 10 minutes and 67 

becoming negative for most patients 30 days post-treatment (17). In addition, this 68 

urine antigen assay has shown utility in HIV/VL co-infection (18, 19). Monoclonal and 69 

polyclonal antibodies against the antigen in the KAtex test were later adapted to 70 

ELISA format, which removed the need for boiling urine (20). 71 

Other assays have been reported that detect particular protein antigens of L. infantum 72 

in urine (21). This approach required first identifying Leishmania proteins in VL urine 73 

by mass spectrometry, expressing them as recombinant antigens and raising 74 

antibodies that could be produced as highly specific and sensitive polyclonal or 75 

monoclonal antibodies (21). 76 

An alternative approach is to raise antibodies to lysed whole parasite cells, containing 77 

a wide diversity of antigens and to use these to capture a range of undefined antigens 78 

from VL patient urine. A. C. Vallur et al. (22) reported the development of an ELISA 79 

using an affinity purified polyclonal rabbit antibody against L. donovani whole cell 80 

lysate. The assay was optimised by those authors and developed into an ELISA kit 81 

that performed well in detecting urine antigen in VL patients from both L. infantum and 82 

L. donovani endemic regions. We undertook a study using this and other polyclonal 83 

anti-Leishmania antibodies to detect and capture antigens from Indian and Sudanese 84 

VL urine. We then identified these parasite proteins using mass spectrometry. 85 

Methods 86 
Ethics statement 87 

Ethical permission was granted by the LSHTM Ethical Review Committee with 88 

approval number 11478, and as part of the EC-funded NIDIAG project. In India, the 89 

collection of samples was approved by the Ethics Committee of Banaras Hindu 90 

University, Varanasi. In Sudan, approval was by the Ethical Research Committee, 91 

Faculty of Medicine, University of Khartoum and the National Health Research Ethics 92 

Committee, Federal Ministry of Health, Sudan. Written informed consent was obtained 93 

from adult subjects included in the study or from the parents or guardians of 94 

individuals less than 18 years of age. 95 

Two rabbits were used here to raise antiserum. The inoculation and subsequent 96 

collection of serum from the rabbits was performed at the Royal Veterinary College, 97 

London, UK, in accordance with animal welfare standards required by law. 98 

Processing and analysis of samples 99 

Figure 1 depicts the overall workflow of the urine samples in this study. 100 

 101 
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Figure 1. Sample processing and analysis workflow used in this study. Asterisks 102 

indicate immunocapture methods. Anti-1S2D, -DD8 and -LV9 are rabbit antibodies 103 

against these respective strains of Leishmania donovani. VLu, concentrated proteins 104 

from VL urine; EHCu, concentrated proteins from urine of Endemic Healthy Control 105 

participants; uAg, material captured from VL urine by anti-L. donovani antibodies; LC-106 

MS/MS, liquid chromatography tandem mass spectrometry. 107 

 108 

Urine samples 109 

Urine samples were from VL patients and healthy controls in two distinct VL endemic 110 

regions, namely the Indian state of Bihar and the Sudanese state of Gedaref. India: 111 

urine samples were collected from VL patients attending the Kala-Azar Medical 112 

Research Centre (KAMRC) clinic in Muzzarfarpur, Bihar. Sudan: VL and endemic 113 

healthy control (EHC) urine samples were collected from field sites in Gedaref. 114 

Generation of rabbit anti-L. donovani antibodies 115 

A. C. Vallur et al. (22) described the generation of a rabbit anti-L. donovani polyclonal 116 

antibody against whole promastigote lysate antigen, which was affinity purified against 117 

soluble promastigote lysate antigen of L. donovani strain MHOM/SD/00/1S-2D. This 118 

antibody is hereafter referred to as anti-1S2D. 119 

Here, we prepared soluble promastigote lysate antigens of L. donovani strains 120 

MHOM/IN/80/DD8 and MHOM/ET/67/LV9 (also known as HU3), as described (23). 121 

Log phase promastigotes were washed 3 times in PBS, pelleted by centrifugation, 122 

flash frozen in liquid nitrogen and thawed 3 times, sonicated (Soniprep 150, MSE, UK) 123 

at 12 microns intensity for 3 x 30 seconds at 2-minute intervals on ice and finally 124 

centrifuged at 12,000 x g for 1 minute at 4°C. The supernatants containing soluble 125 

antigens were retained and used subsequently. 126 

Soluble antigen (DD8 and LV9) was used to raise antiserum in two rabbits that were 127 

immunised percutaneously with two doses of the respective lysate. The first 128 

inoculation was with 200 µg - 500 µg of lysate antigen (originating from roughly 107 129 

parasites) with Freund’s complete adjuvant (F5881, Sigma-Aldrich). A second 130 

inoculation, four weeks later, was with the same amount of antigen, plus Freund’s 131 

incomplete adjuvant (F5506, Sigma-Aldrich). Five millilitres of blood was taken before 132 

inoculations and about 50 ml five months after the second inoculation. 133 

The resulting polyclonal IgG was purified from both DD8 and LV9 antisera on protein 134 

A agarose (P3476, Sigma, UK), eluted with 0.1 M glycine, pH 2.7 and immediately 135 

neutralised with 60 µl of 1 M Tris pH 9.0. The purified IgG elutions are hereafter 136 
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referred to as anti-DD8 and anti-LV9. An ELISA was performed to confirm the 137 

reactivity of the two antibodies with L. donovani antigen and that the pre-immune sera 138 

were non-reactive. 139 

Precipitation and panning of Indian VL urine proteins 140 

Total protein was precipitated from Indian VL patient urine: approximately 130 ml of 141 

urine (83 ml fresh and 52 ml previously frozen) was combined from 31 Indian VL 142 

patients and protease inhibitor cocktail (P8340, Sigma-Aldrich) was added at a dilution 143 

of 1:500. The urine was centrifuged at 2,500 x g for 3 minutes to pellet cellular debris, 144 

which was discarded. To the supernatant, we added 85 g solid ammonium sulphate to 145 

achieve 90% saturation then incubated the solution for one hour at ambient 146 

temperature (about 28°C) with mixing to allow proteins to precipitate. The 147 

urine/ammonium sulphate solution was centrifuged in aliquots at 3,900 x g at 20°C for 148 

40 minutes and the supernatant was discarded. Protein pellets were then 149 

resuspended as two aliquots in a total of 4.25 ml PBS then desalted using PD10 150 

columns (170851-01, GE Healthcare) by the centrifugation protocol and each replicate 151 

made up to 3 ml with PBS.  152 

To capture L. donovani antigens from the precipitated Indian VL urine protein, we 153 

performed immuno-panning (Figure 1, upper left). Anti-1S2D antibody was coated 154 

onto 5 cm diameter plastic dishes at 8 µg/ml (Dish 8) and 35 µg/ml (Dish 35) in 1.5 ml 155 

coating buffer (0.1 M NaHCO3, pH 8.6) by incubation at 4°C overnight. The unbound 156 

antibody was removed, replaced with blocking buffer (coating buffer containing 5 157 

mg/ml bovine serum albumin) and the dishes were incubated at 4°C for 1 hour. After 158 

blocking, both dishes were washed 5 times using PBS containing 0.05% v/v Tween 20 159 

(PBST), with gentle agitation. 160 

The first aliquot of urine protein solution was incubated in Dish 8 for 1 hour at room 161 

temperature with agitation before the unbound material was moved into Dish 35. Dish 162 

8 was washed 3 times with PBST then another 3 times with PBS before bound 163 

material was eluted with a 15 minute incubation with 1 ml of 0.1 M glycine pH 2.7. 164 

Eluate was pipetted into a tube containing 32 µl neutralising buffer (1 M Tris pH 9.0) 165 

and sodium azide to a final concentration of 0.02% (w/v) then stored at -80°C.  166 

Unbound material from Dish 35 was transferred back to Dish 8 for repetition of the 167 

whole process. Four elutions were made from each aliquot of urine protein solution, 2 168 

from each plate, to maximise the chance of capturing Leishmania antigens. After each 169 

elution, the dishes were washed 10 times with PBS prior to re-use. The second aliquot 170 

of urine protein solution was put through the same process yielding another 4 eluates 171 

(thus n = 8 in total). 172 
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Eluates containing captured proteins were pooled into two volumes: one from Dish 8, 173 

the other from Dish 35. These were buffer exchanged into PBS and spin concentrated 174 

at 5°C in 3 kDa molecular weight cut-off (MWCO) Amicon Ultra filters (UFC500324, 175 

Millipore) at 14,000 x g in several 20 minute spins until the total volume of each was 176 

reduced to 100 µl. 177 

Concentration and affinity chromatography of Sudanese VL urine 178 

Sudanese VL patients’ urine from seven individuals was pooled, 0.4 ml from each to 179 

give 2.8 ml, and spin concentrated to 190 μl in Amicon Ultra 3 kDa MWCO tubes, with 180 

a final protein concentration of 12.5 mg/ml (hereafter ‘VLu’ for VL urine). Pooled EHC 181 

urine, 0.5 ml each from 14 individuals, was spin concentrated as above, down to 182 

about 100 μl (EHCu). Both urine concentrates were then washed to remove salts by 183 

making up to 0.5 ml with PBS and spinning down five times. These two concentrates, 184 

VLu and EHCu, were run in SDS-PAGE as described further below (Figure 1, upper 185 

right). 186 

Separately, another pool of Sudanese VL urine comprising 0.5 ml each of 57 187 

individual urines with 1/100 protease inhibitor (P8340, Sigma-Aldrich) was 188 

concentrated with a ProteoSpin Urine Protein Concentration Micro Kit (17400, Norgen 189 

Biotek Corp) as per manufacturer’s instructions and in batches to avoid overloading 190 

the capacity of the kit to a final volume of 3.7 ml. To capture L. donovani antigens in 191 

urine concentrated in this manner, rabbit anti-DD8 was coupled to a cyanogen 192 

bromide-activated Sepharose matrix (C9142, Sigma-Aldrich) following manufacturer’s 193 

instructions and the 1.75 ml of gel was loaded into a disposable column. The column 194 

was equilibrated using ten column volumes of PBS prior to use. Urine protein 195 

concentrate was incubated on the anti-DD8 column for 10 minutes, drained, washed 3 196 

times with 10 ml PBS and bound material was eluted in 8 x 1 ml volumes of 0.1 M 197 

glycine pH 2.7, neutralised with 32 µl neutralising buffer per 1 ml eluate. Eluted 198 

fractions indicated to contain antigen by a dot blot were spin concentrated to give ‘VL 199 

urine antigen (uAg)’. Briefly, the dot blot consisted of 2 µl of each fraction dried onto 200 

nitrocellulose, blocked with PBS + 3% w/v non-fat milk powder (Premier International 201 

Foods, Spalding, UK) (PBSM), probed with anti-DD8 and detected with anti-rabbit 202 

IgG-horseradish peroxidase (HRP) (711-035-152, Jackson Immunoresearch) and 203 

DAB/CN substrate, with details as described below. 204 

SDS-PAGE and western blotting 205 

Both of the Sudanese VL urine products, namely the urine concentrate (VLu) and 206 

immune-selected urine antigen (uAg), were subjected to non-reducing SDS-PAGE in 207 

duplicate lanes of a 10% acrylamide Tricine gel as described by H. Schägger (24). 208 
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Half of the gel was stained firstly for carbohydrate using Pro Q Emerald 300 (P21857, 209 

ThermoFisher Scientific) visualised at 280 nm (Gel Doc, ThermoFisher Scientific) then 210 

the same gel was stained for protein using Sypro Ruby (S12000, ThermoFisher 211 

Scientific) and visualised with 488 nm excitation and 610 nm emission wavelengths 212 

(Typhoon Trio phosphorimager, Amersham Biosciences) (Figure 1). 213 

The other identical gel half was blotted onto 0.2 µm pore size nitrocellulose 214 

(10600015, GE Healthcare) at 160 mA for 120 minutes and air-dried. The membrane 215 

was then blocked using PBSM overnight at 4°C then washed in PBST, three times for 216 

10 min each. Rabbit anti-DD8 and anti-LV9 were conjugated to HRP using a Lightning 217 

Link kit (701-0000, Innova Bioscience) then diluted together at 1:400 and 1:500 218 

respectively in PBST + 3% milk powder (PBSTM) and incubated on the blot for 2 219 

hours with gentle agitation. The membrane was washed with PBST six times for 5 220 

minutes each before addition of DAB/CN substrate solution (30 µg 4-chloro-1-221 

naphthol dissolved in 5 ml methanol then added to 40 ml PBS, followed by the 222 

addition of 10 µg of 3,3’-diaminobenzidine dissolved in 5 ml methanol and finally 15 µl 223 

of 30% H2O2). The blot was incubated for 15 mins with gentle agitation in the dark 224 

before stopping the reaction by washing in deionised water several times. 225 

Due to poor signal gained from these rabbit polyclonals conjugated directly to HRP, 226 

the blot was stripped using stripping buffer (glycine 15 g/L, SDS 1 g/L, Tween 20 10 227 

ml/L, pH 2.2) for 10 min with agitation, followed by 2 x 10 min washes in PBS and 2 x 228 

5 min washes in Tris buffered saline with Tween (20 mM Tris, 150 mM NaCl, 0.05% 229 

Tween 20, pH 7.6) (TBST). After stripping away the previous reaction, the blot was re-230 

blocked and probed with the same two rabbit anti-L. donovani antibodies without HRP 231 

conjugation, followed by anti-rabbit IgG-HRP at 1:1000 and DAB/CN substrate as 232 

before. Bands in the carbohydrate/protein-stained gel half, corresponding to 233 

immunoreactive blot bands in the two VL urine sample types, were excised for mass 234 

spectrometry.  235 

Mass spectrometry 236 

The excised gel bands from Sudanese VLu and uAg, as well as the two Indian VL 237 

urine solutions eluted from the panning dishes, were submitted to trypsin digest and 238 

liquid chromatography tandem mass spectrometry (LC-MS/MS) at the Advanced 239 

Proteomics Facility, Oxford University, UK. 240 

For all samples, mass spectra were assigned to L. donovani peptides by a 241 

simultaneous search using Mascot (Matrix Science, UK) against both the L. donovani 242 

BPK282A1 reference and UniProt Homo sapiens protein databases, which contained 243 

all the proteins of these organisms, as deduced from their genomes (25). The 244 
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simultaneous search was used to ensure that peptides that continued to be identified 245 

as Leishmania were almost certainly not derived from human proteins. Criteria for 246 

identifying Leishmania peptides were being rank 1 (the peptide with the best match for 247 

a particular mass spectrum) and having a ppm of -10 to 10 (error on experimental 248 

peptide mass values, fraction expressed as parts per million). Proteins were identified 249 

when they contained 2 or more different peptides matching the above criteria and 250 

were taken forward to further analysis (Figure 1, lower panel). Once identified, 251 

peptides and proteins from VLu and uAg from Sudanese samples were considered 252 

together for subsequent analysis of their properties, as detailed below. 253 

Epitope prediction 254 

The complete amino acid sequences of proteins identified by 2 or more peptides were 255 

obtained through UniProtKB (25) and submitted to linear B-cell epitope prediction by 256 

BepiPred 2.0 (26). The epitope score threshold was set at 0.65 (on a scale of 0 to 1), 257 

which gave a specificity of 99% and sensitivity of 2%, with an alternative threshold of 258 

0.55 for higher sensitivity (specificity 81.6%, sensitivity 29%). Minimum length was 8 259 

residues, with no maximum. 260 

Specificity of proteins and epitopes to L. donovani 261 

Proteins and predicted epitope peptides from these proteins were assessed for 262 

sequence similarity to other species using a BLASTP search against the NCBI non-263 

redundant (nr) database with no species restriction and using the default settings. For 264 

epitope sequences, the BLASTP search was  optimised for short sequences. BLAST 265 

output was assessed for the sequence identity between the query and biologically-266 

relevant species, i.e., human pathogens and commensals. Sequence similarity to 267 

other Leishmania species was tolerated if L. donovani was a complete match. 268 

Signal peptide prediction 269 

Proteins were submitted to SignalP 4.1 (27) to predict the presence of a signal 270 

peptide, which provided evidence that the protein may be secreted from the cell by 271 

this method. SignalP 4.1 is optimised to distinguish between transmembrane domains 272 

and signal peptides (27). 273 

Glycosylation prediction 274 

N-linked glycosylation of proteins was predicted using NetNGlyc (28), which identified 275 

potential glycosylation sites via a nitrogen atom of asparagine in the Asn-X-Ser/Thr 276 

motif, where X could be any amino acid residue except Pro. 277 

Protein properties 278 
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The possible identities of hypothetical proteins identified by mass spectrometry were 279 

sought using online tools that identify domains and protein features based on 280 

sequence similarity with known proteins: NCBI domain enhanced lookup time 281 

(DELTA) BLAST tool (29); InterPro (30); BlastKOALA (KEGG Orthology and Links 282 

Annotation) via KEGG (31). Additional information on protein features was from 283 

Expasy Prosite (32) and published literature. 284 

Results 285 
Using mass spectrometry, we identified five L. donovani proteins in Indian VL urine 286 

and two in Sudanese VL urine. Epitope prediction returned 35 linear B-cell epitopes of 287 

8 or more amino acids, within the complete protein sequences of the 7 proteins. Of 288 

the 35, 22 had complete identity only with Leishmania spp. in a BLAST search of the 289 

NCBI nr database of all organisms. Details of peptides and proteins from each urine 290 

source are described further below. 291 

Indian VL urine antigen capture 292 

In total from Indian VL urine, 20 different peptides were identified as those of L. 293 

donovani after a search of the mass spectra against L. donovani and human protein 294 

databases simultaneously; 12 from each panning dish, with four present in both dish 295 

eluates (Table S1). 296 

Five proteins, one of which occurred on both panning dishes, were confidently 297 

identified by more than one peptide (Table 1). In addition to proteins, 9 solo peptides 298 

(i.e., the only representatives of their parent protein) were identified with a highly 299 

reliable ID by mass spectrometry and high specificity to L. donovani (Table S2). 300 

  301 
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Table 1. Leishmania donovani proteins identified by more than one peptide in urine of 302 

Indian and Sudanese visceral leishmaniasis patients. 303 

VL 
urine 
origin 

Origin 
of 
peptid
e 

Peptide Parent protein 
 UniProtKB / 
GenBank 
accession 

India  Dish 8 EYEELR Hypothetical protein, conserved LdBPK_191140 

/ 

XP_003860289.

1 

ALAEGQER 

AKAEAEAAR 

Dish 8 

and 35 

LSRSMEVR 40S ribosomal protein S9, 

putative 

LdBPK_070760 

/ 

XP_003865205.

1 

LSSVQAGEVR 

Dish 8 VAVVLEGR Hypothetical protein, conserved LdBPK_363030 

/ 

XP_003865418.

1 

RVAVVLEGR 

Dish 35 FLDKLR Hypothetical protein, conserved LdBPK_323250 

/ 

XP_003863736.

1 

RSSQSSTSATY

R 

Dish 35 ALISPSVLR Protein kinase, putative LdBPK_262110 

/ 

XP_003861796.

1 

LSDAPRVCR 

Suda
n  

VLu EFVVSGAALR Hypothetical protein, conserved LdBPK_160110 

/ 

XP_003859699.

1 

ITDMQREIR 

VLu ITSDEVLR  Protein kinase, putative LdBPK_351070 

/ 

XP_003864692.

1 

TVNEDLSR 

 304 

Sudanese VL urine antigen capture 305 

L. donovani peptides and proteins were identified in mass spectrometry data from 306 

excised gel bands corresponding to immunocaptured urine antigen (uAg) and 307 

immunoreactive VL urine components (VLu) (Figure 2). Protein and carbohydrate 308 
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staining of the SDS PAGE gel revealed that very few of these antigens were 309 

glycoproteins (Figure 2, B and C). 310 

 311 

Figure 2. Sudanese VL patients’ urine (VLu) and immunocaptured urine antigen (uAg) 312 

detected by rabbit anti-L. donovani DD8 and -LV9 by western blot. Regions submitted 313 

to mass spectrometry are broadly indicated by boxes. A) western blot, B) 314 

corresponding gel stained for proteins, C) the same gel as B, stained for 315 

carbohydrates. Molecular mass marker (M) sizes in kilodaltons. Lanes are: lysate 316 

antigen of L. donovani strain DD8; uAg, VL urine material eluted from an anti-L. 317 

donovani DD8 immunochromatography column; VLu, concentrated VL urine; EHCu, 318 

concentrated urine from endemic healthy controls. 319 

Mass spectrometry of the Sudanese VL urine material (uAg and VLu) excised from 320 

the SDS PAGE gel confidently (>1 peptide) identified two proteins and nine additional 321 

solo peptides (Table 1 and Table S2). The peptides with a confident mass 322 

spectrometry ID had complete identity only to proteins from Leishmania genus 323 

according to a BLAST search, but part of some sequences occurred in other human 324 

pathogens or commensals. Specificity to Leishmania was improved when two 325 

peptides from the same protein were considered together. 326 

 327 

Specificity of proteins to L. donovani 328 

In total, we identified seven proteins with confidence (>1 peptide) from Indian (5 329 

proteins) and Sudanese (2 proteins) VL urine that showed high specificity to 330 

Leishmania spp., although not necessarily to L. donovani. From Indian VL urine, 331 

protein kinase (LdBPK_262110) and hypothetical proteins (LdBPK_191140, 332 

LdBPK_363030, LdBPK_323250) showed very high sequence similarity to several 333 

Leishmania species including L. infantum and species causing cutaneous 334 

leishmaniasis, and moderate identity to Trypanosoma cruzi proteins. The 40S 335 

ribosomal protein S9 (LdBPK_070760) also had high sequence identity to that of other 336 

Leishmania species, but little to any other genera. 337 

The two L. donovani proteins identified in Sudanese VL urine, hypothetical protein 338 

(LdBPK_160110) and protein kinase (LdBPK_351070), also had very high homology 339 

to L. infantum with minor sequence differences between these and other Leishmania 340 

species. Moderate homology was found between the hypothetical protein and those of 341 

T. cruzi, whereas the protein kinase had high homology with T. cruzi proteins. 342 
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In addition to the proteins, 18 solo peptides were identified in total by all methods, 9 343 

each from Indian and Sudanese VL urine (Table S2). Six of these were from named 344 

proteins and all others were from hypothetical proteins. Interestingly, there was no 345 

overlap between L. donovani peptides from Indian and Sudanese VL urine. 346 

Epitope prediction 347 

All 7 proteins identified with confidence (>1 peptide) from the Indian and Sudanese VL 348 

urine were submitted to epitope prediction using BepiPred 2.0 and together contained 349 

35 peptides at a score threshold of 0.65 which optimised specificity and 147 epitopes 350 

at a threshold score of 0.55, which provided higher sensitivity (Table S3). None of the 351 

7 proteins contained signal peptides and 4 contained potential N-linked glycosylation 352 

sites (Table S3). 353 

Potential VL urine antigens 354 

The 35 epitope peptides predicted with high specificity, and one with lower specificity, 355 

were assessed for specificity to L. donovani. Twenty two of the 36 epitope sequences 356 

were selected as they had complete sequence identity to L. donovani and little or no 357 

identity to sequences from other relevant species i.e., human pathogens or 358 

commensals. Specific peptides or epitope regions indicated for production of 359 

antibodies for use in antigen capture assays are detailed in Table 2. 360 

Table 2. Epitope sequences within L. donovani proteins identified in Indian and 361 

Sudanese VL patient urine. Epitopes were predicted by BepiPred 2.0 with score ≥0.65 362 

and selected based on high homology to Leishmania and low homology to other 363 

relevant genera.  364 

Sample 
of origin 

Parent protein 
(UniProtKB 
accession) 

Epitope sequences with high specificity 
to Leishmania 

Lengt
h (aa) 

Indian VL 
urine 

Hypothetical 
protein 
(LdBPK_191140
) 

VDDRTHREA 9 

QRQRQHAHA 9 

RRQRHTSP 8 

RNRPESSH 8 

40S ribosomal 
protein S9 
(LdBPK_070760
) 

SSRRASTTKPGPPPRAS 17 

GMQLVGELNDSLD 13 

LDQQPSVGTTT 11 

Hypothetical 
protein 

GSRHEKGQRGGRRS 14 

QKSQQQQQSTSS 12 
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(LdBPK_363030
) 

Hypothetical 
protein 
(LdBPK_323250
) 

SDNGASPGSRSPRSSRRSSQSSTS 24 

SPAHQRSRAGASRSASRQG 19 

STKRPRQSAVYG 12 

Protein kinase 
(LdBPK_262110
) 

NSSSYSGSLGSPAS 14 
VSPVRRNSSSTAL 13 
ANGGNSSSNSYT 12 
QQQQQSSNRPS 11 
AGTARLGSSS 10 
RSTPRAGMP 9 

Sudanes
e VL 
urine 

Hypothetical 
protein 
(LdBPK_160110
) 

VRFRPNASLADGDAKSSAHGTVTQYGSP
A‡ 29 

Protein kinase 
(LdBPK_351070
) 

ANDDSESATRVEGLQVMSDINSIPL 25 

DGQQIKVSSSGGGSSSKGSSNSTGS 25 

KEERQRMHA 9 

‡ This peptide was identified by the lower epitope score threshold of 0.55 because the 365 

protein did not contain epitopes >8 residues at a threshold of 0.65. 366 

 367 

Discussion 368 
Validated tests for urine antigen in infectious diseases include those for 369 

schistosomiasis (33), tuberculosis (34), Legionella pneumophila and Streptococcus 370 

pneumoniae (35). Here, we identified by mass spectrometry seven L. donovani 371 

proteins from urine of VL patients from India and Sudan. These proteins were 372 

predicted to contain highly species-specific epitopes that therefore make good 373 

candidates for targets of a non-invasive urine antigen capture immunoassay for VL. 374 

We additionally identified 18 single peptides with very high identity to L. donovani, 375 

which provide evidence of additional parasite proteins in VL urine. 376 

Studies using similar methods to identify pathogen antigens in urine include that of C. 377 

Abeijon et al. (21) who identified the L. infantum proteins tryparedoxin peroxidase, 378 

superoxide dismutase and nuclear transport factor 2, by mass spectrometry of 379 

concentrated Brazilian VL urine excised from gel bands. We did not identify any of 380 

these proteins, and in addition, none of the peptides and proteins that we found 381 

occurred in both Indian and Sudanese samples. This suggests that there could be 382 

many proteins or protein fragments of parasite origin in the urine of VL patients. 383 
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The proteins identified here are likely to be intracellular, based on their identities and 384 

features. However, Leishmania has various secretion pathways, therefore the proteins 385 

may be secreted by non-classical mechanisms(36). 386 

Therefore, although they did contain potential glycosylation sites, these are unlikely to 387 

be glycosylated in vivo as this is a feature more common to surface proteins involved 388 

directly in host-parasite interactions (37, 38). The carbohydrate and protein staining of 389 

the SDS-PAGE gel also indicated that very few proteins were glycosylated, and those 390 

that were, were not detected by antibodies on the corresponding blot. This may be 391 

expected as the rabbit antibodies were raised against a soluble lysate antigen from a 392 

preparation method that favours intracellular contents rather than cell membranes. By 393 

comparison, the KAtex assay that detects a carbohydrate antigen uses an antibody 394 

raised against whole intact parasites (12). Either antigen, lysate or whole cell, has the 395 

potential to generate an effective antigen-capturing assay. 396 

Four of the 7 proteins identified in VL urine were hypothetical proteins, defined by the 397 

presence of start and stop codons in their genomic sequences but without 398 

experimental evidence for the protein itself. These proteins were submitted to several 399 

protein domain identification tools to reveal possible similarities to well characterised 400 

proteins and reveal their features and possible functions in Leishmania (Table 3). 401 

Table 3. Functions of Leishmania donovani proteins identified in urine of Indian and 402 

Sudanese patients with visceral leishmaniasis. 403 

VL 
urine 
origin 

Protein 
accession 
number 

Protein features Functions 

India LdBPK_191140 Hypothetical protein with 

predicted zinc finger 

RING-type domain; 

predicted coil regions, a 

feature of predicted and 

existing antigens (39, 

40). 

Ubiquitination pathway and 

other intracellular protein 

processing pathways. 

India LdBPK_363030 Hypothetical protein with 

similarity to cilia- and 

flagella-associated 

protein 65, which in 

humans is an 

In humans, may be linked to 

cellular differentiation and 

RNA binding (43) but role in 

Leishmania not studied. 
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intracellular or 

membrane-anchored 

protein expressed in the 

lung and reproductive 

tract (41, 42). 

India LdBPK_323250 Hypothetical protein with 

very weak homology to 

a yeast protein, 

DUF1630-domain-

containing protein. 

May contain DENN 

domain. 

Protein largely specific 

to kinetoplastids by 

sequence analysis. 

DENN domains are involved 

in GTP/GDP exchange and 

occur in other proteins that 

regulate membrane traffic in 

eukaryotes (44). 

Sudan LdBPK_160110 MORN repeat motif. 

Possible 2-

isopropylmalate 

synthase. 

Precise function of MORN 

motif unknown, but is 

present in the proteins of 

many eukaryotes, including 

trypanosomes (45). 

Possibly an acyltransferase 

involved in metabolism. 

India LdBPK_070760 40S ribosomal S9 

protein 

Protein subunit of the 40S 

ribosomal subunit. In 

Leishmania, a homologue 

has also been identified as a 

subunit of the unusual 45S 

small subunit in the 

kinetoplast, which may 

indicate greater species 

specificity (46, 47). 

Leishmania 40S ribosomal 

protein S12 was successfully 

assayed in VL blood (48). 
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India LdBPK_262110 Protein kinase Add phosphate groups to 

other proteins in cell 

signalling pathways. 

Sudan LdBPK_351070 Protein kinase Add phosphate groups to 

other proteins in cell 

signalling pathways. 

 404 

The great difference in western blot and SDS-PAGE gel profiles between the 405 

concentrated Sudanese VL urine (VLu) and urine antigens (uAg) purified from the 406 

same sample type was unexpected. However, the sensitivity of antibodies may detect 407 

proteins that are not readily visible on the gel. In addition, the process of stripping and 408 

re-probing the blot could have somewhat altered the composition of the blot, 409 

particularly if the stripping process was not complete and rabbit antibodies remained. 410 

However, the EHCu remained negative, indicating very little non-specific reaction. 411 

Heating the urine, which we did not do, could have led to more specific reactions (49), 412 

however, this favours carbohydrate antigens as it denatures proteins and we sought 413 

to retain as many of the conformational protein epitopes as possible by running non-414 

reduced samples on gels. 415 

Coiled protein regions are often made by repeats of a few of the same amino acids, 416 

as identified here in hypothetical protein LdBPK_191140, and this repetition can lead 417 

to high antigenicity, making them good targets for immunodiagnostics (39, 40, 50). 418 

The geographic overlap of VL with Chagas disease, caused by T. cruzi, particularly in 419 

Brazil, makes it imperative to identify a Leishmania antigen that will not cross-react 420 

with this other trypanosomatid. Although the proteins identified here had very high 421 

sequence identity with L. donovani or L. infantum, some had moderate and one had 422 

high homology with T. cruzi proteins. Therefore, a polyclonal antibody against a 423 

complete L. donovani protein could also react with T. cruzi proteins. For this reason, 424 

as done here, selecting shorter and more species-specific peptide sequences is 425 

preferable because these contain fewer epitopes and generate a more specific 426 

polyclonal antibody. 427 

Based on the species specificity of the epitope regions, we suggest that combining 428 

several of these, either for raising a mixed polyclonal antiserum, or later combining 429 

individual antibodies in the assay, may improve specificity and sensitivity of the 430 

prospective assay. This was found by C. Abeijon and A. Campos-Neto (51) where the 431 

combined assay had improved performance over individual analyte assays. 432 
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Strengths 433 

Our criteria for identifying parasite proteins in VL urine took into account the large 434 

number and amount of human protein in the sample (52). Initial steps to enrich for 435 

Leishmania antigens using specific antibodies assisted in achieving peptide 436 

identification by mass spectrometry. Further, by searching mass data simultaneously 437 

against both human and L. donovani protein databases, we were able to exclude 438 

mass spectra that had a better match to human peptide sequences, thus excluding 439 

potential false positive matches to L. donovani. The dual searching did not exclude 440 

possible matches to bacterial peptides, therefore we searched both the peptides and 441 

the proteins against the NCBI nr database to exclude this possibility. 442 

Limitations 443 

While we have presented L. donovani protein identities here, there is no certainty that 444 

these proteins exist as whole proteins in VL urine as we can only identify short 445 

peptides by mass spectrometry. However, the presence of the peptides suggests that 446 

at least fragments of the proteins do occur in urine, along with many host-derived 447 

proteins (52, 53). Progression from identifying VL urinary antigens to having a 448 

prototype RDT relies on follow-up to synthesise antigens and raise antibodies. An 449 

alternative ‘shortcut’ method was used by U. S. Markakpo et al. (54) to develop a 450 

urine antigen capture RDT for malaria by generating monoclonal antibodies directly to 451 

precipitated urine proteins from malaria patients and subsequently screening them for 452 

specificity and sensitivity. 453 

Conclusions 454 

We used various methods to capture L. donovani antigens from VL urine from India 455 

and Sudan, including panning of urine proteins with immobilised anti-L. donovani 456 

antibodies and visualisation of immunoreactive bands in VL urine on a western blot. 457 

All methods yielded L. donovani proteins by mass spectrometry of captured or 458 

immunoreactive material and 6 of 7 proteins were highly specific to Leishmania. In 459 

addition, epitope prediction revealed 22 species-specific B-cell epitopes that make 460 

ideal candidates for synthesis and to generate antiserum for antigen capture assay 461 

development. 462 

Supplemental Material 463 
These files are available in the Appendix. 464 

S1 Table: Number of L. donovani peptides and proteins identified by mass 465 

spectrometry of antigens captured from Indian VL urine with anti-1S2D antibody.  466 
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S2 Table: Solo peptides of Leishmania donovani identified in urine of Indian and 467 

Sudanese patients with visceral leishmaniasis. 468 

S3 Table: Number of epitope peptides of ≥8 amino acids in Leishmania donovani 469 

proteins identified from VL patients’ urine. 470 
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experiments with in silico searches: a rational quest for biomarkers of post-chemotherapeutic 

relapse in visceral leishmaniasis. (2019). PLoS NTD, 13(5). doi: 10.1371/journal.pntd.0007353 

 

Key points, novel results and implications 

x IgG1 serology has potential to distinguish cure from relapse after treatment for the 

potentially fatal disease visceral leishmaniasis (VL) but the specific antigens involved 

are not known. 

x This work used western blotting and mass spectrometry to identify individual 

proteins recognised by IgG1 in active and relapsed VL, and applied computational 

filters to the protein data in order to select antigenic peptides. 

x Synthetic peptides were produced based on in silico filtering and analysis, and tested 

for reactivity with serum from Sudanese VL cases and healthy controls. 

x A single IgG1-reactive peptide from a Leishmania protein was identified which 

reacted with IgG1 from VL patients in a rapid diagnostic test. 

x This work has implications for using this in silico method and high-throughput peptide 

screening to define seroantigens for VL and other diseases in need of improved 

serology. 
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Abstract 20 
Background 21 

The search for biomarkers in diagnostic research has been profiting from a growing number 22 

of high quality fully sequenced genomes and freely available bioinformatic tools. These can 23 

be combined with wet-lab experiments towards a more rational search. Improved, point-of-24 

care diagnostic tests for visceral leishmaniasis (VL) early case detection and surveillance are 25 

required. Previous investigations demonstrated the potential of IgG1 as a biomarker for 26 

monitoring clinical status.  27 

Methodology 28 
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Immunoblots revealed L. donovani protein bands reacting with human IgG1 from VL patients. 29 

Upon identification of these antigens found with confidence by mass spectrometry (MS), we 30 

searched for evidence of constitutive protein expression in both parasite life stages and the 31 

presence of antigenic domains or high accessibility to B-cells. Selected candidates had their 32 

linear epitopes mapped with in silico algorithms. Multiple high-scoring predicted epitopes 33 

from the shortlisted proteins were screened with peptide arrays. The most promising 34 

candidate was tested on a lateral flow format, using sera positive for VL. The peptide’s 35 

specificity was assessed with sera from European healthy subjects. 36 

Results 37 

Over 90% of the proteins identified from the immunoblots did not satisfy the searched 38 

criteria and were excluded from the downstream epitope mapping. The pilot screening with 39 

predicted epitopes from selected proteins identified the most reactive peptide, whose 40 

specificity was highly concentration dependent. This peptide showed a maximum sensitivity 41 

of 84% (95% CI 60 - 97%) with Sudanese serum samples positive for VL on a lateral flow test. 42 

None of the sera from healthy subjects (0/10) showed a positive result.  43 

Conclusion 44 

We employed comparative genomics and in silico searches to drastically reduce the extent of 45 

wet-lab experiments, focusing on promising candidates satisfying selected protein features. 46 

By profiling epitopes with in silico prediction algorithms we screened a large number of 47 

peptides, identifying the most promising one, which showed good results of sensitivity and 48 

specificity in a prototype rapid diagnostic test (RDT).  49 

Author summary 50 
Visceral leishmaniasis (VL) is a neglected tropical disease caused by protozoan parasites of 51 

the Leishmania donovani complex. Without appropriate treatment, VL is usually fatal. 52 

Although non-invasive diagnostic techniques, mainly based on the detection of anti-53 

Leishmania antibodies are available, invasive procedures such as microscopy from spleen or 54 

bone marrow aspirates are still required to confirm cure after successful treatment. Recently, 55 

a world health organization (WHO) report included the development of new diagnostics to 56 

confirm cure as a research priority for VL. Previous investigations have outlined the potential 57 

of IgG1 as a biomarker of post-chemotherapeutic relapse for VL. Here we employed 58 

comparative genomics and bioinformatic tools to search for desired protein features in a 59 

large number of L. donovani antigens reacting with human IgG1 in western blots. We then 60 

used in silico tools to profile epitopes from the shortlisted proteins. By doing so, we screened 61 
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a large number of peptides using arrays with low reagent consumption. The most reactive 62 

peptide was adapted to a lateral flow RDT and showed promising results of both sensitivity 63 

and specificity. Thus we believe that in silico tools can be used to refine the extent output of 64 

wet-lab experiments towards a more rational search for diagnostic biomarkers.  65 

Introduction 66 
The leishmaniases comprises a group of vector-borne diseases caused by parasites of the 67 

genus Leishmania. The visceral form (VL, also known as kala azar - Hindi for ’black fever’) 68 

affects internal organs such as liver, spleen and bone marrow, and usually leads to death if 69 

left untreated. VL is caused by parasites of the Leishmania donovani complex and is 70 

responsible for about 400,000 cases per year, of which between 20,000 and 40,000 are fatal 71 

[1]. Human VL is often diagnosed by a combination of clinical symptoms (prolonged fever, 72 

weight loss, hepatosplenomegaly, hypergammaglobulinemia and pancytopenia) and the 73 

detection of parasite specific immunoglobulins (IGs). The recombinant protein rK39, a 74 

fragment of the Leishmania kinesin-like gene, was described in 1993 [2] and remains the 75 

most widely used antigen for VL serodiagnosis. Nonetheless, novel antigens are still required 76 

to complement the use of the rK39, to improve sensitivity in eastern Africa [3, 4] and to 77 

determine cure after successful chemotherapy (versus relapse) [5-9]. The recombinant 78 

protein rK28, which is a derivative of the rK39 incorporating the first two repeats of a 79 

Sudanese kinesin flanked by HASPB1 and HASPB2, has shown improved serological sensitivity 80 

in East African VL patients [10]. 81 

There has been a dramatic reduction in genome sequencing costs, accompanied by an 82 

exponential increase in the number of available sequences in public repositories [11, 12]. The 83 

first Leishmania spp. genome sequencing was completed in 2005 [13]. More recently, the 84 

advent of high-throughput technologies has enabled the completion of the whole-genome 85 

sequencing of L. donovani, the causative agent of VL in the Indian subcontinent [14]. 86 

Moreover, the availability of next-generation sequencing made it possible to perform whole 87 

transcriptome sequencing. RNA sequencing generates data on the transcriptome at a specific 88 

stage of a pathogen life cycle or in a specific culture condition of an organism. This growing 89 

number of available high quality full genome sequences has become a central element in the 90 

area of comparative genomics, which has contributed greatly to a better understanding of 91 

multiple aspects of the leishmaniases, including determinants of disease phenotype [15], 92 

mode of action of  [16] and parasite biology [17]. 93 

antibodies (ABs) are a major component of the immune system. They fight foreign pathogens 94 

by binding to their specific regions (epitopes), tagging them for clearance by the immune 95 
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system. Epitopes can be divided into linear (a contiguous stretch of amino acids (AAs)) and 96 

discontinuous (where the atoms are brought together by protein folding) and can be 97 

identified by functional and structural studies (e.g. X-ray crystallography), while in silico 98 

prediction algorithms are gaining popularity. The early prediction methods of linear B-cell 99 

epitopes were mainly based on propensity scales [18]. More recently, machine learning 100 

methods have been employed to improve prediction performance [19-21]. The prediction of 101 

discontinuous epitopes still depends on the availability of 3D structures. In silico tools can 102 

also be used to locate antigenic domains from DNA sequences or peptide sequences 103 

influencing protein localisation. 104 

Diagnostic research can incorporate genomics, transcriptomics, proteomics as well as 105 

bioinformatic prediction algorithms for the discovery of new biomarkers. Such a systematic 106 

’omics’ approach has been applied alone for the discovery of vaccine candidates [22-24] as 107 

well as for diagnostic biomarkers [25]. These in silico searches can also be applied 108 

downstream of wet-lab experiments, refining their output towards a more rational search.  109 

Mass spectrometry (MS) can be employed to reveal the identity of proteins identified from 110 

wet-lab experiments (e.g. immunoblots). Comparative genomics enables identification of 111 

species-specific genes while the expression levels of life cycle-specific proteins can be 112 

estimated using publicly available RNA-seq data. In silico prediction algorithms can be 113 

employed to infer protein localisation, search for antigenic domains as well as to predict 114 

linear B-cell epitopes. Peptide antigens can then be synthesised and incorporated into 115 

peptide arrays, enabling the screening of a large number of candidates in pilot serological 116 

assays. Promising candidates can then be adapted and tested as rapid diagnostic test (RDT), a 117 

format suitable for field use.  118 

Here we employed comparative genomics as well as in silico algorithms to the excessive 119 

number of L. donovani protein candidates reacting with human IgG1 in immunoblots. By 120 

screening a large number of predicted epitopes from selected candidate antigens satisfying 121 

desired protein features, we have identified one peptide specifically recognised by human 122 

IgG1, a potential biomarker of post-chemotherapeutic relapse in VL [41]. This peptide was 123 

also tested in a prototype lateral flow RDT with serum positive for VL and from healthy 124 

subjects (non endemic healthy controls (NEHCs)), showing promising results of both 125 

sensitivity and specificity. Thus we believe the employed approach is a valid proof of concept 126 

for the discovery of diagnostic biomarkers.  127 

Methods 128 
Ethics statement 129 
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In India, the collection of samples was approved by the Ethics Committee of Banaras Hindu 130 

University, Varanasi while in Sudan the approval for collection and research was granted by 131 

the Ethical Research Committee, Faculty of Medicine, University of Khartoum and the 132 

National Health Research Ethics Committee, Federal Ministry of Health, Sudan. Written 133 

informed consent was obtained from all adult subjects included in the study or from the 134 

parents or guardians of individuals less than 18 years of age. This research was also approved, 135 

as part of the EC NIDIAG project, by the London School of Hygiene and Tropical Medicine 136 

Ethics Committee as well as by the Ethics Committee of the Antwerp University Hospital.  137 

Sources of sera 138 

India 139 

Indian sera were selected from archived samples, collected after 2007 from active VL, 140 

relapsed and endemic healthy controls (EHCs), all from the endemic region of Muzaffarpur, 141 

Bihar state. Positive cases for VL had been diagnosed by positive rK39 serology and 142 

parasitologically by microscopy of splenic aspirates. Detailed information about the Indian 143 

samples used in this study are described in Table 1.  144 

  145 

Sudan 146 

Sudanese serum samples were collected in 2011 and 2012 from the endemic region of 147 

Gedaref in eastern Sudan. Active VL cases had been diagnosed by microscopy of bone 148 

marrow or lymph node aspirates in conjunction with serological assays and were all HIV 149 

negative. These diagnoses were carried out according to their respective national procedures, 150 

prior to the present study. 151 

NEHC 152 

Sera was obtained from whole blood collected from Etablissement Français du Sang. All 153 

donors are informed of the use of the blood for research purpose and that he/she gives their 154 

informed consent for the purpose of scientific research use and that all national laws and 155 

ethical principles are fulfilled. The samples are fully anonymised. All samples are certified to 156 

be tested for detection of transmissible diseases as follows: detection of antibodies for HIV-1, 157 

HIV-2, HCV, HTLV I, HTLV II, syphillis, HBc, antigen from HBs, viral genome from HIV1, HCV 158 

and HBV.  159 

  160 
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Wet-lab identification of L. donovani antigens reacting with IgG1 161 

The identification of L. donovani promastigote antigens recognised by human IgG1 using 162 

western blots was carried out as described elsewhere (Marlais et al., submitted). Briefly, the 163 

cytosolic proteins from a whole L. donovani lysate (strain MHOM/IN/80/DD8) were separated 164 

by SDS-PAGE, blotted onto a nitrocellulose (NC) membrane and sliced into individual strips, to 165 

be immunoassayed with sera from individual patients from India. Upon visual identification of 166 

bands of interest on the individual strips using HRP-labelled anti-human IgG1 as secondary 167 

antibody, new gels were run and corresponding immunogenic bands were excised and 168 

analysed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Protein hits 169 

were identified by matching peptide fragments against the reference L. donovani database 170 

(MHOM/NP/2003/BPK282). 171 

In silico refinement of wet-lab output 172 

Desired protein features were searched in silico in order to decrease the number of 173 

candidates from the MS output while shortlisting the proteins more likely to be antigenic, to 174 

have their epitopes mapped (section Epitope mapping from shortlisted proteins). Some 175 

protein features were searched in series while others in parallel, meaning that all shortlisted 176 

proteins satisfy the criteria described in either branches as shown in Fig 1. Additional 177 

information about each step of this ’in silico filter’ are detailed in the following subsections. 178 

  179 

Figure 1. In silico filter applied to select desired protein features. Selected protein properties 180 

were searched in silico on all protein hits identified by MS from selected IgG1 sero-reactive 181 

western blot bands. 182 

Gene expression analysis - RNA-seq 183 

Transcriptomic data on promastigote and amastigote parasite life stages was obtained from 184 

an improved BPK282 reference sequencing as described in [27]. In this study, new gene 185 

products with their corresponding IDs - ’new IDs’ - and RNAs were annotated based on 186 

Leishmania major annotation [13] using Companion [28] while orthologs to the ’old gene 187 

products’ with their corresponding ’old IDs’ [14] were identified with BLAST. The expression 188 

levels were quantified as haploid depth (HAP), as cultivated promastigotes are highly 189 

aneuploid, showing interstrain diversity and intrastrain mosaicism in ploidy number [27]. The 190 

HAP from all genes from the improved BPK282 reference sequencing were ranked for 191 

promastigotes and amastigotes separately and only those with a value greater than the first 192 
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quartile HAP>Q1) for promastigotes and amastigotes were considered as constitutively 193 

expressed and kept for downstream analysis. 194 

Confident MS identification 195 

Each protein hit identified by MS with the software MASCOT [29] has its own score defined 196 

by:  197 

 MASCOTscore=−10×log10(P) 198 

The score translates into the probability P that the observed match is not a random 199 

event [30]. A score of 100 was chosen as the cut-off value to minimise the chances that any 200 

match could be found by chance. 201 

Protein localisation 202 

Exported L. donovani proteins, identified as part of exosomes by experimental 203 

approaches [31] and/ or by the presence of signal peptide were considered highly accessible 204 

to B-cells and thus selected for further analysis. The presence of a signal peptide sequence 205 

was searched for with the standalone version of the software signalP v4.0 [32], running with 206 

the option ’noTM’. 207 

Antigenic domain selection 208 

L. donovani proteins harbouring tandem repeats (TRs) are often B-cell antigens [33] (e.g. 209 

rK39, rK28) therefore the presence of this domain was included as a criterion correlating with 210 

antigenicity. DNA sequences were scanned for TRs with the standalone version of the 211 

program Tandem Repeats Finder [34] and searches were performed on default values.  212 

Epitope mapping from shortlisted proteins 213 

The B-cell epitopes of all shortlisted proteins were profiled with four algorithms separately: 214 

ABCPred [20], Bepipred1.0 [19], EpiQuest-B [35] and lbtope [36]. For all epitopes predicted 215 

from each algorithm individually (generally a 15 or 16mer), a ’core sequence’, stretching from 216 

the fifth to the eleventh AA residue was defined and scanned against the rests of the 217 

predicted antigenic peptides. For peptides sharing core sequences with other predicted 218 

peptides at any position in the AA sequence (partially overlapping peptides), only that of 219 

highest score was kept. The top 20 scoring peptides with no shared core sequences within a 220 

given algorithm were synthesised, making up a total of 80 high scoring peptides from four 221 

different prediction algorithms.  222 
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While ABCPred, lbtope and EpiQuest-B were run on default values, predicting antigenic 223 

sequences of 16, 15 and 16 AA residues, respectively, shorter sequences with high antigenic 224 

scores were also considered for EpiQuest-B. The highest scoring peptides predicted from 225 

Bepipred were obtained by calculating the area under the curve (AUC) from plots of AA 226 

residue position vs. individual residue score for all possible combinations of 16mers with one 227 

AA offset, considering all contiguous predicted antigenic sequences from all submitted 228 

proteins. Additional details about the prediction algorithms employed can be found in 229 

Table 1. 230 

  231 

Peptide synthesis 232 

Desalted peptides were synthesised with an N-terminal biotin molecule linked via AAG spacer 233 

so that they could bind to NC membranes (1620215, Bio-Rad, USA), which had been 234 

previously soaked with neutralite avidin (NLA) (NLA30, e-proteins, Belgium) and dried at 50°C. 235 

Lyophilised peptides were dissolved according to standard protocols [37]. Where the solvent 236 

mixture in which the peptides were dissolved exhibited stable background values, the 237 

peptide concentration was calculated based on their molar absorbances, measured either at 238 

280 nm, for tyrosine (Y) and tryptophan (W) containing peptides [38], or at 205 nm [39], for 239 

those without W or Y. For the remaining peptides, the concentration was calculated by 240 

dividing the reported amount by the volume of the solvent mixture in which they were 241 

dissolved.  242 

Any promising candidate identified from the pilot peptide screening was synthesised with 243 

higher purity (90%) and with a polyethylene glycol-glycine spacer in order to improve water 244 

solubility as well as to increase rotation and ensure that the full amino acid sequence could 245 

freely interact with ABs, as opposed to being adsorbed onto the solid support and therefore 246 

unavailable for AB recognition [40].  247 

Pilot screening of desalted peptides using arrays 248 

Array production 249 

sciFLEXARRAYER (Scienion AG, Germany) with a PDC 70 piezo dispense capillary (type 3 250 

coating, P-2030/ S-6051, Scienion AG, Germany) was used to spot 7 nl of the selected 251 

peptides at the required concentrations in multiple replicates onto NC membranes (1620215, 252 

Bio-Rad, USA), previously soaked with NLA and dried at 50°C. rK39 (RAG0061: Rekom Biotech, 253 

Spain) and a whole L. donovani lysate, obtained as described in [41], were spotted both at 0.1 254 
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mg/ml as positive controls and for orientation purposes. Arrays were incubated overnight 255 

(ON) at 50°C upon completion of the spotting, to be hybridised with serum the next day. 256 

Hybridisation with serum/ image acquisition 257 

Peptide arrays were blocked with phosphate-buffered saline (PBS) + 3% bovine serum 258 

albumin (BSA) (PBSB) ON at 4°C or for 2h at room temperature (RT), followed by three 5 259 

minute washes of PBS + 0.05% Tween 20 (PBST). In order to assess the peptide recognition by 260 

sera from VL patients and NEHCs, separate arrays were hybridised with pooled Sudanese 261 

serum samples positive for VL and with commercial pooled NEHC sera (S1-100ML, EMD 262 

Millipore Corporation, USA), respectively, diluted in PBST + 3% BSA (PBSTB), for 1h. After five 263 

5 minute washes with PBST, they were incubated with fluorescent mouse anti-Human IgG1 Fc 264 

- Alexa Fluor 488 AB (A-10631, ThermoFisher) diluted 1:1000 in PBSTB, for 1h at RT. Followed 265 

by five 5 minute washes with PBST, the arrays were incubated at 50°C until completely dry.  266 

Images were acquired at 500ms and 20 dB gain with a digital CCD camera (ORCA-R², 267 

Hamamatsu, Japan) coupled to a fluorescence microscope (model BX53, Olympus, Germany) 268 

equipped with filter cube U-FGFP (N271350, Olympus, Germany). Spot fluorescence was 269 

quantified using the software cellSens Dimensions v.1.7 (Olympus GmbH, Germany) 270 

Adaptation to an RDT 271 

RDTs were composed of a NC strip sensitised with reagent and a conjugate pad, impregnated 272 

with anti-human IgG1-specific antibody conjugated to colloidal gold. The strip was either 273 

housed within a plastic cassette, with a buffer application well and a test/reading window 274 

(lateral-flow), or not (dipstick). The reagent used for NC sensitization was NLA at 3.5 mg/ml. 275 

Prior to running the RDT, equal volumes of serum and the biotinylated peptide at stock 276 

concentration were mixed and incubated at 37°C for 15 minutes. 3.5 μl of the mix was then 277 

pipetted onto the sample application zone, just above the top of the sample pad. 150 μl of 278 

buffer solution was dispensed into the buffer application well (cassette) or dipsticks were 279 

dipped into recipient vessel with the appropriate volume of running buffer. After 15 minute 280 

incubation, a test was deemed valid if a clear red control band was present in line with the ‘C’ 281 

on the cassette, and deemed positive if a second band was present in line with the ‘T’. If no 282 

band was visible at the ‘T’, then the test was deemed negative. 283 

Statistical analysis 284 

All statistical analyses were performed using the computing environment R [42] and relevant 285 

packages [43, 44]. The final fluorescence of each spot on the peptide arrays (spot 286 
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fluorescence) was expressed in arbitrary units and calculated by subtracting the mean 287 

background value of a given acquired image from the individual fluorescence values. Peptide 288 

specificity was expressed as 95% Fiellers confidence intervals (CIs) of the ratio between the 289 

mean spot fluorescence from the arrays hybridised with VL serum and that of arrays 290 

hybridised with NEHC serum (ratio VL/NEHC). 291 

RDT results were compared with defined clinical status to establish sensitivity and 95% CIs 292 

with Clopper-Pearson exact method. 293 

Results 294 
MS analysis of selected antigenic bands identified over 1300 hits 295 

The development of the Western blot strips immunoassayed with individual Indian serum 296 

samples positive for VL (Fig 2) and relapsed patients revealed the protein bands specifically 297 

detected by human IgG1. The strongest and most prevalent bands across active VL and 298 

relapsed patients were excised from corresponding new gels and had their composite 299 

proteins revealed by MS.  300 

  301 

Figure 2. Western blot strips immunoassayed with sera from Indian VL patients. The arrows 302 

indicate the three antigenic bands excised from corresponding acrylamide gels and analysed 303 

by MS. Western blots strips incubated with sera from relapsed patients showed a similar 304 

band pattern while those incubated with EHCs did not show any band pattern (data not 305 

shown). 306 

1357 putative L. donovani protein hits from the three selected antigenic bands, with some 307 

hits identified in multiple bands were identified. All the candidate hits were submitted to the 308 

in silico filter (Fig 1) to reduce the number of promising candidates while restricting to those 309 

possessing protein features positively correlating with antigenicity.  310 

The in silico filter excluded out over 90% of the unique identified hits 311 

The initial 1357 old IDs from the three selected antigenic bands (Fig 2) contained 678 unique 312 

old IDs, annotated or not. Out of these, 538 were considered to be constitutively expressed, 313 

of which 209 had a MASCOT score ≥ 100. 66 of these candidates were found to be secreted, 314 

60 as part of exosomes and 6 via the presence of signal peptide. These 66 unique old IDs 315 

were matched against new IDs, making 81 unique new IDs. After excluding the duplicated old 316 

IDs corresponding to unique new IDs of same gene product and any unannotated gene 317 
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product from the improved sequencing, a list of 62 extracellular and constitutively expressed 318 

proteins, identified with confidence by MS was obtained. 319 

3 candidates harbouring TR domains were found to be constitutively expressed and were 320 

identified with confidence by MS. Although none of them was found to be extracellular, they 321 

were kept for downstream analysis as such proteins are often B-cell antigens [33]. In addition, 322 

one out of the three TR proteins identified remained unannotated in the improved BPK282 323 

reference sequencing. Results are schematically shown on Fig 3 and the detailed list with all 324 

the 65 shortlisted proteins can be found in Table in S1 Table.  325 

  326 

Figure 3. Selected proteins for in silico epitope mapping. Sixty five proteins (’FINAL 65 NEW 327 

IDs’) satisfied the criteria shown in Fig 1 and were shortlisted to have their epitopes mapped 328 

with in silico algorithms. In bold the features searched/added after each step of the filter. 329 

Epitopes selected for synthesis 330 

The complete list of the 80 shortlisted peptides from the four prediction algorithms can be 331 

found in the Table S2 Table. Purity grades of desalted peptides ranged from 30 to 82%. 332 

Although the shortlisted peptides did not share core sequences intralgorithm, two peptides 333 

(EpQ_04_MAYV and LbT_07_CELG), predicted from different algorithms shared the core 334 

sequence ’CELGPNQ’. 335 

Six out of the 80 peptides could not be resuspended, even after initial solubilisation in DMSO. 336 

Due to presence of organic solvent, they could not be re-lyophilised and were therefore not 337 

included in the pilot peptide screening. 338 

Pilot peptide screening 339 

Initial hybridisation revealed the most reactive peptide 340 

A first batch of peptide arrays was produced in order to obtain insights about the peptide 341 

reactivity with human IgG1. The visual inspection of the imaged arrays hybridised with both 342 

pooled serum groups (Sudanese positive for VL and NEHC) diluted 1:100 revealed that a high 343 

number of peptides spotted at their stock concentrations reacted with both sera, indicating 344 

poor specificity (data not shown).  345 

The hybridisation of the same batch of arrays with pooled serum diluted 1:200 showed that a 346 

reduced number of peptides reacted with both serum groups, revealing the most reactive 347 
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peptides, as shown in Fig 4. Details about the most reactive peptide found are shown in 348 

Table 1. 349 

  350 

Figure 4. Hybridised peptide arrays. Peptide arrays hybridised with pooled Sudanese serum 351 

positive for VL. The most reactive peptide (spotted in duplicate, indicated by the yellow 352 

arrows) was revealed by diluting the sera 1:200. rK39. Red and white arrows indicate rK39 353 

and a whole L. donovani lysate, respectively. 354 

 355 

Specificity of peptide EpQ11 is highly concentration dependent 356 

The peptide EpQ11 was spotted at multiple concentrations in eight replicates each onto a NC 357 

membrane soaked with NLA at 1 mg/ml, dried at 50°C for 3h. The hybridisation of two 358 

separate arrays with pooled serum samples diluted 1:200 showed that the discrimination 359 

between the VL and the NEHC pooled sera was highly concentration dependent, with the 360 

highest discrimination displayed when the peptide was spotted at 1.15 mg/ml, as shown in 361 

Fig 5. 362 

  363 

Figure 5. Peptide specificity for VL IgG1 is highly concentration dependent. Peptide EpQ11 364 

showed the highest discrimination between VL and NEHC IgG1 when spotted at 1.15 mg/ml. 365 

Peptide EpQ11 binds specifically to IgG1 from active VL patients on a lateral flow format 366 

RDTs in two formats, cassettes and dipsticks, were tested with individual VL Sudanese serum 367 

samples positive for VL as well as NEHC from Europe, in order to confirm the specificity of the 368 

EpQ11 peptide for IgG1 from VL patients. None of the NEHC sera tested (n=10) developed a 369 

test line upon test completion. Sensitivity values varied between 79% (54 - 94%) and 84% (60 370 

- 97%) when running serum samples positive for VL (n=19), depending on the format used 371 

(Table 1). The results for some of these patients are shown in Fig 6. 372 

  373 

Figure 6. Peptide EpQ11 specifically binds to human IgG1 in cassette as well as in dipstick 374 

format. ’T’ indicates the location of the NLA at which, in a positive test, there is a coloured 375 

line due to the presence of peptide-IgG1 complex. Successful migration ensured by the 376 

development of the control line - ’C’. 377 

  378 
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Discussion 379 
Identifying a biomarker of post-chemotherapeutic relapse is a key element for VL control. 380 

Considering that most of the patients affected by VL live in poor and remote villages in 381 

developing countries, it is of utmost importance to distinguish cured patients from those still 382 

in need of future medical interventions. This is especially valid by VL given the toxicity of the 383 

current available treatments and the growing problem of drug resistance.  384 

We have identified a peptide specifically recognised by human IgG1 from active VL patients 385 

by mapping epitopes from multiple proteins, which were selected from immunoblots by 386 

searching antigenic features using comparative genomics and in silico algorithms. The peptide 387 

was adapted to an RDT format and showed promising results for VL status in terms of both 388 

sensitivity and specificity. Given the free availability of various in silico algorithms to predict 389 

or scan multiple protein features from DNA or AA sequences and the growing number of high 390 

quality sequenced genomes, the adopted strategy can also be employed for the search of 391 

diagnostic biomarkers or vaccine candidates for infectious diseases.  392 

The decision to make use of comparative genomics and in silico algorithms to refine the 393 

output from immunoblots was due to the excessive number of putative hits identified by MS 394 

and we believe that the success of our approach lies in this combination. Nonetheless, we 395 

consider that technical issues might have been related to the excessive number of hits 396 

initially identified by MS from the immunoblots. The immunogenic bands excised from the 397 

acrylamide gels that were analysed by MS were excised from wide lanes (59 mm). We now 398 

believe that excising such wide lanes from acrylamide gels contributed to the excessive 399 

number of hits: by mechanically cutting along very wide lanes, we have probably included 400 

proteins that would not have been present had we have excised narrower (e.g. 4 mm wide) 401 

lanes, although we are convinced that multiple hits would have been identified anyway. 402 

We have identified antigens from L. donovani promastigotes due to ease of culturing. In the 403 

host, promastigotes are phagocytosed by macrophages or other types of mononuclear 404 

phagocytic cells, where they differentiate into amastigotes, remaining in this form until 405 

transmission to a new vector. Therefore we believe that amastigote proteins are more likely 406 

to be targeted by host IGs. We have chosen a loose HAP cut-off for both promastigotes and 407 

amastigotes (HAP>Q1) due to the weak correlation between RNA levels and protein 408 

expression in Leishmania (unpublished results). By doing so, we avoid missing antigens that 409 

might be constitutively expressed, despite low RNA levels. Given the excessive number of 410 

protein candidates identified by MS we could set a stricter MASCOT score cut-off, ruling out 411 

proteins that could have been identified by chance in each antigenic band. Extracellular 412 
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proteins are more accessible for binding with host ABs, thus we have included this criterion in 413 

our filter. Finally, because intracellular proteins harbouring TRs are amongst the most widely 414 

used antigens for VL diagnosis [45], we decided to select such candidates in parallel to 415 

extracellular proteins. We have employed prediction algorithms of linear B-cell epitopes 416 

(instead of discontinuous) due to the linearised structure of proteins separated by SDS-PAGE. 417 

Also, the prediction of discontinuous epitopes still rely on the scarce availability of proteins 418 

with known 3D structures. 419 

Even though the in silico filter that we applied ruled out over 90% of the proteins initially 420 

identified by MS from the immunoblots, it was still unpracticable to test the antigenicity of 421 

the selected 65 proteins. By screening synthetic peptides instead of recombinant proteins we 422 

circumvented the protein expression step and could therefore test a large number of top-423 

scoring candidates predicted from multiple algorithms with various prediction methods. 424 

Moreover, the production of peptide arrays allowed the screening of multiple peptides in 425 

various concentrations using low volumes of reagents of limited availability to us (e.g. serum 426 

positive for VL).  427 

Our work is a proof of concept that comparative genomics and in silico algorithms can be 428 

employed downstream of wet-lab experiments towards a more rational search for 429 

biomarkers. Despite promising sensitivity values with an RDT prototype we have developed, 430 

the intensity of the test lines were generally weak and our procedure still requires an extra 15 431 

minute sample pre-incubation step when compared to RDTs used in field conditions. The 432 

sensitivity of the RDT might be improved by using a larger peptide composed of multiple 433 

copies in series (’peptide trains’) or in parallel (multiple antigen peptides), a strategy already 434 

used in vaccine development.  435 

Given the evidence from the present work that the described peptide specifically binds to 436 

IgG1 from Sudanese sera and the well described decreased performance of the rK39 in East 437 

Africa, it would be relevant to express and test the antigenicity of a chimeric protein 438 

composed of the rK39 and the EpQ11 sequence.  439 

Conclusion 440 

Based on the interpretation of the results of our experiments we conclude that:  441 

1. Comparative genomics as well as in silico algorithms are useful tools for refining large 442 

output from wet-lab experiments towards a more rational search for diagnostic biomarkers.  443 

2. B-cell epitopes prediction algorithms represent an interesting option for epitope 444 

mapping, enabling the screening of peptides in a high-throughput manner.  445 
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3. We have identified a peptide that specifically binds to human IgG1 from active VL 446 

patients from Sudan by refining wet-lab experiments with in silico searches.  447 

4. Incorporation of the peptide described in this work into either rK39 or rK28-based 448 

assays might improve the sensitivity of VL diagnosis in eastern Africa.  449 
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Table and Figures 
 

Table 1. Peptides shortlisted for synthesis. The top 20 scoring peptides from each of the four 

prediction algorithms were shortlisted and synthesised for a pilot screening with Sudanese VL 

serum samples. ‘C.reported’ was calculated by dividing the reported amount by the volume 

of the solvent mixture in which they were dissolved, while ‘C.280’ and ‘C.205’ were calculated 

based on the molar absorbances at 280 and 205 nm, respectively. 

 ID Sequence k-
mer 
size 

MW 
[g/mol] 

Purity C.reported 
[mg/ml] 

C.280 
[mg/ml] 

C.205 
[mg/ml] 

abc_01_CVTQ CVTQEHFREAMAKTNP 16 2287.63 0.58 2 NA 3.27 
abc_02_KEAP KEAPGATEKDRAKATP 16 2095.38 0.57 2 NA 3.14 
abc_03_TAYI TAYIMRPLDHGADVTL 16 2198.57 0.69 2 2.75 NA 
abc_04_MITN MITNDDAPVRDSVLTD 16 2187.45 0.45 1.23 NA NA 
abc_05_MPTV MPTVDERQTFMFSATF 16 2333.71 0.4 2.31 NA NA 
abc_06_TRTG TRTGDYAFSYDKMLDM 16 2339.67 0.55 1.13 NA NA 
abc_07_KSTI KSTISGHLLMEKGLVD 16 2153.57 0.53 2 NA 2.65 
abc_08_KEAI KEAITTFREEDPKVTD 16 2304.58 0.48 2 NA NA 
abc_09_HVYS HVYSELGKKFGAAADP 16 2115.41 0.51 2 3.42 4.23 
abc_10_LGMG LGMGISGGEEGARKGP 16 1941.23 0.56 2 NA 2.52 
abc_11_VAYQ VAYQETPESERAELPP 16 2241.48 0.52 2 2.22 2.13 
abc_12_AGTG AGTGFPYREMMPMNAP 16 2195.61 0.72 2 3.95 NA 
abc_13_TDSW TDSWGFFGVFDGHVND 16 2225.4 0.57 1.33 NA NA 
abc_14_HKKS HKKSTEDNDDDAFCAP 16 2218.37 0.54 1 NA NA 
abc_15_YGLA YGLAFDPYGGTAGLYD 16 2105.33 0.54 1.33 0.74 0.76 
abc_16_WEEW WEEWGNPNEYKYYDYM 16 2612.86 0.49 1.73 1.68 1.43 
abc_17_HSTI HSTIGVHPTSAEELCS 16 2093.33 0.65 2 NA 2.68 
abc_18_EKCI EKCIELKPDFVKGYAR 16 2321.76 0.53 0.87 3.85 1.08 
abc_19_PAGI PAGINIPNYDDIRQTV 16 2211.5 0.57 0.77 1.69 0 
abc_20_TGTI TGTIDNGVVKMEKAEE 16 2146.44 0.55 2 NA NA 
BP_01_CSPP CSPPPPSPSPHPRPPS 16 2062.38 0.7 2 NA 1.98 
BP_02_GEGS GEGSPTSPTSPKQPGS 16 1939.11 0.65 2 NA 2.08 
BP_03_AEAG AEAGAPAGSGAPPPAD 16 1760.92 0.56 2 NA NA 
BP_04_KPAP KPAPPKPKESKEPENA 16 2172.55 0.59 2 NA 1.88 
BP_05_TAKP TAKPKQQDEDPDGAAE 16 2125.28 0.63 2 NA NA 
BP_06_GGDR GGDRGGGTGNEDDDYE 16 2039.02 0.79 2 2.95 2.05 
BP_07_MQQP MQQPPTPQPQKQQKQQ 16 2345.71 0.53 2 NA 3.13 
BP_08_EEEE EEEEEEEEEEEPQATR 16 2417.44 0.61 1.62 NA NA 
BP_09_RSDP RSDPSGGGGGNRDDNE 16 2015.04 0.6 2 NA NA 
BP_10_APAS APASAPAPAPAAAPTP 16 1783.06 0.67 2 NA 2.61 
BP_11_KRGG KRGGDKDGGGESGEAA 16 1916.04 0.62 2 NA NA 
BP_12_RSQQ RSQQGEQEPEEDEEEV 16 2343.41 0.63 2 NA NA 
BP_13_QQLS QQLSSSPPPPRERAED 16 2219.45 0.57 2 NA NA 
BP_14_EPEV EPEVGEEPQPEEEEDA 16 2238.31 0.72 2 NA NA 
BP_15_AAPS AAPSGGPSGNSDEEDL 16 1928 0.68 2 NA NA 
BP_16_SDVT SDVTGGGGGGGSGGGG 16 1560.6 0.64 1 NA NA 
BP_17_GQQQ GQQQQQQDPPAGQQGV 16 2119.28 0.82 2 NA NA 
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BP_18_AETP AETPADDAGQPHEPEK 16 2117.26 0.71 2 NA NA 
BP_19_PPSA PPSAGSKDGAPSDGVP 16 1864.05 0.51 2 NA NA 
BP_20_DATP DATPAAANGEGPGKEN 16 1924.06 0.65 2 NA NA 
EpQ_01_AYAT AYATMLKDVQWKVRKS 16 2349.82 0.58 2 6.79 6.25 
EpQ_02_HEKL HEKLVQDIWKKLEAKG 16 2347.79 0.58 2 4.28 4.01 
EpQ_03_SCSV SCSVKLGLWKNAVNNC 16 2161.55 0.57 2 6.56 6.9 
EpQ_04_MAYV MAYVCELGPNQGWK 14 2021.38 0.58 0.88 6.49 NA 
EpQ_05_LKDP LKDPKQYQSIVDAEWK 16 2373.73 0.31 2 1.88 NA 
EpQ_06_ERCE ERCEDPNAWKGPTNGG 16 2156.35 0.62 1.33 1.92 NA 
EpQ_07_DNPA DNPAGPTTWKSDEPAL 16 2124.33 0.62 1.73 1.8 1.88 
EpQ_08_YGIS YGISFPKNPMLTEWKT 16 2337.77 0.43 2 2.69 2.79 
EpQ_09_GMSS GMSSDQLLQFLLQQQQ 16 2289.63 0.48 1.86 NA NA 
EpQ_10_AAKK AAKKKRVGCWK 11 1700.11 0.56 2 2.29 2.22 
EpQ_11_NIRI NIRIHLGDTIRIAPCK 16 2245.71 0.51 1.1 NA 2.33 
EpQ_12_ERRR ERRRVEYQQFLDVCGQ 16 2451.78 0.41 1.4 6.14 NA 
EpQ_13_MDRE MDRESLCPNWK 11 1804.11 0.41 2 2.06 NA 
EpQ_14_SRQM SRQMTMCKEERIANCK 16 2353.81 0.34 2 NA 1.85 
EpQ_15_DWSI DWSIVERGWK 10 1700.95 0.5 2.13 1.69 NA 
EpQ_16_VLVQ VLVQGAIWGINSYDQW 16 2274.6 0.39 15 NA NA 
EpQ_17_GRTI GRTILRNHKWAGNNKV 16 2289.67 0.31 2 2.1 1.79 
EpQ_18_EKVR EKVRSGEWKGQTGKSI 16 2215.53 0.38 2 2.13 2.11 
EpQ_19_PDVA PDVAHVVQFDLPQEMD 16 2265.57 0.52 2.31 NA NA 
EpQ_20_ADVT ADVTATLAWK 10 1500.75 0.49 1.03 1.56 NA 
LbT_01_RPGG RPGGPPGYRTPYTAK 15 2043.35 0.45 2 9.28 2.46 
LbT_02_TQGD TQGDRQKIQDAVSAA 15 2013.23 0.52 1.3 NA NA 
LbT_03_EVKS EVKSRYNVDVSQNKR 15 2247.54 0.53 2 2.69 2.1 
LbT_04_VIEM VIEMTRAFEDDDFDK 15 2256.51 0.51 2 NA NA 
LbT_05_GSAD GSADLTPSNLTRPAS 15 1912.12 0.47 2 NA NA 
LbT_06_VRPI VRPIPSFDDMPLHQN 15 2191.53 0.47 2 NA NA 
LbT_07_CELG CELGPNQGWKAVVAD 15 2012.3 0.47 1.07 1.59 NA 
LbT_08_APQQ APQQTQSGIRRVTRA 15 2094.4 0.44 2 NA 2.18 
LbT_09_SAEE SAEEKGTGKRNQITI 15 2057.33 0.42 2 NA 0.7 
LbT_10_GEAE GEAEWLEWESTVLTP 15 2172.42 0.54 0.96 1.08 0 
LbT_11_EELR EELRQRRHQGPGSPG 15 2129.36 0.41 0.87 NA 0.66 
LbT_12_EWAN EWANKPLDDLDPHPS 15 2159.38 0.55 2 1.57 1.56 
LbT_13_IKEE IKEETEMIEGEVVEV 15 2159.48 0.5 1.62 NA NA 
LbT_14_VSDF VSDFFGGKELNKSIN 15 2080.36 0.74 2.92 NA 2.12 
LbT_15_WEDV WEDVGGLLDVKRELQ 15 2182.5 0.53 2 1.67 0 
LbT_16_SGGA SGGAGPAGGASSGPK 15 1582.72 0.53 2 NA 2.5 
LbT_17_KATN KATNGDTHLGGEDFD 15 2002.12 0.57 2 NA NA 
LbT_18_EREG EREGKDITLIGFSRG 15 2103.4 0.53 1.56 NA 2 
LbT_19_AWAS AWASSPAPTEARTAP 15 1938.17 0.45 2 4.01 NA 
LbT_20_VDRD VDRDNKKLSSGMVCS 15 2064.4 0.51 2 NA 2.53 
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Figure 2. 
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Figure 3. 

 
 
 
Figure 4. 
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Figure 5. 

 

 

 

Figure 6. 
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CHAPTER 6: Results 
 
This chapter presents results of experiments that were not part of the preceding chapters. 

Full methods are in the Appendix. 

 

6.1 SCP/TAPS gene sequencing 
 
An SCP/TAPS protein family gene of S. stercoralis, corresponding to existing seroantigen NIE, 

and under investigation as a candidate coproantigen, was the target of our PCR. The aim was 

to amplify and sequence this gene from geographically-diverse Strongyloides-infected stool 

samples in order to investigate antigen sequence diversity. Optimisation of the PCR to 

amplify the NIE homologous region and another region of gene SSTP_0001008900 from S. 

stercoralis positive stool DNA was unsuccessful, regardless of the different annealing 

temperatures and magnesium concentrations used (Figure 19). However, our novel primers 

did amplify regions of the correct size in neat larval DNA (Figure 19F). Primer set 1, covering 

the NIE homologous region (aa 28-252), produced an amplicon of 1308 bp and primer set 2 

produced an amplicon of 1232 bp, at all annealing temperatures (55, 58 and 60°C) and at 

both 1.5 and 2 mM magnesium (Figure 19F). 18S rRNA primers116, used as positive control, 

produced an amplicon 101 bp. Optimal annealing temperature for Set1 primers is therefore 

55°C, and for Set2 primers, 60°C, both with 1.5 mM magnesium. 

 

Figure 19. Amplification of Strongyloides stercoralis gene SSTP_0001008900, which contains a 

region homologous to NIE seroantigen. Amplified using novel primers and existing species-

specific 18S rRNA primers (Verweij, 2009). Optimisation in preparation for sequencing. Full 

assay details are described in the Methods. A) Set 1 primers with positive stool DNA sample 
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at different annealing temperatures, all negative, box indicates expected amplicon location. 

B) 18S rRNA primers with four positive and one negative stool DNA samples- positive bands 

arrowed. C) Set 1 primers with positive stool DNA samples at different annealing 

temperatures, all negative, box indicates expected amplicon location. D) Two annealing 

temperatures (60 and 62°C) with Set 2 primers, negative, boxed, and 18S rRNA primers, 

positive, arrowed, with three positive stool DNA samples. E) Elutions 1, 2 and 3 of purified S. 

stercoralis larval DNA and positive stool DNA sample 126 amplified with 18S rRNA primers, 

positive, arrowed. F) Set 1 and Set 2 primers amplifying S. stercoralis larval DNA with different 

magnesium concentrations and annealing temperatures, all positive, arrowed, 18S rRNA 

primers as positive control. M: marker, sizes in base pairs (bp). 

 

Sequences obtained from S. stercoralis larval DNA of the PV0001 reference strain (originating 

from a dog in the USA) for the two main exon regions (each containing a short intron, see 

figure in Appendix), did not reveal any sequence diversity. Approximately 400 bases were 

reliably sequenced in each direction, with a loss of 70-100 bases after each primer due to 

poor quality sequence trace. 

 

6.2  Strongyloides qPCR trial 
 
A trial of a widely-used qPCR assay using diluted neat S. stercoralis larval DNA successfully 

produced amplification curves (Figure 20). One operator performed dilutions of DNA and two 

different operators added these dilutions to the qPCR reaction tubes (Figure 20). 

  

S. 
stercoralis 
DNA 
dilution 

Operator 
1 (Ct) 

Operator 
2 (Ct) 

Ct 
difference 

Neat 13.42 14.20 0.78 
10 16.67 17.65 0.98 
100 20.23 20.92 0.69 
1000 23.69 24.30 0.61 
10000 28.17 28.80 0.63 
100000 32.90 33.60 0.70 
Negative 
Control 

-ve -ve n/a 

Figure 20. Strongyloides stercoralis DNA amplification curves by qPCR of 18S rDNA sequence. 
Primers and probe as per Verweij et al. (2009)116, with method as per Becker et al. (2015)145. 
Ct, cycle threshold. 
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6.3  Strongyloides genomic variants 
 
Mapping of the S. stercoralis genome to the S. ratti reference revealed 13,804 variants, a rate 

of 1 per 3,069 bases. Of the variants, 12,737 (92.3%) were SNPs, 587 (4.3%) were insertions 

and 480 (3.5%) were deletions. The effects of these variants would lead to amino acid 

differences in 26.4% of the cases but most (73.5%) of the variants between the two species 

were silent, not affecting the amino acid sequence. Variants affecting protein sequences in 

candidate coproantigens can inform the selection of species-specific antigens. 
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CHAPTER 7: Discussion 
 

7.1 Strongyloides  

Background and diagnostic needs 
Strongyloides stercoralis infection is widespread and goes hand-in-hand with poverty in 

tropical regions. Its capacity to cause life-long infection means that strongyloidiasis also 

occurs outside its endemic region in migrants and travellers. Despite being treatable, 

strongyloidiasis often goes undiagnosed leading to morbidity. In addition, unlike most other 

human helminth infections, strongyloidiasis can cause the potentially fatal conditions of 

hyperinfection or disseminated infection in the immunocompromised. There is an absence of 

information on the true global burden of strongyloidiasis, largely due to inadequate 

diagnostic options that fail to provide sensitive and rapid results on current infection. 

Therefore, there is a need for such a diagnostic. This study aimed to address this need by 

identifying antigens originating from the nematode that could be detected by a rapid 

diagnostic test performed on a stool sample.  

Success of this study 
This study succeeded in identifying over 40 novel potential stool antigens of S. stercoralis. We 

used an innovative method that analysed the wide range of open-access bioinformatic data 

now available on helminths that has not previously been applied to Strongyloides diagnostics 

development. By this combination of ‘omics’ data and online analysis tools, this study 

identified candidate proteins for a coproantigen capture immunoassay for strongyloidiasis. A 

similar bioinformatic approach has been applied to diagnostic and therapeutic target 

discovery for filarial nematode infections such as Wuchereria bancrofti263, and to vaccine 

candidate design for the bacterial infection, brucellosis264. The present study used high-

quality, detailed, transcriptomic data20 as its starting point, which enabled selection of genes 

that are differentially expressed in gut-dwelling life stages of S. stercoralis, as compared with 

non-gut dwelling stages.  

Quality of data 
Open access data were carefully scrutinised before use to ensure that they were robust and 

relevant to the present objectives. This included selecting transcriptomic data that had 

multiple biological replicates and paired-end reads in high numbers, therefore giving high-

quality, reliable data. In addition, the parasite culturing method used by the creators of the 

data was examined in detail to understand which of the analysed life stages may be found in 

the host gut or stool. Likewise, proteomic data from S. ratti was selected due to the re-
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assignment of older mass spectral data to proteins by Hunt et al. (2016)33 following their 

improvement of the S. ratti reference genome.  

Outgroups 
Genome-derived proteomes of multiple helminths and Homo sapiens were used to 

investigate the level of conservation of protein sequences between organisms. The available 

genomes were at various stages of assembly and annotation, which could have affected the 

completeness of the derived proteome data. However, the selection of these outgroups was 

made to include biologically relevant species that co-infect humans, as well as closely-related 

parasitic or free-living nematodes, covering a wide range of genera and also reflecting 

different levels of genome assembly. 

Antigenic diversity and PCR 
As part of selecting suitable diagnostic coproantigens, we aimed to investigate the diversity of 

these proteins by developing novel PCR assays to amplify and sequence relevant regions from 

geographically diverse samples of S. stercoralis. The selected genomic region, encoding a 

homologue of the NIE serological antigen, in the SCP/TAPS protein family, was successfully 

sequenced from neat larval DNA. The S. stercoralis DNA was of the same strain as the 

reference genome therefore little could be deduced from this with regard to geographic 

diversity. We were able to confirm however, that there were no heterogeneities in the 

sequenced region of this gene, regardless of how many copies were in the genome. We also 

showed that our novel primers were successful. Therefore, reasons that no amplicon was 

obtained from infected stool DNA could have been due to polymerase inhibition caused by 

stool components, or the small amount of target DNA. This SCP/TAPS PCR could be further 

optimised to increase sensitivity by varying the PCR assay conditions, or by using alternative 

stool DNA extraction procedures118, 265. Other gene targets may be more easily amplified from 

stool, particularly for candidate antigens with multi copy genes. Whenever possible, we 

recommend that future studies of antigenic diversity in S. stercoralis should obtain DNA from 

isolated larvae, rather than whole stool to avoid this challenge. In addition, for improved 

sequence coverage and reliability, sequencing primers should be designed to bind within the 

amplicon in order to obtain sequences of the entire gene in both directions. 

Starting point 
A potential limitation of this study was the use of differential gene expression as a starting 

point. This was as opposed to assessing standardised expression levels in transcripts per 

million (TPM) from the gut-dwelling life stages to reveal their highly expressed genes, 

regardless of the expression in non-gut life stages. The differential expression (DE) method 

did not capture the complexity of the RNAseq data which had triplicate measurements for 7 
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life stages. Not all of the seven life-stages were relevant to the antigen search, but more 

genes could have been used as the starting point. Looking only at parasitic females, 877 

genes had normalised expression counts of >10,000. This was much higher than the 328 DE 

genes that I went on to analyse in phylogenetic trees and protein alignments. In addition, 

transcription does not necessarily correlate with protein production33, therefore these data 

should ideally be used as a confirmation of genomic and proteomic data analysis rather than 

a foundation. However, at the time of designing and commencing this study, the E/S 

proteome data were not optimal and the improved and new genome assemblies of the 

Strongyloides spp. had not been released, in which case, transcriptomic data were a suitable 

basis for the coproantigen search. 

Proteomic data conversion 
An additional drawback was the lack of a proteomic dataset for S. stercoralis. We addressed 

this by obtaining E/S proteomic data for the closely-related S. ratti and extracting orthologous 

proteins from the S. stercoralis genome. However, there remained considerable differences 

between these two datasets. Therefore, the S. stercoralis E/S orthologues were submitted to 

online tools to predict the presence of signal peptides, which indicated those orthologues 

with most likelihood of being secreted. A similar but more extensive filtering was applied by 

Cuesta-Astroz et al. (2017)266 to predict secreted proteomes directly from genomic data of 82 

helminth species, revealing a secreted proteome of 973 proteins from S. ratti, similar to the 

experimental total of 882 found by mass spectrometry of material from both parasitic and 

free-living female worms33. 

Sample types 
This study aimed to discover coproantigens because stool is the most likely sample to contain 

Strongyloides antigens. However, stool samples are not an ideal sample type and although 

they are widely collected during STH surveys, an ideal rapid test would use a urine or saliva 

sample that can be provided on demand and with less handling risk to both the patient and 

clinical staff. Evidence in favour of investigating these alternative sample types comes from a 

urine antigen detection assay using a monoclonal antibody against the liver fluke Opisthorchis 

viverrini which had 81% sensitivity for infection and minor cross-reactivity with S. 

stercoralis267. In addition, a urine-based assay for the filarial sub-cutaneous nematode 

infection, onchocerciasis, detected ‘NATOG’ a human metabolite of a nematode 

neurotransmitter. This test is undergoing continued development and had promising 

sensitivity of 85% in an initial trial268. Strongyloides DNA has been detected in urine of both 

human and animal infections, indicating that worm material does enter the urine269-271. 

Evidence for Strongyloides antigens in saliva comes from an assay detecting immune 
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complexes (IgG bound to antigen) and although currently-infected individuals were positive 

in 30% of cases, there was also 20% positivity in ‘healthy’ individuals, indicating weak 

specificity142. These assays suggest that urine, and potentially saliva, could be explored as 

sources of parasitic helminth antigens, regardless of the body site of parasitic life stages. Such 

analysis could be performed using antibodies raised against the candidate antigens from this 

study, as well as by mass spectrometry of urine and saliva. 

Antigen detection application 
Antigen detection as a diagnostic method has significant advantages over serology in that it 

can be used to monitor prevalence in areas that have been subject to mass drug 

administration. Assessing cure after treatment with ivermectin could be carried out as soon 

as 4 days after treatment as larvae cease to be excreted by this time115. However, a sensitive 

antigen detection test may require a longer period for nematode proteins to be completely 

cleared from the host gut. In one study, DNA was detected in stool up to 4 years after 

apparent cure70. This was presumed to be indicative of incomplete treatment, however 

reinfection, or contamination during the assay process are also possible causes. 

Species and genus specificity 
This study aimed to identify antigens of S. stercoralis, but given that another Strongyloides 

species, S. fuelleborni, is also found in humans and all other Strongyloides species are not, a 

genus-specific diagnostic would suitable. However, for certain helminth infections, there is a 

need for species-specific assays. Such a test has been piloted for Taenia solium where 

differentiating between this and T. saginata has implications for potential cysticercosis in the 

population272.  Equally high specificity could be important for differentiating echinococcosis 

caused by Echinococcus multilocularis from E. granulosus which have different environmental 

reservoir hosts and treatment requirements. Such specificity is likely to be possible using 

monoclonal antibodies against defined antigens273. In other cases, genus specificity is 

desirable, for example to differentiate liver flukes Opisthorcis and Clonorchis that are 

carcinogenic, from other flukes that are not274. Developing such specific diagnostics could use 

comparative genomics to investigate variants in the genes of interest but should be 

supported by sequencing of those regions for confirmation. We used S. ratti as a reference 

genome for variant calling because it was the best assembled of all the Strongyloides 

genomes but by comparing other Strongyloides genomes to the reference, we enabled the 

discovery of unique variants in any of those species. Further work could expand on this 

aspect of the study by identifying the genome regions encoding the candidate coproantigens 

and identifying genus- and species-specific variants. 
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Future use for antigen discovery method 
The computational method applied here to discover diagnostic antigen candidates has great 

potential to be applied to other human and animal parasitic helminth infections. Certain 

protein families are known to be upregulated in parasitism and in different life stages of 

parasitism. Analysis of these protein families from other organisms, particularly for 

commonly antigenic features such as repeat regions, could facilitate diagnostics 

development, of both serology and antigen capture, for other neglected diseases. 

 

7.1.1. Strengths 

x This study identified novel candidate coproantigens of S. stercoralis without the need 

to culture Strongyloides in animals or obtain material from infected humans. 

x Short peptide candidate antigens have been produced commercially and will be 

screened for antigenicity/sero-reactivity prior to antibody generation. 

x The antigen search was informed by multiple open access data types and sources, 

including literature on the recent detailed analyses of the Strongyloides genomes by 

Hunt et al. (2016)33; experimental proteomic and transcriptomic data; and multiple 

genomes. 

x Candidate antigens were selected, based on comprehensive analysis and with 

multiple sources of evidence for their likely success as coproantigens, including 

specificity to Strongyloides, antigenicity, accessibility to antibodies and presence in 

stool. 

x Novel PCR primers were used successfully to investigate sequence diversity of an NIE 

gene homologue. 

x Detailed analysis of existing serological antigens of S. stercoralis revealed features of 

these antigens for the first time. This included the identity of the recently discovered 

rSs1a as a TAP24-like protein family member, SsIR as a collagenic tail of AChE, and 

potential epitope regions within NIE, as well as the possible structures of these 

antigens. All of this information contributes to the improvement of these antigens 

and to their use as potential coproantigens. 

7.1.2. Limitations 

x Starting with differential gene expression analysis of transcriptomic data. This may 

have limited the number of promising genes too soon in the analysis and may have 

overlooked some constitutively high-expressed genes. Future studies could use as a 

starting point, absolute gene expression values or comparative genomics in order to 
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identify protein regions and genes that are either species specific, amplified in the 

target organism, or contain species specific variants. 

x Lack of automation of the antigen discovery pipeline was a drawback in terms of the 

time taken to analyse each dataset and combine the outputs of these analyses. 

Others have developed tools to perform similar computational tasks275. This approach 

could be applied to Strongyloides diagnostics development. 

x Epitope prediction of conformational B-cell epitopes is often inadequate. However, 

shortly after this study was completed, an updated version of the online epitope 

prediction tool, BepiPred 2.0, was released which claimed to have better accuracy for 

conformational epitopes than BepiPred 1.0. It was a limitation of this study that the 

older version of the tool was used. However, given the pace of development of such 

tools, computational analyses can become outdated rapidly. Automation of the 

antigen discovery pipeline would assist with this problem by enabling rapid updating 

and repeating. 

 

7.1.3. Further work 

This study provides an example of the immense value of combining publicly available 

genomic, transcriptomic and proteomic data for diagnostics, vaccine development and drug 

target selection.  A computational method can speed up and reduce the cost of selecting 

target molecules and such an approach is highly amenable to the neglected diseases that do 

not attract the financial support of other conditions. In particular, this approach could be 

applied to other helminth infections, most of which lack rapid, sensitive and affordable 

diagnostic options. This study could be followed up by the use of a bioinformatics pipeline, 

such as ‘Vacceed’, a vaccine discovery pipeline developed by Goodswen et al. (2014)275. This 

would facilitate the discovery of diagnostic markers for any eukaryotic pathogen with 

available genomic data. The WTSI is in the process of assembling the genomes of 50 

helminths, all of which are open-access and include trematodes, cestodes and nematodes. In 

a more focused approach, protein families known to be associated with parasitism could be 

investigated for diversity, in order to identify species-specific proteins or variants. 

Next steps in Strongyloides diagnostic development 
Regarding this study, the specific next steps towards developing an antigen capture assay are 

detailed below. This next phase of assay development will be carried out by a subsequent 

PhD student, under the supervision of the candidate and her supervisor: 

1. Synthesis of the selected peptide coproantigen candidates (underway). 
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2. For larger candidate antigens, construction of gene clones and expression in E. coli 

would be preferable. Alternatively, to explore glycosylated antigens, a eukaryotic and 

preferably nematode, expression system could be used, potentially C. elegans or S. 

ratti. Novel primers would be needed and genes could be amplified and cloned from 

the S. stercoralis reference strain material available at LSHTM (kindly donated by 

Thomas Nolan, University of Pennsylvania, USA). Alternatively, gene sequences ‘gene 

strings’ of the relevant sequence could be purchased and inserted into plasmids for 

expression. Only small quantities of antigens would be needed for initial screening. 

3. Screening, e.g. by ELISA or microarray, of the synthesised/recombinant proteins for 

antigenicity, using experimentally infected gerbil serum (kindly donated by Thomas 

Nolan, University of Pennsylvania, USA) and a non-infected control serum. Antigens 

well recognised by infected serum could indicate that they are likely to be strong 

antigens when raising antiserum. 

4. Synthesis of a larger quantity of the antigenic candidates and at high purity for raising 

antibodies. 

5. Raise antibodies to the candidate antigens in mice, rabbits or chickens via a commercial 

source. To reduce costs, antibodies could be raised to several of these candidates, e.g. 

3, in a single animal. The antibodies would then be developed into a paired antigen 

capture assay initially using the original antigen which could be spiked into a S. 

stercoralis negative stool sample to assess interference and ideal sample pre-

processing. 

6. Perform S. stercoralis qPCR of ethanol-preserved stool samples collected in Guinea 

Bissau (ongoing). This would identify those that are positive for S. stercoralis and the 

corresponding formalin-preserved aliquots can be used in coproantigen assay 

development. Previous studies in Guinea Bissau have identified a S. stercoralis 

prevalence of 6.2%-7.9% in various locations throughout the country using various 

microscopic methods276-278. If these prevalence rates can be extrapolated, our sample 

size of 395 could contain about 31 positive samples. 

7. Formalin antigen fixation and storage at -20°C has been reported to preserve 

coproantigens for months279 and may contribute to lower background reactivity from 

stool samples140. The presently available stool samples in 10% formalin have been 

stored at -70°C to -80°C since October 2017. For assay development, the formalin stool 

should be homogenised and centrifuged to retain the supernatant which can then be 
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used in immunoassays to investigate sensitivity and specificity. In their S. ratti 

coproantigen assay development using antibodies against lysed whole worm antigen, 

Sykes and McCarthy (2011)140 found that a dilution of at least 1:4 of the formalin stool 

extract was needed to ensure specificity. 

8. Investigate antigenic diversity of the target sequences. In parallel to assay 

development, the amino acid sequence diversity of candidate or selected antigens 

should be investigated from different geographical regions and within an individual 

infection, preferably using DNA from worms collected by Baermann funnels or Koga 

agar plate cultures rather than stool DNA. 

 

 

7.2 Visceral leishmaniasis 

7.2.1. IgG1 serology 

Background and success of this study 
Previous studies have indicated that IgG1 may be a suitable indicator of cure and relapse 

after treatment for VL, currently a significant diagnostic gap280. In comparison with other IgG 

sub-classes, IgG1 provided the best discrimination between cure and relapse against a 

parasite lysate antigen in ELISA280. The current project, further investigating the utility of IgG1 

diagnostics for VL, including in RDT format, used a larger sample size of paired sera than 

previously tested and showed that this test can differentiate between active VL and cure at 6 

months in India, and potentially sooner in Sudan. This work also confirmed that IgG1, as 

measured by the RDT, was more likely to be elevated in relapsed individuals, where it was 

negative or reduced in those deemed cured. In addition, we found that the RDT, with further 

development, may have the potential to confirm PKDL, which currently lacks an empirical 

test.  

rK39 and IgG1 
The adaptation of the RDT to use rK39 antigen (at two concentrations), rather than parasite 

lysate, improved the detection of active VL (94.7-100% positive compared with 77.9% 

respectively), and relapse (85.7-90.5% and 84.8% positive respectively), as shown by other 

work in which the candidate was involved281. However, cured samples were more likely to be 

positive at 6 months with rK39 than with lysate (31.6-36.8% versus 24.0%), indicating the 

need for further development of the rK39 IgG1 RDT. Overall, the study showed that a simple 

adaptation, made to an existing diagnostic, could dramatically increase its capability. 
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Such an RDT, indicating cure or potential to relapse, would have profound impacts on VL 

disease control as it would facilitate targeted follow-up of individuals whose IgG1 remained 

elevated after treatment. However, earlier studies, and that presented here using paired sera 

from the same individuals before and after treatment, relied on a crude lysate antigen which 

required culturing of L. donovani in contained laboratory conditions and was not able to be 

standardised in its antigenic content. Therefore for large-scale disease control programs, it is 

preferable to use a defined antigen, such as rK39 or rK28, which can be produced in bulk as 

recombinant proteins and have no batch variation.  

IgG1 western blots 
We performed western blots with sera from a range of VL disease states to identify 

differences between VL and relapse IgG1 responses to L. donovani lysate. Certain bands were 

immunodominant across all clinical disease categories and were followed-up as potential 

sources of IgG1 seroantigens in the enclosed manuscript by Hinckel et al. It was not easily 

possible to correlate bands between blot strips due to slight differences in the gel separation. 

An electronic scanner could have assisted with matching bands. Distinguishing relapse from 

PKDL would be beneficial, particularly if a serological response could be used in advance to 

predict progression to either relapse or PKDL. The outcome we sought was the identification 

of individual proteins from these bands with a view to standardising the IgG1 assay to detect 

relapse or PKDL as distinct from each other and other VL states. 

Mass spectrometry 
Mass spectrometry identified several hundred proteins in each gel band, therefore it was not 

clear which ones were immunoreactive or immuodominant without further analysis. 

Computational filtering criteria were applied to these data to restrict the number of possible 

antigens. Alternative methods of revealing specific antigens in the crude lysate antigen 

include: 2-dimensional SDS PAGE to obtain better protein resolution; excising the gel region 

(unstained bands) of interest and re-separating them individually on an SDS PAGE gel of 

appropriate acrylamide percentage; probing a peptide library such as a phage display library, 

with sera or IgG1 from the different disease states. 

Future development and use of IgG1 assays 
Considering the performance of the IgG1 assays, the initial investigations detailed in this 

thesis relied on having paired serum/plasma samples available to observe a decrease in IgG1 

titre between pre- and post-treatment. In a clinical situation, such samples may not be 

available. In addition, developing an assay that is required to be positive with active disease 

but negative 6 months later (in the case of India), is challenging. Existing immunoassays based 

on rK39 or rK28 with detection of total IgG have high sensitivity and specificity for active VL, 
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therefore, future development of the IgG1 RDT may be more appropriately focused on 

obtaining a negative result at 6 months follow-up to confirm cure. This single test would 

halve the cost per patient (compared with doing IgG1 tests before and after treatment). In 

addition it may require a lower antigen concentration to reduce sensitivity, such that it would 

only be positive with high titre sera, indicative of relapse. In a clinical context, the single time-

point RDT would also avoid the need to train healthcare workers in interpreting the test line 

intensity of the RDT, which is subjective and goes against WHO efforts to standardise the 

interpretation of such tests as either positive or negative282.  

The RDT could be used with, or be replaced by, the quantitative IgG1 ELISA if paired samples 

were available or quantitative information was needed, for example in research. In the case 

of the IgG1 ELISA, the decline of titre could be quantified e.g., by a ratio of pre- to post-

treatment results, in order to indicate cure without a sample becoming negative. This 

approach has been taken in serology for strongyloidiasis67, 283. A suitable ratio could be 

defined after analysis of a larger number of paired samples from known cure and relapse 

cases. 

 

7.2.2. Urine antigen 

Success of this study 
This work successfully identified seven L. donovani parasite proteins in VL urine from India 

and Sudan, none of which had previously been found in urine. Analysis of these proteins for 

potential epitope regions indicated 22 with high specificity to Leishmania, that can be 

combined to increase the sensitivity and specificity of a subsequent assay. Several of the 

proteins identified in VL urine had a hypothetical identity due to incomplete annotation of 

the L. donovani genome. Better characterisation of these proteins could be useful to inform 

antigen production and assay development with these peptides in order determine the 

structure and surface exposure of predicted epitopes. Multiple online tools exist for protein 

identification and characterisation, as used by Shahbaaz et al. (2013)284 to assign functions to 

over 70% of the previously hypothetical proteins of the bacterium, Haemophilus influenzae. 

Potential for urine antigen diagnostics 
In other studies, urine antigens have been found to decline in response to treatment, 

potentially offering more rapid monitoring than is possible with antibody detection260. 

Another potential utility of urine antigen diagnostics is in HIV-VL co-infection where urine 

antigen, as measured by the KAtex, indicated that those with a high antigenuria at diagnosis 

were significantly more likely to experience treatment failure than those with lower antigen 

levels. In addition, a high urine antigen result at follow-up, when deemed cured, indicated 
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higher probability of relapse285, 286. Thus, adaptation of a urine antigen capture assay to RDT 

format could be of significant benefit in VL endemic regions with high HIV coinfection. 

Methods for urine antigen discovery 
To identify parasite antigens in urine, mass spectrometry is less sensitive than immunoassay, 

which is why we combined these techniques, to first concentrate and then identify proteins. 

Alternative methods have included the use of nanoparticles to absorb small molecules 

including antigens, from urine, which after washing away the large urine volume, are released 

from the particles and immunoassayed. This technique has been applied to Chagas disease 

and Lyme borreliosis287-289.  

The alternative method, excising immunoreactive bands from a urine protein SDS-PAGE, had 

limitations as it involved ‘wasting’ the protein that was used to make the blot, and inefficient 

extraction of proteins from the gel. Alternatively, immunoreactive bands could be directly 

excised from a western blot, thus avoiding the need for a duplicate gel. However, all 

components would need to be optimised as there are differences between this and a 

standard western blot290. A higher throughput approach to urine biomarker discovery was 

presented by Balog et al. (2009)291 in which urine protein was captured and fractionated from 

small volumes prior to mass spectrometry, yielding high sensitivity for low abundance 

peptides. 

Mass spectrometry data analysis 
Our simultaneous search of the mass spectra against two protein databases took into account 

the fact that a mass spectrum may have had a better match to a human protein peptide than 

to one from L. donovani. A more rigorous approach would have been to compile a database 

of human pathogens and commensals, particularly as VL patients may suffer from bacterial 

co-infections, thus the mass spectra could have been searched against these to exclude 

possible matches to peptides from other organisms. An additional process to strengthen our 

mass spectrometry data would have been to analyse EHC urine alongside the VL urine. Being 

able to make this comparison between VL and EHC samples would strengthen the 

identification of parasite peptides as any that apparently occurred in EHC urine could be 

excluded as false matches.  

 

7.2.3. Strengths 

This thesis describes the first RDT with the potential to indicate cure and relapse of VL, and to 

assist with diagnosis of PKDL. In addition, we showed that the already established serological 

assays using rK39 antigen could be adapted for determination of cure by incorporating anti-
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IgG1 instead of anti-IgG. Separately, we identified L. donovani proteins in VL urine that could 

contribute to non-invasive diagnosis and test-of-cure development. 

x Paired pre- and post-treatment samples showed decline of IgG1 at 6 months where 

relapse and PKDL cases were more likely to be positive. 

x Assays worked equally well with strains of L. donovani from Indian and eastern 

African origins.  

x Western blots followed by mass spectrometry allowed the most commonly 

recognised antigens to be identified and analysed further. 

x Several potential urine antigens were identified by our immuno-panning method. The 

use of dishes coated at different antibody concentrations took into account possible 

steric hindrance- when antigens may not bind due to spatial molecular interactions. 

In addition, different urine concentration methods all resulted in parasite peptide 

identification. 

x Criteria applied to mass spectrometry data ensured that only reliable peptide 

identifications resulted. 

 

7.2.4. Limitations 

For determination of the true utility of IgG1 in distinguishing cure from relapse and PKDL, and 

predicting progression to VL from asymptomatic infection, we would need access to a well-

characterised panel of samples from a cohort that had ideally been followed actively over 

several years.  

x There was limited follow-up of participants deemed cured in both India and Sudan 

that reduced our ability to measure the reliability of elevated IgG1 at 6 months in 

India and sooner in Sudan. 

x Limited number of samples from other diseases involved in differential diagnosis such 

as infectious diseases causing fever. These would be needed to determine specificity 

of the diagnostic test if using lysate, but with rK39 or rK28 this would not be such an 

issue. 

x Lack of sequential samples to determine the ability of IgG1 to predict VL relapse and 

PKDL, rather than confirm it only at the time of clinical presentation. 
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x Sensitivity of the lysate RDT for active VL could be improved by use of the rK39/rK28 

instead, or focusing on a single 6-month measurement to remove this need. 

x For urine antigen identification, it may be considered a limitation that none of the 

previously reported Leishmania proteins were identified and that there were no 

biological replicates. 

x More generally, assessment of diagnostic tests is likely to give a more accurate 

measure of specificity if the samples are not pre-selected from defined groups of 

disease states i.e. cases and controls, which creates ‘selection bias’246. Therefore, 

specificity should be re-evaluated in future studies using samples of unknown status. 

 

7.2.5. Further work 

IgG1 serology 
The next step in validating IgG1 as a diagnostic tool for follow-up of VL would be its use on a 

large sample set from a cohort study. Specifically, there is a need to follow individuals for at 

least 2 years after treatment, to validate their cured status. 

For rK39 as an antigen in IgG1-based diagnostics, the concentration of antigen on the rapid 

test requires optimising to maximise performance while minimising cost. This should be 

carried to on well-characterised samples from individuals followed for sufficient time to be 

considered definitively cured versus those who relapse. 

In addition, optimisation of the RDT as a single-timepoint measure of cure e.g. at 6 months 

post-treatment, could allow it to use less antigen as only higher titres would be relevant to 

indicate relapse. This would remove the need for the test to detect pre-treatment VL, and 

would also reduce the cost per test.  

The capacity of the RDT to indicate progression of asymptomatic seropositivity to VL could 

also be investigated using a larger number of samples of known clinical status. 

If there are antigens that differ in IgG1 reactivity between VL, relapse and PKDL, these could 

be discovered by increasing the resolution of SDS-PAGE using 2-dimensional gel 

electrophoresis, peptide microarray292 or genomic library screening. 

An alternative version of the Ig1 RDT, with rK28 antigen, could be explored in order to 

increase sensitivity and specificity of the test, particularly in Africa. In addition, the IgG1 

response should be investigated from the end of treatment (or even before) and the test 
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optimised to determine treatment outcome at this point to avoid loss-to-follow-up of 

patients.  

Research into VL predictive and test-of-cure diagnostics could investigate the use of 

algorithms including levels other markers as well as IgG1. These markers could include IL-10 

that has been linked to future development of PKDL in Sudan, and has been seen to decline in 

cure in Ethiopia293, 294.  

VL urine antigen detection 
Development of a VL urine antigen assay from the peptides detailed in the enclosed 

manuscript would involve synthesis of those peptides and raising antibodies to them. This 

could initially be done with several peptides at a time, to create a polyclonal antiserum 

against 3 or more of the antigens. IgG could then be purified from the antiserum and used to 

coat ELISA plates. Urine of known VL status (VL disease and healthy controls) should be 

assayed at a low dilution e.g., neat or 1 in 2. 

Additional development in this field could be computational analysis of the Leishmania 

proteins found by other studies, including tryparedoxin, nuclear transport factor 2 and iron 

speroxide dismutase258 to discover specific epitopes that could be used to generate 

monoclonal or targeted polyclonal antibodies. 
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7.3 Conclusions 

7.3.1. Summary of my findings 

Strongyloidiasis 
This study applied computational analyses to open access ‘omic’ data and identified multiple 

novel candidate coproantigens of S. stercoralis. These antigens were measured against three 

criteria: presence in host stool, specificity to Strongyloides; antigenicity. As such, the antigens 

have multiple types of evidence supporting their selection and should be tested as the targets 

of a rapid diagnostic test to indicate active infection. Ongoing developments are the synthesis 

of the short peptide candidate antigens for screening and raising antibodies. 

Visceral leishmaniasis 
For the neglected disease VL, this assessment of IgG1 serological assays provided additional 

evidence that high IgG1 is a marker for relapse after treatment, where low IgG1 could 

indicate cure, and that this could be measured with an RDT. Use of the existing seroantigen 

rK39 in a pilot RDT detecting IgG1, had promising results and removed the need for parasite 

culturing to produce the antigen. 

Discovery of seven L. donovani proteins was made from urine of Indian and Sudanese VL 

patients using immunocapture and mass spectrometry methods. Computational analysis of 

these proteins revealed Leishmania-specific epitope regions that can be used to develop an 

antigen capture assay. 

7.3.2. What’s the need? 
Both strongyloidiasis and VL are in need of diagnostics to indicate cure, as well as accurate 

primary diagnosis that is effective in HIV co-infected individuals. Both are potentially fatal 

diseases therefore there is a requirement for high sensitivity diagnostics. Strongyloidiasis in 

particular, lacks an agreed diagnostic method, leading to difficulty in comparing the results of 

prevalence surveys and assessments of cure. 

7.3.3. Target product profiles and disease control 
A combination of diagnostic tools is needed during the course of a disease control program, 

dependent on the goals of the program; morbidity control versus elimination/eradication. A 

target product profile (TPP) defines the characteristics of a product. In the case of diagnostics, 

the requirements of a product change over the course of a control program, depending on 

the decisions they support i.e., when to commence, continue, extend or end MDA, and to 

verify break in transmission. Lim et al. (2018)295 described the TPP of STH diagnostics at these 

various stages of an MDA-based control program.  
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As there is currently no MDA specifically for strongyloidiasis control, a diagnostic would be 

used under the first ‘use case’. It would ideally quantify the worm burden in those affected 

and could use stool, alongside STH surveys295. Results of such screening would inform the 

decision of which groups should receive MDA as well as its frequency and duration, and the 

frequency of follow-up testing. False positive results (low specificity of the test) in this 

scenario could lead to over-treatment. In the case of ivermectin this would be largely safe but 

could promote drug resistance in the worm. Low sensitivity could lead to underestimation of 

the true burden of the infection, as is currently the case, therefore a novel RDT should have 

high sensitivity to improve on the current diagnostic tools. During MDA, when prevalence is 

expected to be lower, a test must have very high sensitivity and be specific for active 

infection. This use case in particular, evaluating the progress of MDA, would favour antigen 

detection over serology for strongyloidiasis. 

In the case of VL in India, Bangladesh and Nepal, where elimination is the target, diagnosis of 

VL is effective with the highly sensitive rK39 serological assay but MDA is impossible due to 

the toxicity of the drugs. Therefore, high specificity is a key requirement of VL diagnostics and 

is likely to continue to rely on aspirate microscopy. However, towards elimination or 

interruption of transmission, when prevalence is very low, confirmation of cure and the 

diagnosis of asymptomatic transmitters and PKDL cases becomes much more relevant. This is 

where the IgG1 assays could be integrated into the control program. A test to indicate cure 

would also enable more effective treatment regimens to be validated for the prevention of 

PKDL. 

On an individual patient basis, both an S. stercoralis coproantigen assay and a VL test-of-cure 

would be beneficial to enable clinicians to make prompt and accurate treatment decisions. As 

RDTs, and with further development, these tests have the potential to fulfil the ASSURED296 

criteria of being:  

x Affordable by those at risk of infection 

x Sensitive (few false negatives) 

x Specific (few false positives) 

x User-friendly (simple to perform and requiring minimal training) 

x Rapid and Robust (to enable treatment at first visit, and not requiring refrigeration) 

x Equipment-free 

x Delivered to those who need it 

Use and results of RDTs can be linked within a health system by mobile phone technology, 

termed ‘mHealth’. For VL this could be implemented through healthcare workers, or the 
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population themselves, if phone ownership was common. For example, text or voice 

messages could prompt individuals to report symptoms that might indicate VL relapse or 

PKDL, to present to a clinic or be visited in their home, and tested with an RDT, the result of 

which would be reported to a data system to track real-time disease trends. Early warning 

systems for disease surveillance, particularly influenza and Dengue, have been tested based 

on internet searches297. However, these systems would have to be adapted to work for 

diseases like VL and other NTDs which frequently affect only the poorest and therefore, those 

least likely to own a mobile phone298. 

In 2018 the WHO launched the Essential Diagnostics List (EDL) to complement the Essential 

Medicines List with recommended in vitro diagnostics needed by a health system, along with 

advice to health ministries on the quality and implementation of these tests299. The initial list 

includes diagnostics for a range of non-infectious health conditions as well as prioritised 

infectious diseases such as HIV, TB, malaria and hepatitis viruses. This list will be updated 

annually and applications to include new diagnostics can be made. The impact of the EDL will 

hopefully be to increase the prominence of diagnostics equal to that of treatments, and 

contribute to the United Nations Sustainable Development Goal 3 related to health300. For 

strongyloidiasis in particular, the growing body of epidemiological data and diagnostic test 

assessments may facilitate diagnostics for this disease being added to the EDL, and thus 

becoming more widely available and used, as well as favouring a standardised method. For 

VL, the well-used rK39- and rK28-based serological tests would ideally be available in regions 

where the disease is highly endemic, including Brazil, eastern Africa and parts of India, thus a 

validated test-of-cure, predictor of relapse and confirmation of PKDL, would also be beneficial 

in these regions. 

 

7.3.4. Potential impact of these diagnostics on disease control 
Rapid diagnostic tests have revolutionised the care of individuals and have enabled large-

scale control programs, including malaria and VL elimination campaigns. Antigen detection 

assays have great potential to fill diagnostic gaps left by serological tests, namely: accurate 

diagnosis of HIV positive patients who may have reduced serological responses; timely test of 

cure; indication/prediction of relapse; indication of active infection as opposed to previous 

exposure. These features facilitate the testing of new treatments and screening for 

antimicrobial resistance, which are held back by an absence of test-of-cure diagnostics. 

Antigen detection tests have the potential to be non-invasive, are generally cheaper than 

molecular tests, and can be unaffected by vaccine-induced immunity. 



Chapter 7: Discussion 

201 

 

Strongyloides antigen detection 
The impact of a stool antigen detection test on strongyloidiasis would be to increase the 

breadth and detail of epidemiological information, which in turn could support the 

implementation of MDA with ivermectin for this disease, as has been called for43. Such a test 

could easily be integrated into STH surveillance programmes when stool is collected for Kato 

Katz microscopy but is not tested for Strongyloides due to the logistical demands of the 

existing methods. As an indicator of active infection, an antigen detection assay would enable 

the true cure rates of existing and new drugs to be defined. It may also be useful as a tool to 

investigate the role of dogs as zoonotic reservoirs of S. stercoralis. At the clinical level, 

availability of an RDT would increase the profile of strongyloidiasis among clinicians when 

faced with cases of unexplained eosinophilia and prior to corticosteroid therapy or 

transplant, thus reducing the likelihood of unnecessary morbidity and mortality from the 

disease. In order to validate and implement a strongyloidiasis rapid test, partnerships must 

be created with study sites, industry, and control programmes. Diagnostic test accuracy must 

be assessed before and after treatment using a combination of diagnostic methods as the 

reference standard. 

VL serology and antigen detection 
As a serological test-of-cure or indicator of VL relapse, the IgG1 assays described here could 

be integrated into the existing health system in India where patients treated for VL return to 

the clinic for a follow-up 6 months later. Currently they are deemed cured if all clinical 

symptoms have resolved, however, some 10-20% go on to relapse and require re-treating. If 

the test indicated elevated levels of IgG1 at 6 months, that individual could be warned of 

their chance of relapse to avoid delay in the subsequent diagnosis, especially relevant in low-

prevalence, disease surveillance, settings. With further validation, IgG1 assays may be 

applicable sooner than 6 months in Sudan. The Leishmania proteins identified in VL urine can 

be tested as the targets of a diagnostic test. Once validated, a highly accurate urine antigen 

test could replace blood collection for initial diagnosis of VL. Both types of test, IgG1 and 

urine antigen, could contribute to the diagnostic tools available for the long term control or 

elimination of VL.

 

 

 
  



8: References 

202 

 

8. References 

1. Burbelo, P.D., Goldman, R., and Mattson, T.L., A simplified immunoprecipitation 
method for quantitatively measuring antibody responses in clinical sera samples by 
using mammalian-produced Renilla luciferase-antigen fusion proteins. BMC 
Biotechnol, 2005. 5: p. 22. 

2. Medgadget. Glow-in-the-dark paper test rapidly detects infectious diseases.  2018  
[cited 2019 26/1/19]; Available from: https://www.medgadget.com/2018/10/glow-
in-the-dark-paper-test-rapidly-detects-infectious-diseases.html. 

3. Medgadget. Diagnostic blood tests in minutes: interview with Brianna Wronko, 
founder and CEO of Group K Diagnostics.  2019  [cited 2019 26/1/19]; Available from: 
https://www.medgadget.com/2019/01/diagnostic-blood-tests-in-minutes-interview-
with-brianna-wronko-founder-and-ceo-of-group-k-diagnostics.html. 

4. i-sense, the EPSRC IRC in early warning sensing systems for infectious diseases.  2017  
[cited 2019 26/1/19]; Available from: https://www.i-sense.org.uk/. 

5. Labes, E.M., et al., Genetic characterization of Strongyloides spp. from captive, semi-
captive and wild Bornean orangutans (Pongo pygmaeus) in Central and East 
Kalimantan, Borneo, Indonesia. Parasitology, 2011. 138(11): p. 1417-1422. 

6. Hasegawa, H., et al., Molecular identification of the causative agent of human 
strongyloidiasis acquired in Tanzania: dispersal and diversity of Strongyloides spp. and 
their hosts. Parasitol Int, 2010. 59(3): p. 407-13. 

7. Nutman, T.B., Human infection with Strongyloides stercoralis and other related 
Strongyloides species. Parasitology, 2016: p. 1-11. 

8. Neva, F.A., Biology and immunology of human strongyloidiasis. J Infect Dis, 1986. 
153(3): p. 397-406. 

9. Seaman, J., Mercer, A.J., and Sondorp, E., The epidemic of visceral leishmaniasis in 
western Upper Nile, southern Sudan: course and impact from 1984 to 1994. Int J 
Epidemiol, 1996. 25(4): p. 862-71. 

10. Muniaraj, M., The lost hope of elimination of kala-azar (visceral leishmaniasis) by 
2010 and cyclic occurrence of its outbreak in India, blame falls on vector control 
practices or co-infection with human immunodeficiency virus or therapeutic 
modalities? Trop Parasitol, 2014. 4(1): p. 10-9. 

11. Boelaert, M., et al., The poorest of the poor: a poverty appraisal of households 
affected by visceral leishmaniasis in Bihar, India. Trop Med Int Health, 2009. 14(6): p. 
639-44. 

12. Harhay, M.O., et al., Who is a typical patient with visceral leishmaniasis? 
Characterizing the demographic and nutritional profile of patients in Brazil, East 
Africa, and South Asia. Am J Trop Med Hyg, 2011. 84(4): p. 543-50. 

13. Gilead Sciences Ltd. Press release: Gilead Sciences and the World Health Organization 
announce five-year visceral leishmaniasis collaboration.  2016  [cited 2018; Available 
from: http://www.gilead.com/news/press-releases/2016/9/gilead-sciences-and-the-
world-health-organization-announce-fiveyear-visceral-leishmaniasis-collaboration. 

14. National Vector Borne Disease Control Programme, M.o.H.a.F.W., Government of 
India,, Accelerated plan for kala-azar elimination 2017. 2017, Ministry of Health and 
Family Welfare, Government of India: India. 

15. Singh, O.P., et al., Asymptomatic Leishmania infection: a new challenge for 
Leishmania control. Clin Infect Dis, 2014. 58(10): p. 1424-9. 

16. Burza, S., et al., Risk factors for visceral leishmaniasis relapse in immunocompetent 
patients following treatment with 20 mg/kg liposomal amphotericin B (AmBisome) in 
Bihar, India. PLoS Negl Trop Dis, 2014. 8(1): p. e2536. 

17. Zijlstra, E.E., et al., Post-kala-azar dermal leishmaniasis in the Indian subcontinent: a 
threat to the South-East Asia region kala-azar elimination programme. PLoS Negl Trop 
Dis, 2017. 11(11): p. e0005877. 

https://www.medgadget.com/2018/10/glow-in-the-dark-paper-test-rapidly-detects-infectious-diseases.html
https://www.medgadget.com/2018/10/glow-in-the-dark-paper-test-rapidly-detects-infectious-diseases.html
https://www.medgadget.com/2019/01/diagnostic-blood-tests-in-minutes-interview-with-brianna-wronko-founder-and-ceo-of-group-k-diagnostics.html
https://www.medgadget.com/2019/01/diagnostic-blood-tests-in-minutes-interview-with-brianna-wronko-founder-and-ceo-of-group-k-diagnostics.html
https://www.i-sense.org.uk/
http://www.gilead.com/news/press-releases/2016/9/gilead-sciences-and-the-world-health-organization-announce-fiveyear-visceral-leishmaniasis-collaboration
http://www.gilead.com/news/press-releases/2016/9/gilead-sciences-and-the-world-health-organization-announce-fiveyear-visceral-leishmaniasis-collaboration


8: References 

203 

 

18. Patole, S., Burza, S., and Varghese, G.M., Multiple relapses of visceral leishmaniasis in 
a patient with HIV in India: a treatment challenge. Int J Infect Dis, 2014. 25: p. 204-6. 

19. Tefé-Silva, C., et al., Hyperinfection syndrome in strongyloidiasis, in Curr Top Trop 
Med. 2012. 

20. Stoltzfus, J.D., et al., RNAseq analysis of the parasitic nematode Strongyloides 
stercoralis reveals divergent regulation of canonical dauer pathways. PLoS Negl Trop 
Dis, 2012. 6(10): p. e1854. 

21. Becker, S.L., et al., Diagnosis, clinical features, and self-reported morbidity of 
Strongyloides stercoralis and hookworm infection in a co-endemic setting. PLoS Negl 
Trop Dis, 2011. 5(8): p. e1292. 

22. Schar, F., et al., Strongyloides stercoralis: global distribution and risk factors. PLoS 
Negl Trop Dis, 2013. 7(7): p. e2288. 

23. Spinicci, M., et al., Seroepidemiological trend of strongyloidiasis in the Bolivian Chaco 
(1987-2013) in the absence of disease-specific control measures. Trop Med Int 
Health, 2017. 

24. Buonfrate, D., et al., Epidemiology of Strongyloides stercoralis in northern Italy: 
results of a multicentre case-control study, February 2013 to July 2014. Euro Surveill, 
2016. 21(31). 

25. Viney, M.E. and Lok, J.B. (2007) Strongyloides spp. WormBook,   
26. Grant, W.N., et al., Parastrongyloides trichosuri, a nematode parasite of mammals 

that is uniquely suited to genetic analysis. Int J Parasitol, 2006. 36(4): p. 453-66. 
27. Ramachandran, S., Gam, A.A., and Neva, F.A., Molecular differences between several 

species of Strongyloides and comparison of selected isolates of S. stercoralis using a 
polymerase chain reaction-linked restriction fragment length polymorphism 
approach. Am J Trop Med Hyg, 1997. 56(1): p. 61-5. 

28. Hasegawa, H., et al., Strongyloides infections of humans and great apes in Dzanga-
Sangha protected areas, Central African Republic and in degraded forest fragments in 
Bulindi, Uganda. Parasitol Int, 2016. 

29. Ashford, R.W., Barnish, G., and Viney, M.E., Strongyloides fuelleborni kellyi: infection 
and disease in Papua New Guinea. Parasitol Today, 1992. 8(9): p. 314-8. 

30. Shield, J.M. and Kow, F., A comparative study of intestinal helminths in pre-school-
age urban and rural children in Morobe Province, Papua New Guinea. P N G Med J, 
2013. 56(1-2): p. 14-31. 

31. Dorris, M., Viney, M.E., and Blaxter, M.L., Molecular phylogenetic analysis of the 
genus Strongyloides and related nematodes. Int J Parasitol, 2002. 32(12): p. 1507-17. 

32. Centre for Tropical Diseases. Agar plate copro-culture method.   [cited 2018 26/8/18]; 
Available from: 
http://www.tropicalmed.eu/Page/WebObjects/PageTropE.woa/wa/displayPage?nam
e=ReadingCultureAgarMicro. 

33. Hunt, V.L., et al., The genomic basis of parasitism in the Strongyloides clade of 
nematodes. Nat Genet, 2016. 

34. Hunt, V.L., et al., The genome of Strongyloides spp. gives insights into protein families 
with a putative role in nematode parasitism. Parasitology, 2016: p. 1-16. 

35. Lok, J.B., Strongyloides stercoralis: a model for translational research on parasitic 
nematode biology, in WormBook, T.C.e.R. Community, Editor. 2007. 

36. Schad, G.A., Hellman, M.E., and Muncey, D.W., Strongyloides stercoralis: 
hyperinfection in immunosuppressed dogs. Exp Parasitol, 1984. 57(3): p. 287-296. 

37. Streit, A., Genetics: modes of reproduction and genetic analysis. Parasitology, 2016: 
p. 1-11. 

38. Yamada, M., et al., Species-specific differences in heterogonic development of serially 
transferred free-living generations of Strongyloides planiceps and Strongyloides 
stercoralis. J Parasitol, 1991. 77(4): p. 592-4. 

http://www.tropicalmed.eu/Page/WebObjects/PageTropE.woa/wa/displayPage?name=ReadingCultureAgarMicro
http://www.tropicalmed.eu/Page/WebObjects/PageTropE.woa/wa/displayPage?name=ReadingCultureAgarMicro


8: References 

204 

 

39. Sudarshi, S., et al., Clinical presentation and diagnostic sensitivity of laboratory tests 
for Strongyloides stercoralis in travellers compared with immigrants in a non-endemic 
country. Trop Med Int Health, 2003. 8(8): p. 728-732. 

40. Nabeya, D., et al., Pulmonary strongyloidiasis: assessment between manifestation 
and radiological findings in 16 severe strongyloidiasis cases. BMC Infect Dis, 2017. 
17(1): p. 320. 

41. Zaghlool, D.A., et al., A case of fatal gastrointestinal haemorrhage due to 
hyperinfection with Strongyloides stercoralis. J Parasit Dis, 2016. 40(4): p. 1347-1350. 

42. Buonfrate, D., et al., Severe strongyloidiasis: a systematic review of case reports. BMC 
Infect Dis, 2013. 13: p. 78. 

43. Bisoffi, Z., et al., Strongyloides stercoralis: a plea for action. PLoS Negl Trop Dis, 2013. 
7(5): p. e2214. 

44. Albonico, M., et al., StrongNet: an international network to improve diagnostics and 
access to treatment for strongyloidiasis control. PLoS Negl Trop Dis, 2016. 10(9): p. 
e0004898. 

45. Maassen, W., et al., Microbiological screenings for infection control in 
unaccompanied minor refugees: the German Armed Forces Medical Service's 
experience. Mil Med Res, 2017. 4: p. 13. 

46. Ostera, G., et al., Strongyloidiasis in Latin American immigrants: a pilot study. J 
Helminthol, 2016. FirstView: p. 1-5. 

47. Begona, M.-M., et al., Communitarian screening campaign for Strongyloides 
stercoralis among Latin American immigrants in Spain. Clin Microbiol Infect, 2018. 

48. Cabezas-Fernandez, M.T., et al., Strongyloidiasis in immigrants in southern Spain. 
Enferm Infecc Microbiol Clin, 2015. 33(1): p. 37-9. 

49. ten Hove, R.J., et al., Molecular diagnostics of intestinal parasites in returning 
travellers. Eur J Clin Microbiol Infect Dis, 2009. 28(9): p. 1045-53. 

50. Barrett, J., et al., The changing aetiology of eosinophilia in migrants and returning 
travellers in the Hospital for Tropical Diseases, London 2002-2015: an observational 
study. J Infect, 2017. 

51. Magnaval, J.F., et al., A retrospective study of autochthonous strongyloidiasis in 
Region Midi-Pyrenees (Southwestern France). Eur J Epidemiol, 2000. 16(2): p. 179-82. 

52. Russell, E.S., et al., Prevalence of Strongyloides stercoralis antibodies among a rural 
Appalachian population-Kentucky, 2013. Am J Trop Med Hyg, 2014. 91(5): p. 1000-1. 

53. Beknazarova, M., Whiley, H., and Ross, K., Strongyloidiasis: a disease of 
socioeconomic disadvantage. Int J Environ Res Public Health, 2016. 13(5). 

54. Khieu, V., et al., Strongyloides stercoralis infection and re-infection in a cohort of 
children in Cambodia. Parasitol Int, 2014. 63(5): p. 708-12. 

55. Khieu, V., et al., High prevalence and spatial distribution of Strongyloides stercoralis in 
rural Cambodia. PLoS Negl Trop Dis, 2014. 8(6): p. e2854. 

56. Forrer, A., et al., Ivermectin treatment and sanitation effectively reduce Strongyloides 
stercoralis infection risk in rural communities in Cambodia. PLoS Negl Trop Dis, 2016. 
10(8): p. e0004909. 

57. Vargas, P., et al., Serologic monitoring of public health interventions against 
Strongyloides stercoralis. Am J Trop Med Hyg, 2017. 97(1): p. 166-172. 

58. Mobley, C.M., Dhala, A., and Ghobrial, R.M., Strongyloides stercoralis in solid organ 
transplantation: early diagnosis gets the worm. Curr Opin Organ Transplant, 2017. 
22(4): p. 336-344. 

59. Galiano, A., et al., Donor-derived Strongyloides stercoralis hyperinfection syndrome 
after simultaneous kidney/pancreas transplant. Int J Infect Dis, 2016. 

60. Carvalho, E.M. and Da Fonseca Porto, A., Epidemiological and clinical interaction 
between HTLV-1 and Strongyloides stercoralis. Parasite Immunol, 2004. 26(11-12): p. 
487-97. 



8: References 

205 

 

61. Teixeira, M.C., et al., Strongyloides stercoralis infection in alcoholic patients. Biomed 
Res Int, 2016. 2016: p. 4872473. 

62. Abu Omar, M., et al., Strongyloides hyperinfection syndrome and VRE pneumonia. 
BMJ Case Rep, 2017. 2017. 

63. Myint, A., et al., Strongyloides hyperinfection syndrome in an immunocompetent 
host resulting in bandemia and death. BMJ Case Rep, 2017. 2017. 

64. Lam, C.S., et al., Disseminated strongyloidiasis: a retrospective study of clinical course 
and outcome. Eur J Clin Microbiol Infect Dis, 2006. 25(1): p. 14-8. 

65. Nutman, T.B., et al., Eosinophilia in Southeast Asian refugees: evaluation at a referral 
center. J Infect Dis, 1987. 155(2): p. 309-13. 

66. Osiro, S., et al., A case of Strongyloides hyperinfection syndrome in the setting of 
persistent eosinophilia but negative serology. Diagn Microbiol Infect Dis, 2017. 88(2): 
p. 168-170. 

67. Salvador, F., et al., Usefulness of Strongyloides stercoralis serology in the 
management of patients with eosinophilia. Am J Trop Med Hyg, 2014. 90(5): p. 830-4. 

68. Repetto, S.A., et al., High rate of strongyloidosis infection, out of endemic area, in 
patients with eosinophilia and without risk of exogenous reinfections. Am J Trop Med 
Hyg, 2010. 82(6): p. 1088-93. 

69. Rajamanickam, A., et al., Elevated systemic levels of eosinophil, neutrophil, and mast 
cell granular proteins in Strongyloides stercoralis infection that diminish following 
treatment. Front Immunol, 2018. 9: p. 207. 

70. Repetto, S.A., et al., Strongyloidiasis outside endemic areas: long-term parasitological 
and clinical follow-up after ivermectin treatment. Clin Infect Dis, 2018: p. cix1069-
cix1069. 

71. Ravi Acharya, K. and Ackerman, S., Eosinophil granule proteins: form and function. 
Vol. 289. 2014. 

72. MacMicking, J., Xie, Q.W., and Nathan, C., Nitric oxide and macrophage function. 
Annu Rev Immunol, 1997. 15: p. 323-50. 

73. Montes, M., Sawhney, C., and Barros, N., Strongyloides stercoralis: there but not 
seen. Curr Opin Infect Dis, 2010. 23(5): p. 500-4. 

74. Vidarsson, G., Dekkers, G., and Rispens, T., IgG subclasses and allotypes: from 
structure to effector functions. Front Immunol, 2014. 5: p. 520. 

75. Quintana, J., Babayan, S., and Buck, A., Small RNAs and extracellular vesicles in filarial 
nematodes: from nematode development to diagnostics. Vol. 39. 2016. 

76. Eberle, R., et al., Isolation, identification and functional profile of excretory-secretory 
peptides from Onchocerca ochengi. Acta Trop, 2015. 142: p. 156-66. 

77. Rebello, K.M., et al., Comprehensive proteomic profiling of adult Angiostrongylus 
costaricensis, a human parasitic nematode. J Proteomics, 2011. 74(9): p. 1545-59. 

78. Sotillo, J., et al., Secreted proteomes of different developmental stages of the 
gastrointestinal Nematode Nippostrongylus brasiliensis. Mol Cell Proteomics, 2014. 
13(10): p. 2736-2751. 

79. Varatharajalu, R., et al., Strongyloides stercoralis excretory/secretory protein 
strongylastacin specifically recognized by IgE antibodies in infected human sera. 
Microbiol Immunol, 2011. 55: p. 115-122. 

80. World Health Organization. The top 10 causes of death.  2018  [cited; Available from: 
http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death. 

81. Kwan, J.L., et al., Seroepidemiology of helminths and the association with severe 
malaria among infants and young children in Tanzania. PLoS Negl Trop Dis, 2018. 
12(3): p. e0006345. 

82. Nacher, M., et al., Intestinal helminth infections are associated with increased 
incidence of Plasmodium falciparum malaria in Thailand. J Parasitol, 2002. 88(1): p. 
55-8. 

http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death


8: References 

206 

 

83. Stefani, A., et al., Interactions between gastrointestinal nematodes and malaria in a 
cohort of children in an amazonian village. J Trop Pediatr, 2017. 63(2): p. 144-147. 

84. Li, X.-X. and Zhou, X.-N., Co-infection of tuberculosis and parasitic diseases in 
humans: a systematic review. Parasit Vectors, 2013. 6: p. 79-79. 

85. Elias, D., Akuffo, H., and Britton, S., Helminthes could influence the outcome of 
vaccines against TB in the tropics. Parasite Immunol, 2006. 28(10): p. 507-13. 

86. Salvador, F., et al., Impact of helminth infection on the clinical and microbiological 
presentation of Chagas diseases in chronically infected patients. PLoS Negl Trop Dis, 
2016. 10(4): p. e0004663. 

87. Azeredo-Coutinho, R.B., et al., Intestinal helminth coinfection is associated with 
mucosal lesions and poor response to therapy in American tegumentary 
leishmaniasis. Acta Trop, 2016. 154: p. 42-9. 

88. Blackwell, A.D., et al., Helminth infection, fecundity, and age of first pregnancy in 
women. Science, 2015. 350(6263): p. 970-2. 

89. Siegel, M.O. and Simon, G.L., Is human immunodeficiency virus infection a risk factor 
for Strongyloides stercoralis hyperinfection and dissemination. PLoS Negl Trop Dis, 
2012. 6(7): p. e1581. 

90. Georas, S.N., Inhaled glucocorticoids, lymphocytes, and dendritic cells in asthma and 
obstructive lung diseases. Proc Am Thorac Soc, 2004. 1(3): p. 215-21. 

91. Smith, S.M. and Vale, W.W., The role of the hypothalamic-pituitary-adrenal axis in 
neuroendocrine responses to stress. Dialogues Clin Neurosci, 2006. 8(4): p. 383-395. 

92. Luvira, V., Watthanakulpanich, D., and Pittisuttithum, P., Management of 
Strongyloides stercoralis: a puzzling parasite. Int Health, 2014. 6(4): p. 273-81. 

93. Wolstenholme, A.J. and Rogers, A.T., Glutamate-gated chloride channels and the 
mode of action of the avermectin/milbemycin anthelmintics. Parasitology, 2005. 131 
Suppl: p. S85-95. 

94. Merck. The MECTIZAN donation program.   [cited 2018 14/8/18]; Available from: 
http://www.merck.com/about/featured-stories/mectizan.html. 

95. Barda, B., et al., Side benefits of mass drug administration for lymphatic filariasis on 
Strongyloides stercoralis prevalence on Pemba Island, Tanzania. Am J Trop Med Hyg, 
2017. 

96. Anselmi, M., et al., Mass administration of ivermectin for the elimination of 
onchocerciasis significantly reduced and maintained low the prevalence of 
Strongyloides stercoralis in Esmeraldas, Ecuador. PLoS Negl Trop Dis, 2015. 9(11): p. 
e0004150. 

97. Ménez, C., et al., Relative neurotoxicity of ivermectin and moxidectin in Mdr1ab (-/-) 
mice and effects on mammalian GABA(A) channel activity. PLoS Negl Trop Dis, 2012. 
6(11): p. e1883. 

98. Wolstenholme, A., Glutamate-gated chloride channels. Vol. 287. 2012. 
99. Ashraf, M., Gue, C.L., and Baddour, L.M., Strongyloidiasis refractory to treatment with 

ivermectin. Am J Med Sci, 1996. 311(4): p. 178-179. 
100. Verissimo, C.J., et al., Multidrug and multispecies resistance in sheep flocks from São 

Paulo state, Brazil. Vet Parasitol, 2012. 187(1-2): p. 209-16. 
101. Maroto, R., et al., First report of anthelmintic resistance in gastrointestinal 

nematodes of sheep from Costa Rica. Vet Med Int, 2011. 2011: p. 145312. 
102. Palmeirim, M.S., et al., Efficacy and safety of co-administered ivermectin plus 

albendazole for treating soil-transmitted helminths: a systematic review, meta-
analysis and individual patient data analysis. PLoS Negl Trop Dis, 2018. 12(4): p. 
e0006458. 

103. Clarke, N.E., et al., Efficacy of anthelminthic drugs and drug combinations against soil-
transmitted helminths: a systematic review and network meta-analysis. Clin Infect 
Dis, 2018. 

http://www.merck.com/about/featured-stories/mectizan.html


8: References 

207 

 

104. Henriquez-Camacho, C., et al., Ivermectin versus albendazole or thiabendazole for 
Strongyloides stercoralis infection. Cochrane Database Syst Rev, 2016(1): p. 
Cd007745. 

105. Ramanathan, R. and Nutman, T., Strongyloides stercoralis infection in the 
immunocompromised host. Curr Infect Dis Rep, 2008. 10(2): p. 105-10. 

106. Barda, B., et al., Efficacy of moxidectin versus ivermectin against Strongyloides 
stercoralis infections: a randomized controlled non-inferiority trial. Clin Infect Dis, 
2017. 

107. Weeks, J.C., et al., Sertraline, Paroxetine, and Chlorpromazine are rapidly acting 
anthelmintic drugs capable of clinical repurposing. Sci Rep, 2018. 8(1): p. 975. 

108. Ketzis, J.K., Limitations to the adoption of a standardized Strongyloides stercoralis 
diagnostic method: case study in the Caribbean. Acta Trop, 2017. 

109. Luvira, V., et al., Comparative diagnosis of strongyloidiasis in immunocompromised 
patients. Am J Trop Med Hyg, 2016. 95(2): p. 401-4. 

110. Koga, K., et al., A modified agar plate method for detection of Strongyloides 
stercoralis. Am J Trop Med Hyg, 1991. 45(4): p. 518-21. 

111. Strkolcova, G., et al., The roundworm Strongyloides stercoralis in children, dogs, and 
soil inside and outside a segregated settlement in Eastern Slovakia: frequent but 
hardly detectable parasite. Parasitol Res, 2017. 116(3): p. 891-900. 

112. Baermann's larval technique, in Encyclopedia of Parasitology, H. Mehlhorn, Editor. 
2008, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 156-156. 

113. Hirata, T., et al., Increased detection rate of Strongyloides stercoralis by repeated 
stool examinations using the agar plate culture method. Am J Trop Med Hyg, 2007. 
77(4): p. 683-4. 

114. Buonfrate, D., et al., A retrospective study comparing agar plate culture, indirect 
immunofluorescence and real-time PCR for the diagnosis of Strongyloides stercoralis 
infection. Parasitology, 2017: p. 1-5. 

115. Schar, F., et al., Strongyloides stercoralis larvae excretion patterns before and after 
treatment. Parasitology, 2014. 141(7): p. 892-7. 

116. Verweij, J.J., et al., Molecular diagnosis of Strongyloides stercoralis in faecal samples 
using real-time PCR. Trans R Soc Trop Med Hyg, 2009. 103(4): p. 342-6. 

117. Buonfrate, D., et al., Accuracy of molecular biology techniques for the diagnosis of 
Strongyloides stercoralis infection-A systematic review and meta-analysis. PLoS Negl 
Trop Dis, 2018. 12(2): p. e0006229. 

118. Barda, B., et al., Evaluation of two DNA extraction methods on the detection of 
Strongyloides stercoralis infection. J Clin Microbiol, 2018. 

119. Schar, F., et al., Evaluation of real-time PCR for Strongyloides stercoralis and 
hookworm as diagnostic tool in asymptomatic schoolchildren in Cambodia. Acta Trop, 
2013. 126(2): p. 89-92. 

120. Krolewiecki, A.J., et al., Transrenal DNA-based diagnosis of Strongyloides stercoralis 
(Grassi, 1879) infection: Bayesian latent class modeling of test accuracy. PLoS Negl 
Trop Dis, 2018. 12(6): p. e0006550. 

121. Goncalves, A.L., et al., Specific IgG and IgA to larvae, parthenogenetic females, and 
eggs of Strongyloides venezuelensis in the immunodiagnosis of human 
strongyloidiasis. Diagn Microbiol Infect Dis, 2012. 72(1): p. 79-84. 

122. Rodrigues, R.M., et al., IgG1, IgG4, and IgE antibody responses in human 
strongyloidiasis by ELISA using Strongyloides ratti saline extract as heterologous 
antigen. Parasitol Res, 2007. 101(5): p. 1209-14. 

123. Eamudomkarn, C., et al., Comparative evaluation of Strongyloides ratti and S. 
stercoralis larval antigen for diagnosis of strongyloidiasis in an endemic area of 
opisthorchiasis. Parasitol Res, 2015. 

124. Bisoffi, Z., et al., Diagnostic accuracy of five serologic tests for Strongyloides 
stercoralis infection. PLoS Negl Trop Dis, 2014. 8(1): p. e2640. 



8: References 

208 

 

125. Rascoe, L.N., et al., Development of Ss-NIE-1 recombinant antigen based assays for 
immunodiagnosis of strongyloidiasis. PLoS Negl Trop Dis, 2015. 9(4): p. e0003694. 

126. Eamudomkarn, C., et al., Diagnostic performance of urinary IgG antibody detection: a 
novel approach for population screening of strongyloidiasis. PLoS One, 2018. 13(7): p. 
e0192598. 

127. Ruantip, S., et al., Accuracy of Urine and Serum Assays for the Diagnosis of 
Strongyloidiasis by Three Enzyme-Linked Immunosorbent Assay Protocols. Am J Trop 
Med Hyg, 2019. 100(1): p. 127-129. 

128. Soriano-Arandes, A., et al., Discordances between serology and culture for 
Strongyloides in an Ethiopian adopted child with multiple parasitic infections: a case 
report. Medicine (Baltimore), 2016. 95(10): p. e3040. 

129. Ravi, V., et al., Characterization of a recombinant immunodiagnostic antigen (NIE) 
from Strongyloides stercoralis L3-stage larvae. Mol Biochem Parasitol, 2002. 125(1-2): 
p. 73-81. 

130. Ravi, V., et al., Strongyloides stercoralis recombinant NIE antigen shares epitope with 
recombinant Ves v 5 and Pol a 5 allergens of insects. Am J Trop Med Hyg, 2005. 72(5): 
p. 549-53. 

131. Ramanathan, R., et al., A luciferase immunoprecipitation systems assay enhances the 
sensitivity and specificity of diagnosis of Strongyloides stercoralis infection. J Infect 
Dis, 2008. 198(3): p. 444-51. 

132. Bosqui, L.R., et al., Detection of parasite-specific IgG and IgA in paired serum and 
saliva samples for diagnosis of human strongyloidiasis in northern Parana state, 
Brazil. Acta Trop, 2015. 150: p. 190-5. 

133. Arifin, N., et al., Identification and preliminary evaluation of a novel recombinant 
protein for serodiagnosis of strongyloidiasis. Am J Trop Med Hyg, 2018. 

134. Krolewiecki, A.J., et al., Improved diagnosis of Strongyloides stercoralis using 
recombinant antigen-based serologies in a community-wide study in northern 
Argentina. Clin Vaccine Immunol, 2010. 17(10): p. 1624-30. 

135. Buonfrate, D., et al., Accuracy of five serologic tests for the follow up of Strongyloides 
stercoralis infection. PLoS Negl Trop Dis, 2015. 9(2): p. e0003491. 

136. Mounsey, K., et al., Use of dried blood spots to define antibody response to the 
Strongyloides stercoralis recombinant antigen NIE. Acta Trop, 2014. 138: p. 78-82. 

137. Nabha, L., et al., Prevalence of Strongyloides stercoralis in an urban US AIDS cohort. 
Pathog Glob Health, 2012. 106(4): p. 238-44. 

138. Nageswaran, C., Craig, P.S., and Devaney, E., Coproantigen detection in rats 
experimentally infected with Strongyloides ratti. Parasitology, 1994. 108 ( Pt 3): p. 
335-42. 

139. Goncalves, A.L., et al., A new faecal antigen detection system for Strongyloides 
venezuelensis diagnosis in immunosuppressed rats. Exp Parasitol, 2010. 125(4): p. 
338-41. 

140. Sykes, A.M. and McCarthy, J.S., A coproantigen diagnostic test for Strongyloides 
infection. PLoS Negl Trop Dis, 2011. 5(2): p. e955. 

141. Goncalves, A.A.S., et al., Detection of immune complexes and evaluation of alcoholic 
individuals' serological profile in the diagnosis of strongyloidiasis. Parasitol Int, 2018. 

142. Bosqui, L.R., et al., Immune complex detection in saliva samples: an innovative 
proposal for the diagnosis of human strongyloidiasis. Parasitology, 2017: p. 1-5. 

143. Reitsma, J.B., et al., A review of solutions for diagnostic accuracy studies with an 
imperfect or missing reference standard. J Clin Epidemiol, 2009. 62(8): p. 797-806. 

144. Knopp, S., et al., Diagnostic accuracy of Kato–Katz, FLOTAC, Baermann, and PCR 
methods for the detection of light-intensity hookworm and Strongyloides stercoralis 
infections in Tanzania. Am J Trop Med Hyg, 2014. 90(3): p. 535-545. 



8: References 

209 

 

145. Becker, S.L., et al., Real-time PCR for detection of Strongyloides stercoralis in human 
stool samples from Cote d'Ivoire: diagnostic accuracy, inter-laboratory comparison 
and patterns of hookworm co-infection. Acta Trop, 2015. 150: p. 210-217. 

146. Kristanti, H., et al., Diagnostic comparison of Baermann funnel, Koga agar plate 
culture and polymerase chain reaction for detection of human Strongyloides 
stercoralis infection in Maluku, Indonesia. Parasitol Res, 2018. 

147. Fradejas, I., et al., Comparative study of two commercial tests for Strongyloides 
stercoralis serologic diagnosis. Trans R Soc Trop Med Hyg, 2018. 

148. Levenhagen, M.A. and Costa-Cruz, J.M., Update on immunologic and molecular 
diagnosis of human strongyloidiasis. Acta Trop, 2014. 135c: p. 33-43. 

149. Real, F., et al., The genome sequence of Leishmania (Leishmania) amazonensis: 
functional annotation and extended analysis of gene models. DNA Res, 2013. 20(6): p. 
567-81. 

150. Leishman, W.B., On the possibility of the occurrence of trypanosomiasis in India. 
Indian J Med Res, 1903. 123(3): p. 1252-4; discussion 79. 

151. Donovan, C., On the possibility of the occurence of trypanosomiasis in India. 1903. 
152. Neave, S., “Leishmania donovani” in the Soudan. BMJ, 1904. 1(2265): p. 1252-1252. 
153. Lukeš, J., et al., Evolutionary and geographical history of the Leishmania donovani 

complex with a revision of current taxonomy. Proc Natl Acad Sci U S A, 2007. 104(22): 
p. 9375. 

154. Mauricio, I.L., Stothard, J.R., and Miles, M.A., The strange case of Leishmania chagasi. 
Parasitol Today, 2000. 16(5): p. 188-9. 

155. Harhay, M.O., et al., Urban parasitology: visceral leishmaniasis in Brazil. Trends 
Parasitol, 2011. 27(9): p. 403-409. 

156. Arango Duque, G. and Descoteaux, A., Leishmania survival in the macrophage: where 
the ends justify the means. Curr Opin Microbiol, 2015. 26: p. 32-40. 

157. Besteiro, S., et al., Protein turnover and differentiation in Leishmania. Int J Parasitol, 
2007. 37(10): p. 1063-1075. 

158. Bern, C., et al., The epidemiology of visceral leishmaniasis and asymptomatic 
leishmanial infection in a highly endemic Bangladeshi village. Am J Trop Med Hyg, 
2007. 76(5): p. 909-14. 

159. Hasker, E., et al., Latent infection with Leishmania donovani in highly endemic villages 
in Bihar, India. PLoS Negl Trop Dis, 2013. 7(2): p. e2053. 

160. Hirve, S., et al., Transmission dynamics of visceral leishmaniasis in the Indian 
subcontinent - a systematic literature review. PLoS Negl Trop Dis, 2016. 10(8): p. 
e0004896. 

161. Costa, C.H., et al., Asymptomatic human carriers of Leishmania chagasi. Am J Trop 
Med Hyg, 2002. 66(4): p. 334-7. 

162. le Fichoux, Y., et al., Occurrence of Leishmania infantum parasitemia in asymptomatic 
blood donors living in an area of endemicity in southern France. J Clin Microbiol, 
1999. 37(6): p. 1953-7. 

163. Srivastava, P., et al., Molecular and serological markers of Leishmania donovani 
infection in healthy individuals from endemic areas of Bihar, India. Trop Med Int 
Health, 2013. 18(5): p. 548-54. 

164. Bhattarai, N.R., et al., PCR and direct agglutination as Leishmania infection markers 
among healthy Nepalese subjects living in areas endemic for kala-azar. Trop Med Int 
Health, 2009. 14(4): p. 404-11. 

165. Kirstein, O.D., et al., Minimally invasive microbiopsies: a novel sampling method for 
identifying asymptomatic, potentially infectious carriers of Leishmania donovani. Int J 
Parasitol, 2017. 

166. Sarker, C.B., et al., Clinical profile of kala-azar in adults: as seen in Mymensingh 
Medical College Hospital, Mymensingh, Bangladesh. Mymensingh Med J, 2003. 12(1): 
p. 41-4. 



8: References 

210 

 

167. Dunning, N., Leishmania vaccines: from leishmanization to the era of DNA 
technology. Biosci Horizons, 2009. 2(1): p. 73-82. 

168. Oliveira, M.J., et al., Risk factors for acute kidney injury in visceral leishmaniasis (kala-
azar). Am J Trop Med Hyg, 2010. 82(3): p. 449-53. 

169. Hasker, E., et al., Strong association between serological status and probability of 
progression to clinical visceral leishmaniasis in prospective cohort studies in India and 
Nepal. PLoS Negl Trop Dis, 2014. 8(1): p. e2657. 

170. Cota, G.F., et al., Exploring prognosis in chronic relapsing visceral leishmaniasis 
among HIV-infected patients: circulating Leishmania DNA. Acta Trop, 2017. 172: p. 
186-191. 

171. Alvar, J., et al., The relationship between leishmaniasis and AIDS: the second 10 years. 
Clin Microbiol Rev, 2008. 21(2): p. 334-59, table of contents. 

172. Maciel, B.L., et al., Association of nutritional status with the response to infection 
with Leishmania chagasi. Am J Trop Med Hyg, 2008. 79(4): p. 591-8. 

173. Rink, L. and Gabriel, P., Zinc and the immune system. Proc Nutr Soc, 2000. 59(4): p. 
541-52. 

174. Najim, R.A., Sharquie, K.E., and Farjou, I.B., Zinc sulphate in the treatment of 
cutaneous leishmaniasis: an in vitro and animal study. Mem Inst Oswaldo Cruz, 1998. 
93(6): p. 831-7. 

175. Maciel, B.L., et al., Dual immune modulatory effect of vitamin A in human visceral 
leishmaniasis. PLoS One, 2014. 9(9): p. e107564. 

176. Custodio, E., et al., Nutritional supplements for patients being treated for active 
visceral leishmaniasis. Cochrane Database Syst Rev, 2018. 3: p. Cd012261. 

177. Mukhopadhyay, D., et al., Post kala-azar dermal leishmaniasis: an unresolved 
mystery. Trends Parasitol, 2014. 30(2): p. 65-74. 

178. World Health Organization, Leishmaniasis in high-burden countries: an 
epidemiological update based on data reported in 2014. Wkly Epidemiol Rec, 2016. 
91(22): p. 287-96. 

179. Alvar, J., et al., Leishmaniasis worldwide and global estimates of its incidence. PLoS 
One, 2012. 7(5): p. e35671. 

180. World Health Organization. Status of endemicity of visceral leishmaniasis worldwide, 
2016. Global Health Observatory Map Gallery  2018  [cited 2018 25/11/18]; Available 
from: http://gamapserver.who.int/mapLibrary/Files/Maps/Leish_VL_2016.png. 

181. Bern, C., Courtenay, O., and Alvar, J., Of cattle, sand flies and men: a systematic 
review of risk factor analyses for South Asian visceral leishmaniasis and implications 
for elimination. PLoS Negl Trop Dis, 2010. 4(2): p. e599. 

182. Desjeux, P., et al., Report of the Post Kala-azar Dermal Leishmaniasis (PKDL) 
Consortium Meeting, New Delhi, India, 27-29 June 2012. Parasit Vectors, 2013. 6: p. 
196. 

183. Dye, C. and Wolpert, D.M., Earthquakes, influenza and cycles of Indian kala-azar. 
Trans R Soc Trop Med Hyg, 1988. 82(6): p. 843-50. 

184. Islam, S., et al., Clinical and immunological aspects of post-kala-azar dermal 
leishmaniasis in Bangladesh. Am J Trop Med Hyg, 2013. 89(2): p. 345-53. 

185. Bern, C., et al., Loss of leishmanin skin test antigen sensitivity and potency in a 
longitudinal study of visceral leishmaniasis in Bangladesh. Am J Trop Med Hyg, 2006. 
75(4): p. 744-8. 

186. Cameron, M.M., et al., Understanding the transmission dynamics of Leishmania 
donovani to provide robust evidence for interventions to eliminate visceral 
leishmaniasis in Bihar, India. Parasit Vectors, 2016. 9: p. 25. 

187. World Health Organization. Community-driven programme is key to defeating 
visceral leishmaniasis in Bangladesh.  2017  [cited 2018 22/09/18]; Available from: 
http://www.who.int/leishmaniasis/news/Defeating_visceral_leishmaniasis_in_Bangla
desh/en/. 

http://gamapserver.who.int/mapLibrary/Files/Maps/Leish_VL_2016.png
http://www.who.int/leishmaniasis/news/Defeating_visceral_leishmaniasis_in_Bangladesh/en/
http://www.who.int/leishmaniasis/news/Defeating_visceral_leishmaniasis_in_Bangladesh/en/


8: References 

211 

 

188. World Health Organization. Number of cases of visceral leishmaniasis reported, by 
country. Global Health Observatory Data Repository  2017  [cited 2018 15/9/18]; 
Available from: http://apps.who.int/gho/data/node.main.NTDLEISHVNUM?lang=en. 

189. Mueller, Y.K., et al., Clinical epidemiology, diagnosis and treatment of visceral 
leishmaniasis in the Pokot endemic area of Uganda and Kenya. Am J Trop Med Hyg, 
2014. 90(1): p. 33-39. 

190. Bourgeois, N., et al., ‘Active chronic visceral leishmaniasis’ in HIV-1-infected patients 
demonstrated by biological and clinical long-term follow-up of 10 patients. HIV Med, 
2010. 11(10): p. 670-673. 

191. Burza, S., et al., One-year follow-up of immunocompetent male patients treated with 
miltefosine for primary visceral leishmaniasis in Bihar, India. Clin Infect Dis, 2013. 
57(9): p. 1363-4. 

192. Gorski, S., et al., Visceral leishmaniasis relapse in Southern Sudan (1999-2007): a 
retrospective study of risk factors and trends. PLoS Negl Trop Dis, 2010. 4(6): p. e705. 

193. Lachaud, L., et al., Parasite susceptibility to amphotericin B in failures of treatment 
for visceral leishmaniasis in patients coinfected with HIV Type 1 and Leishmania 
infantum. Clin Infect Dis, 2009. 48(2): p. e16-e22. 

194. Das, V.N., et al., Clinical epidemiologic profile of a cohort of post-kala-azar dermal 
leishmaniasis patients in Bihar, India. Am J Trop Med Hyg, 2012. 86(6): p. 959-61. 

195. Molina, R., et al., Infectivity of post-kala-azar dermal leishmaniasis patients to sand 
flies: revisiting a proof of concept in the context of the kala-azar elimination program 
in the Indian subcontinent. Clin Infect Dis, 2017. 65(1): p. 150-153. 

196. Mondal, D., et al., Quantifying the infectiousness of post-kala-azar dermal 
leishmaniasis towards sandflies. Clin Infect Dis, 2018. 

197. Musa, A.M., et al., The natural history of Sudanese post-kala-azar dermal 
leishmaniasis: clinical, immunological and prognostic features. Ann Trop Med 
Parasitol, 2002. 96(8): p. 765-72. 

198. Das, V.N.R., et al., Longitudinal study of transmission in households with visceral 
leishmaniasis, asymptomatic infections and PKDL in highly endemic villages in Bihar, 
India. PLoS Negl Trop Dis, 2016. 10(12): p. e0005196. 

199. Zijlstra, E.E., et al., Post-kala-azar dermal leishmaniasis. Lancet Infect Dis, 2003. 3(2): 
p. 87-98. 

200. Zijlstra, E.E., The immunology of post-kala-azar dermal leishmaniasis (PKDL). Parasit 
Vectors, 2016. 9: p. 464. 

201. Ostyn, B., et al., Incidence of symptomatic and asymptomatic Leishmania donovani 
infections in high-endemic foci in India and Nepal: a prospective study. PLoS Negl 
Trop Dis, 2011. 5(10): p. e1284. 

202. Gidwani, K., et al., Longitudinal seroepidemiologic study of visceral leishmaniasis in 
hyperendemic regions of Bihar, India. Am J Trop Med Hyg, 2009. 80(3): p. 345-346. 

203. Picado, A., et al., Risk factors for visceral leishmaniasis and asymptomatic Leishmania 
donovani infection in India and Nepal. PLoS One, 2014. 9(1): p. e87641. 

204. Ready, P.D., Epidemiology of visceral leishmaniasis. Clin Epidemiol, 2014. 6: p. 147-
154. 

205. Baleela, R., et al., Leishmania donovani populations in Eastern Sudan: temporal 
structuring and a link between human and canine transmission. Parasit Vectors, 
2014. 7: p. 496. 

206. Ribeiro, R.R., et al., Canine Leishmaniasis: An Overview of the Current Status and 
Strategies for Control. Biomed Res Int, 2018. 2018: p. 3296893. 

207. Grimaldi, G., Jr., et al., Field trial of efficacy of the Leish-tec(R) vaccine against canine 
leishmaniasis caused by Leishmania infantum in an endemic area with high 
transmission rates. PLoS One, 2017. 12(9): p. e0185438. 

http://apps.who.int/gho/data/node.main.NTDLEISHVNUM?lang=en


8: References 

212 

 

208. Bezerra, J.M.T., et al., Burden of leishmaniasis in Brazil and federated units, 1990-
2016: Findings from Global Burden of Disease Study 2016. PLoS Negl Trop Dis, 2018. 
12(9): p. e0006697. 

209. Lima, I.D., et al., Changing demographics of visceral leishmaniasis in northeast Brazil: 
Lessons for the future. PLoS Negl Trop Dis, 2018. 12(3): p. e0006164. 

210. Pan American Health Organization, Plan of action to strengthen the surveillance and 
control of leishmaniasis in the Americas 2017-2022. 2017. 

211. Romero, G.A.S. and Boelaert, M., Control of Visceral Leishmaniasis in Latin America—
A Systematic Review. PLoS Negl Trop Dis, 2010. 4(1): p. e584. 

212. Amela, C., et al., Injecting drug use as risk factor for visceral leishmaniasis in AIDS 
patients. Eur J Epidemiol, 1996. 12(1): p. 91-2. 

213. Monge-Maillo, B., et al., Visceral leishmaniasis and HIV coinfection in the 
Mediterranean region. PLoS Negl Trop Dis, 2014. 8(8): p. e3021. 

214. Carrillo, E., Moreno, J., and Cruz, I., What is responsible for a large and unusual 
outbreak of leishmaniasis in Madrid? Trends Parasitol, 2013. 29(12): p. 579-80. 

215. Seva, A.D.P., et al., Efficacies of prevention and control measures applied during an 
outbreak in Southwest Madrid, Spain. PLoS One, 2017. 12(10): p. e0186372. 

216. Al-Salem, W., Herricks, J.R., and Hotez, P.J., A review of visceral leishmaniasis during 
the conflict in South Sudan and the consequences for East African countries. Parasit 
Vectors, 2016. 9: p. 460. 

217. Wasunna, M., et al., The Leishmaniasis East Africa Platform (LEAP): strengthening 
clinical trial capacity in resource-limited countries to deliver new treatments for 
visceral leishmaniasis. Trans R Soc Trop Med Hyg, 2016. 110(6): p. 321-3. 

218. World Health Organization, Visceral leishmaniasis control strategies and 
epidemiological situation update in East Africa. Report of a bi-regional consultation, 
Addis Ababa, Ethiopia 9-11 March 2015. 2015. 

219. Sundar, S. and Chakravarty, J., Antimony toxicity. Int J Environ Res Public Health, 
2010. 7(12): p. 4267-4277. 

220. South Sudan Ministry of Health, Guidelines for diagnosis, treatment and prevention 
of visceral leishmaniasis in South Sudan. 

221. Sundar, S. and Singh, A., Recent developments and future prospects in the treatment 
of visceral leishmaniasis. Ther Adv Infect Dis, 2016. 3(3-4): p. 98-109. 

222. Trejo, W.H. and Bennett, R.E., Steptomyces nodosus sp. n., the amphotericin-
producing organism. J Bacteriol, 1963. 85(2): p. 436-439. 

223. Saha, A.K., Mukherjee, T., and Bhaduri, A., Mechanism of action of amphotericin B on 
Leishmania donovani promastigotes. Mol Biochem Parasitol, 1986. 19(3): p. 195-200. 

224. Gray, K.C., et al., Amphotericin primarily kills yeast by simply binding ergosterol. Proc 
Natl Acad Sci U S A, 2012. 109(7): p. 2234. 

225. Sundar, S., et al., Efficacy of miltefosine in the treatment of visceral leishmaniasis in 
India after a decade of use. Clin Infect Dis, 2012. 55(4): p. 543-50. 

226. Burza, S., Croft, S.L., and Boelaert, M., Leishmaniasis. Lancet, 2018. 
227. World Health Organization, Technical Report Series. 949. Control of the 

leishmaniases, in WHO Technical Report Series. 2010, World Health Organization: 
Geneva, Switzerland. 

228. Singh, O.P. and Sundar, S., Developments in diagnosis of visceral leishmaniasis in the 
elimination era. J Parasitol Res, 2015. 2015: p. 239469. 

229. Burns, J.M., et al., Molecular characterization of a kinesin-related antigen of 
Leishmania chagasi that detects specific antibody in African and American visceral 
leishmaniasis. Proc Natl Acad Sci U S A, 1993. 90(2): p. 775-779. 

230. Sundar, S., et al., Rapid accurate field diagnosis of Indian visceral leishmaniasis. 
Lancet, 1998. 351(9102): p. 563-5. 



8: References 

213 

 

231. Boelaert, M., et al., Diagnostic tests for kala-azar: a multi-centre study of the freeze-
dried DAT, rK39 strip test and KAtex in East Africa and the Indian subcontinent. Trans 
R Soc Trop Med Hyg, 2008. 102(1): p. 32-40. 

232. Bhattacharyya, T., Boelaert, M., and Miles, M.A., Comparison of visceral leishmaniasis 
diagnostic antigens in African and Asian Leishmania donovani reveals extensive 
diversity and region-specific polymorphisms. PLoS Negl Trop Dis, 2013. 7(2): p. e2057. 

233. Bhattacharyya, T., et al., Significantly lower anti-Leishmania IgG responses in 
Sudanese versus Indian visceral leishmaniasis. PLoS Negl Trop Dis, 2014. 8(2): p. 
e2675. 

234. Pattabhi, S., et al., Design, development and evaluation of rK28-based point-of-care 
tests for improving rapid diagnosis of visceral leishmaniasis. PLoS Negl Trop Dis, 2010. 
4(9). 

235. Alce, T.M., et al., Expression of hydrophilic surface proteins in infective stages of 
Leishmania donovani. Mol Biochem Parasitol, 1999. 102(1): p. 191-6. 

236. Mukhtar, M., et al., Diagnostic accuracy of rK28-based immunochromatographic 
rapid diagnostic tests for visceral leishmaniasis: a prospective clinical cohort study in 
Sudan. Trans R Soc Trop Med Hyg, 2015. 

237. Vaish, M., et al., Evaluation of rK28 antigen for serodiagnosis of visceral leishmaniasis 
in India. Clin Microbiol Infect, 2012. 18(1): p. 81-5. 

238. Dantas-Torres, F., et al., Level of agreement between two commercially available 
rapid serological tests and the official screening test used to detect Leishmania 
seropositive dogs in Brazil. Vet J, 2018. 234: p. 102-104. 

239. Molinet, F.J., et al., Specificity of the rapid rK39 antigen-based 
immunochromatographic test Kalazar Detect(r) in patients with cutaneous 
leishmaniasis in Brazil. Mem Inst Oswaldo Cruz, 2013. 108(3). 

240. Machado de Assis, T.S., Rabello, A., and Werneck, G.L., Latent class analysis of 
diagnostic tests for visceral leishmaniasis in Brazil. Trop Med Int Health, 2012. 17(10): 
p. 1202-7. 

241. da Silva, M.R.B., et al., Performance of two immunochromatographic tests for 
diagnosis of visceral leishmaniasis in patients coinfected with HIV. Parasitol Res, 
2018. 117(2): p. 419-427. 

242. Islam, M.Z., et al., Enzyme-linked immunosorbent assay to detect urinary antibody 
against recombinant rKRP42 antigen made from Leishmania donovani for the 
diagnosis of visceral leishmaniasis. Am J Trop Med Hyg, 2008. 79(4): p. 599-604. 

243. Chakravarty, J., et al., Evaluation of rk39 immunochromatographic test with urine for 
diagnosis of visceral leishmaniasis. Trans R Soc Trop Med Hyg, 2011. 105(9): p. 537-9. 

244. Singh, D., et al., Evaluation of rK-39 strip test using urine for diagnosis of visceral 
leishmaniasis in an endemic region of India. Am J Trop Med Hyg, 2013. 88(2): p. 222-
6. 

245. Ghosh, P., et al., Evaluation of diagnostic performance of rK28 ELISA using urine for 
diagnosis of visceral leishmaniasis. Parasit Vectors, 2016. 9(1): p. 383. 

246. de Ruiter, C.M., et al., Molecular tools for diagnosis of visceral leishmaniasis: 
systematic review and meta-analysis of diagnostic test accuracy. J Clin Microbiol, 
2014. 52(9): p. 3147-55. 

247. Sakkas, H., Gartzonika, C., and Levidiotou, S., Laboratory diagnosis of human visceral 
leishmaniasis. J Vector Borne Dis, 2016. 53(1): p. 8-16. 

248. Sudarshan, M. and Sundar, S., Parasite load estimation by qPCR differentiates 
between asymptomatic and symptomatic infection in Indian visceral leishmaniasis. 
Diagn Microbiol Infect Dis, 2014. 80(1): p. 40-2. 

249. Pessoa, E.S.R., et al., Evaluation of urine for Leishmania infantum DNA detection by 
real-time quantitative PCR. J Microbiol Methods, 2016. 131: p. 34-41. 



8: References 

214 

 

250. Verma, S., et al., Development of a rapid loop-mediated isothermal amplification 
assay for diagnosis and assessment of cure of Leishmania infection. BMC Infect Dis, 
2017. 17(1): p. 223. 

251. Mukhtar, M., et al., Sensitive and less invasive confirmatory diagnosis of visceral 
leishmaniasis in Sudan using loop-mediated isothermal amplification (LAMP). PLoS 
Negl Trop Dis, 2018. 12(2): p. e0006264. 

252. Castellanos-Gonzalez, A., et al., A Novel Molecular Test to Diagnose Canine Visceral 
Leishmaniasis at the Point of Care. Am J Trop Med Hyg, 2015. 93(5): p. 970-5. 

253. Mondal, D., et al., Mobile suitcase laboratory for rapid detection of Leishmania 
donovani using recombinase polymerase amplification assay. Parasit Vectors, 2016. 
9(1): p. 281. 

254. Gunaratna, G., et al., Evaluation of rapid extraction and isothermal amplification 
techniques for the detection of Leishmania donovani DNA from skin lesions of 
suspected cases at the point of need in Sri Lanka. Parasit Vectors, 2018. 11(1): p. 665. 

255. Boelaert, M., et al., Rapid tests for the diagnosis of visceral leishmaniasis in patients 
with suspected disease. Cochrane Database Syst Rev, 2014. 6: p. Cd009135. 

256. Ahsan, M.M., et al., Evaluation of latex agglutination test (KAtex) for early diagnosis 
of kala-azar. Mymensingh Med J, 2010. 19(3): p. 335-9. 

257. Sarkari, B., Chance, M., and Hommel, M., A capture ELISA for the diagnosis of visceral 
leishmaniasis using a monoclonal antibody against a leishmanial urinary antigen. Iran 
Biomed J, 2005. 9(3): p. 117-122. 

258. Abeijon, C., et al., Identification and diagnostic utility of Leishmania infantum 
proteins found in urine samples from patients with visceral leishmaniasis. Clin 
Vaccine Immunol, 2012. 19(6): p. 935-43. 

259. Abeijon, C. and Campos-Neto, A., Potential non-invasive urine-based antigen 
(protein) detection assay to diagnose active visceral leishmaniasis. PLoS Negl Trop 
Dis, 2013. 7(5): p. e2161. 

260. Abeijon, C., et al., Novel antigen detection assay to monitor therapeutic efficacy of 
visceral leishmaniasis. Am J Trop Med Hyg, 2016. 95(4): p. 800-802. 

261. Abeijon, C., et al., Use of VHH antibodies for development of antigen detection test 
for visceral leishmaniasis. Parasite Immunol, 2018. 0(ja): p. e12584. 

262. Vallur, A.C., et al., Development and comparative evaluation of two antigen detection 
tests for visceral leishmaniasis. BMC Infect Dis, 2015. 15(1): p. 384. 

263. Bennuru, S., et al., Mining filarial genomes for diagnostic and therapeutic targets. 
Trends Parasitol, 2018. 34(1): p. 80-90. 

264. Saadi, M., Karkhah, A., and Nouri, H.R., Development of a multi-epitope peptide 
vaccine inducing robust T cell responses against brucellosis using immunoinformatics 
based approaches. Infect Genet Evol, 2017. 51: p. 227-234. 

265. Repetto, S.A., et al., An improved DNA isolation technique for PCR detection of 
Strongyloides stercoralis in stool samples. Acta Trop, 2013. 126(2): p. 110-4. 

266. Cuesta-Astroz, Y., et al., Helminth secretomes reflect different lifestyles and 
parasitized hosts. Int J Parasitol, 2017. 47(9): p. 529-544. 

267. Worasith, C., et al., Advances in the diagnosis of human opisthorchiasis: development 
of Opisthorchis viverrini antigen detection in urine. PLoS Negl Trop Dis, 2015. 9(10): p. 
e0004157. 

268. Shirey, R., et al., Non-invasive urine biomarker lateral flow immunoassay for 
monitoring active onchocerciasis. ACS Infect Dis, 2018. 

269. Fernandez-Soto, P., et al., Strong-LAMP: A LAMP Assay for Strongyloides spp. 
Detection in Stool and Urine Samples. Towards the Diagnosis of Human 
Strongyloidiasis Starting from a Rodent Model. PLoS Negl Trop Dis, 2016. 10(7): p. 
e0004836. 

270. Lodh, N., et al., Diagnosis of Strongyloides stercoralis: detection of parasite-derived 
DNA in urine. Acta Trop, 2016. 



8: References 

215 

 

271. Formenti, F., et al., A diagnostic study comparing conventional and real-time PCR for 
Strongyloides stercoralis on urine and on faecal samples. Acta Trop, 2019. 190: p. 
284-287. 

272. Guezala, M.C., et al., Development of a species-specific coproantigen ELISA for 
human Taenia solium taeniasis. Am J Trop Med Hyg, 2009. 81(3): p. 433-7. 

273. Casaravilla, C., et al., Production and characterization of monoclonal antibodies 
against excretory/secretory products of adult Echinococcus granulosus, and their 
application to coproantigen detection. Parasitol Int, 2005. 54(1): p. 43-9. 

274. Qian, M.B., et al., Clonorchiasis. Lancet, 2016. 387(10020): p. 800-10. 
275. Goodswen, S.J., Kennedy, P.J., and Ellis, J.T., Vacceed: a high-throughput in silico 

vaccine candidate discovery pipeline for eukaryotic pathogens based on reverse 
vaccinology. Bioinformatics, 2014. 30(16): p. 2381-3. 

276. Carstensen, H., et al., The epidemiology of cryptosporidiosis and other intestinal 
parasitoses in children in southern Guinea-Bissau. Trans R Soc Trop Med Hyg, 1987. 
81(5): p. 860-4. 

277. Pampiglione, S., et al., Human intestinal parasites in sub-Saharan Africa. Eastern Boé 
and Canhabaque Island (Guinea-Bissau). Parassitologia, 1987. 29(1): p. 1-13. 

278. Steenhard, N.R., Ornbjerg, N., and Molbak, K., Concurrent infections and 
socioeconomic determinants of geohelminth infection: a community study of 
schoolchildren in periurban Guinea-Bissau. Trans R Soc Trop Med Hyg, 2009. 103(8): 
p. 839-45. 

279. Allan, J.C. and Craig, P.S., Coproantigens in taeniasis and echinococcosis. Parasitol Int, 
2006. 55 Suppl: p. S75-80. 

280. Bhattacharyya, T., et al., IgG1 as a potential biomarker of post-chemotherapeutic 
relapse in visceral leishmaniasis, and adaptation to a rapid diagnostic test. PLoS Negl 
Trop Dis, 2014. 8(10): p. e3273. 

281. Mollett, G., et al., Detection of IgG1 against rK39 improves monitoring of treatment 
outcome in visceral leishmaniasis. Clin Infect Dis, 2018. 

282. World Health Organization. Malaria rapid diagnostic tests: RDT instructions and 
training.  2005  [cited 2018 2/9/18]; Available from: 
http://www2.wpro.who.int/sites/rdt/using_rdts/training/rdt_training_combination.h
tm. 

283. Kobayashi, J., et al., Application of enzyme immunoassay for postchemotherapy 
evaluation of human strongyloidiasis. Diagn Microbiol Infect Dis, 1994. 18(1): p. 19-
23. 

284. Shahbaaz, M., Md, I., and Ahmad, F., Functional annotation of conserved hypothetical 
Proteins from Haemophilus influenzae Rd KW20. PLoS One, 2013. 8(12): p. e84263. 

285. van Griensven, J., et al., Leishmania antigenuria to predict initial treatment failure 
and relapse in visceral leishmaniasis/HIV coinfected patients: an exploratory study 
nested within a clinical trial in Ethiopia. Front Cell Infect Microbiol, 2018. 8: p. 94. 

286. Riera, C., et al., Evaluation of a latex agglutination test (KAtex) for detection of 
Leishmania antigen in urine of patients with HIV-Leishmania coinfection: value in 
diagnosis and post-treatment follow-up. Eur J Clin Microbiol Infect Dis, 2004. 23(12): 
p. 899-904. 

287. Castro-Sesquen, Y.E., et al., Use of a novel Chagas urine nanoparticle test (Chunap) 
for diagnosis of congenital Chagas disease. PLoS Negl Trop Dis, 2014. 8(10): p. e3211. 

288. Douglas, T.A., et al., The use of hydrogel microparticles to sequester and concentrate 
bacterial antigens in a urine test for Lyme disease. Biomaterials, 2011. 32(4): p. 1157-
66. 

289. Luchini, A., et al., Smart hydrogel particles: biomarker harvesting: one-step affinity 
purification, size exclusion, and protection against degradation. Nano letters, 2008. 
8(1): p. 350-361. 

http://www2.wpro.who.int/sites/rdt/using_rdts/training/rdt_training_combination.htm
http://www2.wpro.who.int/sites/rdt/using_rdts/training/rdt_training_combination.htm


8: References 

216 

 

290. Luque-Garcia, J.L., et al., Analysis of electroblotted proteins by mass spectrometry: 
protein identification after Western blotting. Mol Cell Proteomics, 2008. 7(2): p. 308-
14. 

291. Balog, C.I., et al., Novel automated biomarker discovery work flow for urinary 
peptidomics. Clin Chem, 2009. 55(1): p. 117-25. 

292. Driguez, P., et al., Protein microarrays for parasite antigen discovery. Methods Mol 
Biol, 2015. 1201: p. 221-33. 

293. Gadisa, E., et al., Serological signatures of clinical cure following successful treatment 
with sodium stibogluconate in Ethiopian visceral leishmaniasis. Cytokine, 2017. 91: p. 
6-9. 

294. Gasim, S., et al., High levels of plasma IL-10 and expression of IL-10 by keratinocytes 
during visceral leishmaniasis predict subsequent development of post-kala-azar 
dermal leishmaniasis. Clin Exp Immunol, 1998. 111(1): p. 64-9. 

295. Lim, M.D., et al., Diagnostic tools for soil-transmitted helminths control and 
elimination programs: a pathway for diagnostic product development. PLoS Negl Trop 
Dis, 2018. 12(3): p. e0006213. 

296. Peeling, R.W., et al., Rapid tests for sexually transmitted infections (STIs): the way 
forward. Sex Transm Infect, 2006. 82(suppl 5): p. v1. 

297. Google. Google Flu Trends.  2014  [cited 2019 10/2/19]; Available from: 
https://www.google.org/flutrends/about/. 

298. Wesolowski, A., et al., Heterogeneous mobile phone ownership and usage patterns in 
Kenya. PLoS One, 2012. 7(4): p. e35319. 

299. Bagcchi, S., WHO launches Essential Diagnostics List. Lancet Infect Dis, 2018. 18(7): p. 
724-725. 

300. United Nations. Sustainable Development Goal 3: Ensure healthy lives and promote 
well-being for all at all ages.  2018  [cited 2019 10/2/19]; Available from: 
https://sustainabledevelopment.un.org/sdg3. 

 

https://www.google.org/flutrends/about/
https://sustainabledevelopment.un.org/sdg3


217 
 

Appendix 
 

Methods 

Ethical statement 
Collection of human stool samples carried out on Bubaque island, Guinea Bissau in October 

2017 was approved by the London School of Hygiene & Tropical Medicine Ethical Committee, 

with reference number 9923-2, and as part of a separate LSHTM-hosted study by the National 

Committee of Ethics in Health, Ministry of Health, Guinea Bissau. All adult participants gave 

written informed consent for themselves and their dependent children. In addition, children 

aged 7-17 gave written informed assent to providing samples. Infants under 6 months old 

were excluded from the study. 

Use of DNA extracted from human stool and kindly provided by Sören Becker was granted by 

the London School of Hygiene & Tropical Medicine Ethical Committee, reference number 

9923-1. Original sample collection in Cote d’Ivoire, Nepal and Mali was approved as part of a 

separate study, ‘NIDIAG’, by all the respective national ethical committees and by the 

University of Antwerp Ethics Committee where the study was based. All participants gave 

informed consent. 

Use of urine and serum samples from India and Sudan was ethically approved as a different 

component of the ‘NIDIAG’ study by the respective national ethics committees and by the 

London School of Hygiene & Tropical Medicine Ethics Committee where this part of the study 

was based. All participants gave informed consent. 

Animal (rabbit) use for raising antibodies to L. donovani was carried out before the present 

study at the Royal Veterinary College, London, under conditions of animal husbandry and 

welfare, according to UK law. 

 

Strongyloides methods 
Coproantigen discovery methods are detailed in Chapter 2. Additional methods are described 
here. 

Collection of stool samples and planned methodology for processing 
Study site and participants 
Human stool samples were collected as part of separate study which was a community-wide 

STH baseline prevalence survey from villages on the island of Bubaque in the Bijagos 

archipelago, Guinea Bissau. This was prior to a larger survey across the Bijagos, which would 

be followed by mass drug administration of anthelminthics. Participants were from 
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households chosen by closest proximity to a randomly-generated GPS point. Potential 

participants were informed in detail about the study and the use of their samples. Consenting 

individuals were provided with anonymously coded pots which were collected the following 

day and analysed by Kato Katz microscopy for STH. An aliquot of about 0.5 – 1 g of each 

sample was stored in 70% ethanol and shipped to LSHTM at ambient temperature and 

subsequently stored at -20°C for molecular analysis. An additional, larger, aliquot of some 

stool samples was stored in 10% formalin (HT5011, Sigma-Aldrich, UK) and shipped at ambient 

temperature then stored at -80°C for use in protein/antigen assay development. 

Planned stool processing 
The formalin-preserved stool samples were collected in order to provide S. stercoralis positive 

and negatives for coproantigen capture assay development. However, the Kato Katz 

technique carried out in the field did not detect S. stercoralis, therefore the paired ethanol 

stool samples were intended for use in qPCR, both the validate the microscopy results for the 

other STH, and also to test for S. stercoralis. These data would then inform the use of the 

formalin samples. 

 

S. stercoralis gene sequencing- SCP/TAPS 
Primer design and PCR optimisation 
In order to investigate antigenic diversity across different geographic regions, a novel PCR 

assay was designed to amplify and sequence antigen genes of interest. The first selected gene 

was that of existing serological antigen NIE, for which there is currently no sequence diversity 

information, and which may also be suitable as a coproantigen. Amplification was of the 

SCP/TAPS protein family gene, SSTP_0001008900, in which our Set 1 primer amplicon 

corresponded to the NIE seroantigen region (Figure 1). The assay first required optimisation of 

the PCR reaction to amplify the region of interest, prior to sequencing (Figure 1). Stool DNA of 

different infection status used in this work originated from Cote d’Ivoire and was kindly 

provided by Sören Becker, Swiss TPH, Basel. 
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Figure 1. Very high amino acid sequence identity between seroantigen NIE and a region of the 

S. stercoralis protein encoded by gene SSTP_0001008900. Identity with the NIE sequence is 

indicated by a dot in the SSTP_0001008900 sequence. 

 

Novel primers designed in this study and their binding positions in the SSTP_0001008900 gene 

are given in Table 1 and Figure 2. Two primer pairs, ‘Set 1’ and ‘Set 2’, were designed and used 

to avoid the large intron within the gene (Figure 2). 

Table 1. Primers used to amplify regions of S. stercoralis gene SSTP_0001008900. Melting 
temperatures (Tm) were calculated using a pilot version of a custom-built program by Hai Le1. 

 Sequence Amplicon size (bp) Tm (°C) 

Set 1  

 

FWD 5’ CGTATGAATTTAAGAATGCTGTTAG 3’ 1,308 56.4 

RVS 5’ CTACAGTAATCCTTTTATTACGGTA 3’ 59.7 

Set 2 FWD 5’ CTGGATTCAACCATCAATTTAGGCA 3’ 1,232 59.3 

RVS 5’ CCAAGGGTAGTAATGTATATGTGAG 3’ 68.3 

 

 
TATTTAATGTTTTTTTATATATAAAATATTAACCGTATGAATTTAAGAATGCTGTTAGAATAAAAATATTATTTTAAATTTTAAATATATAAATTTTTTTTTACAAATTTATTA
TTTAAAATGTAGAAATTTTAATTGTATAAAAAATGTTATCTAATAAAAAAAAATTAAATAAAAACATTTAAAACAAATATTTTTTAGTCATATTTTGTCTAATAAATATCATAA
CACATGTATTATTAGTTTACTTATTATTTCTTTTATTTAATCAGATTCCTTTATTAAATAAAACTTTGAATTAAAAAATGATATAAAAAGAATTAATTTTGGAAGTTGATCATC
AGAAAAAAATGAAACATTCTTTAGTATCTTTTTCTTTATTAATTTTATTAGGATTGATTTATCATTCCTATACACAATCTATTTCTTATTCATATCGATATGAAAATGGAAAGC
TTATTTACACTTACAATGGAAATGATTATGATACAAAAGAAGCAATGGAAGATGCAATTCAAAGAGATTACCCTGATAAAATATTTACTTTTGGTGGTGATAATAATAATGGTA
AAAAAAGAAAAATTGATATTTCTAAATGGAAAGGTAATAATACATTTAGTAATAAAATTTTTGACGAAATATGGGAAGGATATAATTATGATAATGATAAAGCCAAAAACTTTA
AAGTCATGAAAACCAAAGTAAGTTATATAATATTATTTTATTCATATTTTTAGTTGTTTAATGAACAAAATAAATATAGAATAGCTCATGGTGCTAAAAAACTTATAAAAAGCA
AAGATCTTGAAAAAAAAGCTCAAGCTTATGCTGAAGTAATTGCTAGATTAGGAAGATTAGAACATGATCCAAAAAATCGAATTGAGGGAACAGGAGAAAATCTTGCTTATGGAA
CAACATTTATTGGCCATTTAGCTGTAAAAGGATGGTATGATGAAATAGCTTTATATAATTTTAAAAAACCTGGATTTAGTCCTGCAACTGGACATTTTACACAATTAGTATGGA
AAGGTACAACTCATGCTGGATTTGGTGTTGTTGAAAAAGGGGATAGAGTTTATGTTGTTTGTAAATATTCTCCTCCAGGAAACTATCCTAGACAGTTCGAAGCAAACGTTTTAC
AACGTAAACAATAAAGTTTATTTTTTTTATTAAGAATTATTAAATTTTGTAATTAAATTTTAATCATTATAAAAAAATAAACAATTATTAAATTATTTCTTATTTTTTTATTTC
TTTTAAAATAAAATAATTTAAATATAAAAAATAAATAACAATTAAATTAACAAAAAAAATATTACCGTAATAAAAGGATTACTGTAGTTTATAAAATTTAACGCATATAACATT
TTAACATTAAAAATTTGACTTTTAATATTTTTTATTTTTAAATAATGTTTATTATTTTTTATGTTCTTAAGAATAAAAAAAATAAATATAATGTTTATTTTTGTAAACATTTAC
GATGTGATATATTTTAGTTTAATAAATATTTAGATAATTTAACCAGTTTTATTAAAAATTTTATATGTATTCTTAAACTAATATTAATCTAAATTTTACTATAATAATATAAAT
AAAAAATCTTTAAAAATCACATGCAGCATTTAGTAAATATTTTTTTTTACATAAATTTTTAAAAATCAGCTAAATATATAAAATATACTCTATCAAAATATCTATATATTTTAA
CAATAACAATTGTGTTATTGTTGTATAAAAATTTTTGAAATTAATAAAAATAAAACTTTGTATTACAAACAAAGAATAAGATAATATTATTATAATATTAAAACAAATCGTAAA
AATGATTTTTGAATTATATTTTGAATTAAAAATAATAAAATTCCTTTATAATATAAGATAAATTTACACATATTTTTTAATTAACACTTTATATATAGAAGTTGGTGTTTAATT
TTTAAATGCTATGTTACAAAATTTTTATTTAGACAAATGTTACTTAGCAAATATTAAAAAAGATTTGAAAATGGATATAAAAAGTTGAAAAAGTTTTTTATACATTAAATTATT
ATAAAATGTGGAGCAAATCTTCATTTTTTATTGCAAGTTTTGCTTTAATTGGATTTTTAACGCTATGTTCTGGATTCAACCATCAATTTAGGCAAAACTATCGTAATGGAAAGT
TTTATTTTATTAATAATAATAAATAATATATAACTATTTTAGATGCTGCAACACAAAATAGAGAAGATAGAACTGAATACAATGAAAATATTGCTAGAAAGCCATCTTTAATTT
CGACAAATAATGCTCCAGGAAAAAAGCCTCTTAATTCAAAGACTACACCTCGTTCTCAAAAACCTGTAAGACCAGCTTCAAAATCTACAAAACGACCAATAAAAACTACTAGAA
AAACTCCAAAAACTACTAAACGACCAGTAAAACCTACTAGAAAAACTCCAAAAACTACTAAGCGACCAGTAAAAACTACTAAACCAACTTTAAAAACTACTAAACGACCAGTAA
CAACTACGAAGTCAGCTTCAGTAACTACAAAAGCACCAAAAACACCTGCTAAGCCATCTTCAGTAGCTACAAAAGAATCAACAACAAGTAAAGTTGTAACCGTAAGTACAGCTA
AACCAGTTGTTACAGAAAAACCTCCAAATAACAGAATTGATCCTAAATACATTCCTAGCGCAGCTGAAGTTGATAAATTATACACATTTGATGTAAATAAAGAAAAAGTAAAAA
ATAGTGGTCCATTTAGTATAAAAGTTTATGATGAAGTTTGGAAAGGTTATGATTACAAAAAAGATTTTAAAACAGGATACCTTGATATGAGGGATAGAGTAAGTTAAAAAAAAG
TTTATTATTATCAAAATATTTGTAGATTTTGAAAGAAACTAATCGTTACAGACAAGCACATGGTGTTGGCCCTCTTACATATGATTATGATTTAGAAAAAGCATCTCAAGAATA
TGCTAAATATCTTGGTGATAATAATTTATTTGATCACGATCCTAAAAACGATCAAAATGGTTGGGGTGAAAATCTTGCTCGTTTTTCAGCTTCAATTGGTTCTTTAGCAACCAA
AAAGTGGTATGATGAAGTGGATATGTATGATTTTTCAAAAAATCAATTTTCTTATGATACTGGACACTTCACTCAATTAGTATGGAAAGATACAAAGAAAGTTGGATGTGGTAT
TTATTTGAAAAACGAAGATTTATATGTTGTTTGCAAATATACTCCACAAGGAAATTTTATGAATGAGTTTTCTAAAAACGTTTTTCAACGCCTTCCTGAATATAATTAATTACA
CTCAAAATTTTAAATAGTCAATCTCACATATACATTACTACCCTTGGATGTAGTATCATAATAGTAAAATTTAACTTTTTTTTTTAAATTATTAACATTAAATATATAAAATAT 
 

Figure 2. Strongyloides stercoralis SCP/TAPS gene SSTP_0001008900, a 602 aa protein 

encoded by 1809 base pairs in 4 exons on the antisense strand. Black and red indicate exons 

and introns respectively. Primer sequences are in bold underlined with Set 1 highlighted in 

yellow and Set 2 in blue. The NIE homologous coding region is indicated in bold underlined in 

exons one and two.  

 

For the first reaction, a known S. stercoralis qPCR positive stool DNA sample from Cote 

d’Ivoire (#126), was used with Set 1 primers at three annealing temperatures and other 
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conditions as detailed in Tables 2 and 3. All reactions were run in a PTC-200 thermocycler (MJ 

Research, St Bruno, Canada). Reaction 2 used primers published by Verweij et al. (2009)2, 

originally for qPCR detection of S. stercoralis in stool with a 101 bp amplicon of the 18S rRNA 

gene, which we used to ensure that S. stercoralis DNA was detectable by us in the stool DNA 

samples. The reaction used higher magnesium concentration and more sample DNA than 

reaction 1 (Table 2). Stool DNA sample IDs tested were: 10, 42, 126, 127 known S. stercoralis 

qPCR positives, and sample 2 which was known S. stercoralis negative. All samples were 

previously qPCR negative for both hookworm species. Reaction 3 used our novel Set 1 primers 

with three of the S. stercoralis positive samples (46, 126, 127) at the same annealing 

temperatures as reaction 1 but with increased Mg2+ and sample DNA. Reaction 4 was with 

our novel Set 2 primers, an intermediate level of magnesium and two annealing 

temperatures, 60°C and 62°C. In addition, primers described by Verweij et al. (2009)2 were 

used under the same conditions alongside our primers as positive controls. Reaction 5 was to 

confirm the presence of S. stercoralis after DNA purification from larvae. Reaction 6 used both 

of our novel primer sets on larval DNA at various annealing temperatures and magnesium 

concentrations. 18S rRNA primers were used with the larval DNA as a positive control. 

Table 2. PCR reaction conditions during optimisation of assay to amplify S. stercoralis 
SCP/TAPS gene SSTP_0001008900 prior to sequencing. 

 Reaction 1 
(ul/sample) 
[final conc.] 

Reaction 
2 

Reaction 
3 

Reaction 
4 

Reaction 
5 

Reaction 
6 

Primers Set 1 18S rRNA Set 1 Set 2 & 18S 
rRNA 

18S rRNA Set 1, Set 2 
and 18S 
rRNA 

Sample Stool  
DNA 

Stool DNA Stool DNA Stool  
DNA 

Larval DNA 
Stool DNA 

Larval  
DNA 

DNAa 1 5 5 5 5 5 
10x buffer 2 2 2 2 2 2 
Mg2+  
@ 50 mM 

[1.5 mM] 
0.6 

[2.5 mM]  
1 

[2.5 mM]  
1 

[2 mM] 
0.8 

[2.5 mM] 
1 

[1.5 and 
2.0 mM] 

dNTPs  
@ 10 mM 

[0.2 mM] 
0.4 

[0.2 mM] 
0.4 

[0.2 mM] 
0.4 

[0.2 mM] 
0.4 

[0.2 mM] 
0.4 

[0.2 mM] 
0.4 

FWD primer 
@ 10 mM 

[0.5 uM] 
1 

[0.5 pM/ul] 
1 

[0.5 uM] 
1 

1 [0.5 pM/ul] 
1 

1 

RVS primer @ 
10 mM 

[0.5 uM] 
1 

[0.5 pM/ul] 
1 

[0.5 uM] 
1 

1 [0.5 pM/ul] 
1 

1 

Taq @ 5 U/ul (1 unit) 
0.2 

(1 unit) 
0.2 

(1 unit) 
0.2 

(1 unit) 
0.2 

(1 unit) 
0.2 

(1 unit) 
0.2 

dH2O 13.8 9.4 9.4 9.6 9.4 as needed 
Total 20 20 20 20 20 20 

a All reactions also included a template-free negative control with water instead of DNA. 
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Cycling conditions for the different experimental reactions are given in Table 3. 

Table 3. Cycling conditions used during PCR with 18S rRNA gene primers as per Verweij 

(2009), and PCR development with novel primer sets for S. stercoralis gene SSTP_0001008900. 

Reaction 1 and 3 2 4 5 6 
1. Denaturation/ 

Activation 
95°C,  
2 mins 

95°C,  
15 min 

95°C,  
2 mins 

95°C,  
15 min 

95°C,  
2 mins 

2. Denaturation 95°C,  
30 sec 

95°C,  
30 sec 

95°C,  
30 sec 

95°C,  
30 sec 

95°C,  
30 sec 

3. Annealing 55, 58, 60°C,  
30 sec 

60°C,  
30 sec 

60, 62°C, 
30 sec 

60°C,  
30 sec 

55, 58, 60, 
62°C, 
30 sec 

4. Extension 72°C,  
90 sec 

72°C,  
30 sec 

72°C,  
90 sec 

72°C,  
30 sec 

72°C,  
90 sec 

5. Cycles  
(steps 2-4) 

30 30 30 30 30 

6. Final extension 72°C,  
10 mins 

72°C,  
10 mins 

72°C,  
10 mins 

72°C,  
10 mins 

72°C,  
10 mins 

 

PCR products were visualised on a 1% agarose gel with GelRed (Biotium, USA) and the 

appropriate Hyperladder (Bioline, UK). 

DNA purification from S. stercoralis larvae 
Larval material of the S. stercoralis reference strain PV0001 was kindly provided by Thomas 

Nolan, University of Pennsylvania, USA. There, infection was maintained in an 

immunosuppressed dog under laboratory conditions and larvae were isolated from a stool 

culture before being allowed to migrate out of soft agar in order to clean them of bacteria. 

Larvae were subsequently washed in distilled water and stored frozen at -80°C. We purified 

DNA from 24 mg of these whole larvae using a QIAamp DNA mini kit (51304, Qiagen) and 

performed three elutions of the DNA from the column. The first elution was used for all 

experiments described here. 

 

Sequencing and diversity analysis of NIE 
In order to investigate heterogeneity in the SCP/TAPS candidate coproantigen of interest 

(SSTP_0001008900), we sequenced regions of the gene from S. stercoralis larval DNA of the 

reference strain PV0001. This would reveal potential sequence diversity hidden in the 

consensus that forms the reference genome. Sequencing reactions were carried out on PCR 

products from both Set 1 and Set 2 primers. Capillary sequencing was performed by central 

services at LSHTM. Sequence data were analysed using MEGA 6.0 (Megasoftware.net) and 

BioEdit3. 
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S. stercoralis qPCR 
Quantitative PCR (qPCR) was performed on DNA extracted from S. stercoralis larvae of the 

PV0001 reference strain, to confirm the correct species and to briefly compare pipetting 

accuracy of two technicians. We used a published species-specific assay for a 101 base pair 

(bp) region of the S. stercoralis 18S rRNA gene (AF279916)2.  

 

Strongyloides comparative genomics 
The genomes of S. stercoralis, S. papillosus, S. venezuelensis and Parastrongyloides trichosuri 

were aligned to that of the reference genome, S. ratti, in order to detect genetic differences 

(variants) between them. In particular, with the aim of investigating variants which lead to 

amino acid differences between the species, to indicate possible S. stercoralis species-specific 

candidate antigens. 

Genome mapping 
Paired-end genome reads of S. stercoralis, S. papillosus, S. venezuelensis and 

Parastrongyloides trichosuri were downloaded from NCBI SRA (accessions ERR422414, 

ERR422409, ERR696964 respectively for the Strongyloides species and ERR422413, ERR422412 

and ERR539713 for P. trichosuri) using Aspera Connect (Aspera, USA) and checked for 

completeness. Fermikit4 was used to map the reads to the S. ratti reference genome 

(PRJEB125) which was obtained from WBPS release 7 along with the annotation file. The 

reference genome was first indexed with bwa5. Initial attempts at mapping S. venezuelensis 

using Fermikit were unsuccessful due to the large number of reads (136 million, versus about 

24-48 million for the other species). Therefore we made a random subset of 20 million reads 

for this species using seqtk6 which were then mapped against the reference in the same way 

as the other species. 

Variant calling 
Variant calling within the mapped reads for each species was done with Fermikit. Resulting 

variant call format (vcf) files comprised: structural variants (sv.vcf) which included long 

deletions, novel sequence insertions and complex structural variations; filtered variants 

(flt.vcf) comprising single nucleotide polymorphisms (SNPs) and short insertions or deletions 

(INDELs); binary sequence alignments (bam). Mapped genomes and variants were viewed in 

Integrative Genome Viewer (IGV)7 using the S. ratti genome and annotation as reference. 

SnpEff8 was used to obtain statistics on the effects of the variants and any effect on protein 

sequences. 
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Supplementary material for Chapter 4 

Capture and identification of Leishmania donovani protein antigens in human urine during 
visceral leishmaniasis 

Table S1. Number of L. donovani peptides and proteins identified by mass spectrometry of 
antigens captured from Indian VL urine with anti-1S2D antibody.  

Indian VL urine  

immuno-captured material 
Dish 8  Dish 35  

Found in 

both dishes 

Total 

unique 

Total number of proteins 3 3 1 5 

Total number of peptides 12 12 4 20 

Peptides 

which: 

Led to protein IDs 7 6 2 11 

Solo peptides 5 6 2 9 
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Table S2. Solo peptides of Leishmania donovani identified in urine of Indian and Sudanese patients with visceral leishmaniasis.  

Sample Experimental 

origin of 

peptide 

Peptide Parent protein  UniProtKB / GenBank accession 

India VL 

urine 

Dish 8 and 35 VTALEENIEAALR Hypothetical protein, conserved LdBPK_160420 / XP_003859730.1 

Dish 8 VTLLDR 
3-oxoacyl-(acyl-carrier protein) reductase, 

putative 
LdBPK_242110 / XP_003861301.1 

Dish 8 and 35 LSLEPR Hypothetical protein, conserved LdBPK_354400 / XP_003865018.1 

Dish 8 LVEEFHFSK MP44, putative LdBPK_270350 / XP_003861892.1 

Dish 8 ESPSPWVR Hypothetical protein, conserved LdBPK_281920 / XP_003862291.1 

Dish 35 SELDARK Hypothetical protein, conserved LdBPK_100630 / XP_003858899.1 

Dish 35 ITQLVQLMK Hypothetical protein, unknown function LdBPK_312110 / XP_003863299.1 

Dish 35 CFNDDIQGTGAVIAAGFLNAVK Malic enzyme LdBPK_240780 / XP_003861168.1 

Dish 35 YDAASQIAILSMER 
Enoyl-CoA hydratase/isomerase family 

protein, conserved 
LdBPK_350360 / XP_003864629.1 

Sudan VL 

urine 

VLu AGNVSINQHEGQR RNA binding protein, putative LdBPK_190290 / XP_003860208.1 

VLu/uAg* MEEYLHSKDSAEQR Hypothetical protein, conserved LdBPK_220520 / XP_003860802.1 

VLu/uAg* NSSSRAKADYKPSSSR Hypothetical protein, conserved LdBPK_333140 / XP_003864138.1 
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uAg SPASASVEAVGAAAFAR **** Hypothetical protein, conserved LdBPK_091050 / XP_003858784.1 

VLu VWTKDLSQMK Hypothetical protein, conserved LdBPK_353990 / XP_003864977.1 

uAg IAASVPSLR Coatomer gamma subunit, putative  LdBPK_282820 / XP_003862380.1 

VLu/uAg* NHAKQLYMR Protein kinase, putative  LdBPK_210190 / XP_003860536.1 

uAg GTYEVICR **** Hypothetical protein, conserved LdBPK_151420 / XP_003859665.1 

uAg QAETALVNR **** Hypothetical protein, conserved LdBPK_303110 / XP_003863022.1 

 

**** These peptides were assigned to L. donovani proteins from mass spectrometry data after a Mascot search of an L. donovani-only database. All other 
peptides were assigned to Leishmania proteins after a simultaneous L. donovani and human database search. However, these indicated peptides had very high 
homology to Leishmania proteins in subsequent homology searches and were therefore retained. 

*Some gel fragments analysed by mass spectrometry spanned two sample types. 
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Table S3. Number of epitope peptides of ≥8 amino acids in Leishmania donovani proteins 

identified from VL patients’ urine.  

VL urine origin and 

method used 

Protein name  

(UniProtKB accession) 

Number of predicted 

epitopes (length range in 

amino acids) at two 

epitope cut-off scores 

Number of N-

linked 

glycosylation 

sites 
0.65 0.55 

India 

(immunopanning) 

Hypothetical protein 

(LdBPK_191140) 

6  

(8-10 aa) 

48  

(8-86 aa) 
1 

40S ribosomal protein S9 

(LdBPK_070760) 

4 

(8-17 aa) 

25  

(8-142 aa) 
0 

Hypothetical protein 

(LdBPK_363030) 

2 

(12-14 aa) 

28  

(9-42 aa) 
0 

Hypothetical protein 

(LdBPK_323250) 

8 

(8-24 aa) 

18  

(8-64 aa) 
1 

Protein kinase 

(LdBPK_262110) 

12 

(8-14 aa) 

23  

(9-284 aa) 
3 

Sudan 

(immunocapture 

and western blot) 

Hypothetical protein ‡ 

(LdBPK_160110) 
0 

1  

(29 aa) 
0 

Protein kinase 

(LdBPK_351070) 

3 

(9-25 aa) 

4  

(15-149 aa) 
1 

Total 35 147 4 proteins 

‡ The lower epitope score threshold was used for this protein due to absence of epitopes >8 

aa at the higher score threshold. 
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Oral presentations by the candidate 

x London Centre for Neglected Tropical Disease Research (LCNTDR), Genetic Diversity of 

NTD Pathogens research afternoon, London, 23/5/18. ‘Exploiting genetic diversity for 

development of strongyloidiasis diagnostics’. 

x International Society for Neglected Tropical Diseases (ISNTD) d3 conference, London, 

26/6/18. ‘Using ‘omics’ data for Strongyloides stercoralis diagnostic antigen 

discovery’. Video available here 9. 

x Three Minute Thesis, LSHTM Finalist, 7/6/18. ‘A Tricky Little Worm’.  

x LSHTM, work-in-progress seminar, 29/1/16. ‘Identifying diagnostic antigens for 

visceral leishmaniasis’. 

 

  

https://www.youtube.com/watch?v=fyRIatj0BkQ&index=29&list=PLdJabcLRtQRqUO9Wc8wrzuwAvbNU1PRMo&t=0s
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Poster presentations by the candidate 

World Leish 6, Toledo, May 2017.  

x Marlais et al. ‘Non-invasive diagnosis and test-of-cure of VL: Using mass spectrometry 

to identify the antigen detected in urine by a commercial capture ELISA.’ 

x Marlais et al. ‘Cure or Relapse? Further studies of an IgG1 rapid test and western blot 

in assessing treatment outcome and progression to VL in India.’ 

 

British Society for Parasitology, Aberystwyth, April 2018.  

x Marlais et al. ‘Comparative ‘Omics’ identification of coproantigens for diagnosis of 
Strongyloides stercoralis infection’. (Student poster prize winner). 
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Background: There is a recognized need for an improved diagnostic test to assess

post-chemotherapeutic treatment outcome in visceral leishmaniasis (VL) and to diagnose

post kala-azar dermal leishmaniasis (PKDL). We previously demonstrated by ELISA and a

prototype novel rapid diagnostic test (RDT), that high anti-Leishmania IgG1 is associated

with post-treatment relapse versus cure in VL.

Methodology: Here, we further evaluate this novel, low-cost RDT, named VL Sero

K-SeT, and ELISA for monitoring IgG1 levels in VL patients after treatment. IgG1 levels

against L. donovani lysate were determined. We applied these assays to Indian sera from

cured VL at 6 months post treatment as well as to relapse and PKDL patients. Sudanese

sera from pre- and post-treatment and relapse were also tested.

Results: Of 104 paired Indian sera taken before and after treatment for VL, when

deemed clinically cured, 81 (77.9%) were positive by VL Sero K-SeT before treatment;

by 6 months, 68 of these 81 (84.0%) had a negative or reduced RDT test line intensity.

ELISAs differed in positivity rate between pre- and post-treatment (p = 0.0162). Twenty

eight of 33 (84.8%) Indian samples taken at diagnosis of relapse were RDT positive. A

comparison of Indian VL Sero K-SeT data from patients deemed cured and relapsed

confirmed that there was a significant difference (p < 0.0001) in positivity rate for

the two groups using this RDT. Ten of 17 (58.8%) Sudanese sera went from positive

to negative or decreased VL Sero K-SeT at the end of 11–30 days of treatment.

Forty nine of 63 (77.8%) PKDL samples from India were positive by VL Sero K-SeT.
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Conclusion: We have further shown the relevance of IgG1 in determining clinical status

in VL patients. A positive VL Sero K-SeT may also be helpful in supporting diagnosis of

PKDL. With further refinement, such as the use of specific antigens, the VL Sero K-SeT

and/or IgG1 ELISA may be adjuncts to current VL control programmes.

Keywords: visceral leishmaniasis, serology, treatment, relapse, cure, IgG1, RDT, PKDL

INTRODUCTION

Visceral leishmaniasis (VL; kala-azar), is caused by the protozoan
parasites Leishmania donovani in Asia, Africa and the Middle
East and Leishmania infantum in Europe and South America.
These parasites are transmitted by blood-feeding female
phlebotomine sand flies. Symptomatic VL is usually fatal if
untreated. Symptoms include prolonged fever>14 days, wasting,
splenomegaly, hepatomegaly and anemia (Sundar and Rai, 2002).
While VL is present in about 75 countries, the majority (90%) of
cases in 2015 occurred in India, Sudan, South Sudan, Ethiopia,
Somalia, Kenya, and Brazil (World Health Organization, 2017),
where it is closely linked to poverty, both as cause and effect
(Boelaert et al., 2009; Sarnoff et al., 2010).

Following clinical suspicion of VL, serology is used
for diagnosis. Techniques vary by region and include the
immunofluorescence antibody test (IFAT), direct agglutination
test (DAT), enzyme linked immunosorbent assay (ELISA), and
detection of IgG against recombinant antigens rK39 or rK28
(Singh and Sundar, 2015). In India the DAT and rK39 serology
are used, with a positive result in either test indicative of exposure
to infection with L. donovani. For confirmatory parasitological
diagnosis, seropositive individuals undergo spleen, bone marrow
or lymph node biopsy to search for the intracellular amastigote
stage in films of Giemsa-stained aspirates. These are invasive,
costly and potentially hazardous techniques with low and
variable sensitivities ranging from 53 to 99% (Singh and Sundar,
2015).

VL is treated with antimonials, miltefosine, paromomycin,
amphotericin B, liposomal amphotericin (AmBisome) or drug
combinations (World Health Organization, 2010). Currently,
post-treatment outcome is determined by assessment of clinical
signs and symptoms, initially on the last day of drug treatment
and, in India, again 6 months after administration of the last
dose (World Health Organization, 2010). Possible outcomes
are: cure; relapse; death (by VL or not); post kala-azar dermal
leishmaniasis (PKDL); loss to follow up. However, recent studies
from India and Nepal have reported relapse rates of between
1.4 and 20%, including up to and beyond 12 months following
the end of treatment (Burza et al., 2013, 2014; Rijal et al.,
2013). In Sudan, relapse rates around 6% have been reported
(Gorski et al., 2010; Atia et al., 2015). Patients who relapse
face a further biopsy procedure to confirm the presence of
parasites.

PKDL is a non-painful sequela of VL occurring in over 50%
of cases in Sudan (Zijlstra et al., 2003) but is far less prevalent
in South Asia (Zijlstra et al., 2003; Uranw et al., 2011). PKDL is
less reported in L. infantum endemic regions where cases have

mostly been associated with HIV/AIDS (Ridolfo et al., 2000;
Bittencourt et al., 2003; Celesia et al., 2014), other co-infections
(Trindade et al., 2015) or immune suppression (Roustan et al.,
1998). PKDL manifests between 0.5 months to one or more
years after apparently successful VL treatment (Musa et al., 2002;
Uranw et al., 2011; Singh et al., 2012; Moulik et al., 2017) and
may occasionally occur without a prior episode of VL (el Hassan
et al., 1992; Zijlstra et al., 2003; Das et al., 2012, 2016). PKDL is
suspected based on dermal manifestations that are non-specific
and diagnosis is made on previous VL treatment history and
confirmed parasitologically by microscopy of slit skin smear or
biopsy or PCR (Zijlstra et al., 2017). Conventional serology is
likely to remain positive from the earlier VL and there is no test
in use to predict PKDL (Gidwani et al., 2011). The high parasite
density in PKDL skin provides a source of infection to sand
flies and thus sustains long term transmission and endemicity
(Molina et al., 2017; Mondal et al., 2018).

An unresolved crucial question is how to identify
asymptomatic infected individuals simply and reliably (as
defined by seropositivity, lack of clinical symptoms and no
prior history of VL) who will progress to active VL. High DAT
and/or rK39 ELISA titres have been associated with increased
risk of progression in the Indian subcontinent but as yet there
is no single rapid test in use for this purpose (Hasker et al.,
2014; Chapman et al., 2015). To improve outcome monitoring
of VL and disease control, the World Health Organization has
identified the vital need for a marker of post-chemotherapeutic
cure, and the high priority incorporation of such a biomarker
into a point-of-care rapid diagnostic test (RDT) (World Health
Organization, 2012). Such a test should meet the “ASSURED”
criteria of being: affordable; sensitive (few false negatives);
specific (few false positives); user-friendly, requiring minimal
training; rapid; robust, not requiring cold-storage; equipment-
free, and deliverable to those who need it (Peeling et al.,
2006).

We have previously shown that high anti-Leishmania IgG1
ELISA titers are associated with treatment failure, whereas, in
cases deemed to be cured following chemotherapy, IgG1 levels
diminish significantly by 6 months post-treatment and only IgG1
gave this level of discrimination (Bhattacharyya et al., 2014a).
We demonstrated this by ELISA against L. donovani whole
cell lysate, and then adapted the assay to a prototype lateral
flow immunochromatographic RDT. Here, we present further
evaluation of this RDT, called VL Sero K-SeT, to indicate cure
after VL treatment in a larger, paired, sample set and to confirm
relapse. We also performed western blot on the same sample set.
Additionally we show the potential utility of VL Sero K-SeT and
other IgG1 assays to confirm PKDL.

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2 December 2018 | Volume 8 | Article 427

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Marlais et al. IgG1 to Monitor Visceral Leishmaniasis

METHODS

Ethics Statement
In India, the collection of samples was approved by the
Ethics Committee of Banaras Hindu University, Varanasi.
In Sudan approval was by the Ethical Research Committee,
Faculty of Medicine, University of Khartoum and the National
Health Research Ethics Committee, Federal Ministry of Health,
Sudan. Written informed consent was obtained from adult
subjects included in the study or from the parents or
guardians of individuals <18 years of age. In Nepal, informed
consent was obtained from all the participants and the
ethical committee of the B.P. Koirala Institute of Health
Sciences (BPKIHS) approved the study. This research was
also approved, as part of the EC NIDIAG project, by the
London School of Hygiene and Tropical Medicine Ethics
Committee.

Sources of Sera/Plasma
We retrospectively selected sera or plasma from an archive of
different VL disease states. Samples had been collected in VL
endemic regions, namely Muzaffarpur in Bihar, India after 2007
and in 2013 in Gedaref, Sudan. Sample sizes used during this
evaluation were dependent on availability of appropriate samples
and reagents.

In India, cases of VL had been diagnosed by positive
rK39 serology and/or parasitologically by microscopy of splenic
aspirates. In Sudan active cases of VL had been diagnosed
by microscopy of bone marrow or lymph node aspirates in
conjunction with serological assays. These diagnoses were made
according to their respective national procedures, prior to the
present study. Sera/plasma were stored at −80◦C until use.
All patients were HIV negative. We have previously observed
that serum and plasma derived from the same sample show
no difference in IgG titer in ELISA against L. donovani lysate
(unpublished observations), although we have not specifically
assessed IgG1 with both sample types.

India
Indian sample types are described in Table 1. We have previously
found that in Indian VL, IgG1 titer up to day 30 post-treatment
initiation is not statistically significantly different from pre-
treatment (Bhattacharyya et al., 2014a) and therefore we consider
these as “pre-treatment” in paired samples for the purposes of this
study. Treatment of VL was with single-dose AmBisome alone or
with 10 days of miltefosine. PKDL was treated with miltefosine
for 84 days. DAT and rK39 ELISA were conducted prior to
the present study as part of standard diagnostic procedures in
India.

Sudan
Sudanese paired serum samples (n = 17 pairs) were taken
on day of diagnosis of VL and at the end of treatment at
11 days (AmBisome), 17 days (sodium stibogluconate (SSG)
+ paromomycin), or 30 days (SSG only). These samples were
previously tested for IgG1 by ELISA (Bhattacharyya et al., 2014a).
Additional Sudanese serum samples used in the present study
were unpaired treated individuals (n= 2) taken an unknown time

TABLE 1 | Indian sample types and total numbers tested by IgG1 assays.

Sample type Definition n

Pre- and

post-treatment pairs,

deemed cured

Treated for VL, with improvement in

clinical symptoms and no evidence of

relapse at any time 6 months after

treatment. Samples were taken at or

around the start of treatment and at 6

months.

105 pairs

Relapse VL treated and subsequently relapsed

to active disease. Sampled at the

time of relapse diagnosis.

33

PKDL Samples taken at or up to 30 days

after diagnosis of PKDL. Parasite

infection was confirmed by PCR or a

slit-skin smear or biopsy.

63

Asymptomatic Asymptomatic seropositive, on the

basis of DAT and/or rK39 ELISA,

without symptoms or history of VL.

Progressors (n = 4) developed VL

after sampling. Non-progressors

(n = 4) did not develop VL during

follow-up of at least 3 years.

8

Other diseases Malaria (n = 5); tuberculosis (n = 5),

rheumatoid arthritis (n = 1); dengue

(n = 1); multiple myeloma (n = 1).

13

Endemic healthy

control

Resident in VL endemic area,

seronegative by DAT and rK39 ELISA,

no history of VL, healthy.

30

after treatment, and relapse (n = 1). Sudanese Endemic Healthy
Control (EHC) samples had previously been tested by the IgG1
ELISA using the same antigen and were negative (Bhattacharyya
et al., 2014a) but were not retested here.

Antigen Production
Whole cell lysate of L. donovani strain MHOM/IN/80/DD8
isolated from India, and MHOM/SD/97/LEM3458 isolated from
Sudan, was prepared as described previously (Bhattacharyya
et al., 2014a). Lysate antigen was used for VL Sero K-SeT
development (strain LEM3458), ELISA and western blot (strain
DD8). Antigen preparation for western blot strips contained 50
µl of protease inhibitor cocktail (P8340, Sigma, UK) per 1ml of
L. donovani cells; centrifugation after sonication was 16,160 × g
for 45min at 4◦C.

ELISA for IgG1 Anti L. donovani
Duplicate ELISA plates were coated overnight at 4◦C with L.
donovani DD8 strain antigen prepared as above, at 2µg/ml in
coating buffer (35mM NaHCO3, 15mM NaCO3, pH 9.6), 100
µl/well. Plates were washed 3 times with phosphate buffered
saline (PBS) + 0.05% Tween 20 (PBST) prior to blocking with
200 µl/well PBS + 2% w/v non-fat milk powder (Premier
International Foods, UK) (PBSM) for 2 h at 37◦C, followed by
three PBST washes. Sera/plasma were diluted 1/100 in PBST+
2% w/v non-fat milk powder (PBSTM) and applied at 100
µl/well, incubated for 1 h at 37◦C then washed 6 times with
PBST. Mouse anti human IgG1-horse radish peroxidase (HRP)
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(ab99774, Abcam, UK) was diluted 1:5,000 in PBSTM and
incubated at 100µl/well, 37◦C for 1 h. Plates were washed 6 times
with PBST before the addition of 100 µl/well of freshly prepared
substrate solution (50mM citric acid, 50mM Na2HPO4, 2mM
o-phenylenediamine HCl, 0.009% H2O2). Plates with substrate
were incubated in the dark at room temperature for 10–15min
when the reaction was stopped with 100 µl/well of 1M H2SO4

and absorbance read at 490 nm. Each plate contained an EHC
sample as a negative serological control for determining the
positivity cut-off and a known seropositive VL sample as positive
control. All ELISA results reported are themean A490 of duplicate
plates.

RDT Production and Use
Whole cell lysate was prepared as described previously
(Bhattacharyya et al., 2014a) from L. donovani strain
MHOM/SD/97/LEM3458. The VL Sero K-SeT lateral flow
immunochromatographic tests were developed at Coris
BioConcept and consisted of a cassette with a nitrocellulose
membrane, a sample pad, a conjugate pad and an absorbent pad,
backed with a plastic strip. The nitrocellulose membranes were
sensitized with the L. donovani lysate antigen and anti-human
IgG1-specific antibody labeled with colloidal gold was dried on
the conjugate pad. This strip was housed in a plastic cassette with
two windows: the smaller buffer well and the long central test
window.

To perform the test, 3.5µl of serum/plasma was applied to the
test window at the point indicated by a dot (·) on the cassette,
followed immediately by 120 µl of supplied running buffer to the
buffer well (Figure 1). Devices were incubated flat, at ambient
temperature for 15min before being assessed visually. Any test
line at position T was considered a positive result if a control
line was also present at position C. Positive test line intensity was
assessed visually for samples from pre- and post-treatment VL
(Figure 1). A subset of samples was tested on different batches of
the VL Sero K-SeT. Readers of the RDTs were blinded to all the
corresponding ELISA results.

Western Blotting
Western blots were performed to visualize antigen recognition
in patients from the different clinical groups, as described in
Supplementary Material S1. Briefly, tricine SDS-PAGE gels were
made as per Schägger (2006). L. donovani DD8 lysate was
used as antigen with sera/plasma diluted 1 in 300 (Sudan)
or 1 in 400 (India) and detection was by mouse anti human
IgG1-HRP.

Statistical Analysis
We performed a two-tailed Fisher’s exact test on Indian VL
Sero K-SeT and IgG1 ELISA data to calculate p-values between
samples from pre- and matched 6 months post-treatment
(deemed cured), separately between post-treatment and relapse,
and between post-treatment and PKDL. Cut-off for the IgG1
ELISA was calculated as the mean absorbance of the EHC
samples plus 3 standard deviations.

RESULTS

IgG1 Diminishes by 6 Months in Cured VL
Patients
Samples taken from Indian patients before or at the outset of
therapy, were compared by VL Sero K-SeT and IgG1 ELISA with
paired samples taken 6 months later when the individuals were
deemed cured. Both IgG1 assay methods showed a statistically
significant difference in positivity rate between pre- and post-
treatment samples (p = 0.0162 and p < 0.0001 for ELISA
and RDT, respectively) (Figure 2). A consistent and strongly
significant difference was also observed between cured vs.
relapsed samples (p < 0.0001), again with both IgG1 assay
methods (Figure 2).

A subset of pre- and post-treatment of the cured pairs samples
(n = 87) was tested on different batches of the VL Sero K-SeT,
with agreement between individual RDTs of 92.0% (80/87).

Changes in IgG1 Levels by ELISA and VL
Sero K-SeT
ELISA absorbance and corresponding VL Sero K-SeT results for
individual samples are given in Supplementary Material S2. Of
the 80 Indian paired samples tested for anti L. donovani IgG1
by ELISA, 54 (67.5%) were positive before treatment. Of these,
51/54 declined in titer: 21/51 (representing 26.3% of the total 80)
went from positive to negative and 30/51 (representing 37.5% of
the total 80) had reduced IgG1 at 6 months when deemed cured
(Figure 2 and Table 2). Twenty one (26.3%) paired cured sera
were negative by IgG1 ELISA before treatment and remained so
at 6 months.

Overall, including those negative at the start, at 6 months
after treatment 79/104 (76.0%) were negative by VL Sero K-
SeT (Table 2). VL Sero K-SeT results were additionally assessed
according to whether the Indian 6 month post-treatment (cure)
sample had a decreased or not decreased test line intensity
compared to the paired pre-treatment sample. Of the 104 paired
samples tested by VL Sero K-SeT from deemed cured Indian
VL patients, 81 (77.9%) were positive at start of treatment
(Table 2); of these, 68/81 (84.0%) had either become negative
or had a visibly reduced test line intensity at 6 months
when deemed cured. Thirteen (12.5%) initially RDT positive
individuals showed no visible decrease in RDT band intensity at
6 months, despite being deemed cured, and none became positive
from negative.

Ninety four percent of samples positive by ELISA at pre-
treatment, decreased in seropositivity; for VL Sero K-SeT, this
proportion was 84%. However, at 6 months post-treatment, the
ELISA was more likely to remain positive than the RDT, using
the cut-off value established for the IgG1 ELISA.

Seventy nine Indian samples were tested by both VL Sero K-
SeT and ELISA. Of these samples, the RDT was more likely than
the ELISA to be positive with pre-treatment samples (78.5 vs.
67.1%) and negative with 6 month samples (78.5 vs. 53.2%). Of
samples which remained positive at 6 months by both methods
(n = 14), the change in intensity of RDT test line generally
mirrored the change in ELISA absorbance value for the same
sample. Three of the Indian samples increased markedly in IgG1
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FIGURE 1 | Representative examples of VL Sero K-SeT test line intensity. C, control line; T, test line; dot (•) indicates where sample is applied. Test strip manufacture

was identical despite being housed in different cassettes. Image is best viewed in digital, color format.

FIGURE 2 | IgG1 anti L. donovani assays with Indian VL samples detect differences according to treatment outcome. (A) ELISA A490 change between paired

pre-treatment samples and at 6 months post-treatment when deemed cured. Dashed line indicates cut-off (A490 = 0.128). Positivity rates with paired pre-treatment

and cured samples at 6 months (6 mth), and non-paired relapse (Rel) for (B) ELISA, (C) VL Sero K-SeT. *p < 0.0001, **p = 0.0162.

titer by ELISA at 6 months (Figure 2). Two of these accorded
with a corresponding rise in VL Sero K-SeT test line intensity;
for the third sample, both pre-treatment and 6 month RDTs were
negative (Figure 2A).

Sudanese paired samples taken before and immediately after
treatment (11–30 days later) were similarly assessed (Table 2).
For Sudanese paired samples prior to treatment, 13/17 (76.5%)
were positive by VL Sero K-SeT and at completion of treatment,
10/13 (76.9%) had a negative or reduced test line intensity
(Table 2). If taken as a single time point at the end of treatment,
10/17 (58.8%) Sudanese VL patients had negative VL Sero K-
SeT result. Four (23.5%) of the Sudanese treated individuals

were negative pre-treatment, similar to the proportion of Indian
samples (22.1%). Two additional un-paired treated Sudanese
samples were negative by RDT (not shown).

IgG1 Western Blot Confirmed
Negative/Declined RDT in Cure
For a subset of 25 of the paired Indian samples, western blots
mirrored the VL Sero K-SeT RDT findings, in that IgG1 declined
dramatically in all but one VL patient at 6 months follow up
after treatment (Supplementary Material S3). As with the RDT,
the blots showed that samples that were positive and detecting
many antigens before treatment had become negative or reduced
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TABLE 2 | Change in IgG1 response of pre- and post-treatment paired samples

from India and Sudan.

Change in IgG1 response ELISA A490 VL Sero K-SeT test line intensity

India n (%) India n (%) Sudan n (%)

Positive to negative 21 (26.3%) 56 (53.8%) 7 (41.2%)

Positive clear decrease 30 (37.5%) 12 (11.5%) 3 (17.6%)

Positive no clear decrease 3 (3.8%) 13 (12.5%) 3 (17.6%)

Negative no change 21 (26.3%) 23 (22.1%) 3 (17.6%)

Negative to positive 5 (6.3%) 0 (0%) 1 (5.9%)

Total 80 (100%) 104 (100%) 17 (100%)

in intensity by 6 months. Corresponding RDT images are shown
in Supplementary Material S4.

Elevated IgG1 in VL Relapse
For 33 Indian patients for whom we had unpaired samples
at the time of relapse, the VL Sero K-SeT was 84.8%
(28/33) positive and ELISA 91.3% (21/23) positive, confirming
relapse. Of the 23 samples tested by ELISA that were also
tested by RDT, 19 gave the same result by both assays
(Supplementary Material S2). The single available Sudanese
relapse sample was IgG1 positive (Supplementary Material S5).
Twenty five of the Indian samples and the single Sudanese sample
were also tested on western blot for IgG1 against L. donovani
lysate antigen and showed concordance between the RDT and
blots (Supplementary Materials S2, S5). For two of the 33 Indian
relapse samples, a paired pre-treatment sample was available.
Both individuals were VL Sero K-SeT positive at both time points.

All samples from other diseases, namely malaria, tuberculosis,
dengue fever, rheumatoid arthritis, and multiple myeloma were
negative by VL Sero K-SeT, as were all samples from endemic
healthy controls.

VL Sero K-SeT Can Provide Evidence for
PKDL but Not for Its Cure
Of the 63 PKDL samples tested, 49 (77.8%) were positive by
VL Sero K-SeT and of the subset of 45 tested by IgG1 ELISA,
43 (95.6%) were positive (Supplementary Material S2). A subset
of 10 VL Sero K-SeT-positive PKDL samples were tested by
western blot, of which 9 showed discernible bands. Images of the
blots and their corresponding VL Sero K-SeT RDTs are shown
in Supplementary Material S6. There was a highly statistically
significant difference between post-treatment cured samples at
6 months and PKDL by both VL Sero K-SeT and IgG1 ELISA
(Fisher’s exact p < 0.0001 for both assays).

Seventeen of the 63 individuals with PKDL provided between
1 and 5 additional sequential follow-up samples over intervals
ranging from 15 to 365 days post-treatment. These PKDL post-
treatment sequential samples retained the initial RDT result in
12/17 (70.6%) cases, decreased in 3/17 (17.6%), increased slightly
in one case (5.9%) and varied between positive and negative over
time in one case (5.9%).

IgG1 Can Indicate Progression From
Asymptomatic Status
When samples from asymptomatic seropositive individuals who
later progressed to symptomatic disease (progressors, n = 4)
were tested on the VL Sero K-SeT, all gave a positive test
result (Supplementary Material S7). In contrast, 4 individuals
who were seropositive but did not develop symptomatic VL
were negative by VL Sero K-SeT. Thus, in our limited
sample size, elevated IgG1 levels, as detected by VL Sero K-
SeT, were associated with progression to symptomatic disease.
This result was corroborated by ELISA and western blot
(Supplementary Material S7).

DISCUSSION

Conventional serology for VL diagnosis relies on detecting the
overall IgG response. This has been reported to remain elevated,
often for years, after treatment (Bhattarai et al., 2009; Gidwani
et al., 2011; Srivastava et al., 2013). This makes current serology
unsuitable for timely monitoring of treatment outcome. We
have previously found using ELISA that a decreased or negative
anti Leishmania IgG1 titer at 6 months post-treatment can be
indicative of VL cure, whereas elevated IgG1 levels are associated
with post-chemotherapeutic relapse (Bhattacharyya et al., 2014a).

Monitoring of Post-treatment Outcomes
Here we used a larger panel of paired samples to assess the
IgG1 response as detected by the rapid test, VL Sero K-SeT,
where 77.9% of Indian samples were positive before treatment
and of these 69.1% had become negative 6 months later when
deemed cured (Table 2). In total, 76% of 6 month samples
were negative, a significant difference from pre-treatment (p <

0.0001). Of those still positive at 6 months using this RDT, we
found that a diminished test line intensity was also consistent
with cure. This decline was corroborated by ELISAs, and despite
slight differences in the antigen preparations. We have found no
difference in performance of the VL Sero K-SeT when DD8 strain
antigen is used instead of LEM3458 (unpublished observations).
Thus, the VL Sero K-SeT is a promising innovation, although
there is a need to improve further its discriminative capacity.

Sudanese samples declined from positive to negative or
decreased VL Sero K-SeT test line intensity in 76.9% of patients
immediately after treatment, no more than 30 days after the
first sample. This apparently rapid drop in IgG1 was not seen
in Indian samples and could be due to the overall lower IgG
titer observed in Sudanese samples (Bhattacharyya et al., 2014b;
Abass et al., 2015). Thus, a small drop in IgG1 titer could have
taken these samples below the detection limit of the VL Sero
K-SeT. This may suggest that the VL Sero K-SeT can be used
before 6 months to indicate cure or relapse in eastern Africa. The
unexpectedly low sensitivity of the VL Sero K-SeT at the start of
treatment for both Indian (77.9%) and Sudanese (76.5%) samples
does not hinder the subsequent assessment of cure at 6 months,
because a negative IgG1 result at 6 months can indicate cure. In
addition, we do not propose to use IgG1 assays as a diagnostic for
active VL but rather to assist with confirming cure, relapse and
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PKDL, all of which currently lack an appropriate diagnostic test.
With Indian samples, where there was discrepancy between VL
Sero K-SeT and ELISA, the RDT was generally more accurate,
being positive with pre-treatment and negative with 6 month
samples (Supplementary Material S2). As for the Indian sera,
the strength of RDT test line intensity broadly corresponded with
ELISA signal for an individual sample.

Elevated levels of IgG1 were associated with VL relapse in
both assays here for Indian samples. Likewise, the single Sudanese
relapse patient was positive by VL Sero K-SeT, whilst 2 treated
individuals were negative. We do not know the length of time
between treatment and relapse for relapsed individuals (India
and Sudan), or the outcome of treated Sudanese individuals.
Burza et al. (2014) advised that patient follow-up should be
extended from 6 to 12 months as 50–85% of relapses have been
found to occur 6 to ≥12 months post-treatment (Rijal et al.,
2013; Burza et al., 2014). Our evaluations of a limited number
Nepalese relapse samples eluted from filter paper indicated that,
although encouraging, elution volumes and conditions need
further optimisation before they can be more extensively used
with VL Sero K-SeT (data not shown).

We found that in Indian cases who relapsed, the RDT
positivity rate was significantly different from 6 month samples
from patients deemed cured (p < 0.0001). Thus, the VL Sero
K-SeT, with Indian samples, can contribute to distinguishing
patients deemed cured from those who have relapsed. Of the
13 Indian patients deemed cured at 6 months but who had no
clear decrease in VL Sero K-SeT test line intensity (Table 2), none
is known to have relapsed with VL. However, the quantitative
ELISA did detect an IgG1 decrease in these samples, consistent
with cure. Apparent relapses might however, occasionally include
re-infections given the highly endemic locations (Morales et al.,
2002). Although beyond the scope of the present study, the
inclusion of parasite genotyping in a future study would be an
advantage.

Cases co-infected with HIV and VL were not included in the
present study. Serological diagnosis is less reliable in HIV/VL
co-infection (Cota et al., 2012; Abass et al., 2015) and the
dynamics of IgG1 response in HIV/VL co-infections need to be
determined. Other techniques such as a loopmediated isothermal
amplification (LAMP) or qPCR detecting parasite DNA might
have the potential to discriminate cure from relapse in HIV/VL
patients but are currently less accessible than immunological tests
(Mukhtar et al., 2018).

PKDL
Indian individuals with PKDL tested here were defined as being
with or without a previous history of VL, presenting with a
dermal macular, papular or nodular rash often starting on the
face with further spread to other parts of the body without loss
of sensation. VL Sero K-SeT and IgG1 ELISA results suggest
that these assays might contribute to PKDL case detection, as
found by a study by Saha et al. (2005), whereas conventional
serology may be of limited utility (Gidwani et al., 2011). Our data
did not assess the predictive value of IgG1 for development of
PKDL.

Where the information was available with our sample set,
we did not observe an association between elevated IgG1 and
macular vs. polymorphic PKDL presentation, this is in contrast
to the report of Mukhopadhyay et al. (2012). For a subset of these
PKDL samples, we also tested sequential samples taken up to
1 year after the initial sample. We did not observe a consistent
decrease in IgG1 after PKDL treatment.

Progression From Asymptomatic to Active
VL
Asymptomatic, seropositive cases outnumber active VL cases
(Bern et al., 2007; Ostyn et al., 2011; Hasker et al., 2013; Hirve
et al., 2016; Saha et al., 2017) but a proportion are at elevated risk
of progressing to active VL (Gidwani et al., 2009; Topno et al.,
2010; Ostyn et al., 2011). Asymptomatics have been reported to
occasionally have detectable parasites by PCR or culture of blood
(le Fichoux et al., 1999; Costa et al., 2002; Bhattarai et al., 2009;
Srivastava et al., 2013). Therefore, neither standard seropositivity
nor parasitaemia are indicators of progression to clinical disease.
Gidwani et al. (2009) found that this progression to VL occurred
up to 2 years after serological positivity.

Our limited sample size of seropositive asymptomatic
individuals were identified during a community serological
screening study, before the present study. Those who later
progressed to clinical VL were positive by VL Sero K-SeT and
ELISA, whilst those who did not progress were negative by both
assays. High titres in both DAT and rK39 ELISA have been
indicative of progression in larger studies (Ostyn et al., 2011;
Hasker et al., 2014). However, this combination of tests requires
laboratory facilities, therefore it would be desirable to have an
RDT that could predict progression.

Additional validation of the VL Sero K-SeT should compare
larger cohorts who do and do not progress to VL.

Potential Clinical Application of IgG1 Tests
On the basis of the IgG1 responses reported here by VL Sero
K-SeT and ELISA, we propose that IgG1 levels may contribute
to monitoring the therapeutic outcome of VL, irrespective of
whether there is a pre-treatment sample or result. With further
development and validation, IgG1 assays, including the VL Sero
K-SeT, which can be produced in large-scale at a cost of a
few Euros per test, can be used as an adjunct to the clinical
assessment of VL status following treatment. A negative, or
defined decrease in IgG1 result at 6 months post treatment
in India could be supportive of the clinical assessment of
cure. Conversely, an un-paired positive or non-decreased paired
positive result at 6 months could indicate the need for additional
follow-up. In Sudan, the test may be applicable for defining cure
before 6 months. A positive IgG1 result in suspected PKDL or
relapse could support the presence of leishmaniasis compared to
differential diagnoses. Although western blots were supportive of
the use of IgG1, we did not specifically assess banding patterns,
and do not propose their use in VL diagnosis. However, we are
investigating the discriminative diagnostic potential of antigens
separated on acrylamide gels.
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Recommendations for Further Validation of
IgG1 Assays
We propose that a prospective study, with extended follow-up
of a larger cohort of treated VL patients, should be used to
validate the use of IgG1 ELISA and the VL Sero K-SeT for
confirming cure in all endemic areas and defining the optimal
time for testing, which may differ between regions. This longer
follow-up would also indicate the potential of elevated IgG1 to
predict relapse and PKDL and in turn, link these with different
treatment regimens. A more extensive study of PKDL is required
to determine the potential role of IgG1 in identifying PKDL as
distinct from leprosy and fungal skin diseases (Saha et al., 2005;
Mondal and Khan, 2011). In addition, use of the IgG1 assays
on a much larger panel of seropositive asymptomatic individuals
would help to define its role in predicting progression to VL. In all
cases, comparison with existing diagnostics, including definitive
parasitological methods, would directly assess the advantage of
IgG1 assays.

Technical refinement of the VL Sero K-SeT should consider
the use of electronic RDT readers to give an objective
assessment of test band intensity. In addition, the identification
of specific antigens suitable to replace the use of parasite lysate
would obviate issues regarding batch-to-batch variation. These
developments could improve precision of IgG1 readings and
reproducibility. A comparison of whole blood and serum/plasma
is also required for point-of-care use, although a study in
Bangladesh on various VLRDTs did find high agreement between
the two sample types (Ghosh et al., 2015).

CONCLUSION

IgG1 assays, particularly in the VL Sero K-SeT RDT format, may
be a useful adjunct in the assessment of VL treatment outcome
and diagnosis of PKDL, which have been identified as research
priorities for VL (World Health Organization, 2012). With
additional refinement and validation, the VL Sero K-SeT and
IgG1 ELISA could contribute to life-saving follow-up of treated
patients and to control programmemonitoring, surveillance, and
targeting of strategies for long-term control of VL.
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Abstract

Background

The search for diagnostic biomarkers has been profiting from a growing number of high

quality sequenced genomes and freely available bioinformatic tools. These can be com-

bined with wet lab experiments for a rational search. Improved, point-of-care diagnostic

tests for visceral leishmaniasis (VL), early case detection and surveillance are required. Pre-

vious investigations demonstrated the potential of IgG1 as a biomarker for monitoring clini-

cal status in rapid diagnostic tests (RDTs), although using a crude lysate antigen (CLA) as

capturing antigen. Replacing the CLA by specific antigens would lead to more robust RDTs.

Methodology

Immunoblots revealed L. donovani protein bands detected by IgG1 from VL patients. Upon

confident identification of these antigens by mass spectrometry (MS), we searched for

evidence of constitutive protein expression and presence of antigenic domains or high

accessibility to B-cells. Selected candidates had their linear epitopes mapped with in silico

algorithms. Multiple high-scoring predicted epitopes from the shortlisted proteins were

screened in peptide arrays. The most promising candidate was tested in RDT prototypes

using VL and nonendemic healthy control (NEHC) patient sera.

Results

Over 90% of the proteins identified from the immunoblots did not satisfy the selection criteria

and were excluded from the downstream epitope mapping. Screening of predicted epitope

peptides from the shortlisted proteins identified the most reactive, for which the sensitivity

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007353 May 6, 2019 1 / 20

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPEN ACCESS

Citation: Bremer Hinckel BC, Marlais T, Airs S,
Bhattacharyya T, Imamura H, Dujardin J-C, et al.
(2019) Refining wet lab experiments with in silico
searches: A rational quest for diagnostic peptides
in visceral leishmaniasis. PLoS Negl Trop Dis
13(5): e0007353. https://doi.org/10.1371/journal.
pntd.0007353

Editor: Sitara SR Ajjampur, Christian Medical
College, Vellore, INDIA

Received: June 28, 2018

Accepted: April 1, 2019

Published: May 6, 2019

Copyright: © 2019 Bremer Hinckel et al. This is an
open access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information
files.

Funding: BCBH was part of the Euroleish.net
training network (http://www.euroleish.net/) and
has received funding from the European
Commission Horizon 2020 Research and
Innovation Programme under Marie-Sklodowska
Curie grant agreement number 642609. TM is
funded by the Sir Halley Stewart Trust

http://orcid.org/0000-0001-7127-0137
http://orcid.org/0000-0002-1458-8306
https://doi.org/10.1371/journal.pntd.0007353
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007353&domain=pdf&date_stamp=2019-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007353&domain=pdf&date_stamp=2019-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007353&domain=pdf&date_stamp=2019-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007353&domain=pdf&date_stamp=2019-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007353&domain=pdf&date_stamp=2019-05-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007353&domain=pdf&date_stamp=2019-05-16
https://doi.org/10.1371/journal.pntd.0007353
https://doi.org/10.1371/journal.pntd.0007353
http://creativecommons.org/licenses/by/4.0/
http://www.euroleish.net/


for IgG1 was 84% (95% CI 60—97%) with Sudanese VL sera on RDT prototypes. None of

the sera from NEHCs were positive.

Conclusion

We employed in silico searches to reduce drastically the output of wet lab experiments,

focusing on promising candidates containing selected protein features. By predicting epi-

topes in silico we screened a large number of peptides using arrays, identifying the most

promising one, for which IgG1 sensitivity and specificity, with limited sample size, supported

this proof of concept strategy for diagnostics discovery, which can be applied to the develop-

ment of more robust IgG1 RDTs for monitoring clinical status in VL.

Author summary

Visceral leishmaniasis (VL) is a neglected tropical disease caused by protozoan parasites
of the Leishmania donovani complex. Without treatment, VL is fatal. Although diagnostic
techniques, mainly based on the detection of anti-Leishmania antibodies are available,
invasive procedures such as microscopy from spleen or bone marrow aspirates are still
required for the diagnosis of seronegative VL suspects, for the detection of recurrent cases
and to confirm cure after successful treatment. Previous investigations showed the poten-
tial of IgG1 as a biomarker of post-chemotherapeutic relapse for VL in rapid diagnostic
tests (RDTs) sensitised with crude lysate antigen (CLA). Here we employed in silico tools
to search for desired protein features in a large number of L. donovani antigens detected
by human IgG1 in western blots. We then employed prediction algorithms to profile epi-
topes from the shortlisted proteins. We screened a panel of high-scoring peptides in a
high-throughput manner using arrays, with low reagent consumption. The most reactive
peptide was adapted to RDTs, showing promising results of both sensitivity and specific-
ity. This peptide has the potential of replacing the CLAs in IgG1 RDTs. Thus we believe
that in silico tools can be used to optimise wet lab experiments for a rational search of
biomarkers.

Introduction

The leishmaniases comprise a group of vector-borne diseases caused by parasites of the genus
Leishmania. The visceral form—visceral leishmaniasis (VL), also known as kala-azar (Hindi
for ‘black fever’) affects internal organs such as liver, spleen and bone marrow, and leads to
death if left untreated. VL is caused by parasites of the Leishmania donovani complex and in
2015 over 23.000 new cases were reported to the world health organization (WHO) worldwide
[1] while an overall case-fatality rate of 10% has been estimated [2]. VL is diagnosed by a com-
bination of clinical symptoms, including prolonged fever, weight loss, hepatosplenomegaly
and malaise, and the detection of parasite-specific immunoglobulins (Igs). The recombinant
protein rK39, a fragment of a Leishmania infantum kinesin-like gene, was described in 1993
[3] and remains the most widely used antigen for VL serodiagnosis. Nonetheless, novel and
improved antigens are still required to complement the use of the rK39, to improve sensitivity
in eastern Africa [4, 5] and to determine cure after successful chemotherapy (versus relapse).

Combining wet and dry lab for a rational search of biomarkeres in visceral leishmaniasis
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The recombinant chimeric protein rK28, which is a derivative of the rK39, incorporating
the first two repeats of a Sudanese L. donovani kinesin flanked by proteins HASPB1 and
HASPB2, was engineered to address low sensitivity values reported from eastern Africa.
Although a slight better performance compared to the rK39, both in terms of sensitivity and
specificity, was reported with Sudanese VL patients [6], important variations in sensitivity
amongst different rK39 rapid diagnostic test (RDT) manufacturers were also reported from
that region [7]. Moreover, false positive rates as high as 19.5% in eastern African patients were
described [8], meaning that further investigations are still required to confirm the relevance of
the rK28 as well as its superiority over the rK39-based diagnostic tests for VL in eastern Afri-
can patients. Due to Igs persistence even after complete parasite clearance [9–13], neither the
rK39 nor the rK28 commercial diagnostic kits can be employed to determine cure after suc-
cessful chemotherapy.

There has been a dramatic reduction in genome sequencing costs, accompanied by an
exponential increase in the number of available sequences in public repositories [14, 15]. The
first Leishmania spp. genome sequencing was completed in 2005 [16]. More recently, the
advent of high-throughput technologies has enabled the completion of the whole genome
sequencing of L. donovani, the causative agent of VL in the Indian subcontinent [17]. More-
over, the availability of next-generation sequencing made it possible to perform whole tran-
scriptome sequencing. RNA sequencing (RNA-seq) generates data on the transcriptome at a
specific stage of a pathogen life cycle or in a specific culture condition of an organism. The
growing number of available, high quality, whole genome sequences has become a central ele-
ment in the area of comparative genomics, which has contributed greatly to a better under-
standing of multiple aspects of the leishmaniases, including determinants of disease phenotype
[18], mode of action of drugs [19] and parasite biology [20].

Igs are a major component of the immune system. They bind specific regions of pathogens’
proteins (epitopes), tagging them for clearance by the immune system. Epitopes can be divided
into linear (a continuous stretch of amino acids (AAs)) and discontinuous (where non-proxi-
mal residues are brought together by protein folding) and can be identified by functional and
structural studies (e.g. X-ray crystallography), while in silico epitope prediction algorithms are
gaining popularity. The early prediction methods of linear B-cell epitopes were mainly based
on propensity scales [21]. More recently, machine learning methods have been employed to
improve prediction performance [22–24]. The prediction of discontinuous epitopes still
depends on the availability of 3D structures. In silico tools can also be used to locate antigenic
domains from DNA sequences or peptide sequences influencing protein localisation within
cells.

Diagnostic research can incorporate genomics, transcriptomics, proteomics as well as bio-
informatic prediction algorithms for the discovery of new biomarkers. Such a systematic
‘omics’ approach has been applied alone for the discovery of vaccine candidates [25–27] as
well as for diagnostic biomarkers [28]. These in silico searches can also be applied downstream
of wet lab experiments, refining their output for a rationalised search.

Mass spectrometry (MS) can be used to identify proteins from wet lab experiments (e.g.
immunoblots). Comparative genomics enables identification of species-specific genes, while
levels of life-stage specific proteins can be estimated using publicly available RNA-seq data. In
silico prediction algorithms can be employed to infer protein localisation, search for antigenic
domains as well as to predict linear B-cell epitopes. Synthetic peptides can then be incorpo-
rated into arrays, enabling the screening of a large number of candidates in pilot serological
assays. Promising candidates can be adapted and tested in RDTs, a format suitable for field
use.
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Here we employed comparative genomics as well as in silico algorithms to reduce drastically
the excessive number of L. donovani protein candidates recognised by human IgG1, which has
been shown to be a potential indicator of post-chemotherapeutic relapse in VL, using RDT
prototypes sensitised with a L. donovani crude lysate antigen (CLA) [29]. By screening a large
number of predicted epitopes from selected candidate antigens containing desired protein fea-
tures, we identified one peptide specifically recognised by IgG1 in arrays. This peptide was also
tested in prototype RDTs with VL patient sera as well as sera from nonendemic healthy con-
trols (NEHCs), showing promising results of both sensitivity and specificity on a small sample
size. Thus we propose that this approach is a valid proof of concept for the discovery of diag-
nostic peptides, which can be used to replace the CLA in IgG1 RDTs, leading to the production
of cheaper and more robust RDTs for monitoring clinical status in VL.

Methods

Ethics statement

In India, the collection of samples was approved by the Ethics Committee of Banaras Hindu
University, Varanasi while in Sudan the approval for collection and research was granted by
the Ethical Research Committee, Faculty of Medicine, University of Khartoum and the
National Health Research Ethics Committee, Federal Ministry of Health, Sudan. Written
informed consent was obtained from all adult subjects included in the study or from the
parents or guardians of individuals less than 18 years of age. This research was also approved,
as part of the EC NIDIAG project, by the London School of Hygiene and Tropical Medicine
Ethics Committee as well as by the Ethics Committee of the Antwerp University Hospital.

Sources of sera

A detailed description of all serum samples used in this work can be found below while a sum-
mary is shown in Table 1.

India. Indian sera were selected from archived samples, collected after 2007 from active
VL, relapsed and endemic healthy controls (EHCs), all from the endemic region of Muzaffar-
pur, Bihar. Active VL cases had been diagnosed by positive rK39 and/or DAT serology and
parasitologically by microscopy of splenic aspirates prior to the present study. Relapses were
diagnosed clinically. All Indian samples were HIV negative.

Sudan. Sudanese serum samples were collected in 2011 and 2012 from the VL-endemic
region of Gedaref in eastern Sudan. VL cases had been diagnosed by microscopy of bone mar-
row or lymph node aspirates in conjunction with serological assays (rK39 or rK28) and were
all HIV negative. These diagnoses were carried out according to their respective national pro-
cedures, prior to the present study.

Table 1. Serum samples used in this study. Details of all serum samples used in the western blots, peptide arrays and
RDT prototypes.

Sample
type

Region Definitions n

Active VL India Samples were taken at or around onset of treatment (D0, D7 or D15) 25

Relapse VL treated and subsequently relapsed to active disease. Sampled at the time of relapse
diagnosis

26

Total India 51

Active VL Sudan Samples were taken at or around onset of treatment (D0, D7 or D15) 19

NEHC France Samples from healthy donors living in region where no transmission of VL is
documented

10

https://doi.org/10.1371/journal.pntd.0007353.t001

Combining wet and dry lab for a rational search of biomarkeres in visceral leishmaniasis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007353 May 6, 2019 4 / 20

https://doi.org/10.1371/journal.pntd.0007353.t001
https://doi.org/10.1371/journal.pntd.0007353


NEHC. Sera was obtained from whole blood collected from Etablissement Français du
Sang, France. All donors were informed of the use of the blood for research purpose and gave
their informed consent for the purpose of scientific research use and that all national laws and
ethical principles were fulfilled. The samples were fully anonymised. All samples were certified
to be negative for the following transmissible diseases: HIV-1, HIV-2, HCV, HBV, HTLV I,
HTLV II and syphilis.

Wet lab identification of L. donovani antigens detected by IgG1

L. donovani promastigote antigens recognised by human IgG1 were profiled using western
blots as described in the repository protocols.io (dx.doi.org/10.17504/protocols.io.u8rezv6).
Briefly, the cytosolic proteins from a L. donovani (strain MHOM/IN/80/DD8) whole cell
lysate were separated by SDS-PAGE, blotted onto a nitrocellulose (NC) membrane and sliced
into individual strips, to be immunoassayed with sera from individual patients from India.
Upon visual identification of bands of interest on the individual strips using HRP-labelled
anti-human IgG1 as secondary antibody, new gels were run and corresponding immuno-
genic bands were excised and analysed by mass spectrometry (MS) (syn. liquid chromatogra-
phy tandem mass spectrometry (LC-MS/MS)), according to the methods described in S1
Text. Protein hits were identified by matching peptide fragments against the L. donovani ref-
erence genome-derived proteome only (ENA accession nos. FR799588-FR799623 [17]),
henceforth referred to as LdBPK v1 genome. These proteins were submitted to the in silico
filter detailed below.

In silico refinement of wet lab output

Desired protein features were searched in silico in order to decrease the number of candidates
from the MS output while shortlisting the proteins more likely to be antigenic, to have their B-
cell epitopes mapped with in silico prediction algorithms. Some protein features were searched
in series while others in parallel, meaning that all shortlisted proteins satisfy the criteria
described in either branch as shown in Fig 1. These shortlisted v1 IDs were then merged with
the IDs from an improved LdBPK282 reference genome (ENA accession number ERP022358,
henceforth referred to as LdBPK v2) according to the correspondence in Data Set 2 from [30].
Hypothetical proteins were excluded, unless containing tandem repeats (TRs). Additional
information on each step of this in silico filter are detailed in the following subsections.

Gene expression analysis—RNA-seq. Transcriptomic data on seven promastigotes and
four amastigotes, representing different parasite life stages was obtained. In the present study
the improved LdBPK282 reference genome was used [30]. Leishmania chromosome copy
number is known to be variable, especially in cultivated promastigotes, which can potentially
change within a few passages. To quantify the RNA-seq depth levels, which were not affected
by somy variability, we used normalised haploid depth (HAP). The average normalised HAP
of all genes were ranked for promastigotes and amastigotes separately and only those genes
whose values were greater than the first quartile (HAP>Q1) in both parasite life stages were
considered as constitutively expressed and and kept for downstream analysis.

Confident MS identification. We matched the peptides identified by MS against the
LdBPK v1 genome only. Each protein hit identified by MS with the software MASCOT [31]
has its own score defined by:

MASCOT score à �10⇥ log10ÖPÜ

The score converted the probability that the observed match was not a random event (P) into
an ascending scale where the lowest score is the most unreliable match, and higher scores
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indicate more reliability [32]. A score of 100 was chosen as the cut-off value to minimise the
chances that any match could be found by chance.

Protein localisation. Exported L. donovani proteins, identified as part of exosomes by
experimental approaches [33] and/or by the presence of a signal peptide were considered
highly accessible to B-cells and thus selected for further analysis. The presence of a signal pep-
tide sequence was searched with the stand-alone version of the software SignalP v4.0 [34] with
the option ‘noTM’. All other optional parameters were default.

Antigenic domain selection. L. donovani proteins harbouring TRs include known B-cell
antigens such as rK39 and rK28, therefore the presence of this domain was included as a crite-
rion correlating with antigenicity. The protein coding DNA sequences were scanned for the
presence of TRs using the stand-alone version of the program Tandem Repeats Finder [35]
(v4.09). All program parameters were default.

Fig 1. In silico filter applied to select desired protein features. Selected protein properties (yellow and green nodes)
were searched in silico on all protein hits identified by MS from selected IgG1 sero-reactive western blot bands (MS
output—top node), with the ultimate goal of shortlisting protein candidates most likely to be antigenic (Shortlisted
proteins—bottom node).

https://doi.org/10.1371/journal.pntd.0007353.g001
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Epitope mapping from shortlisted proteins

Four in silico algorithms were used independently to define B-cell epitopes: ABCPred [23],
Bepipred1.0 [22], EpiQuest-B [36] and lbtope [37]. For all epitopes predicted from each algo-
rithm individually (generally a 15 or 16mer), a ‘core sequence’, stretching from the fifth to the
eleventh AA residue was defined and scanned against the rest of the predicted antigenic pep-
tides, in order to identify peptides of similar sequences. These peptides sharing core sequences
with other predicted peptides at any position in the AA sequence are henceforth referred as
partially overlapping peptides.

While ABCPred, lbtope and EpiQuest-B were run on default values, predicting antigenic
sequences of 16, 15 and 16 AA residues, respectively, shorter sequences with high antigenic
scores were also considered for EpiQuest-B. The highest scoring peptides predicted from
Bepipred were obtained by calculating the area under the curve (AUC) from plots of AA resi-
due position vs. individual residue score for all possible combinations of 16mers with one AA
offset, considering all contiguous predicted antigenic sequences from all submitted proteins.
Additional details about the prediction algorithms employed can be found in Table 2.

Peptide synthesis

Desalted peptides i.e. of varying purity grades were synthesised with an N-terminal biotin mol-
ecule linked via AAG spacer so that they could bind to NC membranes (1620215, Bio-Rad,
USA), which had been previously soaked with neutralite avidin (NLA) (NLA30, e-proteins,
Belgium) and dried at 50˚C. Lyophilised peptides were dissolved according to standard proto-
cols [38]. Where the solvent mixture in which the peptides were dissolved exhibited stable
background values, the peptide concentration was calculated based on their molar absor-
bances, measured either at 280 nm, for tyrosine (Y) and tryptophan (W) containing peptides
[39], or at 205 nm [40], for those without W or Y. For the remaining peptides, the concentra-
tion was calculated by dividing the peptide amount reported by the manufacturer by the vol-
ume of the solvent mixture in which they were dissolved.

Any promising candidate identified from the pilot peptide screening was synthesised with
higher purity grade (>90%) and with a N-terminal biotin—polyethylene glycol-glycine spacer
in order to improve water solubility as well as to increase rotation and ensure that the full
amino acid sequence could freely interact with Igs, as opposed to being adsorbed onto the
solid support and therefore unavailable for recognition by Ig [41].

Table 2. Information on the B-cell epitope prediction algorithms employed. A total of 80 peptides with high anti-
genic scores, independently predicted from four different B-cell prediction algorithms, were selected for synthesis. AA:
amino acid; AUC: area under the curve.

Algorithm Details n

ABCPred Predicts antigenic regions of fixed even length and assigns a score, ranging from zero to one, for
the whole predicted k-mer.

20

lbtope Scans all possible 15mers with one AA offset on all the submitted sequences. A numeric score as
well as the probability of correctnesses of each prediction are outputted.

20

EpiQuest-
B

Calculates individual scores per AA residue (AGR) and the final peptides scores are ranked by the
relative immunogenicity index, which corresponds to the curve (AUC) in a plot residue position
vs. AGR.

20

Bepipred Assigns a score for each AA residue on the submitted sequences. Predicted epitope regions can be
of any length� 1 AA with a score greater than the set cut-off (0.35 for default values). The
antigenicity of the 16mers was calculated from the AUC in a plot residue position vs. score.

20

Total 80

https://doi.org/10.1371/journal.pntd.0007353.t002
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Pilot screening of peptides using arrays

Array production. sciFLEXARRAYER (Scienion AG, Germany) with a PDC 70 piezo dis-
pense capillary (type 3 coating, P-2030/ S-6051, Scienion AG, Germany) was used to spot 7 nl
of the selected peptides at the required concentrations in multiple replicates onto NC mem-
branes previously soaked with NLA and dried at 50˚C. rK39 (RAG0061, Rekom Biotech,
Spain) and a whole L. donovani lysate, obtained as described in [29], were both spotted on the
diagonals as positive controls as well as for orientation purposes. As negative controls, we spot-
ted a peptide specific for T. cruzi [42]. All controls were spotted at 0.1 mg/ml. Arrays were
incubated overnight (ON) at 50˚C upon completion of the spotting, to be hybridised with
serum the next day.

Hybridisation with serum/ image acquisition. Peptide arrays were blocked with phos-
phate-buffered saline (PBS) + 3% bovine serum albumin (BSA) (PBSB) ON at 4˚C or for 2h at
room temperature (RT), followed by three 5 minute washes of PBS + 0.05% Tween 20 (PBST).
In order to assess the peptide recognition by sera from VL patients and NEHCs, separate
arrays were hybridised with pooled Sudanese serum samples positive for VL and with com-
mercial pooled NEHC sera (S1-100ML, EMD Millipore Corporation, USA), respectively,
diluted in PBST + 3% BSA (PBSTB), for 1h. After five 5 minute washes with PBST, they were
incubated with fluorescent mouse anti-Human IgG1 Fc—Alexa Fluor 488 antibody (AB) (A-
10631, ThermoFisher) diluted 1:1000 in PBSTB, for 1h at RT. Followed by five 5 minute
washes with PBST, the arrays were incubated at 50˚C until completely dry.

Images were acquired at 500ms and 20 dB gain with a digital CCD camera (ORCA-R2,
Hamamatsu, Japan) coupled to a fluorescence microscope (model BX53, Olympus, Germany)
equipped with filter cube U-FGFP (N271350, Olympus, Germany). The fluorescence of the
spots was quantified using the software cellSens Dimensions v.1.7 (Olympus GmbH,
Germany)

Adaptation to an RDT

RDTs were composed of a NC strip sensitised with NLA at 3.5 mg/ml and a conjugate pad,
impregnated with anti-human IgG1-specific antibody conjugated to 40nm gold beads (nanoQ,
Belgium). The strip was either housed within a plastic cassette, with a buffer application well
and a test/reading window (cassette), or not (dipstick). Prior to application on the RDT, equal
volumes of serum and the biotinylated peptide at stock concentration were mixed and incu-
bated at 37˚C for 15 minutes. 3.5 μl of the mix was then pipetted onto the sample application
zone, just above the top of the sample pad and at the bottom end of the NC strip. 150 μl of
buffer solution was dispensed into the buffer application well (cassette) or dipsticks were
dipped into a recipient vessel filled with same volume of running buffer. After 15 minute incu-
bation, a test was deemed valid if a clear red control band was present in line with the ‘C’, and
deemed positive if a second band was present in line with the ‘T’. If no band was visible at the
‘T’ and a clear control band at ‘C’ developed, then the test was deemed ‘negative’. Invalid tests
were assessed by the absence of the red control band ‘C’ or by any other clear migration
problem.

Statistical analysis

All statistical analyses were performed using the computing environment R [43]. The final
fluorescence of each spot on the peptide arrays (spot fluorescence) was expressed in arbitrary
units and calculated by subtracting the mean background value of a given acquired image
from the individual fluorescence values. Mean background value was calculated from the
mean of six-eight fluorescence measures in random positions on the arrays where no
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fluorescence signal was detected. The peptide specificity was expressed as 95% Fiellers confi-
dence intervals (CIs) of the ratio between the mean spot fluorescence of eight replicates from
the arrays hybridised with VL serum and that of arrays hybridised with NEHC serum (ratio
VL/NEHC). CIs were calculated with the mratios R package [44].

RDT results were compared with defined clinical status to establish sensitivity and 95% CIs
with Clopper-Pearson exact method using the PropCIs R package [45].

Results

MS of selected antigenic bands identified over 1300 hits

The development of the western blot strips immunoassayed with active Indian VL serum sam-
ples and relapsed patients revealed the protein bands detected by human IgG1. New gels were
run in order to get three selected antigenic bands (B1, B2 and B3) excised (Fig 2), to ultimately
have their constituent proteins revealed by MS. Criteria to select the antigenic bands were (I)
strong recognition, visually assessed by their intensity, (II) ubiquitous recognition i.e. recog-
nised by the majority of the patients and (III) confident match between the bands from the
western blots and the new gels.

A total of 1357 putative L. donovani proteins were identified from the three selected
antigenic bands, with some identified in multiple bands (redundant matches). All these candi-
date antigen proteins were submitted to the in silico filter (Fig 1) to reduce the number of
promising candidates while restricting to those possessing protein features that correlate with
antigenicity.

The in silico filter excluded over 90% of the uniquely identified proteins

The initial 1357 IDs from the three selected antigenic bands (Fig 2) contained 678 unique IDs
that matched the LdBPK v1 genome (we only matched the peptides identified by MS against
the LdBPK v1 genome, such that the analysis returned L. donovani protein hits only). Out of
these, 538 were considered to be constitutively expressed in both amastigote and promastigote

Fig 2. Gel and western blot strips immunoassayed with sera from Indian VL and EHC patients. The western blot
strips incubated with individual active VL sera revealed the L. donovani protein bands reacting with IgG1 from Indian
patients (VL WB). Three antigenic bands, B1, B2 and B3 were excised from gels to have their constituent proteins
identified by MS (Gel). The strips incubated with EHC sera did not develop any band (EHC WB). Molecular mass
markers are given in kDa.

https://doi.org/10.1371/journal.pntd.0007353.g002
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life stages following gene expression analysis, of which 209 had a MASCOT score� 100. Sixty
six of these candidates were found to be secretory, 60 of which as part of exosomes while 6
where actively secreted to the outside of the cell via the presence of a signal peptide. These 66
unique v1 IDs were merged with the corresponding IDs from the improved LdBPK v2 refer-
ence genome, making 62 annotated extracellular and constitutively expressed proteins, identi-
fied with confidence by MS, as shown in Fig 3.

Further three unique candidates harbouring TR domains were found to be constitutively
expressed and were identified with confidence by MS from the excised bands. Although none
of the three was found to be extracellular, they were kept for downstream epitope mapping as
such proteins containing TR domains are often B-cell antigens [46]. A single TR protein satis-
fying all the criteria described remained unannotated in the improved LdBPK v2 reference
genome. Results including the number of hits satisfying all the criteria applied are schemati-
cally shown in Fig 3 while the detailed list with all the 65 shortlisted proteins can be found in
S1 Table.

In silico selection of B-cell epitopes

All 65 shortlisted proteins were profiled with the B-cell prediction algorithms as detailed in the
methods section. Considering partially overlapping peptides, only that of highest score was
shortlisted. The top 20 scoring peptides, with no shared core sequences within a given algo-
rithm, were selected for synthesis, making a total of 80 high scoring peptides from four differ-
ent prediction algorithms, as shown in S2 Table.

Peptide antigenicity screening

Initial hybridisation revealed the most antigenic peptide. A first batch of peptide arrays
was produced in order to obtain insights about the reactivity of the peptides with human IgG1.
The visual inspection of the imaged arrays hybridised with both pooled serum groups (Suda-
nese VL and NEHC) diluted 1:100 revealed that a high number of peptides spotted at their
stock concentrations reacted with both serum pools (Fig 4).

Fig 3. Selected proteins for in silico epitope mapping. 65 proteins (‘Final 65 v2 IDs’) satisfied the criteria in either
branch shown in Fig 1 and were shortlisted to have their epitopes mapped with multiple in silico B-cell prediction
algorithms. In bold are the features added after each step of the filter.

https://doi.org/10.1371/journal.pntd.0007353.g003
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Hybridisation of the same batch of arrays with pooled serum at a higher dilution (1:200)
showed that a reduced number of peptides reacted with both serum groups, visually revealing
the most reactive peptide, as shown in Fig 5. Details of the most reactive peptide found, hence-
forth referred as EpQ11, are shown in Table 3.

Fig 4. Peptides reactivity with a pool of Sudanese VL and NEHC sera diluted at 1:100 showed to be unspecific.
[VL]: Section of an array hybridised with pooled Sudanese VL serum at 1:100 dilution. rk39 and a whole L.donovani
lysate (CLA) were spotted on the diagonal as positive controls as well as for orientation purposes. [NEHC]: the same
array section hybridised with a pool of NEHC sera at same dilution. The red circles indicate the spotting position of a
peptide specific for T. cruzi [42], employed here as negative control. Both images indicate the array section where the
peptide epitopes predicted from the lbtope algorithm were spotted.

https://doi.org/10.1371/journal.pntd.0007353.g004

Fig 5. Hybridisation of the peptide arrays with a pool of serum samples diluted 1:200 revealed the most sensitive
peptide. [VL]: Section of a peptide array hybridised with pooled Sudanese VL serum at 1:200 dilution. The most
reactive peptide (pep) was spotted in duplicates. rk39 and CLA spotting positions are shown. [NEHC]: the same array
hybridised with a pool of NEHC sera at same dilution. Both images are from the array section where the peptide
epitopes predicted from the EpiQuest algorithm were spotted.

https://doi.org/10.1371/journal.pntd.0007353.g005

Table 3. Information on the most antigenic peptide identified visually from the pilot screening with desalted peptides. Column ‘v2 ID’ and ‘v2 gene product’ refer to
the improved LdBPK reference genome.

Peptide ID Short ID Sequence AA residues v2 ID v2 gene product

EpQ_11_NIRI EpQ11 NIRIHLGDTIRIAPCK 82—97 LdBPK_360019900.1 Transitional endoplasmic reticulum ATPase, putative

https://doi.org/10.1371/journal.pntd.0007353.t003
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Specificity of peptide EpQ11 was highly concentration dependent. The most reactive
peptide from the initial pilot screening, EpQ11, was spotted at multiple concentrations in eight
replicates each onto a NC membrane pre-soaked and dried with NLA at 1 mg/ml and dried.
The hybridisation of two separate arrays with pooled serum samples diluted 1:200 showed that
the discrimination between the VL and the NEHC pooled sera was highly dependent on pep-
tide concentration, with the highest discrimination displayed when the peptide was spotted at
1.15 mg/ml, as shown in Fig 6.

Peptide EpQ11 bound specifically to IgG1 from VL patients in RDT prototypes. RDT
prototypes in two formats, cassettes and dipsticks, were tested with individual Sudanese VL
serum samples as well as NEHC from Europe, in order to confirm the specificity of the EpQ11
peptide in a point-of-care format. All of the NEHC sera (n = 10) were negative by both RDT
formats. Sensitivity values, assessed with VL serum samples (n = 19) varied between 79% (54—
94%) and 84% (60—97%) depending on the format tested (Table 4). Representative results for
these RDTs are shown in Fig 7.

Discussion

Identifying a biomarker of post-chemotherapeutic relapse remains a key element for VL con-
trol worldwide. The majority of relapses occur between 6 and 12 months after therapy

Fig 6. Peptide specificity for VL IgG1 was highly concentration dependent. Peptide EpQ11 was spotted at three
different concentrations in eight replicates each onto dry NC membranes, previously soaked with NLA. The highest
discrimination between VL and NEHC IgG1 (Ratio VL/NEHC) was obtained when the peptide was spotted at 1.15
mg/ml.

https://doi.org/10.1371/journal.pntd.0007353.g006

Table 4. EpQ11 performance in RDTs with Sudanese VL and NEHC patient sera. Summary of the RDT prototypes
tested with individual VL sera from Sudan or NEHC serum samples from Europe.

Serum Group n Format RDT results

Positive Negative

VL positive 19 Cassette 84,2% (16/19) 15.8% (3/19)

Dipstick 78.9% (15/19) 21.1% (4/19)

NEHC 10 Cassettea 0% (0/8) 100% (8/8)

Dipstick 0% (0/10) 100% (10/10)

a: 2/10 tests were deemed invalid (control line did not develop due to leakage of running buffer from the buffer

application well) and were therefore excluded from the sensitivity calculation.

https://doi.org/10.1371/journal.pntd.0007353.t004
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completion [47], while rates are drug dependant and can reach levels up to 20% at 12 months
after completion of therapy in immunocompetent patients [48]. The situation is even more
dramatic in HIV-coinfected patients, where relapse rates as high as 70% have been reported
[49]. Considering that most of the patients affected by VL live in poor and remote villages in
developing countries [50], the development of easy-to-use diagnostic tools is of utmost impor-
tance in order to follow up patients up to 12 months upon treatment completion in a primary
care setting. Currently there is no point-of-care serodiagnostic tool for detection of relapses in
VL. Despite unquestionable value of the rK39-based RDTs for active cases identification, they
cannot be used as a tool to detect relapses due to antibody persistence even after complete dis-
ease clearance [9–13].

We have identified a peptide detected by human IgG1 from VL patients by mapping epi-
topes from multiple proteins, which were selected from immunoblots by searching antigenic
features using comparative genomics and in silico algorithms. The peptide was adapted to
RDT prototypes and showed promising results for VL serology in terms of both sensitivity and
specificity with limited sample size. Given the free online availability and growing number of
various in silico algorithms to predict or scan multiple protein features from DNA or AA
sequences and the growing number of high quality sequenced genomes, the adopted strategy
can also be employed for the search of diagnostic biomarkers or vaccine candidates for other
infectious diseases [51, 52].

The decision to make use of comparative genomics and in silico algorithms to refine the
output from immunoblots came from the excessive number of putative hits identified by MS,
and we believe that the strength of our approach lies in this combination. Nonetheless, we con-
sider that technical issues might have been related to the excessive number of hits initially
identified by MS from the western blots. The immunogenic bands excised from the acrylamide
gels that were analysed by MS were excised from gels with wide lanes (59 mm). We believe

Fig 7. Peptide EpQ11 is specifically detected by Sudanese VL IgG1 in cassette as well as in dipstick format. ‘T’
indicates the location of the NLA at which, in a positive test, there is a red coloured line due to the presence of peptide-
IgG1 complex. Successful migration was ensured by the development of the control line at ‘C’.

https://doi.org/10.1371/journal.pntd.0007353.g007
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that excising such wide lanes from acrylamide gels contributed to the excessive number of hits:
by mechanically cutting along very wide lanes, we have probably included proteins that would
not have been present had we excised narrower (e.g. 4 mm wide) lanes, although multiple hits
would have been probably identified anyway.

We have identified antigens from L. donovani promastigotes due to ease of culturing. In the
host, promastigotes are phagocytosed by macrophages or other types of mononuclear phago-
cytic cells, where they differentiate into amastigotes, remaining in this form until transmission
to a new vector [53]. Therefore we believe that amastigote proteins are more likely to be tar-
geted by host Igs. We have chosen a non-stringent HAP cut-off for both promastigotes and
amastigotes (HAP>Q1) due to the generally nonstrong correlation between mRNA and pro-
tein expression levels observed in eukaryotes [54, 55]. By doing so, we avoided missing anti-
gens that might be constitutively expressed, despite low mRNA levels. Given the excessive
number of protein candidates identified by MS we could set a stricter MASCOT score cut-off,
ruling out proteins that could have been identified by chance in each antigenic band. Extracel-
lular proteins are more accessible for binding with host Igs, thus we have included this crite-
rion in our filter. Finally, because intracellular proteins harbouring TRs are amongst the most
widely used antigens for VL diagnosis [56], we decided to select such candidates in parallel to
extracellular proteins. Although the vast majority of epitopes founds in proteins are discontin-
uous [57], the use of such prediction algorithms is only meaningful in case the native 3D struc-
ture of the proteins is retained, which is not the case upon completion of an SDS-PAGE gel. In
addition, the prediction of discontinuous epitopes relies on the scarce availability of experi-
mentally validated epitopes.

Even though the in silico filter that we applied ruled out over 90% of the proteins initially
identified by MS from the immunoblots, it remained impracticable to test the antigenicity of
all 65 selected proteins. By screening synthetic peptides instead of recombinant proteins we
circumvented the lengthy and costly protein expression and purification steps and could there-
fore test a large number of top-scoring candidates predicted from multiple algorithms with
various prediction methods. Moreover, the production of peptide arrays allowed the screening
of multiple peptides at various concentrations using low volumes of reagents of limited avail-
ability to us (e.g. VL serum).

The pilot screening with peptide arrays revealed that the EpQ11 was the most sensitive pep-
tide, despite cross-reacting with NEHC serum (Fig 5). By showing the clear effect of the hybri-
disation conditions on the specificity of the EpQ11 in arrays, especially that of the spotting
concentration (Fig 6), we sought to test the EpQ11 in RDTs, taking into account that the for-
mat of the test (i.e. peptide array vs. RDTs) could have an even larger impact on the specificity/
sensitivity of the peptide. We believe that the long hybridisation periods employed in our pep-
tide arrays played a crucial role on the higher sensitivities observed when compared to the
RDT prototypes. On the other hand, by using a format of lower sensitivity, we managed to
avoid the false positive signals generated by the NEHC samples in peptide arrays. The intensity
of the test line of our RDT prototypes might be improved by using a larger peptide composed
of multiple copies in series (‘peptide trains’) or in parallel (multiple antigen peptides), a strat-
egy already used in vaccine development [58, 59], to boost the recognition of synthetic pep-
tides by Igs, although we are aware that this improvement in sensitivity might have a negative
effect on the specificity of the test.

In spite of these advantages of screening peptide epitopes in a high-throughput manner, the
most important antigens for VL diagnosis (e.g. rK39, rK28) are still recombinant proteins. It
would have been an interesting alternative to apply the in silico filter described here to proteins
of lower molecular weight (e.g. those between 25 and 37 kDa—Fig 2), to test the antigenicity of
a few of them. Low molecular weight proteins are generally easier to express and purify when
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compared to large antigens. We decided, however, to focus our search in predicted epitopes
from larger proteins due to (I) the large number of possible epitopes that proteins of high
molecular weight have and (II) we were not entirely convinced about the matching between
the antigenic bands in the western blots and those in the gels, mainly due to the high density of
proteins in that region of the gel (Fig 2).

Another limitation of our study lies in the restricted range of serum samples available to us.
Our ultimate goal was to use the EpQ11 peptide to detect IgG1 from pre-treatment VL patients
paired with post-treatment (deemed cured), such that we could assess its use as a replacement
for the Leishmania CLA in IgG1 RDTs, as described in [29]. Replacing the CLA by synthetic
peptides would allow the manufacturing of more robust RDTs as a non-invasive tool to help in
supporting the confirmation of cure after successful chemotherapy. Advantages of employing
synthetic peptides (vs. whole-cell lysates) include unproblematic and low-cost synthesis and
the production of more standardised (and potentially more sensitive and specific) diagnostic
tests. Due to local regulations, however, it is not possible to export human sera from India,
where the cured paired serum samples from our partner institutions are available (western
blots were carried out on site in 2015), such that we could only carry out the peptide pilot
screening as well as the sensitivity tests in RDTs with Sudanese active VL sera. As, however,
Sudanese patients show generally a weaker immune response when compared to Indian VL
patients [60], the serum samples that we tested can be considered ‘worst-case scenario’ samples
such that we would expect the sensitivity in India to be at least as high as the values reported in
this study (Table 4). The EpQ11 was also not tested with EHCs. However, EHCs used in both
western blots (Fig 2) and ELISAs were negative with L. donovani CLA [29]. Finally, even
though it is important to test the EpQ11 with serum samples from patients presenting with
potentially cross-reacting diseases (e.g. malaria, human African trypanosomiasis), we would
not expect a high rate of false positives due to low protein sequence conservation between the
LdBPK_360019900.1. and proteins from organisms causing potentially cross-reacting diseases,
especially in the region harbouring the EpQ11 sequence (Fig 8).

Our work was conducted as a proof of concept that comparative genomics and in silico
algorithms can be employed downstream of wet lab experiments for a rational search for diag-
nostic peptides. Further investigations, using a larger sample size of various clinical status,
including cured paired samples, EHCs as well as sera from patients presenting with potentially
cross-reacting diseases, are still required to confirm the potential of the EpQ11 (with possible
structural optimisations described above) as a stand-alone antigen for VL serodiagnosis.
Meanwhile, given the evidence from the present work that the described peptide specifically

Fig 8. The L. donovani protein containing the EpQ11 sequence shows low similarity to proteins from organisms
causing potentially cross-reacting diseases. The L. donovani protein harbouring the EpQ11 peptide
(LdBPK_360019900.1—v2 ID) was aligned against the proteome of organisms causing potentially cross-reacting
diseases with VL using MAFFT v7.222 [61]. Column 1: GenBank accession number; column 2: protein length
(position of first amino acid | position of last amino acid, 784 for LdBPK_360019900.1), column 3: alignment around
the region where the EpQ11 peptide is located. Numbers on top (470-560) indicate the alignment position. Screenshot
from belvu, SeqTools—4.44.1 [62] showing the most similar proteins to LdBPK_360019900.1.

https://doi.org/10.1371/journal.pntd.0007353.g008
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binds to IgG1 from Sudanese VL patient sera, the sequence of the EpQ11 could be synthetically
coupled to that of the rK39, potentially improving the sensitivity of the latter antigen, includ-
ing in IgG1 RDTs, whose potential in monitoring clinical status in VL has recently been
shown [63].

Conclusion

Based on the interpretation of the results of our experiments we conclude that:

1. Comparative genomics as well as in silico algorithms are useful tools for refining large out-
put from wet lab experiments for a rational search for diagnostic peptides.

2. B-cell epitopes prediction algorithms represent an interesting option for epitope mapping,
enabling the screening of peptides in a high-throughput manner with minimal reagent
consumption.

3. We have identified a peptide that specifically binds to human IgG1 from Sudanese VL
patients by refining wet lab experiments with in silico searches. Replacing the CLA by spe-
cific antigens would enable the manufacturing of more robust IgG1 RDTs for monitoring
clinical status in VL.

4. While further investigations are still required to confirm the potential of the EpQ11 peptide
as a stand-alone antigen for VL serodiagnosis, incorporation of its sequence into that of
rK39-based assays (i.e. rK39-EpQ11) might boost the sensitivity of this antigen in eastern
African patients as well as in IgG1 RDTs.
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