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ABSTRACT

A description of simulation methodology has been
presented in this thesis with emphasis on the generation of
random variables, pseudo-random number generators and
variance reduction techniques. Also shown is different

applications of simulation within the health care services.

As an application of health care simulation, we
simulated a hospital waiting list model, seen as a queueing
process with the arrivals rate equal to the admission rate
<p*Il), to show the statistical effect of using a scoring
system in the policies of admission. To study the effects in
the waiting time the queuening theory concepts could not be
applied when p«l, therefore simulation was used as an
alternative procedure. From our simulation results, we could
find an expression to the expected waiting time for any
number of medical priorities defined in the waiting list,
and we could develope a procedure to control the standard
deviation of the waiting time. In general, the scoring sytem
used in our simulation model was very useful to balance the
waiting time distribution of those patients selected from a
hospital waiting list which shown different levels of

urgency for being hospitalized. ,
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1) Simulation Process

1.1) Introduction

Planning resources in the health services is
becoming an increasing complex task. New discoveries in trlle
health care have produced changes in management procedures.
These procedures have to be evaluated before their
implementation. Simulation techniques have been used to
study the effects of these procedures, especially when

experiments in the real world are impossible or impractical

to realize.

In this paper, we will define simulation as
experimenting with a model (representation of a system) on a
digital computer over time; if the increment of time is
constant the simulation is called 'fixed-time incrementing’
simulation and if time is variable, it is called 'next-
event' simulation. The experimentation in simulation
involves sampling from probability distributions in order to
assign values to stochastic variables. This definition of

simulation necessarily excludes such other esimulations* as:

a) simulations with a physical model such as a scale
model or laboratory experiments with real people;

b) man-machine simulations which combine abstract
models with the use of real people <e.g., gaming);

c) deterministic simulations, i.e., without the use of
probability distributions or random numbers; these

include econometric-type regression models;



d) so called Monte Carlo studies, which employ random

numbers, but lack the time element of simulation.

The above definition of simulation stresses its
experimental aspect, although it is clear that none of this
experimenting can take place without the prerequisite system
investigation (real or hypothetical system), model building,
selection of an appropriate computer language, the
generation of random or pseudo-random numbers, programming,
program verification, and model validation. All these tasks
must be completed first to have a model <i.e., the computer

program) with which to experiment.

Naturally, simulation, experiments are designed
with certain objectives in mind. Some of the typical goals
of simulation are: forecasting, estimation, comparing
alternative competing systems, optimization, sensitivity
analysis and answering "what-if* questions <i.e., how many
hospital beds would be needed if the average length of stay
in hospital were reduced?). Once the objectives have been

specified, we can continue with the design and analysis of

the simulation experiment as with any statistical analysis.

In this paper, we will describe some of the most
important techniques used in simulation such asi generation
of random variables (chapter 11), pseudo-random number
generators (chapter 111) and variance reduction techniques
(chapter 1V). Also presented is a review of the recent
publications of simulation in the health services (chaptetr
V) . In chapter VI, we give an introduction to Queueing

Theory and its limitations where simulation is used



as an alternative.

A typical queueing problem within the health
services is the long waiting time that patients have to wait
be-fore receiving medical care. This waiting time could
produce serious deterioration in the patient health. This
delay usually depends on the medical priority (degree o-f
urgency to hospitalize any patient) and the actual waiting
time of the patients. In chapter VII, we analyze the e-f-fects
in the waiting time distribution when the policies of
admission -from a hospital waiting list are based on a system
which combines in a single score the medical priority and

the actual waiting time.

To conclude this chapter, we de-fine some of the
concepts needed in simulation such asi system, simulation
model, simulation computer languages, veri-fication &
validation, outputs analysis and implementation 6&

documentation.



1.2) System

A system is defined as a set of related entities
called components or elements. For instance, a hospital can
be considered as a system, with doctors, nurses, and
patients as its components. The components have certain
characteristics, called attributes, that have logical or
numerical values, i.e., number of beds, number of surgical
theatres, and so on. The attributes of the system elements

|

define its state. For example, the number of patients in a

hospital waiting list describe the system state.

The objective in studying one or several phenomena
in terms of a system is to learn how change in state occurs,
to predict change and control change. Most studies combine
these objectives with varying emphasis. One particular
combination of these objectives, called "evaluation of
alternatives", concerns the relationship between the input
and output from a system, as depicted in the following

figure: b

feedback Iloop
| mi
Figure 1.1 Graphical represen tation of a system
Input refers to an external stimulus to the system that
induces changes in the system state. Output refers to

measures of these state changes.



An example of evaluation of alternatives in the
health services is as follows: Patients <inputs> are
currently processed in the order of their arrival to a
outpatients clinic (system), which has three physicians. The
clinic plans to institute a new processing method that
classifies a patient in group A if his expected consultation
time is short, and in group 6 if the expected time is long.
One physician will be assigned to process patients in group
A on the first-come-first-served basis. The remaining two
physicians will do likewise for patients in group B. The
principal concern is the extent to which the new selection
procedure will lead to a shorter mean waiting time for

group A patients (output).

Systems can be classified in a variety of ways.
These are natural or artificial, adaptive or non-adaptive
and discrete or continuous. In a natural system there is no
man intervention for the functioning of the system, while in
the artificial one there is. An adaptive system reacts fo
changes in the environment, while in the non-adaptive th(gre
is no such reaction. A discrete system is one for which the
state of the system changes only at a countable <or finite)
number of points in time, on the other hand in a continuous
system the state changes continuously with respect to the

time.



1.3) Simulation Model i

A model is a representation of a system. Models
may be scaled physical objects (iconic models), mathematical
equations and relationships (abstract models) and graphical
representations (visual models). The usefulness of models
has been demonstrated in describing, designing and analysing

a system.

In this paper, Me restrict our attention to the
models which are called simulation models. A simulation
model is defined as an abstract representation of a system
which can be exercised in an experimental fashion on a
digital computer over time. Simulation models are considered

as a laboratory version of a system 1281.

Often the boundaries of the system and of the
model are rather arbitrarily defined. Most forces that
impinge on the system must be neglected on a priori grounds
to keep the model tractable, even when there is no rigorous
proof that such neglect is justified. Inevitably, the model

is better defined than the real system (see figure 1.2>.

The building of simulation models is a complex
. . . i
process and in most cases is an art and a science. Th*

modeling of a system is made easier ifi

i) physical laws that pertain to the system are
available;
i i> a pictorial or graphical representation can be made

of the system;



iii> the variability of the system inputs, elements, and

|
outputs is manageable.

Once a simulation model is developed, experiments
can be performed. These experiments or simulations permit

inferences to be drawn about systems

without building them, if they are only proposed
systems;

without disturbing them, if they are operating i
systems that are costly or unsafe to experiment with

without destroying them, if the object of an

experiment is to determine their limits of stress.

In this way, simulation models are used for design,
procedural analysis and performance assessment in the area

of the health services, as we will see in chapter V.



System

Figure 1.2 A model building approach -for system

anal ysis



1.4) Computer Simulation Languages

Simulation modeling assumes that we can describe a
system in terms acceptable to a computer language. There
have been such a great variety of these languages developed
mfor simulation studies over the years that is nearly
impossible to decide which language best -fits any particular
application. There were over 170 alone in 1972 and new ones

are being developed every day C30D.

The computer simulation languages can be classified

asi

- General Purpose Simulation Languages
General Purpose Language's

General purpose simulation languages are intended
to permit the system analyst to concentrate his effort inI
the modelling of the system and to greatly simplify the
process of computer programming of the model. Some of these

languages are GPSS CUD, SIMSCRIPT C36] and SIMULA [ID.

SIMSCRIPT is considered more flexible for
programming, but it assumes a prior knowledge of the
computer language FORTRAN. GPSS can be learned very quickly
with no prior knowledge of programming, but is less flexible
and somewhat slower in execution than SIMSCRIPT <C221_,I '

i

p. 168). SIMULA is an extension of the programming language

ALGOL 60.



General purpose languages such as FORTRAN (C213,
BASIC 1201 and PASCAL £35] are used For simulation studies
and For other types oF studies. These languages are more
Flexible and can produce programs that are more eFFicient

than the general purpose simulation languages.
N
There are also computer packages available For

simulation studies such as CAPS 151, SMTBPC C181 and NAG
1251. CAPS is designed to run interactively and it
conversationally prompts the user in a way that allows him
to deFine a simulation model. SMTBPC contains the basic
computational and statistical tools necessary to run a
simulation experiment on an IBM PC-DOS. NAG is a set oF
Fortran subroutines that can be used For diFFerent
mathematical purposes; For simulation, there are a good

number oF subroutines to generate random variables.

10



1.5) Verification and Validation

Two stages are needed to check that the simulation
1
model, represents the real system. These stages are:

I
Verification.- Checking that the simulation program

operates in the way that the model implementer thinks
it does; that is, is the program free of errors and

consistent with the simulation model?

Validation.- Checking that the simulation model,
correctly implemented, is a sufficiently close

approximation to real ity for the intended application

The verification can Qe realized in different |
i

forms, some of these are:

Manual verification of logic. Run the model for a
short period by machine and by hand; then compare the
results. al
Checking against known solutions. Adjust the mode” so
that it represents a system with a known solution,
and compare this with the model results.

Sensitivity testing. Vary just one parameter while

keeping all the others fixed, and check that the

behaviour of the model is sensible.

When we create a model some problems in the
validation may arise, because of the different

interpretations that can be given to a specific system. It

11



is always necessary to restrict the boundaries of the model,
ignoring everything outside that is not an explicit input,
and neglect -factors believed to be unimportant. Other types

of approximations are:

- Distributional. Real-world probability distributions
are frequently approximated by simple distributions,

such as the normal or exponential.

- Independence. The model is frequently simplified if
various componets (random variables) are assumed to

be statistically independent.

- Stationarity. It simplifies matters to assume that
parameters and other features of the system do not
vary over time. This may be reasonable if it can be
legitimately argued that any changes over the

relatively limited period of interest are negligible.

When a simulation program produces nonsense, it is
not always clear whether this is due to errors in the
conceptual model, programming errors, or even the use of
faulty data. A failed attempt at validation wusually
requests modification to the model, which implies changes in
the computer program. This means that model construction,

verification and validation often are in a dynamic feedback

loop.

12



1.6) Outputs Analysis

1
Once the simulation model has been validated, the

computer program Mill presumably be used to study the
behaviour of the system Mhich has been modelled, try out
alternative system specifications and design, and.aid inI
making recommendations and decisions. This section focuses
on hoM outputs in a steady-state simulation should be

analyzed to enable the drawing of valid, accurate and

precise conclusions.

A steady-state simulation is one for Mhich the

measure of performance, 0, is defined as TfolloMs:

1 im h<Y|.,..,\r(1>- 0

A-»»
Mhere h is a function of the simulation outputs, Y~"s, i.e.,
the mean, the variance,... The quantity 0 must be

independent of the initial conditions of the simulation
model. So, theoretically, one could initialize the

simulation in any convenient way.

In a steady-state simulation two main questions
have to be considered! how long the simulation should be run
and how this run should be started in order to achieve
independence between the initial conditions and the quantity
0. Various methods described below take different

approaches to coping with these questions.

IIfl iniUtl__transient problem. By definition of a
limit, we can be sure that if we run the simulation long

enough, h (Y .. Y n) will be close to 0. This does not say

13



anything about the length of time we must wait -for this to
happen, and the duration of this "transient"” or "warmup"
period can depend largely on the way the run was
initialized. The problem o-f this initial transience has been
viewed as one of identifying the extent of the transient
period, relative to some practical criteria. The wusual
procedure is then to delete <or truncate) this initial
period from consideration, and use only the subsequent
output measures, Y.'s C133.

1
The extent of the transient period is certainly

influenced by the initial conditions. Thus, to reduce the
amount of initial outputs that must be discarded, it is
probably worth giving some thought to choosing initial
conditions which at least appear to bear some rough

resemblance to the anticipated steady-state conditions.

Replication Method. In this method, one observation,
Yj, is taken after a certain simulation time; this process
is repeated several times to produce a sequence of Y~ S.
This method has the advantage that the classical statistical
analysis with i.i.d observations C€23] can be used for the
outputs analysis, given that different seeds (starting
points in the pseudo-random number generator, chapter 111)
- i

were used in each simulation run.
| |

This method is the only one requiring more thaln

one simulation run. It is pointed out that replication is
the procedure appropriate for the analysis of terminating
simulation; simulations which end when a pre-specified event

occurs ([10], p. 245)

14



Reoenerative Method. This method is based on a continued
simulation run which is then partitioned into a series of
consecutive, non-overlapping subsequences. These
subsequences (epochs) , each containing a varying number of
observations and the demarcation point between adjacent
epochs, are always in the same state <the regenerative
point), e.g. empty-and-idle. This ensures the independence

of the epochs (C16J, pp. 297-300).

The evolution of the process between successive
regeneration points is called a 'cycle', and what happens
during a cycle is an i.i.d. replicate of what happens during

any other cycle.

The regenerative method of confidence interval
estimation in simulation has drawn much scholarly interest,
mainly because it is a procedure with the sound underpinning
of the renewal theory of stochastic process and thus lends
itself well to general mathematical proofs. However, unless
the process being simulated has this renewal property, the
analyst may become frustrated in his search for regeneration
points or suitable approximations [103.

I|
Time Series Methods (i.e., autoregressive moving average
and spectral analysis). A time series is a collection pf <
observations (Y”~J made sequentially in time) for example,

the mortality in the last ten years, and the number of 1

patients hospitalized at midnight (daily census) during one

19



year. The objectives in a time series may be the prediction
of the -future based on Knowledge of the past; it may be |to
obtain an understanding of the mechanism that generates tlhe
series; or a succinct description of the salient features,of
the series may simply be desired C43.
' i
One of the advantages in time series methods is
that they take into account the inherent serial
autocorrelation in the outputs simulation. The disadvantage
is the number of calculations involved in these methods.I
(C103, p. 247) . An extensive description of these method”
can be seen in Bratley et al (C23, pp. 81-102), Fishman

<C9], pp. 242-309), Kelton C13] and Kleijnen C14].

One of the most important points to be made in
this section is that statistical analysis should be an
integral part of any simulation study. The lack of proper
analysis leaves one with results that may be misleading and
inaccurate. |If one makes substantial efforts to validate,
code and debug a complex simulation model, it seems
worthwhile to make some effort to use the model effectively

and interpret its outputs appropriately.



1.7> Implementation

The final stages in the simulation development
process are the implementation of the simulation model and
its use. No simulation project should be complete until its

results are used in the decision-making process.

The success of the implementation task is largely
dependent upon the degree to which the modeler has
successfully performed the other activities in the
simulation development process (see figure 1.3>. |If the
model builder and the decision maker have worked closélly I
together and they both understand the model and its outpiuts,

then it is likely that the results of the projects will be

implemented C33lI.

On the other hand, if the model formulation and
the underlying assumptions are not effectively communicated,
then it is more difficult to implement the recommendation
from the simulation results, regardless of the validity of

the simulation model.

17



Figure 1.3 The _model-building process, showing
the mutual Part_lmpatlon of the decision-maker
and the model builder.

18



1.8) Historical Background

The earliest use of the concepts of simulation is
usually credited to Count de Button, a trench naturalist,

who in 1777 stated what is now known as Button's needle
|

problems a needle ot length 'a' is thrown at random on a
plane covered with parallel lines that are all a distance
'd' apart < aid); the probability that the needle
intersects one ot the lines is p = 2a/nd <see Conolly C61,
p. 185).

Button is supposed to have pertormed the
experiment to calculate the value ot n, by setting the
observed frequency equal to the probability 'p'. This
remarkable idea, the calculation of a deterministic quantity
from the data of a random experiment, became a practical
methodology with the advent of digital computers to ca{rry !
out logical operations with artificially generated data at
high speed. This technique was first used during the
development of the atomic bomb for the numerical evaluation
of integrals, where it was called the Monte Carlo Method
c121.

|

The first application of the concept of simulation
for the analysis of systems subject to stochastic demands
was done at the outset of this century. In 1907, J.C.T.
Baldwin described, in an engineering report for the American
Telephone Company, what is probably the first modern
simulation study. Baldwin's study used artificial data to
simulate telephone traffic and determine the loads that

|
could be handled by operators providing service with given

19



average delays. Baldwin called this technique the “throw
down" method. Although it did not, of course, use a
computer, it embodied the essential concepts of modern

simulation studies <171, p. 263).

20
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I1) Random Variate Generation

2.1) Introduction

A simulation based on random behaviour naturally
requires a mechanism -for generating a sequence of events
where each sequence obeys a probability law governing a
particular component of the random behaviour in question.
The probability law may take many forms. One commonly
encountered in simulation work assumes that events in tht
sequence are independent and identically distributed; for
example, with Normal or Gamma distributions if the events
are continuous random variables, and with Binomial or
Poisson distributions if the events are discrete random
variables. This chapter will describe a variety of methods

for generating variables with random behaviour.

There are usually several alternative algorithms
that can be used for generating random variables from a
given distribution, and a number of factors should be
considered when choosing which algorithm to use in a
particular simulation. Law ft Kel ton <C2:,3, p.241) made the

following recommendationsi

- Exactness. In thi* case, we should use an
algorithm which results in random variables with exactly the
desired distribution, within the Ilimitations of machine
accuracy. There are some approximate methods to generate
random variables, for example, the sum of twelve uniform
random numbers subtracted by six, Elng"-G, is used to

generate a normal <0,1> variable <1393, p. 69). Of course,
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this approximation is not recommended because of the amount
of uni-form numbers needed to generate one sample.
Fortunately, -for most common distributions -found in computer
simulation languages (section 1.4) exact algorithms are now
available, obviating the need to consider any approximate
method.

- Efficiencv. Given that we have the choice o-f
alternative exact algorithms, this characteristic refers to
the storage space and execution time required to generate a
random variable. Some algorithms require storage of a large
number of constants or of large tables, which could prove
troublesome. As for execution time, there are really two
factors. First, we hope that we can accomplish the
generation of each random variable in a small amount of
time; this is called -'marginal execution time'. Secondly,
some algorithms have to do some initial computing to specify
constants or tables that depend on the particular
distribution; the requirement to do this is called the 'set-
up time'. In most simulations, when we generate a large
number of samples, the marginal time is likely to be more

important than the set-up time.

In this chapter, we are going to survey some of
the general procedures used to generate random variables
(section 2.2). In addition, in section 2.3, algorithms are
described for generating random variables from particular

continuous and discretes distributions that have been useful



in simulation. Finally, in section 2.4, we describe a methbd
to generate random variables when the distribution function

is unknown.

As we shall see, the basic ingredient needed for every
method of generating random variables from any distribution
is a source of uniform random variables U<e,I>. For this
reason it is very important that a statistically reliable

IK0,1) random numbers generator be available.

For convenience we refer to sampling from a
particular distribution of a type of random variate by the
word ‘generation’'. For example, exponential generation

denotes sampling from a exponential distribution.
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2.2) General Procedures

We start by describing some general procedures to
generate random variables such ass Inverse Trans-form Method
<-for continuous and discrete distributions), Acceptance-
Rejection Method, Forsythe's Method, Alias Method and the

Composition Method.
2.2.1) Inverse Trans-form Method
2.2.1.1) Continuous Distributions

Let X be a random variable with cumulative
probability distribution -function <c.d.-f.) F~A<x> = Pr<X$x>.
Since Fx<*> is a non-decreasing .function, the inverse
efunction F~x<u) may be defined for any value of u between 0

A

and 1 as F:x<u) is the smallest x that satisfies F~A<x>£u,

<see figure 2.1), that is,
F~x<u) = infix« Fx<x)Ju), Oiu$l

It has been shown <1343 t* 1393) that if U is uniformly
distributed over the interval <0,1>, then X = F ~<U) has

the cumulative distribution function F~A<x>.
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X = F“ <U>
Figure 2.1.- Inverse probability integral

transformation method

Therefore, to get a value, say x, of a random variable X,

obtain a value, say u, of a variable U uniformly distributed

over <0,1), compute F x<u) and set it equal to x. This

procedure is presented in the following algorithm:
Algorithm IT-1

1) Generate U from U(0,1)
2> X <— F X<U>

3) Deliver X

Examp)e.- Generate a random variable from a uniform le

distribution U<a,b), that is

lI/<b-a> } a$ x $b
fx<x> = <

0 . otherwise
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and

0 ;X < a
Fx<x> = r <x-a>/<b-a> ; a$xs$b !
1 1 X > b

Hence, applying the algorithm IT-1,

X = F~X<U> = a + <b-a) XU

To apply the inverse trans-form method, F~ACx) must exist in a
form for which the corresponding inverse transform can be
found analytically. Distributions of this type are
Exponential , Uniform, hleibul 1, Logistic and Cauchy.
Unfortunately, for many probability distributions it s
either impossible or extremely difficult to find the inverse

transform, that is to solve

U= /x fv <x> dx

with respect to x.

Even in the case when F exists in an explicit
form, this inverse transform method is not necessarily the

most efficient method for generating random variates.
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2.2.1.2) Discrete Distributions

Let X be a discrete r.v. with probability mass

mfunction (p.m.f.)

PriX = x ]

I
]
~

I
o
[

and with c.d.f e

9k = PrtX $ k3 = z":m9Pi

then

Prt9k-1 < U * 9k3 = 9k “ 9k-1 = Pk

where U is -from U<O0,I>,Thus i
x = Cxk : gk_j < Ui gk3
The above procedure is described in the following algorithm:

Algorithm IT-2

1) D <- PO
2) B <- D
3) K<- €
4) Generate U from U(0,1)
3) If US B <U$gk> , deliver X
0) K <- K+1
Ak+1*D <Ak+I1"pk-M/pk>
8 B <- |, «D (®k+I"9k+pk+13

?> Go to step 5
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Table 2.1 represents the values of Pg and «for some
discrete distributions. In order to generate a random
variable from a specified discrete distribution, we take the
corresponding values of Pg and A”~+j from table 2.1 and then

run algorithm IT-2.

Table 2.1 Values of Pg and A*+”" for

some discrete distributions

i i i A sP /P
Distri butions PO K+ ket Kk
Pk

a) Binomial
n!pk'<|-p>' i <n-k> p

<i-P)n
k!<n-k> ! <k+1l)<l-p>

x/<k+1)

k=0,1,...j X>0
c> Geometric
p<l-p>* p <l-p)

k-e,it...] p>8
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2.2.2) Acceptance-Rejection Method

The acceptance-rejection method consists of
sampling a random variate -from an appropriate distribution
and subjecting it to a test to determine whether or not it
will be acceptable -for use. This method, -first suggestedlby

von Neumann C423, can be used when the p.d.-f. fv<x> is

Known.

Let X to be generated -from fx<x> e To carry out the

acceptance-rejection method, V x> is represented as
fx<x> = CXh<X)Xg<X> . <2. 1)

where C$1, h<x) is also a p.d.-f. and 8<g<x)<l. Then, we
generate two random variates U and Y -from U<0,1> and h<x>
respectively, and test to see whether or not the inequality
U$g(Y) holds. I-f the inequality holds, then accept Y as the
variate generated -from fx<x>. If the inequality does not

hold, reject the pair U,Y and try again.

The theory behind this method is based on the

following theorem >

Theorem Let X be a random variable distributed with

p.d.f. fx<x>, which is represented as
fx<x> = CXg<x)Xh(x)

where C$1, 0ig<x>il and h(x) is also a p.d.f. Let U and Y be
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distributed U(8,I> and h<x), respective!y. Then
oy <x | U$g<Y>> = fx<x>
(Proof, see ref [39] p. 46)

The efficiency of the acceptance-rejection method

is determined by the inequality U$g<Y>. The probability that

the inequality holds in each trial is obtained from:

PrC U$g<Y> ] = /PrC Uig<Y]|Y=x> ]*h<x>dx

where
PrC U$g<Y]Y=x> ] = PrC U$g<x> ] = g<x)
so,
PrC U*g<Y> ] = / g<x)h<x>dx
= / Cfx<x>/C3dx
1
= 1/C
Then, the probabi lity of success in each trial is p = 1UCj

Since the trials are independent, the number of trials N,
before a successful pair U, Y is found, has a geometric

distribution:

PN<n> = p<Il-p)n ;. n-0,1,....
wi th

E<N> = C 1 - 1/C ]/<1/C) = C - 1 )
Hence, C = 1 + E(N> is defined as the expected number of

pairs U & Y needed to get one sample from fx<x>.
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The algorithm -for the acceptance-rejection method is as

mfoil ows s

Algorithm AR-1
1> Generate U -from U<O0,1>
2) Generate Y -from p.d.-f. h<x>
3) I-f U$g<Y>, deliver Y as the variate generated
mfrom fXx<x>

4> Go to step 1

For this method to be of practical interest the following

criteria must be used in selecting h<x)t

It should be easy to generate a random variable
from h<x) .
The efficiency of the procedure 1/C should be

large, that is, C should be close to 1.

Example.- Generate a random variable from the followingI

distribution:

Let us describe fx<x> as the expression (2.1), assuming

h<x> = 2*x 8 $ x S 1

g(x> = x 0%$x $ 1
and

C = 3/2
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To apply algorithm AR-1, we generate the variable Y -from
h<x>j -for this purpose, we use the algorithm IT—-1. So,
Uj from U(0,1)
0

Then, compare
u2 $ gv) = Y = Uj* U2 from U<O0,1)

If the condition holds, Y is taken as the variate generated
from fx<x>. If not, take another pair (Uj, U2> and repeat

the condition. The probability of success is 1/C = 2/3 and
the expected number of pairs U tc Y needed per sample is

C = 3/2.
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2.2.3) Forsythe's Method

Forsythe's method is a rejection technique -for
sampling -from a continuous distribution, where the original
idea is attributed to von Neumann C42i. This method is
useful for generating exponential random variates; it

requires no complicated function such as log, square root,

or sine.
)
General Algorithm.- Let f<x> > 0 be defined for all
il 1
X 5 0 and satisfy the first-order linear differential
11
equation
f'(x) + b(X)Xf<x> = 6 .rvvee <2.2)
8 $ x < ® ; b<x> £0.
Let
X (I
B<x) = / b<t>dt
0
and assume that
M
6 =1 & u
0
then
f<x> - <i/*> x ; B<X>
is a unique solution of (2.2) with /* f(x)dx = 1. Hence f(x>

is the probability density distribution of non—-negative

random variables.
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The procedure to generate a random variable X with
the density distribution f<x> is divided into two stages. In
the -first stage o-f the method an interval is selected for x,
and in the second stage the value of x is determined within
the interval by the acceptance-rejection method. Three
tables for this procedure are needed, <qk>, <dk> and (rk>.
gk defines an extreme of k-th interval in which the range of

values of X is divided:
Range Of X = I\I\I\O I(I\i/\ - /\I\l’/\2/\ E 1**/\/\K_11 AN

The intervals are chosen to be as large as possible subject

to the constraint
B<qk> - B<qgk_j> * <2 .3>

The definition of dk and rk are:

dk qk gk -1
and

For simplicity, the following function is defined

Gk<x> - Biq”"j & x> - B<gk_j> j k-1,2,...,K

|
Now, to carry out Forsythe's method, the following algorithm

is used:

Algorithm F- 1
1> Set k <- 1. Generate a uniform deviate U.
2) If U$ rk, go to step 4

3> k <- k ¢ 1, go to step 2
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4) Generate another deviate U, set W <- UXd"

5> Set t <- Gk<w

6) Generate a sequence of independent samples Uj,
UG . »Un -from U<0,1), where n is determined
by the condition: t £ U, )
Cif t<Uj, then n~13.

If n is odd, deliver X=q”_j+W, otherwise go to step

Steps 1 to 3 determine which interval tqk_j, g”> the

variable X will belong to. Steps A to 6 determine the value

of X within the interval.
The algorithm F-1 is based on the -following theorem:

Theorem.- Let t be a given number in [0,1). Generate
independent C9,I> uniform variates Uj,....,U . n is
determined by the condition t $ U $ s £ U . < U tr=1

if t < Uj]. Then

<a) the probability of n being an odd number is
P<t> = e-t
<b> the expected value of n, irrespective of whether n

is odd or even, amounts to E<t> * et
(Proof, see Ahrens tc Dieter [3] p. 928 >

An important feature of this method is that it
does not specify a unique algorithm, but rather a family qf
algorithms, subject to (2.3) being satisfied. The interval
d®» can be chosen at will. A disadvantage of this method is

that it requires tables of the constants gk, d* and r”.
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Examples of how g, and r* can be defined in

two distributions are as -follows:

Exponential Distribution.- If b(x> = 1 in <2.2), then
B(x) = x and fix) = e_X. For algorithm F-1, g~*=k, d~=1,
r"=|-etk and G/<x>=Xx
Normal Distribution.- If b(x)=x in (2.2), then B(x)=x2/2
. -x2/2
and f<x)=<I/2n)* X e , corresponding to half of the
normal distribution. For the algorithm F-I, we have
q0=0, gj=l.rinnn gk=<2*k-I1>* <k*2>
and
dj=1, d2=3* -], ,dk=*<2k-1)fc - (2k-3) "
Al so

Gj,<x> = x2/2 + qk_jXx
The value of r” must be computed from the probability

integral .

In 1976, Atkinson k Pearce C8l made a timing
comparison to show the efficiency of Forsythe's method on
two computers (Cyber 73-4 and IBM 360/65). They showed tlha_lt
this method generated Beta and Gamma variables appreciablyI
faster than any previously published, except for the Gamma
distribution with index a& less than 8.1. For the generation

of a Normal variable, Forsythe's method did not provide the

best algorithm.

40



2.2.4) Atias Method

The alias method is a clever, new and -fast method
mfor generating random variables -from an arbitrary discrete
distribution. This method is due to Walker C433. The method
is related to rejection techniques but di-ffers from them in
that all samples comprising the input data contribute to the
samples in the target distribution. A simple probabilistic
proof that the method works for any discrete distribution
with a finite number of outcomes can be found in Kronmal and

Peterson 1253.

Method

Suppose the random variable X is distributed over
the integers 1,2,...,n with p<i)=PrtX=i3. Let | be an
integer uniformily distributed over 1,2,....,n<w, i.e.,
PrCl=j3 = g = 1/n. The method consists of setting

IM  with probability R(I>

NA<1> with probabi 1ity 1-R<I>

where A<I> is an alias. The functions R<I> t* A<I> are chosen

according to the following algorithm!

Algori thm AT-1

8. (Initialize sets H and L{ 4 denotes the

empty set3i H <— o, L <- ..
For i - 1 to nt

a) R<i> <- nXp< i> ;

b> if R<i> > 1 then add i to Hi

c) if R<i) < 1. then add i to L.



2. a) 1f H = e, stop;

b> otherwise select an index j -from L and an
index k -from H.

a) Set A<j> <- * |

b) R(k) <- R(k) o R<j> - 1;

c) if R(k> $ 1, remove k from H:

d) if R(k) < 1, add k to L;

e) remove j from L land from further
considération!

Go to step 2

A Fortran subroutine of the above algorithm can be seen in
Bratley, et al (till, p. 300-39 0 and Walker C433. The
algorithm to generate a random variable using the alias

method is as follows;

1> Set | <- FVv 1 I Vv=nU , U ~ U<8,0 (thus 1| is
from a discrete uniform on
Cl,nl>

2) Set W<- | -V

3) If W$ R(I>, deliver X = 1 ;

otherwise deliver X m A<I)

It is remarkable that the number of operations
required to generate a discrete variable, using Walker/s
alias method, are so few (in particular that only one
comparison is needed) and that it does not depend on the
discrete distribution specified, not even on the number of

mass points of the distribution.
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A timing comparison o-f the alias method can be
seen in Peterson Ic Kronmal C373 . The authors show that this
method is -faster than the indexed-search method and
Marsaglia table method (these two methods are not described
in this paper). The experiment is realized with 50,086
samples generated -from a Poisson variable in the computers

CDC Cyber 170-750 and DEC-10.
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2.2.5) Composition Method

The composition method is applied when the
distribution -function F, from which we wish to sample, can
be expressed as a probability mixture of a finite number of
distribution functions Fj, F~,...F*. We would hope to be
able to sample from F~'s more easily than from the

original F.

Specifically, it is assumed that for all x, F<x>

can be written as

F,<x> = C>< « F.<x>
X _j 33
J_
where k < a. £ a = 1.
«aay 0, EJk..1 3

Equivalently, if X has density function f~Xx) which can be
written as

fv<x> = Vy a,f . (x>

X j.rJ

where the f~'s are other densities, the composition method
still applies; the discrete case is analogous. The general

composition algorithm, then, is as follows:
|

>
1> Generate a positive random integer J such that
P< J - J ) - Bj for J - 1, 2..... k
2) Given that J = j, generate X from fj<x>

3> Deliver X

44



Example.- Generate a random variable -from

fx <x) = <5/12) tH-<x-1>4) ;o 0$x$2

which can be written

fy(<x) = <5/6)Xf1< x>+ <1/6>Xf,2<x>
where
fij<x) = 1/2 } f2<x> = <5/2)X<x-1)4 0$x$2
therefore
1 | 2XxuU2 ; if Uj<5/6
x -
+<2*U2-1) (1/5) } if U, 1T 5/6

* [

The advantage o-f the composition method is that we
can sometimes find a decomposition that assigns high !
probability «. to p.d.f.'s from which sampling X is
inexpensive and concomitantly assigns low probabilities
to p.d.f.'s from which sampling X is expensive. For further
information about this method see Ahrens Dieter 021,I I

Marsaglia €281 and Morgan <[341, p. 107-113).
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2.3) Specific Procedures

11 '
Although most methods for generating random

variables can be classified into one of the general
approaches described in section 2.2, some techniques simply
rely on special properties of the desired distribution
function F of the random variable X. Frequently, the speicial
property will take the form of representing X in terms of
other random variables which are more easily generated.
Since there is no general form of these techniques, we shall
give examples for three continuous (Exponential, Normal and
Gamma) and three discrete (Binomial, Poisson and Geometric)

distributions.
2.3.1) Continuous Distributions
2.3.1.1) Exponential

An exponential distribution X has p.d.f.

I(1/*> X exp<-x/i) ;0 S x *mw» , $ >0
fx(x) =1
V. 0 | otherwi se
which we will denote by EXP(tf).
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Uu(0) = 0 and U(n) = 1 5 then the r.v.'s

Yk = (u<”_i> ~ U<k>* n Ni=1 Ui k=1,...,n

are independent and distributed EXP<1>. <Proof in C393, p. 68>

So, the algorithm -for this procedure will be as -follows:

Algorithm E-2

1) Generate 2n-1 uniformly distributed random

2) Arrange the variates Un+j, tA2n-i *n orfer
increasing magnitude, that is, define them to be the
order statistics U<1) ___________ *U<n - 1)

U(k) >XI n<II"=1U. >, k-1
4) Deliver ;o k* Ll as a random sample -from

EXP< 1) .

The advantage of algorithm E-2 is that it requires only one
computation of Inn”_jLK for generating n exponential
variates simultaneously. The disadvantage is that it needs
2n-1 uniform variates rather than n uniform variates for the
inverse transform method. Additionally, this algorithm
requires the order arrangement of the last n-1 wuniform

variates generated.

Alternative procedures for generating from EXP<O0) without
the use of logarithmic transformations can be seen in Ahrens

and Dieter [21, Fishman 093 and Marsaglia C293.
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2.3.1.2) Gamma

A random variable X has a gamma distribution if

its p.d.f. is defined as

x<at I>Xe<-x/*> . ( e, /I>0

otherwi se

and is denoted by G(u,fi). Note that for «=1, G<I,ff) is

EXP< fi) .

Since the c.d.f. does not exist in explicit form for gamma
distribution with a1, the inverse transform method cannot
be applied. Therefore, alternative methods of generating gamma

] i
variates must be considered.

Procedure G-1

One of the most important properties of the gamma
distribution is the reproductive property; let X~,
i-l1,...,n, be a sequence of independent random variables

from G<«j ,B) , then X“E~=j X~ is from G(ac,£) where &aE™—jOij
Case « integer

If a is an integer, say ot-m-Eo”®, i-Il,...,n, a
random variate from the gamma distribution G<m,£) can be

obtained by summing m independent exponential random
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variates EXP<£> , that is,

X = thETiM: .t-1n<U,)1

| 1

= -tfXIn<nn_ 3 Ug> <3.4.10)

| i
In this case G<m,tf) is called the Erlang distribution
and is denoted by Er(m,tf) . The -following algorithm descrlibes
generating r.v.'s -from Er<m,tf) i
Al gorithm G-1
1) X <- 0
2> Generate V -from EXP< 1>
3) X <- X +V
4) 1f m = 1, then
4 .1> X <- *XX,
4.2) deliver X
5 m<— m- 1

4) Go to step 2

It is not difficult to see that the mean computation <CPU)
time for generation from the Erlang distribution is an

increasing linear function of m.
Case g is not an integer

For some time no exact method was known and
approximate techniqgues were used. The most common method was
the so-called probability switch method, which is based on

the composition method.
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Let m=Cof] be the integral part of a, and
let fi=or—m. With probabi 1ity 6, generate a random variate
«from G<m+l,tf>. With probability 1-S, generate a random

variate -from G<m,tf);

G<of,B) « 8XG<m+l,tf> + <I-«)XG<m,tf> ca i 1

This mixture of gamma variates with integral shape
parameters will approximate the desired gamma distribution.
This technique yields better results with higher values of

<C351, p. 88).

Procedure G-2

This procedure is due to Cheng C12) and describes
gamma generation G(a,l> for a > 1 with execution time
asymptotical 1y independent of tx. The procedure is based on

the acceptance-rejection method.

Let the (density function of 6(v, 1)

X

r<«>

be represented by the product of the following functions:
I

xux Xy * X*)'Z 9 xi 0
h<x> -
0 otherwi se
C
r<«>Xe“
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“OX<u & xX>2e“ Xx/<4«"+X>

W= ax X = (2a - 1)X

C is a monotonical 1y decreasing -function o-f a. Selected

values of C are given below

\Y i 1.5 2 . 5 20

1.47 1.31 1.25 1. 17 1.14

Using Sterling's approximation -for r<«> <C13, p. 257} when a
is large, it can be shown that C tends asymtotically to the
-
value 2/Vvn 3 1.13 as a tends to in-finity.

The distribution -function corresponding to g<x> is

To generate X -from G<or,I>, we sample x -from V<x>, which

means substitute x -from
XX
j Uj -from U<9, I>

<M+xX>
i
|

X <1/X>In((U,)/< 1-U.) >

X - «Xe 1 1
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Then, we compare

Uz $ g<x*> ;U2
if the inequality holds, accept x
process. Cheng [123 recommends the

this procedures

-from U<O0, 1)

otherwise repeat the

-following algorithm 4or

I <
Algorithm G-2
1> Sample and U2 from U<O0,1)
2) V <- <I/X)XIntUV< 1-Uj> 3
3) x <- «eV
4) If b + dXVv X * In<uUnrU2> !
deliver X
5) Go to step 1 |
where b “ & - In4 and d = « + X.
Cheng [123 simplifies step 4 for a faster pretest of the
general acceptance-rejection method as fotlowsi
4'> Set 2 = U2jXU2, Y - b & dXV - X.
If Y & <<1n4.5) + 1> 4.5X2 * 0, deliver X.
If Y 1 1n<2>, deliver X.

Cheng made a timing comparison of

above modification. He shows good

for a > 1.5. For further examples

variable from G<v,£)

Fishman [193 and Hal lace [443 .
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2.3.1.3) Normal

A random variable X has a normal distribution if

the fj.d.f. is
wx <x> = Cl/(2XnX«r2>fXexpC-<x-u>2/<2)(ir2>] ; -m<x<m

and is denoted by N<w, az). Here u is the mean and <r0 the
variance. Since X«p + ZXtr, where 2 is -from the standard
normal distribution, N<O0,1>, we consider only generation of
N<0,1) . As the inverse of the normal distribution, F-1<x>,
does not have a closed-form expression, the inverse
transform method cannot be applied; therefore, another

method has to be employed.

Procedure N -1

This approach is due to Box and Muller C103.
The procedure is based on the following statement:
If Uj tc U2 are independent random variates from U(0,1), then
the variates
« C-2XIn(Uj> JEXcos<2*wXU2>
<2.4>

Z2 = C-2XIn<Uj)IrXsin<2XwXU2>

are independent standard normal deviates.
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The algorithm -for this procedure is as -follows:

Algorithm N -1

1> Generate two independent random variates U k U
from U<O0, I>
2) Compute Zj t* 22 simultaneously by substituting

Uj tc U2 in the equations <2.4)

Marsaglia & Bray [32] made an improvement to the above
algorithm by eliminating the trigonometric calculations.
This improvement, known as the polar method, is described in

the following algorithm:

1> Generate Uj and Ug- from U(0,1)
2) <- 2Uj - 1 50 = 1,2

3) W <- V2j + V22

4> |f W > 1, go to step 1

5 Y <- C <-21n<W>)/W 3*

6) Xj <- VjXY , X2 <- V2XY

7) Deliver Xj and X2

The probability of rejecting the pair Uj and U2 is
given by I-n/4 a .215. Atkinson and Pearce [81 show that the
polar method is 30.TV. faster than the Box and Muller method
in a Cyber 73-14 computer machine and 8.:;X faster in an
IBM360/45. Ahrens and Dieter [2] experienced a 26.5X .
reduction in an IBM360/65. H

The difference in percentages on the IBM's is due
to the different pseudo-random generators! in Atkinson and

Pearce simulation experiment takes on average 23psec to
- i
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generate one pseudo random number, white in Ahrens & Dieter,
13us.ecj so, apparently, the difference in both methods
increases according to the speed -for generating pseudo-

random numbers.
Procedure N-2

This procedure is based on the acceptance-
rejection method. Let the rv. X be distributed

fv<x> « 2X 1 expC-X2/2> . X» 8
V2it

= V2/tr expC-x2/2>

which has the shape of the righ.t side of the standardinlornial
distribution. The function is multiplied by two to satisify
/0fr<x>dx=1. Since the standard normal distribution is
symmetrical about zero, we can assign a random sign to the

r.v. generated from fACx) and obtain a r.v. from N(8,I>.

To generate a random variable, X, with fx<x>, we

apply the acceptance-rejection method as follows:

fx<x> - CXh<x>Xg<x>
where
h<x> ** e x
C - V2Xe/n
and

g< x> - expt-<x-1>2/23
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Then, the acceptance condition CU$g<Y>3 is checked, that is
U$ expC-<Y-i> 2/23

which is equivalent to
-1 n<U) i <Y-1)2/2

where Y is -from EXP< 1) .

- i
Since -In(U) is also from EXP(D , the last inequality can be
written

V2 * <Vj-1>2/2

where both V2=-In<U> and y~Y are from EXP<1).

The efficiency of this procedure is equal to 1/0Vn/2eS0.76

The algorithm for the above procedure is as follows!
Algorithm N-2

1) Generate Vj and w2 from EXP< 1>
2) If v2 * <Vj- 1>2/2 , go to step 1
3> Generate U from U(0,1)

4) If U * 0.5, deliver Z - -Vj

5> Del iver Z m Vj
i
For further procedures to generate random variable from a

normal distribution see Ahrens it Dieter 123, Kinderman it

Ramage C233 and Marsaglia 1313.



2.3.2) Discrete Distributions

2.3.2.1) Binomial

The probability mass -function, p.m.f., of the
binomial distribution is
fp<r) = PrC R=r 3
n! pr<l-p)n_r J r=8,1,.. .,n
p >0
<n-r>1!r!

with E(R) = nXp and Var(R) = nXpX(l-p). The binomial

distribution describes the number of successes in n

independent trials, where p is the probability of success at

any given trial.

To generate a random variable R, the following algorithm can

be used:
Algori thm Bl- 1

1> Set R <- 0
2) Do the following n times:
2.1) Generate U uniform on U<0,1)
2.2) If Ui p, R <- R 1
3) Deliver R

I
This algorithm will depend on the value assigned to n. For

large n, the normal distribution can be considered. As n
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increases the distribution of

X - nXp +*
2-- 2.5)

[nXpX<1l-p)3~°

approaches N<0,13. <De Moivre—Laplace limit theorem, €183,
p. 186).

To obtain a binomial variate we generate 2 -from
N(0,1>, solve <2.53 with respect to X, and round to non-

negative integer, that is,
R = max<0, C-0.5 & nXp & ZX<nXpX< |l-p>>*3)

where tX3 denotes the integer part. If np3/2 > 1.07, the
error in wusing the normal distribution -function instead o-f

the binomial never exceeds 0.05 for any r <[223, p. 132).

2.3.2.23 Poisson

The poisson distribution has a single parameter X

The p.m.f. is
fv<x3 = e "Xx/x! ; x—=0,1,...
A

The mean and the variance are both X. Because X has an
infinite range, the inverse transform method (section
2.2.1.23 is very slow. An alternative method is to use the
exponential distribution since the poisson is related to
EXP<13, when the number of arrivals occurring in the

interval <0,X3 is a poisson with parameter X.
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The above relationship is used to derive a
generating procedure. |If (Y”) *s a sequence of independent
exponentials, each with expectation 1, then we wish to -find
X such that the Xth arrival occurs before X but the X+lIst

occurs after X; that is

< ., Yi < >»< A

Recalling how we generate exponentials, that is
SEAjIN0J.) $ X < -EX+ f=; 1In<IT >

or equivalently
?.. * X >84 fu

This gives the -following algorithm:
Algorithm Po-1
1> Set X <- -1 , m <- exp(X)
2) Repeat the following until m < 1,
2.1) Generate U uniform on U<8,1)
2.2) Set X <— X & 1, m <- mXU

3) Deliver X

When X is large this procedure is slow. It is recomended
that the normal distribution be used as we did for the
binomial case <see Ahrens and Dieter £63). Another method
for generating poisson random variables can be seen in

Atkinson £73.
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2.3.2.3) Geometric

A random variable has the geometric distribution

if the p.m.-f. is equal to
1
X <x> = pX< |-pP>X e <2.6)
X=0, 1, e JO<p<1

which is denoted by Ge<p> . The mean and the variance for
Ge<p> are (l-p)/p and <I-p>/p2, respectively. The geometric
distribution describes the number of trials to the 'first

success in a series of Bernoulli trials.

To generate a random variable with a geometric
distribution, we use the relationship of this distribution

with the exponential distribution. Let Y be from EXP<£>

then
PrtX <Y $ X+13 = e“Y/*dy
e-X/*X< l-e_1/*> ... <2.7>
which is Ge<p~l-e_1/*> for X»0,1,2 ...........
For B ” -I/In<i-p> <2.7> is identical to <2.4). Therefore,

X = 1n<U)/l n<l-p> - - V/Iin<l-p>
where V * -In<U> is a standard exponential variate. Hence to
generate a random variable from Ge(p> we generate a random
variable, say X, from EXP<tf> with 0 = - 1/In<Il-p>, and then
we get the integer part CX]. This procedure is more

efficient than the inverse transform method only for p < 0.25

<C393, p. 104) .
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2.4) Empirical Distribution

In some situations, rather than -fit a theoretical
distribution, Me might want to use observed data to speci-fy
directly a distribution, =mfrom which samples are drawn during
simulation. If this is the case, the distribution is called

an empirical distribution.

For continuous random variables the type of
empirical distribution that can be defined depends on
whether we know the actual values of the individual original
observations Xj, X”"......... X~ rather than the frequency of
X~'s which fall into each of several specified intervals. |If
the original data is available,-we can define a continuous,
piecewise linear distribution function F by first sorting
the X7”'s into increasing order. Let denote the ith

smallest of the X”'s, so that

X<1> « X<2>

Then F is given by

0 1 if x < X(1)
i-1 X - X _.
F<x> - <i> AT X< X < Xy
kkn-1 > (n-1)<X <ie1) X<|)>
1 , if X<n) i x
Figure 2.2 gives an illustration for n m 6. Note that F<x>

rises most rapidly over those ranges of x in which the
X(fr's are most densely distributed, as desired. Also, for

each i, F<X(1))»<i-lI)An-1>, which <for large n> is
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approximately the proportion of the X7's that are less than
the However, one clear disadvantage of specifying this
particular empirical distribution is that random variables

generated from it during a simulation run can never be less

than X,

(1> or more than X.<n

s -

F< x>

X
<1> y <2> y 3) y <4> X<5) }’-/\<6>

Figure 2.2 Continuous piecewise linear empirical

distribution function

If, on the other hand, the data are grouped, a
different approach must be taken. Suppose that the n X7i's'
are grouped into adjacent intervals Ca”.a”, [a.,a2>,..,,
tak_j,ak> so that jth intervals contains n® observations,
where nj+n2+...*nk = n. A reasonable piecewise linear
empirical distribution function 6 could be specified by

first letting G<a8>:0 and G<aj.>“<n1+nzo....+nj.)/n for
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j=1,2,. .,k. Then, interpolating linearly between the a”"'s,
def ine
- 0 S i* x < a0
G<x> =<G<alJ_1> + x-alJ_1XCG<al>-G<alJ_1>J , i-f alJ_lix<al
a.-a_. ,
J TJ-1

5 if ak i x

Similar procedures can be applied -for discrete data.
For example, to generate a random variable =mfrom the

empirical continuous distribution F<x> we have to -find X

=from
- i
F<x> = U | U -from U<O0, 1)
X = X<1) ¢ <P-fi>*<x<Il+1)-x(1)>
where
P = <n-1>XU
and

CPlI ¢ 1

For mfurther in-formation about the generation o-f random
variables mfrom an empirical distribution see Bratley, et al

<C113, pp. 137-139> and Law and Kelton <1241, pp. 174-177).
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2.5) Conclusions

[ ] i
Me have seen that there is no unique May to

generate random variables. There are several questions tfiat
have to be answered before starting to generate samples with

specific random characteristics, such ast

What sort of information is available to define
the random behaviour of the model?

Is the theoretical distribution known? Does the
c.d.f. have a close-form expression?

Is there already a procedure that generate the
desired random variable?

What is the average, number of uniform random
numbers required per sample?

What is the computer speed to generate a single
sample from a uniform random variable?

What are the marginal execution and set-up times?
Are there better procedures to generate the
desired random variable?

What computer languages are available which can
generate the desired random variable? Which is

the fastest?

Although the above questions have to be considered, it is

important to say that their answers will depend very much on
the conditions and complexities of the simulation model; we
might allow ourselves to slow the speed to generate a random
sample in order to concentrate our effors on the validation

of the simulation model.
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111> Pseudo-Random Numbers Generator
3.1) Introduction

Generating random numbers uniformly distributed in
a specified interval is -fundamental to simulation; every
procedure discussed in chapter Il -for generating random
variates transforms one or more uniform random numbers. Many
techniques for generating random numbers have been
suggested, tested and used in recent years [201. Some of
these are based on random phenomena, others on deterministic

recurrence procedures.

Initially, manual methods were used, including
such techniques as coin flipping, dice rolling, and roulette
wheels. These methods were too slow for general use, and
moreover, sequences generated by them could not be
reproduced. Shortly, following the advent of the computer,
it became possible to obtain some sort of random numberls.I In
1955 the RAND Corporation [381 published a table of a
million random digits that may be stored in the memory of a
computer. The advantage of this method is that the sequulence

of random numbers will be reproducible; its main

disadvantage is the problem of space in the computer merhory.

In view of these difficulties, John von Neumann
C463 suggested the mid-square method. This method takes the
square of the preceding random number and extracts the
middle digits. Suppose we wish to generate four digit
integers and the last number generated was 8234. To obtain

the next number in the sequence we square the last one and
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use the middle -four digits of the product. In this case the
product is 67798754, so the next number is 7987. The next
<few numbers o-f the sequence are 7921, 7422, 0860. One of the
main drawbacks of this method is that once a zero is
encountered the sequence terminates, and that not all

numbers are likely to occur (see Tocher C433, p. 74).

Another generator of random numbers is the
Fibonacci method. This method adds two or more previous
numbers together and then takes the remainder when this sum
is divided by a number called the modulus; this procedure is

|
called 'Additive Congruential'. If X~ is the i-th number

generated and 'm is the modulus, then the Fibonacci method

is representeo by

Xi = <Xi-1 + Xi-2J mod m ... (3.1)

One of the weaknesses of this method is conspicuous serial
correlation. For example, suppose that m=1000, X =1

and X 1; then the next sequence of numbers is 2, 3, 5, 8,
13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 597, 584, 181,

etc .

This section considers methods for generating a
sequence of random fractions, i.e., real numbers ,
uniformity distributed between zero and one. Since a
computer can represent a real number with only finite
accuracy, we shall present procedures to generate integer X~
between zero and some number m, and then the fraction

Un 3 xn/m which lies between zero and one.
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3.2> Considerations in Pseudo-Random Number Generators

When a sequence of numbers that shows similar
characteristics of a uniform variable is generated in a
completely deterministic way, then the sequence is called a

sequence of 'pseudo-random” numbers.

There are three main considerations that play
influential roles in determining whether or not a particular
source of numbers provides a sequence of pseudo-random
numbers that are adequate for simulation. These numbers must
pass a battery of statistical tests designed to reveal
departures from independence and uniformity. For a truly
random sequence XJt X2,... <0 < X. $ m>, the elements of any
subsequence of these numbers are Jointly independent and
each has a uniform distribution over (8 m>; failure to have
this property can lead to severely misleading results in

simulation.

The second significant property requires that the
pseudo-random numbers contain enough digits to ensure that
the generation of numbers on the interval <0,1) is
sufficiently dense. This property usually depends on the
length of words in the computer memory. Since most medium-
size to large computers can store at least 31 binary digits,
it is possible, at least in theory, to produce a fairly
dense sampling on <0,1) of the 231*2, 147,483,648 available

numbers.

73



The third significant property concerns the
efficiency with which a particular source produces pseudo-
random numbers. The faster an algorithm produces a number,
the more desirable that algorithm is. A minimal utilization
of storage is also attractive, specially with the new
generation of computers whose user charges often depend on
space utilization as well as computing time. !

Since these properties seldom, if ever,
characterize any one method of producing pseudo-random
numbers, some compromise must be made. It is generally
agreed that the presence of sufficient independence and
uniformity to preserve the integrity of the particular
experiment under consideration should be the prevailing

criterion in determining adequacy till.
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3.3> Linear Congruential Generators (LCG)

The most commonly used method -for generating |
pseudo-random numbers is the Linear Congruential Generatqr
<LCG) . This generator produces a sequence o-f numbers
according to some recursive -formula; a new number is
generated by the previous one. Although these processes are
completely deterministic, it can be shown that the numbers

generated by certain LCG's appear to be uni-formily

distributed and statistically independent.

The common representation o-f the LCG is a

congruence relationship, expressed as:

X.+1 = (aXX. + c>(mod m) .viirnnnne (3.2)

where the multiplier a, the increment c¢c, and the modulus m

are non-negative integers. The modulo notation means that

i+ 1 axX. & c - mXKk.

where K~ [<aXXi'fc>/ml denotes the integer part i

n. For example, let a-c-X0«7 and m*18; then,

i . Xi+1-<7XXi*7> —C<7XX.+7>/10]X 18

Xi

1 7 6

2 6 9

3 9 8

4 8 7 <- mfrom here the sequence
1

: 1 : starts to be repeated

i 1 | 1

73



LCG can also be presented as the -following

sequence {see ref. [35]), p. 48):

Xj a aXXg + ¢ <mod m)

(a-1)

X. s al*X{) + clKal-!) (mod n»

<a- 1)

Because of the deterministic character of the sequence, the
entire sequence recurs as soon as any number is repeated. It
is said that the sequence "got into a loop”; that is, there
is a cycle of numbers that is repeated endlessly. This

property is common to all sequences having the general form

Xi*l = f<Xj>. (See Knuth [24], p. 9

The repeating cycle is called the 'period'; in the
last example the period length was 4. When the length of the
period is equal to m, it is say that the pseudo-random

number generator has 'full period’.

Most computerized versions of the congruential
generators employ a modulus m > p”, where p denotes the
number of numerals in the number system utilized by the
computer and B denotes the number of digits in a word; for

binary computers p = 2.
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There are two reasons -for choosing m = . First,
reduction modulo m is accomplished by truncating and
retaining only the low order $ digits and second,
conversion to the unit interval <to obtain uniformally

|

distributed variates) only involves moving the point to the

left of the number, as we will see in section 3.3.4).

When ¢ = 0, the generation of random numbers is

little faster than it is when c & 0; the disadvantage when

c = 0 is that the length of the period of the sequence is cut
down, as we will see in section 3.3.2. The term
'Multiplicative Congruential Generator' is used to denote

LCG with c¢c“0, and 'Mixed Congruential Generator' when c*0.



3.3.1> Mixed Congruential Generator <c ¢ 0)

It can be shown that the generator defined in eq.
(3.2)' has a full period provided that the fol lowing

conditions hold: (C241, p. 16)

i) c¢c is relatively prime to m, that is, ¢ and m have no

common divisor

ii> b= a - 1is a multiple of p, for every p dividing m
iii) b is a multiple of 4, if mis a multiple of 4
For a binary computer, where m = Za, it is shown
that a full period is guaranteed when a = 2T 4+ , r £ 2- and
c is an odd number. Hull and Dobell C191 using a computer

IBM 7090 show that good statistical results can be achieved

when m = 235, a = 27 +1, and c= 1.
a
When m = 10 , in order to generate a sequence with
a full period, 'c' must be a positive number not divisible
by 2 or 5, and the multiplier ' must satisfy the condition
asl(mod 20), or alternatively a = 10r & 1, r > 1.

Satisfactory statistical results have been achieved by

choosing a = 101, ¢ ” 1 and r J 4. (see ref. (13>
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3.3.2) Multipiicativ/e Congruential Generator <c = 0)

The multiplicative congruential generator is

represented by the loll owing expression:
X.+1 = axXX. (mod m>............. (3.3)

This generator can not achieve a lull period,
because 'c' does not satisly the condition described in the
previous section. However, it may be possible to achieve an

acceptably long period, provided that XQ is relatively prime

to the modulus 'm' and that the multiplier 'a' meets cehrtain
congruence conditions. For example,
it m*x 26, a period h * 26_2 is generated

provided that XO is odd and a»3 mod 8 or 5 mod 8
(C391, p.303>. For instance, with Xi+j*11X*mod24
we generate a period 24'2»4, because [1*3mod8

<3=11-C11/83X8) . An example ot possible sequence

with two starting points is as tollowsi

%0 Sequence
1«11]19,3,1,11]9,3...cccee
1
5 7,13,15,5,7,13,15,5,...

it m= 10*, Si5, and X0 is not a multiple ot 2
4-2

or 5, the period h*“5X 10 is achieved when a =
200r i s, where 'r' is any positive integer and
's' is any o-f the toll owing 32 numbers: 3, 11,

19, 21, 27, 29, 37, 53, 59, <61, 67, <69, 77, 83,
91, 109, 117, 123, 131, 133, 139, 141, 147, 143
171, 173, 179, 181, 187,. 189, 197. (see ret,

c24], p. 20)
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It is possible to increase the length of the

period to m-2 provided that the modulus is of the -form m=22

1 and is a prime number. The condition -for the multiplier 'a
is that it has to be prime to m-I=27-2 (the largest common
divisor of "a" andm-1 is unity). In this case "a' is called
a primitive root (see Tocher [433, p. 78). In Western and

Miller [473 a list of primitive roots can be found for prime

numbers m $ 999,961. i

Fuller [123 proves that with m=23 } the
multiplier a=7n <n is any integer greater than zero) is a
primitive root. One common combination is m=23 :.ll. ”
2147483647 and a=7® = 16807. This combination can be found
in the APL system from IBM, the scientific library from

IMSL, and in the SIMPL/I system <[43, p. 184).
3.3.2.1) Reverse Sequence

It is possible to generate a sequence of pseudo-
random numbers in reverse order provided that the new

multipiier is
<mod m)

where L is the cycle length. For example, consider the
generator ” 3Xj (mod 7). It generates the sequence 1,
3, 2, 6, 4, 5, 1, so, L“6. Using this information we

calculate a'‘',

a' - 36-1 (mod 7)
= 243 [243/73X7

3
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Then, to generate the reverse sequence <1,5,4,<6,2,3,1) we

/
use the generator X j+1=5XX . (mod 7).

) |
3.3.3) Serial Correlation of LCG

Greenberger C153 has shown that an approximation

to the first step serial correlation, Corr(X.+1, X”, in LCG
is given by

1 6¢C a

- - —X 1- c/m) %= -

a am m

The above formula is sometimes used to decide the
values of the parameters in LCG which minimize p. +. (C113,
p. 175). For example, see the following combination of the
constants a, c¢c and m which produce a full period, but

different correlations (C343, p. ¢0) :

a Cc m p
i 234+1 1 235 0.25
ii 218+1 1 235 << 2

So, in this example, we would say that the second
18

combination <a“2 7 +1, c»lI> is better than the first one,
when m—235. However, as we will see in the section 3.4.2,
this comparison of first step serial correlation will not

be enough to guarantee a 'good' generator.
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3.3.4) Defect of LCG

One of the defect of the multiplicative
congruential generator is that if n-tuples n.=(u.,..,u >,
n2=<u2,-,,'un+1>’ n3=<ud,*" * un+2), " * O0f un*iorm v*ri*tes
<u.=X./m> produced by this generator are viewed as points in
the unit cube of n-dimensions, then all the points will be
found to lie in a relatively small number of parallel

hyperplanes <see figure 3.1). Furthermore, there are many

Figure 3. 1

systems of parallel hyperpl anes which contain all the
points. Marsaglia C333 shows an upper bound in the number of

these hyperplanes by proving the following theorem:

Theorem. If S~, S”,..., Sn is any choice of integers such
that

S, +S,a+S»a2+. . .«-Snan_lao (mod m)
then the points n.-<ut,uj+j,...,ut+f_ Ci-1,2 ..., will lie
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in the set of parallel hyperplanes defined by the eque'ltllons
i

Slui+S2ui+l+* =+Snui*n-1=0"x1"x2"-*1

There are at most
ISIIQISEIO...+ISnI

of these hyperplanes which intersect the unit n-cube, and

there is always a choice of Sj, ... such that all the
points fall in fewer than <n!m> 1/n hyperplanes,
. 1/n
Here is a table of <nlm> for some values of m,
power 2:
Table 3.1 Upper bound for the number of hyperplanes
containing all the n-tuples
n*“ 3 n =25 n = 16
m= 21* 73 23 13
m = 224 445 72 23
m = 232 2,953 220 41
m= 24 119086 2,021 124
For example, in a binary computer with 32-bits words, m“232,
fewer than 41 hyperplanes will contain all 10-tuples, fewer
than 220 hyperplanes will contain all 5-tuples and fewer
than 2,953 hyperplanes will contain all 3-tuples. Marsaglia

states that similar results can be established for mixed

congruential generators <see figure 3.2>.
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Figure 3.2

Lattices of all pairs (O, +
of a single period of congruential
generators with modulus 1024 and
@ a-4,c-1 (b a- 129,
cml and (¢) a - 45, c - O.



3.3.5) Linear Recursion mod 2 Generator

A linear congruential generator calculates Xi
solely -from X._j. Additive congruential generators <i.e,
Fibonacci Method) use several previous values of X.- Both of

these methods are special cases of the general formula

In this section we study the case when m=2 and
c=0. Because X~ can equal only 0 or 1, such generators
produce a bit stream {b”. Furthermore, the only values that
need to be considered for the a”.'s are also 0 and 1. Thus b"
is obtained by adding modulo 2 to several of the preceding

bits in the stream.

Modulo 2 addition is the exclusive-OR logical

operation. This operation, denoted by XOR, makes the

logical operation 'not-»qual', NEQ, for example, when
A B A XOR
1 1 0
1 0 |
0 1 i
0 0 0

One way of implementing the generator <3.4) with
2 and c“0 is by using a Shift Register with Feedback <SRF>

and a primitive polynomial h<x> of degree kj this sort of
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polynomial will be defined later. As an example, take
h<x> = x4 & x + 1

which has degree 4. This polynomial specifies a feedback

shift register as shown in the following figures

Figure 3.3 .- Shift Register with Feedback <SRF>

Each box in figure 3.3 is a one-bitlmemory holding 0 or 1.
At each iteration the register is shifted one place right,
the boxes corresponding to the terms in h are added modulo
2, and the sum is fed back into the left-hand box. For

example, if the shift register of figure 3.3 is initialized

to the state 1000, its successive states and outputs ares

Table 3.2 Example of SRF

I teration States Output
0 l1e00O0
1 01 0o "0
2 0e I O 0
3 *if 0 1 0
4 1100 1
3 ol 10 0
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1 1
8 le 10 /
9 1i 0 1
16 1i 10 1\

I\j_
11 1i 11

9 r

12 o1l 11 i
13 00 11
14 000 1 i{
15 100 e > J3
16 0 100 0/

Since etch of the k boxes in -figure 3.3 can hold O
if
or 1, there are 2 possible states tor the shift register.
Thus the sequence <b.> must be periodic. Since the all-zero

state generates only zero, the maximum possible period is

Now we can define a primitive polynomial: h is a

primitive polynomial if the shift register corresponding to
h generates a sequence with period 2'-1. In the previous
example, all 15 possible non-zero states are achieved, so
x40x*l is a primitive polynomial. In Stahnke C413 a list of

primitive polynomials of the form x +xgq+l for kil68 can be

found.
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Tausworthe [42] shows that if a sequence of n bits
generated by SRF are considered as n-bit integers, then
these integers are approximately uniformly distributed, and
they do not have certain multidimensional non-unitormities
associated with linear congruential generators. One way to
generate such integers is to take k equal to the number of
bits in the computer word (not counting the sign bit) and

choose a primitive polynomial with only three terms, say
h(x) = xk + x» + 1

such that kJ2q. Now, i-f the computer can do -full-word logical
operations, components of the sequence (b.) can generate k
bits at a time as required, using only two shift and two

exclusive-OR operations as follows:
Algorithm Ta-01

> Y <- J (The integer J is formed by bits
bi+k-lIbi+k-2* *’ bi>
2) Right shift Y by q bits, filling with zeros
> Y <- ] <- Y XOR J (the Ilow-order bits of J
have now been updated)
4) Left shift Y by k-qg bits filling with zeros
5) J <- Y XOR 1 (J is now formed by bits

bi+2k-lIbi+2k-2*** bi+k>
6) Deliver J, as the next required integer
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For
bits of

be i

next

example, to

-form

integers with

the table 3.2, the results
0001 The seed, J*0=I
0010 Shift gq= 1 right < <
0011 XOR
0000 Shift k-g= 3 left <
00 11 XOR, J*=3
0110 Shift g=1right
0101 XOR
0000 Shift k-g= 3 left
0101 XOR, J*=5
1010 Shift g=1right
1111 XOR
0001 sShift k-g= 3 left
1110 XOR, J’:=14
1100 Shiit g1 right
00 10 XOR
0000 Shift k-q- 3 left
00 10 XOR, J*= 2

pseudo-random number

(decimal¥™)

89

-four

-)

bits

-from the output

-from algorithm Ta-0 1 will

11 1

11



Lewis and Payne €283 suggest a refinement of the
SRF algorithm. They use the logical operation XOR to a
computer word W. as -follows: assuming a primitive polynomial
xk+xﬁ+1 such that 2V-1 is a prime number, then the sequence

of pseudo-random numbers, W., is calculated by the recursion

Wi = Wi-k+q XOR Wi-k

For example, let the primitive polynomial be x5+x2+1, then

the sequence of numbers is as follows:

w 0
10 0 0
w1 1
XOR«- 1 10 1 1
w2
11 i 0 o
w3
10
wa 0o 1 1
o0 0 0 1
* W5
0o 1 10 1
w6
0 1 0 0 0
w7

This procedure is called the Generalized Feedback
Shift Register <GFSR> method. The following algorithm can be

used to implement GFSR:

Al gori thm GFSR
1) Initialize W, to Wk, for example, using SRF
algori thm
2> Initialize J <- k-q, i <- Kk

3> Set W. <- W XOR W., and output N.



4) Decrease j and i by 1. If j=0, set j <- K if
i=0, set i <- k
5) If enough pseudo-random integers have been

generated, stop; otherwise, go to step 3

The advantage of the GFSR algorithm is that it is fast, easy
to program, and offers large period length regardless of the
word-size of the computer being used. Using k words of
memory, a period of length 2y‘-l can be achieved. This
algorithm is considered to be statistically qualified as a

good pseudo-random number generator, if k and g are chosen

properly <C41, p., 190).
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3.3.6) Combination of Generators

Combining two sequences of pseudo-random numbers,

<X.) ®and <Y.) to produce a third one, <2.3 aims to reduce

nonrandomness. If Xj and Y. are distributed over the integers

0 and m-1, some suggestions are:

a) Set 2. 7 <X ¢ Y*> mod m

b> Set 2.i = )ﬁ XOIR Y.

Wichman and Hi 11 C493 report good results using
essentially method a). Their method combine the following

three generators

wi*l - l7lW] mod 30269

Wi+l = 172X mod 30307

Yi+1l - 170Y[ mod 30323

to obtain the pseudo-random 27+j as follows:
Zi+l * <Wi+1/30269 & X .+j/30307 & Y. +j/30323> mod 1

The period length of the above generator is 6.95X1012 [503
The authors claim that this procedure is reasonably short,
reasonably fast, machine independent, easily programmed in

any language and statistically sound.
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3.4) Testing

In this section, we describe some statistical
tests -for checking independence and uniformity of a sequence
of pseudo-random numbers. As mentioned earlier, a sequence
of pseudo-random numbers is completely deterministic, butI
insofar as it passes the set of statistical tests it may be

treated as one of “truly” random numbers, that is, as a

sample from U(0,1).

Knuth <£241, p. 38) divides tests of the
supposedly independent and uniform U. into two classes:
Empirical Tests, in which a sample is taken and assessed
without consideration of the way in which the numbers are
generated, and Theoretical Tests which are based on the way
in which the pseudo-random numbers are generated, and which
do not require a sample. In this section, we describe
some empirical tests and one theoretical test <the spectral
test).

3.4.1) Empirical Tests
3.4.1.1) Chi-Square Test |

The chi-square test <X2 test) is perhaps the best
known of all statistical tests, and it is a basic method
which is used in connection with many other tests. The chi-
square test applies in the following situation. Assume the
event space (e.g., the possible values of the random number
drawn) can be partitioned into n subsets <e.g., U $ 0.1,

«.1< U $0.2,...etc)
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From a sample oF M independent observations, let F. be the
number oF outcomes Falling into subset i. Let 7 be the
expected number in the i-th subset under the hypothesiaed’
distribution. IF the hypothesis is true, then as M

increases, the statistic

has asymptotical 1y the chi-square distribution with n-k-il
degrees oF Freedom, where k is the number oF parameters
estimated From the data; For testing the uniForm
distribution, k»0 . IF X2 is large, the hypothesized
distribution is rejected (see Kendall h Stuart [223,

pp. 419-4423.
3.4.1.2) Kolmogorov-Srr.irnov Test

Like the chi-square test, this test allows one to
make a statement about the probability oF an observed sample
being drawn From a specified distribution. It works only For
continuous distributions. Unlike the chi-square test, not
even the asymptotic distribution oF the KS statistic s
known analytically IF any parameters are estimated From the

data.
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Frequency Test

When a sequence of random numbers has a uniform
distribution one of the first obvious requirements of a set
of decimal digits is that each decimal digit shall occur
with approximately equal frequency. The frequency test
consists of recording the frequency of occurrence of each

digit and comparing this with its expected frequency (one-

2
tenth the sample size) by using a X test (section 3.411).
Serial T/r?t

The frequency test merely tests the probability of
the occurrence of each digit in a given position, but it
does not exclude the possibility of serial correlation
between digits in successive positions. Thus, the sequence

04142 43 44 4546,7,8,9,0,1,2,3,4,5,6,7,8,9
will satisfy the frequency test, but clearly it is not a
random sequence. The serial test is used to check that rto
digit shall tend to be followed by any other digit. To make
this test, we form a bivariate table showing the
distribution of pairs of digits in the series, arranged in
the rows according to the first digit, and in the columns
according to the second digit; this procedure could be
extended for more than two digit series. In all cells, we
should get frequencies which are approximately equal in ‘all

2
cells 1211. This can be tested again by using X test.



3.4.2) The Spectral Test

The test was originally motivated by the
consideration o-f non-random wave structure in the LCG. This
test can be understood on much more straight-forward
geometrical grounds. Essentially, the spectral test is a way
of measuring the n-dimensional uni-formity of a complete
cycle of the output generator.

The spectral test is related to the problem
presented by Marsaglia 1333 in relation to the maximum !
number o-f hyperplanes that contain the total number o-f
pseudo-random numbers generated by the multiplicative
congruential generator (section. 3.4.4). This test determines
the maximum distance between adjacent hyperplanes, the !
maximum being taken over all sets o-f covering hyperplanels

(see -figure 3.1). The larger this maximum, the worse the

generator.

To show the spectral test in a practical way, we
use an example presented in Bratley, et al (143, p. 196).
Let us consider a generator of the -form Xj*j-‘aXj mod m.
Complete periods of the output -for two speciiications of

this generator are listed below
Case am§7 , m *m 11

Xj =1, 7, 5, 2, 3, 10, 4, 6, 9, 8

Case a = 6 , m = 11
Xj - 1, 6, 3, 7, 9, 10, S, 8, 4, 2
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Both cases satisfy one-dimensional uniformi ty as well as
possible, i.e., every integer in the interval C1,10] is
generated exactly once in a cycle. In two dimensions

<X™+j, X.), uniformity collapses, see the -following figure:

11
9
XiM 7 =
5 @a
3 e
<
1 m X
11
X.i x.l
N i
<i*l 77X~ mod 11 i+ 1 ¢X. mod 11
Figure 3.4 Plot of output pairs of two generators
In each case the points in 2-space can be covered by a
family of parallel lines. For the generator X .~ Xj mod 11,
all the points can be covered by either two parallel lines
of positive slope or five parallel lines of negative slope.

For the generator Xj+ j=7Xj mod 11, all points can be covered
by either four lines of positive slope or three lines of
negative slope. This confirms Marsaglia theorem <section
3-3.4) which says that there are at most 7 * <2!X11>7

hyperplanes that contain all the points in the plane.
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In this example, the maximum distance tor the
mfirst generator <X*"+j«7X" mod m) is 3.48, which appears more
random, while in the second one <Xi+ j34X. mod 11) is 4.92
<C4l, p. 197). So, we say that the mfirst generator is better

than the second one.

Algorithms to perform the spectral test can be
found in Hoaglin k King C17J and Hopkins t181. For a formal

development of the spectral test see Knuth (1241, pp. 89-110).
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3.5) Conclusions

We have seen that the linear congruential
generator <LCG) is an easy way to generate pseudo-random
numbers, and if its parameters are chosen properly this

procedure can be used in simulation studies.
|

One of the disadvantage of LCG is the problem of
non-uniformity presented in a space with k-dimensions tall
the possible pseudo-random numbers generated by LCG can be
covered by a number of hyperpianes). An alternative
procedure is to use the Generalized Feedback Shift Register

tGFSR) method.

The GFSR method does not have the problem of
multidimensional non-uniformity associated with LCG and the
period length depends on the memory capacity <if we have k
words of memory, the maximum period length that can be
generated is 2k—1). This method is less easy to compute than
the LCG, but due to its mentioned properties, its
implementation is worthwhile in simulation studies.

'
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1V) Variance Reduction Techniques
4.1) Introduction

In a simulation experiment samples of many
thousands of observations are often required to estimate
some performance measure with sufficient accuracy. For large
and complex simulations the requirement of su-f-ficient
accuracy may be very time-consuming. This accuracy can be
measured in terms of the variance of the parameter to be
estimated. This variance decreases as we increase the number
of simulation runs, so that if a2 is the estimated variance
for one run, then a2/n is the estimated variance for n

independent runs.

Variance reduction techniques <VRT> are
statistical procedures to reduce the estimated variance
without the requirement to increase the number of simulation
runs, n. In this chapter, we are going to describe some of
the most commonly known VRT> Antithetic Variables <AV>
Common Random Numbers <CRN) and Control Variables <CV>. A
full account of these techniques can be seen in Hammers! ey tt
Handscomb t 121, James [181, Kleijnen [20], Law Kel ton C24]

and 14i 1son C35I .
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4.2) Antithetic Variates

The antithetic variates <AV> technique tries to
create negative correlation between observations, generating
one observation from the random number~uland the other
observation -from its antithetic partner)<1-U>]. This
technique is due to Hammersley and Morton [133 and was
initially used in the Monte Carlo estimation of thé value of

an integral til] tc <1263, pp. 160-189).

Suppose we have a 'fixed policy and that in run r
we use a sequence (U(p) > of random numbers. Let the output
be X **=T<U¥ 4*) . We want to estimate E<X<iJ). For example,

with two runs our estimator is¥*

X = <X(° & X<2>>/2

with

Var <X> = <Var<X< 0 > + Var<X<2>> + 2Cov<X<® X(2>>>/4
Hence the variance of X decreases if X( and X<2) are
negatively correlated, or equivalently if Cov<X( X*2>) s

negative. The strategy of negative correlation is to

generate X**" as follows!

<D Tau@>>

and

T< 1- UC!>>

The success of AV will depend on how well the
simulations are synchronized! this means that when the i-th

pseudo random number is Uj in the first simulation, then the
> i
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recommended to use those methods that generate

variables with

such as the inverse
alias method (section 2.2.4). When
events in the simulation model,
number generator for every one of
recommended (see Kleijnen t20i
When more than two run
le sti'ategy adopted is
as f3l lows:
y(l) (X(1> + X(2)>/2
y(2) = (X<3> o x (4) >/2
y(n) _ (X<R-1> X(R>>.
pair of X"s within the
x(i> T(U<I> >
and
x(i+ ) - pq . 06>,
Then the estimator of E(X> s

pseudo

random number in

the second simulation must be

To achieve a good synchronization, it is

(Y(° &... .¢Y<n>>/n
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exactly one pseudo-random number
trans-form method
there are several

the

and Zeigler

random
per sample,

(section 2.2.1) and the

random

use of one pseudo-—random
|

these events is

[39]).



which is equal to
X = <X(!'>+....+X<R> >/R
The sample variance of Y is
s2<?> = E"=1 <Y - Y)2 /n(n-I)
which is an unbiased estimator of
<Jar<X> = CVar<X<1>)+ ... +Var<X<R)>
¢ 2Cov<X( n ,X<2> 1. 1
¢ 2Cov<X<R 1>,X<R>>3/R2 |
where Cov(X(J*,X(J*1>) < 0. {See Arvidsen & Johnson C13>.

If the multiplicative congruential generator is

applied in the simulation, i.e.,
|
<4.1>..... Zj = aZ. . (mod nm> el 2,00,
u. = Zj/m
then, the antithetic random number <l - Uj) can be obtained
simply by making the starting value Z* “antithetic®“, i.e, |if

we take as starting value

in <4.1>. Then, the resulting random numbers, say u*, are
antithetic, i.e., u* m 1 - . In this way no additional
computing is needed <1201, p. 194). For further information
about the theory behind AV techniques see Rubinstein,

Samorodni tsky t, Shaked C30) and Mi 1lson [363.
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4 .3> Common Random Numbers

"Common Random Numbers (CRN) is the most widely
recommended and used of the simulation variance reduction
techniques"” C15]. CRN attempts to improve the efficiency of
response difference estimation by comparing alternative
procedures in the same medium, -for example by comparing two
policies for reducing the waiting time in a hospital waiting
list. Suppose X and Y are response measures for two

alternatives policies. Then
Var(X-Y) = Uar(X> + Var(Y> - 2Cov<X,Y) i (4.2)

Hence the variance of the estimated difference is decreased
if the covariance term in (4.2) can be made positive. Such a
positive covariance is created by the use of the same random
numbers, if we assume that both systems react to the
stochastic input variables in the same direction. Although
this is difficult to achieve in real-world experiments, it

is possible in simulation C383.

To compare and Uy the expected responses of two
policies, after N simulations of each policy, the following

quantities are calculated

X g XjXN

Ei-i

5 gN, Dj/N
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and
S2 = E <DE - 6>2/<N-I>

Thenr calculate .

tc =
<s2/n>*
and compare it with a t—distribution with N-1 degrees of
-freedom. If t£ is greater than t» n-i> then reject the
hypothesis HO:ux=Uy. <C103, p. 31J

If we are interested in comparing the a\7erageI II
response of more than two policies in a simulation system
the problem becomes more difficult because of the
correlation induced by CRN. One' way of solving this problem
is to generate different sequences of pseudo-random numbers

and with each one of the sequences apply all the policies

Then, to study the effect of these policies use the

following linear model:
i " i * i * K
yij u+ Ti + *j i]j LEN ..-Bs
i
yjj : the output response for the simulator with
policy /i" and the sequence of pseudo-

random numbers 'J'
u : is an overall effect common to the particulalr

factor or policy under study

Tj : is the effect of the ith policy

Sj : is the effect due to the jth pseudo-random number
sequence L .

€.j i is a random-error component
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It is assumed that s £ p, and is a normal variable with

These assumptions imply that observations Cy.~J from the

same sequences of pseudo-random numbers are correlated and
from different sequences are uncorrelated. Furthermore, the
variance of the observations associated with policy 'i' s

constant across the sequences.

To test HO!Tj=T2=ee e=Tp u°der the above assumptions the
following procedure is applied: form a <p-l)xl vector of

paired differences within each pseudo-random stream, say,

y3ji * ylj J “ I»2,...,s .
Let
X - <l/e> Xj
il
S-ti/<s-i> SX><Xj o -*>
be the sample covariance matrix of the j>= Then if HO is
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true the quantity

is distributed as Fr_ot' mfrom an F distribution

p—1ls—p+ 17
<£103, p. 321). To test whether HO is true, we compare

FOwith the value of F[#t, p_~ s_p+, . Thus, if

0 Qe ; p-1, s-p+13

we conclude that HO is false with the probability of error
of. In other words the mean responses of the policies are not
all equal at the @& significance level. An application of

this procedure in an inventory problem can be seen in

Heikes, et al [133.
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4.4> Control Variables

The method of Control Variables (07) attempts,
like CRN and AU, to take advantage of correlation between
certain random variables to obtain a variance reduction.
Regression Analysis £71 is the basic statistical method used
to develop this technique. Lavenberg te Welch £233 said that
07 is one of the most promising of the VRT's that have been

developed.

The procedure to reduce the variance in 07 is as
follows. Let u be the unknown quantity to be estimated and
let Y be an unbiased estimator of u, E<Y>=u, derived from a
single simulation. A random variable C is a control variable
for Y if its expectation, Mg, is known and if it is l
correlated with Y. The control variable C can be used to
construct an unbiased estimator for u which has a smalllv!arI

variance than the estimator Y. For any constant b,

Y<b> =Y - b<C - uc> ... <4.3)
is also an unbiased estimator of u, E(Y(b>> = u. Now
i |
Var <Y<b>) - Var<Y> - 2bCov<Y,C> + b2Lrar<C>

Hence if

2bCov(Y,C> > b2Var<C>

Y<b> has a smaller variance than Y. The value of b which

minimizes <7ar(Y<b)> is easily shown to be

$ - Cov<Y,C>/Var <C>
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and the resulting variance

Var(Y<b>> = (1 - XVar<y>

where py(> is the correlation coe-fticient between Y and C.
Hence the more correlated C is with the estimator, the

greater the reduction in variance.

The model in (4.3) can be extended for more than

one control variable. Lavenberg and Welch £23] describe this

|
case by the fol lowing model :

Y<b, -V Y ¢ b,(Cl-ucl>....... bqg(Cqg-«Cq)

where E(Cj)=uCi To find the b”.'s which minimize the

,bg> the techniques of multiple

regression £7] are applied.

When the control variables C. are generated from
the same simulation as that from which the estimator Y was
obtained, then the CV's are called 'internal' or
‘concomitant' variables. Applications of this type of
variable can be seen in Iglehart ke Lewis £17], Lavenberg,
Moeller and Saver £22], and Wilson h Pritsker £37]. WhenI
Cj's come from a second simulation using the same sequence

of pseudo-random numbers the control variables are called

'external'; for applications of these types of variables see

Burt, Gaver ke Per las £31, Gaver & Shelder £9], and Taaffe re

I
Horn £32].
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4.5) Conclusions el

As we saw, the method of applying VRT depends on

the aims of the simulation model. For example, if we want

to compare different policies, we use CRN;
to estimate E<Y>, we use AV
to estimate E<Y> by the relationship of certain

variables related to Y, then we use CV.

Therefore, a full understanding of the way the model works
is required for proper use of VRT. For a complex model, it is
generally impossible to know beforehand how great a variance
reduction might be realized, or whether or not the variance
will be reduced at all in comparison with straightforward
simulation. However, preliminary pilot runs could be made
<if affordable) to compare the results of straightforward
simulation. Another point is that some *JRT themselves will
increase computing cost, and this increase must be traded

off against the potential gain in statistical efficiency.
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V) Health Care Simulations

5.1> Introduction

Simulation has been used in different areas
(Industry, Government, Military, Education, Transport,..) to
design, analyze and evaluate complex management systems.
Because health care is an area with a great number of
interacting complicated systems, simulation has been

extensively applied in this area.

Health care is understood to be all those services
(government, private and cooperative) provided to the
population to improve or maintain a good standard in their
living conditions, such asi hospital and clinical services,
medical research, preventive medicine (family planning,
screening programs, vaccinations, nutritional orientation,
psycological therapy, community work, sports and recreation
programs,...), social security programs (unemployment and
child benefits, elderly pensions,..), provisions of schools,
housing and employment with adequate salaries, and

construction of green areas C93.

Health care simulations have concentrated mainly
on solving problems related to admission control, emergency
services, allocation and use of resources (doctors, nurses,
beds, hospital theatres, ambulances) with limited cost,
planning new facilities, developing new methods of

organization, and in management training programmes.
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One of the main problems in the analysis of health
care systems is the great number of decision-makers that
have to be considered <patients, doctors, administrators,
nurses, radiologists,..), in addition to the fact that maybe
not all of them have the same objectives in mind. For
example, patients want to receive the best medical attention
with the minimum waiting time, but doctors cannot proviide
immediate attention because usually his resources are

11

limited, and the administrators want to use these resources

to the full with the minimum cost.

When a complicated system is simulated the

following methodological setbacks may appear:

difficulties in defining the objectives of the
study,
difficulties in defining the simulation model,
limited budget to run the computer program,

- the output results can be very difficult
to interpret,

- and the final results may have a limited

use.

Therefore, a compromise has to be made between the
complexity of the model, the computer capacity, how easily
the simulation outputs can be interpreted, and the

generalization of the simulation results.
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Despite the difficulties that could be presented
by a simulation study, simulation has been increasingly used
in a variety of problems. What has particur larly stimulated

the interest of health care simulations is the -fact thats

simulation models are easy to describe to non-
modeling decision makers without resorting to
the complication of analytical models,

- its versatility -for the testing of alternative
policies as an aid to decision making,

- and its value as a planning mechanism for

evaluation of complex delivery system.

In the following sections we review different
applications of simulation within the area of health care to
describe in more detail what sort of problems has been
tackled by the simulation analysts and their experiences to
implement the simulation results. We start by describing the
previous reviews in this area (section 5.2) and then the

recent models published between 1983 and mid 198S.
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5.2) Previous Review

One of the earliest problems dealt Mi th by
computer simulation research within health care was Bailey's
Erlang Telephone model of hospital admission in 1954 Cl).
Since then, an increasing number of simulation models have
been developed for representing, analysing, and evaluating

systems within the area of health care.

Three leading papers have been published about
health care simulations Roberts & England C173, Tunnicliffe
C213 and Oalinsky C243 . The main difference in these papers-,
apart from the volume of reviewed references, is the way the
simulation model are classified. For example, Valinsky uses

the following categoriesi

Demand-oriented models (introduction of patients
to various health care services)
Resources-oriented models (involved ancillary
services having both direct and indirect
patient contact, as well as the simulation of
emergency services)
Design of healh care facilities
- National & Regional staff and facility planning
- Health Care education

- Communicable disease control

For every one of the above categories, a representative
sample of health care simulation is selected for detailed

treatment.
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problems

services

Tunnicliffe C21J, -firstly, ranks the health care
by the number of people covered by the health care

as follows:

Health care of population
Health care within particular institution

Health care of an individual patient

Then, within the above levels, the following categorization

is presented:

Population Institution/ Patient
Facility
i) Resources A> Emergency 1) Teaching
needed care models
ii> Cost B) Size of 2> Medical
implication facility Research

Organization

proven tion of resources

and control D> Delegation of

iv> Location tasks
of services E> Organization of
patients
Finally, representative health care simulations are
described within Institution/Facility level. At the end of

this paper,

the author made a classification of different

health services which can be useful in further health care

simulation

reviews.
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In Roberts it England C171 the health care
simulations are described by the relevant problem in the
mfollowing way: admi ssion/schedu ling, appointments, facility
size/design, material handling, manpower availibility, staff
size, staff duties, cost, inventory, equipment, and
transportation or logistics. The authors also show the
health care simulations by field, site, computer language

and type of publication.

Therefore, we see that there is still no uniform
method of classifying health care simulation models. It
would be beneficial to start to develop a unique
classification that can be continuouly updated and made
accessible to any one involved in health care simulation;
actually, most of the health care simulation models are
spread in different types of Journal, such as, Statistical,
Operational Research, Simulation, Epidemiology, and Health

Services Journals.

The recent and most extensive review of health
care simulation is the one made by Roberts and England C173.
The authors reviewed 427 references published until 1988 and
made a statistical description of these pubications (see
table 5.1). They found that the main problems of study were:
facilities size/design <23.350, staff duties <21.7/0,
admissions/scheduling <13.X) and costs <i0.7/0. It s
important to notice that the study of costs was not the main
target of simulation; this result is considered as the
principal difference with other areas of simulation,

specially in industry.
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The -field of application Mas dominated by hospital
administrati on <24.97"), foil owed by health system pianning
<13.7/0 and primary care <10.7/0. The recommendation of the
World Health Organization in its program "Health for All by
the year 2008" considered primary care to be the crucial
point to develop (Declaration Alma-Ata, [10], pp. 21-22>.
Therefore, if we want to be in line with the international
recommendations we should concentrate more of our work in
this area.

Other areas which we consider should be tackled
with more emphasis are Epidemiology and Public health
because of the great number of people which can be
benefited. In this area only SV. of publications were
reported <see table 5.1). Among the treated problems were:

Screening programs for early detection of
hyper tensi on,
Alcoholism treatment,
- Mental health,
Tuberculosis prevalence,

- Community narcotic control,

- Population control studies,

- Schistosomiasis in Egypt,

- Rubella epidemic,

- Influenza model,

- Yellow fever,

- Disaster planning to evaluate community's

ability to cope with the after effects of
nuclear attacks or any sort of natural or man

made disaster.
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The site of applications was mainly in hospitals
<53.0/0 , including hospital outpatients. The amount of
simulation works in hospitals shows why they are considered
the most complex institutions in health care systems. Most of
the hospital models were seen as a collection of interactive
queueing systems where patients and personnel queue to
demand health facilities, and were simulated mainly with the
purpose of finding the most efficient policy for managing

the distribution of limited resources.

Other results were in terms of the computer
languages, where Fortran <26.7/0 and 6PSS <26.450 are the
leading ones, followed by SIMSCR1PT <9.950 and DYNAMO
<9.250. Despite the dominance of special purpose simulation
languages over the general purpose languages, the authors
show that after 1975 there has been a balance between these
types of languages, where Fortran and GPSS continued to be
the most frequently used languages. We consider that the
preference to use one or other language depends basically on
the software available, how easy the language is to be
learned, and how easily it can be adapted to the particular

needs of the simulation experiment.

The main type of publications used for health care
simulations were in health care Journals <22.750, conference
proceedings <18.250 and method journals <17.3). An
interesting result from this classification was that a great
number of papers were unpublished <28.150, which' we consider
is significant information lost that could be useful in

future research.
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Tabi e

Results presented by Rob

427 publications of health

1980 by problem, site, f

Ppobi em
Facility size/design 23
Staff size 21.
Admissions/scheduling 13.
Cost 10.
Staff duties 8.
Appointments 7.
Manpower availability 5.
Others 10.
Si te

Hospi tals
Regional/National
Solo and group practice
Communi ty
Hospital outpatient
Others

Publication
Health care journal
Conference Proceedings
Method journal
Unpublished papers

Others

5.1

erts

ield , language and publication.
X Field X
-3 1> Hospital administration 24.
7 2) Health systems planning 13.
0 3) Primary care 10.
7 4) Emergency care 7.
8 5) Education 4.
0 6) Epidemiology/Public health 5.
8 7> Radiology 4.
0 8) Dentistry 4.
9) Surgery/Recovery 3.
10) Blood banks 3.
11) Others 14.
X X
44.0 1> Fortran 24.7
13.0 2) 6PSS 24.4
11.5 3) SIMSCRIPT 9.9
9.2 4> DYNAMO 9.2
8.5 5> Not specified 5.
13.8 6> Others 22.7
X
22.7
18.2
17.3 <
28. 1
13.7
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The main conclusions presented by Robert it England

t 171 concerning the -future o-f simulation in health care were

as ol lows:

1)

3>

Simulation will become institutionalized in
hospitals and used routinely as a means of
operational analysis.

Simulation will be depended upon increasingly
as a means o-f health planning.

By expanding and extending simulation to a
broader range o-f problems in health care,
simulation will become a more accepted
methodology -for problem solving.

Simulation in health care will follow
applications elsewhere by being used more
frequently with analytical methods and be
examined more thoroughly by statistical

analysis of output.

Valinsky C241 presents his conclusions in terms of the

problems faced by the health care simulation researchers in

the simulation process as follows!

i>

Understanding the system.- Only a few of the
many simulation studies yield evidence of
having had close cooperation between the
researchers and decision-makers, therefore,
there were difficulties in understanding the

system.
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i»> Choice of relevant variables.- There were
no rules governing the determination of what
and how many variables are to be included;
thus the formulating process may be regarded
as much as an art as a science,

iii) Desion of computer program.- Although many
computer languages are available to meet a
variety of program needs, the choice of a
specific language to express the simulation
model was frequently determined by what
languages the analyst Knows and is most
comfortable with.

iv> Gfil hyrjng »degtiiM.g infgrmation.- It was found
that many investigators were concerned with the
time, cost and difficulty involved in
obtaining accurate and sufficient data,

v) Implementation problem.- Despite the increasing
number of publications, there was only a
minimal acceptance and use made of the

simulation results.

Me consider that the most critical problem to
overcome in health care simulations is the one of
implementation. This is because, despite the fact that
simulation analysts could provide technical support in the
management process, the final decisions are not taken by
them. Mhat's required is greater collaboration between

analysts and decision makers.
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Tunnicliffe C221, -from his review of 288 health
care simulations, where he found that only 16 of them were
implemented, made the following recommendations for a

successful implementation!

Education of health service personnel in the way
their system works, encouraging them to take a
broader view of health care and making them
aware of O.R. techniques available to them
Tackling the problems which have been

carefully selected so that implementation is

most likely to follow.

In the following section we describe in more
detail the latest publications of health care simulation
<1983 to mid 1985> in order that we can see what have been
the recent experiences in the implementation of the

simulation results.
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5.3) Recent Publications

5.3.1) Introduction

In this section, we describe the recent works in
the area of health care simulations found in 25 different
periodical journals related to epidemiology, publich health,
health services, medicine, statistics, operational research
and simulation, published from 1983 to mid 1985 and
available in English libraries. The publications found are

classified according to the problem tackled.

5.3.2) Publications

Bed Usage -

One of the most important resources in a hospital
are beds. The reason is that most of the resources in the
hospital (doctors, nurses, laboratory technicians,
administrators, operating theatres, blood banks, cooks,
cleaners,..) have to be available for the bed occupancy.
Therefore, bed planning is a difficult task because of the
great number of decision-makers that need to be considered.
However, simulation has been shown to be a useful tool for

this sort of planning.

One of the health simulation analysts dealing with
bed planning is Dumas <141 tc C51). He simulates a model,
written in SIMSCRIPT I1.5, that represents the effect of
different bed allocations in a New York hospital*. This
hospital routinely uses three related measures of

effectiveness in assesing bed utilization! patient days,
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average daily census, and percent occupancy. During the
simulation process a new measure was -found, the misplaced
patients (patients which are not allocated to the right bed,
in terms o-f their sex and medical needs) . Using this measure
a new bed con-figuration was produced in the hospital,
involving substantial reallocation of beds among the
existing services. In this simulation work a close
participation is mentioned with the hospital personnel since

the start of the simulation.

Emergency Services

Another important area within the health care is
the emergency system. A critical component of this system is
a responsive and well-managed ambulance service. Uyeno &
Seeberg C233 construct a simulation model, written in GPSS
V, to balance the distribution of this service in an area of
937 square miles in Vancouver, Canada. Their objective was
to determine the best place to locate six ambulances - two
paramedic (not handling transfer calls) and four regulars-
to produce the minimum response time for the following types
of cal 1st paramedic, emergency, regular and transfer. Prom
the simulation results four strategic points were found with
minimum response time; three ambulances were allocated to
the most heavily congested point, and one ambulance each to
the rest of the points. When these results were implemented,
the hospital manager found that even with a substantial
increase in demand in the order of 40X to 56X, the system
would be able to handle the demand without deterioration in

»ervice. This paper also mentions good cooperation with the
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management personnel in the whole simulation process.

Another paper which is related to the hospital
emergency department is the one presented by Carroll and Oi-
Lu (23. The authors simulate the total service time in an
emergency department generated by three types of patients
(critical, urgent, and others) in order to determine under
mfour different conditions what personnel would be required
in the department in three different time schedules (7:00-
15:06, 15:00-23:00, 23:00-7:00). Using a regression
equation, the total service per type of patient is predicted
by age, arrival time, hospitalization, and use of
haematology, microbiology and X-ray departments. The
simulation model was written in GPSS and the outputs were
analyzed with the statistical package SPSS. One of the
simulation results show that to cope with a fifty percent
service extension in the department, another examination
room would be required, the number of nurses should be
increased by 50X in the peak hours <7-23 hrs), and no
increment in doctors would be needed. The consistency of
this simulation result will depend on how valid the

regression model is under different conditions.
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Scheduling Surgical Suite -

A surgical suite consists of a set of rooms
equipped to handle many types of surgery, such ass
orthopaedic, ophthamology, cardiology, and cosmetic surgery.
The rooms are booked in advance and not all have the same
equipment. One of the problems for scheduling these sorts of
rooms is their low occupancy rate which is mainly attributed

to the variability in the surgery time.

Jones, Sahney and Kutuglu C13] design an
interactive model, written in Slam 11, to tackle the above °'
problem in a surgical suite with 8 rooms to handle 12 types
of surgery. Five policies were simulated and the main
results show that a 9V/. occupancy is a plausible goal , which
we consider a substantial gain after the authors have
reported an average of 697. in the modern hospitals. The
gquestion is to see whether this simulation result can be

extended to any surgical suite with minimum modifications

or, can it only be used in this particular surgical unit.

- Allocation of Human Resources

Simulation has also been used in the allocation of
human resources. One of the papers relevant to this area is
the one by Nelson tc Ravindra CIS). They simulate a queueing
model, written in SLAM, to evaluate different staffing
configurations in a screening program to minimize the size
of the staff while still meeting the guidelines for the
tasks assignments. The objective of the screening program was

to reduce the risk of cardiovascular disease among United
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States Air Forces personnel. To show a pictorial
representation of the simulation results, the computer
languages GANS (Graphical Analysis of Network Structure) was
used. The simulation results demonstrated that the medical
technicians involved in the screening program should work in
parallel rather than in series (see section 6.7). This
paper does not stated how successful the implementation of

this recomendation was.

- Ancillary Workloads -

Once a patient has been hospitalized several
services from different departments will be needed for his
treatment. Some of these department ares
Bacter i ol ogy/tii crobi ol ogy Lab, Biochemistry Lab, Immunology
Lab, Haematology Lab, Nuclear Medicine, Radiology, Physical
Therapy, Blood Bank. Alt the services produced by these

departments are identified as the Ancillary Workloads.

The demand for ancillary workloads is also a very
important characteristic in hospital planning. Hancock and
Walter till present a simulation model to determine the
number of procedures that would be performed in nineteen
ancillary departments on a day of the week basis for the
year 1990 based on information of 1976.. The authors assumed
that the length of stay (LOS) will be less than in 1976, and
that the number of services required per patient will be the
same. To simulate the demand for the ancillary services, the
Admission Scheduling and Control System Simulator (ASCSS)

was used. The model that determines the flow into, out of |,
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and between each service was written in PL/1 and assembly
language. The simulation results demonstrated that if it is
required that LOS be reduced, the same intensive services
provided during the week (Monday-Friday) have to be also -for
the the weekends, which -for this particular simulation meant
that the staff in weekends should be nearly 757. of the staff
during the week. The question is to -find how similar will
the conditions in the hospital be in 1998 in relation to

1976 to validate this simulation results.

Medical Treatment -

Simulation also has been use-ful in the analysis of
medical care decisions. The simulation language, written in
Fortran SLN (Simulation of Logical Networks) was designed

specially to facilitate the modelling of these decisions.

Roberts and Klein C183 describe the applications
of SLN in the evaluation of the actual therapeutic protocols
for End-Stage-Renal disease, Chronic Stable Angina, Renal
Artery Stenosis, Hypertension, and Hypercholesterolomia. The
authors, based on the simulation results, mention several
recommendations for the treatment of each disease, in terms
of survival and cost benefits, but do not say what has been

the impact of these recommendations.
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Another simulation model, written in Pascal, used
to determine the best medical treatment in terms of
resources effect was designed by Davis C3l -for the Wessex
Renal Unit in England. Patients with Kkidney failure can
receive one of the -following long-term treatments:

Haemodialysis,

Transplant Surgery,

Continuous Ambulatory Peritoneal Dialysis

( CAPD> .
Patients start their treatment with either Haemodialysis or
CAPO. The author compares the resources effect when patient's
start with CAPD (policy A) instead of Haemodialysis (policy B>.
He shows that the policies are different in terms of
dialysis machine usage (policy B higher) but not differences
in bed occupancy. It would be interesting to combine these
simulation results with the benefits that the patients would

receive in each policy.

- Planning a OBS/GYN Clinic -

Planning an Obstetric/Gynaecology clinic is a
difficult task because of the irregular demand, the
immediate medical attention required, and the short average
length of stay. A model, written in GESIM (General
Simulation) which is a version of GPSS, to deal with this
sort of problem was designed by Mahachek and Knabe (141. The
authors/s objective was to determine the effect -of a plan to
combine physically (and organizationally) OBS and GYN

outpatient clinics. Although the simulation results show
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that under the present space conditions (examination and
waiting rooms) the clinics could not be combined, there was
such a substantial gain in understanding the system by the
management personnel that an extraordinarily detailed space
requirement was generated, and time allowed -for -further

detailed simulation.
- Birth Control Policies

A model -for testing the implication of di-f-ferent
control policies in the growth of the population in India up
to the year 2088 was designed by Patil, Janahanlal and
Ghista C161. Approximately 588 equations were used to
represent this model. These equations are solved by using
the program CSMP (Continuous System Modeling Program) on an
IBM 378/155. By combining low birth rates (3VC between 1975-1980,
4X between 1988-1998, and 2.73X between 1998-2881), increase
in marriage age -for women -from 15 to 28, and the quality o-f
li-fe (indicated by nutritional level and per capita income)
the authors show di-f-ferent alternatives in the population
growth. The problem in this type of simulation is to show
how valid the 588 equations used in this model will be for

the year 2888.
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- Management Training —

In the training of management personnel involved
in the area of health care, the first step to be considered
is the proper understanding of the functioning of the
systems within this area. When we refer to health care
systems at National or Regional levels, the complexity to
understand these system increses, because of the number of
decision-makers involved and the number of interactions to
be considered within these systems 1201 . Despite this
possible complexity, simulation has been successfully used

for describing these types of systems.

The Centre for Health Services Management at
Leicester Polytechnic in England has been developing a series
of health care simulation models over the last ten years. The
latest one, which was written in Fortran, designed by
Waller, Burdell and Brough C25D, is used as an aid to
management training and the development of planning sKkills
in the National Health Service <NHS> in Great Britain. This
model is used as part of a management decision exercise that
simulates the operation planning process of different
district management teams. This exercise has been
incorporated into the training programmes of short and long
duration for all senior levels and categories of staff in

the Health Services.

The main purposes of the above model is to provide
greater insight into the working of the NHS planning system

and into the way in which managerial planning decisions
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affect the use of staff, money and other resources. An
additional purpose is to show the part computer simulation
can play in aiding the management decision-making process.
As an example of this model , the authors presented the
simulation results in terms of cost effects in a specific
health district with five specialities under different

condi tions (waiting list, length of stay, bed occupancy,..>
In general we found this model very useful, not just for its
educational qualities, but also for the level of
applicability (National, Regional and district levels). It
would be interesting to determine how valid this model would
be in another country with different conditions, such as

*

Mexico, where the health services are run, basically, by
three government enterprises, in addition to private

practice of medicine [121.

5.3.3) Conclusions'

Me see from this review how simulation has
continued to be applied in a variety of fields within the
health care services, for example, bed usage, emergency
services, scheduling, allocation of resources, and medical
treatments. Also, we notice that these applications were
made for different purposes, such asi solving specific
problems, developing new management methods, and for

management training. However, we found some implementation
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problems! only 3 out of the 11 reviewed references reported
successful implementation <Duma [43 t* [53, Uyeno & Seeberg
[233, and Waller et al [253). Two basic characteristics were

found in those simulations with successful implementation:

the simulation analysts were part of the
institution where the simulation was taking
pi ace

the management personnel were involved in the

simulation process from its starting stages.

Therefore, we consider that a program to promote the
potential benefits of health care simulations should be
developed (conferences, seminars, or optional academic
lectures to students in areas related to Health problems) in
order that the simulation analysts can be accepted as
permanent staff of the health care institutions, and the
management personnel o'f these institutions can see the
simulation techniques as a plausible alternative for
planning, training, and solving problems within the health

care services.
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V1) Queueing Theory

6.1) Introduction

A queueing system can be described as customers
arriving -for service, waiting for service <if the service is
not immediately available) and leaving the system after
being served. Such a basic system can be schematically shown
as in -figure 6.1. Although any queueing system may be
diagrammed in this manner, it should be clear that a
reasonably accurate representation of such a system would

require a detailed characterization of the underlying

process <[ 10l , C151) .
CUSTOMER SERVED CUSTOMERS
ARRIVING LEAVING
SERVICE
-4 0000- -> 00
FACILITY

Figure 6.1 Schematic diagram of a Queueing process.

The term 'customer' is used in a general sense and
does not imply necessarily a human customer. For example, a
customer could be an aeroplane waiting to take o-f-f, or a

computer program waiting to be run on a time-sharing basis.

A queueing process is defined by the -following six

charac teristics:

i) Arrivals pattern of customers

ii) Service pattern of servers
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iii> Queue discipline
iv> System capacity
v> Number of service channels

vi) Number of service stages

In most cases these characteristics provide an adequate

description of a queueing system.

6.2) Arrivals Pattern of Customers

The arrivals pattern or input to a queueing system
is often measured in terms of the average number of arrivals
per unit of time -mean arrival rate- or by the average time
between successive arrivals -mean interarrivals time-. |If
there is uncertainty in the arrivals pattern (often referred
to as random, probabilistic or stochastic), then these mean
values only provide measures of the central tendency for the
input process and further characterization is required in
the form of the probability distribution associated with

this random process.

It is also neccesary to kr\ow the reaction of a
customer upon entering the system. A customer may decide to

wait regardless of how long the queue becomes, or if the

queue is too long to suit him may decide not to enter it. |If
a customer decides not to enter the queue upon arrival, he
is said to have 'balked'. On the other hand, a customer may

enter the queue, but after a time lose patience and decide
to leave. In this case he is said to have 'reneged'. In the

event that there are two or more parallel waiting lines,
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customers may switch -from one to another, that is 'jockey'
ofor position. These three situations are all examples of

queues with ‘'impatient customers’.

Another -factor of interest concerning the input
process is the possibility that arrivals come in batches
instead of one at a time. In the event that more than one
arrival can enter the system simultaneously the input is
said to occur in 'bulk' or 'batches'. In the bulk-arrival
situation, not only may the time between succesive arrivals
of the batches be probabilistic but also the number of

customers in a batch <the batch size) C6J.

One final factor to be considered in the arrivals
pattern is how time affects this pattern. An arrivals
pattern that does not change with time is called a
'stationary' arrivals pattern. One that is not time-
independent in the servse described above is called 'non-

stationary' .

The easiest arrival pattern to treat
mathematically is ‘'purely random', i.e., the probability of
an arrival in an interval <t,t+dt) is Xdt, where X is a
constant. This arrival pattern is described by the Poisson

distribution, whose p.d.f. is

fN<n> * <Xt)ne_Xt/n! ] n-0,1,2,...

fjr~<n> gives the probability of there being n arrivals during

a time interval of length t, where Xt is the average number
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of arrivals in t. If t is considered to be unit time, then

the distribution becomes

fA(n) = Xne */n! 5 n-0,1,2,...

where X is the average number of arrivals/unit time. When
the arrival pattern is a Poisson distribution, it has been
shown that the probability density fuction (p.d.f) of the
interval between an arrival and the next subsequent arrival
is the exponential distribution (fx<x)=Xe->kX ; x£0). <1101,

p. 7-10>.

¢.3) Service Pattern of Servers

Many of the characteristics of the arrivals
pattern can be used for the service pattern. For example,
service patterns can also be described by a rate (number of
customers served per unit of time) or as a time (time
required to service a .customer). However, one important
difference exists between service and arrivals. When one
speaks about service rate or service time, these terms are
conditional on the fact that the system is not empty; that
is, there is someone in the system requiring service. |If the
system is empty, the service facility is idle. Service may
also be single or batch. In the single case one server gives
service to one customer and in the batch case one server
simultaneously gives service to several customers (for
example, people boarding a train, or a computer with
parallel processing). Applications of bulk servile can be

seen in Bailey €33, Chaudhry [61 and Downton C113.
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A great mathematical simplification of results can
be found when the p.d.f. of service-time is given by the

exponential curve

hT <t> = ue-wt ; t* 0

Now, if the random variable T is a service-time,

Pr( T ) to > = /t'cl) ue_utdt = e’ Mto

From this result we can calculate the probability that the
service of a customer is completed in an interval dt, given
that the service has been in progress for a time to. This s

the conditional probability
Pr<to$Ti to+dt |[TEto) = Pr <to$T$ to+dt>
Pr<T* to)

er"tOxo-e-Mdthre-uto

< 1 - e"udt >

3 udt

In other words the probability that the service is completed
in a small element of time is constant, independent of how
long service has been in progress! this is called the
memoryless or Markovian property of the exponential
distribution. Thus service can be treated as if it were a

completely random operation CC103, p. 20).
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6.4) Queue Discipline

Queue discipline refers to the manner in which
customers are selected for service when a queue has formed.

This decision may be based on any or all of the following:

a> Some measure related to the relative arrival
for those customers in the queue.

b> Some measure <exact value, estimate, pdf) of the
service to be received or so far received.

c> Some function of group membership

Examples of queueing disciplines that depend only
upon the arrival time ares First-Come-First-Served <FCFS>,
Last-Come-First—Served <LCFS>, and service in random order
<SIRO>. Discrimination on the basis of service time only may
take the following form: Shortest-Job-First <SJF>, Longest-
Job-First <LJF>, similar rules based on average and so on.
Order of service may be based on an externally imposed
priority class structure; when this is the case the queueing

discipline is called 'Priority Queueing Discipline".

An example of priority queueing discipline is when
the customers are assigned some sort of initial score on
arrival to the system, then their respective scores are
incremented in relation to the amount of time that they have
spent in the system, with selection based on the highest
cumulated scores. When this is the case, the discipline s
called 'Dynamic Priority Discipline'. This type of
discipline was introduced by Jackson [14]. A formal

development of this discipline can be seen in Kleinrock C221.
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Another type of priority queueing discipline is
the alternating-priority (zero-switch) queueing discipline.
Under this discipline, assuming a queue with two classes of
customers, the server attends one class until no one is
present in that class, at which point he switches
instantaneously to the other class and serves members of
that class until no one is present in that class, and so

-forth (C333 and C343) .

When some sort of priority discipline is used in
the system and more than one customer can be -found in one
type of priority, it has also to be specified what sort of

policy will be followed within each priority.

There are two general situations in priority
queueing disciplines. In the first, which is called 'pre-
emptive', the customer.with the highest priority is allowed
to.enter the service immediately, even if * customer with
lower priority is already in service when the higher
priority customer enters the system t141. In the second
general priority situation, called the 'non-preemptive’
case, the higher priority customer goes to the head of the
queue but cannot get into service until the customer
presently in service is dealt with, even though this

customer has a lower priority.
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6.5) System Capacity

In some queueing processes there is a physical
limitation to the amount of Maiting room, so that when the
line reaches a certain length, no further customers are
allowed to enter the system until space becomes available by
a service completion. These are referred to as finite
queueing situations; that is, there is a finite Ilimit to

the maximum queue size.
¢.¢) Number of Service Channels

The number of service channels refers to the
number of parallel service stations which can service
customers simultaneously. Figure (.1 depicts a single
channel system, while figure 6.2 shows two variations of a
multichannel system; the first variation <a) has only one
queue for all the channels and the second one <b> has one

queue for every channe'l .

<a) <b>

Figure 6.2 Multichannel Queueing System.
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6.7) Stage of Service

A queueing system could have a single stage of
service or it may have several stages (multistage service).
An example of a multistage service queueing discipline would
be a physical examination procedure, where each patient must
proceed through several stages (see -figure 6.3) such as
medical history; ear, nose and throat examination; blood

test; electrocardiogram; eye examination; and so on.

*» 000 0 0 === "M 00 'O * 000 0 -——» O

Figure 6.3 Multistage Queueing System

6.8) Mathematical Approach

When we construct a mathematical model of a
system, the underlying motivation is to evaluate some
measure of performance. One of the relevant measures in a
queueing system will be a measure of congestion. The
simplest measure of congestion is the ''traffic intensity’
which is represented by the simbol o. The value of p
indicates the mean fraction of the time the queueing system
is used. In the special case of a single-server queue the
traffic intensity is calculated by

1/ti X

1/X u
1/ui Mean service time of a single customer
1/X; Mean interval between successive

individual customersi
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For a queue system with M servers in paralell (see figure

6.2.a), the traffic intensity is

The unit of traffic intensity is sometimes called erlang,
out of deference to A. K. Erlang, for his pioneering work in

queueing theory ([10], p. 40)

When the traffic intensity is greater than one,
©>1, customers are arriving faster than the servers can

handle, therefore an increasing queue will develop.

........ If © < 1 then, on average, the servers are able to
deal with more than one customer's requirements before the
next customer arrives and we should therefore expect the

servers to cope satisfactorily with their task.

Now, the problem is to find what sort of behaviour
we would expect when © 1. Under this condition, on average
the time between successive customers <1/X> is equal to the
average service time <Il/u>1 in other words, on average when
one customer arrives another is being served. Therefore, we
expect that the mean number of customers in the queue should
be zero. However, to show a formal demostration of this is

quite difficult, as we will see in the next section.
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6.8.1) The single Server Queue

Assume Poisson arrivals, with mean X per unit of
time, and exponentially distributed service time with mean
1/U. Let 'j' be the number of people in the system, and
<gj<t>>, j=0,1,2... be the probabi lity distribution of the
number o-f customers in the system <i.e.

, in the queue or

being served) at time t, i.e.,

qr<t> S Pr<j in the system at time t)

Then (g~<t+dt>) and fq~it)) are related in the following

manner :

Pr<j*0 at t+dt) = Pr<j=0 at t)XPr<no arrival in dt)
¢ Pr<j* | at t)XPr<a service is

completed in dt)

from sections 6.2 and 6.3, this probability can be written

as
gO<t+dt> - qO<t><1-Xdt> & g il<t)»idt
So,
Lim gQ<t+dt) - qga<t> - ugq,(t) - Xqga<t>
dt
" ogeé<t)
When p—X/u < 1 and t-»», then gO0<t)*0, qO<t)-*qO,

ql<t)-4qj. Hence*

**ql ~ X0 “ 0
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Similarly* when j=1,2,..., it can be shown that

MO +1 % XA " *Aj 0 Xx<rj-1

Mqgj-1 - Xgj-2

= UQ, - XqO
= 0
So,
q. =
= **qj-l
PJ*q0 ;o j*0,1,2,
Now as
ET=e qj = Ee *J - 1
and
E“pJ = i/( 1-p)
then
q0 = 1 - P

which is the probability that the server is idle, and

qd = pIX<1 - P> e, <6. 1)

which is the probability of having j customers in the
system, if and only if p < 1. In general, -for the analysis
of any queueing systems, p < 1 is the main condition to use
the Queueing theory concepts. If this condition is not
satisfied, then simulation is used as an alternative

procedure [153.
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When p < 1 some basic results can be presented -for
the particular case of a single server. For example,
<i) Expected number in the system
E(number in the system) = EgjXq”.
- <I-p)yjXpJ
- p/<1-p)
<ii> Expected number being served
0Xq0 + 1X<Il-g0> = o
<iii> Expected number in the queue
Q « p/<1-0) - o = p2/<1-0)
<iv> Expected queueing time
D - Q/X - p/<U-X)
<v> Expected Waiting Time
ECwaiting time) — D & service time
* p/<M-X) * \/u
i/<u-x>
The distribution of eq. <6.1) is a standard distribution in
probability theory, called the Geometric distribution. |Its
2
mean is p/< 1-p) 'and its variance is *»/<I-p> . The
probability of finding more than n customers in the queue is

PrCN > nJ - gR+1 ¢ g,+2 & gn+3 & ...

- <l-0)on+1E7»0Pi
- <l - p>on+1*ci/<i - O]
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Thus with Ilow values of traffic intensity long queues are
extremely unlikely. Table < 1 shows dependence of various
characteristics of the queue upon the traffic intensity. It
will bo noticed that the reduction of the mean queue size,
and of the probability of very long queues, necessarily
raises the proportion of time which the server spends idle.
This illustrates a general feature of queueing systems,
namely that finding the most economical arrangement of the
system wusually involves compromising between ensuring full

use of resources and minimizing delays to customers.

Now, a first insight into the behaviour of the
queueing system with 1 can be seen in table 6.1. From this
table, we notice that the expected number in the queue tends
to infinity as p gets close to one. This behaviour
contradicts our previous statement in which we said that the
expected number of customers should be zero. Which is the
correct one? Assuming the approach based on table (.1 is
correct, is this a realistic situation? Is it possible to
allow that customer queue increase in this form, especially
in a system like a hospital waiting list where different
medical priorities are involved in the list? If so, what
sort of control mechanism can be implemented to avoid an
infinite increase? What would be the waiting time

distribution?
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In chapter VII, we simulated a model which
represents a hospital waiting list, seen as a queueing
system with P“1, in order to answer the above questions. We
consider that simulation was the only alternative for
answering these questions. With no medical priorities in the
waiting list some of these questions can be answered by
using Little's formula; this formula is described in the
next section. The results from this formula were quite

useful to validate our simulation model.
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Dependence of various

Table 6.1

upon the traffic intensity; single server w

characteristics of the queue

ith

random arrivals and exponetial service-times

Traf fic

intensi ty

0.999

X when p

%

Probability Expec ted Probability of
server -free number in more than four
the system customers in queue

1~P p/<l-p> P5

0.9 0.111 0.00001

0.8 0.258 0.0003

0.7 0.429 0.002

0.6 0.667 0.0 10

¥ £ 1.000 0.031

0.4 1.500 0.078

0.3 2.333 0.168

0.2 4.000 0.328

0.1 9.000 0.590

0.01 99.000 0.951

0.00 1 999.000 0.995
1, the system is said to be in heavy traffic €193
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6.9) Little's Formula: L = XW

Probably the simplest and yet the most important
<formula that is used in queueing analysis is the -formula

L=XW, known as Little's -formula. This -formula states:

Time-average number of Arrival rate X Average delay

units in the system <L> (X) <W)

The proof of this formula can be seen in Little [253.

Consider a queueing system as shown in fig. 6.4.

Let 0 < tj < tj be the arrival times of customers to
the system numbered in the order of arrival. Let a counting
process
Queue
A<t > D<t) -
—> 0000000 -— 7o > %s*r’\rJl Dsfo i >
t.. t Y .
J J j

Figure 6.4 A queueing system and its counting process A(t>

D<t> , and D*<t>

A<t> represents, for each t, the cumulative number of

arrivals up to time ti

A<t> “ number of tj $ t

This is a step function that increases by one at each time
tj, as shown in fig. 6.S. If we assume the FCFS queue
discipline, then the order in which the customers leave the

queue is the same as the order in which they arrive. In
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other words, if we denote by t~» the departure time (-from the

queue) of customer j , then

|
When a customer arrives at the system to -find that the

server is idle, then the customer enters the service

X
inmedi ately, i.e., tJ.=tJ.. We define another counting process
X
D<t) = number of tJ. $ t

that is, the cumulative number of customers who enter
service by time t <fig. 6.5). At any time t, A(t> - D<t> =

GKt> represents the queue length at any time t.

Figure (.3 Typical behaviour of the counting process

A< t) and D<t)

In the case FCFS discipline, t~ - tj, the time that the Jth
customer spends in the queue, is equal to the horizontal
distance <or equivalently the area of a horizontal strip)
between the curves A<t> and D<t>]j for example, in -figure

X
(.3, the shaded area tg - tg. Now by defining the point of
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reference (or time origin) t=0 -for which A(t)=D(t> (in other
words, the server is idle at t=0) , then by choosing another

instant r such that A<t)=D(t>, we de-fine the following

variables:

n(r> = A(t) - A(0O> = the total number of arrivals during

the period (0,r>

X(t> = n(r)/r = the mean arrival rate during <0,t>

A(0)«D (0>

Figure 6.6 The total waiting time

The entire shaded area of fig. 6.6 can be decomposed into

n(r) separate horizontal strips of the type illustrated in

fig. 6.3. The average length of the horizontal strip is

w(T> . En<T¥_jwj/n<T> "mThe mean waiting time per

customer in the period <O0,r)



Since the quantity GKt> = A<t> - D<t> represents the queue

size function, its time average,
Q<t> = /gQ<t>dt/r . (6.2) ,

is the mean queue size over the period (0,r). Since each
strip has the width of unity, the sum of the strip lengths

is equal to the sum of the strip areas. Therefore, we have
En<TA=1Wj = /gGKtddt ... (6.3)

From eq.'s (6.2) and <6.3> we have
Q(t> = En<T "_ jWi/r ., (6.4>

By substituting the definitions of X<r) and W<r) into the

right-hand side of <6.4), we get
Q<t > « X <r> KW<r)
If the limits

X = 1im X<r>
r < M
and
W — 1im W(r)
r < m

exist, then a limit for GKt) also exists, defined by

L “ 1im Q(t>

t -t *
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and the three limits must satisfy the relationship

L = XXW

The proof of the above results can be seen in Cooper (t97J,
pp. 178-185). Kobayashi <C243, p. 121-122) shows that
Little's formula is also true for any queue discipline.
For further information and recent applications of Little's

formula see Ramalhoto, Amaral and Cochi to [303 .
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VIl) Simulation o* a Hospital Waiting List Model

7.1) Introduction

The modern general hospital is complicated
technically, socially and architecturally, and has parts
that are comparable with a -factory, a school and a
department store. A hospital is an organic system, in which
any part may interact with any other part, so that the
consequence of a decision to change something cannot readily
be foreseen. When a postulated change is expensive,
irreversible or risky, or when there is disagreement as to
whether it is desirable, it is understandable that there is
often reluctance to make a decision for change because of
the unknown interaction involved. However, simulation can be
used in the analysis of those situations in which the costs
and the risks are too high to be carried out in the real

wor Id <1411, p. 1).

A simple representation of the hospital system is

presented in figure 7.1. This figure shows the route by

which patients pass into and out of the hospital. It

merely illustrates the main flows and delays through
appointment and waiting list. At its simplest, the size of
the waiting list depends on the demand for treatment and the

rate at which patients can be treated. When demand is
greater than throughput, a queue is inevitable. In reality
the demand is affected by a host of complex factors such as
morbidity, public expectation, seasonal influences, referral

policies of OP's and consultants, technological developments



and so on. But these -factors, in general, are not
controllable and hospital managers must concern themselves

with hospital throughput C32I.

POPULATION- _* SELF EMERGENCY.

GP -> GP EMERGENCY.

O.P.
WAITING LIST

|
CONSULTANT
O.P. DEPT. .__ CONSULTANT EMERGENCY___

1

WAITING
LIST

NILSAS vdd3d3d

HOSPITAL 4-

NILSAS
1NdHONOYHL

1 * -
DISCHARGES
AND DEATHS

Figure 7.1 Flow diagram of patients entering

hospi tal

In Great Britain there are three principal sources
of information relating to the waiting list. The Annual
Hospital Returns (Form SH3) which registers, for each
speciality in each hospital, the number of patients awaiting
treatment at 31 December each year since 194?. This head
count yields no information about waiting time. The Hospital

In-Patient Enquiry (HIPE) has provided a 107. sample of
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discharges from hospitals which contains some information
about waiting times since 1958. The Department of Health and
Social Security, DHSS, commenced collection of in-patient
waiting time information on a district basis in 1975 (Form

SHB 283) .

From 1964 to 1971 HIPE reported that the mean
waiting time fluctuated between 13.7 and 14.8 weeks. During
the same period information from SH3 indicated that there
were between 8.9 to 9.5 patients on waiting lists per 1000
population C193. Snai th C573 reported that 967. of those
patients waiting for treatment were in surgical
specialities; with 26/. in general surgery, 16/. in traumatic
and orthopaedic surgery, 18/. in otorhinolaryngology and 14X

in gynaecology as the principal categories.

Despite the periodical collection of data from
waiting lists, some care has to be taken in interpreting
these data. For many reasons waiting lists can give inflated
figures. Admission to another hospital, patient recovery,
death, willingness to put up with the complaint and other
reasons are all encountered. In a study reported by Yates
C64J) about the replies of 450 letters sent to patients who
had been the longest on a waiting list showed that 22Y.
wanted to be taken off the list, 28/. did not reply and only

46/ were actually available for admission.

The DHSS in Great Britain has distinguished two
types of medical priorities in a hospital waiting listsi

Urgent and Non-Urgent cases. The DHSS has deemed that the
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Urgent cases should wait -for no more than a month and the
Non-Urgent cases -for no more than a year. Despite this
recomendation it has been reported that between 1977 and
1979 the proportion of urgent cases that had to wait for
more than a month in all surgical specialities rose from two
thirds to three quarters C18]. Yeates [65] made a study in
various cities in England and reported big differences in
the percentages of urgent patients waiting for more than one
month on an Urology in-patient waiting list} the range was

from 26.7V. to 84.4V..

The increase in the waiting time for urgent cases
can vary from hospital to hospital. Therefore the courses of
action also have to be different. When it is decided to
reduce the length of the list by increasing resources as a
means of decreasing the waiting time, some care has to be
taken because the increment of resources does not always

lead to a reduction in the length of the list.

Frost [30] te C31] showed that a IV. increase in

consultants produces an increment in the length of the

waiting list. He demonstrated that after two years the
increment in the list would be .7BV. and after five years
.95V. Frost concluded that the waiting lists exist because

consultants are able to control their own work load.

Meightman [63] states that an admission from a
waiting list represents a compromise between competing
responsibilities. Firstly, there is the duty to each patient

requiring surgical treatment to arrange his admission



according to his medical needs taking into consideration the
likely course of his disease if admission is delayed, the
frequency and severity of distressing symptoms and the
patient's ability in the interim to work or to run a
household. On the other side o-f the balance it is encumbent
upon medical and administrative sta-f-f to utilize the

available resources to the full.

Considering the above statement, we have defined a
model which represents the process of admission from a
hospital waiting list. One of our purposes is to analyze the
behaviour of the waiting time distribution when the hospital
waiting list model is represented as a queueing system with
0=1; under the condition <p=I> we assume that the resources
are used to their maximum capacity, because the supply of
medical service is matched to the demand of this service
<I/X=I/»*> . Another purpose is to show the statistical
effects in the waiting time distribution for every medical
priority in the list, when the medical needs of the patients
are taken into consideration to define the policies of

admi ssi on .
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7.2) General Objectives

The general objectives of this chapter is to
analyze the process of admission -from a hospital waiting
list, seen as a queueing process, with the -following

characteristics!

- queueing discipline based on a Dynamic Priority
Discipiine
- the queue discipline is non-preemptive
- the arrivals and the admissions rates are equal
<p-1>
- the arrivals and admissions patterns are in
batches and are stationary patterns
- the arrivals intervals are constant and the number
of arrivals per unit of time is a random variable
- there are no 'impatient customers'
*
The problem is to find out how the waiting time for each
medical priority is affected by different conditions in a
hospital waiting lists the condition P“1 Justifies the use

of simulation to solve this problem (chapter V1).
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7.3) Model of a Hospital Waiting List

The design of a general model for a hospital

waiting list is a difficult task because of the different

types of demands and resources involved in each hospital.

However, some general characteristics could be identified on

the waiting list. These characteristics ares

- Arrivalsm- A certain number of new patients are
placed on the waiting list every week. Each new
patient is assigned some type of priority to define
his need for being hospitalized.

.7 Admissions.- A number of patients are withdrawn

from the waiting list for hospitalization every

week.
- Waiting Patients.- After the arrivals and admissions

a number of patients stay on the waiting list.

Using the above characteristics, we defined our

model of a hospital Malting list as follows!

ARRIVALS ADMISSIONS

Figure 7.2 Model of a Hospital Waiting List
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Now, to Know the admission* procedures in our
model, it is neccesary to specify the policies of admission
or set of rules that define the type and number of patients

to be hospitalized from the waiting list.

The problem in defining the policies of admission
in a hospital waiting list is that usually there are
patients who require to be hospitalized more urgently than
others, but at the same time there are patients who have
been waiting for a long time and for humanitarian grounds
have to be admitted after a certain number of weeks. The
principle that we used to define the policies of admission

in the simulation model was the followingi

There is a maximum number of waiting weeks for every
different type of patient on the waiting list) if a
patient has been waiting more than his maximum, he
becomes the next potential admission. When there is
more than one potential admission, FCFS discipline is
applied. The most urgent cases have preference in case

of a tie. m

Then to apply the the above principle we need to
develop a mechanism that combines the medical priority and
the waiting time. The mechanism we used was based on a

scoring system. This system is defined in the next section.
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7.3.1) Scoring System

The policy of admission applied in our hospital
waiting list model was based on a scoring system, which is

defined by the following steps!

a) According to the medical priority each patient at
the time of arrival to the waiting list is
assigned an Initial Score. We identified this
initial score by the symbol IS*; k refers to the
medical priority. The most urgent cases have
higher IS than the less urgent cases,

v ISK+ 1
(the lower the index k the higher the priority)

b) The score of every patient is incremented by one
unit every waiting week,
sk,t " sk,t-1 +1 | sksg IS

(SM t i Score after t weeks on the list

for patient with priority k>

c) Patients with the highest scores are withdrawn

from the waiting list for admission.

d) The most urgent cases have preference in the

event of a tie in the scores.

What we are really proposing in the Scoring System
is to artificially change the waiting time at the arrival
point and then select those patients with the lohgest
artificial waiting time, giving preference for urgent cases

in the event of a tie. In other words, we use the queueing
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discipline First-Come-First-Served <FCFS> with artificial

waiting times. Applications of this type of system can be
seen in Fordyce it Phillips C28J, Luckman te Murray C423 and
Phoenix [52] .

7.3.2) Assumptions

To study the effects of the Scoring System we
made the following assumptions in the hospital waiting list

modeli

i) The total number of arrivals per week, Arr., is
an independent identically distributed <iid)
random variable, with expected value MU and

standard deviation SO.

ii> The total number of admissions per week, ADM, is
constant and is equal to MU,
ADM - MU

which implys 1.

iii) Two types of medical priorities are identified
on the hospital waiting listi
Urgent cases

Non-Urgent cases

iv> The proportion of urgent arrivals each week

follows a binomial distribution with fixed p.

v) The initial score for Urgent cases it greater
than zero) for Non-Urgent cases it is always

zero. Because of this assumption, we will use IS
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without any index to indicate the initial score

afor urgent cases.
vi) The medical priority cannot be changed.
vii) The proportion of lost patients is zero.

viii) The proportion of patients who reject the

admission is zero.

7.3.3) Mathematical Model

........... The total length of the waiting list, symbolized

by Q, can be represented by the following expression after

't' simulated weeks:

Q<t> - Q0 + I < Arrj - ADM >

Q0 : Initial Population, the value of Q at the
beginning of the simulation

Arrji Total number of arrivals in the i-th week

ADM i Total number of admissions per week (constant)
Then,

E<Q(t>> - Q0 & tX(MU-ADM)

- Qo0 | ADM - MU

and the variance,

Var(Q<t>> - Var<X<Arrj-ADM))
- tXUar <Arr ~ - ADM)

w tXVar(Arr.)g

So, a non-stationary process is produced in VariQ***), as

its value depends on the time. If Var(Arr~>*0, then the non-
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stationary problem will not present itself; in these
conditions Q is always equal to QO, a situation difficult to
find in a real waiting list. Therefore, to tackle the non-
stationary problem and at the same time have conditions
close to a real waiting list, we impose some control in the
arrivals pattern to maintain Q very close to Q0. The

procedure was as follows:

If Q was above a certain limit, then the
admissions were increased.
If Q was below another limit, then the admissions

were decreased.

As a consequence of this control, it was neccessary to

introduce the following variables in our simulation model:

LE.- The distance around QO that defines the normal
limits within which it is required to maintain Q:
- Lower Limit: QO-LE
- Upper Limit: QO+LE
(these limits will be referred as the 'normal
limits' for Q)
AD.- Adjustment in the admissions to be applied

when Q is out of its normal limits.

We could have adjusted the arrivals instead of the
admissions, but we considered that the hospital managers
have more control over the admissions than over the
arrivals. Also we considered that control in the'arrivals
would mean transfering the problem to another hospital | this

would be satisfactory for the patients if they would receive
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immediate medical attention, but if not, the problem of

waiting time would continue.

Now, due to the random factor involved in our
model of a hospital waiting list, some care has to be taken
when Q is out of its normal limits because this could be
Just, a temporary fluctuation <See figure 7.3). For this
possible fluctuation, we decided to introduce a delay to
identify the need for adjustment in the admissions. The
definition of this delay was: when Q is out of its normal
limits during a certain number of consecutive weeks, then we
decided that an adjustment in the admissions was needed.

This delay was identified by the symbol DI.

Non-Control * 7~ N
\ X N Upper Limit 0 +LE
\ / v pp (Q )
Q Control»

Lower Limit (QO-LE)

Weeks

Figure 7.3 Q against the time (weeks)

Because of the uncertainties in deciding the

adjustment in the admissions, it was necessary to define a

second delay, D2, independent of DI. This delay, 02, will
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de-fine the time when the adjustment in

be operated! in a real

manager time -for planning the changes

admi ssions.

7.3.4> Admission Pattern

In summary the general rules

pattern arei

a If Q is between QO ¢ LE,

admissions will be equal

of arrivals.

+

If Q is not between QO

consecutives weeks, then

admissions will start to

in D2 weeks' times.
adjustment

«

b.1) If Q > Q0 & LE, then

admissions will
If Q < Q0 -

admissions will

b.2) LE, then

c> When the adjustment

applied and Q fell within
the previous week,
for the next D2 weeks.

when Q jumps from one of

other.
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The criteria for

in the admissions

be equal

be equal

in the admissions

then the adjustment will

The same rule

the admissions will

situation D2 allows the hospital

in the number of

for the admissions

then the total number of

to the expected number

LE during D1

the total number of

be modified in
the
isi

the total number of
to MU + AD.
number of

the total

to MU AD

is being
its normal limits in
last
is applied
to the

its normal limit



7.3.5> Measures of Effectiveness

To analyze how the admissions pattern and the
scoring system are affecting the behaviour of the hospital

waiting list model, we made the following calculations:

............ i> The arithmetic mean of the waiting times of

those patients admitted in one year <52 weeks)

for each priority. Me will refer to this mean by
the symbol W; | i * 1 Urgent cases, i “ 2
Non-Urgent cases. is calculated with the

real waiting time and not with the artificial

waiting time involved in the Scoring System.

ii> The arithmetic mean of the number of patients
waiting every week during one year (52 weeks)
for each priority. He will refer to this mean
by the symbol Qj ; i m 1 Urgent cases, i “ 2

Non-Urgent cases.

So, Wj and Qj summarize the waiting times and size of the

waiting list that occur during year in our simulation model.
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7.3.6) Consequences

As urgent and non-urgent cases receive almost the
same treatment once they become potential admissions, Me
expect the folloMing results when the initial score -for

urgent cases is equal to zero, 1S=0!

a) No difference in the mean Mai ting time betMeen

priorities,
WjS w2

b) The mean number of patients on the list per
priority on the list should be proportional to

the arrivals ratei

Q1 00 X PU
09 Q0 X <1-PU)
< PU i Proportion of Urgent Arrivals >
These results Mere useful in correcting and validating the
computer program that simulated the hospital Malting list

model.
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7.4)

Variables

In this section we present a summary of the

variables defined

in the model of a hospital waiting list.

These variables arei

> Q0

4> PU

5) SD

6> 01ST

7) LE

8> AD

Initial population on the waiting
list including urgent and non-urgent
cases.
Expected number of arrivals per week,
including urgent and non-urgent cases.
Initial Score assigned to urgent cases at
the time of their arrival on the waiting
list.
Expected proportion of urgent arrivals per
week.
Standard Deviation in the arrivals
pattern.
Statistical distribution for the arrivals
pattern.
Distance around QO to define the 'normal
limits' for the total length of the list,
- Lower Limit QO - LE
- Upper Limit QO e LE
Adjustment in the admissions when Q is out
of its 'normal limits"',
- If Q < Q0 - LE, then

Admissions * MU - AD
- If Q > 00 f LE, then

Admissions « MU & AD
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9 D1 i Delay one. Number of consecutive weeks that
Q is out of its 'normal limits'. This
delay defines whether AD is necessary.

10) D2 e Delay two. Number of weeks to start AD, once
it is decided there is need for the
adjustment in the admissions,

11) i Arithmetic Mean waiting time for the
admissions during one year in each medical
priority.

12) Qi i Arithmetic Mean number of patients
per week on the waiting list during one

year in each medical priority.
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?.5> Computer Program

Due to the local computer facilities available,
the hospital waiting list model was simulated with the
computer language FORTRAN 77 (451. The computer program

consisted of four main subroutines!

Subroutine Task
i> INITIA Set initial conditions
ii> ADMISS Define the total number

of admissions

iii> PRIORY Allocate the medical
priorities

iv> SELECT Select patients with the

highest scores

The arrivals patterns were generated using NAG
subroutines C48l. A normal and uniform distribution were
used in the arrivals p'attern. With the normal distribution

the following algorithm was applied!
|
1> x <- GO5DDFC A , B) | A indicates the mean and

B the standard deviation

2> ARRIV  <- NINT < x >

O09DDF<A,B> is a NAB subroutine that generates samples from a
normal distribution using the algorithm of Brent C133, which

is based on Forysthe's method <section 2.2.3> .

To generate the total number of arrivals with a

Uniform or Rectangular distribution, U <a , b >, the
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‘'following algorithm was used:
1) u <- GO5CAF(u >
i i-1

2) ARRIV - a + INTl <(b-a> ¢ 0.999 >XUj J

G85CAF is a NAG subroutine which returns a pseudo-—random
number with a Uniform distribution between zero and one,
U<0,1>. This subroutine uses the following multiplicative
congruential generator (section 3.3.1)

13 59

X = 13 XX <MOD 2 >
i i—1

where X0~2n+1, n is a positive integer.

Because 13 13

$ 3 or 5 (mod 8), the above generator does not
reach its maximum possible period, which is 257 (see section
3.3.2). However, we decided to use it to save programming

time.

The PRIORY subroutine (allocation of priorities)

.is.descri bed in the following algorithm:

1) For J - 1 to ARRIU do

1.1) u <- GOSCAF ( u )
k k-1

1.2) If u < PU, URG <- URG ¢ 1
k

2) NOURO <- ARRIV - URG

3) Return

ARRIV i Total number of arrivals (Urg's and Non-Urg's

cases)
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PUi Expected proportion of Urgent arrivals
URGi Number of Urgent arrivals

NOURGiI Number of Non-Urgent arrivals

The algorithm for ADMISS subroutine (admissions pattern)

Mas i

[y

) If Q < QO-LE, or, Q > QO+LE, go to step 4
2) ADMS <- MU , unless an adjustment in the
admissions has been programmed for this Meek.
3) Return
4> |f Q > QO+LE, go to step 8
5) Q < QO-LE for 'DI' consecutive Meeks?
If not, go to step 2
6) In 'D2' Meeks, ADMS <- MU-AD (adjustment in
the admissions)
7) Go to step 2
8) Q > QO+LE for 'DI' consecutive Meeks?
If not, go to step 2
9) In 'D2' Meeks, ADMS <- MU+AD (adjustment in the
admi ssi ons)

10) Go to step 2

For the SELECT subroutine (highest score) the algorithm mssi
1) For J-1 to ADMS do
1.1) Select the patient Mith the highest score
1.2) Mithdraw from the Malting list the
selected patient
1.3) Register the Malting time if 'the number
of Meeks simulated is greater than 50

2) Return
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In SELECT subroutine, the variable 'ADMS' is provided by
subroutine ADMIS.

So, the algorithm -for the main program was:
|

1) Call INITIA

2) For j-1 to WEEKS do
2.1) Call ADMISS
2.2) x <- GOSDDFCA,B)
2.3) ARRIV <- NINT<Xx)
2.4) Call PRIORY
2.5) Call SELECT

3) Compute WA t* Q.

4) Print Wj fc Q.

5) Stop

WEEKS: simulation time (Meeks)

arrivals from a normal distribution

the

The outputs of the program were Wj and Qjj these values were

calculated after the simulation time was greater than SB

Meeks. The generated data were later statistically analyzed

wi th "the packages GENSTAT C53)J and GLIM 1493 .
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00O

(eXe]

QO

HOSPITAL WAITING LIST
FORTRAN PROGRAM

- MAIN PROGRAM -

INTEGER WAIT(201,2), ICLEN(3), ICADM(3),CLEN, CADM,NYEAR, REPL
INTEGER AD(2) .SEED,I1S(2), 1P, ISDI,IIST,IPI(3),Q0 YEAR
INTEGER 1SD(3), 11S(3),ADMS,ARRIV,LAG,Q(2) .WEEKS . TIME
INTEGER 1D1(3), 1D2(3),D1,D2

REAL MU,SD,PUA MEAN(2),SUM(2) ,LEN(2)

DOUBLE PRECISION GO5DDF ,GO5CAF
COMMON Q,WAIT,LAG,PUA

COMMON /BL1/ AD,SUM

COMMON /BL3/ IS

** READING DATA **

DATA (ICLEN(J),J-1,3), (1CADM(K),K-1,3)/10,10,5,1,1,1/
DATA (IPI(§),-T-1,3).(I15D(K),K-1,3)/50,50,20,6,6,6/
DATA (11S(J),J-1,3)710,10,5/

DATA (1D1(J),J-1, 3) (ID2(K) K-1,3) /3,3,3,1,1,1/

DATA NYEAR.SEED/T ,

CAIL GOSCBF(SEED)

** DEFINING CONDITIONS **

DO 140 Q0-200,300,50

DO 140 IMU“20,30,5
MTJ—-FLOAT(TMU)
DO 140 I1SDI-1SD(L),1SD(2), 1SD(3)
SD-FLOAT( ISDD)"
DO 140 CLEN-ICLEN( 1), ICLEN(2), ICLEN(3)
DO 140 CADM-ICADM(L) . ICADM(2) . 1CADM(3)
DO 140 IP-IPI(D),IP1(2),IPI(R)
PUA-FLOAT(IP)/100.
DO 140 1ISI-11S(L),1TS(2), 115(3)
I1S(L)-11SI
*% DELAYS **

DO 140 D1-1D1(1),ID1(2),-1D1(3)
DO 140 D2-1D2(1), ID2(2), 1D2(3)
** REPLICATIONS **

DO 140 REPL-1,20
** SETTING INITIAL CONDITIONS **

CALL INTTIA(QO,MIJ, TIME,WEEKS,NYEAR, YEAR, CLEN)

** START SIMULATION **

DO 140 1-2,WEEKS
** DEFINING ADMISSIONS **

ADMS-NINT(MU)

IF((SD.OT.0.).AND. (CADM.GT.0))THEN
CALL ADMISS( ADMS,CADM,0( 1)6(2) ,D1 ,D2)
END IF

** GENERATING ARRIVALS **

ARRIV-NINT(MU)
IF(SD.0T.0.0)ARRIV-NINT(GO5DDF(MU,sd))
IF(ARRIV,LE.0)00TO 20

** ALLOCATING MEDICAL “RIORITIES **

CALL PRIORY(ARRIV,PUA,WAIT(I,1))
WAIT(1,2)-ARRIV-WAIT(I ,1)

20 IF(ADMS.LE.0)GOTO 40
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C ** SELECTING THE HIGHEST SCORES **
C
1 CALL SELECT(ADMS.T)
C
40 IF(I .GT.LAG+1)THEN
no 50 K-1,2
50 LEN(K)-LEN(K)+FLOAT(Q(K))/52
END IF
Cc1

IF(t .eo -time)then

TIME-TIME+52

YEAR-YEAR*1

DO 60 K-1,2
60  IF(AD(K) .GT.OYMEAN(K)-SUM(K)ZAD(K)
C

C s> PRINT WATTING TIME AND LENGTH (MEANS)
C
WRTTE(6,1?5) (MEAN(K) ,K-1,2), (LEN(L) ,L-1,2) ,PUA ,MUTSD,QO,
<TS(1) ,CADM,CLEN, YEAR,D1 ,D2
125 FORMAT(2X,7(F6.2,1X).7(1S, 10)
DO 70 K-1,2
SOM00-0.0
len(k)—o .0
AD(K)-0
70 AD(KI-O
! END IF
140 CONTINUE

C
C ** END SIMULATION **
C

STOP
END
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SUBROUTINES

** INITIALIZATION OF DATA **
SUBROUTINE INITIACQO,MU, TI .WE.NYB,YEA ,CL)
INTEGER WAIT(201,2),0(2),15(2),Q0,LAG.TI,VE NYE ,CL YEA
INTEGER Lr,LS,0TA(4),CTB(4)
REAL DUMMY ,PUA.PP,MU
COMMON Q,WAIT,LAG,PUA
COMMON /BL2/ L1,LS,CTA,CTB
COMMON /BL3/ 1S
DO 8 J-1.4
CTA(§)-0
CTB(3)-0
LAG-50
YEA-0
TI1-103
WE-51+NYE*52
L1-Q0-CL
LS-Q0+CL
PP-PUA*( 1-PUA)
DUMMY-PUA*QO-(PP*1S( 1) *MWJ)
IF(DUMMY . LT.0.)DUMMY-0.0
Q(21)-NINT(DUMMY)
0(2)-Q0-0(1)
DO 10 K-1,2
DO 10 1-1,201
WAIT(1,K)-0
DO 13 K-1,2
WAIT (L ,K)«Q(K)
RETURN
END
** DEFINING ADMISSIONS **
SUBROUTINE ADMISS(NA,CAD,LENG,D1 ,D2)
INTEGER NA,CAD,LI,LS,LENG,DL ,D2,CTA(4) ,CTB(4)
COMMON /BL2/ LI,LS,CTA,CTB
IF(D2.EQ.0)THEN
IF(LENG.GT.LS)NA-NA+CAD
IF(LENC.LT.LI)NA-NA-CAD
ELSE
IF(CTA(2) .EQ, 1) THEN
CTA(3)-CTA(3)+1
17(CTA(3) . GE.D2)NA-NA+CAD
ELSE
IP(CTA(3) .NE_O)THEN
CTA(4)-CTA(4)*1
IF(CTA(4) .LT.D2)THEN
NA-NA+CAD
ELSE
CTA(3)-0
CTA(4)"0
END IF
END IF
END IF
IF(CTB(2) EQ.1)THEN
CTB(3)-CTB(3)+1
1F( TB(3) E D2)NA-NA-CAD
ELSE
IF(CTB(3) .NE_0)THEN
CTB(4)-CTB(4)+1
IF(CTB(4) .LT.D2)THEN
NA-NA-CAD
ELSE
CTB(3)-0
CTB(4)-0
END IF
END IF
END IF
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110

** SELECTING PATIENTS **

SUBROUTINE SELECT(ADMS, 1)

INTEGER Q(2),WAIT(201,2) ,LAG, I ,ADMS, AT(2) .SCORE
INTEGER JX,KX, 1S(2) ,MAXS

REAL SUM(2)

COMMON Q,WAIT,LAG

COMMON /BL1/ AD,SUM

COMMON /BL3/ IS

DO 120 IX-1,ADMS

JX-6

KX-0

MAXS-0

DO 110 K-1,2

IF(Q(K) .E0.0)GOTO 110

Ji-1
IF(1.GT.50)J1-1-50

DO 100 J-JI_I

IFQWAIT(J,K) .EQ.0)COTO 100

, SCORE-(1-J)*15S00

I F(SCORE .LE.MAXS)GOTO 100

MAXS-SCORE

JX-J

KX-K

CONT INUE

CONT INUE
if((ix-gt.o).and.(kx -gt.o))then

QK-0(K)-1

WAIT(IX,KX)-WATT(IX,KX)-1
IF(I .GT.LAG+1)THEN
sum(kx)-sum(kx)*Float(1-IX)
AD(KX)-AD(KX)+1

END IF

END IF

CONT INUE

RETURN

END
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7.6) Statistical Results

7.6.1) Q in Control and Non—Control Conditions

7.6.1.1) Introduction

........ We started the analysis of the hospital waiting
list model by comparing the effects in W~ te Qi when control
and non-control conditions were applied in the admissions
pattern. The model was simulated for 310 weeks (five years
plus 50 weeks). After 50 weeks of simulation we start to
calculate W. and CGK for every simulated year, so, for every
run we have five W.'s. Every run was repeated 30 times,
| 1

which implys 5X30-150 observations from our simulation

model. The conditions in which the model was run were:

- Q0 = 200 (initial population, urgent and
non-urgent cases)
- MU — 20 (average number of arrivals per week)
- SD — 6 (standard deviation used in the arrivals
distribution)
PU = 0.5 (expected proportion of urgent arrivals
per week)
IS - 10 (initial advantage given to urgent
cases, weeks)

Arrivals < N( MU , SD >

The values assigned to the control variables were:

AD — 1 (adjustment in the admissions)

LE — 10 (distance around QO to defi'ne normal

limits for Q)
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01 3 (consecutive weeks Q is out of its
normal 1limits)
(weeks left to start adjustment in the

admi ssions)

At the end of every simulated year we calculated the

following statistics:

Ne=IWi(¢ > no' °* replications)
1 30
2% Q
1 30
2 g!-i<wr<g> - ai>2
WL 29

Then we built the confidence intervals (assuming normality)
to estimate E(Wj) & E(Q.) per year in control and non-

control conditions.

7.6. 1.2) Results

We found that Wj & Qj did not show any significant
change during the five simulated years, either in control
and non-control conditions (see graphs 7.1 and 7.2).
However, in terms of sWJ and sQi, when there were no control
conditions these statistics increase with time (non-

stationary process), but in control conditions behaviour
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through time Mas very constant.

results, we carried on

using only control

time.

7.6.2) KT it 5.

7.6.2.1) Introduction

conditions and one year

by DIST,

the analysis of

response to these
the simulation model

the simulation

In this section we analyzed how the variables

DIST, QO, MU, PU,and

for the control conditions.

use the following

linear

y mH + *. & ff +S. o
j k

y» w4, g4
u iGeneral mean
etj iEffect of QO

t Effect of MU
0, iEffect of PU
#m iEffect of IS
Yn i Effect of DIST
c i Experimental

E<*> - 0 | E<x® . n®

- 0

The specific conditions

QO0i 200

MUi 20

PUi 0.90

, 300
30

, O.

IS affect W.

the simulation model

it Q. with specific values

this purpose we decided to

Interactions + ¢ ...<I>

Random variable with

werei



IS: 5, 16

DIST: Normal and Uniform distribution

The above variables Mill be referred to as factors and their

corresponding values as levels.

When the normal distribution was used to generate the

arrivals per week the standard deviation was six,

3D - 6

To define the range of the Uniform distribution the

following criteria were appliedi

- If MU <= 20, then the arrivals distribution was
ut 10 , 30 3
- If MU = 30, then the arrivals distribution was

ut 20 , 40 3

(In both cases the standard deviations were
approximately six} we tried to keep the same

variability as in the normal distribution)

The control variables were assigned the following valuesi

AD m 1 (adjustment in the admissions)
LE m 10 (distance around QO to define normal
limits)
- D1 = 3 (delay number one to define the need for
adjustment in the admissions)
D2 m 1 (delay number two to start adjustment in

the admissions)

188



The number of replication* defined in this simulation
experiment was twenty, so the total number of observations
was 20X32 = 640 units (25=32 indicates the total number of

combinations of the five factors).

Analysis of Variance (ANOVA) was used to analyze which
effects in .the linear model were different from zero (371.
The statistical package used for this purpose was GENSTAT

£533 .

7.6.2.2) ANOVA results

In this simulation we found that the effect of
using different distributions in the arrivals pattern did
not show any significant change in & Q. (see table 7.6).
We found significant interactions between Q0 b MU and PU tc
IS] see graph 7.3 & 7.4. In general the behaviour presented

lin these graphs is as follow*!

When IS was increased,
I Y(PIHO.7> - Y(PU-0.3> | increases

where Y ™ Wj and

When QO/MU is constant, W & Q. are not
affected.

|
When we compared the mean waiting time between priorities,

W2 - W , we found that this difference was constant, and

equal to IS plus 0.3,

W2 - Wj m 18+ 0.3
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When we repeated the ANOVA with W2~Wj as the experimental
unit, we found that the only significant factor was IS. This
means that the only difference in the mean waiting time is
explained by the initial advantage given to the urgent _
cases, IS. This confirmed that bo.th priorities were trealted
almost equally in the selection procedures once IS was

assigned. The 8.56 in the above expression is explained by

the preference that Urgent cases had in the case of a tie.

7.6.3) EtkT) 6 E(Q.)t approach by Little's Equation
7.6.3. 1> Introduction

In this section we concentrate our attention on
the expected values of t* Q. . Me develop an approximation
to E<M”> b E<GL> by using our previous results and Little's
formula (see section 6.18). To begin with, we introduce our
notation in this formula

Q0 = MU X E<M>

E<W> = QO/MU oo (7.1)
11 -

With the same principle of Little's Equation, we can obtainl

an expression for each priority in the waiting list as
followsi
! 11
E<Qj> - <MUXPU> X E<SWj ) i, <7.2)
and |
E(G>2> - CMUX<i—PU>I1 X E<M2> ..o <7.3) |

Hence, to calculate £<0”) we need to find E(M"> . To solve
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this problem, -firstly we split Q by the sum + so,
E<Q)) + £<g2>=ae.. ... ... .... <7.49)
Secondly, we divide this expression by MU,
E<Q2>/MU & E<Qj>/MU = QO0/MU

This expression could be written as below (the components of

the left side were multiplied by one):
<1-PU) XE<Q2>/<MUX< i-PU) & PUXE(Qj)/(MUXPU) = QO/MU

Then, using equations (7.1), (7.2) fe (7.3) we obtained the

following relationship:
(i-PU)XE(W2) & PUXE(Wj) - E(W).u. (7.5)

Now, based on our previous results (section 7.6.2.2), we

assumed as true the following relationship:
E(W2> - E(Wj) - IS @ 0.50 oo (7.6)

Finally, combining the expressions (7.5) (7.6), we have a
system of simultaneous linear equations with two variables
E(Wj) t~ E(W2>. Solving this sytem we found the following

approximations to the expected waiting time per priority:

E(Wj) - E(W) - (I-PU)XIS i (7.7)
and

E(W2> = E(W) & PUXIS e, (7.8)

(1S* - IS e 0.50)
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With eq.'s (7.7) it <7.8> substituted in eq.'s (7.2) it (7.3)
we could get an approach to the expected number o-f patients

waiting on the list:
a) Urgent cases

E<Qj> = CE<W> - <I[-PU)XIS'3X<MUXPU>

CQ0 - <1-PU> X<IS'XMU) JXPU
b> Non-Urgent cases
E<Q2> = CE<W) + PUXIS'3XCMUXCI-PU)1

* [Q0 ¢ MUXPUXIS'3X<1-PU>

Q0 - E<Qj)

<E<Qj) and E<Q2> were the values used to de-fine the initial

number o-f patients per priority in the simulation model)
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7.6.3.2) CW.I Vs IECU.) 3 tc | Qi vsIE(Q.> ]

When we compared the means -from our simulated data
against the approximations to the expected values, E(kL) &
E<Q.>, we found no real difference between them (see table
7.7). This result was confirmed with a X2 test for Goodness
of Fit (section 3.4.1.1). So, on average the waiting time
and the length of the list per priority can be well
explained by a combination of QO, MU, PU & IS, using the

specific control conditions defined in this simulation.

7.6.3.3) Error distributions by QO, MU, PU and IS

To show the behaviour of the simulated data
against the approximation of the expected values, we present

in graphs 7.5, 7.6, 7.7 and 7.8 the distribution of

(Wt - E(W.)> vs E(Wi>

and

(Q4 - E(Qj)> vs E(QJ)

To compare the errors distribution CW.-Ed'f) 3 and
CQ.-EdJj)!, we calculated the corresponding standard

deviations around the expected values,

SDy - tl(Obs - Exp)2/n—-1)3 1/2

(y " Wj, Q.

For this purpose we carried out an analysis of variance to
determine whether QO, MU, PU and IS had some effect on SD~".
Our results did not show evidence to reject the hypothesis

that the factors effects were equal to zero (see table 7.9).
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Therefore, we could say that the variability in I*T tc GK was

not affected by QO, MU, PU and 1IS.
7.6.3.4> Maximum value for IS

Using the results from the previous section, we
could find the range of values in IS which have some effect

on the waiting time. As
E<wi> | 0
which means, for urgent cases,

E<w> - < 1 - PU >XIS" | O

IS' = IS & 0.50

then, the maximum value for IS which satisfied the above

relationship is:
IS = E<W)/<1-PU> - 0.50

From this point the mean waiting time for urgent cases will
not be affected and will be equal to zero. This limit will
also provide information about the maximum waiting time
(mean) for the non-urgent cases and also the maximum

difference in the mean waiting time between priorities.



7.6.4> SD(wi> Qi> by SD, AD, LE, D1 tc D2
7.6.4.1) Introduction
The main objective in this section is to explore
the effects in the variability of our simulation model when
SD, AD, LE, D1 D2 take different values and QO, MU, PU, IS
are constant.
To reach our objective we carried out another

simulation

efollowing

of the hospital

characteristics:

Standard deviati

SD = 3 , 6

- Distance around Q0 to define

Q (Paticnts)

waiting

on

LE = 10 , 20
- Adjustment in the
its normal limits
AD - 1 , 2
Delay number one.
out of its normal
adjustment in the
D1 - 4 , 8
Delay number two.

the adjustment i

D2 2, 4

n
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list model

in

admissions when

(Patients):

Number
limits
admissions:
Number of weeks

the admissions:

with

the normal

is

Q

left

the

the arrivals patterns:

limits

out of

of consecutive weeks Q

to decide the need for

to start

in

is



The constant conditions Mere:

- Q0 = 288,

- MU = 20,
PU = 0.50

- 1S - 10

- Arrivals N< 20 , SD >

The number of replications was 10. So, the total number of

possible factor combinations was 2"~ = 32.

To measure the variability in the simulated model we
calculated the standard deviations around the expected
values for every five replications, either in M. tc Q..
Therefore, two standard deviations were calculated in each
factor level. So the total number of standard deviations

was:

2 if 32 * 64 -Standard Deviations

Me split the observations of M. ic GL to provide clearer
information about the behaviour of the standard deviations

in the ANOVA table.

The symbols used to identify the standard deviations werei

- SD . i Standard deviation around E<M.>.
m <n - 5) *
- SD i Standard deviation around £(Q.>.

U1 <n - 5)

For simplicity we did not introduce in the above symbols

the indexes to identify under which conditions they were
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generated. <It is important to remember that we use the
symbol "SD" without any index to refer to the standard

deviations in the arrivals pattern)

Before analysing the behaviour of the standard deviations
around the expected values, we validated the simulated data
by checking that the means W t* GK were not affected by

SD, AD, LE, D1 tc 02.

We have seen in the previous results that W & were well
explained by QO, MU, PU and IS. Since in this simulation
they were constant, the means should not be affected. We
expected these means to be equal to <using our approximation

to the expected values):

«q7 2 200/20 - <1-0.50)X<10.5) = 4.75
xp 2 W & 105 - 15.25
51 2 WiX(20) X<0.50) 47.5

2 - Qj . 152.5
52 200 Qj

Having validated the simulated data, we studied
the behaviour of SDWi U SDg. under the new conditions in our
simulation model. We used an ANOVA table to find out which
factors produced significant effects in the standard

devlations.
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Finally, to have an approach to SDWi g. under
di fferent conditions, we -fitted the following regression

model:

SD X (f-f>
y

fs Significant factors in ANOVA.

The analysis of variance was carried out with the computer
package GENSTAT and the regression model with the GLIM

package.

7.6.4.2) W. & Q. by SD, AD, LE, D1 and D2

We found that the means kT & Q. were not affected
by SD, AD, LE, D1 and D2. We did not find evidence from the
simulated data to reject the hypothesis that the main
effects from SD, AD, LE, D1 4& D2 and their respective
interactions were all equal to zero (see table 7.14> These
results confirmed that QO, MU, PU and IS were the only

factors in our simulation model which explain W 6 Q..

7.6.4.3) SDwi & SDq. by SD, AD, LE, DI and D2

We found that the only significant differences in
SD”. were presented in SD, AD & LE. For SDqj the significant

differences were with SD and LE (see table 7.19).

It was interesting to find that the two types of'delays, DI
& D2, did not produce any significant effect in the standard

deviations distribution. This result will allow the hospital
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manager to anticipate and prepare the use and non-use of
resources, knowing that the variability in the distribution

of kT it GL will not be affected.

In general , we found that the behaviour of SDwi in relation

to LE, AD and SD was as follows (see graph 7.9):

increases when SD it LE are increased, and

decreases when AD is incresed.

The above behaviour is explained by the relationship that
exists between Q0 and the factors SD, LE it AD. The factors
SD it LE ensured that Q fell within a certain distance from
IQO, while AD attempted to close this distance. These

patterns could be represented as follows:

i~ if SD or LE t » | Q - Q0O | t -» SDWi t

ii> if AD I » | Q - Q0 | J-t SDwi *

From graph 7.9 we did not note any difference between SDWj it
SDW2* To check this we carried out a t-test and the results
did not show any significant result. This confirmed again

that both priorities were treated equally in our simulation

model.

7.6.A.4) Regression Model in SDWi

As we found that there was no significant
difference between SDWj it SD"g* w* decided to merge these
standard deviations to have only one representative of the

variability in the waiting time. The merged standard
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deviation was identified by the symbol SDW«

Using SDW as our dependent variable we fitted a
regression model in terms of SD, LE t* AD, and found the

following model < See table 7.22):

/\
<7.9>....SDW = 0.69+8.UX<SD-4.5)+0.05X<LE-15)-0.32X<AD-1.5)

So, with the above regression model we could have an
approximation to the variability in our simulation model

with different values in SD, LE and AD.

7.6.4.5) Limits for LE AD

Because LE AD can take any positive number, we
looked for those in which the variability of the simulation
model is really affected. To do this, we assumed the

following expression:

— __<n-c)

SDwW  $ SDW....ccooveeees 7.9.1

— <n-c)

SD”: The mean of the standard deviations in the

waiting time for both priorities when no
control is applied in the admission
pattern; the admissions per week is

constant.
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__<n-c)
To find SDW we repeated the simulation experiment with no

control conditions and we found the following regression

modeli
<7.10) i SDW - 1.25 ¢ 0.50 X <SD - 4.5 >

Using eqg.'s <7.9) te <7.10) in 7.9.1 we obtained the

following relationship!
<7.11) i LE - 6.4 1 AD 1 16.6 ¢ 7.8 X < SD - 4.5)
[ LE, AD be 8D 3 0]

So, SDW will be affected by LE & AD when the expression

<7.11) is satisfied.

7.6.4.6) Regression model in SDQ.

Me found that the only significant factors to 1
explain SDb"l were SD & LE <See Table 7.24). Also, we found
significant differences in the mean of the standard

deviations in the length of the list between priorities,

SD t SD
Q1 °2
As a consequence of the above results, we decided to fit la
regression model for each priority. The regression results
were <See table 7.25)i

/\
SDQ1 - 8.5 & 1.33X<SD-4.5> e 0.45X<LE-15>
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and

/\
SDQ2 = 10.0 & 2.00X<SD-4.5> + 0.45XCLE-15)

C the constant terms and the coefficients for <SD-4.5>

were significantly different 1

Therefore, to know the variability in GL when more than two
|

priorities are defined on the hospital waiting list model,
it would be necessary to repeat the simulation experiment.

An alternative procedure is to use Little's formula as

foilows i
i> We get a confidence interval for the expected
waiting time per priority assuming normality,
< Wi Inf WiSup >
Inf. Limiti E<W4> - ZB*SDW
Sup. Limit: E<Wj> e Z#XSDW
Zcf N O , 1 >
ii) then the limits for the waiting time are
multiplied by the arrivals rate for each
priority,
Qi Inf Xi*W1linf QiSup ” Xi*WiSup >
X.i Expected number of arrivals with
priority *i".
Because both priorities were treated equally once they libra

assigned 1S, we expected that SD” would be statistically the
same for all priorities defined in the hospital waiting list

model.
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7.6.5) E<W.) with i > 2

Now our problem is to -find the expected waiting
time when more than two priorities are defined in our
simulation model. In this section we present an
approximation to solve this problem. We assumed initially
three priorities, and then we made the generalization for

any number of priorities.

With three priorities in our simulation model, we

expected the following relationships to be satisfied:

E<W2) - E<W]) * < IS] - 1S2 > + 0.50 .o . 12)
e<w3) - e<w2> = < IS2 . js3 ) + 0.50 ... . 13)

i i i i i "k" h higher
t ISK i ISk+l 1 patients with priority k ave ig

prioriity than those with priority "k+1" 1

Extending expression (7.5) from section 7.6.3.1, we obtained

the following expression:
<|-Pj-Pg) XE<Wg) e P2*E<W2> & PjXEiWj) = E<W> ....<7. 14)

Combining expressions <7.12), <7. 13) 4 <7. 14) we have a
system of simultaneous equations with three variables E<Wj>,
E<W2> and E<Wg). Solving this system, we obtain the

following approximations:

E<Wj> - E<W> - tIS"'X< 1-Pj-P2>eI1S'"*« 1-Pj> 1............. <7.15)

E<SW2) = ESW > @ IS'  oooooeoeecoeeeeeeeeeee e eeeeeeeeeeeee e, <7. 16)






mfor the lowest priority) is equal to zero,
a) m4/= ISj jj = 2,<k-1)

b> Is k

then, under these conditions, the difference in the expec ted
waiting time wi 11 be 0.50, except for the last two lowest

priorities, in which case it would be:

E<Wk_j) - E<Wk> = ISj + 0.5

Using eq. 7.18 with the above assumptions, E(Wj) would be:
k-2 1 k-1

E<Wj) = E<W> - CC=1<0.5)<1-C"jPj) + <ISj+0.5> <1-C~jPj) i

So, the maximum value -for ISj that satis-fies E<Wj)y0 s

k-2 1
E<W> - C=1<0.5> <I|-C=1Pj>

ISKm» X > —————mmmmm—— - e - 0750
1' 5-ipj
If 1Sk <the score of the lowest priority) is equal to ISj,
then there is no need to know the maximum value for |ISj
because all the priorities on the list would receive the
same treatment. If 0 < ISk < ISj, then the maximum value for

ISj would be the maximum value for 1Sj when ISk“0 plus 1Sk,

If 0 < Isk < Isi e th#n

IS*Kmax> “ 1®1(max) + ISk

<ISI(m.x>" wh#n ,Sk"“0>
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All the expressions that we obtained -for a general case in
the expected waiting time are consistent with our simulation
results, where two medical priorities were defined in the
hospital waiting list model.
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7.7> Summary

By using simulation, we could evaluate the
behaviour of the waiting time per priority produced when a
scoring system was used in the policies of admission, using
a queueing model <chapter VI) with the arrivals rate equal
to the admission rates, which means, with the traffic

intensity equal to one <p=lI).

We considered that having p=l in the simulation
model meant we could have a more realistic representation of
a waiting list, in terms of its total length, because if
P < 1, the expected length would tend to zero, and if p > 1,
it would tend to infinity; its increment or decrement would
depend on the difference between arrivals and admissions

rates.

By analytical means (section 7.3.1) we
demonstrated that if we use p—1, the expected total length
of the list, referred to by the symbol Q, Mould be equal to
its initial value at the start of the simulation <Q0> and
its variance would increase with the time, a non-stationary

process.
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When we simulated our model with p~1, we -found
that the distribution of the waiting time and the length of
the list for wurgent cases were also affected by the time;
their variances increased with the time (see graphs 7.1 t*

7.2)

One way to solve the non-stationary problem in our
simulation model was to have a constant number of total
arrivals, this implied that the total length of the list
would be always equal to its initial value, QO, and the only
random effect in the model would be the allocation of
medical priorities, which were assumed to follow a binomial
distribution. Under these results we checked that the
computer program (section 7.5) was running according to what

we expected.

Then, in order to develop more accurate results in
the variability of the simulation model with random arrivals
and constant admissions (the expected number of total
arrivals per week was the number of admission per week), we
experimented with the model, placing an upper and lower
limits for Q. These limits were defined to be very close to
Q0 to avoid the non-stationary problem in Q presented in the

model with random arrivals.

The procedure used to implement the above limits

was as follows! if Q is above its upper limit the total
number of admissions were increased, if it was below the
lower limit, the admissions were decreased.
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To operate the above procedure in a -flexible way,
two types of delays were defined in the simulation model;
the first one to decide the need for changing the admissions
number, and the second one, independent of the first delay,

to start the modification in the number of admissions.

So, the new admissions pattern would depend on the
upper and lower limits for Q, the increment or decrement in
the admissions when Q is out its limits, and the two types
of delays to decide and initiate the changing in the

admi ssions.

Because of the number of conditional operations
that had to be considered in the new admission pattern, we
found the flexibility of Fortan 77 very useful (see section
7.5). In any simulation purpose languages (SIMSCRIPT, GPSS,
DYNAMO,..), we consider that the programming of this
admission pattern would have been much more difficult,
despite the fact that some of them may accept Fortran

subroutines.

To check that the model was running as we expected
with the new admissions pattern, we displayed the results in
Q and in the number of admissions week by week, during 180

simulated weeks.

The validation of the model was based on the
comparison of the mean waiting time per priority. Me assumed
initially two types of medical priorities (Urgent and Non-
Urgent cases). Me expected not to have any significant

difference in the average waiting time, when no priority

206.3



distinctions, were made in the policies of admission. Me
would have liked to compare these results with some real
system in order to get better validation o-f the simulation
model. However the risks involved changing the policies of
admission in a hospital were too high -for this academic
research. Therefore, we constrained our validation to

logical and mathematical comparisons.

Once the computer program was validated, the model
was run under different values for the following variables:

QO0, MU, IS, PU, DIST, LE, AD, DI, and D2.

One of the important results of this simulation
was that we could control the variability in the waiting
time, measured by the standard deviation, by maintaining the
total length of the list within certain limits. A regresién
equation in terms of the limits defined for Q, the
increments (« or -> for the admissions, and the standard
deviation in the number of arrivals was used to explain this

variability (section 7.6.4>

Another important result was that we could
develop a formula for the expected waiting time for any
number of priorities in the waiting list, with the traffic
intensity equal to one (see section 7.6.3>| this formula was
a combination of the initial value for Q, the total arrivals

rate, the proportion of arrivals for each priority, and the
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initial score given to each priority. This -formula was the

combination of the following preliminary results:

the simulation results showed that the
difference in the mean waiting time was
determined by the initial score given to each
priori ty

- the expected waiting time, when the list does
not have priorities, which is the case when our
model was defined with 1S=0, can be found by

using Little's equation (section 6.10>

The other simulation results were that the type of
distribution used to generate the total number of arrivals
and the two types of delay in the admission pattern did not
show any significant effect on the waiting time

di stribution.
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7.8) Conclusion of the Experiment

We have seen the statistical results of a
simulation model that represents the process of admission
from a hospital waiting list when a scoring system is used
in the policies of admission. Also we show one way to tackle
the problem of non-stationarity in the variability of the
length of the list when the arrival rate is equal to the
admission rate. On the other hand, we saw how the simulation
results can be combined with analytical methods to produce a

formula for the expected waiting time.

Despite the above results, the question still
remains of how consistent these results would be if they
were applied to a real waiting list with conditions similar
to our simulation model. Three facts suggest that our

results could be consistent with the real world:

- the first one is the fact that the scoring
system to decide what sort of priority can be
assigned to each priority is very flexible,

- the second one, based on the result that the two
types of delays were not significant, is that
there is enough time to decide the need for
changing the number of admissions (4-8 weeks)
and to start this change <2-4 weeks),

without affecting the waiting time distribution,
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and the third one is that the expected value
and the variance of the arrivals distribution
were the significant factors in the waiting time
distribution, and not the type of distribution

associated with the arrivals pattern.

One of the limitations in our hospital waiting list
model was the assumption that the proportion of lost
patients <pjost> was zero. We saw in the introduction of
this chapter that there were a number of lost patients in
list with long waiting list (see ref. £4J>. To adjust our
simulation result to this possible situation in our model

<Plomt$0>, we have to change Q8 to QO X<1-Pje=

The other limitation was in relation to the
medical priority. We considered that the assumption that the
priority did not change with the time in the waiting list is
a difficult one to satisfy in a real waiting list. If the
priority increases with the waiting time, the general
procedure is to use an expression of the following form (see

references 1181, [421 tt £523«

SCORE - *<t
1K£,t> i function of some biological, social
and economical factors of the

patients <£> and the waiting time <t>.

Then, the same principle that we used in our simulation
model is applied. The difficulties in this sort of function
V is the definition of the factors £, and the validity of

combining the factors £ in a single expression.



In our simulation model, we used a very simple
scoring -formula <*<£,t)=1S+1) to have -full control of the
parameter 1S and to be able to concentrate our analysis on
the waiting time distribution per priority when the traffic

intensity was equal to one.

Therefore, in the simulation analysis of a scoring
system that defines the policies of admission from a
hospital waiting list, a compromise has to be made between
the assumptions of the simulation model, the control
mechanism <V>, the complexity of evaluating the effects of
the paramenters involved in 9, and the objective of the

simulation experiment.
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Table 7.1

Wj & Qj in control and non-control

conditions during -five years

Characteristics in the simulation modeIX:

Q0 = 200 ; MU= 20 ; PU = 0.50 j is = 10 5

Sb =6 ! AD= 1 ; LE = 10 : DI =3 } D2 = 1

Year Control Non-Control
w1 Q1 W Q1 -
Mean S Mean S Mean S Mean S
1 4.78 0.9 48.1 11.5 4.73 1.6 47.9 18.8
2 4.65 1.4 46.8 15.2 4.58 3.2 46.4 32.9
3 4.87 0.9 49.2 10.8 4.81 3.8 48.7 39.0
4 4.67 1.5 47.0 16. 1 4.74 4.3 47.7 44.3
5 4.32 1.5 43.0 15.1 4.54 4.9 45.6 50.4

- The means were calculated with n = 30.

- s: Sample Standard Deviations

X Normal Distribution was used in the arrivals pattern
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Table 7.2

ANOUA in Wj by DIST, QO, MU, PU and IS

X** Analysis of Variance XXX

Uari&tei W;

Source of Variation DF SS MS VR
DI ST 1 0.1302 0.1302 0.202
Qo0 1 2778.,799 2778.:,799 4313.215
MU 1 2595.5212 2595.5212 4023.907
1S 1 ,43.9058 ¢43.9058 999.505
PU 1 38¢.7749 38¢.7749 ¢00.373
DIST.QO 1 0.00 10 0.0010 0.002
DIST.MU 1 0.9083 0.9083 1.410
Q0 .MU 1 133.4348 133.4348 207.125
DIST.IS 1 0.0¢91 0.©491 0. 107
Q0 . IS 1 0.0304 0.0304 0.047
MU. IS 1 0.9820 0.9820 1.524
DIST.PU 1 1. 194 1.194¢ 1.854
Q0 .PU 1 0.,"9 0.9 0.958
MU. PU 1 0.3739 0.3739 0.580
1S. PU 1 ¢9.59¢8 $9.59¢8 108.032
DIST.Q0.MU 1 0.2187 0.2187 0.339
DIST.QO . IS 1 0.0318 0.0318 0.049
DIST.MU.IS 1 0.0835 0.0835 0.130
Q0.MU.IS 1 1.7925 1.7925 2.782
DI ST.QO0.PU 1 0.2337 0.2337 0neg 3
DI ST.MU.PU 1 0.0542 0.0542 0.084
Q0.MU.PU 1 2.9417 2.9417 4.5¢¢
DIST.IS.PU 1 0N 72 0Ng72 0.570
Q0 .1S.PU 1 0.4791 0.4791 0.744
MU.IS.PU 1 0.10¢9 0.10¢9 0.1¢¢
RESIDUAL ;14 395.5540 0.,442

GRAND TOTAL ¢339 70 14.0273

GRAND MEAN 7.137

TOTAL NUMBER OF OBSERVATIONS .40
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ANOVA

XXX Analysis of Variance XXX

Variate: W2

Table 7.3

Source of Variation DF
DI ST 1
Q0 1
MU 1
IS 1
PU 1
DIST.QO 1
DI ST.MU 1
Q0 .MU 1
DIST.IS 1
Q0.IS 1
MU. IS 1
DIST.PU 1
Q0 .PU 1
MU. PU 1
1S. PU 1
DIST.Q0.MU 1
DIST.QO0.1S

DIST.MU.IS 1
Q0.MU.IS 1
DIST.QO0.PU 1
DI ST.MU.PU 1
Q0.MU.PU 1
DIST.IS.PU 1
Q0.1S.PU 1
MU.IS .PU 1
RESIDUAL 614

GRAND TOTAL

GRAND MEAN
TOTAL NUMBER OF

63?

OBSERVATIONS

in W2 by DIST,

2808.

2595.

1424.
382

133.

COOWOONOOOXOO KOO

433.

7857.

15.
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Qo ,

SS

2349
9707
1548
0820
2629

.0187

7062
3338

.0544
.0053
.3432
.2461
.7604
.7659
.1596
.1434
.0975
.0228
.0341

1550

.1210
.3902
L7673
.5966
.2568

3218

9453

155
640

MU,

PU and IS

OooOwooNOo

o

MS

VR

3980.
3677.
20 17.
541.

=
[ee)
[e¢]

OCORLPOONOOOORRRROO

333
202
233
868
652

.027

929
077

.903
.766
077
.085
.579
.20 3

138

.032

882

.220

171
80 4

.087
.845
.364



Table 7.4

ANOVA in Gj by DIST, QO0,

Analysis of Variance XXX

Van' aites Qj

Source of Variation DF SS
DIST 1 149.6
Q0 1 575116.9
MU 1 44187.2
1S 1 12352¢ .4
PU 1 517017.2
DIST.QO 1 9.0
DIST.MU 1 234.6
Q0 .MU 1 397.1
DIST.IS 1 79.2
QO0.1S 1 4.4
MU. I S 1 3750.2
DIST.PU 1 378.3
Q0 .PU 1 16964.7
MU. PU 1 1013.6
1S.PU 1 4:97.7
DIST.Q0.MU 1 13.5
DIST.QO.IS 1 5¢(.3
DIST.MU.IS * 1 114.3
Q0.MU.IS 1 822.0
DIST.QO0.PU 1 7.3
DIST.MU.PU 1 17.7
Q0.MU.PU 1 742.5
DIST.IS.PU 1 573.5
QO0.I1S.PU 1 109.6
MU. 1S .PU 1 524.9
RESIDUAL ;14 116772.6

GRAND TOTAL

GRAND MEAN

¢39 1407330.0

103.25

TOTAL NUMBER OF OBSERVATIONS 40
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MU,

PU and

MS

149.
575116.
44187.
12352¢.
517017.
9.
234.
397.
79.

4.
3750.
378
1¢9¢4.
1013.
4.97.
13

5¢.
114.
822.
T

17.
742.
573.
1009.
524.

190.

CONNNWOWWINOINWNEN  OONIN OO
®

IS

o

3024

N
~No N
P AW
wwOoN

=
OpRpr©oOONRLO

N
NOwWwwooh~MoOO~OM

N

VR

.786
.0 12
.340
.512
.519
.047
.234
.088
416
.023
.719
.989
.202
.330
.701
.071
.296
.601
.322
.354
.093
.904
.0 16
577
.760



Table 7.5

ANOVA in Q2 by DIST, QO,

XXX Analysis of Variance XXX

Variate: G2

Source of Variation DF SS
4

DI ST 1 117.3
Qo 1 250888.1
MU 1 71738.3
IS 1 123890.2
PU 1 551632.6
DIST.QO 1 2.9
DI ST.MU 1 30.2
Q0 .MU 1 1.2
DIST.IS 1 15.0
Q0 . 1S 1 57.6
MU. IS 1 8906.0
DI ST.PU 1 103.5
Q0 .PU 1 17607.0
MU. PU 1 484 .4
I1S. PU 1 15.5
DIST.Q0.MU 1 155.2
DIST.QO0.IS 1 316.6
DIST.MU.IS * 1 2.7
Q0.MU.IS 1 475.3
DIST.QO0.PU 1 144.9
DIST.MU.PU 1 1.9
Q0.MU.PU 1 272.4
DIST.IS.PU 1 108.2
00 .1S.PU 1 32.9
MU. IS.PU 1 49.8
RESIDUAL 614 89654.9
GRAND TOTAL 639 1116703.0
GRAND MEAN 145.74
TOTAL’ NUMBER OF OBSERVATIONS 640
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MU, PU and

MS

PONROOWNONNRONNONONNODNWF W

o

IS

1718
491
848

3777

OCO0OOROOWONROWOOO000OOO

VR

803
202
298
459
845
020

.207

008

. 103

395
993
709
581
318
106
063
168
018
255
993

865

741

225
341



Table 7.6

Analysis of residual sums of squares when QO,

MU, PU and IS were used to explain UL t* CL

Characteristics in the simulation model:

sO=6 ,; AD= 1, LE= 10 5D1=3; D2 =1

Model | Model |1 <SS2-SSj) Xf
Units
u ss1 x2 ss2 SS jX<f2~f I>
W1 614 3951 ¢33 40¢ .3 <1) < 1
W2 14 433.3 ¢33 44.0 <1) < 1
Q1 .14 116,772.6 $32 122,080.0 <2> 1n=*
«2 14 89,:,54.9 ¢33 92,042.4 <3) <1
X p > 8.05
uffi : degrees of freedom
SS. i Residual sums of squares
Model | <W. : Q.> « |Ji+ot +H & E interactions + «
* ‘ J k 1 m n J J, 2 order
Model Il < Using significant effects) «
(1> Wi" F+«J+#Kk M 1 +Tmt<* A SJK+<**T> [ m+*
<> Q- e« rik+é1+TE®r< £€>JI+<i-T>km+<*-T> ,m+F
<3> gq2- u+t«J+V * 1+V <M @) i +<#<T>km+*
u General mean *1 Effect of PU
alJ Effect of QO Tm Effect of IS
Bv Effect of MU *n Effect of DIST -
« Experimental error
1

Source: Tables 7.2, 7.3, 7.4 and 7.3
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Table 7.7

[e] E W, « ”
bserved and xpected 1 Vv
Control V«riable»i PD - 1 , LE » 10
DI - 3 s D2 - 1
- SD - 6
Condi tions N. <n«40> Oj <n-40)
Qo0 MU PU 1S ‘i ‘o 51 62
S 7. 12.9 73.7 129.7
.5 <7.3) <12.8) <73.0) <127.0)
20 10 4.6 15. 1 44.0 148.7
<4.8) <15.3) <48.0) <152.0)
S 8. 13.6 112.9 81.7
7 <8.4) <13.9) <117.6) <82.4)
200 10 6.5 16.9 90.6 101.2
<6.9) <17.4) <96.6) <103.4)
.5 5 3.9 9.4 58.5 141.2
<3.9) <9.4) <58.5) <141.5)
30 10 1.8 11.9 21.8 180.6
<1.4) <11.9) <21.0) <179.0)
7 5 4.9 10.4 103.2 94.3
<5.8) <10.5) <105.0) <95.0)
10 3.8 14.3 79.5 130.2
<3.5) <14.0) <73.0) <127.0)
S 12.3 17.7 121.6 176.4
.5 <12.3) <17.8) <123.0) <177.0)
20 10 9.5 20.0 94.3 199.8
<9.8) <20.3) <90.0) <210.0)
1
5 13.2 18.7 183.9 112.2
7 <13.4) <18.9) <187.6) <112.4)
300 10 11.9 22.4 147.5 131.7
<11.9) <22.4) <146.6) <133.4)
5 7.4 12.9 111.9 196.9
5 <7.3) <12.8) <109.5) <190.5)
30 10 4.6 15. 1 48.9 227.6
(4.8) <15.3) <72.0) <228.0)
+ 5 8.2 13.7 171.4 122.4
7 <8.4) <13.9) <176.4) <123.6)
6.9 17.4 144.3 187.6
<4.9) <17.4) <144.9) <158.1)
* * *
,
KZ - E<O0-E>'/E 0.105 0.045 2.14 1.07
X Non-SignH lcant]| p > 0.05
(1) Th# expected value« are between brackets
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Condi tions

Qo0

200

300

MU

20

30

20

30

PU

MEAN

Table 7.8
S?Wi,Qi> 00 » MU' PU
<n-40>
Control V*ri»ble*i AO
01
SO - 6

SO SD
Is w1 w2
3 0.84 0.84
10 0.88 0.88
3 1.00 1.00
10 1.64 1.8
5 0.83 0.98
10 0.3? 0.65
3 0.64 0.67
10 0.86 e .84
3 0.67 H 0.69
10 1.14 1.1
3 0.58 0.39
i0 0.61 0.38
3 0.4 1 0.39
10 0.46 0.43
3 0.31 0.49
10 0.47 0.30
0.76 0.78
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1S

SD
Q1

11.9

10.2

16.9

24.8

13.8

15.6

20.0

14.8

12.4

12.6

13.8

12.1

13.4

SD

13.

13.

15.

16

13.

11

18

10

12

12.

10



Table 7.9

Analysis of residual sums of squares when Q8,

MU, PU and IS were used to explain SDwi it ®"Qi

Characteristics in the simulation model:

SsD =6 jAD = 1} LE = 10 | D1 = 3 D2 = 1

Model | Model 11 (SS~ASSjIXT
Units
1 88 1 *2 ss2 SSjxcf2-17
SDWL 5 0.33 15 1.48 1.73 X
SDW2 5 0.50 15 1.87 1.35 X
: 5 54.90 15 285.50 2.10 X
sdqi
SDQ2 5 62.80 15 147.80 < 1X
X p > 0.05
t. : degrees of freedom
SS. : Residual sums of squares
Model 1 <SDWi " SDQi> Wec] +%K+Y  Tm+ E interaction
------ o 1it 2 order
Model 11 < Sbwi 8DQi> M+*
W General mean - Effect of PU
« ] Effect of QO Tm Effect of IS

Effect of MU « Experimental error

Source: Tables 7.8
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Table 7.10

ANOUA in Wj by SD, AD, LE,

*XX Analysis of Variance XXX

Var iate s Wj

Source of Variation

LE.DI.D2

RESIDUAL

GRAND TOTAL

GRAND MEAN

DF SS
1 4.0500
1 0.3050
1 1.6742

LOORLOOO0OO0OOONOOOOOOONOOO
¢ I o

-

o

»

294 160.2091

319 178.6647

4.713

TOTAL NUMBER OF OBSERVATIONS 320

216

DI

and D2

o

HOO0O L OO0O0OO0OO0OONOOOOOOONOOO KO A

HS

.0500
.3050
.6762
.2611

0583

.7315
.1092
.0600
.0281
.3976
.4590
.3188
.0495
.0104
.8426
.0551
.5040
.0099
.1193
.2398
.1479
.2802
.8632
.3524
.5263

.5449

NO,_\I\JOOOOOOU‘IOOOOOOO(A)HOOOQ_O\I

VR

.432

560
076
479

. 107
.342

871
110
052

.730
.842
.585
.091
.019
.216
.101
.925
.0 18
.219

440
271

.584
.647
.80 1



Tabi e 7.11

ANOVA in W2 by SD, AD, LE, DI and D2

XXX Analysis of Variance XXX

Variate; W2

Source of Variation DF SS MS VR
SD 1 3.6061 3.6061 6.663
AD 1 0.4720 0.4720 0.872
LE 1 1.4540 1.4540 2.686
DI 1 0.1308 0. 1308 0.242
D2 1 0.0254 0.0254 0.047
SD.AD 1 0.7615 0.7615 1.407
SD.LE 1 2.0464 2.0464 3.781
AD.LE 1 0.0144 0.0144 0.027
SD. DI 1 8.0016 0.0016 0.003
AD. DI 1 0.4418 0.4418 0.816
LE. DI 1 0.6239 0.6239 1.153
SD.D2 1 0.3505 0.3505 0.647
AD.D2 1 0.0 119 0.0119 0.022
LE.D2 1 0.0170 0.0170 0.031
DI .02 1 2.8671 2.8671 5.297
SD.AD.LE 1 0.0705 0.0705 0.130
SD.AD.DI *1 0.5080 0.5080 0.939
SD.LE.DI 1 0.0001 0.000 1 0.000
AD.LE.DI 1 0.0458 0.0458 0.085
SD.AD.D2 1 0.3829 0.3829 0.708
SD.LE.D2 1 0.0875 0.0875 0.162
AD.LE.D2 1 1.3637 1.3637 2.520
SD.DI.D2 1 0.8894 0.8894 1.643
AD.D1.D2 1 0.4969 0.4969 0.918
LE.DI1.02 1 2.1239 2. 1239 3.924
RESIDUAL 294 159.1271 0.5412

GRAND TOTAL 319 177.9201

GRAND MEAN 15.205

TOTAL NUMBER OF OBSERVATIONS 320
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Tabie 7. 12

ANOVA in Qj by SD, AD,

*XX Analysis of Variance XXX
Variate: Qj

Source of Variation DF

o

P

O

N
PRRRRRRERRRRRERRRRRRRRR - = ===

LE.DI.D2

RESIDUAL 294

GRAND TOTAL 319

GRAND MEAN
TOTAL NUMBER OF OBSERVATIONS

452.
34.
187.
35.
4.
82.
239.
7.
3.
31.
39.
16.
9.
0.
283.
10.
81.
0.
2.
1.
13.
189.
134.
7.
160.

21238.

23267.

47.

LE,

SS

66

50

23

320

218

DI and

D2

MS

452.

187.
35.

82.
239.

160.

NORNOOOORLOWOOOO0OOOOWRLOONO O

VR

.261
478

602
489
059

. 143
.311
. 104
.046

.548
.235
.136

001
921

. 144
. 124

000

.037
.022

181
620

.868
. 100
.219



Table 7.13

ANOMA in Q2 by SD, AD, LE, DI and D2

XXX Analysis of Variance XXX

Variate; Q2

Source of Variation DF SS MS

SD 1 175.5 175.5 1.447
AD 1 43.2 43.2 0.356
LE 1 1.5 1.5 0.0 12
DI 1 164.8 164.8 1.359
D2 1 33.7 33.7 0.278
SD.AD 1 112.2 112.2 0.925
SD.LE 1 82.7 82.7 0.682
AD. LE 1 1.7 1.7 0.0 14
SD. DI 1 76.7 76.7 0.632
AD. DI 1 450.3 450.3 3.713
LE.DI 1 1.8 1.8 0.0 15
SD.D2 1 74.9 74.9 0.618
AD.D2 1 93.4 93.4 0.770
LE.D2 1 4.7 4.7 0.038
DI .D2 1 558. 1 558. 1 4.603
SD.AD. LE 1 70.3 70.3 0.580
SD.AD.DI -1 163.7 163.7 1.350
SD.LE.DI 1 11.1 11.1 0.091
AD.LE.DI 1 16.2 16.2 0.134
SD.AD.D2 1 45. 1 45. 1 0.372
SD.LE.D2 1 208. 1 208. 1 1.716
AD.LE.D2 1 99.6 99.6 0.821
SD.DI1.D2 1 352.5 352.5 2.907
AD.D1I1.D2 1 102.2 102.2 0.842
LE.DI.D2 1 258.3 258.3 2. 130
RESIDUAL 294 35649.4 121.3

GRAND TOTAL 317 38851.6

GRAND MEAN 151.74

TOTAL NUMBER OF OBSERVATIONS 320
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Analysis of

variables were used to explain W

Characteristics

residual

Table 7.14

in

tc CL

the simulation model:

sums of squares when control

Q = 200 5MU = 20 5 PU = 0.50 j IS = 10
Model | Model 11 <SS 5
Units ZH—!—‘I>*fI
*1 ssl f2 ss2 ssix<f2
Wi 294 160 .29 319 178.67 1.35 X
W2 294 159 . 13 319 177.92 1.39 X
01 294 21,238 .70 319 23,267.70 1.12 X
Os 294 35,649 .40 319 38,851.60 1.06 X
X P > 0.05
f. degrees of. freedom
SsA Residual sums of squares
Mode 1 | <Nl <v M+j +l» ¢ E interactions & «
m n 1 & 2 order
Model Il <Wt Qi> “ U**
U General mean Effect of AD
“ Effect of SD Tm Effect of D1
Effect of LE t>>n Effect of D2
t Experimental error
Source: Tables 7.10, 7.11, 7.12 and 7.13
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ANOW

in SD

Table

7.15

by SD, AD,

XXX Analysis of Variance XXX

Variates SD

Source of Variation

RESIDUAL

GRAND TOTAL

GRAND MEAN

DF

RPRRRPRRRPRPRPRRRRERRPRRPRRPRRPRRRRRRERRRER

w
[e0]

43

IN

14

TOTAL NUMBER OF OBSERVATIONS

221

[cNeoNoNooNololololoNooNoNoloNoNeNoNoNoNe) Na RNt NN

SS

.3479

0.490

44

LE,

D

1.
.4432
.5425

[e}oNoNoNeoNololoNolooNoNoNololoNoN oo NoNe o N ERt)

o

and D2

MS

9515

3471

.0088
.0432

4041
0011

.0094
.0200
.0038

0005

.5145
.2050
.1538
.0134
.0194
.0323
.3455
.4534
.0249

0583

.1031
.3377
.0004

.1113

OWOOoOOPRWOOORppEpPPOoOOOOOWOO

VR



4

ANOVA

in SD

Tabie 7.16

by SD, AD,

w2

Analysis of Variance XXX

Variate! SD
Wo

Source of Variation

.AD.D2
.LE.D2
.LE.D2
.D1.D2
.DI .D2
.DI1.D2

RESIDUAL

GRAND TOTAL

GRAND MEAN

DF

38

> .
N
N
¢4}

N

SS

63 14.2097

TOTAL NUMBER OF OBSERVATIONS

222

0.690
.4

LE,

DI

o

[ejejejcjejcjololcjolcjojojololcfoNoNoloNoNo NN EN]

and D2

MS

o W
»PF o

ONpRpOOWWOOO R RLUIOOOOORM~MOOW

VR

.765
.647
.117
.075



Tabie 7.17

ANOVA in SD by sSD, AD, LE, DI and D2

XXX Analysis of Variance XXX

Variates SD

Source of Variation DF SS MS VR

SD 1 265.52 265.52 22.659
AD 1 315.91 315.91 26.958
LE 1 95.83 95.83 8. 178
DI 1 21.15 21.15 1.805
D2 1 0.19 0.19 0.0 17
SD.AD 1 7. 19 7. 19 0.614
SD. LE 1 36.55 36.55 3.119
AD. LE 1 0.14 0.14 0.0 12
SD. DI 1 0. 12 0.12 0.0 10
AD. DI 1 1.57 1.57 0.134
LE.DI 1 1.32 1.32 0.113
SD.D2 1 0.25 0.25 0.022
AD . D2 1 68.96 68.96 5.885
LE.D2 1 30.75 30.75 2.624
DI .D2 o1 21.30 21.30 1.818
SD.AD.LE 1 1.25 1.25 0.107
SD.AD.DI 1 0.08 0.08 0.007
SD.LE.DI 1 1.21 1.21 0.104
AD.LE.DI 1 57.29 57.29 4.889
SD.AD.D2 1 63.79 63.79 5.444
SD.LE.D2 1 1.60 1.60 0.137
AD.LE.D2 1 3.95 3.95 0.337
SD.DI.D2 1 5.94 5.94 0.507
AD.DI.D2 1 41.11 41.11 3.508
LE.DI.D2 1 0.42 0.42 0.036
RESIDUAL 38 445.29 11.72

GRAND TOTAL 3 1488.71

GRAND MEAN 8.23

TOTAL NUMBER OF OBSERVATIONS 64
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Tabi e 7. 18

ANOUA in SD by SD, AD, LE, DI and D2

Analysis of Variance XXX

Variate: SD

Q

Source of Variation DF SS MS VR
SD 1 582.37 582.37 28.979
AD 1 321.86 321.86 16.016
LE 1 78.23 78.23 3.893
DI 1 17. 17 17. 17 0.855
D2 1 1.85 1.85 0.092
SD.AD 1 39.91 39.91 1.986
SD. LE 1 23.39 23.39 1.164
AD. LE 1 0.68 0.00 0.000
SD.DI 1 5.35 5.35 0.266
AD. DI 1 2.43 2.43 0.121
LE. DI 1 22.44 22.44 1.117
SD.D2 1 3.84 3.84 0.191
AD.D2 1 45.08 45.08 2.243
LE.D2 1 1.76 1.76 0.088
DI .D2 6.40 6.40 0.318
SD.AD.LE 1 0.00 0.00 0.000
SD.AD.DI 1 2. 13 2. 13 0.106
SD.LE.DI 1 38.47 38.47 1.914
AD.LE.DI 1 56.45 56.45 2.809
SD.AD.D2 1 27.05 27.05 1.346
SD.LE.D2 1 27.56 27.56 1.371
AD.LE.D2 1 20.93 20.93 1.041
SD.DI.D2 1 17.62 17.62 0.877
AD.DI.D2 1 17.57 17.57 0.874
LE.DI1.D2 1 0.36 8.36 0.0 18
RESIDUAL 38 763.65 20.10

GRAND TOTAL 63 2123.89

GRAND MEAN 10.92

TOTAL NUMBER OF OBSERVATIONS 64



Units

SDw1
SDW2
sdqi

SDQ2

Model

Model

Source
N

Analysis of

variables were used

Table 7. 19

residual sums of squares when control

SO &
Wi

SD
Qi

to explain

Characteristics in the simulation model:
Q0 = 200 ; MU= 20 ; PU = 0.50 j IS = 10
Model | Model 11 <S$S2-SS1)Xf
.1 ss1 .o Ss2 SSjX<f2-f j)
38 4.23 60 7.39 <1> 1.29 X
38 4.06 60 7.32 <1 1.38 X
38 445.30 61 907.30 <2> 1.71 X
38 763.70 61 1219.70 <2) < 1X
X p > 0.05
fj degrees of -freedom
Ssa Residual sums of squares
| <SD. . . U+IN.+0.+6.,+Y _+n + E interactions + «
Ml » SDQi> N | m ' 'n Y% 8 order
I <1> SDwi - u+cij etfk+61+*
<2 SDOi * M+ j
General mean *1 Effect of AD
Effect o-f SD Tm Effect of D1
Effect o-f LE *n Effect of D2
t Experimental error
. Tables 7.15, 7.16, 7.17 and 7.18
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Table 7.20

SDwi in SD, LE and AD

Characteristics in the simulation model:

Q0 = 200 ; MU= 20 { PU = 0.50 ' IS = 10

Fac tor s Levels iBwi SDW2
3 0.52 0.51

SD
6 0.86 0.87
10 8.46 0.46

LE
20 0.92 0.92
1 0.85 0.84

AD
2 0.53 0.54
Gener al Mean 0.69 0.69
a <df - 38) 6.33 0.33

- DI & D2 did not show any significant contribution

to the residual sums of squares.
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Table 7.21
SDWi by SD, LE and AD

( Linear Model >

Characteristics in the simulation model:

Q8 = 200 ; MU= 20 « PU = 0.50 s IS = 10

Condi tions

SD LE AD
1 0.45 0.43
10
2 0.13 0.13
3
1 0.91 0.89
20
2 0.59 0.59
1 0.78 0.79
10
2 0.47 0.49
6
1 1.25 1.28
20
2 0.93 0.95
A A A A
- SDNi = U ¢ ij * + *1

Ui General Mean
oij: Effect of SD
fiy« Effect of LE

Effect of AD

Source: Table 7.20
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Table 7.22

Glim Outputs |

Regression Model :

E<SDW> = fif+tf 1<SD-4.5>+tf2<LE-15)+tf3<AD-I| .5)

Cyc le Devi ance DF
1 0.50080193E-04 4
ESTIMATE S.E. PARAMETER
0.6887 0.1250E-02 a
0.1125 0.8333E-03 %1
0.4625E-0 1 0.2500E-03 %D
0.3175 0.2500E-02 *3

<CO)VARIANCE MATRIX

1 1.5625E-06

2 1. 151 1E-13 6.9445E-07

3 1.0076E-14 9.871 1E-15 6.2500E-08
4 -1.7739E-15 1.6557E-13 3.0725E-14

SCALE PARAMETER TAKEN AS 0. 1250E-04

SD, < SD SD >/2

Source: Table 7.21
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Table 7.23

_ X
SDg. in SD and LE

Characteristics in the simulation model;

Q0 = 200 j HU = 20 ; PU = 0.50 ; IS = 10
Fac tors Levels SDQ1 iD02
3 6.28 7.90
SD
6 10.30 13.90
10 6.00 8.70
, .LE
20 10.50 13.20
General Mean 8.20 10 .70
i @ <df = 38) 3.40 4.50
X n = 32

- No significant differences were found in AD, D1 and

D2 < p > 0.50 >. See table 7.1?
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Characteristics in the simulation

Qo0

Table 7.24

SDg” by SD and LE

< Linear Model

= 203 } MU= 20 ; PU = 0.50 5

Condi tions

SD

Source:

SDQ1
LE

10 4.0
20 8.5
10 8.0
20 12.5
SDQi il

Mi General Mean

o.l Effect of SD

e,x Effect of LE

Table 7.23
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Table 7.25

Glim Outputs |1l

Regression Model s

E<SD,,) = oc1.+1ei.<SD-4.5>+tij_I(LE-15>
1> YMARi SD
Cyc le Devi ance DF
1 0O m91707353E-13 !
ESTIMATE S.E. PARAMETER
8.250 0. 1514E-06 “
1.333 0. 1009E-0<S %11
0.4500 0.3028E-07 * 12

SCALE PARAMETER

2) WARs SD

TAKEN AS 0.917 1E-13

Q)
Cycle Devi ance DF
1 0.21077532E-11 1
ESTIMATE S.E. PARAMETER
10.95 0.7259E-0<i “o
2.800 0.4839E-00 *21
0.4500 0.1452E-06 x99

SCALE PARAMETER TAKEN AS 0.2108E-11

Source« Table 7.24



Graph 7.1

Mean Waiting Time for Urgent Cases per Year

WLi 1 t(29,0.05) X Si //M

Control

........... No-control

Source : Table 7.1
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*30-

Graph

7.2

Mean Number of Urgent Waiting per Year

Source

Qli 1 t(29,0.05) X Si /30’

Control
No - control

: Table 7.1
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WEEKS

Graph 7.3
WlbyQi),MU,PU& IS

............ Urgent Cases (W~
____________ Non-Urgent cases (W2)

Q = 300
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WEEKS

Graph 7.4

Qi

by Q(, MU, PU & IS

Urgent Cases (Q")

............. Non - Urgent Cases (Q2)

Source : Table 7.7
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Graph 7.5
Mean Waiting Time for Urgent Cases [(WI1-E(W1))vs E(WM)]

E(W,)
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Graph 7.6
Mean Waiting Time for Non-Urgent Cases [(W2- E(W2) vs E(WZ)]

13 0 17 3 20.0 22.
EXPECTED VALUES

E(wt)

29



Graph 7.7
Mean Number of Urgent Cases on Waiting List [(Q1l E(Q]))ws E(Q1)]
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Graph 7.8

Mean Number of Non-Urgent Cases on Waiting List [(Q2-E(Q2))vs E(Q2)]

EQ-
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Graph 7.9
SDwi by SD, LE and AD

Urgent Cases

Non - Urgent Cases

Source : Table 7.21
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Graph 7.10
SDgi by SD & LE

Source : Table 7.24
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Vili) General Conclusions

Throughout this reseach we identified three main

areas where simulation analysts have concentrated their

efforts. These areas are:

i) Statistical Research.- Different statistical

models are used to solve mathematical problems,

and to evaluate the efficiency of generation of
random variables (chapter 11), pseudo-random
number generators (chapter 111) and variance
reduction techniques (chapter IU>

ii) Applied.- Simulation techniques are used to solve

complex management problems or to develop new

management methods (chapter V).

iii) Software.- New computer programs with

simulation purposes have been designed, not just

for mainframes, but also for microcomputers.

an updated presentation of these languages see

the journal SIMULATION, October 1985, where ¢5

languages for mainframes and 48 for
microcomputers, including versions of GPSS,

DYNAMO and SIMSCRIP for micros are described.

The above simulation areas are not mutually
exclusive. Sometimes we could find the development of all
them in a single simulation work. In our waiting list

problem, we concentrated our efforts not only in- the

application of simulation to a health problem, but also in
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the design of a computer program to select patients from a
waiting list using a scoring system, and in finding the
expected waiting time per priority when the traffic

intensity in a queueing model was equal to one <p=I>.

The common point between the three areas of
simulation (statistical research, applied, and software) s
the simulation model. The construction of this model is a
difficult task to develop because of the two elements of
conflict embodied in the model - realism and simplicity.
We wish to construct a model of a real system that neither
oversimplifies the system to the point where the model
beqgmes trivial nor carries so much detail that it becomes
clumsy and expensive to simulate. The tendency is nearly
always to simulate too much detail rather than too little.
Thus one should always design the model around the questions

to be answered rather than imitiate the real system exactly.

Sometimes the questions to be answered in the
study of a system can be found with the use of a
mathematical theory, such asi queueing theory, linear
programming, inferential statistics, probability theory, and

differential equations theory. The common objective of these
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theories and simulation is the pursuit of scientific
Knowledge about the behaviour of a given system. Computer
simulation becomes a relevant tool for system analysis

when (see -figure 8 .1>:

1) It is difficult to find an explicit mathematical
expression which can represent the behaviour of a
system. For example, an expression to explain the
psychological behaviour to receive medical care in a
community with private and government health services

and with their own customs to treat themselves for

some diseases (i.e., by using herbs, or by visiting a
healer>.
2) Once a mathematical model has been defined, it is

difficult or impossible to find an analytical
solution. For example, a system may be represented
as a queueing model, but if the traffic intensity
is one, the current concepts of queueing theory

can not be applied (chapter VI).

3) It is very difficult or expensive to test the

analytical solution in the real world.
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It is simply impossible, impracticable, or

uneconomic to conduct a controlled experiment in a

real system. For example, to experiment with a new

management procedure in an emergency department can

produce serious risks in the health of the patients

efigure 8.1 System Experimenting Process and

Simulation

PROBLEM tc
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Therefore, -following figure 8.1, instead of
calling simulation as a tool of 'last resort' , we consider
that it should be called as an 'alternative resort' in the

system experimentation process.

Although the principal reasons for choosing
simulation are presented in figure 8, there are several

other reasons, which are described in the following lines:

i> Simulation can be used as a pedagogical device for
teaching both students and practitioners basic skills
in theoretical analysis, statistical analysis, and *

decision making.

ii> The experience of designing a computer simulation
model may be more valuable than the actual
simulation itself. The knowledge obtained in
designing a simulation study frequently suggests
changes in the' system being simulated. The effects
of these changes can then be tested via simulation

before implementing them on the actual system.

iii) Simulation can be used to experiment with new
situations about which we have little or no

information, so as to anticipate what may happen.

iv> Simulation can serve as a 'preservice test' to try
new policies and decision rules for operating a
system, before the risk is run of experimenting on

the real system.
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v) Simulation enables one to study dynamic systems in

either real time, compressed time, or expanded time.

vi> When new elements are introduced into a system,
simulation can be used to anticipate bottlenecks and
other problems that may arise in the behaviour of

the system.

Simulation is indeed a very versatile tool.
However, it is by no means a panacea. Simulation is
inherently an imprecise technique. It provide only
statistical estimates rather than exact results, and it only
compares alternatives rather than generating the optimal
one. Furthermore, simulation is a slow and costly way to
study a problem. It usually requires a large amount of time
and expense for analysis and programming, in addition to
considerable computer running time. Finally, there is no
"cook book" type of approach to computer simulation. The
approach taken by the researcher to statistical design and
analysis of simulation studies must result from the unique

character of the problem at hand.
|

To conclude, it is important to say that
simulation studies are not a substitute for competent and
efficient management! they only provide information that can
be used in the decision-making process, but they do not
eliminate or reduce the need for decision-making, nor

substitute the skill or judgement of decision-makers.
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