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Approximate Bayesian Computation (ABC) techniques are a suite of model fitting methods which can be im-
plemented without a using likelihood function. In order to use ABC in a time-efficient manner users must make

R several design decisions including how to code the ABC algorithm and the type of ABC algorithm to use.

Epidemic model
Stochastic model
Spatial model

Furthermore, ABC relies on a number of user defined choices which can greatly effect the accuracy of estimation.
Having a clear understanding of these factors in reducing computation time and improving accuracy allows users
to make more informed decisions when planning analyses. In this paper, we present an introduction to ABC with

a focus of application to infectious disease models. We present a tutorial on coding practice for ABC in R and
three case studies to illustrate the application of ABC to infectious disease models.

1. Introduction

Mathematical models can be used to predict infectious disease dy-
namics at multiple scales. Model fitting, the process of estimating the
parameters of the mathematical model from data, can be performed
using a number of different methods. For infectious disease models,
researchers are often confronted with missing data due to the nature of
partially observed epidemics. Methods are needed to fit these models to
data in an accurate and time efficient manner. In the Bayesian frame-
work model parameters are assumed to be random variables and
therefore have probability distributions, we seek to estimate the pos-
terior distribution of these parameters (Gelman et al., 2013).

Approximate Bayesian Computation (ABC) methods can be used to
approximate these posterior distributions when a likelihood function is
intractable or not known (Beaumont et al., 2002), and can be used
when the data available are coarse or complex. The ABC rejection al-
gorithm Perez-Lezaun et al. (1999) is the most straight-forward of ABC
methods yet ABC methods often yield inefficient sampling of the
parameter space (Sadegh and Vrugt, 2014). As such, other algorithms
with more efficient sampling schemes have been developed. The ABC-
Sequential Monte Carlo (ABC-SMC) algorithm, provides a computa-
tionally efficient estimation procedure compared to traditional ABC
rejection algorithms (Toni et al., 2009).

ABC is a powerful tool for model fitting and has a lot of flexibility
with its application. However, this also means that the user must be

able to defend, and is responsible for all of these choices. There is an
existing body of literature on ABC tutorials. In particular, for an starting
introduction to ABC in general Sunnaker et al. (2013), for further ABC
examples, including model selection see Toni et al. (2009), for tutorial
on ABC for stochastic epidemic models Kypraios et al. (2017), Hartig
et al. (2002), McKinley et al. (2018), for comparison of likelihood-based
Markov Chain Monte Carlo and ABC in epidemic modelling McKinley
et al. (2009), for examples for population genetics see Marjoram et al.
(2003), Beaumont et al. (2002).

The purpose of this paper is to provide a tutorial on ABC for in-
fectious disease models for readers with very little experience in model
fitting. To that end, we provide a gentle introduction to the concept
from the Bayesian inference paradigm followed by a presentation of
how the ABC algorithm can be implemented in R. We present the im-
plementation of ABC using three case studies to highlight the different
approaches that can be taken to perform model fitting using ABC. Case
study 1 is an introductory example which illustrates the application of
the ABC-rejection algorithm to a deterministic epidemic model, with a
particular focus on the power of ABC based on the model to be fitted
and the data available.

Case study 2 is a stochastic compartmental model with age-struc-
ture, i.e. the model where population is divided into compartments
classified by the infection status and age of the host (Anderson and
May, 1991). The dynamics of many childhood infections such as
measles (Babad et al., 1995), whooping cough (Campbell et al., 2015),
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chickenpox (Schuette, 1999) and rubella (Kanaan and Farrington,
2005) can be described by age-structured compartmental model. In this
case study we will investigate the 2010 measles outbreak in Malawi
(Minetti et al., 2013) with the data consisting of weekly cases and
percentage of cases in three age groups. Case study 3 uses an individual-
based model which accounts for the spatial interaction between in-
dividual hosts (Keeling and Rohani, 2007). These models have been
used to investigating the spatial dynamics of foot-and-mouth disease
(Keeling et al., 2001), avian influenza (Hill et al., 2017) or transmission
of visceral leishmaniasis (Chapman et al., 2018). In this case study we
will investigate citrus tristeza virus spread in an orchard (Marcus et al.,
1984) with data consisting of maps of disease incidence observed at
discrete times.

2. Approximate Bayesian Computation

The paradigm of Bayesian inference is based on the idea of updating
belief with new evidence (Gelman et al., 2013). If we denote 6 our
mathematical model parameters and D our data, then we can use Bayes
rule to determine the posterior distribution of the parameters given the
data, P(6|D):

pIp) = L PIOPE©) (Dp'fg; ©) o
« P(DIB)P(6) 2

where P(0) is the prior distribution (which represents our prior belief)
and P(D|0) is the likelihood function, the probability density function
for the data given the parameters. The second equation is written
without the marginal likelihood of the data, P(D), as the value of P(D)
does not depend on 6. Hence we can say that P(6|D) is proportional to
the numerator of Eq. (1).

ABC is a method for approximating the posterior probability P(6|D)
without a using likelihood function (Beaumont, 2010). To illustrate
this, we will first present a basic ABC algorithm, the ABC rejection al-
gorithm (Perez-Lezaun et al., 1999; Toni et al., 2009). The algorithm
‘accepts’ proposed parameter values, so called particles, based on
whether the distance d() between the data D and the model simulated
data D" is less than or equal to some threshold e. The steps of the ABC-
rejection algorithm are as follows:

. Sample 0" from the prior distribution P(6).

. Simulate data set from the model, using parameters 6, to get D*.

. If dD, D") < ¢ accept 6* otherwise reject.

. Repeat until N particles (the parameter values or parameter sets) 0"
=1{6* i=1, ..,n} are accepted.

HWDNBR

where d(D, D") is some distance measure between the model output
and the data, and ¢ is a tolerance value which is chosen by the user. The
N accepted samples provide an approximation of the posterior dis-
tribution of the model parameters 6,

P(6ID) ~ P(6ld(D, D*) <€) 3.

The distance measure d(D, D) implies it is possible to directly
compare the model output to the data. For example, if the data are daily
cases of an infection and we wish to estimate parameters of a
Susceptible-Infected-Recovered model (SIR), the user could compare
the sum of the squared differences between the number of infected
individuals between the data and that which is predicted by the model
over time i.e. d(D, D*) = Z[T:I (D, — D[)?> where time is denoted by
t=0,..T

When working with infection dynamics, there is often missing data
or the data may consist of one measure of an epidemic. For example,
say the data consists of the final size of the epidemic which we denote p1.
Then we simulate from the underlying model to calculate the final size
u" from our simulated data set D" using a ‘summary statistic’ S(D"). In
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this example the ‘summary’ is the calculation of the final size of the
epidemic but it can take a form of other aggregated measures such as
the number of infected individuals in different age groups, or the
number of infected individuals in particular geographical locations.
Then step 3 in the ABC-rejection algorithm becomes,

1. If d(u, ") < ¢, where p* = S(D*), accept 0 otherwise reject.

An intersection metric can be used when there is more then one
summary statistic (McKinley et al., 2018):

P(DID*) = 1(d™ (D, D*) < ™),
1;[ 4

where 1 is a binary operator and m is a number of summary statistics.
The intersection metrics ensures that model run is accepted only if all
criteria are satisfied, but requires the specification of multiple tolerance
values at each generation.

2.1. Implementing ABC in R

In this section we illustrate how to implement an efficient ABC-re-
jection algorithm in R. To implement ABC in R, there are a number of
techniques that can be used for fast computation. We direct the readers
to Visser et al. (2015), Wilson et al. (2014) for tutorials on efficient
coding. For ABC-rejection algorithms, computation time can be de-
creased by pre-allocation of memory to store the accepted particles,
memorization (do not repeat calculations with the loop) of data cal-
culations, not printing unnecessarily, and vectorisation where possible
in the function calls.

Fig. 1 shows the code for the ABC-rejection algorithm implemented
in R. There are two distinct sections to the code: the initial set up which
occurs outside of the while loop (the initialisation), and the ABC-re-
jection algorithm which occurs in the while loop. The initialisation
requires the user to specify inputs related to the ABC-rejection algo-
rithm. Specifically, the desired number of particles (N) and the toler-
ance value (¢). The user then needs to pre-allocate memory to store the
results of the ABC-rejection algorithm. For a model with one parameter
this would be a vector, if the model had multiple parameters then this
would be a matrix. In addition, the user may wish to store the distances
which were accepted, which would require an additional column in the
matrix.

The ABC-rejection algorithm is performed in a while loop with a
counter (i) initiated outside of the loop. Within the while loop, we
utilise existing R functions to propose values from the prior distribu-
tions (for example runif, rnorm). Then we recommend user coded
functions to separate the ABC-rejection steps. Data are simulated using
the epidemic model and with the proposed parameters (6") using the
user coded function run_model. The distance between the data and
the model output is calculated using the user coded function calc -
distance. If the distance is less than or equal to the tolerance, ep-
silon, the current parameter value is stored and the counter is up-
dated. Additionally, if a summary statistic is to be used the user can
code a function to calculate the statistic using the simulated data set.
The loop continues until the desired number of accepted particles (V)
have been found. The user could specify a tolerance value that is too
small for any proposed value to be accepted which could result in an
infinite while loops. To avoid this the user could define a maximum
number of iterations to be executed.

The most computationally efficient ABC-rejection algorithm im-
plemented in R will still be slow. The algorithm proposes parameter
values from the prior at each iteration, and so does not remain in
parameter space with small distances between the data and model si-
mulation. However, due to the lack of dependencies between iterations,
the ABC rejection algorithm can be easily parallelised Baragatti and
Pudlo (2014), wherein the number of desired particles can be divided
up, ran independently and then combined into one large set of particles,
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#### ABC set up ####

N <- 1000 # Number of accepted particles
epsilon <- 20 # Epsilon value
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n_par <- 1 # How many parameters will be estimated
res <- matrix(ncol = n_par + 1, nrow = N) # Empty matrix to store results

# model parameter(s) and the distance

#### ABC algorithm ####

i <- 1 # Initiate counter of accepted particles
j <- 1 # Initiate counter of proposed particles
while(i <= N){ # While the number of accepted particles is less than N

theta_star <- runif(1, @, 1) # Sample from prior distribution(s)
D_star <- run_model(theta_star) # Simulate data set from the model
distance <- calc_distance(D, D_star) # Calculate distance

if(distance <= epsilon){ # If the distance is less than or equal to the tolerance
res[i, ] <- c(theta_star, distance) # Store results

i <- 1+ 1 # Update counter

}

j <= j + 1 # Update counter

acc_rate <- i / j # Calculate the acceptance rate

cat("current acceptance rate =

", roundCacc_rate, 2), "\n")

Fig. 1. Code for an of ABC-rejection algorithm implemented in R.

so-called embarrassingly parallel. Ultimately, the ABC-rejection algo-
rithm is slow due to its inefficient proposal of parameter values. In the
next section, we introduce an extension to the ABC-rejection algorithm
which uses a more efficient scheme to sample the parameter space.

2.2. Speeding up ABC using alternative algorithms: ABC-SMC

Sequential Monte Carlo (ABC-SMC) is an ABC approach where a
sequence of distributions is constructed by gradually decreasing toler-
ance ¢. The ABC-SMC algorithm starts by sampling a finite number of
parameter sets (particles) from the prior distribution and each inter-
mediate distribution (called a generation) is obtained as a weighted
sample from the previous distribution that has been perturbed through
a kernel K(6|6").

Pseudocode for an ABC-SMC algorithm are as follows (Toni et al.,
2009; McKinley et al., 2018):

1. Set the number of generations G, and the number of particles N.

2. Set the tolerance schedule e; < ¢; < -+, < €g. Set the generation
indicator g = 1.

3. Set particle indicator i = 1.

4. 1f g=1, sample 6" from the prior distribution P(6). If g > 1,
sample 6" from the previous generation {0,_1} with weights {w,_,},
and perturb the particle to obtain 8 ~ K(8|6%).

5. If P(0"") = 0, return to step 4.

6. Generate n data sets Dj"* from the model using 6" and calculate
P(DID**) = (1/n) z;le 1(d(D, D}*) < ).

7. If P(DID**) = 0, return to step 4.

8. Set Qg) = 6** and calculated corresponding weight of the accepted
particle i

P(DID*)P (68*%),
P(DID*)P (6*%)

—_—
Jo1 WK (©1621)

ifg=1.

() —
Wg =

ifg> 1.

9. Ifi < N, increment i =i+ 1 and go to step 4.
10. Normalise the weights so that Ef\il wé =1.

11. If g < G, setg= g+ 1, go to step 3.

Here 6" denotes proposed parameter set, and D** is model solution
with 8 =07,

Factors determining how efficiently the parameter space is explored
are the choice of summary statistics, the sequence of tolerance values,
the number of generations, the number of simulations for each para-
meter set, and the choice of perturbation kernel. The algorithm takes
into account stochasticity of a model by adjusting weights according to
a fraction of model runs which produce a distance smaller or equal to
the tolerance value. If the model is deterministic, only one dataset
needs to be generated, equivalent to n = 1 in step 6.

The behaviour of the algorithm can be assessed by calculating
Effective Sample Size (ESS) (Moral et al., 2011):

N -1
ESS = (Z (ng)Z] )

i=1

)

The ESS takes values between 1 and N. If ESS value falls below a certain
threshold, the algorithm may be deemed to be an inefficient way to
sample from the target distribution (Prangle, 2014). In (Moral et al.,
2011) this threshold was set as N/2.

As mentioned, the above algorithm requires the assignment of a
sequence of tolerances. An alternative would be to infer the tolerance
by dropping a proportion of the particles with the highest distance
values at each generation g > 1. The algorithm starts with a tolerance
€1 = + oo and the next value of ¢, is chosen as the gth quantile of the
distribution of accepted metric values, ¢,_1, at the previous generation
(McKinley et al., 2018).

2.3. Choosing perturbation kernel: ABC-SMC MNN

Common choices for a perturbation kernel are the uniform dis-
tribution (Toni et al., 2009), or multivariate normal distribution
(Kypraios et al., 2017). A perturbation kernel with a wide variance will
stop the algorithm from being stuck in local modes, but will lead to a
large number of particles being rejected, and thus cause the algorithm
to be inefficient. Hence there is a challenge in finding an optimal per-
turbation variance that balances efficiency with adequately exploring
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the parameter space. In practice adaptive routines are often used such
as calculating covariance matrix from the previous generation of ac-
cepted particles Lenormand et al. (2013), Filippi et al. (2013). In the
case of the multivariate normal distribution K (Géi)leéi,)l) =N (Gg,)l, %),
where X is the covariance matrix. The covariance matrix has been im-
plemented in a number of ways: as an empirical covariance matrix of all
particles from generation g — 1 Filippi et al. (2013), as twice the
weighted covariance matrix of the previous generation (Lenormand
et al.,, 2013), or as a covariance matrix calculated using M nearest
neighbours (MNN) of the particle ngl (Filippi et al., 2013).

Pseudocode for an ABC-SMC MNN algorithm is as follows (Toni
et al., 2009; McKinley et al., 2018):

1. Set the number of generations T, the number of particles N and the
number of nearest neighbours M.

2. Set the tolerance schedule ¢; < ¢;, < -+, < ¢g. Set the generation
indicator t = 1.

3. If t > 1, find M nearest neighbours of 6;‘21 and calculate empirical
covariance matrices Z(Gg(i_)l, M) for all particlesi=1...N.

4. Set particle indicator i = 1.

5.1f g =1, sample 8" from the prior distribution P(9). If g > 1,
sample 8" from the previous generation {6;—1} with weights {w,_+},
and perturb the particle to obtain 6** ~ N( 6%, Z(6*, M)).

6. If P(0™") = 0, return to step 4.

7. Generate n data sets Dj"* from the model using 6" and calculate
P(DID**) = (1/n) Z;-Ll 1(d(D, D}*) < ).

8. If P(DID**) = 0, return to step 4.

9. Set Sg(i) = 6** and calculated corresponding weight of the accepted
particle i

P(DID*)P (8**),
P(DID**)P (8**)

W N P18, 26, M))

ifg=1.

() —
Wg =

ifg> 1.

10. If i < N, increment i =i+ 1 and go to step 4.
11. Normalise the weights so that 3| wi = 1.
12. If g < G,sett=t+ 1, go to step 5.

For a case M=N, empirical covariance  matrice
Z(Gg_)l, M) = Z(6;-1). A normalised Euclidean distance can be used
when searching for the nearest neighbours, i.e. differences are divided
by the range of the prior of each parameter. This is especially useful if
parameter values differ by few orders of magnitude.

3. Case studies

We present the implementation and potential problems that can
arise while using ABC for infectious disease models with three case
studies. In case study 1 we highlight the parameter identifiable of a
deterministic SIR; and in case studies 2 and 3 we investigate the per-
formance of ABC in terms of required number of model runs and ef-
fective sample size under few different choices for implementation of
algorithm. Code to implement these case studies is written in R and is
available to download at https://github.com/amanda-minter/abc_R.

3.1. Case study 1: a simulated epidemic

3.1.1. Data and model

In case study 1, we implement the ABC-rejection algorithm in R. We
adapted an existing application of ABC applied to common cold data
presented in (Toni et al., 2009). In our application, we simulated an
epidemic with known parameters and attempt to re-estimate these
parameters using ABC with different resolutions of data. To describe the
infection dynamics of the epidemic, we employed a SIR model. In the
model, individuals are classed as susceptible (S), infected (and
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infectious) (I) or recovered (R).

ds

9 _ _gsiN
dt pstl
dr

— =fSI/N — yI
a PSUN-Y
dR

22 1

a 7

where N =S + I + R. Daily counts of infected recovered individuals
were simulated using the deterministic SIR model with = 1.5,
y = 0.5, giving Ry = 3. The initial conditions used were S(0) = 99, I
(0) = 1land R(0) = 0 and the simulation lasted for 17 days.

We assumed that the data available was (1) collected from the first
day of the outbreak (daily counts of infected and recovered individuals)
or collected on day 17 only where either the (2) the number of re-
covered individuals was recorded or (3) the number of infected and
recovered individuals was recorded. In all cases, the model simulations
were run from day 1 to day 17 based on the length of the daily count
data or having the number of infected and/or recovered individuals on
day 17.

Note that in this example, if we knew the epidemic had ended, the
final size of the epidemic could be calculated using the closed form
expression for an SIR model. Here we illustrate the summary statistics
that could be calculated using model simulations, assuming that ap-
plications in practice would be far more complex than this introductory
example.

3.1.2. ABC setup

We implemented three ABC-rejection algorithms in R (Table 1). In
the first, we used the daily counts of infected and recovered individuals
from day 1 to day 17 to estimate our model parameters. The distance
measure was the square root of the sum of squared differences of the
number of infected and recovered individuals over time (Table 1).In the
second, we assumed that the data consisted of the number of recovered
individuals on day 17. Hence, our data is u = R(17), and we calculate
/f = R*(17) from our model simulations using the summary statistic i.e.
the number of recovered individuals at the end of the model simulation.
The distance measure between p and u* was the square root of the
squared difference. In the third, we again assumed that the data con-
sisted of the number of recovered individuals on day 17 but in addition,
we also calculated the distance between the number of infected in-
dividuals on day 17 and model predicted number.

The number of desired particles in all examples was chosen as
N = 1000. We ran a pilot ABC-rejection algorithm with a smaller N and
found that it was difficult to distinguish whether the lack of accuracy
was from the small number of particles or the choice of summary sta-
tistic. The tolerances were chosen to maximise the precision in esti-
mation of model parameters. For the first example, we ran the ABC-
rejection algorithm for a vector of tolerances to choose the tolerance
which gave the smallest inter-quartile range of the model parameters
(Figure S1). We choose ¢ = 20 as this had the smallest inter-quartile
range. In principle, the tolerance could be much lower for the first
example, but given the inefficient sampling of the model parameters,
the run-time of the algorithm would be long. For examples two and

Table 1
Description of the ABC-rejection algorithms implemented in R. Model simula-
tions are denoted by ".

Algorithm  Summary statistic Distance measure €
1 - [ 20
\/Ele @& -1 + \/Ez-zl (R, — RY)?
2 1 =R*(17) \(.“ _ #*)2 1
* [
3 K =R, Yo =% + gy = u3)? 2

ui =117
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Table 2
Definitions and prior distributions of the SIR model parameters.

Parameter Definition Prior distribution
B Transmission rate (day ). Uniform (0, 3)
Y Recovery rate (day ™). Uniform (0, 1)
So Initial number of susceptibles. Pois (A = 100)

three, we choose the smallest possible tolerance for the model predic-
tion. For example 2, this was ¢ = 1 (comparing the number of recovered
individuals on day 17) and example 3, this was ¢ = 2 (comparing the
number of recovered individuals and infected individuals on day 17). In
all cases, we chose an informative prior for the initial number of sus-
ceptibles and uniform priors for the model parameters (Table 2).

3.2. Results

The posterior estimates of the model parameters varied in accuracy
and precision for the three ABC-rejection algorithms. When the data
consisted of daily counts of infected and recovered individuals (ABC-
rejection 1), the true model parameters were retrieved. When the data
consisted of the final size if the epidemic (ABC-rejection 2), or of the
final size of the epidemic and number of infecteds at the end of the
epidemic (ABC-rejection 3) then the posterior distribution of the
transmission rate () was close to the Uniform prior distribution despite
having very low tolerances. The posterior distribution for the recovery
rate (y) had a narrower distribution in ABC-rejection-3. In both ABC-
rejection 2 and 3, the posterior of the basic reproduction number
Ry = f3/y was more accurate than the model parameters.
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When the acceptance criteria consisted only of matching the final
size of the epidemic (ABC-rejection 2) the accepted model parameters
included epidemics which had not ended within the time frame of the
true epidemic (Fig. 3). By adding the second criteria of matching the
final number of infecteds (0) then we see that the accepted model
parameters gave epidemics which had finished within the time frame
(Fig. 3). However, the model parameters could still be accepted where
the transmission rate () was too high or the recovery rate (y) was too
low.

3.3. Case study 2: The 2004 measles outbreak in Malawi

3.3.1. Data and model

In this case study we have compared the performance of the ABC
rejection and ABC-SMC algorithms using the 2010 measles outbreak in
Malawi data and stochastic model with age structure. This example
illustrates challenges to be expected when inferring parameters from a
real-world data and a complex epidemic model.

In age-structured models, it is assumed that individuals within a
particular age class exhibit more similar behaviour in comparison to
other age classes. In the context of epidemiological modelling, infected
individual has a higher probability of infecting susceptibles of the same
age cohort. This is achieved by defining a Who Acquires Infection From
Whom (WAIFW) matrix (Anderson and May, 1982). In this case study,
we use the WAIFW matrix for measles from (Shea et al., 2014):

' [ce]
N i o
w | <
o
<
° =
02 06 1.0 2 6 10
recovery rate, y Ro

o !
® !
+ !
o
0.2 06 1.0 2 6 10
recovery rate, y Ry
' [o0]
! o
o |
© : <
I o
< I
o A g
02 06 1.0
recovery rate, y Ro

Fig. 2. The posterior distributions of the model parameters for algorithms 1-3 (top row to bottom row). The blue dashed lines indicate the true value of the
parameters used to simulate the data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ABC-rejection 1 ABC-rejection 2
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% — 4 Recovered 8 — AA
V'Y,
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To) el &
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=z z b
o | o _| ) o
N N .A L ]
/e )
o o an® ®ee0e
I I I [ I I
10 15 5 10 15
Time (day) Time (day)
[, L5 3 2 2]
12 6 4 3 7 3
no,us 32
12 12 6 4 3
s, 152
6 12 12 6 3
11 11 2
A=|3 21 , 1 2
4 6 12 12 3
23 51 2
3 4 6 12 3
11
12
2.2 2 2 2 1
13 3 3 3 3 7 ] 6)

This is a symmetric matrix with it's values decreasing away from the
main diagonal. We use a stochastic Susceptible-Exposed-Infected-
Recovered (SEIR) model. The force of infection on an individual in age
class i at time t is then given by:

L) =8 Z Al

j @)
where f is transmission rate, I; is the number of infectious individuals in
age class j and A;; is the (i, j) element in the WAIFW matrix.

In this case study we will investigate the 2010 measles outbreak in
Malawi (Minetti et al., 2013). The data consist of weekly cases and
percentage of cases in three age groups (0.5-5 years, 5-15 and 15+
years). The cumulative number of cases during the outbreak was
134,000. We stratified the population into 22 age classes: 6-12 months,
1-2 years, 2-3 years, ..., 19-20 years, and 20 + years; and assume that
the age distribution of susceptible individuals in the population follows
the Gamma(agy, a,) distribution (Shea et al., 2014). We assume that all
individuals 0-6 months old have maternal immunity (Caceres et al.,
2000). The model is simulated using the tau-leaping algorithm with
time intervals of one day (Gillespie, 2001).

The stochastic compartmental model with age-structure for measles
has seven parameters. Duration of latent and infectious periods is seven
days (Anderson and May, 1985). Therefore the number of parameters to
be estimated is five.

3.3.2. ABC setup

We chose uniform priors for five model parameters (Table 3). As
there are two different types of data describing the outbreak (i.e.
temporal change in a number of cases and percentage of cases in three
age groups), we use an intersection metrics in the ABC-SMC algorithm
(McKinley et al., 2018). The distance measure for temporal data is the
square root of the sum of squared differences of the number of weekly
cases:

dT(D, D% = |3 (@, — I¥)?2.
V2 ®
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Table 3
Definitions and prior distributions of estimated parameters for stochastic
compartmental model for measles.

Parameter Definition Prior distribution

B Transmission rate (day ") Uniform (0, 5 x 10~%)

Ny Susceptible population size before Uniform (140 x 10,
outbreak 300 x 10°)

fe Fraction of initially exposed Uniform (0, 0.001)

ag, Shape parameter for age distribution Uniform (0.8, 1.4)

a Rate parameter for age distribution Uniform (0.1, 0.4)

The distance measure for age data is the square root of the sum of
squared differences of the percentage of infected individuals in the
three age groups (0.5-5 years, 5-15 and 15+ years):

oSBT

a=1

©)

We set the pair of thresholds {67, 6} for ABC rejection algorithm in
the following way. If we desire the simulated number of cases to be
within = 20% of the observed number of cases during the outbreak
duration (i.e. 54 weeks), we get dr
(D, D*) = ZSW4:1 (0.4 x I})? = 11, 900. In a similar way, if we require
the differences in each age group to be + 1%, this gives
dA(D, D¥) = V3 x 22 = 2.82. Therefore we set ¢/ = 10, 000 and ¢* = 3
for the ABC-rejection algorithm.

Next, we will investigate the performance of ABC-SMC algorithm.
We will explore two strategies: (i) calculating covariance matrix using
all sampled particles from the previous generation (ABC-SMC); and (ii)
calculating covariance matrix using M nearest neighbours of the par-
ticle 6, (ABC-SMC MNN) (Filippi et al., 2013).

We set the same schedule of tolerances to run both the ABC-SMC
and ABC-SMC MNN algorithms. For the first generation, we set the pair
of thresholds in the following way: as
d’ (D, D¥) = | st4:1 (2 X I})? =59, 500 (i.e. we allow the discrepancy
to be twice as large as weekly number of cases) and
d4(D, D*) = 43 x 10? = 17.32 (i.e. we allow the discrepancy to be as
large as ten percent for each age group), we set € = 50, 000 and
¢! = 15. Then we gradually decreased the threshold levels until they
reached the same fixed level as was used for the ABC rejection method.

The number of desired particles was set to N = 1000 and the
number of generation to G = 10. The tolerance values for the last
generation was set to be the same as for the ABC rejection algorithm.
We have investigated how ABC-SMC and ABC-SMC MNN algorithms
performed when a number of model runs for each parameter set was
n=1, n=10 and n = 100. For ABC-SMC MNN method we set the
number of neighbours to M = 50 and M = 100.

Finally, we tested the performance of ABC-SMC and ABC-SMC MNN
by setting the new tolerances ¢; as a median (i.e. 50th quantile) of
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Fig. 4. The posterior distributions of parameters obtained using the ABC rejection algorithm.

d™(D, D¥) < €g_; (McKinley et al., 2018). Again, the final generation
tolerance level was set to be equal or less then values used for the ABC
rejection method.

3.3.3. Results

First, we have employed the ABC rejection algorithm with toler-
ances ¢’ = 10, 000 and ¢* = 3. The number of model runs required to
obtain 1000 accepted particles was 29, 224, 520. This gives that the
acceptance rate for the ABC rejection approach is 0.00003. The pos-
terior estimates for the model parameters are shown in Fig. 4(A)-(E).
We have estimated mean value for the transmission rate equal to
1.39 x 10~ per day and range as (8.7 X 10~7, 2.26 x 10~°).

Model simulations using 10 randomly selected parameter sets from
the posterior distribution are shown in Fig. 5. Demographic distribution
of cases was calculated using these 10 simulations. There is a good
agreement between the observed data and simulated data for both
temporal dynamics of the outbreak and fraction of cases in three age
groups.

Applying the ABC-SMC algorithm for G = 10 generations required
one hundred times fewer model runs then the ABC-rejection algorithm:
the total number of model runs required to obtain 1000 accepted

8000

4000

0
\

Time (weeks)

particles for the ABC-SMC was 267, 388. We have repeated parameter
inference by re-running model 10 and 100 times for each proposed
parameter set. The total number model runs to obtain 1000 accepted
values for each generation is given in Table 4. For the first generation,
where parameters are sampled from the prior distribution, the accep-
tance rate was higher for multiple runs of the model (33.8% for n = 10
and 39.5% for n = 100) in comparison to a single model run (28.6%).
The acceptance rates for generations 2-10 were as follows: n = 1 from
1.7% to 8.1% (ABC-SMC) and from 2.9% to 14.7% (ABC-SMC MNN);
for n = 10 from 2.9% to 9.8% (ABC-SMC) and from 4.8% to 16.5%
(ABC-SMC MNN); for n = 100 from 3.0% to 10.3% (ABC-SMC) and
from 6.3% to 18.8% (ABC-SMC MNN). This result suggests that in-
creasing a number of runs for each proposed parameter set increased
parameter acceptance rate.

Using the multivariate normal kernel with 50 nearest neighbours
increased the performance of the ABC-SMC algorithm. For example, the
scheme required 160, 644 model runs in total in order to accept 1000
particles over 10 generations for n = 1, which gives around 40% re-
duction in a number of simulations. When a number of nearest neigh-
bours was set to 100, the ABC-SMC MNN algorithm showed improve-
ment with respect to total number of runs in comparison to ABC-SMC,

g ] B Observed
B Simulated

o |

[5p)

o _|

N

o |

s

o

0.5-5 16+

5-15

Age group (years)

Fig. 5. Comparing observed outbreak data (Minetti et al., 2013) with model simulations: number of cases each week (left) and percentage of cases in three age groups

(right).
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Table 4

Number of model runs needed to accept N = 1000 particles in each generation, acceptance rate and ESS for ABC algorithms run with a fixed set of tolerances.
Generation €£ e? ABC SMC (M = 1000) ABC-SMC MNN

n=1 n=10 n =100 M =100 M =50
n=1 n=10 n =100 n=1 n=10 n =100

1 50,000 15 3493 27,120 271,900 3616 27,660 267,300 3465 27,880 131,600
2 27,500 10 12,331 101,440 966,100 9819 79,680 657,400 8886 62,550 622,200
3 25,000 9 13,710 117,290 983,300 9819 77,890 756,500 6779 60,580 530,900
4 22,500 8 16,917 122,300 1,129,600 11,535 93,350 930,600 8242 75,230 533,200
5 20,000 7 18,597 144,820 1,236,300 15,593 114,420 852,100 10,396 86,870 604,000
6 17,500 6 23,592 193,140 1,612,600 18,819 130,380 1,257,200 13,120 94,650 733,100
7 15,000 5 33,657 234,250 2,178,200 24,741 189,250 1,448,800 17,360 143,730 1,219,300
8 12,500 4 58,158 339,350 3,269,300 52,621 224,640 2,241,500 27,582 207,310 1,565,600
9 11,000 3.5 43,806 301,010 2,287,500 42,915 220,460 1,904,500 31,138 187,620 1,442,500
10 10,000 3 43,127 286,220 2,135,700 65,852 278,600 2,227,900 33,676 199,510 1,182,700
Total 267,388 1,869,420 16,070,500 255,372 1,436,330 12,543,800 160,644 1,145,830 8,565,100
Acceptance rate 0.037 0.053 0.062 0.039 0.069 0.079 0.062 0.087 0.116
ESS 853 606 444 705 587 476 687 623 366

but the performance was much lower when M = 50.

We have investigated how ESS for the last generation compares for
different configurations of the ABC algorithm. We found that the ESS
values decreased when (i) number of nearest neighbours decreased; and
(ii) number of model runs for each proposed parameter set increased.
For the runs with n = 100, the ESS was below 500. In contrast, ac-
ceptance rate calculated over all generations has increased when in-
creasing number of model runs. Therefore, there is a trade-off between
number of model runs, acceptance rate and variance of the weights of
accepted particles when choosing a number of runs per proposed
parameter set and number of nearest neighbours for covariance matrix
of the perturbation kernel. Our analysis based on both the ABC-SMC
and ABC-SMC NN indicates that having n > 1 increases computation
burden and decreases the ESS, which cannot be out-weighted by im-
provement in the overall acceptance rate. This result is in agreement
with McKinley et al. (McKinley et al., 2009), who found that for a given
tolerance level, increasing the number of repeats did not produce
markedly more precise posteriors.

Finally, we have explored the performance of the ABC-SMC and
ABC-SMC MNN for the case when the tolerance is calculated as the
median from the previous generation. Total number of model runs
needed to accept N = 1000 particles in each generation is given in
Table 5. All approaches required G =7 generations to reach
eg < 10, 000 and e? < 3.0. Using 50 nearest neighbours when calcu-
lating covariance matrix for perturbation kernel required 40% less
model runs. Again, the increase in acceptance rate came at a cost of
decreasing ESS.

Table 5

3.4. Case study 3: Citrus tristeza virus spread in an orchard

3.4.1. Data and model

In this case study we will investigate the data based on small scale
field observations of citrus tristeza virus (CTV) spread in an orchard
(Marcus et al., 1984). The trees were arranged in a rectangular frame,
with an inter-row distance of 5.5 m and a between-column distance of
4 m. There were 131 infected trees in 1981 and 45 infected trees in
1982. Maps of susceptible and infected trees in 1981 and 1982 are
shown in Fig. 6. The virus affects citrus trees and is transmitted by the
brown citrus aphid (Keeling and Rohani, 2007).

We model the spread of CTV using a spatio-temporal individual-
based stochastic model. Each tree is classified as susceptible or infected.
The force of infection on a susceptible tree i at time t is given by
(Marcus et al., 1984; Keeling et al., 2004):

-k
M0 =36 2

Jj€ infected

K(d;)), 10)

where f is yearly transmission rate, dj is the distance between trees i
and j, and K(d) = d~>* is a distance kernel. We have simulated a
number of new cases every day for a year starting with the trees in-
fected in 1981.

3.4.2. ABC setup

We implemented ABC algorithm with the distance measure which
compares observed and simulated distribution of a minimal distance
between trees infected in 1981 and 1982:

Number of model runs needed to accept N = 1000 particles in each generation, acceptance rate and ESS for ABC algorithms run with tolerances calculated from

previous generation (n = 1).

Generation ABC-SMC ABC-SMC MNN

Eg €:g4 M =100 M =50

B e B e

2 67,160 8.21 4,404 62,885 8.45 4705 67,160 8.21 4450
3 29,749 5.39 11,301 29,749 5.38 7696 30,705 5.34 6405
4 27,490 4.20 29,494 26,422 4.11 18,456 26,612 4.07 16,843
5 17,837 3.59 40,658 17,585 3.34 25,863 16,965 3.40 20,476
6 12,550 3.14 74,170 12,514 2.90 52,082 12,199 2.93 35,891
7 9687 2.84 84,400 9591 2.68 71,236 9782 2.67 61,315
Total 245,427 181,038 146,380
Acceptance rate 0.028 0.038 0.047
ESS 861 750 682
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Fig. 6. Locations of trees: susceptible trees (green circles) and trees infected by CTV (red circles) (Marcus et al., 1984). (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

dS(D, D¥) = \/ D (1065(8) = N (9))2,
seA (11)

where A is a set of all distances between trees. There are 992 unique
distances between all trees. A number of observed and simulated
minimal distances is calculated as:

n(8) = ), I(minlla — bll = 8), 12)

where a are the coordinates of trees infected in 1981 (i.e. observed
incidences of disease); and b are the coordinates of trees infected in
1982 (i.e. observed or simulates incidences of disease).

The number of desired particles was N = 1000. If we assume that
there were no new cases in 1982, we get that d(D, D) = 20. Therefore
we chose ¢; = 20. There were 45 infected trees in 1982, therefor we
required that the threshold for the last generation would be less then
\45/2 = 4.74. The schedule of tolerances was then set to ¢ = 20, 15, 10,
7.5, 6, 5, 4.5.

We have investigated how ABC SMC MNN algorithm performed
when covariance matrix of the perturbation kernel was calculated using
M = 1000, M =500, M =100 and M = 50 of nearest neighbours.
Parameter priors are given in Table 6.

3.4.3. Results

First, we implemented ABC-SMC MNN with M = 50. Fig. 7 shows
the posterior distributions of the model parameters and fitted distance
kernel. We estimated the mean of power law decay parameter to be
1.32. The value previously identified by MCMC analysis is a = 1.3
(Gibson, 1997) and using conservation of pattern method a = 1.35
(Keeling et al., 2004).

Model simulations using 100 randomly selected parameter sets from
the posterior distribution are shown in Fig. 8. It can be seen that the
mean number of simulated infections within a year (41.5 cases) is close
to the observed number of new infections (45 cases). The distributions
of simulated number of minimal distances lie close to the observed
number of minimal distances, as expected. Figure on the bottom shows
a proportion of simulations which had a tree being infected at the start
of 1982 with darker shades illustrating a higher number of simulations.

Performance of ABC SMC MNN algorithm implemented using
M = 1000, M = 500, M = 100 and M = 50 is given in Table 7. The
mean of power law decay parameter decreased from 1.39 to 1.35 when
M decreased. We have found that decreasing number of neighbour
particles decreases number of model runs required to accept 1000
particles and increases parameter acceptance rate. However, the ESS

Table 6
Definitions and prior distributions of estimated parameters.

Parameter Definition Prior distribution
a Power law decay. Uniform (0, 5)
B Transmission rate (year’l) Uniform (0, 10)

values for the last generation were at the similar level (630-650).

For a comparison, we have employed the ABC rejection algorithm
with tolerance ¢ = 4.5. The mean of power law decay parameter was
1.39, i.e. similar to the result with M = 1000. The number of model
runs required to obtain 1000 accepted particles was 3, 820, 136. This
gives that the acceptance rate for the ABC rejection approach is
0.00026.

4. Discussion

The purpose of this paper was to provide an introductory tutorial in
using ABC for infectious disease modelling. We have introduced the
user choices required to implement the ABC-rejection algorithm and the
ABC-SMC algorithm. These user defined choices can be model or data
based. In addition, with larger data sets and more complex models,
there are also computational trade-offs to be made, such as with a more
sophisticated ABC algorithm. Here, we have presented three case stu-
dies to illustrate how to implement ABC-rejection and ABC-SMC in R.
However, there are numerous applications and examples which we
have not covered but have been by other authors. We have applied the
ABC-SMC algorithm to stochastic models, but the technique has been
used for a system of ordinary differential equations as well (Toni et al.,
2009; Filippi et al., 2013).

In case study 1 we illustrated the information lost and the changes
that need to be made to the algorithm based on different resolutions of
data. Daily counts of infected and recovered individuals provides en-
ough information to re-estimate model parameters. However, when the
number of recovered or infected individuals was known, only the basic
reproduction number can be re-estimated and with less precision. This
is due to the lack of temporal information in the data and the correla-
tion between the transmission rate and recovery rate. If the user was
able to specify an informative prior for either the transmission rate or
recovery rate, then the other parameter could be estimated.

The ABC-rejection algorithm has inefficient sampling in comparison
to the ABC-SMC algorithm. By re-sampling from a smaller generation
and slowly decreasing tolerance, we saw that in case study 2, ABC-SMC
required hundred times fewer model runs then the ABC-rejection al-
gorithm: the number of model runs required to obtain 1000 accepted
particles for ABC rejection algorithm was 29, 224, 520, while for ABC-
SMC it was 267, 388. Furthermore, if only 50 nearest neighbours of
particles were used to parametrise the perturbation kernel, the number
of model runs was reduced to 160, 644. Running the model for each
proposed parameter set more times resulted in a higher acceptance rate.
However, the trade-off between running model multiple times and in-
creasing acceptance rate will depend on a cost of each model run and
decreased effective sample size. For case study 3, decreasing number of
neighbour particles decreased number of model runs and increased
parameter acceptance rate, but had no effect on values of effective
sample size.

The number of desired particles in all case studies was set to
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Fig. 8. Comparing observed outbreak data (Marcus et al., 1984) with model simulations: number of cumulative cases each day (top left), number of observed and
simulated minimal distances (top right), and spatial distribution (bottom left).
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Table 7
Comparison of ABC SMC MNN algorithms.
M = 1000 M = 500 M =100 M =50

E[A] 1.39 1.35 1.34 1.32
E[B] 3.83 3.11 3.10 2.95
No runs 155,108 108,590 95,116 89,863
Accept. rate 0.045 0.064 0.073 0.077
ESS 650 633 644 630

N = 1000 as in (Toni et al., 2009). The choice of number of particles
will affect the speed of the ABC algorithm and the accuracy of the final
posterior distribution. Additionally, the magnitude of the tolerance will
also affect the speed of the algorithm and accuracy of the algorithm.
The choice of tolerance in the ABC-rejection algorithm can be informed
by trial and error. In the ABC-SMC algorithm, instead of proposing a
vector of tolerances, the tolerance at each population can be calculated
as the a quantile of the distances of the accepted particles (Prangle,
2017). The user then has to choose some quantile (¢q) and the number of
populations (G). This quantile method means that the user does not
need to supply a vector of tolerances, however must choose the number
of populations (G). Convergence can be assessed by the difference using
the inter-quartile ranges of the values of accepted particles as a measure
of goodness of fit between successive intermediate distributions (Toni
et al., 2009).

Exploration of the data is also essential to inform the choice of
summary statistics. In all cases we have used a distance measure as the
squared difference between observed and simulated data. Other options
are available as the absolute difference (Sunnaker et al., 2013). If the
model output is a two peak epidemic then an appropriate summary
statistic may be to match the time of the two peaks, or the ratio of the
size of one peak to another. Distance can include summary statistics
which is a function of model outputs only, for example, simulated in-
fection pressures (Prangle et al., 2018). Proposed solutions to choosing
optimal summary statistics for ABC include a sequential scheme to as-
sess the information content of a list of summary statistics (Joyce and
Marjoram, 2008), minimisation of the estimated entropy of the pos-
terior approximation (Nunes and Balding, 2010), finding statistical
summaries of the data that minimise the loss of information (Barnes
et al., 2012), constructing summary statistics as estimates of the pos-
terior mean of the parameters (Fearnhead and Prangle, 2012), or em-
ploying a machine learning tool named random forests where a re-
ference table generated from a prior distribution is used to train
regression trees (Pudlo et al., 2015; Raynal et al.,, 2018). We re-
commend looking at the literature for inspiration the user defined
choices including the summary statistics. The type of data available and
problems which arise from infectious disease modelling reoccur in the
literature. For a review of applications of ABC see Beaumont (2010) and
the papers highlighted in the discussion. Also for applications of ABC-
SMC in infectious disease modelling see Conlan et al. (2012), Hladish
et al. (2018).

In this paper, we have assumed that the user is writing their ABC
algorithm in computer code. There are R packages which implement
ABC algorithms: abc (ABC-rejection method) (Csilléry et al., 2012),
abctools (ABC-rejection method) (Nunes and Prangle, 2015), aberf
(ABC parameter inference via random forests) (Raynal et al., 2018), and
easyABC (ABC-rejection and ABC-SMC methods) (Jabot et al., 2013).
While learning the steps of ABC, the authors believe that the user is
more likely to understand each step of the algorithm with code, in
comparison to a package. In addition, by writing the full ABC algorithm
in code, the user has the flexibility to alter steps according to their type
of model and their data. However, there are some simple applications of
ABC where a package would be appropriate if that is the user's pre-
ference. We hope that the case studies we presented here can give
practically useful insight when making various ABC algorithm tuning
choices.
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ABC is a powerful tool but an ABC algorithm must be tailored to the
model and data at hand. The performance of any model fitting algo-
rithm is restricted by the available data which the user is trying to fit
their model to. The user must specify a model appropriate for their data
source, i.e. parameters must all be identifiable from the data at hand. If
the model is stochastic, investigating the variability in the model output
for the same set of parameter values will inform how the choice of n, the
number of times to run the model and also what summary statistics to
choose. By simulating data from the model, and attempting to re-esti-
mate the known parameters the user can identify changes that are
needed for their question specific ABC algorithm.
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