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Abstract 

 

Time-to-event composite outcomes are common in clinical trials. Reporting guidelines 

recommend that the treatment effect estimate for each component event be reported. In the 

setting with two components, when one precedes the other, there may be interest in 

estimating the indirect effect of treatment on the final event through the intermediate one. 

This thesis proposes a pragmatic solution to this problem.  

The motivating example is a dataset pooled from three clinical trials investigating a treatment 

effect on time to cancer progression or death in patients with advanced non-small cell lung 

cancer. There is interest in exploring whether treatment had an indirect effect on death 

through its effect on progression. This problem could be addressed by implementing dynamic 

path analysis, which combines linear regression and additive hazards models to estimate the 

indirect effect of an exposure on a time-to-event outcome. However, it is only appropriate for 

settings with continuous intermediate variables. The thesis therefore suggests an extension 

dealing with settings where both intermediate and final events are time-to-event variables. 

This extension is described and tested using simulation studies. The results suggest that this 

method gives rise to results very close to those predicted, when the rate of the intermediate 

event is not very fast relative to the final event rate. When the intermediate event occurs 

much more quickly than the final event, depletion of individuals from the risk set by 

experiencing the final event causes divergence between the estimated and expected indirect 

treatment effects.  

The extension of dynamic path analysis is implemented for the clinical trials dataset, showing a 

protective indirect effect of treatment on death through cancer progression. 

The thesis concludes that the extension of dynamic path analysis to settings with a time-to-

event intermediate outcome is feasible, although some results should be interpreted with 

care. 
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1 Introduction 

 

1.1 Composite outcomes in clinical trials 

 

Composite outcomes are commonly used in randomised clinical trials to increase the expected 

number of events observed during a selected follow-up period and therefore the power of the 

trial [1-3]. A composite outcome combines two or more events of interest into a single 

endpoint, so that the endpoint is achieved if one or more of these component events has 

occurred by the end of follow-up.  

The component events chosen to form a composite outcome often represent related aspects 

of a disease [4, 5]. To aid interpretation it is generally recommended that the analysis of trials 

with a composite outcome report both the estimated treatment effect on the composite 

outcome, and cause-specific treatment effects for each component event. This addresses the 

possibility that a treatment may affect one component event differently from the other(s), 

thus leading to misleading inferences if the difference is ignored [1, 3, 6]. It also ensures that 

the effect of a treatment on different aspects of a disease can be captured [5, 7]. 

Time-to-event composite outcomes in clinical trials arise when a trial endpoint consists of the 

timing of the first of a number of events of interest. They are commonly used in clinical areas 

where the rate of occurrence of major events such as death is low [1-3]. For example, Lim et al 

[6] conducted a survey of clinical trial reports in the area of cardiovascular medicine, 

identifying 304 trials published between 2000 and 2007 that used composite outcomes, of 

which 226 (73.7%) had a time-to-event composite outcome.  

Component events chosen to form a time-to-event composite outcome are often causally 

linked steps in the same disease process. In this case, considering a composite outcome 

defined by two components, they comprise a final and an intermediate event, with the latter 

likely to be a strong predictor of the final event [5]. In general, occurrence of the intermediate 

event does not prevent occurrence of the final event. The intermediate event may be referred 

to as the proximal event, and the final event the distal event.  
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1.2 Motivating example: the Zactima trials 

 

This thesis is motivated by the analysis of the Zactima trials, a suite of three randomised 

controlled trials funded and carried out by AstraZeneca. The trials aimed to estimate the effect 

of a treatment, Zactima, for non-small-cell lung cancer (NSCLC) patients. The trials were carried 

out between 2006 and 2008, and results were published between 2010 and 2012 [8-10]. 

Zactima is the trade name for vandetanib, which had previously been licensed for use in 

medullary thryroid cancer.  

The trials divided patients into a treatment group receiving Zactima administered together 

with an established treatment, and a placebo group receiving placebo therapy and the same 

established treatment. The three trials differed principally in terms of the established 

treatment offered, respectively docetaxel, pemetrexed and best supportive care (see [11, 12]). 

In addition, the trial offering best supportive care recruited patients who had failed one or two 

prior chemotherapy regimens, while the other two trials recruited patients who had failed 

first-line therapy only. The primary outcome for two of the three trials (and a secondary 

outcome for the third trial) was a composite of time to cancer progression or death, whichever 

came first, referred to as progression-free survival (PFS).   

Two of the three trials found a statistically significant protective effect of Zactima on PFS with 

hazard ratios of 0.79 (97.6% CI 0.70, 0.90) and 0.63 (95.2% CI 0.54, 0.74) respectively [8, 9]; the 

third trial found a borderline effect of Zactima on PFS with a hazard ratio of 0.86 (97.6% CI 

0.69, 1.06) [10]. All three trials found that the effect of Zactima on death was protective but 

not statistically significant [8-10]. 

The authors inferred from these results that Zactima might have a protective effect on cancer 

progression, but not on death. However further investigation is called upon to support this, 

and also whether the effect of treatment on death is or is not transmitted through its effect on 

cancer progression. The first question would involve the study of the cause specific effects on 

treatment on the components of the composite outcome, and the second the study of the 

treatment effect on death through its effect on cancer progression.  
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1.3 Cause-specific analysis of treatment effects in the Zactima trials 

 

The first step in investigating the effects of treatment in the Zactima trials is to pool the data 

from the three trials, given their design similarities (but also considering whether treatment 

effects are homogeneous across the trials), and estimate the effects of treatment on the rate 

of cancer progression, and separately on the rate of death, following recommendations about 

reporting the cause-specific effects of treatment on the component events of a composite 

outcome [1, 3, 6]. This analysis can be performed in the first instance using the familiar Cox 

proportional hazards model [13] with treatment as the explanatory variable and cancer 

progression or death as the outcome, in each case controlling for systematic differences across 

the three trials by including specific trial indicators (and assessing whether there is evidence of 

treatment-trial interaction). Assuming no treatment-trial interaction, and proportionality of 

effects, the first model would give rise to the estimated (adjusted) hazard ratio for the effect of 

treatment on cancer progression, conditional on surviving; the second to the estimated 

(adjusted) hazard ratio for the effect of treatment on death. The model for the mortality rate 

defined above does not include cancer progression, therefore its estimate represents the 

overall effect of treatment on death, in the sense that it does not control for the possible 

mediating role played by cancer progression.  

This approach, however, ignores the association between cancer progression and death. As 

discussed above, the presence of two time-to-event component events, one of which can only 

precede the other, and which are both manifestations of the disease process, suggests that 

secondary analyses should also examine the relationship between cancer progression and 

death. By partitioning the overall effect into indirect and indirect effects, mediation analysis 

can be used to address this problem. 

 

 

1.4 Outline of mediation analysis 

 

The general setting for mediation analysis considers an exposure or treatment (henceforward 

referred to as a treatment, for simplicity), an outcome, and a mediator, which may be affected 

by treatment and itself precedes and affects the outcome (see for example [14, 15]). In the 
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present context, where the outcome and mediator are both time-to-event variables, the 

mediator may be referred to as an event mediator. 

The overall effect of treatment on an outcome, as described in the previous section, can be 

thought of as its effect working both through a mediator and along a pathway that does not 

include the mediator. The direct effect of treatment on an outcome is the effect of treatment 

working through a pathway that does not include the mediator. Conversely, the indirect effect 

of treatment on the outcome is that part of the effect of treatment which works specifically 

through the mediator (see for example [14, 16]).  

As described above, the overall effect of treatment on death can be estimated in the Zactima 

trials by fitting a Cox proportional hazards with treatment as the explanatory variable and 

death as the outcome (controlling for trial characteristics). By analogy, one might infer that the 

direct effect of treatment on death could be estimated by fitting the same model but 

additionally adjusting for cancer progression. In general, although this strategy is commonly 

recommended as means of estimating a direct effect [17], the inclusion of cancer progression 

as a covariate does not necessarily guarantee the estimation of the direct effect of treatment 

because the hazard ratio is non-collapsible and therefore conditioning on the mediator does 

not lead to the direct effect of the exposure [14, 18]. 

Similarly, the Cox proportional hazards model cannot be used to estimate the indirect effect of 

treatment on death through progression by adopting the multiplication of coefficients method 

used in traditional mediation analysis deriving from the path tracing rules of path analysis 

(even if this were carried out using the log hazard ratios). This is because the multiplication of 

coefficients derives from rules that implement the partitioning of correlations, and hence of 

relations among normally distributed variables [14, 17, 19, 20]. 

In fact, there are no general statistical methods specifically developed for estimating the direct 

and indirect treatment effect on a time-to-event outcome through a time-to-event mediator in 

classical mediation analysis. Solutions have been proposed within the framework of 

counterfactual-based mediation analysis [14, 16, 21-23], although only recently and with a 

wide range of definitions. For example, natural direct effects are defined in terms of how much 

the average outcome would change if treatment were set at different levels (possibly contrary 

to fact) while the mediator were set at the level that it would take had exposure been set at its 

reference value (possibly contrary to fact). Natural indirect effects are defined in terms of the 

average change in outcome that would occur if treatment were set at the exposed value 

(possibly contrary to fact) while the mediator were changed from the level it would take if 

treatment were set at the exposure value, to its level if treatment were set to the non-
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exposure value (possibly contrary to fact) (see [14, 16, 23, 24]).  Further definitions have been 

offered, such as controlled direct effects (see [14, 16, 23, 24]), but, in general, estimation for 

settings where the outcome is a time-to-event variable are complex to implement and the 

results are difficult to explain (see [25-27]). Furthermore, there is very little specific guidance in 

the literature for estimating an indirect treatment effect when both mediator and outcome are 

time-to-event variables [28].  

This thesis suggests a pragmatic approach to solving this problem that could be useful in a 

wide variety of clinical settings. As noted above, composite time-to-event outcomes are widely 

used in clinical trials, so it is reasonable to infer that a means of partitioning the direct and 

indirect treatment effects of a treatment would be beneficial. As an example, Cannon [5] 

implicitly discussed an indirect treatment effect in outlining the results of the ISIS-2 trial [29], 

noting that treatment with aspirin prevented myocardial infarction (MI), and that this 

reduction in MI itself led to a lower death rate in the aspirin group. However, no attempt was 

made to quantify the indirect effect of aspirin treatment on death rates through its effect on 

MI.  

 

 

1.5 Dynamic path analysis as a solution 

 

The approach proposed in this thesis uses as a starting point the dynamic path analysis 

method of Fosen, Aalen et al [20, 30, 31].  This is a simple method of mediation analysis that 

belongs to the more traditional (as opposed to counterfactual-based) path analysis approach 

to mediation analysis that has developed from the structural equation models literature (see 

for example [32-35]) and Wright’s path analysis [36, 37]. The path analysis approach to 

mediation analysis relies on the linearity of all the models involved [14, 20]. The interpretation 

of model coefficients refers back to the assumptions encoded in the models [34], in contrast 

with the counterfactual approach, where causal effects are defined in terms of potential 

outcomes inferred from relations observed within datasets [20, 34]. From Aalen [20], “The 

idea is… to follow the idea that events and processes influence one another”. 

Dynamic path analysis [20, 30, 31] extends path analysis to the setting of a (possibly time-

varying) continuous mediator and a time-to-event outcome. It combines a linear regression 

model for the mediator with an additive hazards model for the hazard of the outcome [20, 38, 

39]. The models are estimated at the time of each event occurrence. Multiplying the estimates 
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of the treatment effect on the mediator and the mediator effect on the hazard of the event 

leads to estimates of the indirect effect of treatment on the time-to-event outcome using path 

tracing rules [15, 37, 40], subject to the assumption that the models are correctly specified [14, 

15, 19, 32, 33, 41]. To aid interpretability, these indirect effect estimates are usually summed 

over time and reported graphically as cumulative effects [20, 30, 31, 42].  

This thesis extends the dynamic path analysis approach to the setting where both the mediator 

and the outcome are time-to-event variables.  As with both path analysis and dynamic path 

analysis, the estimated direct and indirect effects are interpreted with regard to the causal 

assumptions underlying the regression models used [20, 34]. The clinical trials setting of this 

thesis lends some plausibility to these causal assumptions and therefore justifies its 

application.  

 

 

1.6 Aim and objectives of the thesis 

 

Motivated by the difficulties of conducting secondary analysis of treatment effects on the 

component events of a time-to-event composite outcome, the main aim of this thesis is to 

extend dynamic path analysis to the setting where both outcome and mediator are time-to-

event variables. To achieve this aim, the following objectives are identified: 

1) To introduce the dynamic path analysis method of Fosen, Aalen et al [20, 30, 31] as a 

means of estimating the indirect effect of a treatment on a time-to-event outcome via 

a continuous mediator, and to verify its properties; 

2) To extend dynamic path analysis, and investigate the properties of this extension, to 

the setting where the outcome and mediator are time-to-event variables; 

3) To apply this extension to the Zactima trials dataset, estimating the indirect effect of 

treatment on death through its effect on cancer progression. 
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1.7 Structure of the thesis 

 

Chapter 2 describes the Zactima trials referred to above, and confirms the main published 

findings of each trial.  The effects of treatment on the component events of the composite 

outcome are estimated on a pooled dataset using the Cox proportional hazards model [13]. 

Chapter 3 introduces the additive hazards model of Aalen [20, 38, 39] and uses simulation 

studies to verify the performance of the additive hazards model in simple settings with time-

fixed explanatory variables. A range of metrics is used to evaluate the performance of the 

model over time. 

In Chapter 4, the additive hazards model is used to estimate the effects of treatment on each 

of the component events of the composite outcome in the Zactima trials, and a mechanism of 

action of treatment is proposed that works through the intermediate event of cancer 

progression. 

Chapter 5 outlines some concepts of mediation analysis, and introduces dynamic path analysis. 

The proposed extension of dynamic path analysis from the setting with a continuous mediator 

and a time-to-event outcome to the setting informed by the Zactima trials, where both the 

proximal and distal events are time-to-event variables, is described. 

Chapter 6 conducts and reports simulation studies to verify that traditional dynamic path 

analysis with a continuous mediator gives rise to unbiased estimates of the indirect effect of 

treatment. 

The performance of the proposed extension to the dynamic path analysis estimator is 

examined under varying conditions using simulation studies in Chapter 7. 

The method is then applied to the pooled Zactima trials dataset to estimate an indirect effect 

of treatment on death through cancer progression in Chapter 8. 

Chapter 9 considers to what extent these aims of the thesis have been met and proposes 

directions for future research in this area. 

 

  



23 
 

2 Treatment effects on the component events of a composite 

outcome: the Zactima trials 

 

 

2.1 Introduction 

 

As discussed in chapter 1, a key recommendation in the reporting of treatment effect 

estimates on composite outcomes is that, in addition to the main results, event rates and 

treatment effects be reported separately for every component of a composite outcome [1, 3, 

6]. This chapter reports the decomposition of a composite outcome and the estimation of 

treatment effects on the component events of a composite outcome for the motivating 

example of this thesis, the Zactima trials [8-10]. 

 

 

2.1.1 Aims 

 

This chapter will present details of the Zactima trials [8-10], the motivating example of this 

thesis, and preliminary analyses of the data with respect to their treatment effect estimates.  

More specifically, the aims of the chapter are: 

1) To describe the three Zactima trials and summarise their published findings 

2) To estimate the effects of treatment on the component events of the composite 

outcome in each of the three trial datasets; 

3) To pool the data from the three trials, giving rise to more precise estimates of 

treatment effects on the component events, and carry out exploratory analysis to 

investigate possible mechanisms of action of the treatment.  
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2.2 The Zactima trials 

 

 

2.2.1 Introduction 

 

The three trials presented here, Zodiac [8], Zephyr [9] and Zeal [10], were randomised parallel-

group double-blind placebo-controlled trials for the use of an existing drug, vandetanib 

(Zactima), in patients with stage III and IV non-small cell lung cancer (NSCLC). The trials were 

funded and conducted by AstraZeneca between May 2006 and November 2008. Vandetanib 

had previously been approved for use in medullary thryroid cancer. Vandetanib works both by 

inhibiting the growth of tumour cells and by slowing down tumour angiogenesis, the process 

by which tumours are vascularised [43]. 

The primary outcome for two of the three trials, Zodiac and Zeal, was progression-free survival 

(PFS). This was defined as a composite of time to either cancer progression or death, 

whichever happened first, including only deaths which occurred within 3 months of the final 

assessment for progression.  The secondary outcome for these trials was overall survival, 

defined as time between randomisation and any death. Conversely, the primary outcome for 

the Zephyr trial was overall survival, and the secondary outcome was PFS. The exclusion of 

deaths which occurred more than 3 months after the final progression assessment led to a 

total of 86 fewer deaths being included in the PFS outcome than the overall survival outcome 

(which counted all deaths) across all three trials.  

The populations of interest in the three trials consisted of patients aged over 18, with locally 

advanced or metastatic stage IIIB or IV NSCLC (see [44]) and a life expectancy of at least 12 

weeks. Zodiac and Zeal patients had failed first-line therapy (see [11, 12]).  Zephyr patients had 

failed one or two prior chemotherapy regimens, and prior treatment with an EGFR tyrosine 

kinase inhibitor (commonly used as both first and second line therapy in patients with 

advanced disease [12]). Zephyr had a treatment: placebo randomisation ratio of 2:1, while the 

other two trials had a 1:1 ratio.  In Zodiac, patients were randomised to receive either oral 

vandetanib (Zactima) with intravenous (IV) docetaxel (see [11, 12]), or placebo with IV 

docetaxel. Docetaxel is a cytotoxic drug which inhibits tumour cell division [45]. In Zephyr, 

patients were randomised to receive either oral vandetanib (Zactima) and best supportive care 

or placebo and best supportive care. In Zeal, patients were randomised to receive either oral 

vandetanib (Zactima) with IV pemetrexed (see [11, 12]), or placebo with IV pemetrexed. 

Pemetrexed is a chemotherapy drug used to prevent the formation of DNA in tumour cells 



25 
 

[45].  Treatment in all three trials was stopped when patients experienced cancer progression 

(see [46]). Progression assessments took place every 6 weeks in the Zodiac and Zeal trials, and 

every 8 weeks in the Zephyr trial. Follow-up ended in the Zodiac trial at 24 months, in the 

Zephyr trial at 34 months, and in the Zeal trial at 18 months (see Figure 2-1 for the Kaplan-

Meier estimates of survivor function). 

Each of the three trials used Zactima together with accepted therapies in order to look for 

evidence that it provided an additional protective effect. The published trial papers [8-10] 

tested for an effect of treatment on the primary outcome (PFS for Zodiac and Zeal, and overall 

survival for Zephyr) using log-rank tests (see [47]), and estimated the adjusted effects of 

treatment on PFS and overall survival by fitting Cox models which included baseline covariates, 

some of which were common across trials and some of which were unique to each trial.  The 

published papers did not report the estimated effects of treatment on cancer progression.  

 

 

2.2.2 Estimated effects of treatment on PFS 

 

Table 2-1 shows the published estimates of the effect of treatment on PFS [8-10] obtained by 

fitting Cox models adjusted for the baseline variables listed in the table. 
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Table 2-1 Numbers of patients and PFS events, and estimated adjusted HRs for the effect of treatment on PFS for 
each of the three trials 

Trial Number of 
patients 
included in 
the analysis 

Number 
of PFS 
events 

Baseline variables included in 
the Cox model 

Estimated HR for 
treatment, [CI1] 

Zodiac 1391 1205 Tumour stage, number of organs 
involved, histology, smoking, sex, 
ethnicity, EGFR-expression, -
amplification and –mutation, and 
previous failure of bevacizumab 

0.79, [0.70, 0.90] 

Zephyr 924 834 Tumour stage, number of organs 
involved, histology, smoking, sex, 
ethnicity, EGFR-expression, -
amplification and –mutation, 
prior TKI therapy, and WHO 
performance status 

0.63, [0.54, 0.74] 

Zeal  534 443 Tumour stage, number of organs 
involved, histology, smoking, sex, 
ethnicity, EGFR-expression, -
amplification and –mutation, and 
previous failure of bevacizumab 

0.86, [0.69, 1.06] 

1 The CIs reported in the published papers were adjusted to allow for interim analyses. The 
Zodiac trial reports a 97.6% CI, the Zephyr trial reports a 95.2% CI and the Zeal trial reports a 
97.6% CI. 

The trial-specific results presented in Table 2-1 indicate that treatment has a statistically 

significant protective effect on PFS in the Zodiac and Zephyr trials, and a protective but not 

statistically significant effect on PFS in the Zeal trial. 

 

 

2.3 Trial-specific analysis of the effects of treatment on component 

events 

 

This section presents a reanalysis of the Zactima trials datasets, focusing on treatment effects 

on the component events of cancer progression and death. A consideration of treatment 

effects on all component events of a composite outcome allows the implicit assumption of 

homogeneity of treatment effects to be explored [1-3]. It may also provide some insight into 

the mechanism of action of treatment. 

The datasets used in this chapter were provided by AstraZeneca. The Zodiac trial dataset 

provided for analysis had been updated since the published trial results. 
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2.3.1 Methods for trial-specific analysis 

 

The descriptive analyses comprised number of patients randomised to each group, and the 

number of cancer progressions and deaths (by treatment group and overall).  Kaplan-Meier 

curves (see [47, 48]) were used to describe the survival experience by treatment group with 

respect to cancer progression and death. 

In line with the published results, Cox proportional hazards models were used to estimate the 

effects of treatment on each outcome adjusting for baseline covariates. Cox models are fitted 

via partial likelihood estimation which leads to estimating covariate effects while allowing the 

baseline hazard function to vary freely over time and to remain unspecified. The key feature of 

the Cox model is the assumption of proportionality, under which the ratio of hazards for two 

individuals with different covariate values is constant over time [20, 49].  

All deaths were included in the analyses presented in this chapter. 

The Cox models fitted to each trial dataset are specified in Table 2-2 below. In the models 

shown in the table: 

• αprog(t) represents the hazard of progression at time t; 

• αprog.0(t) represents the hazard of progression at time t in the baseline group, in which 

the value of all covariates is set to 0; 

• Tprog is the random variable representing time to progression; 

• αdth(t) represents the hazard of death at time t; 

• αdth.0(t) represents the hazard of death at time t in the baseline group, in which the 

value of all covariates is set to 0; 

• Tdth is the random variable representing time to death; 

• treat is a fixed binary variable indexing treatment group (0=placebo, 1=Zactima); 

• the vector W includes the following fixed baseline covariates, common to all trials: 

o tumour stage; 

o number of organs involved at baseline; 

o histology;  

o smoking; 

o sex;  

o ethnicity; 

o EGFR-expression, -amplification and -mutation (see [8]) 

These variables are coded as categorical variables with observed values w.  
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Including the covariates W as adjustment variables ensures that the estimated treatment 

effects are controlled for any chance imbalances across treatment group with respect to these 

variables and improves precision of the estimates. 

Table 2-2 Cox models fitted to the Zactima trials data to estimate treatment effects on progression and death in 
each trial separately.  

Outcome  
 

Model1 Model number 

Progression αprog(t) = αprog.0(t)exp(β1
(1)

treat + 𝛃𝟐
(𝟏)𝐓

𝐰) 2-1 
 

Death  αdth(t) = αdth.0(t)exp(β1
(2)

treat + 𝛃𝟐
(𝟐)𝐓

𝐰) 

 

2-2 

1 The superscript T denotes the transpose of a vector 

For each model, proportionality of the effect of treatment  was checked by visual examination 

of  Nelson-Aalen plots of the cumulative hazards by treatment group [50]. A test of 

proportionality based on Schoenfeld residuals was also carried out [50, 51].  Under 

proportionality, the sum of the (time-specific) scaled Schoenfeld residuals specific to the 

treatment variable and the estimated treatment effect, should be constant over time. 

Therefore, regressing time on this sum should give a regression coefficient equal to 0 if 

proportionality with respect to treatment holds. A statistically significant regression coefficient 

provides evidence of non-proportionality [50, 51]. Proportionality was checked for the other 

baseline covariates, and the models re-fitted using any non-proportional baseline covariates as 

stratification variables [50].  

 

 

2.3.2 Results of trial-specific analysis 

 

Table 2-3 shows the number of patients randomised to each group, and the numbers of cancer 

progressions and deaths experienced by treatment group and overall for the three trials. 
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Table 2-3 Numbers of patients randomised and outcomes by treatment group and overall for all three trials 

Outcome N (%)   

 Placebo group Treatment 
group 

Overall 

Zodiac trial 
 

   

Number randomised (%) 697 (100) 694 (100) 1391 (100) 
Number of progressions  547 (78) 504 (73) 1051 (76) 
Median time to progression in 
months [IQR] 

 
4.0 [1.4, 6.1] 

 
4.4 [2.2, 7.1] 

 
4.1 [1.7, 6.8] 

Number of deaths  418 (60) 403 (58) 821 (59) 
Median time to death in months 
[IQR] 

 
10.0 [4.8, 18.6] 

 
10.6 [5.2, 20.7] 

 
10.3 [5.0, 20.2] 

Number of deaths after 
progression 

 
332 (48) 

 
299 (43) 

 
631 (45) 

 Zephyr trial 
 

   

Number randomised (%) 307 (100) 617 (100) 924 (100) 
Number of progressions  238 (78) 463 (75) 701 (76) 
Median time to progression in 
months [IQR] 

 
1.8 [1.4, 3.4] 

 
2.1 [1.7, 5.3] 

 
1.8 [1.7, 4.2] 

Number of deaths  234 (76) 471 (76) 705 (76) 
Median time to death in months 
[IQR] 

 
7.8 [3.2, 15.9] 

 
8.5 [3.8, 15.9] 

 
8.4 [3.7, 15.9] 

Number of deaths after 
progression 

 
179 (58) 

 
353 (57) 

 
532 (58) 

Zeal trial 
 

   

Number randomised (%) 278 (100) 256 (100) 534 (100) 
Number of progressions  207 (74) 180 (70) 387 (72) 
Median time to progression in 
months [IQR] 

 
3.0 [1.5, 6.8] 

 
4.2 [1.6, 7.0] 

 
4.0 [1.5, 7.0] 

Number of deaths  147 (53) 122 (48) 269 (50) 
Median time to death in months 
[IQR] 

 
9.2 [4.6, 15.0] 

 
10.5 [4.7, 17.5] 

 
9.6 [4.7, 16.5] 

Number of deaths after 
progression 

 
115 (41) 

 
88 (34) 

 
203 (38) 
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Figure 2-1 shows Kaplan-Meier estimates of the survivor function by treatment group for 

cancer progression (left) and death (right). The x-axis is truncated at the 75th percentile of 

follow-up time, which for progression is approximately 7 months in Zodiac and Zeal, and 4 

months in Zephyr.  For death, the 75th percentile of time is approximately 20 months in the 

Zodiac trial, and 16 months in Zephyr and Zeal. This truncation is line with truncation of the 

results of additive hazards models reported in chapter 4. 

Figure 2-1 Kaplan-Meier estimates of survivor function by treatment group for progression (left) and death (right) 
for all three trials 

 

 

 

In the left-hand column of the figure, the Kaplan-Meier curves exhibit a stepped shape which 

reflects the scheduled progression assessments, which took place every 6 weeks in the Zodiac 

and Zeal trials, and every 8 weeks in the Zephyr trial. 
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In the Zodiac trial (first row of figure), survival appears better in the treatment group for 

progression from 1.5 months. There is a less clear survival advantage for death, which 

becomes more apparent only after 10 months of follow-up.  

The treatment group in the Zephyr trial (second row) shows a marked survival advantage for 

progression from 0.5 months, and a survival advantage for death from 1 month. 

The Zeal trial (third row) shows a survival advantage in the treatment group for progression 

from 1.5 months. Survival for death is similar across treatment groups, with a small survival 

advantage in the treatment group appearing between about 7 and 10 months after 

randomisation.  

Table 2-4 below reports the adjusted hazard ratios and 95% confidence intervals for the effects 

of treatment on progression and death estimated by fitting the Cox models shown in Table 2-2. 

Note that interpretation of the hazard ratios for progression is conditional on survival. 

Table 2-4 Estimated adjusted hazard ratios [95% CI] for the effect of treatment on progression and death for all 
three trials 

Trial  
 

Progression Death 

Zodiac 
 

0.74 [0.66, 0.85] 0.92 [0.80, 1.06] 

Zephyr 
 

0.65 [0.55, 0.76] 0.97 [0.83, 1.14] 

Zeal 
 

0.85 [0.69, 1.04] 0.82 [0.64, 1.05] 

 

An examination of the Nelson-Aalen plots of cumulative hazards (not shown) indicated that 

the hazards of progression were proportional by treatment group for Zodiac, Zephyr and Zeal.  

For death, cumulative hazards by treatment group are very close for the first 8 and 6 months 

respectively in the Zodiac and Zeal trials. The cumulative hazards then diverge and appear 

proportional. In Zephyr, the difference in the cumulative hazards again appears constant, 

suggesting that the hazards might not be proportional. 

Table 2-5 shows the chi-squared test statistic and P value associated with the regression tests 

for proportionality in the treatment variable.  
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Table 2-5 Results of proportionality tests of treatment effect for the progression and death outcomes, by trial 

Trial 
 

Progression Death 

Zodiac 
 

χ2
1=2.21, P=0.14 χ2

1=0.60, P=0.44 

Zephyr 
 

χ2
1=3.51 P=0.06 χ2

1=3.76, P=0.05 

Zeal 
 

χ2
1=1.38, P=0.24 χ2

1=2.01, P=0.16 

 

In the Zephyr trial, there is borderline statistically significant evidence against proportionality 

for progression and for death. The lack of proportionality of treatment in the Zephyr trial may 

indicate that use of a hazard ratio to estimate the effect of treatment in Zephyr is 

inappropriate. However, in the other trials there is a lack of evidence against proportionality. 

Global tests for proportionality indicated that some of the baseline explanatory variables 

included in Model 2-1 showed non-proportionality. Re-fitting the models and stratifying on 

these explanatory variables did not result in any marked changes to the estimated treatment 

effects on progression (the estimated hazard ratios and 95% CIs for Zodiac, Zephyr and Zeal 

became respectively 0.77 [0.68, 0.88], 0.64 [0.54, 0.75] and 0.84 [0.68, 1.03]. The treatment 

effect estimates were therefore robust to some model misspecification.  Similarly, for the 

death outcome, stratifying on variables showing evidence of non-proportionality did not result 

in significant changes to the estimated treatment effects in Model 2-2, with the hazard ratio 

and 95% CI for Zephyr becoming 0.98 [0.84, 1.15]. Variables included in Model 2-2 for the 

Zodiac and Zeal trials showed no evidence of non-proportionality. 

 

 

2.3.3 Summary of trial-specific analysis 

 

In summary, all three trials demonstrated a reduction in the hazard ratio of progression 

associated with the use of Zactima. In all three trials, the effect of treatment on death was 

protective but not statistically significant. The confidence intervals for all the hazard ratios 

presented in Table 2-4 are quite wide, indicating a lack of precision of the estimate. The 

proportional hazards assumption of the Cox model appeared to be upheld in the Zodiac and 

Zeal trial, but was questionable in the Zephyr trial. 
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2.4 Pooling the Zactima trials datasets 

 

 

2.4.1 Introduction  

 

An issue arising from the analyses presented above is that of obtaining accurate estimates of 

the effects of treatment on cancer progression and death in the Zactima trials. The Zodiac and 

Zephyr trials report quite different point estimates for the effect of treatment on progression 

compared to the effect of treatment on death (see Table 2-4). This could call into question the 

interpretation of treatment effects which use the composite outcome PFS.  However, the 

confidence intervals reported in Table 2-4 are wide, so it is not clear whether the treatment 

effects are truly heterogeneous across the component events.  

An analysis of the effect of treatment using data pooled from all three trials increases the 

number of events available, which should increase both power to detect treatment effects and 

the precision of treatment effect estimates, assuming homogeneity of effect across the three 

populations of patients.   

 

 

2.4.2 Methods for the pooled analysis 

 

The datasets provided for each trial were merged and a categorical variable defined to index 

the trials. Kaplan-Meier curves (see [47, 48]) were used to estimate the survivor function in the 

pooled dataset by treatment group for progression and death. The stratified Cox models [13] 

specified in Table 2-6, with strata defined by trial, were fitted to estimate the effects of 

treatment on progression and death. Stratification by trial allows estimation of a common 

treatment effect, without assuming that baseline hazards are proportional across trials [50].  

The Cox models for progression and death include the baseline variables common to the three 

trials (in line with the methods presented in section 2.3.1). Estimates of treatment effect are 

therefore adjusted to account for possible imbalances across treatment groups with respect to 

these variables [52].   
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Table 2-6 below specifies the Cox models fitted to the pooled dataset. Notation from section 

2.3.1 is extended to include: 

• k=1,2,3 indicating trial; 

• prog(t), a binary time-updated variable indicating whether progression had occurred 

by time t (0=no progression, 1=progression);  

• treat*prog(t) is an interaction term taking the value at time t of 1 if treat=1 and 
prog(t)=1, and 0 otherwise. 
 
 

Table 2-6 Cox models fitted to the Zactima trials data to estimate treatment effects on progression and death 

Outcome  
 

Description Model Model 
number 

Progression Effect of treatment 
on progression 

αprog.k(t) = αprog.k.0(t)exp(β1
(3)

treat + 𝛃𝟒
(𝟑)𝐓

𝐰) 

 

2-3 

Death  Overall effect of 
treatment on death 

αdth.k(t) = αdth.k.0(t)exp(β1
(4)

treat + 𝛃𝟒
(𝟒)𝐓

𝐰) 

 

2-4 

 Effect of treatment 
on death, controlled 
for progression 

αdth.k(t) = αdth.k.0(t)exp(β1
(5)

treat

+ β2
(5)

prog(t) + 𝛃𝟒
(𝟓)𝐓

𝐰) 

 

2-5 

 Effect of treatment 
on death with a 
treatment-
progression 
interaction 

αdth.k(t) = αdth.k.0(t)exp(β1
(6)

treat

+ β2
(6)

prog(t) + β3
(6)

treat

∗ prog(t) + 𝛃𝟒
(𝟔)𝐓

𝐰) 

2-6 

As in section 2.3.1, the vector W includes fixed baseline covariates common to all trials. 

Model 2-3 is the analogue of Model 2-1 fitted on the pooled dataset, estimating the effect of 

treatment on progression adjusted for baseline covariates. Similarly, Model 2-4 is the analogue 

of Model 2-2, estimating the effect of treatment on death adjusted for baseline covariates.  

Model 2-5 is fitted to investigate whether the effect of treatment on death adjusted for 

progression, β1
(5)

, is different from the effect of treatment on death unadjusted for 

progression, β1
(4)

. The use of the pooled dataset should give this investigation more power than 

if it had been carried out on the individual trial datasets. This strategy is commonly employed 

to determine whether the effect of an exposure such as treatment on an outcome such as 

death is mediated through an intermediate variable such as exposure (see for example [32, 40, 

41] and chapter 5). The drawbacks of this approach are outlined in section 5.2.1. 

Model 2-6 investigates whether the effect of treatment on death involves progression. The 

parameter β1
(6)

 represents the effect of treatment on death at time t if prog(t)=0, while the 

parameter β3
(6)  is interpreted as the additional effect of treatment on death at time t if 

prog(t)=1.  
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The assumption of homogeneity of the treatment effect across trials was checked by adding 

interaction terms treat*Ik=2 + treat*Ik=3 to Models 2-3, 2-4 and 2-5 [50]. The statistical 

significance of these terms was tested by comparing the log-likelihood ratio of models 

including the interactions with that of models excluding them. 

The assumption of proportionality in the treatment variable for Models 2-3, 2-4 and 2-5 was 

investigated using Nelson-Aalen plots and the regression-based test of proportionality using 

the sum of the scaled Schoenfeld residuals and estimated treatment effect (described in 

section 2.3.1).  Proportionality was not checked for treatment in Model 2-6, because the 

inclusion of an interaction term treat*prog(t) means that the model does not assume 

proportionality with respect to treatment [47, 48]. As before, global tests were carried out to 

investigate the assumption of proportionality with respect to the fixed baseline covariates.  

 

 

2.4.3 Results for the pooled analysis 

 

 

2.4.3.1 Descriptive results 

 

Table 2-7 below shows the number of patients randomised to each group, and numbers of 

outcomes experienced by treatment group and overall in the pooled dataset.   

Table 2-7 Numbers of patients randomised and outcomes by treatment group and overall in the pooled dataset 

Descriptor N (%)   

 Placebo group Treatment group Overall 

Number randomised 1282 1567 2849 
Number of progressions  992 (77) 11471 (73) 2139 (75) 
Median time to progression 
in months [IQR] 

 
2.9 [1.4, 5.6] 

 
3.6 [1.8, 6.6] 

 
3.4 [1.7, 5.9] 

Number of deaths  799 (62) 996 (64) 1795 (63) 
Median time to death in 
months [IQR] 

 
9.3 [4.3, 17.6] 

 
9.7 [4.5, 19.3] 

 
9.6 [4.4, 18.0] 

Number of deaths after 
progression 

 
626 (49) 

 
740 (47) 

 
1366 (48) 

1 There were more individuals in the treatment group than the placebo group because of the 
2:1 randomisation ratio used in Zephyr. 
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Figure 2-2 below shows numbers of deaths by treatment group and progression status, 

together with median event times in months.  The data are not differentiated by trial in this 

figure.  

Figure 2-2 Summary of outcomes and follow-up time by treatment group for the pooled dataset. Times are given 
in months (mo) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 shows that median times to progression and death are longer in the treatment 

group. However, time between progression and death is similar in the treatment and placebo 

groups, which may indicate that treatment, which is discontinued at progression, does not 

have a lasting effect, or affects progression alone. 

Figure 2-3 shows Kaplan-Meier estimates of the survivor function by treatment group for 

progression (left) and death (right). The x-axis is truncated at the pooled 75th percentile of 

follow-up time, which for progression is approximately 6 months and for death is 

approximately 18 months. 
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to placebo n=1282 

Patients randomised 
to Zactima n=1567 
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Figure 2-3 Kaplan-Meier estimates of survivor function by treatment group for progression (left) and death (right) 

 

 

 

 

 

 

For cancer progression, there is a clear survival advantage in the treatment group. For death, 

there a minimal survival advantage in the treatment group is apparent after 6 months post-

randomisation.  

 

 

2.4.3.2 Results from fitting Cox models 

 

Table 2-8 shows the estimated effects of treatment obtained by fitting the stratified Cox 

models specified in Table 2-6. The right-hand column reports results for the likelihood ratio 

test of statistical significance of the coefficient for the treatment effect [47, 49].   
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Table 2-8 Estimated hazard ratios for the effects of treatment 

Outcome Description Model 
number 

Estimated 
HR 

95% CI for 
HR 

Χ2
,
 P for 

inclusion in 
the model 

Progression Effect of treatment on 
progression 

2-3 0.74 [0.68, 
0.81] 

Χ2
1=45.4, 

P<0.001 

Death  Overall effect of 
treatment on death 

2-4 0.92 [0.84, 
1.01] 

Χ2
1=2.9, 

P=0.09 

 Effect of treatment on 
death, controlled for 
progression 

2-5 1.00 [0.91, 
1.10] 

Χ2
1<0.001, P= 

0.96 

 Effect of treatment on 
death with a 
progression 
interaction: effect of 
treatment before 
progression 

2-6 1.01 [0.83, 
1.23] 

Χ2
2=0.02, 

P=0.99 

 Effect of treatment on 
death with a 
progression 
interaction: effect of 
treatment after 
progression 

 1.00 [0.90, 
1.11] 

 

 

The results reported in Table 2-8 confirm that the estimated effect of treatment on 

progression is protective and statistically significant. The overall effect of treatment on death 

estimated by fitting Model 2-4 is protective with HR=0.92, but of borderline statistical 

significance, P=0.09. When the effect of progression on death is taken into account by fitting 

Model 2-5, the protective effect of treatment disappears, with HR=1.00, P=0.96.  

The interaction term in Model 2-6 is not statistically significant, χ2
1=0.01, P=0.91. This implies 

that there is no evidence that the effect of treatment on death differs according to progression 

at time t.   

The addition of interaction terms between treatment and trial to each model indicate a lack of 

evidence that the effect of treatment is different by trial, χ2
2=3.39, P=0.18 for Model 2-3, 

χ2
2=1.64, P=0.44 for Model 2-4 and χ2

2=2.35, P=0.31 for Model 2-5. It is therefore reasonable 

to assume that the effects of treatment are homogeneous across the three datasets. 

An examination of the Nelson-Aalen plots of cumulative hazard by treatment group (not 

shown) indicates that the hazards of progression appear proportional. For the death outcome, 
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the hazards are very close for the first 6 months. After this time, the hazards appear 

proportional. 

Table 2-9 shows the results of the regression-based proportionality test for the treatment 

effect in Models 2-3, 2-4 and 2-5. A statistically significant result indicates evidence against 

proportionality in treatment [50, 51]. 

Table 2-9 Results of the proportionality tests for treatment applied to the pooled dataset  

Outcome 
 

Description Model number χ2, P for test of 
proportionality of 
treatment effect 

Progression 
 

Effect of treatment on 
progression 

2-3 χ2
1=0.24, P=0.62 

Death 
 

Overall effect of treatment on 
death 

2-4 χ2
1=0.40, P=0.53 

 
 

Effect of treatment on death, 
controlled for progression 

2-5 χ2
1=0.11, P=0.74 

 

In the pooled dataset, there is insufficient evidence against the assumption of proportionality 

with respect to treatment. For the progression outcome, there is some evidence against 

proportionality for some of the fixed baseline covariates. Stratifying on these covariates and 

re-fitting Model 2-3 did not materially change inferences about the treatment effect, with the 

hazard ratio and 95% CI becoming 0.74 [0.68, 0.81]. For the death outcome, there is some 

evidence against proportionality for one of the baseline covariates in Model 2-4. Stratification 

did not materially affect inferences about treatment effects, with the hazard ratio and 95% CI 

becoming 0.92 [0.84, 1.02]. For Model 2-5, there is no evidence against proportionality for the 

fixed baseline covariates. 

 

 

2.5 Discussion 

 

Pooling the datasets from the three trials increases the numbers of observations available to 

estimate treatment effects on the component events of the composite outcome. However, as 

noted in section 2.4.1, there is an assumption of homogeneity of treatment effects across the 

three trials. Even though the trial-specific treatment effect estimates reported in Table 2-4 

appear to differ across trials, these between-trial differences are shown to be not statistically 

significant (see text below Table 2-8), justifying the pooling of the trials datasets.  
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The trial-specific analyses indicate that treatment is protective of progression in all three trials, 

but this effect is statistically significant in only two of the three trials. The effect of treatment 

on death appears to be protective, but is not statistically significant in any of the three trials. 

The datasets were pooled to increase the precision of the treatment effect estimates. 

Treatment is found in the pooled dataset to be significantly protective of progression. This is 

consistent with the results of the Zodiac and Zephyr trials.  

In the pooled dataset, the estimated overall effect of treatment on death is protective, but not 

statistically significant. This could be a result of low power in the data to detect a treatment 

effect on one component of a composite outcome.  

The addition of a treatment-progression interaction in Model 2-6 is not statistically significant, 

indicating a lack of evidence that the effect of treatment on death depends on whether 

progression has occurred (see Table 2-8). This is in spite of the fact that treatment stopped 

when progression was detected. 

The difference in the estimated treatment effects obtained by fitting Model 2-4, which does 

not adjust for progression, and Model 2-5, which does adjust for progression, suggests that 

there is some effect of treatment on death that works through the progression event (see for 

example [40, 41]).  

Investigating the existence of such an indirect effect in the context of the component events of 

a composite time-to-event outcome forms a major part of this thesis, and is addressed in 

chapters 5, 6 and 7. In chapter 8, the indirect effect of treatment on death through its effect 

on cancer progression is estimated in the Zactima trials dataset.  
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3 The additive hazards model 

 

 

3.1 Introduction 

 

Aalen [38] identifies two major drawbacks of proportional hazards models, a class which 

includes both fully parametric models such as the exponential and Weibull models (see for 

example [48]) and the semi-parametric Cox model. The first is that in a situation with multiple 

explanatory variables, the proportional hazards assumption for a given variable may depend 

on which other variables are included in the model [38, 50]. The second is that the 

proportional hazards assumption may hold for a given continuous variable under some 

variable transformations but not others; the proportionality assumption is linked to correct 

specification of the model. A consequence of this is that time-varying effects (non-

proportionality of hazards) may be identified under one variable transformation but not 

another [38, 53].  

A model that relaxes the assumption of proportionality of hazards is the additive hazards 

model proposed by Aalen, using counting process notation for time-to-event outcomes [38, 

53]. As well as not assuming proportionality of hazards, this model easily accommodates time-

varying covariate effects, so can be very flexible [20, 38]. The additive hazards model estimates 

coefficients representing differences in hazards, rather than the hazard ratios estimated by the 

Cox model [38, 53].  It shares some of the properties of linear regression models, which allow 

the effect of an explanatory variable on a time-to-event outcome to be partitioned into a 

direct effect and an indirect effect working through a mediator variable (see chapter 5). Such a 

decomposition is not in general possible when the time to event outcome is modelled with a 

non-linear model such as the Cox model (see [17, 20, 32] and chapter 5).  

 

 

3.1.1 Aims 

 

This chapter introduces the additive hazards model, which will be used in mediation analysis in 

future chapters (see chapters 5, 7 and 8). It also reports the results of simulation studies 
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conducted to verify that the model estimates are unbiased when applied to simple situations 

with a single time-fixed explanatory variable (either binary or continuous) and a time-to-event 

outcome. 

The aims of the chapter are: 

1. To introduce the terminology of counting processes, which is used to define the 

additive hazards model; 

2. To introduce the additive hazards model for survival data; 

3. To use simulation studies to verify that the estimation of the additive hazards model 

described by Aalen produces unbiased estimates of the cumulative hazard coefficients 

with good coverage in a simple setting with a single time-fixed explanatory variable. 

Further simulations are presented in chapters 6 and 7 to examine the behaviour of the 

additive hazards model in more complex situations. 

The time-to-event setting considered here involves a single absorbing event, a state which, 

when entered, cannot be left. Hereafter this event is referred to as death. The notation used 

to denote the main variables referred to in this chapter are: 

• N(t), the counting process associated with death [20], which records the number of 

deaths that have occurred up to and including time t; 

• dN(t), the increment of N(t), a binary variable indicating whether or not a death is 

observed within the very small time interval [t, t+dt) [20]; 

• TD, the random variable representing time to death;  

• An explanatory variable (or vector of explanatory variables), which, depending on the 

context, is specified as: 

o A vector of k explanatory variables whose values may vary over time, written 

as X(t)=(X1(t), X2(t)… Xk(t))T, where the T superscript denotes transposition; 

o Xtrt, binary explanatory variable indicating treatment; 

o Xcont, continuous explanatory variable representing the level of some exposure 

or biomarker. 

To keep the notation simple, in this chapter we assume that observations are not affected by 

censoring. However, Aalen [20] shows that the form of the intensity process described in the 

next section is preserved under independent censoring. 
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3.2 Introduction to counting processes 

 

This section provides a non-technical introduction to the key concepts in counting processes as 

applied to a survival data setting, and is based largely on Hosmer [49] and Aalen [20]. 

Consider a single individual in a study who is under observation from time t=0 until death. The 

random variable denoting the individual’s survival time is TD. Using standard survival analysis 

notation, the individual’s hazard of death at time t is given by: 

α(t)dt = Pr (t ≤ TD < t + dt|TD ≥ t)     3-1 

Formally, the conditioning in expression 3-1 above, and elsewhere, includes changes in 

covariate values over time, and number of events before time t; however, throughout this 

chapter the simpler notation TD≥t is used. In this same setting, the counting process for a given 

individual records the number of deaths that have occurred up to time t with: 

N(t) = I(TD ≤ t)       3-2 

This is equivalent to recording whether death has occurred by time t given that death can only 

occur once and thus, just before the event occurs, N(t)=0. At the time of the event, the value 

of N(t) jumps from 0 to 1 and stays at 1 for the rest of the of the study. The increment of this 

process dN(t) is a binary variable indicating whether or not an event is observed within the 

very small time interval [t, t+dt) [20]. 

The at-risk process Y(t) for the individual indicates whether he is still at risk of death at time t: 

Y(t) = I(TD ≥ t)       3-3 

For times t when the individual has not yet experienced the event, and is therefore at risk of 

the event, Y(t)=1. Once the event has occurred, the individual is no longer at risk, and Y(t)=0. 

The intensity process expresses the expected change in number of deaths during the very 

small interval [t, t+dt), given the history up to time t. This is equivalent to the conditional 

probability that an event occurs in [t, t+dt), given that the event has not yet occurred [20]. The 

intensity process can thus be written as: 

λ(t)dt = P(dN(t) = 1|TD ≥ t)      3-4 

Given the definition of hazard in expression 3-1, and linking standard to counting processes 

notation, the intensity process is given by: 
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λ(t)dt = P(dN(t) = 1|TD ≥ t) = P(t ≤ TD < t + dt|TD ≥ t) = Y(t)α(t)dt  3-5 

from Aalen [20].  

The total number of expected events for the individual up to and including time t is given by 

the cumulative intensity, Λ(t), which is obtained by integrating the intensity process λ(t)dt over 

the interval [0, t]: 

Λ(t) = ∫ λ(u)du =
t

0
 ∫ Y(u)α(u)

t

0
du     3-6 

The difference between the counting process and the cumulative intensity is a quantity 

analogous to a residual, with expected value 0, defined as a martingale M(t): 

M(t) = N(t) − Λ(t)       3-7 

[54]. Expression 3-7 can be rearranged to give an expression for the counting process N(t) in 

terms of its expected value Λ(t) and the martingale M(t): 

N(t) = Λ(t) + M(t)        3-8 

and similarly, the increment of the counting process dN(t) can be written as 

dN(t) = λ(t)dt + dM(t)      3-9   

so that at time t, the increment dN(t) represents an outcome with expected component λ(t)dt 

and residual dM(t) [20]. The predictable component of this formulation, the intensity process 

λ(t)dt, can be modelled using a linear approach [20]. The additive hazards model introduced in 

section 3.3 below is one of a class of models that takes this approach [20, 53].  

 

 

3.3 Introduction to the additive hazards model 

 

Consider a vector of k explanatory variables X(t) as defined in section 3.1.1. Observed values 

of the explanatory variables at time t are 𝐱(t) = (x1(t), … , xk(t))
T

. These values may be time-

varying or fixed. The hazard function α(t|x(t)) can be expressed as a function of the observed 

values of x(t). The effects of the explanatory variables on the intensity process can be 

modelled by writing the intensity process in terms of the hazard function using expression 3-5: 

λ(t|𝐱(t))dt = Y(t)α(t|𝐱(t))dt      3-10 
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The hazard function α(t|x(t)) is defined by Aalen [20] as an additive function of x(t) as follows: 

α(t|𝐱(t)) = γ0(t) + γ1(t)x1(t) + ⋯ + γk(t)xk(t)   3-11 

The covariate coefficients γg(t), g=0,1,…, k may vary freely over time [20, 38, 39]. 

The estimation procedure for the additive hazards model focuses on the cumulative regression 

functions, Γg(t) = ∫ γg(u)du
t

0
, g=0,1,…, k, because estimating γg(t), g=0,1,…k at every time t 

would be imprecise [20]. 

The cumulative regression coefficients are estimated as described in the following text. Using 

expressions 3-9 and 3-10, and writing γg(t)dt = dΓg(t) for notational consistency: 

dN(t) = Y(t)(dΓ0(t) + dΓ1(t)x1(t) + ⋯ + dΓk(t)xk(t)) + dM(t) 3-12 

Expression 3-12 takes the form of an ordinary linear regression model [20, 38], because it is 

written with the outcome expressed in terms of observed data dN(t). This can be written in 

matrix notation. From Aalen [20], 𝐍(t) = (N1(t), … , Nn(t))
T

 is the vector of observed 

counting process outcomes for individuals i=1,2… n. The vector of cumulative regression 

functions is 𝚪(t) = (Γ0(t), … , Γk(t))
T

, and the vector of martingales is 𝐌(t) =

(M1(t), … , Mn(t))
T

. The (nx(k+1)) matrix 𝐗∗(t) combines covariates and at-risk indicators, 

such that the ith row of the matrix is given by (Yi(t), Yi(t)xi1(t), … Yi(t)xik(t)). Model 3-12 can 

now be written as 

d𝐍(t) = 𝐗∗(t)d𝚪(t) + d𝐌(t)      3-13 

Ordinary least squares regression can be used to obtain estimates of the regression 

coefficients,  d𝚪̂(t) [20, 38, 39]. If X*(t) has full rank, meaning that its columns are linearly 

independent, then the inverse of (X*(t)TX*(t)) exists. The estimator of dΓ(t) is then given by: 

d𝚪̂(t) = (𝐗∗(t)T𝐗∗(t))
−1

𝐗∗(t)Td𝐍(t)     3-14 

This is the estimator familiar from ordinary least-squares regression (see for example [55]). 

At time t, the estimator of the cumulative regression functions Γ(t) is given by: 

𝚪̂(t) = ∫ (𝐗∗(u)T𝐗∗(u))
−1

𝐗∗(u)Td𝐍(u)
t

0
= ∑ (𝐗∗(tj)

T
𝐗∗(tj))

−1

𝐗∗(tj)
T

∆𝐍(tj)tj≤t  3-15 

with the sum including only those tj when an event occurs and X’(tj) has full rank. ∆𝐍(tj) 

relates to event times tj and consists of a vector of 0s, with a single 1 in the position 
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corresponding to the individual who has the event at time tj. The estimator is unbiased if there 

is a high probability that X*(t) has full rank at time t [20, 30, 31, 38].  

The resulting estimates are usually presented as a plot of Γ̂g(t) against t, for g=0,1,…,k. 

Because the plot shows a cumulative estimate Γ̂g(t), covariate effects are represented by the 

slope of the estimated curve, and time-varying effects are represented by changes in this slope 

[20, 38, 42]. The graphical format has the advantage of clearly showing changes in covariate 

effects over time, reflecting one of the strengths of the additive hazards model. 

Hosmer and Royston [56] show that the variance of  Γ̂g(t) can be estimated by Var̂ (Γ̂g(t)) =

∑ γg
2̂

tj≤t (tj). From this expression, pointwise 95% confidence limits can be derived and plotted 

[56]. 
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Illustrative example 3-1 

Figure 3-1 below is an example of a plot of a cumulative regression coefficient over time, 

namely of a treatment effect. To obtain the plot the following additive hazards model was 

fitted to the pooled Zactima trials dataset to estimate the effect of treatment (treat) on the 

outcome of cancer progression, adjusting for trial type (trial) and baseline covariates (W): 

α(t|treat, 𝐭𝐫𝐢𝐚𝐥, 𝐰) = γ0(t) + γ1(t)treat + 𝛄𝟐
𝐓(t)𝐭𝐫𝐢𝐚𝐥 + 𝛄𝟑

𝐓(t)𝐰   3-16

  

Figure 3-1 Estimated cumulative regression coefficient 𝚪𝟏̂(𝐭) for the effect of treatment on progression with 95% 
pointwise confidence limits  

 

From Figure 3-1, the slope of the cumulative regression coefficient is negative, meaning that 

treatment has a protective effect on cancer progression. There is no apparent effect of 

treatment on progression at the very start of follow-up. From about 0.5 months to about 5 

months, the effect of treatment on progression is approximately constant, because the slope 

of the plot is approximately a straight line.  

This analysis is presented fully in chapter 4. 
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Tests of the null hypothesis that Γg(t)=0 at all t, meaning that Xg(t) has no effect on death, 

g=1,…k, have been proposed [38, 39, 53, 56, 57]. In general, the tests involve the time-specific 

parameter estimates γ̂g(t) being weighted with some function, then summed over event 

times. The result is scaled by the estimates of the time-specific standard errors, and referred to 

a standard normal distribution [53, 56]. Suitable weighting functions include: 

• weights equal to the number of individuals in each risk set; 

• weights equal to the square root of the inverse of the variance; 

• weights equal to the Kaplan-Meier estimate of the survival function just before each 

event time; 

• weights=1   

[38, 56, 57]. There is no consensus on which weighting method to use. 

A simple method for checking the fit of the additive hazards model has been adapted from 

Arjas [58] by Aalen [20, 38, 58]. In brief, estimated cumulative intensity processes Λ(t) are 

aggregated over suitable subgroups defined by key covariates and compared to the counting 

processes N(t) aggregated over the same subgroups. This is equivalent to a plot of observed 

against expected numbers of events within each subgroup [20]. As the Arjas plot does not 

involve a time dimension, it is used to evaluate model fit as events accrue, and does not 

specifically refer to model fit as time passes [20].  

  



49 
 

 

Illustrative example 3-2 

Figure 3-2 below is an example of an Arjas plot. The additive hazards model described in 

illustrative example 3-1 was fitted to the pooled Zactima trials dataset to estimate the effect of 

treatment on the outcome of cancer progression. The plot is obtained by graphing observed 

against expected numbers of events in each treatment group. The reference line y=x indicates 

that the model perfectly predicts the numbers of events experienced within each treatment 

group. 

Figure 3-2 Arjas plot of observed against expected number of events by treatment group 

 

The plots of observed against expected cumulative numbers of progressions are close to a 

straight line along y=x passing through the origin. This means that the cumulative numbers of 

progressions predicted by the model are close to the observed cumulative numbers of 

progressions, and therefore that the model provides a good fit to the data. 

This analysis is presented fully in chapter 4. 

 

In summary, regression coefficients in the additive hazards model can be estimated by fitting a 

least-squares regression model for the effect of the covariates on dN(t) at each event time t, 

dN(t) consisting of a vector of 0s for each individual in the risk set just before time t, and a 1 

corresponding to the individual who experiences the event at time t. The estimates are then 

summed over time to give rise to a cumulative estimate for the effect of each covariate over 
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time. The model can be fitted in Stata using the stlh command written by Hosmer and 

Royston [56]. Tied event times are dealt with sequentially [56]. 

The following section 3.4 investigates the behaviour of the additive hazards model using 

simulation studies. 

 

 

3.4 Simulation studies to assess performance of the additive hazards 

model 

 

The simulation studies presented in this section address aim 3) in section 3.1.1 of verifying that 

the additive hazards model produces unbiased estimates with good coverage of the 

cumulative regression coefficient when there is a single time-fixed explanatory variable X 

(which may be further specified as Xtrt or Xcont as described in section 3.4.1 below). These 

simulations form a basis for simulations in later chapters which will evaluate dynamic path 

analysis and the proposed extension to dynamic path analysis. 

The estimation model given in Table 3-1 below refers to a single time-fixed explanatory 

variable X. In Table 3-1 the model has parameters γ0(t) representing the baseline hazard of the 

event at time t and γ1(t) representing the increment in hazard of the event at time t for a unit 

increase in X.  Interest in this section focuses on Γ1(t) (or Γ2(t), depending on context), the 

cumulative coefficient of X. Estimates γ1̂(tD) are obtained as described in section 3.3 by fitting 

the model at each event time tD. These estimates are summed over event times to give the 

cumulative estimate Γ1̂(tD), using the estimator shown in Table 3-1. 

Table 3-1 Additive hazards model to estimate the effect of a single time-fixed predictor 

Setting Estimation model Estimand 
(Cumulative coefficient 
at time t) 
 

Estimator 
(Estimator for cumulative 
coefficient at death time tD) 

Additive 
hazards model 
with a time-
fixed X 

 

α(t|X) = γ0(t) + γ1(t)X 

 

Γ1(t) = ∫ γ1(u)
t

0

du Γ1̂(tD) = ∑ γ1̂(tj)
tj≤tD

 

The γ1̂(tj) are estimated by fitting a least-squares regression model at each event time tj. 
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3.4.1 Data generation in the simulation studies 

 

The simulations presented in this chapter consider three different scenarios where the 

explanatory variable has an additive effect on the baseline hazard:  

a) a time-fixed binary explanatory variable Xtrt, and constant baseline hazard function 

γ0(t)= γ0, so that TD is exponentially distributed;  

b) a time-fixed binary explanatory variable Xtrt, and time-varying baseline hazard function 

γ0(t), so that TD follows a Weibull distribution in the baseline group; 

c) a time-fixed continuous explanatory variable Xcont, and constant baseline hazard 

function γ0(t)= γ0, leading to TD being exponentially distributed. 

 

Settings a) and c) correspond to the events occurring at a constant rate, given the value of Xtrt 

or Xcont, throughout follow-up. The use of the Weibull distribution in setting b) is intended to 

check the performance of the estimates when the event occurs at a non-constant rate. 

The strategy for carrying out the simulations is to generate the simulation datasets using the 

additive hazards models shown in Table 3-2, obtain the parameter estimates by fitting the 

additive hazards model (shown in Table 3-1) to the simulated data, and compare the estimate 

to the true value of the estimand. 

Models used to generate the data are shown in Table 3-2 below. Throughout the rest of this 

chapter, the parameter values chosen as part of data generation are marked with an asterisk 

to emphasise that they are known. 
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Table 3-2 Data generation models for the additive hazards model with a single predictor 

Setting Data generation models True value of the 
estimand 

a) Additive hazards model 
with explanatory variable 
Xtrt, TD is exponentially 
distributed 

α(t|Xtrt) = γ0
∗ (t) + γ1

∗ Xtrt 

γ0(t) = γ0
∗  

P(Xtrt = 1) = p∗ 

 

 

Γ1(t) = ∫ γ1
∗

t

0

du = γ1
∗ t 

b) Additive hazards model 
with explanatory Xtrt, TD 
follows a Weibull 
distribution in the baseline 
group 

α(t|Xtrt) = γ0
∗ (t) + γ1

∗ Xtrt  

γ0(t) = ν∗κ∗tν∗−1  

P(Xtrt = 1) = p∗  

 

Γ1(t) = ∫ γ1
∗

t

0

du = γ1
∗ t 

c) Additive hazards model 
with explanatory variable 
Xcont, TD is exponentially 
distributed 

α(t|Xcont) = γ0
∗ (t) + γ2

∗ Xcont 

γ0(t) = γ0
∗  

E(Xcont) = δ0
∗  

Γ2(t) = ∫ γ2
∗

t

0

du = γ2
∗ t 

Event times TD were generated using the Stata command survsim (see [59]) according to the 

models for α(t|Xtrt) and α(t|Xcont) shown in Table 3-2. The command allows complex survival 

time data to be generated with user-defined hazard functions. These user-defined hazard 

functions comprised a baseline hazard γ0(t) and an effect representing the additive 

contribution to the hazard of Xtrt or Xcont, given by γ1
∗  or γ2

∗  respectively. The baseline hazard 

was either set to a constant γ0
∗  in setting a) or c), or given by γ0(t) = ν∗κ∗tν∗−1 where κ*>0 

and ν*>0 in setting b). The binary treatment indicator Xtrt was generated using a uniformly 

distributed random variable U1 defined over the interval (0,1) with a cutoff 0<p*<1 such that 

Xtrt=0 if U1<p*, Xtrt=1 if U1>p*. 

Values of Xcont were drawn from a normal distribution with mean δ0
∗  (see below) and standard 

deviation 0.2. The value of the standard deviation was chosen to ensure a reasonable spread 

of values of Xcont about δ0
∗ . 

Several values were specified for γ1
∗  and γ2

∗  (the coefficients for the explanatory variables Xtrt 

and Xcont respectively). For simplicity, these parameters values are set to certain values in the 

interval (0,1]. Values of the baseline parameters γ0
∗ , ν∗ and κ∗ were chosen so that: 

a) the 75th percentile of survival time (when reporting ends in accordance with the 

recommendations of Hosmer and Royston [56]) would fall at time t=4; results of the 

simulations are reported at t=1,2,3,4 (see below); 

b) the differences in hazards associated with the explanatory variables corresponded to 

plausible hazard ratios, because hazard ratios are a more familiar effect measure. For 
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example, in simulation setting 1 (see Table 3-3) the coefficient for Xtrt, γ1
∗ , was set to 

0.2. The baseline hazard γ0
∗  was set to 0.27, corresponding to a hazard ratio associated 

with Xtrt of 1.74. 

Parameter values chosen for the simulations are reported in Table 3-3 below. 

 

Table 3-3 Simulation parameters for evaluation of the additive hazards model 

  
Explanatory variable Xtrt 

Simulation 
setting number 

1 2 3 4 

Parameter 
𝛄𝟎

∗ (t) 
    

0.27 0.20 - - 
κ* - - 0.40 0.25 
ν* - - 0.70 0.85 
𝛄𝟏

∗
 0.20 0.50 0.20 0.50 

p* 0.5 for all settings 1-4 

  
Explanatory variable Xcont 

Simulation 
setting number 

5  6  

Parameter     
𝛄𝟎

∗ (t) 0.10  0.07  
𝛄𝟐

∗
 0.50  1.00  

𝛅𝟎
∗

 0.50  0.30  

 

In these simulations, administrative censoring was set to be minimal for simplicity. To achieve 

this, censoring time was chosen to be t=5 for all individuals.  Given the choices of parameter 

values shown in Table 3-3, this means that death would be experienced by all but a handful of 

individuals. There was no censoring apart from this administrative censoring. 

Each simulation generated 1000 datasets with N=3000 individuals. The dataset size of N=3000 

was chosen to be similar to the size of the Zactima trials dataset (see chapter 2). 

 

 

3.4.2 Evaluation of the model using the simulated datasets 

 

The estimates obtained by fitted the additive hazards model using the methods described in 

section 3.3 were compared with the true values of the estimands using the metrics listed in 
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Table 3-4 below. The symbol τ refers generically to the true value of the parameter of interest 

(Γ1(t) or Γ2(t)). 

Table 3-4 Metrics reported for the additive hazards model simulations with a single explanatory variable 

Metric1 

 
Interpretation 

τ True value of the quantity of interest set in the data 
generation process 

τ̅ =
∑ τp̂p

P
 

Mean value of the estimate of τ across simulation 
runs  

τ̅ − τ

τ
× 100 

Percentage bias 

Percentage of times the 95% 
confidence interval for τ̂p includes τ 

95% coverage 

∑ SE(τp̂)p

P
 

Mean model-based standard error  

SE(τ̂) = √
1

P − 1
∑(τp̂ − τ)

2

p

 
Empirical standard error 

1Note that τ̂p denotes the estimate from simulated data set p, p=1, … P; P=1000. 

The choice of these metrics is based on Burton [60] and aims to provide quantitative 

evaluation of the model rather than the simple graphical comparison that is common in the 

literature (see for example [42]). 

The metrics are reported at four timepoints, t=1,2,3,4. The last of the four timepoints 

represents the approximate 75th percentile of TD, in accordance with Hosmer and Royston [56].  

A graphical comparison of the estimands and mean values of the estimates over time (as used 

widely in the literature) is also provided for one simulation setting as an illustrative example. 

 Burton [60] recommends that coverage should be within approximately 2 standard errors of 

the nominal coverage probability q, SE(q) = √q(1 − q)/P  to control the probability of type I 

error. The acceptable level of coverage for a 95% confidence interval based on 1000 

repetitions is therefore between 93.6% and 96.4%. Percentage bias as defined in Table 3-4 

should be low at each time point if the additive hazards model performs well in the settings 

shown in Table 3-2 and Table 3-3. 
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3.4.3 Results from the simulation studies 

 

Table 3-5 shows results of simulation settings 1-4 evaluating the additive hazards model with a 

fixed binary explanatory variable Xtrt.  The table confirms good agreement of the estimates 

with the true values, with low percentage bias (below 1%) at each of the four evaluation 

timepoints. Coverage falls within the acceptable boundaries at each evaluation timepoint. The 

empirical and model-based standard errors of Γ1̂(t) are close, which according to Burton [60] 

signals a lack of bias in the estimated standard errors. By design, the final evaluation timepoint 

t=4 falls close to the mean of the 75th percentile of TD across simulations.
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Table 3-5 Evaluation of the performance of the additive hazards model with explanatory variable Xtrt. The values of baseline parameters 𝛄𝟎
∗  or κ* and ν* are given as footnotes. Results are based 

on 1000 simulated data sets of N=3000 individuals. 

  TD follows an exponential distribution 
 

Time 

 TD follows a Weibull distribution in the baseline 
group 

Time 
 Simulation 

setting 
Simulation 
setting 

  1 2 3 4  1 2 3 4 

 1 γ1
∗=0.21 3 γ1

∗=0.23 

True value Γ1(t)  0.2 0.4 0.6 0.8  0.2 0.4 0.6 0.8 

Mean of estimates 
Γ1̂(t) 

 0.199 0.399 0.598 0.798  0.200 0.400 0.599 0.798 

Mean percentage 
bias 

 -0.09 -0.16 -0.27 -0.28  0.05 -0.11 -0.24 -0.22 

Mean % of deaths in 
sample 

 30.6  51.3  65.5  75.4  38.9  56.3  67.3  74.7  

95% coverage  95.7  95.0  94.8  95.8   95.2  94.6  95.3  95.4  

Empirical / Model-
based SE 

 0.024 
/0.025 

0.039 
/0.039 

0.053 
/0.054 

0.071 
/0.071 

 0.029 
/0.029 

0.043 
/0.043 

0.055 
/0.056 

0.069 
/0.069 

 2 γ1
∗=0.52 4 γ1

∗=0.54 

True value Γ1(t)  0.5 1.0 1.5 2.0  0.5 1.0 1.5 2.0 

Mean of estimates 
Γ1̂(t) 

 0.500 0.999 1.499 1.999  0.499 0.999 1.500 2.000 

Mean percentage 
bias 

 0.04 -0.10 -0.05 -0.02  -0.14 -0.12 0.01 -0.02 

Mean % of deaths in 
sample 

 34.2  54.1  66.4  74.5   37.4  56.4  67.6  74.8  

95% coverage  95.4  94.9  95.1  94.8   95.4  94.7  95.1  94.9  

Empirical/ Model-
based SE 

 0.028 
/0.029 

0.049 
/0.049 

0.073 
/0.073 

0.108 
/0.106 

 0.029 
/0.030 

0.049 
/0.050 

0.074 
/0.075 

0.109 
/0.106 

1 γ0
∗ =0.27   2 γ0

∗ =0.20  3 κ*=0.40, ν*=0.70  4 κ*=0.25, ν*=0.85 
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Illustrative example 3-3 

Figure 3-3 shows graphs comparing the true cumulative regression coefficient for Xtrt, Γ1(t), 

with the mean value of the estimates across simulations  Γ1p̂(t), p = 1, … 1000, both plotted 

against time for simulation settings 2 and 4. The graph for simulation setting 2 provides an 

illustrative example of the performance of the estimator Γ1̂(t) when TD is exponentially 

distributed, while the graph for simulation setting 4 provides an illustrative example when TD 

follows a Weibull distribution in the baseline group. For each simulated dataset p of the 1000 

generated, the value at evaluation timepoint t’ of  Γ1p̂(t′) is taken as the value of Γ1p̂(tD)  

estimated at the last event time before time t’, so that very little time elapsed between the tD 

and the corresponding t’.  The values of the Γ1p̂(t′)  are then averaged over the 1000 

simulations.  

Figure 3-3 Example graphs showing the values of 𝚪𝟏(𝐭) and the mean 𝚪𝟏̂(𝐭) over time from simulation setting 2 

(left) and simulation setting 4 (right). The dashed lines representing the mean of the 𝚪𝟏̂(𝐭) are hidden beneath 

the solid lines representing 𝚪𝟏(𝐭). In both of these examples 𝛄𝟏(𝐭) = 𝛄𝟏
∗ = 𝟎. 𝟓. 

 

 

 

 

 

 

The graphs in Figure 3-3 indicate that the estimator provides unbiased estimates.  

 

Table 3-6 shows results of the simulations for settings 5 and 6 evaluating the additive hazards 

model with a continuous explanatory variable Xcont. Percentage bias in the Γ2̂(t) is negligible 

(less than 1% at all evaluation timepoints) and coverage is inside the acceptable range at each 

evaluation timepoint. The empirical and model-based standard errors of the Γ2̂(t) are close at 

each timepoint, confirming a lack of bias in the estimates [60].  
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Table 3-6 Evaluation of the performance of the additive hazards model with explanatory variable Xcont. The values 
of baseline parameters 𝛄𝟎

∗  and 𝛅𝟎
∗  are given as footnotes. Results are based on 1000 simulated data sets of 

N=3000 individuals. 

  TD follows an exponential distribution 
 

Time 
 Simulation 

setting 

  1 2 3 4 

 5 γ2
∗ =0.55 

True value Γ2(t)   0.5 1.0 1.5 2.0 

Mean of estimates 
Γ2̂(t) 

 0.497 0.999 1.498 1.993 

Mean percentage bias  -0.64 -0.04 -0.15 -0.36 

Mean % of deaths in 
sample 

 29.2  49.3  63.4  73.3  

95% coverage  95.8  95.0  95.2  95.5  

Empirical / Model-
based SE 

 0.058 
/0.059 

0.091 
/0.091 

0.123 
/0.021 

0.151 
/0.052 

 6 γ2
∗ =1.06 

True value Γ2(t)  1 2 3 4 

Mean of estimates 
Γ2̂(t) 

 0.999 2.004 2.998 3.990 

Mean percentage bias  -0.09 0.22 -0.06 -0.25 

Mean % of deaths in 
sample 

 30.6  51.3  65.5  75.3  

95% coverage  95.5  95.4  95.8  95.5  

Empirical/ Model-
based SE 

 0.124 
/0.122 

0.187 
/0.188 

0.251 
/0.253 

0.316 
/0.321 

5 γ0
∗ =0.1, δ0

∗=0.5  6 γ0
∗ =0.07, δ0

∗ =0.3  
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Illustrative example 3-4 

Figure 3-4 is a graphical example showing the true cumulative regression coefficient for Xcont, 

Γ2(t), with the mean value of the estimates across simulations  Γ2p̂(t), p = 1, … 1000 plotted 

against time for simulation setting 6. The superimposition of the lines representing Γ2(t) and 

the mean of Γ2̂(t) indicate good agreement between the true values and the estimated values. 

Figure 3-4 Example graph showing the values of 𝚪𝟐(𝐭) and the mean 𝚪𝟐̂(𝐭) over time from simulation setting 6. 

The dashed line representing the mean of the 𝚪𝟐̂(𝐭) are hidden beneath the solid line representing 𝚪𝟐(𝐭). In this 
example 𝛄𝟐(𝐭) = 𝛄𝟐

∗ = 𝟏. 𝟎. 

 

 

 

 

 

 

 

 

From the results reported in Table 3-5 and Table 3-6, the additive hazards model seems to 

perform well for both continuous (Xcont) and binary (Xtrt) explanatory variables. 

 

 

3.5 Summary 

 

In this chapter, the additive hazards model has been introduced using the counting process 

framework. Results presented in section 3.4.3 have confirmed the expectation that fitting the 

additive hazards model produces unbiased estimates of the cumulative regression coefficients 

in models with a single time-fixed explanatory variable in the settings investigated, when the 

data were generated using an additive hazards model. The simulations in this chapter have not 

been exhaustive, but have provided an illustration of how the additive hazards model works, 

and have demonstrated how the performance of simulations in this thesis can be evaluated. 
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Having established that the additive hazards model produces unbiased estimates that perform 

well in simple situations and with a realistic number of observations (N=3000), chapter 4 

reports results from the analysis of the Zactima trials using additive hazards models.  
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4 Estimating treatment effects in the Zactima trials using the 

additive hazards model 

 

 

4.1 Introduction 

 

The analyses reported in chapter 2 indicate that treatment is protective of progression in the 

Zactima trials. A Cox model fitted on the pooled dataset to estimate the effect of treatment on 

death gives evidence of a borderline protective effect of treatment, which however disappears 

when progression is added to the model as an additional explanatory variable.  

As noted in chapter 3, two drawbacks of the Cox model are its assumption of proportionality 

and the difficulty of identifying time-varying covariate effects (see [48, 50, 53] and section 3.1). 

The additive hazards model [53], in contrast, does not assume proportionality and allows 

covariate effects to vary freely over time. Using additive hazards models to investigate the 

effects of treatment on progression and death therefore allows the relationships between the 

explanatory variables and outcomes to be explored, without the limitations of the Cox model.   

 

 

4.1.1 Aims 

 

This chapter estimates cumulative regression coefficients associated with treatment in the 

Zactima trials by fitting additive hazards models. These estimates are compared with the 

results from the Cox models fitted in chapter 2. 

The aims of the chapter are: 

1. to demonstrate the implementation of additive hazards models in the pooled Zactima 

dataset by estimating the effects of treatment on: 

a. progression 

b. death, not adjusting for progression 

c. death, adjusting for progression by including progression as a time-updated 

explanatory variable; 
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2. to compare these treatment effect estimates with those obtained using Cox models, 

and determine whether the Cox model estimates adequately summarise treatment 

effects in the pooled Zactima trials.  

 

 

4.2 Methods 

 

The additive hazards models listed in Table 4-1 were fitted separately to estimate the effects 

of treatment on the outcomes of progression and death. All the additive hazards models 

include the fixed baseline covariates common to the three trials (specified in section 2.2). The 

covariate effects in the additive hazards model were allowed to vary with time (hence relaxing 

the proportional hazards assumption of the Cox model). Estimates of treatment effect 

therefore take into account possible imbalances across treatment groups with respect to these 

variables, and their time-varying effects [52].  In addition, and as for the Cox model 

specifications, the models control for heterogeneities across trials that may confound the 

effect of treatment on the outcomes (by using a trial indicator).   

Using a similar notation to that adopted in earlier chapters:  

• αprog(t) represents the hazard of progression at time t; 

• αdth (t) represents the hazard of death at time t; 

• treat is a binary variable indexing treatment group; 

• prog(t) is a binary time-updated explanatory variable indicating progression, such that 

if prog(tj)=1 then prog(tk)=1 for all k>j;  

• The vector trial includes two indicator variables for membership of the Zephyr and 

Zeal trials respectively. The vector of regression coefficients associated with these 

indicators at time t is written as γ2(t); 

• the vector W includes all nine fixed baseline explanatory variables common to all three 

trials specified in section 2.2. These variables are coded as categorical variables with 

observed values w. The vector of regression coefficients associated with these 

explanatory variables at time t is written as γ4(t). 
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Table 4-1 Additive hazards models fitted to the Zactima trials data to estimate treatment effects on progression 
and death 

Outcome  
 

Description Estimation model Model 
number 

Progression Effect of treatment 
on progression 

αprog(t) = γ0
(1)(t) + γ1

(1)(t)treat + 𝛄𝟐
(𝟏)𝐓(t)𝐭𝐫𝐢𝐚𝐥

+ 𝛄𝟒
(𝟏)𝐓

(t)𝐰 

 

 4-1 

Death  Effect of treatment 
on death, not 
adjusting for 
progression 

αdth(t) = γ0
(2)(t) + γ1

(2)(t)treat + 𝛄𝟐
(𝟐)𝐓(t)𝐭𝐫𝐢𝐚𝐥

+ 𝛄𝟒
(𝟐)𝐓

(t)𝐰 

 

4-2   

 Effect of treatment 
on death, adjusting 
for progression 

αdth(t) = γ0
(3)(t) + γ1

(3)(t)treat + 𝛄𝟐
(𝟑)𝐓(t)𝐭𝐫𝐢𝐚𝐥

+ γ3
(3)

(t)prog(t) + 𝛄𝟒
(𝟑)𝐓

(t)𝐰 

 

4-3 

 

 

As described in chapter 3, the values of all regression coefficients γ.
(.)(t) may vary freely over 

time. γ0
(.)

(t)represents the hazards at time t in the baseline treatment group, where the values 

of all covariates are set to the reference level. The parameters of interest in these analyses are 

the γ1
(.)

(t), which represent the additive effects of treatment at time t adjusted for trial, 

baseline covariates and, in Model 4-3, progression. 

The estimates of treatment effect are reported as graphs of the cumulative regression 

coefficients Γ1
(.)̂(t) = ∑ γ1

(.)̂
(tj)tj≤t  against time [20, 38, 42]. As recommended by Royston [56], 

the x-axes of all graphs presented in this chapter are truncated near the 75th percentile of 

follow-up time.  

The 95% pointwise confidence limits for Γ1
(.)(t) [20] are graphed together with estimates of 

Γ1
(.)̂(t). The performance of the models is assessed by plotting observed against expected 

numbers of events in each treatment group using the method of Arjas [20, 53, 58] outlined in 

section 3.3. These plots are intended to provide an overview of how well the model predicts 

the total number of events experienced by time t. Model fit is investigated for different 

subgroups of interest (see section 3.3), in this case by treatment group.  If the model perfectly 

predicts the numbers of events experienced within each treatment group, the plot will take 

the form of a straight line along y=x. Deviations from the line show where the model 

overestimates or underestimates the number of events in each group.  The Arjas plot was 

chosen to assess model fit on the basis of a recommendation by Aalen et al in [20]. The simple 

strategy of comparing observed and expected numbers of events is appealing, and examining 

the model fit within subgroups adds an extra dimension of information. In addition, the Arjas 

plot allows model fit to be examined while events are accruing.   However, because the 
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method considers total numbers of events in each subgroup, it is perhaps more suited to 

assessing overall model fit than to investigating the predictive ability of a single covariate 

(treatment) in the model. Additional drawbacks are the lack of an explicit time dimension to 

the plot, and a scarcity of guidance in the literature on how the plot can be produced for an 

additive hazards model. 

 

 

4.3 Results 

 

 

4.3.1 Estimated effect of treatment on progression, adjusting for trial and baseline 

covariates 

 

The results reported in this section are obtained by fitting an additive hazards model for the 

effect of treatment on the outcome of progression, adjusting for trial and baseline covariates 

(Model 4-1). 

As reported in Table 2-7, of 2849 patients, 2139 (75%) experienced progression. Of the 1282 

patients in the placebo group, 992 patients (78%) experienced progression, while 1147 of the 

1567 patients in the treatment group (73%) experienced progression.  The median time to 

progression in the placebo group was 2.9 months, while in the treatment group it was 3.6 

months (see Figure 2-2). 

Figure 4-1 shows a plot of the estimated cumulative regression coefficient for the effect of 

treatment on progression, Γ1
(1)̂

(t), against time. The x-axis is truncated at 6 months, 

corresponding approximately to the 75th percentile of time (see [56]). The 95% pointwise 

confidence limits exclude the null value of 0 after about 1 month, meaning that the cumulative 

effect of treatment on progression reaches statistical significance at around 1 month. At 1 

months, the cumulative effect of treatment on progression is -0.042, with a 95% confidence 

interval of [-0.067, -0.018], meaning that treatment is protective of progression. At 3 months, 

the cumulative effect is -0.23 [-0.31, -0.15]. At 6 months, the cumulative effect is -0.36               

[-0.51, -0.20]. The appearance of the slope of the plot is approximately linear after 1 month, 

meaning that the effect of treatment γ1
(1)̂

(t) is constant over time [20, 53].  
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Figure 4-1 Estimated cumulative regression coefficient and 95% pointwise confidence limits for the effect of 
treatment on progression, adjusted for trial and baseline covariates (from Model 4-1) 

 

Figure 4-2 shows the Arjas plot of observed against expected number of events by treatment 

group corresponding to the fitted model. It is truncated at 900 events, which corresponds to 

approximately 6 months of follow-up time. 

Figure 4-2 Arjas plot of observed against expected number of events by treatment group for Model 4-1 

 

The observed and expected cumulative numbers of progressions are quite close, as 

demonstrated by the straight line passing through the origin. However, the model 
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overestimates the number of events up until about 250 events have been observed, and after 

600 events have occurred. This could result from the omission of important explanatory 

covariates or interactions between covariates which affect the number of deaths predicted by 

the model while while not necessarily having much impact on the value of the cumulative 

regression coefficient for treatment. 

 

 

4.3.2 Estimated effect of treatment on death, adjusting for trial and baseline 

covariates but not for progression 

 

The results reported in this section are obtained by fitting Model 4-2. 

From Table 2-7, of the total of 2849 patients, 1795 (63%) experienced a death. 799 of the 1282 

patients in the placebo group (62%) experienced death, while 996 of 1567 patients in the 

treatment group (64%) experienced death.  The median time to death in the placebo group 

was 9.3 months compared to 9.7 months in the treatment group. The 75th percentile of time to 

death was 18 months.  

Figure 4-3 shows the cumulative regression coefficient and 95% pointwise confidence limits for 

the estimated effect of treatment on death not adjusting for progression Γ1
(2)̂

(t). As before, 

the graph is truncated at approximately the 75th percentile of time (18 months after 

randomisation), as recommended by Hosmer and Royston [56]. The 95% pointwise confidence 

limits for Γ1
(2)(t) derived from Model 4-2 include the null value of 0 throughout the time 

interval [0, 18], meaning that the estimated effect of treatment on death does not reach 

statistical significance. The effect is protective, because the slope of the cumulative regression 

coefficient is negative, and linear after 2 months. At 2 months, the cumulative effect of 

treatment, Γ1
(2)̂

(t), is -0.011 with a 95% confidence interval of [0.015, -0.037]. At 6 months, the 

cumulative effect is -0.050 [-0.106, 0.005]. At 12 months, the effect is -0.09 [-0.19, 0.02], and 

at 18 months it is -0.11 [-0.28, 0.07]. 
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Figure 4-3 Estimated cumulative regression coefficient and 95% pointwise confidence limits for the overall effect 
of treatment on death, adjusting for trial and baseline covariates but not progression (from Model 4-2) 

 

Figure 4-4 below shows an Arjas plot of observed against expected number of deaths from 

Model 4-2 by treatment group. The plot is truncated at 850 deaths, corresponding 

approximately to 18 months of follow-up time. 

Figure 4-4 Arjas plot of observed against expected number of events by treatment group for Model 4-2  

 

From Figure 4-4, the model appears in general to predict accurately the number of deaths in 

each treatment group. The model underestimates numbers of deaths in both treatment 

groups until 200 events have accrued in each group.  After around 600 deaths have accrued in 

each group, the model slightly overestimates the number of deaths expected. This may be a 
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result of some individuals being more resistant than expected, so they experience death later 

than predicted by the model. As before, this effect could be explained by missing covariates or 

interactions which affect the total number of events accrued. 

 

 

4.3.3 Estimated effect of treatment on death adjusting for trial, baseline covariates 

and progression 

 

The results reported below are obtained by fitting Model 4-3, which adjusts for trial, baseline 

covariates and progression. The estimated effect of treatment on death, Γ1
(3)̂

(t), represents 

the estimated effect of treatment on death while progression is held fixed (see chapter 3 and 

for example [14]). 

Figure 4-5 shows the estimated cumulative regression coefficient Γ1
(3)̂

(t) and 95% pointwise 

confidence limits for Γ1
(3)(t). As in section 4.3.2, the graph is truncated at 18 months, 

representing the 75th percentile of death time. The 95% pointwise confidence limits for Γ1
(3)

(t) 

include the null value of 0 throughout follow-up, meaning that the effect of treatment on 

death is not statistically significant. Furthermore, the estimate of the cumulative regression 

coefficient for the effect of treatment Γ1
(3)̂

(t) is close to 0 throughout follow-up, meaning that 

the estimated effect of treatment on death when trial, baseline covariates and progression are 

included in the model is negligible. For example, at 2 months the cumulative effect of 

treatment on death adjusted for progression is -0.0003 with 95% confidence interval [-0.027, 

0.026]. At 6 months it is -0.009 [-0.064, 0.046], at 12 months it is -0.015 [-0.121, 0.089] and at 

18 months it is -0.002 [-0.181, 0.177]. 
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Figure 4-5 Estimated cumulative regression coefficient and 95% pointwise confidence limits for the effect of 
treatment on death, adjusting for trial, baseline covariates and progression (from Model 4-3) 

 

Figure 4-6 below shows an Arjas plot of observed against expected number of events by 

treatment group from Model 4-3. As for Figure 4-4, the plot is truncated at 850 events, 

corresponding approximately to 18 months of follow-up time. 

Figure 4-6 Arjas plot of observed against expected number of events by treatment group for Model 4-3 

 

Figure 4-6 is similar to Figure 4-4 (the Arjas plot by treatment group derived from fitting Model 

4-2). It indicates that Model 4-3 underestimates the numbers of deaths early in follow-up and 

overestimates the numbers of deaths later on when more than 600 deaths have accrued in 

each group. 
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4.3.4 Comparison of Cox and additive hazards model estimates of treatment effects 

 

 The findings reported so far can be summarised as follows: 

• The estimated cumulative additive effect of treatment on the hazard of progression, 

adjusting for trial and baseline covariates, is protective and statistically significant over 

most of the follow-up time; 

• The estimated cumulative additive effect of treatment on the hazard of death 

adjusting for trial and baseline covariates is protective but not statistically significant 

during any period of the follow-up; 

• The estimated cumulative effect of treatment on death adjusting for trial, baseline 

covariates, and progression is virtually null over time; 

• The effects referred to above are roughly constant over time. 

These findings reflect results obtained by fitting Cox models to the pooled Zactima trials data. 

The finding that the cumulative regression coefficient plots Figure 4-1, Figure 4-3 and Figure 

4-5 show the effect of treatment as a roughly straight line provides some evidence that the 

effect of treatment is proportional [53, 61]. 

 

 

4.4 Discussion 

 

This chapter has found that treatment has a protective and statistically significant effect on 

progression when expressed on an additive scale for the hazard. This supports previous 

findings reported in chapter 2. The change of the estimated effect of treatment on death from 

protective (though not statistically significant) when progression is not included in the model, 

to virtually null (and not statistically significant) when progression is added as an explanatory 

variable, suggests that some effect of treatment on death is working through the intermediate 

event of progression. This corroborates the findings reported in chapter 2 from fitting Cox 

models.  

The performance of the additive hazards models set out in Table 4-1 in predicting the numbers 

of events has been assessed using Arjas plots.  These indicate that the additive hazards models 
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for the effect of treatment on progression or death provide a good fit to the data for much of 

the follow-up time. 

In general, there is no evidence of a time-varying effect of treatment on the outcomes of death 

or progression when expressed on an additive scale. This was also found on the hazard ratio 

scale. Hazard ratios estimated by fitting Cox models to the pooled trials datasets (as in chapter 

2) would therefore be a simpler way of reporting the treatment effect estimates than the plots 

of the cumulative regression coefficients presented in this chapter. However, as there is a 

suggestion in this dataset that the effect of treatment on death may work through 

progression, the additive hazards model provides a basis for this indirect effect to be 

estimated using the method of dynamic path analysis [20, 30, 31].  
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5 Introduction to mediation analysis 

 

 

5.1 Introduction 

 

In clinical trials, the primary statistical analysis usually addresses a question about whether a 

treatment affects the primary outcome. Secondary analyses may investigate whether a 

treatment affects intermediate variables that in turn affect the outcome. This additional step 

helps elucidate whether and how the treatment works by considering the role of intermediate 

variables in mediating the treatment-outcome relationship, and therefore involves concepts 

and methods that belong to mediation analysis.   

The history of mediation analysis is rooted in the social sciences and is linked to the path 

analysis approach of Wright [36, 37]. In the social sciences, path analysis is one approach to 

mediation analysis, while others include Baron and Kenny’s causal steps [40, 41] and the 

difference method (see [23, 62, 63]). The terminology used in this chapter is based on this 

tradition, while other more recent approaches to mediation analysis use different vocabularies 

(see for example [21-23, 64-66]). 

Path analysis was originally defined for continuous dependent variables, implying a setting 

with a continuous mediator and a continuous outcome. Dynamic path analysis is an adaptation 

of path analysis to settings with a continuous mediator and a survival outcome [20, 30, 31]. 

This chapter describes a novel extension of dynamic path analysis to a setting with a time-

updated binary mediator (equivalent to a survival mediator) and a survival outcome. This 

extension is relevant for clinical settings, in particular clinical trials with a composite time-to-

event outcome (see chapter 1). 
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5.1.1 Aims 

 

The aims of this chapter are: 

1) To describe traditional mediation analysis, and introduce path analysis as a means of 

estimating mediated effects; 

2) To describe dynamic path analysis, which applies to the setting with a continuous 

mediator and a survival outcome; 

3) To describe how dynamic path analysis can be extended to a setting with a time-

updated binary (survival) mediator and a survival outcome. 

 

 

5.2 Introduction to mediation analysis 

 

The section first describes the causal steps framework introduced by Baron and Kenny [40, 41] 

to infer mediation [33], together with the method of difference of coefficients to estimate 

mediated effects. Path analysis is then introduced as another, related, method of estimating 

mediated effects. The section considers simple settings and concludes with comments on the 

implications and assumptions of traditional mediation analysis, as they have implications for 

the development proposed in this thesis.  

The variables of interest in this setting are: 

• X, a binary explanatory variable taken in this chapter to indicate treatment group; 

• Y, a continuous outcome (equivalent to the distal event referred to in chapter 1); 

• M, a continuous mediator variable (equivalent to the proximal event or intermediate 

variable referred to in chapter 1); 

• Confounding variables denoted C. C1 is a confounder of the X-Y relationship, C2 is a 

confounder of the X-M relationship, C3 is a confounder of the M-Y relationship, and C4 

is a confounder of the M-Y relationship that is affected by X (see Figure 5-2 and Figure 

5-3).  Whenever multiple confounders for each of these relationships are referred to, 

the vector notation C=(C1, C2, …,Ck) is used. 

 

The direct effect of X on Y is understood to represent the effect of X on Y when the level of 

M is held fixed. The indirect effect is thought of as that part of the effect of X on Y which 
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operates only through changing levels of M [14, 67]. Note that the direct and indirect 

effects terminology should be used in conjunction with a specified mediator M, as the 

direct effect of X on Y can include indirect effects mediated through variables other than 

M. 

 

 

5.2.1 Baron and Kenny’s causal steps  

 

The framework of Baron and Kenny [40, 41], often referred to as the causal steps approach 

[33], is frequently used as a starting point in traditional mediation analysis [33]. By itself, it 

does not provide estimates of the size of mediated or unmediated treatment effects. 

Assuming for simplicity that there are no confounders, the relationships between X, M and Y 

are described within this framework using the following linear regression models: 

E(Y|X)       = β0
′ + β1

′ X       5-1 

E(Y|X, M) = β0 + β1X + β2M      5-2 

E(M|X)      = δ0 + δ1X       5-3 

where E(..|..) denotes expectation. 

The relationship between models 5-1, 5-2 and 5-3 and direct and indirect effects is specified 

later in this section.  

The causal steps approach as described by Kenny [15] suggested consideration of the true 

values of the parameters in models 5-1, 5-2 and 5-3 to infer mediation. The following 

conditions must hold in order for M to be considered a mediator of the X-Y relationship [40, 

41]:  

1. X must have an overall effect on Y, meaning that β1
′ ≠ 0; 

2. X must have an effect on M, meaning that δ1 ≠ 0; 

3. M must affect Y when X is controlled, meaning that β2 ≠ 0; 

4. If M completely mediates the X-Y relationship, the effect of X on Y should be explained 

by M, so that β1 = 0 when β1
′ ≠ 0 [15]. 

Some qualifications to these conditions have been proposed. Condition 1 does not necessarily 

need to hold for mediation to be present, because the overall effect of X expressed as β1
′  

comprises both the direct and indirect effects. If these effects have the same magnitude but 
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opposite sign [14] β1
′  may equal zero in the presence of mediation [14, 32, 33, 67]. Condition 4 

only needs to hold when there is complete mediation [15]; partial mediation occurs when 

β1 ≠ 0 but |β1
′ | > |β1|[14, 67].  Conditions 2 and 3, however, continue to be widely accepted 

as criteria for determining mediation [14, 15, 32].  

In earlier work on the causal steps approach [40, 41], models corresponding to expressions 

5-1, 5-2 and 5-3 were fitted and the statistical significance of the relevant parameter estimates 

considered [32, 40, 41, 68]. This approach was superseded, as using the statistical significance 

of parameter estimates to infer mediation is problematic because statistical significance is a 

function of sample size [15].  In addition, associations between variables may exist in the 

absence of statistical significance [14, 33, 67, 68], especially when the variables are highly 

correlated [33, 40, 41].   

One important underlying assumption made when inferring mediation using the causal steps 

approach is that of temporal ordering [14], meaning that that X precedes M which precedes Y 

[14, 32, 33, 41]. This has implications for the analysis of data collected from certain study 

designs; for example, temporal ordering may be difficult to establish in a cross-sectional study. 

Models 5-1, 5-2 and 5-3 are linear regression models.  The interpretation of the parameters 

given above requires that both X and M have linear effects on Y and that X has a linear effect 

on M [14, 15, 19, 33]. The models assume that there is no interaction between X and M and no 

other non-linearities in these variables, and that the relationships between the variables are 

correctly specified. More generally, for the causal interpretation of the results, there should be 

no omitted confounders in the three models [14, 15, 32, 33, 40, 41] and all variables should be 

accurately measured [15, 40, 41]). The additional statistical assumption of independent error 

terms with constant variance is often quoted for inference but is not required for identification 

of the mediation parameters, as it is implicit in the causal assumptions given above [32].  

The strength of the causal steps approach is in its simplicity. The equations can also be 

extended to include confounders [14, 32, 41]. However, it does not provide a numerical 

estimate of mediated and unmediated effects.  
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5.2.2 Estimation of mediation effects: the difference method 

 

One way of obtaining a numerical estimate of the extent of mediation is to combine parameter 

estimates obtained by fitting models corresponding to 5-1, 5-2 and 5-3 using the method of 

difference in coefficients [19]. This method (also known as the difference method) has been 

described by Judd and Kenny [41], Baron and Kenny [40] and Mackinnon [19, 32, 33, 69].  

The difference method relies on the decomposition of the total effect of X on Y into a direct 

and indirect effect [41]: 

Total effect = direct effect + indirect effect    5-4 

In the absence of confounders, the total effect of X on Y in this framework is given by the 

coefficient β1
′  in model 5-1. The direct effect of X on Y is given by the coefficient β1 in model  

5-2. The indirect effect using the difference method is given by β1
′ − β1, because the change in 

the coefficient for X from β1
′  to β1 reflects how much of the relationship between X and Y is 

explained by M [32]. The indirect effect is estimated by fitting models corresponding to 5-1 

and 5-2 and calculating β1
′̂ − β1̂. The difference method is only valid for parameters from linear 

models, hence generally for continuous outcomes, or for binary outcomes modelled on the 

difference scale (such as risk differences in a linear model) [14, 20], and does not hold for 

binary outcomes modelled on a multiplicative scale (such as odds ratios in a logistic regression 

model) [14, 17, 19, 20].  The assumptions made when inferring mediation as described in the 

previous section also apply to the use of the difference method to derive mediated effects.  

 

 

5.2.3 Estimation of mediation effects: path analysis 

 

An alternative approach to estimating direct and indirect effects within the framework 

described above uses path analysis and is often referred to as the method of product of 

coefficients or the product method [19]. 

A path diagrams such as the simple example in Figure 5-1 below illustrates the relationships 

between X, M and Y. The arrows in the diagram are referred to as paths of influence [36, 37] or 

causal paths [40]. In Figure 5-1, the direct effect of X on Y is represented by a single arrow 

between X and Y, while the indirect effect is represented by the path composed of the arrow 
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from X to M and the arrow from M to Y (referred to as the X-M-Y pathway). Coefficients from 

models 5-2 and 5-3 are shown as path coefficients in Figure 5-1. 

Figure 5-1 Path diagram showing the relationships between a treatment X, an outcome Y and a mediator M, with 

path coefficients (for simplicity assuming no confounders affecting these relationships) 

 

 
 
 
 
 

 

Path analysis involves the multiplication of regression coefficients along pathways to estimate 

indirect effects [40]. In this example the indirect effect of X on Y is given by tracing the indirect 

path between X and Y and multiplying coefficients along the X-M-Y path [36, 37] to give δ1β2 

[40, 41]. The rationale behind this method is that is that a change in X will lead to a δ1 change 

in M, and a δ1 change in  M will lead to a δ1 β2 change in Y [14, 19, 32, 33, 40, 41].  

The indirect effect of X on Y is estimated by fitting regression models equivalent to models 5-2 

and 5-3 and calculating δ1̂β2̂ [14, 32]. The same assumptions concerning no unmeasured 

confounding of the X-M, X-Y, and M-Y relationships, temporality and correct specification of 

the regression models analysis apply to this method [32, 33]. For a continuous outcome, or a 

binary outcome measured on the difference scale, the difference method obtained using 

equations 5-1 and 5-2 coincides with the product method obtained by path analysis using the 

equations 5-2 and 5-3 [14, 32, 69]. The total effect of X on Y in the simple setting represented 

in Figure 5-1 is given by β1+ δ1β2, corresponding respectively to the direct and indirect effects 

[37] as in expression 5-4. 

Path analysis can be extended to situations with multiple mediators and explanatory variables 

[37, 70], subject to additional assumptions about temporality, linearity, lack of interactions and 

no omitted confounders. 

  

X (treatment) 

M (mediator) 

Y (outcome) 
β1 

δ1 β2 
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5.2.4 Confounding and mediation analysis 

 

The assumption of no omitted confounders is necessary for implementing the methods 

discussed above [14, 32]. Confounders in the setting illustrated by Figure 5-1 are common 

causes of X and Y, or X and M, or M and Y. Failure to include such common causes in the 

regression models 5-1, 5-2 and 5-3 would lead to bias in the estimates of direct and indirect 

effects [14].  

Considering the simple mediation setting shown in Figure 5-1, four different types of 

confounders are potentially problematic [14]. Three of these are shown in Figure 5-2. C1 

influences X and Y, C2 influences X and M, and C3 influences M and Y. 

Figure 5-2 Path diagram showing associations between X, M and Y, and confounding by C1, C2 and C3 

 

 

 

 

 

 

 

 

In the setting shown in Figure 5-2, if a model corresponding to 5-1 is fitted to estimate the 

total effect of X on Y, ignoring the relevant confounders, β1
′̂  will comprise the direct X-Y effect, 

the indirect X-M-Y effect, the spurious X-C1-Y effect which arises because C1 is a cause of both 

X and Y, and the spurious X-C2-M-Y effect which arises because C2 is a cause of both X and M 

[24]. When estimating the total effect of X on Y, C1 and C2 must be included in the model to 

remove this confounding effect [16, 66] as shown below. In a randomised clinical trial, if 

randomisation is successful, levels of C1 and C2 are balanced across treatment groups, and 

confounding of the X-Y relationship would not occur.  

Similarly, in the setting shown in Figure 5-2, if a model for Y that includes X and M (such as 5-2) 

is fitted to estimate the direct effect of X on Y, C1 and C3 must be included in this model as 

shown below so that the estimates of the coefficients of X and M are not confounded [14, 41]. 

X (treatment) 

M (mediator) 

Y (outcome) 

C1 (confounder) C3 (confounder) 

C2 (confounder) 
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However, because mediation analyses are often secondary analyses, data on potential M-Y 

confounder C3 (or confounders C3) may not be routinely collected. In the context of a 

randomised trial, M-Y confounding is not usually avoided by randomisation of X [14, 32, 41].   

In the same setting, a model for M that includes X (such as model 5-3) must include C2 so that 

the estimated coefficient of X is unconfounded [14]. 

The models including confounders C1, C2 and C3 are shown below: 

E(Y|X)       = β0
′ + β1

′ X + β2
′ C1 + β3

′ C2     5-1 (b) 

E(Y|X, M) = β0 + β1X + β2M + β3C1 + β4C3    5-2 (b) 

E(M|X)      = δ0 + δ1X + δ2C2      5-3 (b) 

Use of the difference method in mediation analysis requires estimation of β1
′  and β1, that is, 

the total effect of X on Y, and the direct effect of X on Y. If there are known confounders, this 

requires fitting models 5-1(b) and 5-2(b). The assumption of no unmeasured C1, C2 or C3, 

meaning no unmeasured confounding of the X-Y, X-M and M-Y relationships is therefore 

required to implement the difference method. 

Use of path analysis requires estimation of δ1 and β2. In the presence of known confounders, 

this requires fitting models 5-2(b) and 5-3(b). As before, the assumption of no unmeasured C1, 

C2 or C3 is required to implement the method.  

Figure 5-3 below shows a setting similar to the setting depicted in Figure 5-2, but with the 

addition of C4, a so-called intermediate confounder that confounds the M-Y relationship and is 

itself affected by X. 
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Figure 5-3 Path diagram showing associations between X, M and Y, confounding by C1, C2 and C3, and 
intermediate confounding by C4 

 

 

 

 

 

 

 

 

 

 

 

In this setting, a model for Y that includes X and M (similar to 5-2), if extended to include C1 

and C3, would not accurately estimate the effect of M on Y, because C4 is a confounder of the 

M-Y relationship. Including C4 in the model will remove this bias, but will also mean that the 

direct effect of X on Y, which includes the X-C4-Y path, will not be estimated by the regression 

coefficient for X [24]. The difference or product methods are thus not able to deal with 

intermediate confounding using the modelling framework specified in section 5.2.1 [24].  An 

additional assumption for both methods is therefore the assumption of no intermediate 

confounding. 

 

 

5.2.5 Mediation analysis and interaction between X and M 

 

The approaches to mediation analysis described so far require the assumption that models 5-1, 

5-2 and 5-3 are correctly specified [14, 33, 40, 41]. One implication of this is that there must be 

no interaction between X and M or in other words, the change in the expected value of Y 

associated with M must not vary with differing levels of X [32]. 

X (treatment) 

M (mediator) 

Y (outcome) 

C1 (confounder) C3 (confounder) 

C4 (intermediate 
confounder) 

C2 (confounder) 
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If there were an interaction between X and M, model 5-2 would become: 

E(Y|X, M) = β0 + β1X + β2M + β3XM      5-5 

where the XM component represents an interaction between X and M, and β3 the interaction 

effect, that is, the additional effect of M on Y associated with a 1-unit increase in the value of X 

(or the additional effect of X on Y associated with a 1-unit increase in the value of M). 

The causal steps approach of Baron and Kenny can be adapted to situations where there is an 

interaction between X and M [15, 40, 41]. However, using the difference method and path 

analysis for estimating the size of the indirect effect becomes infeasible because there is no 

clear way to handle the interaction term β3 [14] when deriving the direct and indirect effects. 

It is therefore important to establish whether there is an interaction between X and M before 

using either method. This may be done by fitting a model corresponding to 5-5, and testing the 

statistical significance of β3̂. However, VanderWeele [14] pointed out that interactions may be 

important even though the interaction term is not statistically significant. Instead, he 

suggested examining the magnitude of β3̂ and the extent to which the other estimates in the 

model are changed by including an interaction term. If the interaction term is small in itself 

and its inclusion does not induce much change in β1̂  or β2̂ , it can be left out of the estimation 

model with meaningful approximate mediation parameters derived [14]. 

In the presence of non-linear terms in X or M other than interactions, VanderWeele [14] 

proposed that path analysis may still be used to test for the presence of mediation. In this 

case, δ1β2 can no longer be interpreted as the indirect effect of X on Y; however, if δ1β2 ≠ 0, 

the presence of an indirect effect could be inferred, under the assumptions of no omitted 

confounding discussed above [14]. This argument also applies to settings where a binary 

outcome is modelled using logistic regression. In this setting path analysis gives rise to 

estimates which cannot be interpreted as direct and indirect effects (see [14, 71]). 

 

 

5.3 Introduction to dynamic path analysis 

 

This section discusses dynamic path analysis, an extension of path analysis with a survival 

outcome and a continuous mediator proposed by Fosen, Aalen and colleagues [20, 30, 31]. The 

method draws on the concepts of path analysis and generalises them to a survival setting for 
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the outcome [20, 30, 31, 53]. The result is a method of estimating the indirect effect of an 

explanatory variable on a survival outcome through a continuous mediator. In clinical trials, 

dynamic path analysis has been used in secondary analysis aimed at exploring the mechanism 

of action of a treatment (see for example [30, 42, 72].  

Dynamic path analysis is presented in this chapter using the counting process notation 

introduced in chapter 3.  For this reason, the following variables are used in this section: 

• N(t), the counting process associated with the event of interest [20]; 

• dN(t), the increment of N(t) [20]; 

• TD, the random variable representing time to event; 

• Mcont(t), a continuous time-varying mediator variable. At event time t, Mcont(t) refers to 

the value of Mcont just before time t in line with the usage of Aalen [20]. 

 

 

5.3.1 Characteristics of dynamic path analysis 

 

The method of dynamic path analysis [20, 30, 31] can be thought of as a combination of path 

analysis and the additive hazards model [73]. It comprises a series of path analyses specific to 

each event time, which lead to estimating time-varying indirect effects by multiplying the 

relevant path coefficients at each event time [42]. This means that the values of the path 

coefficients, and the direct and indirect effects, can vary freely over time [20, 30, 31, 42]. This 

flexibility reflects that of the additive hazards model discussed in chapter 3 [39, 53, 72].  The 

multiplication of coefficients comprising the indirect effect is possible because in this approach 

the intensity process is modelled using an additive hazards model.  

 

 

5.3.2 The dynamic path analysis model 

 

In dynamic path analysis, a path diagram is defined at each event time t [20, 30, 31]. A simple 

example using X, Mcont(t) and dN(t) is shown in Figure 5-4 below.  Path coefficients specific to 

each time are shown in Figure 5-4 and refer to models  5-6 and 5-7 below. 
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Figure 5-4 Generalised path diagram for the time-specific relationships between X, Mcont(t) and the event dN(t). 
The path coefficients specific to each time are shown in the diagram. From Aalen [20] 

 
 
 
 
 
 
 
 
 
 
 
As shown in chapter 3, the relationship between the hazard of the event at time t and the 

covariates X and Mcont(t) can be represented by an additive hazards model such as 5-6: 

α(t|X, Mcont(t)) = γ0(t) + γ1(t)X + γ2(t)Mcont(t)   5-6 

The baseline hazard of the event dN(t) at time t is given by γ0(t), while γ1(t) and γ2(t) represent 

the mutually adjusted additional hazard associated with a 1-unit increase in X and Mcont(t) 

respectively at time t.  

The linear model for Mcont(t) is given as model 5-7: 

E(Mcont(t)|X) = δ0(t) + δ1(t)X     5-7 

where δ0(t) represents the expected value of Mcont(t) at time t when x=0, and δ1(t) is the 

increase in the mean value of Mcont(t) at time t when x=1 versus x=0. This model is similar to 

Model 5-3 but is specific to time t. Using path analysis at each event time as shown in Figure 

5-4, the direct effect of X is γ1(t). The indirect effect of X is given by combining the effect of X 

on Mcont(t) and the effect of Mcont(t) on dN(t), that is by γ2(t)δ1(t), explained by Gamborg [73] in 

the following way: 

“As a 1-unit difference [in X] causes a [δ1] … difference in [Mcont(t)], and a [δ1] 
difference in [Mcont(t)] causes a [δ1] times [γ2] excess rate of [dN(t)], the indirect 
effect … at [time] t is estimated by the following: γ2(t)δ1(t)”.  

Dynamic path analysis allows path coefficients to be multiplied together to estimate the 

indirect effect of X on dN(t) via Mcont(t), because the models for the effect of X on Mcont(t) at 

time t, and the effect of Mcont(t) on dN(t) at time t, are taken to be linear [20, 30, 38, 42, 74]. 

The linearity of the model for the outcome dN(t) arises through the use of a counting process 

to denote the occurrence of the event of interest (see chapter 3 and [20, 53]).  

To aid interpretability the direct and indirect effects obtained at each event time are usually 

reported cumulatively. Following Strohmaier [42], in this thesis the cumulative direct effect 

X (treatment) 

Mcont(t) 
(mediator) 

dN(t) (outcome) 
γ1(t) 

δ1(t) γ2(t) 



84 
 

corresponding to Figure 5-4 is given by ∫ γ1(u)du
t

0
 and the cumulative indirect effect by 

∫ γ2(u)
t

0
δ1(u)du.    

 

 

5.3.3 Estimating the indirect effect of X on dN(t) using dynamic path analysis 

 

The indirect effect of X on dN(t) can be estimated at each event time tD using models 5-6 and 

5-7 (or their generalisations that include confounders) subject to the assumptions described in 

section 5.2.1. In particular, these are no unmeasured confounding of the X-Mcont(t), X-dN(t) and 

Mcont(t)-dN(t) relationships, no intermediate confounding of the Mcont(t)-dN(t) relationship and 

no interaction between X and Mcont(t) or other non-linearities in X or Mcont(t), for every value of 

t [42, 75].  

The estimation process described by Aalen [20] and Fosen [31] is given in the following steps:  

1. The first step is to estimate δ1(t) by fitting a linear regression model for the effect of X 

on Mcont(t) at each event time tD corresponding to model 5-7. This produces parameter 

estimates δ̂0(tD) and δ̂1(tD) for each tD. Individuals who, just before time tD, have not 

yet experienced the event represented by dN(tD) are included in these regression 

models. 

2. The effect of Mcont(t) on dN(t) is estimated by fitting an additive hazards model 

corresponding to 5-6. At each time tD, the outcome dN(tD) comprises a vector of 0s and 

one 1 indicating the individual who experiences the event at time tD. This outcome is 

regressed jointly on X and Mcont(t) at each tD to produce estimates γ̂0(tD), γ̂1(tD) and 

γ̂2(tD) (see chapter 3 for more information on estimating the additive hazards model).  

As in step 1, the risk set includes only those individuals who have not yet experienced 

the event represented by dN(t) just before time tD. 

3. The estimated indirect effect of X on dN(t) via Mcont(t) at time tD is given by 

γ̂2(tD)δ̂1(tD).  

4. Estimates are often presented graphically as cumulative effects over time. This 

stabilises them, and makes it easy to identify changes of effect over time by a change 

in the slope of the graph [20, 30, 31, 53]. The cumulative estimate of the indirect effect 

of X on dN(t) from time t0 up to and including time tD is given by ∑ γ2̂(tj)tj≤tD
δ1̂(tj).  

5. Similarly, the direct effect is estimated as  ∑ γ1̂(tj)tj≤tD
. 
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Note that because the models in steps 1 and 2 include those individuals who have not yet 

experienced the event dN(t) by time t, the parameter estimates are conditional on not having 

experienced the event by time t. However, as shown by Strohmaier [42], estimates of the 

indirect effect of X on dN(t) through Mcont(t) are not biased by this conditioning on survival up 

to time t, because the relationship between variables is preserved over time under this 

conditioning [42] in linear regression models. Strohmaier [42] demonstrates that two 

independent covariates measured at baseline are still independent at time t conditional on 

survival. This result is generalised to covariates in a linear structural equation model, and from 

there to the setting described by Figure 5-4 and equations 5-6 and 5-7. The implication of this 

is that the estimation of direct and indirect treatment effects is not biased by this conditioning 

[42]. 

Dynamic path analysis offers a simple and flexible way of estimating indirect effects on a 

survival outcome when the mediator is a continuous variable and the event time can be 

modelled using a simple additive hazards model. It allows all coefficients to vary freely over 

time, reflecting the view of relationships as processes that develop over time [38].  It does 

however still bear the constraints that there should not be non-linearities (including 

interactions) in X and Mcont(t). 

 

 

5.4 Dynamic path analysis with a time-to-event mediator 

 

Dynamic path analysis could be used to estimate the indirect effect of a treatment in the 

secondary analysis of clinical trials with a time-to-event composite outcome, if appropriately 

adapted to situations where both the mediator and the distal outcome are time-to-event 

variables. In this section an adaptation of dynamic path analysis to this setting is proposed.  

The distal outcome, as before, is referenced using counting process notation as dN(t). The 

mediator variable is characterised in this section as a time-updated binary variable Mbin(t) with 

the qualification that if Mbin(tj)=1 then Mbin(tk)=1 for all k>j.  Henceforward, Mbin(t) will be 

referred to as a time-updated binary variable, or event mediator.  

The new variables which will be referred to in this section are therefore the following: 
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• Mbin(t), a time-updated binary variable indicating whether the event mediator has 

occurred up to time t; 

• TMbin, the random variable representing time to the mediator; 

• NMbin(t), the counting process associated with the event mediator [20] (in this context, 

the variable is the same as Mbin(t));  

• dNMbin(t), the increment of NMbin(t) [20]. 

 

 

5.4.1 Model specification in dynamic path analysis with a time-to-event mediator 

 

Dynamic path analysis with a time-to-event mediator uses a similar strategy to dynamic path 

analysis with a continuous mediator. Assuming that this strategy is appropriate, path 

coefficients are multiplied together to estimate the indirect effect of X on dN(t) via dNMbin(t). 

The models for the effect of X on dNMbin(t) at time t, and the effect of the time-updated binary 

variable Mbin(t) on dN(t), are taken to be linear.  As noted below, this assumption has 

ramifications that are not present when the mediator variable is continuous.  

The assumed model for the hazard of the distal event, αD(t), expressed as a function of X and 

Mbin(t) is shown below as 5-8, and differs from Model 5-6 only with respect to the nature of 

the mediator: 

αD(t|X, Mbin(t) ) = γ0(t) + γ1(t)X + γ3(t)Mbin(t)   5-8 

In this model, Mbin(t)=1 for individuals who have experienced the event mediator at or before 

time t. This model is defined for the set of individuals who have not experienced the distal 

event by time t and are still in the study.  

A linear model for the expected value of Mbin(t) is defined in terms of X. Such a model is 

justified considering that the cumulative incidence of Mbin(t), I(Mbin(t)), is the proportion of 

individuals at time t who have experienced the intermediate event. The expected value is then 

modelled in terms of X, 

E(Mbin(t)|X) = β0(t) + β1(t)X    5-9 

The set of individuals that contributes to the estimation of model 5-9 at time t (viewed from a 

survival analysis perspective as the risk set at time t) is the same as the risk set for model 5-8, 

that is, the individuals who have not yet experienced the distal event by time t and are still in 
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the study. Individuals who have experienced the event mediator some time before time t 

remain in the set for model 5-9 while they have not experienced the distal event and remain in 

the study. An additional consideration from fitting model 5-9 arises from the fact that a 

(potentially multivariable) linear model is fitted on a binary outcome. However, Hellevik [76] 

argues that this does not necessarily imply a poor model fit, and indeed that, because the 

interpretation of regression coefficients is straightforward in a linear regression with a binary 

outcome, such a model may in some cases be preferable to a logistic or other model [76].  

The indirect effect of X is given in this setting by combining the effect of X on Mbin(t) and the 

effect of Mbin(t) on dN(t), in the same way as described in section 5.3.2 for traditional dynamic 

path analysis. Using the argument of Gamborg [73], at time t, a 1-unit change in the value of X 

causes a difference of β1(t) in the expected value of Mbin(t), and this β1(t) change in the value of 

Mbin(t) causes a change of β1(t) times γ3(t) in the hazard of dN(t). Therefore, the indirect effect 

of X at time t is estimated by γ3(t)β1(t) (see Figure 5-5). 

The relationships between X, Mbin(t) and dN(t) can be shown using a path diagram such as 

Figure 5-5 below.  

Figure 5-5 Generalised path diagram for the time-specific relationships between X, Mbint(t) and the event dN(t). 
The path coefficients specific to each time are shown in the diagram. 

 
 
 
 

 

 

 

As in traditional dynamic path analysis with a continuous mediator, the direct and indirect 

effects are usually given as cumulative functions. The cumulative direct effect is given by 

∫ γ1(u)du
t

0
 and the cumulative indirect effect by ∫ γ3(u)

t

0
β1(u)du.    
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5.4.2 Estimating the indirect effect of X for an event mediator 

 

This section provides details on estimation based on the models outlined in the previous 

section. The estimation process for the situation with an event mediator is similar to that 

described in section 5.3.3 for traditional dynamic path analysis with a continuous mediator. 

The assumptions of no unmeasured confounders, no intermediate confounders, no interaction 

between X and Mbin(t) and no non-linearities in X and Mbin(t) [42, 75] are equivalent to the 

assumptions of traditional dynamic path analysis described in section 5.3.3. The steps in the 

estimation process are the following: 

1. The first step is to estimate β1(t) by fitting a linear regression model using least-

squares regression for the effect of X on Mbin(t) corresponding to model 5-9 at each tD. 

This produces parameter estimates β̂0(tD) and β̂1(tD). As noted above, individuals are 

censored from the risk set when they experience the distal event, not when they 

experience the event mediator. Thus, an individual i with any value of Mbin,i(t) remains 

in the risk set at time t while Ni(t)=0.  

2. The effect of Mbin(t) on dN(t) is estimated by fitting an additive hazards model 

corresponding to model 5-8 at each tD. The model produces estimates γ̂0(tD), γ̂1(tD) 

and γ̂3(tD).   

3. The estimated direct effect of X on dN(t) at time tD is given by  γ̂1(tD). The estimated 

indirect effect of X on dN(t) at time tD is given by γ̂3(tD)β̂1(tD).  

4. The cumulative estimate of the direct effect of X over the interval (t0, tD] is given by 

∑ γ1̂(tj)tj≤tD
; the cumulative estimate of the indirect effect of X over the same interval 

is given by ∑ γ3̂(tj)tj≤tD
β1̂(tj). 

In section 5.3.3, the work of Strohmaier [42] was cited to show that the dynamic path analysis 

estimate of the indirect effect of X on dN(t) through a continuous variable Mcont(t) is unbiased 

by conditioning on survival to time t. This argument can also be applied to the current setting, 

meaning that the dynamic path analysis estimate of the indirect effect of X on dN(t) through 

Mbin(t) should not be affected conditioning on survival to time t. 

The performance of the estimator in dynamic path analysis with an event mediator is 

investigated using simulation studies in chapter 7.  
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5.5 Summary 

 

This chapter has described some of the traditional approaches to mediation analysis in a 

clinical trials setting, focusing on traditional mediation analysis and in particular on path 

analysis. Under conditions of correct model specification, where the model includes no non-

linearities in treatment or mediator, no interaction between treatment and mediator, no 

unmeasured confounding and no intermediate confounding, estimates of the direct and 

indirect effects of a treatment on an outcome using path analysis are unbiased. 

Dynamic path analysis extends the path analysis approach to situations with a survival 

outcome. This is a flexible method for estimating direct and indirect effects which can readily 

allow for time-varying covariate effects under similar assumptions to those required by path 

analysis, where the survival outcome is modelled in terms of an additive hazards model.  

Dynamic path analysis as described in the literature to date requires that the mediator be a 

continuous variable modelled using a linear regression. The extension to dynamic path analysis 

proposed in this chapter allows the mediator itself to be a time-to-event variable, which is 

here characterised as a time-updated binary variable in order to implement the dynamic path 

analysis approach. This setting may arise frequently in the secondary analysis of clinical trials 

with a composite time-to-event outcome, implying that the extension of dynamic path analysis 

may be widely applicable in a practical setting. 

In chapter 7, the behaviour of estimates obtained by implementing this extended dynamic 

path analysis will be examined with respect to the effect of losses from the risk set through the 

censoring event (death). 
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6 The performance of dynamic path analysis 

 

 

6.1 Introduction 

 

The method of dynamic path analysis has been implemented in both cohort studies and clinical 

trials [20, 42, 73, 77] to estimate the indirect effect of an exposure on an outcome through a 

continuous mediator.  This chapter considers the method in the setting of clinical trials.  

Subject to the assumptions of no interaction between treatment and the mediator, no 

unmeasured confounding and no intermediate confounding for all the relevant relationships 

[17, 20, 21, 24, 30, 32, 64, 78-80] (see chapter 5), it has been shown analytically that dynamic 

path analysis provides an unbiased estimate of the indirect effect of a treatment [20, 30, 31]. 

Figure 6-1 shows the relationships between the main variables in a simple setting 

(confounders are not included for simplicity).  

Figure 6-1 Path diagram for the time-specific relationships between X, Mcont(t) and the event dN(t) (using notation 
introduced in chapter 5) 

 

 

 

 

 

Figure 6-1 is similar to Figure 5-4 but does not contain path coefficients. 

This chapter reports the results of simulation studies conducted to verify that application of 

dynamic path analysis leads to unbiased estimates of the indirect effect of a treatment on an 

outcome via a continuous mediator. These simulation studies will inform the investigations 

into the extension of dynamic path analysis to the setting with an event mediator which will 

follow in chapter 7. 
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6.1.1 Aims 

 

The simulations reported in chapter 3 investigated the performance of the additive hazards 

model with a time-fixed binary as well as a time-fixed continuous explanatory variable. The 

simulation studies presented in this chapter first explore the performance of the additive 

hazards model with a time-varying continuous explanatory variable, before going on to 

consider the use of this model in dynamic path analysis.   

Since the focus of this thesis is on the indirect effect of treatment on survival via an 

intermediate variable, the performance of the estimator for the direct effect of the treatment 

on the outcome (which can be estimated by fitting an additive hazards model for the effect of 

X on dN(t) controlling for the mediator) is not investigated here.  

The aims of the chapter are therefore: 

1) To use simulation studies to verify that fitting the additive hazards model described 

by Aalen [38] produces unbiased estimates with good coverage of the effect of a 

time-varying explanatory variable on a survival outcome in two situations: a) when 

there is a single continuous time-varying explanatory variable; b) when there are 

two explanatory variables: a time-varying continuous variable; and an independent 

time-fixed binary variable (such as randomised treatment) which is independent of 

the time-varying continuous variable. The simulation studies conducted to address 

this aim reflect parts of Figure 6-1. Scenario a) considers a setting without X, and 

scenario b) omits the arrow between X and Mcont(t), so there is no mediator of the 

X-dN(t) relationship; 

2) To use simulation studies to investigate the behaviour of the dynamic path analysis 

estimator of the indirect effect of a binary treatment variable on the outcome 

through a time-varying continuous mediator (see [20, 30, 31, 74]). This scenario is 

shown in Figure 6-1. 
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6.2 Dynamic path analysis using the additive hazards model 

 

The variables under consideration in this chapter are the following: 

• N(t), the counting process associated with the event of interest (taken here to be 

death) [20]; 

• dN(t), the increment of N(t) [20] ; 

• TD, the random variable representing time to death; 

• Mcont(t), a continuous time-varying explanatory variable. At event time t, Mcont(t) refers 

to the value of Mcont just before time t, in line with the usage of Aalen [20];  

• X, a binary explanatory variable taken in this chapter to indicate treatment group. 

First, the chapter investigates the performance of the additive hazards model in scenarios (a) 

and (b) set out in Aim 1. Using the above notation, the two scenarios are illustrated using path 

diagrams in Figure 6-2 below.   

Figure 6-2 Path diagram showing relationships between 1a) Mcont(t) and dN(t), and 1b) X, Mcont(t) and dN(t)   

 

 

 

 

 

 

Sections 3.3 and 5.3.3 described time-to-event analysis using the additive hazards model and 

dynamic path analysis respectively. The methods are summarised below for ease of reference. 

The estimation models, estimands and estimators for the settings shown in Figure 6-2 1a) and 

1b) are shown in Table 6-1. The primary focus is on the association between Mcont(t) and 

survival. The coefficient of Mcont(t) is estimated at each event time tD, and these estimates are 

summed over event times to give the cumulative coefficients.  The data generating models are 

described in the next section. 

  

dN(t) Mcont(t)  

Mcont(t) 

dN(t) X 

1a) 1b) 
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Table 6-1 Models, estimands and estimators used for aim: 1a) with explanatory variable Mcont(t); 1b) with 
explanatory variables X and Mcont(t) 

Setting 
 

Estimation model Estimand 
(Cumulative coefficient 
at time t) 
 

Estimator 
(Estimator for cumulative 
coefficient at death time tD) 

Additive hazards 
model, aim 1a), 
explanatory 
variable Mcont(t) 
only 

 

α(t|Mcont(t))
= γ0

′ (t) + γ2
′ (t)Mcont(t) 

 

Γ2
′(t)

= ∫ γ2
′

t

0

(u)du 

 

Γ2
′̂(tD) = ∑ γ2

′̂ (tj)
tj≤tD

 

Additive hazards 
model, aim 1b), 
explanatory 
variables Mcont(t) 
and X 

α(t|X, Mcont(t))
= γ0(t) + γ1(t)X
+ γ2(t)Mcont(t) 

Γ2(t)

= ∫ γ2(u)
t

0

du 

 

Γ2̂(tD) = ∑ γ2̂(tj)
tj≤tD

 

 

After investigating the component parts shown in Figure 6-2, the chapter investigates the full 

dynamic path scenario illustrated in Figure 6-1.  In the setting used to investigate the 

performance of dynamic path analysis, X affects Mcont(t), and both X and Mcont(t) affect the 

distal outcome dN(t). Dynamic path analysis for the estimation of the indirect effect of X on 

dN(t) involves two models: one for the effect of X on Mcont(t), and one for the effects of X and 

Mcont(t) on the hazard. Table 6-2 below shows the models, estimand and estimator used in the 

dynamic path analysis. The model for the direct effect of X on dN(t) is also shown for 

completeness, although the simulation studies presented in this chapter do not examine the 

performance of the estimator of the direct effect. 

Table 6-2 Models, estimands and estimators used for aim 2 

Setting 
 

Estimation Models Estimand 
(Cumulative 
coefficient at time t) 

 

Estimator 
(Estimator for 
cumulative coefficient at 
death time tD) 

Dynamic path 
analysis 
(indirect effect 
of X on dN(t)) 

E(Mcont(t)|X) = δ0(t)
+ δ1(t)X 

α(t|X, Mcont(t))
= γ0(t) + γ1(t)X
+ γ2(t)Mcont(t) 

∫ δ1(u)γ2(u)
t

0

du ∑ δ1̂(tj)γ2̂(tj)
tj≤tD

 

Additive 
hazards model 
(direct effect of 
X on dN(t)) 
 

α(t|X, Mcont(t))
= γ0(t) + γ1(t)X
+ γ2(t)Mcont(t) 

∫ γ1(u)
t

0

du ∑ γ1̂(tj)
tj≤tD

 

 

The estimation process for the dynamic path analysis model has been described by several 

authors [20, 30, 31, 53] and in section 5.3.3. In brief, at each event time tD the coefficient for 
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the effect of X on Mcont(t) (δ1(t) in Table 6-2) is estimated, and the coefficient for the effect of 

Mcont(t) on dN(t), adjusted for X (γ2(t) in Table 6-2), is estimated. The two estimates are 

multiplied together to give an estimate of the indirect effect of X on dN(t) through the 

mediator Mcont(t) at tD. The indirect effect is presented as a plot of the cumulative estimate, 

given by ∑ δ1̂(tj)γ2̂(tj)tj≤tD
 where the sum is over all death times up to and including time tD.  

 

 

6.3 Data generation in the simulation studies 

 

As in chapter 3, the simulation studies were carried out by generating the datasets, obtaining 

the parameter estimates for the additive hazards models or dynamic path analysis, and 

comparing the parameter estimates to the true value of the estimands. This section describes 

the data generation process. 

Models used to generate the data for the simulation studies are shown in Table 6-3 below. 

Throughout the rest of this chapter, the parameter values chosen as part of data generation 

are marked with an asterisk to emphasise that they are known. 

Table 6-3 Data generation models for assessment of the additive hazards model with explanatory variable(s) 
Mcont(t) or X and Mcont(t) (aim 1), and dynamic path analysis with mediator Mcont(t) and explanatory variable X 
(aim 2).  

Setting Data generation models True value of the 
estimand 
 

Additive hazards model 
aim 1a), explanatory 
variable Mcont(t) only 

α(t|Mcont(t)) = γ0
∗ (t) + γ2

∗ Mcont(t) 

γ0(t) = γ0
∗  

E(Mcont(t)|t) = δ0
∗ + δ2

∗ t 

 

Γ2(t) = ∫ γ2
∗

t

0

du = γ2
∗ t 

Additive hazards model 
aim 1b), explanatory 
variables Mcont(t) and X 

α(t|X, Mcont(t)) = γ0
∗ (t) + γ1

∗ X
+ γ2

∗ Mcont(t) 

γ0(t) = γ0
∗  

P(X = 1) = p∗ 

E(Mcont(t)|t) = δ0
∗ + δ2

∗ t 

Γ2(t) = ∫ γ2
∗

t

0

du = γ2
∗ t 

Dynamic path analysis 
with mediator Mcont(t) 
and explanatory variable 
X 

α(t|X, Mcont(t)) = γ0
∗ (t) + γ1

∗ X
+ γ2

∗ Mcont(t) 

γ0(t) = γ0
∗  

P(X = 1) = p∗ 

E(Mcont(t)|X, t) = δ0
∗ + δ1

∗ X + δ2
∗ t  

∫ δ1
∗(u)γ2

∗
t

0

du = δ1
∗γ2

∗ t 
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The following characteristics apply to all the data generation processes described in this 

chapter: 

• TD was assumed to follow an exponential distribution in the baseline group, with 

constant hazard defined by γ0
∗ . This portrays death as an outcome occurring 

monotonically throughout follow-up. In the Zactima trials, for example, time to death 

was approximately exponentially distributed over the first 18 months (the 

approximate 75th percentile of survival time) of the trial; 

• The treatment indicator X was generated using a uniformly distributed random 

variable U1 defined over the interval (0,1) with a cutoff 0<p*<1 such that X=0 if U1<p*, 

X=1 if U1>p*.  

Event times TD were generated using the Stata command survsim (see [59]) according to the 

models for α(t|Mcont(t)) or α(t|X, Mcont(t)) shown in Table 6-3. The command allows complex 

survival time data to be generated with a user-defined hazard function. As shown in Table 6-3, 

the user-defined hazard functions comprise a baseline hazard γ0(t) (set in this chapter to 

constant γ0
∗ ) and effects representing the additive contribution to the hazard of Mcont(t) alone, 

given by γ2
∗  in the simulations addressing aim 1a), and of X and Mcont(t), given by γ1

∗  and γ2
∗  

respectively in the settings addressing aims 1b) and 2). An administrative censoring time was 

chosen so that very few individuals were censored from the risk set. 

For the models used to generate data for the evaluation of the additive hazards model (aim 1), 

the intercept and slope of the data generating model for Mcont(t) were set to vary between 

individuals. The following random effects data generation model was used: 

Mcont i(t) = δ0
∗ + u0i + (δ2

∗ + u2i)t + ϵi 

where δ0
∗ and δ2

∗  are the fixed intercept and slope respectively, and u0i and u2i are the random 

intercept and slope terms for individual i. Values of  u0i and u2i were generated from a 

bivariate normal distribution with zero means 0, variances 0.04 and 0.0025 respectively, and 

correlation as shown in Table 6-4.  The values of the variances were chosen to give a 

reasonable spread of values around the respective means so that, for example, the 95% range 

for values of δ0i = δ0
∗ + u0i in simulation setting 1 was [0.11, 0.89] with a mean of 0.5, and the 

95% range for values of δ2i = δ2
∗ + u2i in simulation setting 1 was [0.10, 0.30] with a mean of 

0.2. Multiple observation times (up to 300) for each individual were created to record the 

observed values of Mcont(t) over time at evenly spaced points between 0 and the fourth 

evaluation time, corresponding to roughly the 75th percentile of the observed survival time 

(see below). 
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The models used to generate Mcont(t) when evaluating the performance of dynamic path 

analysis (aim 2, shown in the third row of Table 6-3) were similar to those used for the 

evaluation of the additive hazards model (the first and second rows of Table 6-3), with the 

addition that in the dynamic path analysis setting X affects Mcont(t). This dependence is 

expressed through the parameter δ1
∗ . To achieve this, the data generation for Mcont(t) followed 

the procedure described above, but with an additional contribution to E(Mcont(t)) of δ1
∗   for 

individuals in whom X=1 (ie E(Mcont(t)|X, t) = δ0
∗ + δ1

∗X + δ2
∗ t). The δ1

∗  did not vary across 

individuals. Under the data generation models  for dynamic path analysis shown in the third 

row of Table 6-3, which set δ1
∗(t) = δ1

∗  and γ2
∗ (t) = γ2

∗ , the value of the true cumulative 

indirect effect of X, ∫ δ1
∗(u)γ2

∗t

0
du, simplifies to δ1

∗γ2
∗ t. 

For the simulations investigating the additive hazards model (aim 1), specific values for 

parameters γ1
∗ , γ2

∗ , δ1
∗  and δ2

∗  were chosen as shown in Table 6-4 below (note the numbering 

used to identify each simulation setting). For the simulations addressing aim 1a), negative 

values for δ2
∗  were considered such that Mcont(t) was either increasing or decreasing over time.  

Values of the baseline parameters γ0
∗ , δ0

∗ , γ0
∗  and δ0

∗  were chosen next, so that: 

c) the 75th percentile of survival time would fall at a time point such that results of the 

simulations could be reported at evenly spaced intervals between 0 and the 75th 

percentile of survival time (see below and [56]); 

d) plausible hazard ratios would be implied, because hazard ratios are more familiar than 

differences in hazard. For example, in simulation setting 1 the coefficient for the 

explanatory variable Mcont(t), γ2
∗ , was set at 0.5. The baseline hazard γ0

∗  was set to 0.5 

so that the hazard ratio at t=0 comparing Mcont(0)=1 with Mcont(0)=0 was 

(0.5+(0.5*1))/0.5=2. 

The parameter values for simulation settings investigating aim 1 are shown in Table 6-4. 
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Table 6-4 Parameters for simulations investigating the additive hazards model, aim 1 

 Aim 1 a) 
Explanatory variable Mcont(t) only 

Simulation 
setting number 

1 2 3 4 

Parameter 
𝛄𝟎

∗ (𝐭)  
    

0.5 for all settings 1-4 
𝛄𝟐

∗
 0.5 1 0.5 1 

𝛅𝟎
∗

 0.5 0.5 1 1 
𝛅𝟐

∗
 0.2 0.2 -0.2 -0.2 

Corr(𝛅𝟎𝐢
∗ , 𝛅𝟐𝐢

∗ ) 0.5 0.5 -0.5 -0.5 
 

 Aim 1 b) 
Explanatory variables X and Mcont(t)  

Simulation 
setting number 

5 6 7 8 9 10 

Parameter       
𝛄𝟎

∗ (𝐭) 1 0.5 0.5 0.5 0.5 0.5 
𝛄𝟏

∗
 0 0.2 0.5 0 0.2 0.5 

𝛄𝟐
∗

 0.2 0.2 0.2 0.5 0.5 0.5 
𝛅𝟎

∗
 0.5 for all settings 5-10 

𝛅𝟐
∗

 0.2 for all settings 5-10 
p* 0.5 for all settings 5-10 
Corr(𝛅𝟎𝐢

∗ , 𝛅𝟐𝐢
∗ ) 0.5 for all settings 5-10 

 

 

The simulations investigating dynamic path analysis (aim 2) set values for parameters γ1
∗ , γ2

∗ , 

δ1
∗  and δ2

∗  in the range [0, 0.5]. Values of the baseline parameters γ0
∗  and δ0

∗   were chosen so 

that: 

a) the 75th percentile of survival time would fall at t=2; results of the simulations are 

reported at t=0.5,1,1.5 and 2 in accordance with Hosmer and Royston [56]; 

b) Hazard ratios for the effect of X and Mcont(t) on dN(t) would be plausible, as before. For 

example, in simulation setting 12 the parameter values γ0
∗ = 0.4, γ1

∗ = 0.2 and γ2
∗ =

0.2 imply that the hazard ratio at time t=0 for the effect of X=1 compared to X=0 on 

death, if Mcont(t)=0, is 1.5, and the hazard ratio associated with Mcont(0)=1 compared to 

Mcont(0)=0 if X=0 is 1.5.  

The parameter values are shown in Table 6-5 below, with each setting identified by a 

simulation number.   

  



98 
 

Table 6-5 Simulation parameters for the setting investigating dynamic path analysis, aim 2 

Simulation 
setting number 

11 12 13 14 15 16 

Parameter       
𝛄𝟎

∗ (𝐭) 0.5 0.4 0.4 0.3 0.2 0.3 
𝛄𝟏

∗
 0 0.2 0.5 0 0.2 0.5 

𝛄𝟐
∗

 0.2 0.2 0.2 0.5 0.5 0.5 
𝛅𝟎

∗
 0.8 0.5 0.5 0.5 0.5 0.2 

𝛅𝟏
∗  0.1 for all settings 11-16 

𝛅𝟐
∗

 0.2 for all settings 11-16 
p* 0.5 for all settings 11-16 
Corr(𝛅𝟎𝐢

∗ , 𝛅𝟐𝐢
∗ ) 0.5 for all settings 11-16 

 

As in chapter 3, administrative censoring time for the simulations presented in this chapter 

was chosen to be t=5 for all individuals.  Given the choices of parameter values shown in Table 

6-4 and Table 6-5, this means that death would be experienced by all but a handful of patients. 

For both the additive hazards models and dynamic path analysis simulations, 1000 datasets 

with N=1000 individuals were generated. The dataset size of N=1000 in this chapter (compared 

to N=3000 in chapter 3) was chosen because with the large numbers of observations 

generated per individual to create the time-varying mediator (up to 300, as described above), 

simulations on a sample size of N=3000 would have been computationally intensive. For 

similar reasons, the simulations to obtain the 95% coverage of the estimates derived from 

dynamic path analysis were based on 200 datasets of N=400.  

 

 

6.4 Evaluation of methods using the simulated datasets 

 

 

6.4.1 Criteria 

 

Fitting the additive hazard model on the simulated datasets led to estimates of Γ2(t) and 

performing dynamic path analysis led to estimates of ∫ δ1(u)γ2
t

0
du. The estimates were 

compared with the true values of the estimands using the metrics listed in Table 6-6 where the 

symbol τ refers to the true value of the target of estimation. 
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Table 6-6 Metrics used to assess the results of the simulations 

Metric1 Interpretation 

τ True value of the parameter of interest set in the data 
generation process 

τ̅ =
∑ τp̂P

P
 

Mean value of the estimates of τ across P simulation 
runs  

τ̅ − τ

τ
× 100 

Percentage bias 

Percentage of times the 95% 
confidence interval for τ̂p includes 

τ 

95% coverage 

∑ SE(τp̂)P

P
 

Mean model-based standard error (for the additive 
hazards model simulations only) 

SE(τ̂) = √
1

P − 1
∑(τp̂ − τ)

2

P

 
Empirical standard error 

1Note that τ̂p denotes the estimate from simulated data set p, p=1, … P; P=1000. 

The fifth metric, the mean model-based standard error, is presented for the simulations 

investigating the additive hazards model (aim 1), but not for simulations investigating dynamic 

path analysis (aim 2). This is because there is no expression available for the standard error of 

the cumulative indirect effect [30, 31]. 

In the literature, the results of simulation studies investigating dynamic path analysis have 

been presented graphically, allowing a comparison of the true parameter value with the mean 

of the estimated parameter values over time (see for example [42]). This allows any time-

varying effects to be clearly shown. Results are also presented numerically at several 

timepoints. This allows the performance of the additive hazards model and dynamic path 

analysis to be assessed quantitatively, in a way that is not usual in this field.  

In addition to this quantitative evaluation, a graphical comparison of the true parameter 

values and mean values of their estimates over time is provided as an illustrative example for 

one simulation setting addressing each aim. For the dynamic path analysis, following 

Strohmaier [42], the example graphs include the true and mean estimated values over time of 

the following: ∫ δ1γ2
t

0
du + ∫ γ1du

t

0
  (the total effect); ∫ γ1du

t

0
  (the direct effect of X on N(t)); 

∫ δ1γ2
t

0
du (the indirect effect of X); δ1 (the effect of X on Mcont(t)); and ∫ γ2

t

0
du (the effect of 

Mcont(t) on N(t)).  

An additional metric was used in the investigation of dynamic path analysis, not reported in 

Table 6-6. It consists of the average difference between the estimated total effect and the 

indirect effect, reported only for the simulation settings in which the direct effect was set to be 

0.  When the direct effect is 0 the indirect effect equals the total effect, under the property of 
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additivity (see expression 5-4).  This is explained in the context of the models given in the last 

row of Table 6-3. From Table 6-3, α(t|X, Mcont(t)) = γ0
∗ (t) + γ1

∗X + γ2
∗ Mcont(t).  If γ1

∗ = 0, 

there is no direct effect of X on death. The indirect effect of X on the hazard, estimated by 

dynamic path analysis, is equivalent to the total effect, given at time t by γ1
×(t) in: 

α(t|X) = γ0
×(t) + γ1

×(t)X      6-1   

To check this equivalency, the true value of the indirect effect ∫ δ1γ2
t

0
du is compared to the 

mean value of the estimate Γ1
×̂(t) for simulations where γ1

∗ = 0 (simulation settings 11 and 14 

in Table 6-5). 

 

 

6.4.2 Interpretation 

 

Following Burton’s recommendations on coverage [60], for the simulations investigating the 

performance of the additive hazards model, the acceptable level of coverage for a 95% 

confidence interval based on 1000 repetitions is between 93.6% and 96.4%. For the 

simulations investigating dynamic path analysis, coverage was calculated from 200 datasets 

using a bootstrapped estimate of the 95% confidence intervals.  Each of the 200 datasets had 

N=400, and the confidence intervals used a normal bootstrap based on 100 bootstrap samples. 

The acceptable level of coverage for a 95% confidence interval based on 200 simulated 

datasets is between 91.9% and 98.1% [60].  

If the methods under investigation perform well, percentage bias at each time point should be 

low, and coverage fall within the limits given above.  

 

 

6.5 Results 

 

Results of the evaluation of the additive hazards model and dynamic path analysis are 

presented as tables reporting the metrics listed in Table 6-6 at four different timepoints. The 

result tables are followed by plots representing one set of results per group of simulations as 

illustrative examples. 
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6.5.1 Results for the evaluation of the additive hazards model (aim 1) 

 

The results from simulations evaluating the performance of the additive hazards model with a 

single time-varying continuous variable Mcont(t) (aim 1a) are presented in Table 6-7.  The 

results in Table 6-7 indicate agreement between Γ2(t) and  Γ2̂(t) over time, with percentage 

bias low at all time points for simulation settings 1-4. Simulation settings 3 and 4 appear to 

have slightly greater percentage biases earlier in time (respectively -2.46% and -1.55% at the 

first evaluation timepoint), which decrease over time. This slightly larger bias at early 

timepoints may be a result of uncertainty in the estimates arising from the value of Mcont(t) 

decreasing over time, while the association between Mcont(t) and death was still positive (see 

Table 6-4). However, the magnitude of these percentage biases is small in absolute terms at all 

timepoints.  For simulation settings 1-4, at all evaluation timepoints the 95% coverage falls 

within the acceptable limits of [93.6%, 96.4%].  For all simulations at all evaluation timepoints, 

the values of empirical and model-based standard errors are close. From Burton [60], when 

these two measures of variability are close, there is an implication of negligible bias. 
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Table 6-7 Evaluation of the performance of the additive hazards model specified for aim 1a (single continuous time-varying explanatory variable Mcont(t)). The values of the baseline parameters 
are given as footnotes. Results are based on 1000 simulated data sets of N=1000 individuals. 

 Simulation 
setting 
number 

Time Simulation 
setting 
number 

Time 

  0.4 0.8 1.2 1.6  0.4  0.8  1.2 1.6 

   γ2
∗ = 0.5, E(δ2

∗ ) = 0.21  3 γ2
∗ = 0.5, E(δ2

∗ ) = −0.23 

True value Γ2(t) 1 0.2 0.4 0.6 0.8  0.2 0.4 0.6 0.8 

Mean of estimates Γ2̂(t)  0.197 0.397 0.594 0.802  0.195 0.390 0.595 0.808 

Mean percentage bias  -1.11 -0.74 -1.00 0.27  -2.46 -2.50 -0.85 0.99 

Mean % of deaths in 
sample 

 26.5  46.7  61.9  73.1   32.4  53.5  67.5  76.8  

95% coverage  94.8  95.4  94.9  95.0   94.6 95.0 94.6  95.2 

Empirical / Model-
based SE 

 0.092 
/0.092 

0.138 
/0.139 

0.184 
/0.183 

0.233 
/0.228 

 0.113 
/0.112 

0.178 
/0.178 

0.250 
/0.245 

0.316 
/0.316 

  Time 
 

 Time 

0.3  0.6  0.9  1.2 0.25 0.50 0.75 1.0 

 2 γ2
∗ = 1, E(δ2

∗ ) = 0.22 4 γ2
∗ = 1, E(δ2

∗ ) = −0.24 

True value Γ2(t)  0.3 0.6 0.9 1.2  0.25 0.5 0.75 1 

Mean of estimates Γ2̂(t)  0.298 0.594 0.891 1.199  0.246 0.492 0.742 1.005 

Mean percentage bias  -0.65 -0.95 -1.03 -0.12  -1.55 -1.50 -1.12 0.53 

Mean % of deaths in 
sample 

 26.4  46.7 61.9  73.1  30.8  51.4  65.4 74.9 

95% coverage  94.7 95.2  95.2  95.2   94.9 95.3  95.4 95.8 

Empirical/ Model-
based SE 

 0.093 
/0.093 

0.141 
/0.141 

0.189 
/0.188 

0.238 
/0.236 

 0.108 
/0.107 

0.167 
/0.167 

0.233 
/0.228 

0.292 
/0.292 

1 γ0
∗ = 0.5, E(δ0

∗ ) = 0.5  2 γ0
∗ = 0.5, E(δ0

∗ ) = 0.5  3γ0
∗ = 0.5, E(δ0

∗ ) = 1   4 γ0
∗ = 0.5, E(δ0

∗ ) = 1  1,2,3,4p = 0.5 throughout 
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Illustrative example 6-1 

Figure 6-3 below compares the true cumulative regression coefficient for Mcont(t), Γ2(t), with 

the mean value of its estimate, Γ2̂(t) plotted over time for simulation setting 2. This provides 

an illustrative example of the performance of Γ2̂(t) under the circumstances set out in Table 

6-4. Simulation setting 2 was chosen as an example, because the value of the parameter is 

easy to read off the y-axis. 

Figure 6-3 Example graph showing the values of 𝚪𝟐(𝐭) and the mean of 𝚪𝟐̂(𝐭) over time in simulation setting 2  

 

 

 

 

 

 

At  

From Table 6-3, the expected cumulative change in α(t) at time t associated with a 1-unit 

increase in Mcont(t) is given by ∫ γ2
t

0
du = γ2t. The graph of Γ2(t) against time is therefore a 

straight line passing through the origin. Figure 6-3 demonstrates good agreement between the 

true parameter values and the mean of their estimates. 

The results presented indicate together that the performance of the additive hazards model 

with a single time-updated continuous predictor Mcont(t) is good under the conditions studied, 

producing parameter estimates with little bias and good coverage. 

Next, the performance of the additive hazards model was evaluated in the extended setting in 

which the hazard is affected by a time-fixed treatment variable X as well as Mcont(t) (aim 1b). 

The results are presented in Table 6-8, corresponding to simulation settings 5-10 set out in 

Table 6-4. 
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Table 6-8 Evaluation of the performance of the additive hazards model specified for aim 1b (explanatory variables Mcont(t) and X). Note that results for 𝚪𝟐(t) only are presented here. The values of 
the baseline parameters are shown as footnotes. Results are based on 1000 simulated data sets of N=1000 individuals. 

 Simulation 
setting 
number 

Time Simulation 
setting 
number 

Time 

 0.3 0.6 0.9 1.2 0.4 0.8 1.2 1.6 

 5 γ1
∗ = 0, γ2

∗ = 0.2, E(δ2
∗ ) = 0.25 8 γ1

∗ = 0, γ2
∗ = 0.5, E(δ2

∗ ) = 0.28 

True value Γ2(t)  0.06 0.12 0.18 0.24  0.20 0.40 0.60 0.80 

Mean of estimates Γ2̂(t)  0.061 0.126 0.181 0.239  0.201 0.404 0.603 0.807 

Mean percentage bias  1.48 4.94 0.82 -0.30  0.37 0.93 0.50 0.91 

Mean % of deaths in sample  28.2  48.6  63.4  74.0   26.4  46.6    61.7  73.0 

95% coverage  95.1 94.4 93.6 94.6   95.0  94.8  94.4  93.8 

Empirical / Model-based SE  0.096 /0.097 0.153 /0.148 0.204/ 0.196 0.251 /0.243  0.092 /0.092 0.143/ 0.140 0.192 /0.184 0.238 /0.229 

  Time  Time 

0.5 1.0 1.5 2.0 0.4  0.8  1.2 1.6 

 6 γ1
∗ = 0.2, γ2

∗ = 0.2, E(δ2
∗ ) = 0.26 9 γ1

∗ = 0.2, γ2
∗ = 0.5, E(δ2

∗ ) = 0.29 

True value Γ2(t)  0.1 0.2 0.3 0.4  0.2 0.4 0.6 0.8 

Mean of estimates Γ2̂(t)  0.102 0.205 0.302 0.400  0.200 0.405 0.603 0.806 

Mean percentage bias  2.36 2.36 0.69 -0.11  0.21 1.14 0.48 0.77 

Mean % of deaths in sample  29.7  51.0  66.0  76.7   29.2  50.5 65.9 76.7 

95% coverage  95.3  94.2  93.5  94.7   95.3  93.6 94.1 93.6 

Empirical/ Model-based SE  0.099 /0.099 0.156 /0.150 0.204 /0.197 0.251 /0.244  0.097 /0.099 0.157 /0.151 0.210 /0.201 0.264 /0.252 

  Time  Time 

0.4 0.8 1.2 1.6 0.3 0.6 0.9 1.2 

  γ1
∗ = 0.5, γ2

∗ = 0.2, E(δ2
∗ ) = 0.27  γ1

∗ = 0.5, γ2
∗ = 0.5, E(δ2

∗ ) = 0.210 

True value Γ2(t) 7 0.08 0.16 0.24 0.32 10 0.15 0.30 0.45 0.60 

Mean of estimates Γ2̂(t)  0.083 0.164 0.245 0.325  0.152 0.302 0.453 0.604 

Mean percentage bias  3.93 2.30 2.21 1.60  1.43 0.75 0.74 0.68 

Mean % of deaths in sample  28.6  48.9  63.3  73.6   25.9  45.3  59.7 70.4  

95% coverage  95.7  94.2  93.4  94.5   95.7 93.7  94.0  92.9  

Empirical/ Model-based SE  0.096 /0.097 0.151 /0.146 0.199 /0.190 0.237 /0.233  0.089 /0.092 0.142 /0.138 0.187 /0.180 0.232 /0.223 
5 γ0

∗ = 1, E(δ0
∗ ) = 0.5 6 γ0

∗ = 0.5, E(δ0
∗ ) = 0.5 7 γ0

∗ = 0.5, E(δ0
∗ ) = 0.5 8 γ0

∗ = 0.5, E(δ0
∗ ) = 0.5 9 γ0

∗ = 0.5, E(δ0
∗ ) = 0.5 10 γ0

∗ = 0.5, E(δ0
∗ ) = 0.5  5-10p=0.5
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Table 6-8 shows agreement between Γ2(t) and the mean values of Γ2̂(t) over time, with 

percentage bias low in absolute terms. However, the percentage bias is higher at some 

evaluation timepoints than for simulation settings 1-4. For example, percentage bias at the 

second evaluation timepoint for simulation setting 5 is 4.94%, which is higher than any of the 

percentage biases reported in Table 6-7. This higher bias is attenuated over time; for 

simulation settings 5, 6 and 8-10, the percentage bias drops to less than 1% at the final 

evaluation timepoint. In general, 95% coverage falls within the acceptable limits of [93.6%, 

96.4%], with the exception of simulation setting 5 at the third evaluation timepoint when 

coverage is 93.5%, and simulation setting 10 at the fourth evaluation timepoint when coverage 

is 92.9%. It is unclear why coverage falls outside the acceptable range in these cases. Coverage 

is a function of bias and model-based SE, and neither of these appears to take an outlying 

value in these two situations. These may be chance findings, given the relatively small number 

of simulations performed. However, the values of empirical and model-based standard errors 

reported in Table 6-8 are very similar, suggesting good performance of the model standard 

errors.  

Illustrative example 6-2 

Figure 6-4 below compares the cumulative regression coefficient for Mcont(t), Γ2(t), with the 

mean value of the estimates Γ2̂(t) plotted over time for simulation setting 8. This illustrates 

the performance of Γ2̂(t) in the additive hazards model with two independent explanatory 

variables, Mcont(t) and X. Simulation setting 8 was chosen for the larger value of Γ2(t), so that 

values of the parameter are easy to read from the plot.  

Figure 6-4 Example graph showing the values of 𝚪𝟐(𝐭) and the mean of 𝚪𝟐̂(𝐭) over time in simulation setting 8  
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In the settings investigated, the additive hazards model has performed well with two 

explanatory variables Mcont(t) and X, with generally low percentage bias in estimates of Γ2(t) 

and coverage that usually falls within acceptable limits. 

 

 

6.5.2 Results for the evaluation of dynamic path analysis with a time-varying 

continuous mediator Mcont(t) (aim 2) 

 

It was anticipated that the good performance of the additive hazards model reported in 

section 6.5.1 would feed through to dynamic path analysis with a continuous time-varying 

mediator variable Mcont(t).   

Table 6-9 shows results of the simulation studies for the dynamic path analysis (simulation 

settings 11-16). These show close agreement between the true values of the indirect effect of 

X that involves Mcont(t) and the mean of the estimates for all the evaluation timepoints, with 

the largest percentage bias observed as 1.99% in simulation setting 11 at the second 

evaluation timepoint. Percentage bias is very low at the final evaluation timepoint for all six 

simulations. Coverage falls within the acceptable range of [91.9%, 98.1%] for all results except 

for simulation setting 14 at the third timepoint, where coverage is 91.0%, and simulation 

setting 15 at the fourth timepoint, where coverage is 91.5%. In simulation settings 11-13, the 

empirical standard errors of the estimates are large compared to the values of the estimates at 

the first two timepoints; for example, in simulation setting 11 the empirical standard error at 

the first timepoint is 0.010, and the mean of the estimates is 0.010. This implies that the 

estimated effects are very variable at early timepoints.  At later timepoints, the magnitudes of 

the parameter estimates increase relative to the empirical standard errors (in simulation 

setting 11 at the final evaluation timepoint the empirical standard error is 0.026 while the 

mean of the estimates is 0.040), so the estimates show relatively less variability at later 

timepoints. In simulation settings 11 and 14, where γ1
∗ = 0 (meaning that there is no direct 

effect of X on the hazard), the average of the estimates of the total effect of X, Γ1
×̂(t), should 

equal the indirect effect∫ δ1γ2
t

0
du.  The results reported in Table 6-9 show some initial 

disagreement between the indirect effect and the estimated total effect (respectively 9.6% 

and 4.8% at t=0.5), but this disagreement is attenuated over time. 
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Table 6-9 Evaluation of dynamic path analysis with a continuous time-varying mediator Mcont(t) (aim 2). The values of the baseline parameters are given as footnotes. Results are based on 1000 
simulated datasets of N=1000, with the exception of coverage, which is based on 200 repetitions of N=400. The column heading “Simulation setting no.” is shortened to “No.” 

 No. With no direct effect of baseline treatment, γ1
∗ = 0 No. With no direct effect of baseline treatment, γ1

∗ = 0 

Time  0.5 1.0 1.5 2.0  0.5 1.0 1.5 2.0 

 11 γ1
∗ = 0, γ2

∗ = 0.2, E(δ1
∗) = 0.1, E(δ2

∗ ) = 0.211 14 γ1
∗ = 0, γ2

∗ = 0.5, E(δ1
∗) = 0.1, E(δ2

∗ ) = 0.214 

True value ∫ δ1γ2
t

0
du  0.01 0.02 0.03 0.04  0.025 0.05 0.075 0.1 

Mean of estimates ∑ δ1̂(tD)γ2̂(tD)tD
0   0.010 0.020 0.030 0.040  0.025 0.050 0.075 0.100 

Mean percentage bias  1.15 1.99 -0.06 -0.51  0.01 -0.04 0.10 0.06 

Mean % of deaths in sample  28.8 49.7 64.9 75.7  25.8  46.1  61.7  73.3  

95% coverage  94.5 94.5 96.0 97.0  94.0 95.0 91.0 93.5 

Empirical SE  0.010 0.016 0.021 0.026  0.098 0.016 0.022 0.029 

Mean % difference between 

∫ δ1
∗ (u)γ2

∗t

0
du and Γ1

×̂(𝑡) 

 -9.6 -4.2 -0.1 -3.7  -4.8  -2.8 -0.3 -2.1 

  With direct effect of baseline treatment, γ1
∗ ≠ 0  With direct effect of baseline treatment, γ1

∗ ≠ 0  

Time  0.5 1.0 1.5 2.0  0.5 1.0 1.5 2.0 

 12 γ1
∗ = 0.2, γ2

∗ = 0.2, E(δ1
∗) = 0.1, E(δ2

∗ ) = 0.212 15 γ1
∗ = 0.2, γ2

∗ = 0.5, E(δ1
∗) = 0.1, E(δ2

∗ ) = 0.215 

True value ∫ δ1γ2
t

0
du  0.01 0.02 0.03 0.04  0.025 0.05 0.075 0.10 

Mean of estimates ∑ δ1̂(tD)γ2̂(tD)tD
0   0.010 0.020 0.030 0.040  0.025 0.050 0.075 0.010 

Mean percentage bias  1.77 0.88 0.48 0.33  -0.04 -0.39 -0.09 -0.43 

Mean % of deaths in sample  26.5  46.3  61.0 71.9  25.6  45.7  61.0  72.5 

95% coverage  94.5 94.5 95.5 93.5  95.5 96.5 93.0 91.5 

Empirical SE  0.009 0.014 0.019 0.023  0.009 0.015 0.029 0.028 

Time  0.5 1.0 1.5 2.0  0.5 1.0 1.5 2.0 

  γ1
∗ = 0.5, γ2

∗ = 0.2, E(δ1
∗) = 0.1, E(δ2

∗ ) = 0.213  γ1
∗ = 0.5, γ2

∗ = 0.5, E(δ1
∗) = 0.1, E(δ2

∗ ) = 0.216 

True value ∫ δ1γ2
t

0
du 13 0.01 0.02 0.03 0.04 16 0.025 0.05 0.075 0.10 

Mean of estimates ∑ δ1̂(tD)γ2̂(tD)tD
0   0.010 0.020 0.030 0.040  0.025 0.050 0.075 0.099 

Mean percentage bias  1.87 -0.36 0.33 -0.42  0.33 -0.54 0.07 -0.61 

Mean % of deaths in sample  31.3  52.5  67.0  76.9   28.7  49.4  64.2 74.8 

95% coverage  94.5 93.5 97.0 96.5  95.5 97.0 96.0 97.5 

Empirical SE  0.010 0.016 0.021 0.025  0.010 0.016 0.022 0.028 
11 γ0

∗ = 0.5, E(δ0
∗ ) = 0.8 12γ0

∗ = 0.4, E(δ0
∗ ) = 0.5 13γ0

∗ = 0.4, E(δ0
∗ ) = 0.5 14γ0

∗ = 0.3, E(δ0
∗ ) = 0.5 15γ0

∗ = 0.2, E(δ0
∗ ) = 0.5 16γ0

∗ = 0.3, E(δ0
∗ ) = 0.2     11-16p=0.5 

Note that the mean percentage difference between ∫ δ1γ2
t

0
du and Γ1

×̂(t)is reported only when there is no direct effect of treatment, γ1
∗ = 0.



 
 

 

Illustrative example 6-3 (a) 

Figure 6-5 shows illustrative graphs for the outcomes obtained from simulation setting 12. 

Setting 12 was chosen as an illustrative example because the direct effect of treatment was 

not set to 0, ie γ1
∗ ≠ 0. As in section 6.5.1, the graphs include the true and mean estimated 

values over time of the covariate effects calculated at the four evaluation timepoints shown in 

Table 6-9. The covariate effects shown in the separate graphs are the following:  the true total 

effect ∫ δ1γ2
t

0
du + Γ1(t) and the mean of its estimates ∑ δ1̂(tj)γ2̂(tj)tj≤tD

+ Γ1̂(t) (graph A);  

the true direct effect of X on N(t) Γ1(t) and the mean of its estimates Γ1̂(t) (graph B); the true 

indirect effect of X on N(t) ∫ δ1γ2
t

0
du and the mean of its estimates ∑ δ1̂(tj)γ2̂(tj)tj≤tD

 (graph 

C); the true effect of X on Mcont(t) δ1(t) and the mean of its estimates δ1̂(t) (graph D); and the 

true effect of Mcont(t) on N(t) Γ2(t) and the mean of its estimates Γ2̂(t) (graph E).  

Figure 6-5 indicates good agreement between the true parameter values and the mean values 

of the parameter estimated in simulation setting 12.  Of particular interest in this context are 

the mean values of the estimates of the indirect effect of X, which as shown in graph C agree 

closely with the true values of the estimands over time. Graph D, showing the true effect of X 

on Mcont(t), δ1(t), and the mean of the estimated effect over the 1000 simulation runs, appears 

to show an estimate that varies widely about the true parameter value. In fact, the variation 

about the estimate is very small as shown by the scale of the y-axis of the graph. The zigzag 

appearance reflects the comparison of the means of the estimates with the true values of the 

estimand at four evaluation timepoints. 
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Illustrative example 6-3 (b) 

Figure 6-5 Example graphs showing true parameter values and mean values of the corresponding parameter 
estimates over time time for explanatory variables X and Mcont(t) in simulation setting 12  
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The results indicate that the dynamic path analysis appears to be performing satisfactorily 

under the circumstances investigated, with very low bias, and reasonable coverage, bearing in 

mind however that coverage is calculated on the basis of a smaller sample size and fewer 

simulation runs compared with the results for bias. 

 

 

6.6 Summary 

 

This chapter has summarised the estimation process for an additive hazards model with a 

time-varying continuous explanatory variable Mcont(t), an additive hazards model with a time-

varying continuous explanatory variable Mcont(t) and a treatment variable X, and for dynamic 

path analysis with explanatory variable X and time-varying continuous mediator Mcont(t).  

Simulation studies have been designed and carried out to investigate the performance of both 

the additive hazards models and dynamic path analysis with a variety of parameter values. The 

reporting of the results of the simulation studies as a series of metrics, rather than as graphical 

output showing bias alone, is a new development in the assessment of dynamic path analysis. 

Results of the simulation studies reported in section 6.5.1 have confirmed that, under the 

conditions investigated, the procedure used to fit the additive hazards model gives rise to 

unbiased estimates of the effect of a time-varying continuous explanatory variable Mcont(t) on 

hazard. The model also performs well in the presence of an independent additional 

explanatory variable X, producing accurate results and generally good coverage.  

Under the conditions described in section 6.3, with realistic but not exhaustive simulations 

using sample sizes of N=1000, “traditional” dynamic path analysis as described by Fosen, Aalen 

and colleagues [20, 30, 31] performs well. Bias is minimal and there is good coverage for most 

time points. This confirms the expected finding that the dynamic path estimator is unbiased. 

Estimates obtained using dynamic path analysis are subject to assumptions of linearity, no 

interaction between treatment and mediator in their effect on the outcome, no unmeasured 

confounding for the treatment-mediator, treatment-outcome and mediator-outcome 

relationships, and no intermediate confounding (see chapter 5).  Interpretation of the 

estimates obtained using dynamic path analysis is therefore also subject to these constraints.  

The primary context for dynamic path analysis is to supplement investigators’ understanding 

of the biological mechanisms of treatment action [20]. Because dynamic path analysis 
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estimates are not constrained to be constant over time, the time-changing effects of 

treatment can also be explored [20]. 

The confirmation provided in this chapter that the dynamic path analysis estimator is unbiased 

will be used in the next chapter, along with the insight gained into the process of fitting the 

dynamic path analysis model, to inform the simulations in chapter 7 which examine the 

performance of dynamic path analysis in situations with a time-to-event mediator, as 

described in section 5.4. 

  

  



112 
 

7 The performance of dynamic path analysis with a time-to-

event mediator 

 

 

 

7.1 Introduction 

 

Chapter 6 examined the performance of dynamic path analysis as a means of estimating the 

indirect effect of an explanatory variable on a time-to-event outcome through a time-varying 

continuous mediator variable.  The results of the simulation studies indicated that, as 

expected, dynamic path analysis provides a generally unbiased estimate of the indirect effect 

of the explanatory variable in the settings that were considered, with good coverage when the 

assumptions of dynamic path analysis are met ([17, 20, 21, 24, 30, 32, 64, 78-80], and see 

chapter 5). 

Chapter 5 described how dynamic path analysis could be adapted to settings with a time-to-

event mediator (characterised, as in chapter 5, as a time-updated binary variable). This 

approach may be of interest in the secondary analysis of clinical trials with a composite time-

to-event outcome, as discussed in chapter 1. The Zactima trials provide an example of such a 

setting.  

The relationships between treatment, the time-to-event mediator and the survival outcome in 

a simple setting are shown in Figure 7-1 below. In line with notation introduced in chapter 5, X 

is a binary explanatory variable indicating treatment group, Mbin(t) is a time-updated binary 

(survival) variable indicating the occurrence of the mediator, and dN(t) is the increment of the 

counting process for the distal outcome. The value of Mbin(t) is observed just before the value 

of dN(t). 

Figure 7-1 Path diagram showing the time-specific relationships between treatment X, outcome dN(t) and event 
mediator Mbin(t), for 0≤t<T 

 

 

 

 

X (treatment) 

Mbin(t) (event 
mediator) 

dN(t) (outcome) 
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The indirect effect of treatment in the setting represented by Figure 7-1 is the X-Mbin(t)-dN(t) 

pathway. 

 

 

7.1.1 Aims 

 

Section 5.4 described the reasoning behind the proposed extension of dynamic path analysis 

to settings where the mediator is a time-to-event variable, and presented the steps involved in 

the estimation, which involve estimating both the effect of the treatment on the mediator, and 

of the mediator on the distal outcome. This chapter uses simulation studies to investigate the 

performance of these steps separately (because of the complexities introduced by a time-to-

event mediator) and the performance of the dynamic path analysis estimation of the indirect 

effect.  

There are three aspects that will be considered in this chapter which arise from adapting 

dynamic path analysis to a time-to-event mediator. These relate to: 

a) Dealing with a time-to-event (time-updated binary) mediator; 

b) Using linear regression to model the relationship between treatment and the time-to-

event mediator; 

c) Studying the impact that mortality has on the performance of the linear regression 

models for the binary mediator Mbin(t). 

These aspects will be addressed in this chapter via: 

1) Simulation studies to verify the performance of the additive hazards model described 

by Aalen [20, 38, 39] when there is a time-updated binary explanatory variable Mbin(t) 

(aim 1). 

2) Simulation studies to assess the performance of fitting a linear regression model to 

estimate the effect of a binary explanatory variable X on a time-to-event outcome 

Mbin(t), in the context of dynamic path analysis (aim 2). 

3) Simulation studies to investigate dynamic path analysis when performed to estimate 

the indirect effect of treatment via a time-to-event mediator Mbin(t) (aim 3). 

To our knowledge, there are no published simulation-based investigations of the additive 

hazards model for a time-updated binary explanatory variable; this is the focus of the first set 
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of simulations (aim 1).  Aim 2 assesses the performance of the first step of dynamic path 

analysis, where the effect of treatment on the time-to-event mediator is estimated. Because in 

dynamic path analysis this step is repeated at each time a distal event occurs, contributions to 

these regressions are potentially based on decreasing numbers of patients (the issue described 

in point c) above). Hence aim 3 assesses the performance of the dynamic path analysis in 

estimating the indirect effect of treatment in the setting where this censoring occurs. For aims 

2 and 3, the estimation of respectively the time-varying regression coefficient and the indirect 

effect are compared to their true values in the scenario where no censoring occurs, and thus 

will quantify the impact of this censoring on the performance of the methods.  

 

 

7.2 Dynamic path analysis with a time-to-event mediator 

 

The variables under consideration in this chapter are the following: 

• N(t), the counting process associated with the distal event (assumed to be death) [20]; 

• dN(t), the increment of N(t) [20]; 

• TD, the random variable representing time to death; 

• Mbin(t), a time-updated binary variable indicating the occurrence of the mediator; 

• TMbin, the random variable representing time to the mediator; 

• NMbin(t), the counting process associated with the mediator [20];  

• dNMbin(t), the increment of NMbin(t) [20]. 

• X, a binary explanatory variable taken in this chapter to indicate treatment group. 

Figure 7-2 shows the relationship between Mbin(t) and dN(t) which forms the basis for the 

simulation studies addressing aim 1. 

Figure 7-2 Path diagram showing relationships between Mbin(t) and dN(t) for aim 1 

 

 

In this setting, Mbin(t) is the only explanatory variable. The effect of Mbin(t) on dN(t) is 

estimated by fitting an additive hazards model with Mbin(t) as the explanatory variable. The 

model is shown in Table 7-1 below. No simulation studies are performed to investigate the 

dN(t) Mbin(t) 
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additive hazards model when there are two explanatory variables because a similar setting 

(albeit with a time-varying continuous explanatory variable) has been considered in chapter 6.  

The relationship between X and Mbin(t) which underpins the simulation studies addressing aim 

2 is shown in Figure 7-1. It can be seen that X is the only explanatory variable for Mbin(t), and X 

also affects the distal outcome dN(t). The estimate of the effect of X on Mbin(t) is obtained by 

ordinary least-squares estimation of the regression model shown in the second row of Table 

7-1. These estimates are affected by loss of individuals from the risk set by censoring due to 

the distal event (see section 5.4.2).  

For aim 3, the investigation into dynamic path analysis, the relationships between X, Mbin(t) 

and dN(t) are shown in Figure 7-1. Estimation using dynamic path analysis with an event 

mediator Mbin(t) was described in section 5.4.2. In brief, at each distal event time tD the 

coefficient for the effect of X on Mbin(t) is estimated, and the coefficient for the effect of Mbin(t) 

on dN(t), adjusted for X, is estimated. The two estimates are multiplied together to give an 

estimate of the indirect effect of X on dN(t) through the mediator Mbin(t) at time tD. These 

time-specific estimates are summed over the interval (0, tD] to give an estimate of the 

cumulative indirect effect of X. The models, estimand and estimator used for the settings 

described are shown in Table 7-1. 

Table 7-1 Models fitted to address the three aims. For clarity, the hazard of the distal outcome at time t is 
denoted αD(t).  

Setting Estimation model Estimand 
(Cumulative 
coefficient at time t) 

 

Estimator1 

(Estimator for cumulative 
coefficient at death time 
tD) 

Additive hazards 
model with 
explanatory 
variable Mbin(t) 

 

αD(t|Mbin(t))
= γ0

′ (t) + γ3
′ (t)Mbin(t) 

 

 
Γ3

′(t)

= ∫ γ3
′ (u)du

t

0

 

 

Γ3
′̂(tD)

= ∑ γ3
′̂ (tj)

tj≤tD

 

 

Linear regression 
model with 
explanatory 
variable X and 
outcome Mbin(t) 

 

E(Mbin(t)|X) = β0(t)
+ β1(t)X 

 

 
β1(t) 

 

β1̂(tD) 
 

 

Dynamic path 
analysis with 
mediator Mbin(t) 

E(Mbin(t)|X) = β0(t)
+ β1(t)X 

αD(t|X, Mbin(t))
= γ0(t) + γ1(t)X
+ γ3(t)Mbin(t) 

∫ β1(u)γ3(u)
t

0

du ∑ β1̂(tj)γ3̂(tj)
tj≤tD

 

 

1 The estimated parameters within each summation are time-specific estimates. 
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7.3 Data generation in the simulation studies 

 

The methods used to carry out the simulation studies described in this chapter are very similar 

to those described in chapter 6.  

In general, the data were generated using the data generation models shown in Table 7-2, 

Table 7-3 and Table 7-4. The parameters were estimated by fitting additive hazards models 

(aim 1), linear regression models (aim 2), or dynamic path analysis (aim 3), and the estimates 

thus obtained were compared to their true value in the absence of censoring using the metrics 

shown in Table 7-7, which are the same as those used in chapter 6. 

The core models used to generate the data for the simulation studies are shown in Table 7-2, 

Table 7-3 and Table 7-4 below. As in chapter 6, the parameter values set during data 

generation are marked with an asterisk. 

Throughout the simulations presented in this chapter, TD is set to follow an exponential 

distribution, with death taken to be an infrequent outcome. TMbin is set to follow either an 

exponential or a Weibull distribution (details are shown in Table 7-2, Table 7-3 and Table 7-4).   

Table 7-2 Data generation models for aim 1. The hazard functions of the event mediator and distal outcome are 
written as 𝛂𝐌𝐛𝐢𝐧

(𝐭) and 𝛂𝐃(𝐭) respectively.  

Settings for aim 1 
 

Data generation models True value of the estimand 

Additive hazards model with 
binary time-updated 
explanatory variable Mbin(t), 
TMbin is exponentially 
distributed  

αD(t|Mbin(t)) = γ0
∗ (t)

+ γ3
∗ Mbin(t) 

γ0(t) = γ0
∗  

αMbin
(t) = θ0

∗  

Γ3(t) = ∫ γ3
∗

t

0

du = γ3
∗ t 

Additive hazards model with 
binary time-updated 
explanatory variable Mbin(t), 
TMbin follows a Weibull 
distribution 

αD(t|Mbin(t)) = γ0
∗ (t)

+ γ3
∗ Mbin(t) 

γ0(t) = γ0
∗  

αMbin
(t) = ν∗κ∗tν∗−1 

Γ3(t) = ∫ γ3
∗

t

0

du = γ3
∗ t 

 

For the simulations addressing aim 1, event times TD were generated using the Stata command 

survsim (see [59]) according to the model for αD(t|Mbin(t)) shown in Table 7-2. The 

procedure was similar to that described below Table 6-3. Event times for the time-updated 

binary explanatory variable, TMbin, were also generated using survsim according to the 

models shown in Table 7-2.  
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Data generation models for the simulations addressing aim 2, assessing the performance of a 

linear regression model to estimate the effect of a binary explanatory variable X on a time-to-

event outcome Mbin(t) at event times t=tD, are shown in Table 7-3 below. 

Table 7-3 Data generation models for aim 2  

Setting for aim 2 Data generation models True value of the time-varying 
regression coefficient in the 
absence of censoring by the distal 
outcome2 

Regression 
modelling of the 
effect of X on Mbin(t) 
at each death time  

αD(t|X, Mbin(t))
= γ0

∗ (t) + γ1
∗X

+ γ3
∗ Mbin(t) 

γ0(t) = γ0
∗  

P(X = 1) = p∗ 

αMbin
(t|X) = θ0

∗ (t) + θ1
∗X  

θ0(t) = θ0
∗   

β1(t) 
= I(Mbin(t)|X = 1)   
−  I(Mbin(t)|X = 0) 
=  exp(−θ0

∗ t) − exp(−θ0
∗ t − θ1

∗t)  

2 See section 5.4.1 

 

As described in section 7.2, the mediator Mbin(t) is a time-to-event variable. However, for the 

purposes of dynamic path analysis as described in section 5.4.1, Mbin(t) is treated as a time-

updated binary variable. Hence, the data generating model shown in Table 7-3 is not 

expressed in the same terms as the estimation model which is the linear regression model 

shown in Table 7-1. 

Data generation for event times TD and TMbin used the survsim command and the models 

shown in Table 7-3. The procedure was similar to that described above and in chapter 6.  As 

before, administrative censoring occurred for individuals who had not experienced death 

before a specified cutoff time. 

Data generation of X was based on a uniformly distributed random variable U1 defined over 

the interval (0,1) with a cutoff 0<p*<1 such that X=0 if U1<p*, X=1 if U1>p*.  

The estimation model for the effect of X on Mbin(t) given in Table 7-1 is expressed as 

E(Mbin(t)|X) = β0(t) + β1(t)X. This model can be rewritten in terms of θ0 and θ1, using the 

well-known relationships between A(t), the cumulative hazard at time t of an event of interest, 

S(t), the corresponding survivor function, and I(t), the corresponding cumulative incidence 

function (the complement of the survivor function). These relationships are, where α(t) is the 

hazard function,  A(t) = ∫ α(u)du
t

0
, S(t) = exp (−A(t)) and I(t) = P(T < t) = 1 − S(t) (see 
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for example [20, 47, 48]). Hence, for the data generating model for TMbin shown in Table 7-3 

which assumes exponential time to the mediator event,  

E(Mbin(t)|X) = I(Mbin(t)|X) = 1 − exp (− ∫ (θ0 + θ1X)du
t

0
)    7-1  

β1(t), representing the expected increase in Mbin(t) for a unit increase in X, can be rewritten in 

terms of θ0 and θ1: 

β1(t) = I(Mbin(t)|X = 1)    −  I(Mbin(t)|X = 0) =  exp(−θ0t) − exp(−θ0t − θ1t) 7-2 

As noted in section 5.4.1, expression 7-1 is true when individuals are not censored from the 

risk set when they experience the distal event. In fact, individuals are censored from the risk 

set when they experience the distal event, so the value of β1(t) obtained from expression 7-2 is 

not necessarily expected to reflect the results obtained by fitting the estimation model given in 

the second row of Table 7-1. Comparing the discrepancy between β1(t) and β1̂(t) will give 

insight into the effect of censoring on β1̂(t) as discussed in section 7.1.1. 

The data generation models used for the simulations addressing aim 3, the performance of 

dynamic path analysis with event mediator Mbin(t), are shown in Table 7-4 below. They are the 

same as the data generation models given in Table 7-3. 

Table 7-4 Data generation models for aim 3. The indirect effect of X is given as Δ in the table and reproduced in 
full below the table for ease of reference. c refers to the constant of integration 

Setting for aim 3 Data generation models True value of the indirect effect of 
X on TD in the absence of censoring 
by the distal outcome3  

Dynamic path 
analysis with 
event mediator 
Mbin(t) 

αD(t|X, Mbin(t))
= γ0

∗ (t) + γ1
∗X

+ γ3
∗ Mbin(t) 

γ0(t) = γ0
∗  

P(X = 1) = p∗ 

αMbin
(t|X) = θ0

∗ (t) + θ1
∗X  

θ0(t) = θ0
∗  

∫ β1(u)
t

0

γ3
∗ du = Δ + c 

3 The constant of integration c is given by c = −γ3
∗ (

1

θ0
∗ +θ1

∗ −
1

θ0
∗ ) (equivalent to the estimand 

when t=0).   

The term Δ is given by: 

Δ = ∫ γ3
∗

t

0

(exp(−θ0
∗ u) − exp(−θ0

∗ u − θ1
∗u))du = γ3

∗ exp(−θ0
∗ t − θ1

∗t) (
1

θ0
∗ + θ1

∗ −
exp(θ1

∗t)

θ0
∗ ) 

       7-3 
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The indirect effect of X on TD, ∫ β1(u)
t

0
γ3du, is defined as the product of β1(t) (shown in Table 

7-3) and γ3, integrated over the interval [0, t]. This follows the same steps as the definition of 

the indirect effect in dynamic path analysis with a time-varying continuous mediator Mcont(t), 

shown in Table 6-3. 

The process of data generation for the investigation of dynamic path analysis (aim 3) was the 

same as the process for the investigation of the regression model for the effect of X on Mbin(t) 

(aim 2), and is therefore not further described here.  

 

 

7.3.1 Setting the baseline parameter values  

 

Values for the baseline parameters γ0
∗ , ν∗, κ∗, γ0

∗   and θ0
∗  in the simulations investigating aims 

1-3 were chosen in the following way:  

a) for aim 1, the 75th percentile of TD was set to fall at t=2, and results were reported at 

t=0.5, t=1.0, t=1.5 and t=2. For aims 2 and 3, six evaluation timepoints were used. This 

is because Mbin(t) may happen much faster than death, so that, at some t, Mbin,i(t) =

1 ∀ i. This may mean that censoring due to the distal outcome (death) has a large 

effect on β1(t)̂ (hence on ∑ β1̂(tj)γ3̂(tj)tj≤tD
) at some evaluation timepoints. The 85th 

percentile of TMbin was set at t=1, and three more evaluation timepoints were evenly 

spaced between 0 and 1.  The other two evaluation timepoints were the 75th 

percentile of TMbin and the 75th percentile of TD.  Hosmer [56] notes that estimates may 

become unstable after the 75th percentile of TD.  

b) Mbin(t) and death occurred at different rates. Three different relative event rates were 

considered, to determine whether the density of events relative to each other would 

affect the estimations: 

i. the 25th percentile of TMbin was set approximately equivalent to the 25th 

percentile of TD, so that early on during the follow-up the two events would 

occur at roughly the same rate; 

ii. the 50th percentile of TMbin was set approximately equivalent to the 25th 

percentile of TD, so that Mbin(t) occurred faster than death; 
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iii. the 75th percentile of TMbin was set approximately equivalent to the 25th 

percentile of TD, so that Mbin(t) occurred much faster than death. 

c) To give plausible hazard ratios, as noted in chapter 3 and chapter 6. 

Parameter values chosen for the simulations investigating the additive hazards model (aim 1) 

are reported in Table 7-5 below. 

Table 7-5 Parameters for simulations addressing aim 1. The nth percentile of T. is written as pn(T.) 

  
TMbin follows an exponential distribution 

  

Simulation setting 
number 

1 2 3 4 5 6 

Parameter 
𝛄𝟎

∗ (𝐭) 
      

0.6 0.6 0.6 0.4 0.5 0.3 
𝛄𝟑

∗
 0.2 0.5 0.2 0.5 0.2 0.5 

𝛉𝟎
∗ (𝐭) 0.6 0.6 1.5 1.4 2.7 2.5 

Relative event speed: 
p25(TD) equal to 

 
p25(TMbin) 

 
p25(TMbin) 

 
p50(TMbin) 

 
p50(TMbin) 

 
p75(TMbin) 

 
p75(TMbin) 

  
TMbin follows a Weibull distribution  

Simulation setting 
number 

7 8 9 10 11 12 

Parameter       
𝛄𝟎

∗ (𝐭) 0.6 0.5 0.6 0.5 0.5 0.3 

𝛄𝟑
∗

 0.2 0.5 0.2 0.5 0.2 0.5 
𝛎∗ 1.0 0.9 1.7 1.7 3.3 2.7 
𝛋∗ 1.8 1.9 1.1 1.1 1.5 1.5 
Relative event speed: 
p25(TD) equal to 

 
p25(TMbin) 

 
p25(TMbin) 

 
p50(TMbin) 

 
p50(TMbin) 

 
p75(TMbin) 

 
p75(TMbin) 

 

Each simulation generated 1000 datasets with N=1000 individuals. The dataset size of N=1000 

was chosen in line with the simulations described in section 6.3. 

For the simulations addressing aim 2, the parameter values chosen were the same as for aim 3. 

These parameter values are shown in Table 7-6 below. 
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Table 7-6 Parameters for simulations addressing aims 2 and 3. The nth percentile of T. is written as pn(T.). 

 
Simulation setting 
number 

 
13 

 
14 

 
15 

 
16 

 
17 

 
18 

Parameter 
𝛄𝟎

∗ (𝐭) 
      

1.8 1.9 1.8 1.9 0.8 0.8 
𝛄𝟏

∗  0 0.1 0 0.1 0 0.1 
𝛄𝟑

∗
 0.2 0.2 0.5 0.5 0.2 0.2 

𝛉𝟎
∗ (𝐭) 1.8 1.8 1.8 1.8 1.7 1.8 

𝛉𝟏
∗  0.5 for all settings 13-18 

p* 0.5 for all settings 13-18 
Relative event speed: 
p25(TD) equal to 

 
p25(TMbin) 

 
p25(TMbin) 

 
p25(TMbin) 

 
p25(TMbin) 

 
p50(TMbin) 

 
p50(TMbin) 

 
Simulation setting 
number 

 
19 

 
20 

 
21 

 
22 

 
23 

 
24 

Parameter       
𝛄𝟎

∗ (𝐭) 0.7 0.7 0.3 0.25 0.2 0.15 

𝛄𝟏
∗  0 0.1 0 0.1 0 0.1 

𝛄𝟑
∗

 0.5 0.5 0.2 0.2 0.5 0.5 
𝛉𝟎

∗ (𝐭) 1.8 1.8 1.7 1.7 1.7 1.7 
𝛉𝟏

∗  0.5 for all settings 19-24 
p* 0.5 for all settings 19-24 
Relative event speed: 
p25(TD) equal to 

 
p50(TMbin) 

 
p50(TMbin) 

 
p75(TMbin) 

 
p75(TMbin) 

 
p75(TMbin) 

 
p75(TMbin) 

 

As in chapter 3 and chapter 6, administrative censoring time was chosen to be t=5 for all 

individuals. Each simulation generated 1000 datasets of N=3000 individuals, with the exception 

of simulations investigating 95% coverage in dynamic path analysis. The dataset size of N=3000 

for simulation settings 13-24 was based on the size of the pooled Zactima trials dataset. 

 

 

7.4 Evaluation of methods using the simulated datasets 

 

 

7.4.1 Criteria  

 

The simulation studies estimated the quantities of interest (∑ γ3̂(tj)tj≤tD
 for the investigation 

of the additive hazards model with explanatory variable Mbin(t) (aim 1); β1̂(tj) for the 
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investigation of the linear regression model (aim 2); ∑ β1̂(tj)γ3̂(tj)tj≤tD
 for the investigation of 

dynamic path analysis (aim 3)), and compared them with their target estimands (see Table 7-2, 

Table 7-3 and Table 7-4) using the metrics listed in Table 7-7 below. These metrics are the 

same as those listed in Table 6-6 and are reproduced here for convenience. The symbol τ 

refers to the true value of the target of the simulation for aim 1, and the value of the target of 

the simulation in the absence of censoring for aims 2 and 3. 

Table 7-7 Metrics used to assess the results of the simulations addressing aims 1-3 

Metric1 

 
Interpretation 

τ True value of the parameter of interest set in the 
data generation process 

τ̅ =
∑ τp̂P

P
 

Mean value of the estimate of τ across simulation 
runs  

τ̅ − τ

τ
× 100 

Percentage bias for aim 1, and percentage difference 
between the mean value and the value of τ in the 
absence of censoring for aims 2 and 3 

Percentage of times the 95% 
confidence interval for τ̂p includes τ 

95% coverage 

∑ SE(τp̂)P

P
 

Mean model-based standard error, for the additive 
hazards model and linear regression model 
simulations (aims 1 and 2) only  

SE(τ̂) = √
1

P − 1
∑(τp̂ − τ)

2

P

 
Empirical standard error 

1Note that τ̂p denotes the estimate from simulated dataset p, (p=1,…,P; P=1000) 

There was no expression available for the standard error of the cumulative indirect effect  [30, 

31], so the fifth metric, the mean model-based standard error, is not presented for the 

simulations investigating dynamic path analysis (aim 3). 

The 95% coverage for simulations addressing aim 3 was based on a bootstrapped estimate of 

the 95% confidence intervals using a normal bootstrap where N=3000, and 100 simulation 

runs. Within each simulation run 50 bootstrap samples were used, due to the computationally 

intensive character of the simulations.   

A graphical comparison of the estimands and mean values of the estimates over time was 

generated for one simulation setting addressing each aim, as an illustrative example. As in 

chapter 6, example graphs for the dynamic path analysis graphs included the uncensored and 

mean estimated values over time of the following (after Strohmaier [42]):  ∫ β1(u)γ3
t

0
du +
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∫ γ1
t

0
du  (the total effect); ∫ γ1

t

0
du (the direct effect of X on N(t)); ∫ β1(u)γ3

t

0
du (the indirect 

effect of X); β1(t) (the effect of X on E(Mbin(t))); and  ∫ γ3
t

0
du (the effect of Mbin(t) on N(t)). 

For the investigation of dynamic path analysis (aim 3), one further metric reported the 

difference between the estimated indirect effect and the total effect, when the direct effect is 

set in the simulations to be 0. From Table 7-4, if γ1
∗ = 0, there is no direct effect of X on the 

rate of death. The total effect of X on the hazard could be estimated by fitting the additive 

hazards model αD(t|X) = γ0
×(t) + γ1

×(t)X.  The effect of X would be reported as the 

cumulative regression coefficient Γ1
×̂(t). If there is no direct effect of X, this cumulative 

regression coefficient would be equivalent to the value of the indirect effect expected in the 

absence of censoring. This equivalence is checked by comparing the indirect effect in the 

absence of censoring ∫ β1(u)γ3
t

0
du with the mean value of the estimate Γ1

×̂(t) for simulations 

where γ1
∗ = 0 (simulation settings 13, 15, 17, 19, 21 and 23 in Table 7-6).  

 

 

7.4.2 Interpretation 

 

For the simulations addressing aim 1, if the additive hazards model estimates are unbiased the 

95% coverage should be close to 95% [60]. For the simulations addressing aims 2 and 3, the 

values reported under 95% coverage are affected by censoring and therefore should not be 

over-interpreted; 95% “coverage” in this context acts as a check on the performance of the 

dynamic path analysis estimator under different censoring scenarios.  

For the simulations investigating the performance of the additive hazards model with 

explanatory variable Mbin(t), and the simulations investigating the performance of the linear 

regression estimation for the effect of X on Mbin(t) (aims 1 and 2), the acceptable level of 

coverage for a 95% confidence interval based on 1000 repetitions was between 93.6% and 

96.4% [60]. For the simulations investigating dynamic path analysis, the level of coverage for a 

95% confidence interval based on 100 simulations was between 90.7% and 99.3% [60]. 
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7.5 Additional simulation studies 

 

Additional simulation studies were carried out as described below to further investigate the 

behaviour of the dynamic path analysis estimator in settings with a non-constant baseline 

hazard or treatment effect. 

 

 

7.5.1 Investigations of the dynamic path analysis estimator with varying treatment 

and mediator effects 

 

As noted in section 7.3, the regression estimates for the effect of X on Mbin(t) based on a linear 

regression model, β1̂(td), could diverge from the value of β1(t) obtained from expression 7-2 

due to the loss of individuals from the risk set by the distal event. If this divergence occurs, 

estimates of the indirect effect of X on death ∑ β1̂(tj)γ3̂(tj)tj≤tD
 would also diverge from their 

expected value given in expression 7-3. The simulation parameters γ1
∗ , γ3

∗  or θ1
∗  (see Table 7-4), 

in affecting the rate of death, could influence the extent of this divergence. To check this, the 

dynamic path analysis simulation settings with the largest coefficients, settings 16, 20 and 24 

(γ1
∗ = 0.1, γ3

∗ = 0.5, θ1
∗ = 0.5) were repeated with some modifications as shown below. The 

sizes of the simulation datasets were varied to limit the imprecision of the estimates when the 

estimands were small. The values of the coefficients were changed to the following: 

• γ1
∗  was changed from 0.1 to 0.01, keeping values of γ3

∗ = 0.5 and θ1
∗ = 0.5, setting 

N=1500; 

• γ3
∗  was changed from 0.5 to 0.1, keeping values of γ1

∗ = 0.1 and θ1
∗ = 0.5, setting 

N=5000; 

• θ1
∗  was changed from 0.5 to 0.1, keeping values of γ1

∗ = 0.1 and γ3
∗ = 0.5, setting 

N=5000. 

The baseline values of γ0
∗  and θ0

∗   were modified to keep the 85th percentile of TMbin close to 

t=1, as in the original simulations. To allow these simulations to complete within a reasonable 

timeframe, 500 repetitions were used instead of 1000. The results were reported as graphs of 

∫ β1(u)γ3
t

0
du and the mean of ∑ β1̂(tj)γ3̂(tj)tj≤tD

 over the 500 repetitions against time. 
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7.5.2 Investigations of non-constant baseline hazard or treatment effect 

 

The planned dynamic path analysis simulations reported above have time-invariant 

parameters (see Table 7-4). This section briefly describes simulations for assessing the 

performance of dynamic path analysis when either the baseline hazard (γ0
∗ (t)) or the 

treatment effect (γ1
∗(t) and θ1

∗(t)) is piecewise constant. 

Data generation for simulations investigating dynamic path analysis when the baseline hazard 

is piecewise constant specified a cutoff time tbh such that: 

α(t|X, Mbin(t)) = γ0(t) + γ1
∗X + γ3

∗ Mbin(t) where γ0(t) = {
γ0,1

∗  if t < tbh

 γ0,2
∗   otherwise

 

Other than this modification, data generation was the same as described below Table 7-3. The 

expected value of the estimand for dynamic path analysis in the absence of censoring, 

∫ β1(u)γ3
t

0
du, is unchanged and given below Table 7-4. 

For the simulations with a piecewise constant baseline hazard, the value of the baseline 

hazards γ0,1
∗ , γ0,2

∗  and θ0
∗  were chosen so that: 

a) the 85th percentile of TMbin occurred at around t=1 (as in simulation settings 13-24); 

b) the 75th percentile of TMbin is approximately equal to the 25th percentile of TD (as in 

simulation settings 21-24); 

c) the value of γ0,2
∗  was set to either 90% or 50% of the value of γ0,1

∗ . 

Parameter values chosen for the investigation of dynamic path analysis with a piecewise 

constant baseline hazard are shown in Table 7-8 below. 
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Table 7-8 Simulation parameters for dynamic path analysis with a piecewise constant baseline hazard, N=3000 

Simulation setting 
number 

 
25 

 
26 

 
27 

 
28 

Parameter 
𝛄𝟎,𝟏

∗  
    

0.25 0.3 0.15 0.2 
𝛄𝟎,𝟐

∗  0.225 0.15 0.135 0.1 

tbh 0.5 for all settings 25-28 
𝛄𝟏

∗  0.1 for all settings 25-28 
𝛄𝟑

∗
 0.2 0.2 0.5 0.5 

𝛉𝟎
∗ (𝐭) 1.6 1.6 1.7 1.7 

𝛉𝟏
∗  0.5 for all settings 25-28 

p* 0.5 for all settings 25-28 
Relative event speed: 
p25(TD) equal to 

 
p75(TMbin) 

 
p75(TMbin) 

 
p75(TMbin) 

 
p75(TMbin) 

 

Administrative censoring was set as before to t=5. The simulations consisted of 1000 datasets 

with N=3000 individuals. As before, coverage was calculated based on 50 bootstrap samples 

and 100 repetitions and results for the simulations are presented at six timepoints. The metrics 

used to report on the performance of the dynamic path analysis are shown in Table 7-7. 

Data generation for simulations with a piecewise constant treatment effect specified a cutoff 

time ttrt such that: 

α(t|X, Mbin(t)) = γ0
∗ (t) + γ1(t)X + γ3

∗ Mbin(t) where γ1(t) = {
γ1,1

∗  if t < ttr

 γ1,2
∗   otherwise

, and: 

αMbin
(t|X) = θ0

∗ (t) + θ1(t)X where  θ1(t) = {
θ1,1

∗  if t < ttr

 θ1,2
∗   otherwise

. 

Other than these modifications, data generation was the same as described above.  

However, a simple expression for the uncensored value of the estimand ∫ β1(u)γ3
t

0
du in terms 

of θ0
∗ (t), θ1,1

∗  and θ1,2
∗  is not available.     

If t<ttr, the uncensored value of the estimand is given by: 

∫ β1(u)γ3
t

0
du = ∫ γ3 (exp(−θ0

∗ u) − exp(−θ0
∗ u − θ1,1

∗ u))
t

0
du  7-4, 

the same as the uncensored value of the estimand given in Table 7-4.  If t≥ttr, the stratum-

specific cumulative hazards for Mbin(t) can be written as follows: 

A(tMbin|X = 0) = ∫ θ0
∗ du

t

0
= θ0

∗ t     7-5 

A(tMbin|X = 1) = ∫ (θ0
∗ + θ1,1

∗ )du + ∫ (θ0
∗ + θ1,2

∗ )du =
t

ttr
θ0

∗ t + θ1,1
∗ ttr +

ttr

0
θ1,2

∗ t − θ1,2
∗ ttr  
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         7-6 

Then, using expressions 7-1 and 7-2 and the relationships between A(t), S(t) and I(t) (see text 

above expression 7-1), 

β1(t) = I(Mbin(t)|X = 1)   −  I(Mbin(t)|X = 0)

=  exp(−θ0
∗ u) − exp(−θ0

∗ u − θ1,1
∗ ttr − θ1,2

∗ u + θ1,2
∗ ttr) 

         7-7 

Thence, the value of the estimand when the effect of treatment varies with time according to 

a piecewise constant function with no censoring due to the distal outcome (death) if t ≥ ttr is 

given by: 

∫ β1(u)γ3
t

0
du = ∫ γ3

∗t

0
(exp(−θ0

∗ u) − exp(−θ0
∗ u − θ1,1

∗ ttr − θ1,2
∗ u + θ1,2

∗ ttr)) du  

7-8 

Expressions 7-4 and 7-8 were compared to the mean values of the indirect effect estimates at 

six timepoints, as before. 

Values of the baseline hazards γ0
∗ (t) and θ0

∗ (t) were set to constants γ0
∗  and θ0

∗  respectively. 

The values of these constants were chosen so that: 

a) the 85th percentile of TMbin occurred at around t=1 (as in simulation settings 13-24); 

b) the 25th percentile of TMbin was approximately equal to the 25th percentile of TD (as in 

simulation settings 13-16); or, the 75th percentile of TMbin was approximately equal to 

the 25th percentile of TD (as in simulation settings 21-24). 

The values of the other parameters are given in Table 7-9 below. 

Administrative censoring was set to t=5. The simulations consisted of 1000 datasets of 

N=3000, except for coverage which was calculated based on 200 repetitions of 50 bootstrap 

samples where n=3000. The acceptable range of coverage for a 95% confidence interval based 

on 200 simulations was [91.9, 98.0] [60].   
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Table 7-9 Simulation parameters for dynamic path analysis with a piecewise constant treatment effect, N=3000 

Simulation setting 
number 

 
29 

 
30 

 
31 

 
32 

Parameter 
𝛄𝟎

∗ (𝐭) 
    

1.8 1.7 0.2 0.1 
ttr 0.5 for all settings 29-32 
𝛄𝟏,𝟏

∗
 0.2 for all settings 29-32 

𝛄𝟏,𝟐
∗  0.1 for all settings 29-32 

𝛄𝟑
∗

 0.2 0.5 0.2 0.5 
𝛉𝟎

∗ (𝐭) 1.8  1.7 1.7 1.7 
𝛉𝟏,𝟏

∗  0.5 for all settings 29-32 

𝛉𝟏,𝟐
∗  0.2 for all settings 29-32 

p* 0.5 for all settings 29-32 
Relative event speed: 
p25(TD) equal to 

 
p25(TMbin) 

 
p25(TMbin) 

 
p75(TMbin) 

 
p75(TMbin) 

 

 

7.6 Results 

 

Results are first presented in tables, then an example graph is shown for one of each set of 

simulation settings. 

 

 

7.6.1 Results for the evaluation of the additive hazards model with a time-updated 

binary explanatory variable Mbin(t) (aim 1) 

 

Table 7-10 reports results from simulation settings 1-6 investigating the performance of the 

additive hazards model with time-updated binary explanatory variable Mbin(t) when TMbin is 

exponentially distributed. Results are presented at each of four evaluation timepoints, the final 

time point corresponding approximately to the 75th percentile of the distribution of TD.  

These results show low percentage bias at all time points for simulation settings 1-6. The 

highest percentage bias is reported as 3.23% at the first evaluation timepoint in simulation 

setting 3, however this is still small in absolute terms and decreases over time. 
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In simulation settings 1 and 2, coverage is below the lower acceptable limit of 93.6% at the 

first two evaluation timepoints. This is because Mbin(t) happens relatively slowly throughout 

these simulations.  This leads to estimates of Γ3̂(t) which are quite variable across the 1000 

repetitions, giving rise to large empirical SEs. At the same time, within each repetition the 

Γ3̂(t) are estimated quite precisely at early timepoints, because the dataset is large, giving rise 

to smaller model-based SEs. The conjunction of higher empirical SE and lower model-based SE 

leads to low coverage at the first two evaluation timepoints.  Increasing the sample size to 

N=3000 for simulation 1 decreases the variability of the estimates early in follow-up and leads 

to improved coverage (see Appendix IV). 

Conversely, in simulation settings 5 and 6, when Mbin(t) happens much faster than death, 

coverage is below acceptable at the last evaluation timepoint (corresponding to the 75th 

percentile of the distribution of TD). This is because Mbin(t)=1 for most individuals as time 

increases, so that Γ3̂(t) levels off rather than increasing, and the confidence interval for Γ3̂(t) 

excludes the true value. If simulation 5 is repeated with estimation truncated at the 99th 

percentile of TMbin, coverage falls within acceptable limits (see Appendix IV). 
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Table 7-10 Evaluation of the additive hazards model specified for aim 1 (binary time-updated explanatory variable Mbin(t) where TMbin is exponentially distributed). The values of the baseline 
parameters are given as footnotes. Results are based on 1000 simulated datasets of N=1000 individuals. 

 Simulation  p25(TD)=p25(TMbin), Mbin(t) is slightly slower than death Simulation     

Time setting 0.5 1.0 1.5 2.0 setting 0.5 1.0 1.5 2.0 

  γ3
∗ = 0.21  γ3

∗ = 0.52 

True value Γ3(t) 1 0.1 0.2 0.3 0.4 2 0.25 0.5 0.75 1 

Mean of estimates Γ3̂(t)  0.102 0.202 0.304 0.403  0.254 0.504 0.755 1.005 

Mean percentage bias  1.87 1.18 1.41 0.78  1.82 0.85 0.64 0.55 

Mean % of deaths /Mbin(t)   26.9 / 22.5 47.6 /34.9 63.0 /41.7 74.2 /45.4  28.2  /22.5 50.8  /34.9 67.4 /41.7 78.8 /45.4 

95% coverage  90.6 92.5  94.0  95.3   90.8  93.0  94.4  95.4  

Empirical / Model-based SE  0.106 /0.084 0.117 /0.100 0.130 /0.116 0.145 /0.136  0.132 /0.102 0.145 /0.121 0.159 /0.137 0.177 /0.162 

  p25(TD)=p50(TMbin), Mbin(t) is slightly faster than death      

Time 0.5 1.0 1.5 2.0  0.5 1.0 1.5 2.0 

  γ3
∗ = 0.23  γ3

∗ = 0.54 

True value Γ3(t) 3 0.1 0.2 0.3 0.4 4 0.25 0.5 0.75 1 

Mean of estimates Γ3̂(t)  0.103 0.204 0.307 0.407  0.253 0.504 0.758 1.007 

Mean percentage bias  3.23 2.16 2.46 1.75  1.24 0.79 1.03 0.71 

Mean % of deaths/ Mbin(t)   28.0 /46.4 50.0 /62.6 65.9 /68.3 76.9 /70.4  23.4 /46.2 45.9 /64.9 63.4 /72.5 75.7 /75.7 

95% coverage  93.9  95.4  95.0  94.3   93.7  94.8  95.1  95.2  

Empirical/ Model-based SE  0.081 /0.062 0.096 /0.082 0.123 /0.111 0.170 /0.163  0.084 /0.065 0.095 /0.080 0.110 /0.099 0.137 /0.129 

  p25(TD)=p75(TMbin), Mbin(t) is much faster than death      

Time 0.5 1.0 1.5 2.0  0.5 1.0 1.5 2.0 

  γ3
∗ = 0.25  γ3

∗ = 0.56 

True value Γ3(t) 5 0.1 0.2 0.3 0.4 6 0.25 0.5 0.75 1 

Mean of estimates Γ3̂(t)  0.099 0.203 0.308 0.406  0.250 0.503 0.753 1.008 

Mean percentage bias  -0.08 1.49 2.56 1.56  -0.08 0.52 0.42 0.81 

Mean % of deaths /Mbin(t)   25.6 /67.3 46.6 /80.9 62.3 /83.7 73.3 /84.2  22.4 /67.2 45.3 /83.8 62.7 /87.9 74.8 /89.0 

95% coverage  93.8  95.5  93.5  84.7   94.0  94.7 94.7  89.5  

Empirical/ Model-based SE  0.062 /0.049 0.087 /0.079 0.154 /0.146 0.322 /0.275  0.068 /0.050 0.083 /0.068 0.114 /0.105 0.195 /0.174 
1  γ0

∗ = 0.6, θ0
∗ = 0.6 2γ0

∗ = 0.6, θ0
∗ = 0.6  3γ0

∗ = 0.6, θ0
∗ = 1.5  4γ0

∗ = 0.4, θ0
∗ = 1.4  5γ0

∗ = 0.5, θ0
∗ = 2.7  6γ0

∗ = 0.3, θ0
∗ = 2
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Overall, the results reported in Table 7-10 suggest that, although the additive hazards model 

with time-updated binary explanatory variable Mbin(t) gives rise to unbiased estimates as 

expected, coverage may be low when Mbin(t) events are slow to accumulate and the sample 

size is not large, or when Mbin(t)=1 for most of the population. 

Illustrative example 7-1 

Figure 7-3 below compares the true cumulative regression coefficient for Mbin(t), Γ3(t), with 

the mean value of its estimate Γ3̂(t) plotted over time for simulation setting 4, as an example 

of the performance of the additive hazards model. Simulation setting 4 was chosen because 

Mbin(t) is neither slower nor much faster than death, and the choice of γ3
∗ = 0.5 means that 

the values of the estimands and mean values of estimates are easy to read off the y-axis. 

Figure 7-3 Example graph showing the values of 𝚪𝟑(𝐭) and the mean of 𝚪𝟑̂(𝐭) over time in simulation setting 4 

  

From Table 7-2, the expected cumulative change in the mortality hazard function at time t, 

α(t), associated with Mbin(t)=1 is Γ3(t) = ∫ γ3
t

0
du = γ3t. The graph of Γ3(t) against time is 

therefore a straight line passing through the origin with slope equal to γ3. Figure 7-3 

demonstrates good agreement between the true parameter values and the mean of their 

estimates. 

 

Table 7-11 reports results from simulation settings 7-12 investigating the performance of the 

additive hazards model with binary time-updated explanatory variable Mbin(t) when TMbin 

follows a Weibull distribution. There is little evidence of bias, with the greatest bias of -2.13% 

occurring at the first evaluation timepoint of simulation setting 8.  
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Table 7-11 Evaluation of the additive hazards model specified for aim 1 (binary time-updated explanatory variable Mbin(t) where TMbin has a Weibull distribution). The values of the baseline 
parameters are given as footnotes. Results are based on 1000 simulated datasets of N=1000 individuals.  

 Simulation p25(TD)=p25(TMbin), Mbin(t) is slightly slower than death Simulation  

Time setting 0.5 1.0 1.5 2.0 settting 0.5 1.0 1.5 2.0 

  γ3
∗ = 0.27  γ3

∗ = 0.58 

True value Γ3(t) 7 0.1 0.2 0.3 0.4 8 0.25 0.5 0.75 1 

Mean of estimates Γ3̂(t)  0.101 0.201 0.305 0.405  0.247 0.495 0.746 0.998 

Mean percentage bias  1.00 0.44 1.65 1.30  -2.13 -1.01 -0.49 -0.16 

Mean % of deaths /Mbin(t)   26.6 /20.7 47.6 /45.3 64.2 /57.1 75.7 /60.5  23.5 /18.3 45.7 /44.4 64.4 /58.8 77.7 /63.4 

95% coverage  84.7  89.1  92.9  95.2   82.6  86.4  89.8  94.7  

Empirical/ Model-based SE  0.162 /0.117 0.170 /0.130 0.182 /0.149 0.227 /0.200  0.197 /0.146 0.205 /0.158 0.214 /0.172 0.241 /0.206 

  p25(TD)=p50(TMbin), Mbin(t) is slightly faster than death      

Time 0.5 1.0 1.5 2.0  0.5 1.0 1.5 2.0 

  γ3
∗ = 0.29  γ3

∗ = 0.510 

True value Γ3(t) 9 0.1 0.2 0.3 0.4 10 0.25 0.5 0.75 1 

Mean of estimates Γ3̂(t)  0.102 0.203 0.306 0.408  0.253 0.503 0.758 1.006 

Mean percentage bias  1.93 1.75 1.91 2.03  1.01 0.55 1.04 0.60 

Mean % of deaths/ Mbin(t)   27.8 /45.3 50.0 /64.5 66.0 /70.4 77.1 /71.9  22.6 /41.4 44.8 /61.9 62.5 /70.5 75.1/74.1 

95% coverage  93.5  95.3  95.5  92.4   92.3  95.2  95.0  94.2  

Empirical/ Model-based SE  0.093 /0.070 0.107 /0.089 0.141 /0.125 0.217 /0.207  0.097 /0.073 0.105 /0.086 0.119 /0.104 0.146 /0.132 

  p25(TD)=p75(TMbin), Mbin(t) is much faster than death      

Time 0.5 1.0 1.5 2.0  0.5 1.0 1.5 2.0 

  γ3
∗ = 0.211   γ3

∗ = 0.512 

True value Γ3(t) 11 0.1 0.2 0.3 0.4 12 0.25 0.5 0.75 1 

Mean of estimates Γ3̂(t)  0.100 0.204 0.304 0.406  0.250 0.501 0.754 1.006 

Mean percentage bias  0.34 1.86 1.44 1.40  -0.20 0.30 0.50 0.62 

Mean % of deaths / Mbin(t)    26.5 /71.2 47.1 /78.8 62.2 /81.5 73.1 /82.7  25.2 /72.7 46.8 /81.5 62.8 /85.0 74.1 /86.6 

95% coverage  95.2 95.2  94.8  95.3   95.9  94.5  95.3  96.1  

Empirical/ Model-based SE  0.040 /0.040 0.064 /0.065 0.097 /0.097 0.137 /0.137  0.037 /0.037 0.057 /0.057 0.078 /0.079 0.102 /0.106 
7 γ0

∗ = 0.6, κ∗ = 1.0, ν∗ = 1.8 8γ0
∗ = 0.5, κ∗ = 0.9, ν∗ = 1.9 9γ0

∗ = 0.6, κ∗ = 1.7, ν∗ = 1.1 10γ0
∗ = 0.5, κ∗ = 1.7, ν∗ = 1.1 11γ0

∗ = 0.5, κ∗ = 3.3, ν∗ = 1.5 12γ0
∗ = 0.3, κ∗ = 2.7, ν∗ = 1.5  
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The results of simulations 7 and 8 show unacceptably low coverage for three of the four 

evaluation timepoints. Setting the scale parameter ν*=1.8 and ν*=1.9 respectively for 

simulation settings 7 and 8 means that the hazard of Mbin(t) is very low at early timepoints. As 

a result, Mbin(t) events are even more sparse at the earlier timepoints than in the simulation 

settings where TMbin has an exponential distribution (Table 7-10). This leads to a greater 

mismatch between the empirical and the model-based SEs for simulation settings 7 and 8, 

which in turn causes low coverage.  In contrast, the choice of ν*=1.5 for simulation settings 11 

and 12 when the rate of Mbin(t) is much faster than that for death means that Mbin(t) events 

continue to occur throughout follow-up, rather than reaching a point when Mbin(t)=1 for all 

individuals. This means that bias is minimal and coverage is satisfactory for all evaluation 

timepoints. 

These findings confirm the observation made earlier that coverage may be poor when Mbin(t) 

events are sparse at either early or late timepoints. However, the additive hazards model 

estimates, as expected, show minimal bias.  

Illustrative example 7-2 

Figure 7-4 below compares the true cumulative regression coefficient Γ3(t) with the mean of 

the estimates Γ3̂(t) over time for simulation setting 10. This simulation setting is similar to 

simulation setting 4, chosen for illustrative example 7-1, with respect to the magnitude of 

Γ3(t) and the relative timings of Mbin(t) and death. In this setting TMbin follows a Weibull 

distribution. 

Figure 7-4 Example graph showing the values of 𝚪𝟑(𝐭) and the mean of 𝚪𝟑̂(𝐭) over time in simulation setting 10 

 

Figure 7-4 shows agreement between Γ3(t) and Γ3̂(t) over time. 
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7.6.2 Results for the evaluation of the regression models for the effect of X on time-

to-event outcome Mbin(t) (aim 2) 

 

Table 7-12 and Table 7-13 show results for the performance of the estimation of the effect of X 

on Mbin(t). As described in section 7.3.1, the regression models are assessed at six timepoints, 

with four of the timepoints evenly spaced between t=0 and t=1, with t=1 corresponding 

approximately to the 85th percentile of TMbin, and the other two timepoints representing 

approximately the 75th percentile of TMbin and the 75th percentile of TD.  
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Table 7-12 Evaluation of the linear regression model specified for aim 2 (estimating the effect of X on Mbin(t)), part 1 of 2. The values of baseline parameters are given as footnotes. Results are 
based on 1000 simulated datasets of N=3000 individuals. “Uncensored value of 𝛃𝟏(𝐭)” refers to the expected value of 𝛃𝟏(𝐭) if there were no distal events as discussed in section 7.3. The 95% 
coverage refers to the uncensored value. 

 Simulation p25(TD)=p25(TMbin), Mbin(t) is slightly slower than death Simulation  
 setting γ1

∗ = 0, γ3
∗ = 0.2, θ1

∗ = 0.513 setting γ1
∗ = 0.1, γ3

∗ = 0.2, θ1
∗ = 0.514 

Time 13 0.25 0.50 0.70 (p75D) 0.71 
(p75Mbin) 

0.75 1.0 14 0.25 0.50 0.68 
(p75D) 

0.69 
(p75Mbin) 

0.75 1.0 

Uncensored value β1(t)  0.075 0.090 0.084 0.083 0.081 0.065  0.075 0.090 0.085 0.084 0.081 0.065  

Mean of estimates β1̂(t)   0.074 0.091 0.087 0.087 0.085 0.072  0.074 0.091 0.088 0.088 0.085 0.071 

Mean % difference  -1.36 0.96 4.03 4.21 4.80 10.13  -1.36 1.18 3.34 3.86 5.17 9.74 

Mean % of deaths /Mbin(t)   36.9 /32.8 60.8 
/45.3 

73.4 /49.5 73.9 /49.6 75.9 
/50.1 

85.2 
/51.9 

 39.2 
/32.3 

63.6 
/44.1 

75.0 
/47.7 

75.5 /47.8 78.4 
/48.5 

87.2 /50.1 

95% coverage  96.2 94.8 94.7 94.8 94.9 94.7  95.1 94.7 95.3 94.9 95.3 95.2 

Empirical / Model-based SE  0.022 
/0.022 

0.028 
/0.028 

0.030 
/0.031 

0.030 
/0.031 

0.031 
/0.031 

0.033 
/0.034 

 0.023 
/0.023 

0.030 
/0.029 

0.032 
/0.032 

0.032 
/0.032 

0.032 
/0.033 

0.035 
/0.037 

 15 γ1
∗ = 0, γ3

∗ = 0.5, θ1
∗ = 0.515 16 γ1

∗ = 0.1, γ3
∗ = 0.5, θ1

∗ = 0.516 

Time 0.25 0.50 0.68 (p75D) 0.69 
(p75Mbin) 

0.75 1.0 0.25 0.50 0.64 
(p75D) 

0.69 
(p75Mbin) 

0.75 1.0 

Uncensored value β1(t)  0.075 0.090 0.085 0.084 0.081 0.065  0.075 0.090 0.087 0.084 0.081 0.065 

Mean of estimates β1̂(t)  0.073 0.092 0.092 0.092 0.090 0.080  0.073 0.092 0.093 0.092 0.090 0.080 

Mean % difference  -2.41 2.03 8.38 9.09 11.10 23.33  -2.40 2.14 6.95 8.90 11.40 22.89 

Mean % of deaths / Mbin(t)    37.9 /32.8 62.8 
/45.3 

74.6 /49.2 75.2 /49.3 78.2 
/50.1 

87.4 
/51.9 

 40.2 
/32.3 

65.5 
/44.1 

74.9 
/47.1 

77.6 /47.8 80.5 
/48.5 

89.1 /50.1 

95% coverage  95.8 94.5 94.5 94.8 94.1 93.7  95.5 94.4 95.1 94.6 95.2 93.9 

Empirical / Model-based SE  0.022 
/0.022 

0.029 
/0.029 

0.032 
/0.033 

0.032 
/0.033 

0.033 
/0.034 

0.038 
/0.039 

 0.023 
/0.023 

0.030 
/0.030 

0.033 
/0.034 

0.034 
/0.035 

0.035 
/0.036 

0.040 
/0.042 

  p25(TD)=p50(TMbin), Mbin(t) is slightly faster than death   
 17 γ1

∗ = 0, γ3
∗ = 0.2, θ1

∗ = 0.517 18 γ1
∗ = 0.1, γ3

∗ = 0.2, θ1
∗ = 0.518 

Time 0.25 0.50 0.70 
(p75Mbin) 

0.75  1.0 1.50 
(p75D) 

0.25 0.50 0.68 
(p75Mbin) 

0.75 1.0 1.41 (p75D) 

Uncensored value β1(t)  0.075 0.090 0.084 0.081 0.065 0.035  0.075 0.090 0.085 0.081 0.065 0.040 

Mean of estimates β1̂(t)  0.074 0.090 0.086 0.084 0.072 0.043  0.074 0.090 0.087 0.084 0.072 0.048 

Mean % difference  -0.85 0.52 3.04 3.59 10.12 21.86  -0.62 0.61 2.63 3.59 10.34 19.34 

Mean % of deaths / Mbin(t)  19.0 /36.5 35.4 
/54.4 

46.4 /61.9 48.9 /63.2 59.8 
/67.5 

75.4 
/70.6 

 20.0 
/36.3 

36.9 
/53.9 

47.2 
/60.6 

50.7 /62.4 61.7 
/66.5 

74.8 /69.3 

95% coverage  94.7 95.0 95.6 96.4 94.2 93.4  95.0 95.3 94.9 96.3 94.7 94.5 

Empirical / Model-based SE  0.020 
/0.020 

0.022 
/0.022 

0.021 
/0.022 

0.020 
/0.022 

0.020 
/0.020 

0.018 
/0.018 

 0.020 
/0.020 

0.022 
/0.022 

0.021 
/0.022 

0.021 
/0.022 

0.020 
/0.021 

0.019 
/0.019 

13γ0
∗ = 1.8, θ0

∗ = 1.8 14 γ0
∗ = 1.9, θ0

∗ = 1.8 15γ0
∗ = 1.8, θ0

∗ = 1.8  16γ0
∗ = 1.9, θ0

∗ = 1.8 17 γ0
∗ = 0.8, θ0

∗ = 1.8  18 γ0
∗ = 0.8, θ0

∗ = 1.8 
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Table 7-13 Evaluation of the linear regression model specified for aim 2 (estimating the effect of X on Mbin(t)), part 2 of 2. The values of baseline parameters are given as footnotes. Results are 
based on 1000 simulated datasets of N=3000 individuals. “Uncensored value of 𝛃𝟏(𝐭)” refers to the expected value of 𝛃𝟏(𝐭) if there were no distal events as discussed in section 7.3. The 95% 
coverage refers to the uncensored value. 

 19 γ1
∗ = 0, γ3

∗ = 0.5, θ1
∗ = 0.519 20 γ1

∗ = 0.1, γ3
∗ = 0.5, θ1

∗ = 0.520 

Time 0.25 0.50 0.68 
(p75Mbin) 

0.75 1.0 1.36 
(p75D) 

0.25 0.50 0.68 
(p75Mbin) 

0.75 1.0 1.30 (p75D) 

Uncensored value β1(t)  0.075 0.090 0.085 0.081 0.065 0.043  0.075 0.090 0.085 0.081 0.065 0.046 

Mean of estimates β1̂(t)  0.073 0.091 0.091 0.089 0.080 0.061  0.073 0.092 0.091 0.089 0.080 0.064 

Mean % difference  -1.98 1.74 7.15 9.62 22.33 43.74  -2.03 1.82 7.03 9.26 22.47 39.65 

Mean % of deaths / Mbin(t)    18.2 /37.0 35.5 
/55.5 

46.4 /62.8 50.3 
/64.8 

62.1 
/69.5 

74.8 
/72.5 

 19.2 
/36.7 

37.1 
/54.9 

48.2 /62.0 52.0 
/64.0 

63.9 / 68.5 74.6 /71.0 

95% coverage  95.8 95.1 95.5 94.9 91.1 86.6  95.5 95.4 95.1 95.6 91.9 89.0 

Empirical / Model-based SE  0.020 
/0.020 

0.022 
/0.022 

0.022 
/0.023 

0.021 
/0.023 

0.021 
/0.022 

0.022 
/0.022 

 0.020 
/0.020 

0.022 
/0.022 

0.022 
/0.023 

0.022 
/0.023 

0.022 
/0.023 

0.022 /0.023 

  p25(TD)=p75(TMbin), Mbin(t) is much faster than death   
 21 γ1

∗ = 0, γ3
∗ = 0.2, θ1

∗ = 0.521 22 γ1
∗ = 0.1, γ3

∗ = 0.2, θ1
∗ = 0.522 

Time 0.25 0.50 0.65 
(p75Mbin) 

0.75 1.0 2.70 
(p75D) 

0.25 0.50 0.72 
(p75Mbin) 

0.75 1.0 3.0 (p75D) 

Uncensored value β1(t)  0.077 0.095 0.092 0.087 0.072 0.008  0.077 0.095 0.089 0.087 0.072 0.005 

Mean of estimates β1̂(t)  0.076 0.095 0.094 0.091 0.078 0.011  0.076 0.095 0.092 0.091 0.078 0.007 

Mean % difference  -1.27 0.14 2.32 3.63 8.38 50.03  -1.38 0.06 3.47 3.78 8.33 57.46 

Mean % of deaths / Mbin(t)  8.2 /37.2 16.9 
/68.3 

22.1 /66.3 25.5 
/70.3 

33.6 
/77.1 

71.1 
/86.3 

 8.2 /37.1 16.9 
/58.2 

24.4 /69.2 25.4 
/70.3 

33.5 /77.2 74.7 /86.6 

95% coverage  94.8 95.7 95.4 95.8 95.0 93.0  94.6 95.4 95.5 95.3 95.0 97.2 

Empirical /Model-based SE  0.018 
/0.018 

0.019 
/0.019 

0.018 
/0.019 

0.018 
/0.018 

0.016 
/0.016 

0.007 
/0.007 

 0.018 
/0.018 

0.019 
/0.019 

0.018 
/0.019 

0.018 
/0.018 

0.016 
/0.017 

0.005 /0.006 

  γ1
∗ = 0, γ3

∗ = 0.5, θ1
∗ = 0.523  γ1

∗ = 0.1, γ3
∗ = 0.5, θ1

∗ = 0.524 

Time 23 0.25 0.5 0.72 
(p75Mbin) 

0.75 1.0 2.4 
(p75D) 

24 0.25 0.5 0.72 
(p75Mbin) 

0.75 1.0 2.4 (p75D) 

Uncensored value β1(t)  0.077 0.095 0.089 0.087 0.072 0.012  0.077 0.095 0.089 0.087 0.072 0.012 

Mean of estimates β1̂(t)  0.075 0.095 0.096 0.095 0.086 0.027  0.075 0.095 0.096 0.095 0.086 0.027 

Mean % difference  -2.56 0.97 7.65 8.85 20.06 128.82  -2.61 0.92 7.55 8.63 20.08 129.00 

Mean % of deaths / Mbin(t)  7.2 /37.6 17.0 
/59.5 

26.0 /71.1 27.3 
/72.2 

37.1 
/79.7 

75.0 
/90.0 

 7.2 /37.6 16.9 
/59.4 

25.9 /71.0 27.2 
/72.2 

37.0 /79.7 74.7 /90.2 

95% coverage  94.9 95.9 94.1 93.0 87.8 78.3  94.4 95.9 94.3 94.0 89.3 80.5 

Empirical / Model-based SE  0.018 
/0.018 

0.019 
/0.020 

0.019 
/0.019 

0.019 
/0.019 

0.017 
/0.018 

0.011 
/0.012 

 0.018 
/0.018 

0.019 
/0.020 

0.019 
/0.019 

0.018 
/0.019 

0.017 
/0.018 

0.011 /0.012 

19γ0
∗ = 0.7, θ0

∗ = 1.8 20γ0
∗ = 0.7, θ0

∗ = 1.8 21γ0
∗ = 0.3, θ0

∗ = 1.7 22γ0
∗ = 0.25, θ0

∗ = 1.7 23γ0
∗ = 0.2, θ0

∗ = 1.7 24γ0
∗ = 0.15, θ0

∗ = 1.7
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The principal finding in Table 7-12 and Table 7-13 is that censoring by the distal event affects 

β1̂(t) in some settings.  At the 75th percentile of TD, the divergence between β1(t) and β1̂(t) is 

greatest when Mbin(t) happens much more quickly than death (simulation settings 21-24) and 

smallest when Mbin(t) happens slowly relative to death (simulation settings 13-16). Increased 

divergence is associated with a higher value of γ3
∗ ; for example, at the 75th percentile of TD the 

mean percentage divergence in simulation setting 22 where γ3
∗ = 0.2 was 57.5%, compared to 

the difference in simulation setting 24 where γ3
∗ = 0.5 of 129%. These large divergences are 

however restricted to later timepoints. For simulation settings with γ3
∗ =0.5, percentage 

difference at t=1 (the 85th percentile of TMbin) is around 20%.  

This divergence is caused by loss of individuals from the risk set by death. The divergence is 

marked in settings such as simulations 21-24 when deaths occur predominantly after the event 

mediator. This is why higher values of γ3
∗ , which determines the rate of death after the time-

to-event mediator (see Table 7-3) are associated with greater divergence. 

This divergence between β1(t) and β1̂(t) may feed forward into divergence between 

∫ β1(u)γ3
t

0
du and  ∑ β1̂(tj)γ3̂(tj)tj≤tD

 in the dynamic path analysis estimates.  However, as 

the divergence occurs at later timepoints and the indirect effect estimate is cumulative, 

divergence in estimates of the indirect effect of X are likely to be less influential. 
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Illustrative example 7-3 

Figure 7-5 illustrates the divergence between β1(t) and the mean of β1̂(t) over time for 

simulation setting 24. This simulation setting was chosen because it demonstrated the greatest 

divergence at the 75th percentile of TD of any of the simulation settings in this section (see 

Table 7-13). 

Figure 7-5 Example graph showing the values of 𝛃𝟏(𝐭) and the mean of 𝛃𝟏̂(𝐭) against time from simulation setting 
24 in the least-squares estimation of the regression model for the effect X on Mbin(t). Parameter values are 𝛄𝟎

∗ =
𝟎. 𝟏𝟓, 𝛄𝟏

∗ = 𝟎. 𝟏, 𝛄𝟑
∗ = 𝟎. 𝟓, 𝛉𝟎

∗ = 𝟏. 𝟕, 𝛉𝟏
∗ = 𝟎. 𝟓. 

 

From Figure 7-5, the divergence is apparent after about t=0.5, and is greatest after the 85th 

percentile of TMbin at t=1. 

 

 

 

7.6.3 Results for the evaluation of the estimation of the indirect effect using 

dynamic path analysis with time-to-event mediator Mbin(t) (aim 3) 

 

Table 7-14 shows results for the evaluation of dynamic path analysis with a time-to-event 

mediator for simulation settings 13-17 and 19; Table 7-15 shows results for simulation settings 

18 and 20-24. The evaluation timepoints and parameter values are the same as those used for 

the evaluation of least-squares estimation of the effect of X on Mbin(t) in section 7.6.2, so the 

results can easily be compared.  
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Table 7-14 Evaluation of the indirect effect estimate in dynamic path analysis in aim 3, part 1 of 2. Baseline parameter values are given as footnotes. Results are based on 1000 simulated datasets 
of N=3000 individuals, except for coverage, which is based on 100 datasets of N=3000. Results are grouped according to the relative timings of Mbin(t) and death. The 95% coverage refers to the 
uncensored value. 

 Sim. 
setting 

p25(TD)=p25(TMbin), Mbin(t) is slightly slower than death Sim. 
setting 

 

 γ1
∗ = 0, γ3

∗ = 0.2, θ1
∗ = 0.513 γ1

∗ = 0, γ3
∗ = 0.5, θ1

∗ = 0.515 

Time 0.25 0.50 0.70 (p75D) 0.71 (p75Mbin) 0.75 1.0 0.25 0.50 0.68 (p75D) 0.69 
(p75Mbin) 

0.75 1.0 

Uncensored value ∫ β1
t

0
(u)γ3du 13 0.0022 0.0065 0.010 0.010 0.011 0.015 15 0.0056 0.016 0.024 0.024 0.027 0.036 

Mean of ∑ β1̂(tj)γ3̂(tj)tj≤tD
  0.0022 0.0063 0.010 0.010 0.011 0.015  0.0055 0.016 0.024 0.025 0.027 0.038 

Mean % difference  0.32 -3.13 -1.80 -1.92 -1.37 0.15  -1.75 -2.39 -0.12 0.02 0.87 4.39 

Mean % of deaths / Mbin(t)  36.9 /32.8 60.8 /45.3 73.3 /49.5 73.9 /49.6 75.9 /50.1 85.2 /51.9  37.9 /32.8 62.8 /45.3 74.6 /49.2 75.2 /49.3 78.2 /50.1 87.4 /51.9 

95% coverage  97.0 98.0 96.0 97.0 97.0 97.0  95.0 97.0 94.0 92.0 93.0 94.0 

Empirical SE  0.0018 0.0040 0.0059 0.0060 0.0064 0.0092  0.0024 0.0055 0.0080 0.0081 0.0091 0.013 

Percentage difference between 

∫ β1
t

0
(u)γ3du and Γ1

×̂(t) 

 28.1 -25.3 15.4 13.1 1.9 -2.4  7.4 -10.6 4.3 2.7 -2.5 -0.3 

  γ1
∗ = 0.1, γ3

∗ = 0.2, θ1
∗ = 0.514  γ1

∗ = 0.1, γ3
∗ = 0.5, θ1

∗ = 0.516 

Time 0.25 0.50 0.68 (p75D) 0.69 (p75Mbin) 0.75 1.0 0.25 0.50 0.64 (p75D) 0.69 
(p75Mbin) 

0.75 1.0 

Uncensored value ∫ β1
t

0
(u)γ3du 14 0.0022 0.0065 0.0097 0.0099 0.011 0.015 16 0.0056 0.016 0.022 0.024 0.027 0.036 

Mean of ∑ β1̂(tj)γ3̂(tj)tj≤tD
  0.0022 0.0063 0.0096 0.0097 0.011 0.015  0.0055 0.016 0.022 0.024 0.027 0.038 

Mean % difference  -0.88 -3.97 -1.00 -1.86 -0.82 3.22  -2.28 -2.83 -0.67 -0.01 1.06 5.65 

Mean % of deaths / Mbin(t)   39.2 /32.3 63.6 /44.1 75.0 /47.7 75.5 /47.8 78.4 /48.5 87.2 /50.1  40.2 /32.3 65.5 /44.1 74.9 /47.1 77.6 /47.8 80.5 /48.5 89.1 /50.1 

95% coverage  100 94.0 94.0 92.0 95.0 97.0  97.0 95.0 97.0 95.0 94.0 93.0 

Empirical SE  0.0019 0.0043 0.0061 0.0063 0.0069 0.010  0.0024 0.0057 0.0077 0.0086 0.0097 0.014 

  p25(TD)=p50(TMbin), Mbin(t) is slightly faster than death        
  γ1

∗ = 0, γ3
∗ = 0.2, θ1

∗ = 0.517  γ1
∗ = 0, γ3

∗ = 0.5, θ1
∗ = 0.519 

Time 0.25 0.50 0.70 (p75Mbin) 0.75  1.0 1.50 (p75D) 0.25 0.50 0.68 (p75Mbin) 0.75 1.0 1.36 (p75D) 

Uncensored value ∫ β1
t

0
(u)γ3du 17 0.0022 0.0065 0.010 0.011 0.015 0.019 19 0.0056 0.016 0.024 0.027 0.036 0.046 

Mean of ∑ β1̂(tj)γ3̂(tj)tj≤tD
  0.0022 0.0065 0.010 0.011 0.015 0.021  0.0055 0.016 0.024 0.028 0.038 0.051 

Mean difference  -1.46 -0.61 0.25 1.05 2.70 5.80  -2.53 -0.79 0.61 1.45 5.32 10.78 

Mean % of deaths / Mbin(t)  19.0 /36.5 35.4 /54.4 46.4 /61.9 48.9 /63.2 59.8 /67.5 75.4 /70.6  18.2 /37.0 35.5 /55.5 46.4 /62.8 50.3 /64.8 62.1 /69.5 74.8 /72.5 

95% coverage  95.0 93.0 94.0 96.0 96.0 96.0  95.0 95.0 93.0 91.0 92.0 93.0 

Empirical SE  0.0013 0.0026 0.0036 0.0038 0.0051 0.0074  0.0019 0.0042 0.0058 0.0064 0.0087 0.012 

Percentage difference between 

∫ β1
t

0
(u)γ3du and Γ1

×̂(t) 

 11.9 12.4 1.6 -1.0 -6.5 6.6  0.4 2.1 -0.1 1.8 1.8 10.7 

13 γ0
∗ = 1.8, θ0

∗ = 1.8  14γ0
∗ = 1.9, θ0

∗ = 1.8 15γ0
∗ = 1.8, θ0

∗ = 1.8  16 γ0
∗ = 1.9, θ0

∗ = 1.8 17 γ0
∗ = 0.8, θ0

∗ = 1.8 19 γ0
∗ = 0.7, θ0

∗ = 1.8 



140 
 

Table 7-15 Evaluation of the indirect effect estimate in dynamic path analysis in aim 3, part 2 of 2. Baseline parameter values are given as footnotes. Results are based on 1000 simulated datasets 
of N=3000 individuals, except for coverage, which is based on 100 datasets of N=3000. Results are grouped according to the relative timings of Mbin(t) and death. The 95% coverage refers to the 
uncensored value. 

 Sim. γ1
∗ = 0.1, γ3

∗ = 0.2, θ1
∗ = 0.518 Sim. γ1

∗ = 0.1, γ3
∗ = 0.5, θ1

∗ = 0.520 

Time setting 0.25 0.50 0.68 
(p75Mbin) 

0.75 1.0 1.41 
(p75D) 

setting 0.25 0.50 0.68 
(p75Mbin) 

0.75 1.0 1.30 (p75D) 

Uncensored value ∫ β1
t

0
(u)γ3du   18 0.0022 0.0065 0.0097 0.011 0.015 0.019 20 0.0056 0.016 0.024 0.027 0.036 0.045 

Mean ∑ β1̂(tj)γ3̂(tj)tj≤tD
of   0.0022 0.0065 0.0097 0.011 0.015 0.020  0.0055 0.016 0.024 0.028 0.038 0.049 

Mean % difference  -2.55 -0.72 0.06 0.98 2.48 4.30  -2.06 -0.79 0.63 1.57 5.05 9.66 

Mean % of deaths / Mbin(t)  20.0 
/36.3 

36.9 
/53.9 

47.2 
/60.6 

50.7 /62.4 61.7 
/66.5 

74.8 
/69.3 

 19.2 
/36.7 

37.1 
/54.9 

48.2 /62.0 52.0 
/64.0 

63.9 /68.5 74.6 /71.0 

95% coverage  95.0 95.0 95.0 96.0 96.0 98.0  95.0 95.0 95.0 97.0 94.0 96.0 

Empirical SE  0.0013 0.0027 0.0036 0.0040 0.0054 0.0073  0.0019 0.0042 0.0058 0.0064 0.0085 0.011 

  p25(TD)=p75(TMbin), Mbin(t) is much faster than death        
  γ1

∗ = 0, γ3
∗ = 0.2, θ1

∗ = 0.521  γ1
∗ = 0, γ3

∗ = 0.5, θ1
∗ = 0.523 

Time 0.25 0.50 0.65 
(p75Mbin) 

0.75 1.0 2.70 
(p75D) 

0.25 0.5 0.72 
(p75Mbin) 

0.75 1.0 2.4 (p75D) 

Uncensored value ∫ β1
t

0
(u)γ3du 21 0.0023 0.0067 0.0095 0.011 0.015 0.025 23 0.0057 0.017 0.027 0.028 0.038 0.063 

Mean of ∑ β1̂(tj)γ3̂(tj)tj≤tD
  0.0023 0.0067 0.0095 0.011 0.016 0.028  0.0056 0.017 0.027 0.029 0.040 0.078 

Mean % difference  -0.96 -0.15 0.44 0.40 1.76 9.75  -1.70 -1.11 0.68 1.14 4.63 23.57 

Mean % of deaths / Mbin(t)  8.2 /37.2 16.9 
/58.3 

22.1 
/66.3 

25.5 /70.3 33.6 
/77.1 

71.1 
/86.3 

 7.2 /37.6 17.0 
/59.5 

26.0 /71.1 27.3 
/72.2 

37.1 /79.7 75.0 /90.0 

95% coverage  93.0 92.0 93.0 93.0 96.0 96.0  95.0 96.0 94.0 93.0 94.0 82.0 

Empirical SE  0.0009 0.0019 0.0025 0.0028 0.0036 0.0066  0.0016 0.0037 0.0053 0.0055 0.0071 0.014 

Percentage difference between 

∫ β1
t

0
(u)γ3du and Γ1

×̂(t) 

 6.5 2.9 1.1 6.8 6.1 10.6  4.9 -1.6 2.7 3.1 6.0 21.6 

  γ1
∗ = 0.1, γ3

∗ = 0.2, θ1
∗ = 0.522  γ1

∗ = 0.1, γ3
∗ = 0.5, θ1

∗ = 0.524 

Time  0.25 0.50 0.72 
(p75Mbin) 

0.75 1.0 3.0 
(p75D) 

0.25 0.5 0.72 
(p75Mbin) 

0.75 1.0 2.4 (p75D) 

Uncensored value ∫ β1
t

0
(u)γ3du 22 0.0023 0.0067 0.011 0.011 0.015 0.026 24 0.0057 0.017 0.027 0.028 0.038 0.063 

Mean of ∑ β1̂(tj)γ3̂(tj)tj≤tD
  0.0023 0.0067 0.011 0.011 0.016 0.029  0.0056 0.017 0.027 0.029 0.040 0.078 

Mean % difference  -0.81 -0.72 0.39 0.64 2.07 10.50  -2.10 -1.13 0.73 1.11 4.40 23.31 

Mean % of deaths / Mbin(t)  8.2 /37.1 16.9 
/58.2 

24.4 
/69.2 

25.4 /70.3 33.5 
/77.2 

74.7 
/86.6 

 7.2 /37.6 16.9 
/59.4 

25.9 /71.0 27.2 
/72.2 

37.0 /79.7 74.7 /90.2 

95% coverage  94.0 94.0 94.0 95.0 95.0 91.0  97.0 94.0 95.0 95.0 95.0 82.0 

Empirical SE  0.00091 0.0019 0.0027 0.0028 0.0036 0.0064  0.0016 0.0037 0.0053 0.0055 0.0071 0.013 
18 γ0

∗ = 0.8, θ0
∗ = 1.8 20γ0

∗ = 0.7, θ0
∗ = 1.8  21 γ0

∗ = 0.3, θ0
∗ = 1.7 22 γ0

∗ = 0.25, θ0
∗ = 1.7 23 γ0

∗ = 0.2, θ0
∗ = 1.7 24 γ0

∗ = 0.15, θ0
∗ = 1.7 
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The expectation that the divergence between β1(t) and β1̂(t) may lead to divergence between 

∫ β1(u)γ3
t

0
du and  ∑ β1̂(tj)γ3̂(tj)tj≤tD

 is confirmed by the results reported in Table 7-14 and 

Table 7-15, although the magnitude of the divergence is smaller for dynamic path analysis 

estimates than for β1̂(t).  In general, as in section 7.6.2, the greatest divergence is observed at 

later evaluation timepoints (t=1, corresponding to the 85th percentile of TMbin, or at the final 

evaluation timepoint when this is at t>1). Comparing the divergence at the final evaluation 

timepoint indicates that greater divergence is associated with Mbin(t) occurring faster than 

death. For example, at the final evaluation timepoints (the 75th percentile of TD) for simulation 

settings 23 and 24, percentage differences are 23.6% and 23.3% respectively. In contrast, for 

simulation settings 15 and 16 where Mbin(t) is slow relative to death, percentage differences at 

the final evaluation timepoint are respectively 4.4% and 5.7%. As in section 7.6.2, greater 

divergence is also associated with higher values of γ3
∗ . For example, simulation setting 22 with 

γ3
∗ = 0.2 reported a percentage difference of 10.5% at the 75th percentile of TD, compared to 

simulation setting 24 with γ3
∗ = 0.5 where the percentage difference at the 75th percentile of 

TD was 23.3%. As noted in section 7.6.2, this divergence is due to loss of individuals from the 

risk set by the occurrence of death, especially after the occurrence of the time-to-event 

mediator. 

The simulations reported in Table 7-14 and Table 7-15 all have a fixed value of θ1
∗ = 0.5. To be 

confident that the divergence alluded to above is associated with a higher γ3
∗  and not with θ1

∗ , 

simulation settings 13 and 24 were repeated with alternative values of θ1
∗ = 0.1 and θ1

∗ = 0.8. 

There were no notable changes in the percentage difference when the value of θ1
∗  was 

changed (see Appendix IV). 

In general, “coverage” for the dynamic path analysis estimates of the indirect effect is 

satisfactory, falling within the acceptable limits, except for simulations 23 and 24 where 

“coverage” at the final evaluation timepoints falls to 82%, accompanying high percentage 

differences between ∫ β1(u)γ3
t

0
du and  ∑ β1̂(tj)γ3̂(tj)tj≤tD

.  Note that here, coverage refers to 

the uncensored value of the indirect effect (see section 7.4.2). 

For settings with no direct effect of X, in general the cumulative regression coefficient for the 

overall effect of X, Γ1
×̂(t), agrees with the value of the indirect effect in the absence of 

censoring, ∫ β1(u)γ3
t

0
du, in the middle of follow-up when neither Mbin(t) events nor deaths 

are sparse. At early and late evaluation timepoints, there is much less agreement. This is partly 

related to sample size. When the Γ1
×̂(t) was compared to the indirect effect estimates 

∑ β1̂(tj)γ3̂(tj)tj≤tD
 in a single simulation of setting 15 with a sample size of either N=20000 or 



142 
 

N=100000, it was clear that larger sample sizes were related to much less variability in the 

indirect effect estimates (see Appendix IV). Another reason for the differences between Γ1
×̂(t) 

and ∫ β1(u)γ3
t

0
 at early timepoints for simulation settings 13 and 15 is a relative scarcity of 

intermediate events, and consequent uncertainty around the estimates, as discussed in 

section 7.6.1. There are also large percentage differences between Γ1
×̂(t) and ∫ β1(u)γ3

t

0
 

reported at later timepoints for simulation settings 17, 19, 21 and 23. These percentage 

differences however correspond to the large percentage differences between 

∑ β1̂(tj)γ3̂(tj)tj≤tD
 and  ∫ β1(u)γ3

t

0
du and therefore reflect the role of censoring due to death 

as discussed above. Agreement between Γ1
×̂(t) and ∑ β1̂(tj)γ3̂(tj)tj≤tD

 is shown for large 

sample sizes for simulation setting 23 in Appendix IV. 

For simulation settings 13-16, where death occurs relatively more frequently, a suitable cut-off 

point for considering the estimated indirect effect of X would be the 75th percentile of TD, as 

suggested by Hosmer [56]. For simulations 17-24, death occurs less frequently relative to 

Mbin(t), so the 75th percentile of TD falls well after the 85th percentile of TMbin, meaning that at 

the 75th percentile of TD (the final evaluation timepoint) most mediator events Mbin(t) have 

occurred, so the remaining death events occur after the mediator events, and the β1̂(t) 

diverge noticeably from β1(t). In these cases, the effect of censoring is minimised if the results 

are considered up until the 85th percentile of TMbin (corresponding to t=1 in these simulations). 

If the results shown in Table 7-14 and Table 7-15 are considered up until the cut-off point 

min(p75(TD), p85(TMbin)), the dynamic path analysis estimates show little effect from the 

censoring event, with percentage difference less than 6% in the simulations presented above. 
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Illustrative example 7-4 (a) 

Figure 7-6 is a set of example graphs for simulation setting 24 showing the uncensored 

parameter values and the mean of their estimates over 1000 repetitions. This simulation 

setting was chosen because the results of the linear regression model for the effect of X on 

Mbin(t) were graphed for simulation setting 24 in section 7.6.2 above.   

Figure 7-6 Example graphs showing the true parameter values and mean values of the corresponding parameter 
estimates over time for simulation setting 24 investigating the performance of dynamic path analysis with event 
mediator Mbin(t)  
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Illustrative example 7-4 (b) 

From Figure 7-6, it appears that the divergence between β1(t) and β1̂(t) observed in section 

7.6.2 (also shown in Figure 7-6-D) feeds forward into dynamic path estimates of the indirect 

effect of X (Figure 7-6-C). There is also a small knock-on effect on estimates of the total effect 

of X on death (Figure 7-6-A) (which is estimated by adding the direct and indirect effect 

estimates as given in section 7.4.1). However, the divergence in the dynamic path analysis 

estimates appears smaller than divergence in β1̂(t), because the estimate ∑ β1̂(tj)γ3̂(tj)tj≤tD
 

is the product of β1̂(t) which demonstrates divergence and γ3̂(t) which does not. Further, the 

dynamic path analysis estimate is cumulative, so the larger divergence in β1̂(t) at higher values 

of t has less effect on the indirect effect estimate. 

Figure 7-6-B shows agreement between the cumulative regression coefficient for the direct 

effect of X on death Γ1(t) and the mean of its estimates Γ1̂(t). This agreement is expected, 

because estimates are obtained by fitting an additive hazards model for the hazard of death, 

containing explanatory variables X and Mbin(t) (shown as the second model in the third row of 

Table 7-1). Estimates obtained by fitting an appropriately specified additive hazards model are 

expected to be unbiased, as shown in sections 7.6.1, 7.6.2 and 3.4.3, and reported by Aalen 

[39, 53]. 

 

 

 

7.6.3.1 Behaviour of the dynamic path analysis estimator with varying treatment and 

mediator effects 

 

Table 7-16 shows graphs of ∫ β1(u)γ3
t

0
du and the mean of ∑ β1̂(tj)γ3̂(tj)tj≤tD

 for simulations 

based on settings 16, 20 and 24 as described in section 7.5.1. These simulations performed 500 

repetitions rather than the 1000 repetitions reported in the main body of section 7.6.3 above, 

because the simulations were computationally intensive. Simulation settings 16, 20 and 24 

were chosen because they had the highest values of the coefficients ( γ1
∗ = 0.1, γ3

∗ = 0.5, θ1
∗ =

0.5) and had different relative timings of Mbin(t) and death.  The investigation into the 

divergence between ∫ β1(u)γ3
t

0
du and ∑ β1̂(tj)γ3̂(tj)tj≤tD

 involved making successive changes 

to the values of γ1
∗ , γ3

∗  and θ1
∗  and observing whether the divergence changed.  To make 

comparison across simulations easier, the x-axis of all graphs was truncated at t=1.5. The 
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vertical line represents the 85th percentile of TMbin or the 75th percentile of TD, whichever came 

first. Note that changes in the values of γ3
∗  and θ1

∗  lead to changes in the y-scale of the graphs 

in the third and fourth columns of Table 7-16. 

The clearest finding from examining the graphs in Table 7-16 is that, in the second and third 

rows of the table (when Mbin(t) is much faster than death), a reduction in γ3
∗   is accompanied 

by a reduced divergence from ∫ β1(u)γ3
t

0
du, meaning that  the effect of the censoring event is 

stronger when γ3
∗  is larger (especially in the third row). This confirms the finding in section 

7.6.3 that the main driver of the censoring event in the settings investigated in this chapter is 

γ3
∗ . 

A general consideration of pattern of divergence over time for the graphs shown in Table 7-16 

confirms that the use of min(p75(TD), p85(TMbin)) as a cutoff point for reporting the estimated 

indirect effect of X via Mbin(t) would be less affected by selective censoring and thus easier to 

interpret.
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Table 7-16 Changes in bias in estimates of the indirect effect of X on death ∑ 𝛃𝟏̂(𝐭𝐣)𝛄𝟑̂(𝐭𝐣)𝐭𝐣≤𝐭𝐃
 when 𝛄𝟏

∗ , 𝛄𝟑
∗  and 𝛉𝟏

∗  are changed. Results are based on 500 repetitions, sample sizes are shown in 

each column 

Simulation 
setting 
description 

Original simulation 
(1000 repetitions of N=3000) 

Setting repeated with 
γ1

∗ = 0.01 (N=1500) 
Setting repeated with 
γ3

∗ = 0.1 (N=5000)  
Setting repeated with 
θ1

∗ = 0.1 (N=5000)  

Simulation 
setting 16 
p25(TD) = 
p25(TMbin), Mbin(t) 
is slightly slower 
than death 

γ1
∗ = 0.1, γ3

∗

= 0.5, θ1
∗ = 0.5    

 
 

 

Simulation 
setting 20 
p25(TD) = 
p50(TMbin), Mbin(t) 
is slightly faster 
than death 

γ1
∗ = 0.1, γ3

∗

= 0.5, θ1
∗ = 0.5     

Simulation 
setting 24 
p25(TD)= 
p75(TMbin), Mbin(t) 
is much faster 
than D 

γ1
∗ = 0.1, γ3

∗

= 0.5, θ1
∗ = 0.5    
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7.6.3.2 Behaviour of the dynamic path analysis estimator with non-constant baseline hazard 

or treatment effect 

 

Table 7-17 shows results of the investigation of dynamic path analysis when the baseline 

hazard of death is piecewise constant. Note that all the simulations presented in Table 7-17 

have p25(Td)=p75(TMbin) (ie Mbin(t) is much faster than death). 

The results of simulation settings 25-28 follow a pattern similar to the results of simulation 

settings 22 and 24 (Table 7-15), which have the same values of γ1
∗ , γ3

∗  and θ1
∗  but a constant 

baseline hazard. The percentage difference between ∫ β1(u)γ3
t

0
du and ∑ β1̂(tj)γ3̂(tj)tj≤tD

 is 

low up to the 85th percentile of TMbin (ie at t=1). The highest percentage difference observed at 

t=1 is 4.5% for simulation setting 28. As in simulation settings 22 and 24, the divergence 

increases after t=1, with the highest percentage difference of 24.2% occurring at the 75th 

percentile of TD for both simulation settings 27 and 28. Estimates in simulation settings 25 and 

26 also show high percentage differences, respectively 11.1% and 11.6%, at the 75th percentile 

of TD. These percentages are similar in magnitude to the percentage differences observed for 

simulation settings 22 and 24 (see Table 7-15). 

“Coverage” for simulations 25-28 generally falls within acceptable boundaries, except at the 

final evaluation timepoints of simulations 27 and 28 where low “coverage” (respectively 84% 

and 83%) is observed in conjunction with high percentage differences as noted above. 

“Coverage” is lower than acceptable at the first evaluation timepoint of simulation 26, for 

reasons similar to those described in section 7.6.1.  
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Table 7-17 Evaluation of the indirect effect estimate in dynamic path analysis with a time-to-event mediator Mbin(t) and piecewise constant baseline hazard. Results are based on 1000 simulated 
datasets of N=3000 individuals, except for coverage, which is based on 200 datasets of N=3000. Results are grouped according to the relative timings of Mbin(t) and death. The 95% coverage refers 
to the uncensored value. 

 Sim. 
setting 

γ1
∗ = 0.1, γ3

∗ = 0.2, θ1
∗ = 0.525 Sim. 

setting 
γ1

∗ = 0.1, γ3
∗ = 0.5, θ1

∗ = 0.527 

Time 25 0.25 0.50 0.75 0.77 
(p75Mbin) 

1.0 3.20 
(p75D) 

27 0.25 0.50 0.73  
(p75Mbin) 

0.75  1.0 2.50 (p75D) 

Uncensored value of 

∫ β1
t

0
(u)γ3du 

 0.0023 0.0069 0.012 0.012 0.016 0.029  0.0057 0.017 0.027 0.028 0.038 0.064 

Mean value of 

∑ β1̂(tj)γ3̂(tj)tj≤tD
 

 0.0023 0.0069 0.012 0.012 0.016 0.032  0.0056 0.017 0.028 0.029 0.040 0.079 

Mean % difference  -0.82 -0.82 0.35 0.47 1.78 11.07  -2.10 -1.13 0.84 1.07 4.36 24.24 

Mean % of deaths / 
Mbin(t)  

 8.1 
/35.6 

16.8 
/56.4 

24.8 
/68.5 

25.4 
/69.3 

32.4 
/75.7 

75.3 
/86.3 

 7.2 
/37.6 

16.9 
/59.4 

26.1 
/71.5 

26.9 
/72.3 

36.5 
/79.8 

75.6 /90.5 

95% coverage  98.0 94.0 97.0 96.0 94.0 98.0  97.0 96.0 97.0 97.0 96.0 84.0 

Empirical SE  0.0009 0.0019 0.0028 0.0029 0.0036 0.0067  0.0016 0.0037 0.0053 0.0055 0.0070 0.013 
 26 γ1

∗ = 0.1, γ3
∗ = 0.2, θ1

∗ = 0.526 28 γ1
∗ = 0.1, γ3

∗ = 0.5, θ1
∗ = 0.528 

Time 0.25 0.5 0.75  0.77 
(p75Mbin) 

1.0 3.60 
(p75D) 

0.25 0.50 0.72  
(p75Mbin) 

0.75  1.0 2.50 (p75D) 

Uncensored value of 

∫ β1
t

0
(u)γ3du 

 0.0023 0.0069 0.012 0.012 0.016 0.029  0.0057 0.017 0.027 0.028 0.038 0.064 

Mean value of 

∑ β1̂(tj)γ3̂(tj)tj≤tD
 

 0.0023 0.0069 0.012 0.012 0.016 0.033  0.0056 0.017 0.027 0.029 0.040 0.079 

Mean % difference  -0.62 -0.68 0.29 0.36 1.65 11.62  -1.95 -1.06 0.81 1.17 4.49 24.24 

Mean % of deaths / 
Mbin(t) 

 9.3 
/35.4 

18.8 
/55.8 

25.3 
/67.8 

25.8 
/68.5 

31.6 
/74.9 

74.8 
/86.2 

 8.4 
/37.4 

19.0 
/58.8 

27.0 
/70.2 

28.1 
/71.4 

37.0 
/78.8 

74.5 /89.6 

95% coverage  90.0 93.5 95.5 95.0 95.0 91.0  96.0 97.0 98.0 98.0 98.0 83.0 

Empirical SE  0.0010 0.0020 0.0028 0.0029 0.0035 0.0067  0.0017 0.0037 0.0053 0.0055 0.0071 0.013 
25γ0,1

∗ = 0.25, γ0,2
∗ = 0.225, θ0

∗ = 1.6  26γ0,1
∗ = 0.3, γ0,2

∗ = 0.15, θ0
∗ = 1.6  27γ0,1

∗ = 0.15, γ0,2
∗ = 0.135, θ0

∗ = 1.7  28γ0,1
∗ = 0.2, γ0,2

∗ = 0.1, θ0
∗ = 1.7 
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Table 7-18 presents results for the estimation of the indirect effect from the dynamic path 

analysis with a piecewise constant treatment effect on both Mbin(t) and death, as outlined in 

section 7.5.2. The method is investigated at two relative event speeds: p25(TD)=p25(TMbin) 

(when the two events occur at roughly the same speed); and p25(TD)=p75(TMbin) (when Mbin(t) 

is much faster than death). 

The results here are similar to the results reported in Table 7-14 and Table 7-15. For simulation 

settings 29 and 30, when the rate of Mbin(t) is slower than death, the percentage difference 

between ∫ β1(u)γ3
t

0
du and ∑ β1̂(tj)γ3̂(tj)tj≤tD

 is low at all evaluation timepoints (the highest 

percentage difference of 2.7% is reported at t=1 for simulation setting 30). For settings 31 and 

32, where the rate of Mbin(t) is much higher than that of death, percentage difference is 

highest at the final evaluation timepoints (respectively 8.2% and 18.8%). These percentage 

differences are similar in magnitude to those reported in section 7.6.3 (settings 22 and 24 had 

percentage differences 10.5% and 23.3% respectively, see Table 7-15).    

“Coverage” falls within acceptable boundaries at all evaluation timepoints for all simulation 

settings 29-32, with the exception of the final evaluation timepoint of setting 32, where it is 

86%.  

From these results, it can be inferred that dynamic path analysis with a piecewise constant 

treatment effect performs similarly to dynamic path analysis with a constant treatment effect, 

which is not surprising given that the additive hazards model does not rely on the assumption 

of constant baseline hazards, nor of proportional hazards. 
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Table 7-18 Evaluation of the indirect effect estimate in dynamic path analysis with a time-to-event mediator Mbin(t) and piecewise constant treatment effect. Results are based on 1000 simulated 
datasets of N=3000 individuals, except for coverage, which is based on 200 datasets of N=3000. Results are grouped according to the relative timings of Mbin(t) and death. The 95% coverage refers 
to the uncensored value. 

  p25(TD)=p25(TMbin), Mbin(t) is slightly slower than death   
 Setting γ1,1

∗ = 0.2, γ1,2
∗ = 0.1, γ3

∗ = 0.2, θ1,1
∗ = 0.5, θ1,2

∗ = 0.229 Setting γ1,1
∗ = 0.2, γ1,2

∗ = 0.1, γ3
∗ = 0.5, θ1,1

∗ = 0.5, θ1,2
∗ = 0.230 

Time 29 0.25 0.50 0.70 
(p75D) 

0.71 
(p75Mbi

n) 

0.75 1.0 30 0.25 0.50 0.70 
(p75D) 

0.74 
(p75Mbin) 

0.75 1.0 

Uncensored value of 

∫ β1
t

0
(u)γ3du 

 0.0022 0.0065 0.0097 0.0099 0.010 0.013  0.0057 0.017 0.025 0.027 0.027 0.035 

Mean value of 

∑ β1̂(tj)γ3̂(tj)tj≤tD
 

 0.0022 0.0063 0.0096 0.0097 0.010 0.013  0.0056 0.016 0.025 0.027 0.027 0.036 

Mean % difference  -0.94 -3.85 -1.73 -2.06 -1.46 0.14  -2.67 -2.47 -0.71 -0.39 -0.41 2.68 

Mean % of deaths / 
Mbin(t) 

 38.4 
/32.4 

62.6 
/44.5 

74.9 
/48.2 

75.4 
/48.4 

77.2 
/48.8 

86.2 
/50.5 

 37.8 
/31.5 

62.6 
/43.8 

75.3 
/47.8 

77.2 
/48.3 

77.7 
/48.4 

86.9 
/50.3 

95% coverage  96.0 95.0 94.0 94.0 94.0 95.0  97.0 95.0 94.0 97.0 97.0 94.0 

Empirical SE  0.0018 0.0041 0.0058 0.0059 0.0063 0.0087  0.0024 0.0056 0.0081 0.0086 0.0088 0.013 
  p25(TD)=p75(TMbin), Mbin(t) is much faster than death   
 31 γ1,1

∗ = 0.2, γ1,2
∗ = 0.1, γ3

∗ = 0.2, θ1,1
∗ = 0.5, θ1,2

∗ = 0.231 32 γ1,1
∗ = 0.2, γ1,2

∗ = 0.1, γ3
∗ = 0.5, θ1,1

∗ = 0.5, θ1,2
∗ = 0.232 

Time 0.25 0.50 0.74 
(p75Mbin) 

0.75 1.0 3.30 
(p75D) 

0.25 0.50 0.74 
(p75Mbi

n) 

0.75 1.0 2.60 
(p75D) 

Uncensored value of 

∫ β1
t

0
(u)γ3du 

 0.0023 0.0067 0.011 0.011 0.014 0.021  0.0057 0.017 0.027 0.027 0.035 0.053 

Mean value of 

∑ β1̂(tj)γ3̂(tj)tj≤tD
 

 0.0023 0.0066 0.011 0.011 0.014 0.023  0.0056 0.017 0.027 0.027 0.036 0.063 

Mean % difference  -0.87 -1.14 0.07 0.14 1.18 8.20  -1.91 -1.08 0.57 0.61 2.98 18.8 

Mean % of deaths / 
Mbin(t) 

 8.1 
/37.1 

16.8 
/58.2 

24.1 
/69.4 

24.4 
/69.7 

31.6 
/76.7 

74.7 
/87.2 

 7.2 
/37.6 

16.8 
/59.4 

25.7 
/71.3 

26.1 
/71.7 

35.2 
/79.2 

75.2 
/91.0 

95% coverage  93.0 95.0 95.0 97.0 98.0 97.0  94.0 95.0 93.0 93.0 93.0 86.0 

Empirical SE  0.0009 0.0019 0.0026 0.0026 0.0033 0.0059  0.0016 0.0036 0.0053 0.0054 0.0069 0.013 
29γ0

∗ = 1.8, θ0
∗ = 1.8 30γ0

∗ = 1.7, θ0
∗ = 1.7  31γ0

∗ = 0.2, θ0
∗ = 1.7 32γ0

∗ = 0.1, θ0
∗ = 1.7 



 
 

7.7 Discussion 

 

This chapter has presented results of investigations into the behaviour of the two components 

of the dynamic path analysis estimator when the intermediate event is a time-to-event 

variable. The behaviour of the dynamic path analysis estimator itself, when the mediator is a 

time-to-event variable, has also been examined.  

Results of the investigations into the performance of the additive hazards model confirm that 

the estimation of this model gives rise to an unbiased estimate of the cumulative effect of a 

time-updated binary explanatory variable Mbin(t) on a survival outcome when the model is 

properly specified.  

The investigations of the consequences of fitting a linear regression model for the effect of a 

treatment X on a time-updated binary variable Mbin(t) in the presence of loss of individuals 

from the risk set by death confirm that the estimates are affected by informative loss at the 

later time points when the mediator has a strong association with the distal outcome, meaning 

that there is a strong indirect effect. This effect carries forward into the dynamic path analysis 

estimate of the cumulative indirect effect of X on death via the time-to-event mediator Mbin(t).  

The effect of censoring on the estimates varies according to the timing of the intermediate and 

distal events relative to each other. This effect is larger when Mbin(t) happens much more 

quickly and association between Mbin(t) and death is strong, with individuals experiencing the 

event mediator Mbin(t) being more likely to die (assuming γ3 is positive), and hence not to 

contribute to later estimates of β1(t).   

In the clinical setting of the secondary analysis of trials with a composite time-to-event 

outcome, it is likely that Mbin(t) will occur more frequently than death, because the proximal 

component event of a composite outcome is usually chosen partly on this basis (see chapter 1 

and [5]). The impact of censoring on the indirect effect estimates may therefore be notable in 

practice. 

If there is interest in reporting an indirect effect estimate that is not greatly affected by 

censoring and thus easier to interpret, the choice of when to stop estimating the indirect 

effect of X should be informed in part by the relative event rates. In classical dynamic path 

analysis with a continuous mediator, estimation is usually stopped at around the 75th 

percentile of TD (see chapter 5 and [56]). This rule of thumb is not universally applicable to 

dynamic path analysis with a time-to-event mediator, because if Mbin(t) is slow relative to 

death, using the 75th percentile of TD as a final time point may exclude large numbers of Mbin(t) 
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events.  Conversely, if Mbin(t) is much faster than death, the effect of censoring may be very 

large by the 75th percentile of TD. In the scenarios investigated in this chapter, choosing a 

stopping point representing the minimum of the 85th percentile of TMbin or the 75th percentile 

of TD appeared to be a good compromise. Clinical considerations may also influence the choice 

of stopping point for the estimation of an indirect treatment effect in this setting. 

Possible additional sources of bias in the indirect effect estimate include violations of the 

assumptions of dynamic path analysis outlined in chapter 5. For this setting these would 

include no interaction between X and Mbin(t), no intermediate confounding, and no 

unmeasured confounding. In addition, the simulation studies reported in this chapter had very 

little administrative censoring and no loss to follow-up.  Caution should therefore be exercised 

when interpreting estimates obtained using the extension to dynamic path analysis introduced 

in this chapter. 

With all these caveats, there is great potential to use the novel extension of dynamic path 

analysis proposed in this thesis for exploring treatment effects in clinical trials with composite 

time-to-event outcomes. By quantifying the pathways through which treatment works, 

dynamic path analysis with a time-to-event mediator can provide a context for understanding 

the biological mechanisms underlying complex disease processes [20, 42]. 
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8 Estimating the indirect effect of treatment via progression in 

the Zactima trials 

 

 

8.1 Introduction 

 

In chapter 4, additive hazards models were fitted to assess the effect of treatment in the 

Zactima trials. The results led to the following inferences: 

1) Treatment was found to have a statistically significantly protective effect on cancer 

progression; 

2) Treatment was found to have an overall protective, though not statistically significant, 

effect on death; 

3) Treatment was found to have virtually no effect when progression was included in the 

mortality model. 

The estimated treatment effect in 2) corresponds to the total effect of treatment on death, 

while in 3) it refers to the direct effect of treatment on death, if the relevant assumptions are 

met (that is, there are no unmeasured confounders, no intermediate confounders, and the 

model is correctly specified). Under these assumptions, a difference in these estimated 

treatment effects implies that treatment may have some indirect protective effect on death, 

working through the intermediate event of progression. The magnitude of this indirect effect 

of treatment can be estimated using the extension to dynamic path analysis proposed in 

chapter 5. 

 

 

8.1.1 Aims 

 

The aims of this chapter are: 

1. To obtain the dynamic path analysis estimate of the indirect effect of 

treatment on death via progression in the pooled Zactima trials dataset; 
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2. To use simulation studies to investigate the impact of the timing of death, 

especially after progression, on estimates of the indirect effect of treatment. 

Section 8.2 describes the implementation of dynamic path analysis in the Zactima trials and 

presents the results (aim 1). Section 8.3 describes and reports the simulation studies aimed at 

quantifying the potential distortion due to the timing of death on the estimates of the indirect 

effect of treatment on death (aim 2). 

 

 

8.2 Dynamic path analysis estimate of the indirect effect of treatment 

in the Zactima trials 

 

 

8.2.1 Methods 

 

Dynamic path analysis estimation in the Zactima trials dataset is summarised below using the 

Zactima trials variables introduced in section 4.2. 

As a first step, the effect of treat on prog(t) (the binary time-updated explanatory variable 

indicating progression) at each death time t= tdth is estimated by fitting the following 

regression model: 

E(prog(t)) = β0(t) + β1(t)treat + 𝛃𝟐
𝐓(t)𝐭𝐫𝐢𝐚𝐥 + 𝛃𝟒

𝐓(t)𝐰   8-1 

This produces parameter estimates β̂0(tdth) and β̂1(tdth) adjusted for the additive effects of 

trial and the baseline covariate vector W.  

In the second step, the effects of prog(t) and treat on the hazard of death are estimated by 

fitting the following additive hazards model at each death time t=tdth: 

αdth(t) = γ0(t) + γ1(t)treat + 𝛄𝟐
𝐓(t)𝐭𝐫𝐢𝐚𝐥 + γ3(t)prog(t) + 𝛄𝟒

𝐓(t)𝐰  8-2 

The model produces estimates γ̂0(tdth), γ̂1(tdth) and γ̂3(tdth) specific to time tdth for, 

respectively, the baseline hazard of death, the additive effect of treat adjusted for progression 

(that is, the time-specific direct effect of treatment on death), and the additive effect of prog(t) 

on death at time tdth, adjusted for the effects of trial and the baseline covariate vector W.  This 
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model is identical to model 4-3, where the γ̂1(tdth)  were summed over time to estimate the 

cumulative direct effect of treatment on death Γ1̂(t) = ∑ γ1̂(tdth)tdth≤t . In the current context, 

the estimates of interest are the γ̂3(tdth) for all death times. 

1. The estimated indirect effect of treat on the hazard of death at each death time tdth is 

obtained by multiplying the relevant coefficients giving γ̂3(tdth)β̂1(tdth).  

2. The estimated cumulative effect of the indirect effect of treat up to time t is given by 

∑ γ3̂(tdth)tdth≤t β1̂(tdth). 

Following the recommendation made in chapter 7, the cumulative estimate of the indirect 

effect is reported until the 75th percentile of Tdth or the 85th percentile of Tprog, whichever came 

first. In the case of the Zactima trials, the 85th percentile of Tprog occurred at 8 months, while 

the 75th percentile of Tdth occurred at 18 months. The cutoff for reporting the cumulative 

estimate is therefore chosen to be 8 months after randomisation. 

Following Fosen [30], the 95% confidence interval for the estimates ∑ γ3̂tdth≤t (tdth)β1̂(tdth) is 

obtained using a bootstrap with 1000 bootstrap samples (see for example [81]) at 10 evenly 

spaced timepoints between t=0 and t=8 months.   

 

 

8.2.2 Results 

 

Figure 8-1 shows a plot of the estimated effect of treatment on progression β̂1(t) (estimated 

by fitting Model 8-1) against time, with the pointwise 95% confidence limits. The graph is 

truncated at the 85th percentile of Tprog, 8 months after randomisation. 
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Figure 8-1 Estimated effect of treatment on progression obtained by fitting Model 8-1 at each death time, and 
pointwise 95% confidence limits  

 

Figure 8-1 indicates that for the first 0.5 months, treatment has no effect on progression. After 

this time, treatment has a rapidly increasing protective effect on progression which reaches      

-0.1 at 2.5 months. After 2.5 months, the protective effect stays fairly constant around -0.1. At 

2.5 months after randomisation, the 95% confidence bands indicate that the protective effect 

of treatment could plausibly be between -0.05 and -0.13. At 8 months, the protective effect is       

-0.08 with a 95% CI of [-0.03, -0.13].   

Figure 8-2 shows a plot of the estimated cumulative effect of progression on death Γ3̂(t) 

(estimated by fitting Model 8-2) against time, with the pointwise 95% confidence limits, 

truncated at 8 months. 
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Figure 8-2 Estimated cumulative effect of progression on death obtained by fitting Model 8-2, and pointwise 95% 
confidence limits 

 

Figure 8-2 indicates that after 0.5 months, the cumulative effect of progression on death is 

positive. At 1 month post-randomisation, the cumulative change in the hazard of death is 0.13 

with the confidence bands indicating a plausible range of effect of [0.02, 0.24]. After 1.5 

months, the slope of the plot is nearly constant at 0.07 per month, meaning that the effect of 

progression on death is nearly constant. At 4 months, the cumulative effect is 0.45 [0.32, 0.58] 

and at 8 months the cumulative effect is 0.77 [0.64, 0.91].  

Figure 8-3 shows a plot of the dynamic path analysis estimate of the cumulative indirect effect 

of treatment on death via progression ∑ γ3̂(tj)tj≤t β1̂(tj) against time, with the bootstrapped 

pointwise 95% confidence limits, truncated at 8 months.  
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Figure 8-3 Dynamic path analysis estimate of the cumulative indirect effect of treatment on death via progression 
in the pooled dataset. The 95% confidence interval is calculated at 10 evenly spaced timepoints 0.8, 1.6,…, 8.0 
and is based on 1000 bootstrap samples 

 

Figure 8-3 shows a protective cumulative indirect effect of treatment on death via progression. 

During the first month, the effect appears close to null. At 1.6 months (the time of the second 

pointwise 95% confidence interval), the cumulative indirect effect is estimated as -0.008 with a 

bootstrapped 95% confidence interval of [-0.005, -0.010]. At 4 months, a total of 1365 

progressions (64%) have occurred, and a total of 626 deaths (35%) have occurred. The 

cumulative indirect effect and its 95% confidence interval are -0.025 [-0.020, -0.031]. At 8 

months, 1970 (92%) progressions and 1182 (66%) deaths have occurred, and the cumulative 

indirect effect and 95% confidence interval are -0.055 [-0.046, -0.066].  The rate of change of 

the cumulative effect (given by the slope of the plot) is close to constant; at 4 months, it is        

-0.009 per month [-0.008, -0.009] and at 8 months it is -0.007 per month [-0.007, -0.007]. The 

slopes are estimated using the change in the cumulative effect over the preceding month. 

The estimated cumulative overall effect of treatment on the hazard of death is shown in Figure 

4-3. The estimated cumulative direct effect of treatment on death is shown in Figure 4-5. 

Comparing these figures with Figure 8-3 confirms that the overall effect of treatment on death 

comprises the sum of the direct and indirect effects. For example, at 8 months the cumulative 

indirect effect read from Figure 8-3 is -0.055 (and statistically significant). Reading from Figure 

4-5, the cumulative direct effect is 0, and reading from in Figure 4-3, the cumulative overall 

effect is -0.055 (but not statistically significant). However, to interpret this partitioning of the 

total effect into direct and indirect components requires the assumptions that there are no 

unmeasured confounders, no intermediate confounders, and that the mediator and outcome 

models are correctly specified. In summary, a comparison of results from the additive hazards 
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models fitted in chapter 4 and the dynamic path analysis performed in this section suggests 

that there is a non-statistically significant overall effect of treatment, while the indirect effect 

of treatment is statistically significant.  

 

  

8.3 Simulation study to investigate bias due to deaths in the dynamic 

path analysis estimates of the Zactima trials  

 

An association between progression and death, such as that shown in Figure 8-2, leads to 

individuals who have experienced progression being more likely to experience death, and 

hence leave the risk set contributing to the estimation of the mediator model. This affects the 

relationship between treatment and progression over time, as patients who have progressed 

are excluded from the analyses because of death. This section conducts a simulation study to 

investigate the possible effect of this censoring by death on the estimates of the effect of 

treatment on progression and hence of the indirect effect of treatment on death.   They are 

examined in this chapter because in the Zactima trials most of the death events followed a 

progression event, with progressions occurring faster than deaths (see section 2.4.3.1). 

These simulations have the same structure as those presented in chapter 7 and apply to the 

simple setting shown in Figure 8-4 below, which omits the trial and W covariates. The 

simulation parameters are set at values corresponding to estimates obtained from the Zactima 

trials data (details are given below).  

Figure 8-4 Path diagram showing the time-specific relationships between treat, prog(t) and death (dN(t)) in the 
simulation study motivated by the Zactima trials. This diagram is similar to the general path diagram shown in 
Figure 7-1  

 

 

 

 

Here, treat is a binary variable indicating treatment group, prog(t) is a binary time-updated 

variable indicating the occurrence of progression, and dN(t) is the increment of the counting 

treat  

prog(t) 

dN(t) 
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process associated with death. At event time t, the value of prog(t) refers to a time just before 

time t. 

 

 

8.3.1 Methods 

 

The parameter values used in data generation for this simulation study are guided by the 

Zactima trials data. The values for the regression parameters used in the data generation 

models (see Table 7-4) γ1
∗ , γ3

∗  and θ1
∗  were based on their estimates obtained by fitting Models 

8-2 and 8-3 shown in Table 8-1 below. Because these models allow for their parameters to be 

time-varying, plots of their cumulative sums, Γ1(t)̂, Γ3(t)̂ and Θ1(t)̂ against time up to the 75th 

percentile of event time (after Hosmer [56]) were superimposed with Lowess smoothers.  The 

slope in the last month of time before the 75th percentile (that is, between 7 and 8 months for 

the progression outcome and between 17 and 18 months for the death outcome) was used to 

select the value of the simulation parameters above. These time periods were chosen because 

the slopes of the plots of cumulative regression coefficients were constant after a short initial 

period, and the estimates were based on large numbers of events.  In addition, two additional 

values for γ3
∗  were chosen corresponding to the slopes for the upper and lower limits of the 

95% confidence bands for Γ3(t)̂  between 17 and 18 months (see Table 8-2).  Meanwhile, the 

value of the simulation parameter representing the hazard of progression in the placebo 

group, θ0
∗ (t), was chosen by examining the slope of a Nelson-Aalen plot of the estimated 

cumulative hazard of progression in the placebo group, Θ0
×(t)̂, between 7 and 8 months and 

assumed to be constant for simplicity. The value of the simulation parameter representing the 

hazard of death in the placebo group for patients who had not experienced progression, γ0
∗ (t), 

was chosen similarly, by examining the slope of a Nelson-Aalen plot of the estimated 

cumulative hazard of death in this group, Γ0
×(t)̂, between 17 and 18 months, also assumed to 

be constant.  

Table 8-1 Additive hazards models fitted to the Zactima trials data to estimate parameters for the simulation 
study 

Outcome  
 

Estimation model Model number 

Progression αprog(t) = θ0(t) + θ1(t)treat + 𝛉𝟐
𝐓(t)𝐭𝐫𝐢𝐚𝐥 + 𝛉𝟒

𝐓(t)𝐰 

 

8-3  

Death αdth(t) = γ0(t) + γ1(t)treat + 𝛄𝟐
𝐓(t)𝐭𝐫𝐢𝐚𝐥 +

𝛾3(t)prog(t) + 𝛄𝟒
𝐓(t)𝐰  

 

8-2  
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The simulation parameters are shown in Table 8-2 below. Due to the randomisation ratio of 

2:1 in the Zephyr trial, P(treat=1) was set at 0.55. 

Table 8-2 Simulation parameters derived from fitting additive hazards models for time to progression and time to 
death to the pooled Zactima trials dataset  

 Value 
 

  

Parameter  
Simulation setting number 
 

 1 2 3 

 
𝛄𝟎

∗
 

   

0.03 for all settings 1-3 
𝛄𝟏

∗  -0.001 for all settings 1-3 
𝛄𝟑

∗
 0.07 0.06 0.09 

𝛉𝟎
∗

 0.25 for all settings 1-3 
𝛉𝟏

∗  -0.06 for all settings 1-3 
p* 
 

0.55 for all settings 1-3 

 

The simulation study generated 1000 datasets of N=3000 individuals (the full size of the 

Zactima pooled trials data was 2849, see chapter 2). Results were reported at t=2, 4, 6 ,8, 12, 

18 months. The 85th percentile of the simulated progression time Tprog was found to be tprog=8.0 

months (as in section 8.2), while the 75th percentile of the simulated death time Tdth was found 

to be tdth=18 months.  

As in chapter 7, the results of the simulation were reported as a set of metrics assessed at the 

six timepoints given above. The metrics used to report the results are shown below in Table 

8-3 for ease of reference (they are the same as those used in chapters 3, 6 and 7).  The symbol 

τ refers to the value of the target of the simulation in the absence of censoring due to death. 

The value of this was calculated using the values of  θ0
∗ ,  θ1

∗   and  γ3
∗  shown in Table 8-2, as 

described in Table 7-4 and the accompanying text.   
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Table 8-3 Metrics reported for the simulation study  

Metric1 

 
Interpretation 

τ Value of the parameter of interest in the absence of 
censoring (calculated as described in section 7.3)  
 

τ̅ =
∑ τp̂P

P
 

Mean value of the estimate of τ  

τ̅ − τ

τ
× 100 Percentage difference between the mean value and 

the value of τ in the absence of censoring 
 

SE(τ̂) = √
1

P − 1
∑(τp̂ − τ)

2

P

 
Empirical standard error 

1Note that τ̂p denotes the estimate from simulated dataset p, (p=1,…,P; P=1000). 

In addition, at each timepoint the mean percentage of individuals who had experienced either 

progression or death across the 1000 simulations was reported. 

 

 

8.3.2 Results 

 

Table 8-4 below shows results for the evaluation of bias in the dynamic path analysis 

estimation of the indirect effect of treatment on death via progression using the simulation 

parameters derived from the Zactima dataset as described above.  
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Table 8-4 Evaluation of the indirect effect estimate in dynamic path analysis using parameters derived from the 
Zactima trials dataset (part 1 of 2). Results are based on 1000 simulated datasets of N=3000 individuals. 

 Simulation setting 1 
  
 γ0

∗ = 0.03, γ1
∗ = −0.001, γ3

∗ = 0.07, θ0
∗ = 0.25, θ1

∗ = −0.06 

Time 2 4 6 8 (p85Tprog) 12 18 (p75Tdth) 

Uncensored value 

∫ β1
t

0
(u)γ3du1 

-0.006 -0.019 -0.033 -0.046 -0.065 -0.079 

Mean of estimates 

∑ β1̂(tj)γ3̂(tj)tj≤tdth
 

-0.006 -0.019 -0.033 -0.048 -0.072 -0.098 

Mean % difference -2.73 -2.08 0.70 3.87 11.65 23.23 

Mean % of deaths / mean 
% progressions 

8.1 /34.2 18.6 
/55.0 

29.5 
/67.6 

39.9 /75.4 57.5 
/83.1 

75.7 /86.7 

Empirical SE 0.0018 0.0040 0.0060 0.0080 0.011 0.016 
 Simulation setting 2 

 
 γ0

∗ = 0.03, γ1
∗ = −0.001, γ3

∗ = 0.06, θ0
∗ = 0.25, θ1

∗ = −0.06 

Time 2 4 6 8 (p85Tprog) 12 18 (p75Tdth) 

Uncensored value 

∫ β1
t

0
(u)γ3du1 

-0.005 -0.016 -0.028 -0.039 -0.055 -0.068 

Mean of estimates 

∑ β1̂(tj)γ3̂(tj)tj≤tdth
 

-0.005 -0.016 -0.029 -0.041 -0.061 -0.081 

Mean % difference -2.42 -1.64 0.66 3.39 10.09 19.59 

Mean % of deaths / mean 
% progressions 

7.8 /34.2 17.6 
/55.0 

27.8 
/67.6 

37.7/75.4 54.5 
/83.1 

72.6 /86.7 

Empirical SE 0.0016 0.0035 0.0053 0.0069 0.0097 0.013 
 Simulation setting 3 

 
 γ0

∗ = 0.03, γ1
∗ = −0.001, γ3

∗ = 0.09, θ0
∗ = 0.25, θ1

∗ = −0.06 

Time 2 4 6 8 (p85Tprog) 12 18 (p75Tdth) 

Uncensored value 

∫ β1
t

0
(u)γ3du1 

-0.008 -0.025 -0.043 -0.059 -0.083 -0.10 

Mean of estimates 

∑ β1̂(tj)γ3̂(tj)tj≤tdth
 

-0.008 -0.024 -0.043 -0.062 -0.095 -0.13 

Mean % difference -3.69 -2.52 0.62 4.66 14.70 30.6 

Mean % of deaths / mean 
% progressions 

8.7 
34.2 

20.4 
/55.0 

32.6 
/67.6 

44.0 /75.4 62.7 
/83.1 

80.7 /86.7 

Empirical SE 0.0022 0.0050 0.0077 0.010 0.015 0.021 
1As noted above, this measures the true indirect effect of treatment on death in the absence 

of the depletion of patients by death contribution to the treatment-progression model. 

The uncensored value of the indirect effect is used as a comparator because depletion of 

patients by death has implications for the value of β1(t). As described in chapter 7, the 

expected values of β1(t) are calculated from θ0
∗ (t) and θ1

∗(t), but there is no simple way of 

deducing the true value of β1(t) in the presence of censoring, apart from the direction of 

change of β1(t) over time. 

If, as in these simulations, β1(t) is negative (treatment has a protective effect on progression) 

and γ3(t) is positive (progression has a harmful effect on death), more patients in the placebo 
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arm would suffer progression and those patients would be more likely to die, so that over time 

patients at risk of progression would be increasingly in the treatment group. This would lead to 

β1(t) becoming more negative with time as the placebo group becomes smaller relative to the 

treatment group, and the time-specific indirect effect would also be increasingly negative.  

In the light of this, comparisons with the uncensored value of the indirect effect are 

interpreted accounting for this expected divergence. The difference is referred to as “bias”, 

although this is not a study of bias in the usual sense. 

In simulation setting 1, the indirect effect of treatment estimated using our extension of 

dynamic path analysis is on average fairly close to the expected value where there is no 

depletion of patients at most time points except for the penultimate and last evaluation 

timepoints (11.65% and 23.23% respectively). In simulation setting 2, where γ3
∗  is smaller, the 

corresponding percentage differences are also smaller (10.09% and 19.59% respectively), and 

in simulation setting 3, where γ3
∗  is larger, the percentage differences at these same time 

points are noticeably larger (14.70% and 30.6%).   

The differences between the means of the estimates and the uncensored values of 

∫ β1
t

0
(u)γ3du  are caused by loss of patients from the risk set by death after progression as 

discussed in chapter 7. If one wished to report results that were not greatly affected by early 

deaths and ended reporting at the 85th percentile of Tprog (at t=8 months) as discussed in 

chapter 7, the percentage difference at the final evaluation timepoint would be 3.87% for 

setting 1, 3.39% for setting 2 and 4.66% for setting 3 respectively. The empirical SE is small 

relative to the magnitude of the estimates for all simulations at all timepoints.  This implies 

that the estimated indirect effects have low variability across simulations.  

The simulation study is based on an exponential distribution of both Tprog and Tdth. This is quite 

realistic for an outcome such as death which occurs relatively slowly in the absence of 

progression, but may be less realistic for an outcome such as progression which occurs rapidly 

at the start of the trial. In addition, the simulations are based only on the relationship between 

the three variables shown in Figure 8-4, while in fact the models used for estimation in the 

Zactima trials contain the covariates trial and W.  As a result, the percentage differences 

between the estimated and uncensored indirect effects are only indicative of the difference 

that might exist in the estimated cumulative indirect treatment effect shown in Figure 8-3 

because in a real-life setting the parametric model assumed for these additional variables 

might not be specified correctly.   
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8.4 Discussion 

 

The analysis of the Zactima trials presented in this chapter represents a new and interesting 

use of dynamic path analysis for the estimation of a cumulative indirect treatment effect 

through a survival mediator. The estimated protective cumulative indirect effect of treatment 

on the hazard of death is small in magnitude but increases with time from -0.008 [-0.005, -

0.010] at 1.6 months to -0.055 [-0.046, -0.066] at 8 months. As noted in section 8.3.2, the 

estimate may be affected by the occurrence of censoring due to death. However, as reporting 

of the indirect effect estimate was curtailed at the 85th percentile of progression time, the 

results presented in section 8.2.2 are unlikely to be greatly biased. 

The estimated indirect effect represents the difference between the total effect of treatment 

on death and the direct effect of treatment on death. This analysis is an addition to the 

traditional cause-specific analyses of treatment effects on the components of a composite 

outcome, as it explicitly models the role played by progression as being both a result of 

treatment and a precursor of death. This approach could be extended to more complex 

settings with multiple possible indirect pathways of action, providing greater understanding of 

the mechanisms of action of treatment, subject to the assumptions described in chapter 5 of 

no unmeasured confounding, no intermediate confounding, and no non-linearities in the 

explanatory variables. 
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9 Discussion 

 

 

9.1 Introduction 

 

This thesis aimed to develop and demonstrate an approach to estimating the indirect effect of 

an exposure or treatment variable in a specific setting arising from the secondary analysis of 

treatment effects on a time-to-event composite outcome. The challenge was to disentangle 

treatment effects on the component events of this composite outcome, as these usually occur 

in sequence, and are therefore classified as proximal and distal events. The research was 

motivated by the Zactima trials, where the proximal event was cancer progression and the 

distal event was death. The indirect effect of interest was the effect of treatment on death, 

working through the mediator of cancer progression. Hence the main aim of this thesis was to 

extend dynamic path analysis, an approach to mediation analysis that can be used with a 

survival outcome, to the setting where both outcome and mediator are time-to-event 

variables. To achieve this aim, the following objectives were identified: 

1) To introduce the dynamic path analysis method of Fosen, Aalen et al [20, 30, 31] as a 

means of estimating the indirect effect of a treatment on a time-to-event outcome via 

a continuous mediator, and to verify its properties; 

2) To extend dynamic path analysis, and verify the properties of this extension, to the 

setting where the outcome and mediator are time-to-event variables; 

3) To apply this extension to the Zactima trials dataset, estimating the indirect effect of 

treatment on death through its effect on cancer progression. 

This chapter outlines how these objectives have been met within this thesis, describes how the 

extension to dynamic path analysis applies in the clinical trials setting, and identifies further 

areas of research.  

 

  



167 
 

 

9.2 Discussion of the motivation and objectives of this thesis 

 

 

9.2.1 The Zactima trials 

 

The three Zactima trials estimated the effect of treatment on the composite outcome of time 

to cancer progression or death. Published guidance for the estimation of treatment effects on 

composite outcomes suggests that treatment effects should be reported separately for each 

component event [1, 3, 6]. For each trial, treatment effects on the component events were 

estimated by fitting Cox proportional hazards models, revisiting earlier published results [8-

10]. The datasets from the three trials were then pooled for the first time and a similar analysis 

carried out. The main findings were a statistically significant protective effect of treatment on 

progression, and a non-statistically significant protective effect of treatment on death, not 

controlling for progression. The former finding supplemented the original published analyses, 

which focused on the composite outcome of progression-free survival, and overall survival [8-

10]. 

Further investigation requires a consideration of the ordering of the events, and how a 

proximal event may affect a distal event. The ideas of mediation analysis, especially the 

concepts of overall, direct and indirect effects can be used in this context. 

The overall effect of treatment on death can be thought of as the effect of treatment on death 

along any pathway. The direct effect of treatment on death is the effect of treatment on death 

through a pathway that does not involve cancer progression. The indirect effect of treatment 

on death, where the mediator is progression, is that part of the effect of treatment which 

works specifically through cancer progression.  

The overall effect of treatment on death was estimated by fitting a Cox proportional hazards 

model to the pooled dataset. The direct effect of treatment on death was derived by fitting a 

Cox proportional hazards model for the effect of treatment on death, controlling for cancer 

progression, under the assumptions of proportionality and correct model specification.  This 

direct treatment effect estimate was very close to null. The findings of a protective overall 

effect of treatment on death, and no direct effect of treatment on death, suggested an indirect 

effect of treatment on death. However, such an indirect effect couldn’t be estimated by 
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comparing the estimated hazard ratios of the overall and direct effects of treatment [14, 17, 

19, 20], because the scale of the effects estimated by Cox regression is not additive.  

Additive hazards models were then fitted to estimate the overall and direct effects of 

treatment on death in the pooled Zactima trials data. The results from these additive hazards 

models were substantively similar to the results obtained by fitting Cox proportional hazards 

models. The structure of the additive hazards model allows the overall and direct effects of 

treatment to be compared, given certain assumptions (no unmeasured confounding, no 

intermediate confounding, and correct model specification [14, 24, 33]). A comparison of these 

treatment effects suggested that an indirect treatment effect should be investigated. 

 

 

9.2.1.1 The additive hazards model  

 

The additive hazards model introduced by Aalen [20, 39, 53] uses counting process 

terminology to define a model where coefficients are expressed on the additive scale as 

potentially time-varying differences in hazards with respect to a time-to-event outcome. When 

the additive hazards model is correctly specified, it provides unbiased estimates of covariate 

effects over time [20, 39, 53]. 

This thesis carried out several simulation studies investigating the performance of the additive 

hazards model to justify its application to the Zactima trials data and its role in dynamic path 

analysis. The results of these simulations were reported using a range of metrics including 

percentage bias, coverage and empirical standard error. These metrics captured aspects of the 

model performance [60] not usually addressed in the literature. The simulations examined: a) 

the performance of the additive hazards model with a single time-fixed binary or a single time-

fixed continuous explanatory variable; b) the performance of the model with a time-varying 

continuous explanatory variable, either as a single predictor or with a time-fixed binary 

covariate; c) the performance of the additive hazards model with a time-updated binary 

(survival) explanatory variable, that is, a time-to-event mediator in aim 2 above. The 

performance of the additive hazards model has not previously been investigated in this last 

setting. Results indicated that the additive hazards model gave estimates with low percentage 

bias and good coverage in settings a) and b), and that in setting c) the coverage of the 

estimates may be low when the time-updated binary explanatory variable occurs sparsely. This 
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could occur for example at early timepoints when explanatory variable events are slow to 

accumulate, or late in follow-up after most of the explanatory variable events have happened.  

 

 

9.2.2 Introduction to and verification of dynamic path analysis 

 

The structure of the additive hazards model allows it to be adapted into a path analysis 

framework. This framework forms the basis of much of the literature on mediation analysis, 

and methods used to estimate direct and indirect effects (see for example [14, 19, 32, 33, 36, 

37, 40, 41]).  

In terms of defining an indirect effect, the additive hazards model combined with path analysis 

forms the basis of dynamic path analysis [73], a method described by Fosen, Aalen and 

colleagues [20, 30, 31] for the estimation of indirect effects with a (possibly time-varying) 

continuous mediator and a time-to-event outcome. By allowing the continuous mediator to 

vary with time, the method allows covariate effects to be explored as processes that change 

with time, rather than being considered static [82].  In addition, the indirect effect itself is 

allowed to vary with time, which may reflect clinical realities in some settings.   

Chapter 5 introduced and described dynamic path analysis [20, 30, 31]. Simulation studies 

conducted in chapter 6 verified the properties of dynamic path analysis, confirming that the 

estimator gives rise to low percentage biases and good coverage. There was some evidence 

that indirect effect estimates might be variable at early timepoints, while events were still 

accumulating.    

 

 

9.2.3 The extension to dynamic path analysis proposed in this thesis 

 

Dynamic path analysis is not directly applicable to settings with a time-to-event mediator 

exemplified by mediation analysis in the Zactima trials. In fact, Pratschke [28] notes that “the 

statistical theory and software tools for causal mediation analysis with survival outcomes are 

currently confined to continuous mediators”.  The thesis proposed a novel extension to 

dynamic path analysis to settings where both mediator and outcome are time-to-event 
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variables.  This extension shares the advantages of dynamic path analysis, in that the indirect 

effect is allowed to vary freely over time. The formulation of the indirect treatment effect is 

simple, and its estimation straightforward. At the time of writing, the extension to dynamic 

path analysis proposed in this thesis is original, as it specifically deals with mediation analysis 

where both the mediator and outcome are time-to-event variables. 

The components of the dynamic path analysis estimator are unbiased (linear regression gives 

rise to unbiased estimates; estimates derived from fitting additive hazards model with a time-

updated binary explanatory variable were found to be unbiased as noted in section 9.2.1.1). 

The dynamic path analysis estimator in the setting with a continuous mediator was found to be 

unbiased as noted in section 9.2.2. The extension to dynamic path analysis was not therefore 

expected to give rise to biased estimates. 

In some cases, occurrence of the distal event was found to have some impact on estimates of 

the effect of treatment on the proximal event. This is an unusual setting in survival analysis, 

where follow-up was not ended at the occurrence of the (proximal) event of interest. The 

nature and magnitude of the effect of the distal event on the estimates is therefore highly 

relevant. Consequently, the performance of dynamic path analysis estimator was compared 

with the expected value if the distal event had not occurred, in order to gain insight to this 

effect. The performance of the estimator was found to depend on the relative speeds of the 

proximal and distal events, the direction of effect of treatment on the proximal event, and the 

strength of association between the two events. In settings when the two events occurred at 

similar rates, the occurrence of the distal event had very little effect on estimates obtained by 

dynamic path analysis. In settings when the proximal event occurred much more quickly than 

the distal event, and there was a strong association between proximal and distal events, 

occurrence of the distal event was found to affect the estimates late in follow-up.  

 

 

9.2.4 Application of the proposed method to the Zactima trials dataset 

 

The possibility of an indirect effect of treatment on death via progression in the Zactima trials 

dataset was raised by comparing the estimated overall and direct effects of treatment on 

death.  This indirect effect was estimated by implementing the extension of dynamic path 

analysis proposed in this thesis. It was shown that treatment had a protective indirect effect 

on death. During the first month after randomisation, this effect was close to null. At 4 
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months, the cumulative indirect effect estimate and its 95% confidence interval were -0.025   

[-0.020, -0.031]. At 8 months, the cumulative indirect effect estimate was -0.055 with a 95% 

confidence interval of [-0.046, -0.066].  These findings were in accord with previous estimates 

of the overall effect of treatment on death and the direct effect of treatment on death. 

Simulation studies using parameters estimated from the Zactima trials were also carried out to 

determine whether the dynamic path analysis estimates were likely to be affected by selective 

depletion due to  death, as noted in section 9.2.3. These parameters corresponded to 

progression occuring 8.3 times faster than death, and a hazard ratio of 3.3 representing the 

association between progression and death. It was expected from the findings of the 

simulation studies presented in chapter 7 that the dynamic path analysis estimator could be 

affected by substantial accumulation of death events late in follow-up, and this was found to 

be the case.   

The application of the method to the Zactima trials data demonstrated how the method 

proposed in this thesis could be applied to give a quantitative estimate of a treatment effect 

on a time-to-event outcome via a time-to-event mediator.  

 

 

9.3 General application of the proposed method in clinical trials 

 

Time-to-event composite are commonly encountered in cardiovascular medicine. The Lim 

survey [6] found that among cardiovascular trials published between 2000 and 2007, 27% had 

a time-to-event composite outcome. Therefore, the extension to dynamic path analysis 

proposed in this thesis can be considered in the context of the secondary analysis of these 

trials. Consideration of the relative frequency of the component events, and the strength of 

the relationship between the component events is important when considering the 

applicability of the method, in view of the effect of the distal event on the estimator discussed 

above. Myocardial infarction (MI) and all-cause mortality are frequently chosen as component 

events of a composite outcome in cardiovascular clinical trials [6]. Examining a small group of 

cardiovascular trials which used MI and all-cause mortality as component events of a 

composite outcome (chosen from [83]) gives some insight into the relative frequency of these 

component events in the literature.   
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In the TIMI-IIIB trial [84], the one-year incidence of MI was 2.0 times that of mortality. In the 

CURE trial [85], the incidence of MI over one year of follow-up was almost the same as that of 

mortality (743 MIs compared to 749 deaths). In the PROVE-IT trial [86], over 30 months of 

follow-up MI was 2.6 times as likely to occur as death. Conversely, in the COMMIT trial [87], 

over the first three days following treatment, death was 3.5 times more likely to occur than 

MI. Finally, in the COURAGE trial [88], over 4.6 years of follow-up there were 1.9 times as many 

MIs as deaths from any cause. In the Zactima trials used in this thesis, cancer progression was 

1.2 times more likely to occur than death over the course of follow-up (see Figure 2-2). This 

ratio is smaller in magnitude to those of the cardiovascular trials cited. 

Cannon [5] stated that “[myocardial infarction] has been found to be associated with an 

approximately 2.5-fold increase in subsequent mortality in several trials […]” [5]. As another 

example, the TIMI-7 trial [89] found that over six weeks, mortality was 7.2 times more 

prevalent in patients who had experienced a non-fatal component events than in those who 

hadn’t. In the Zactima trials, death was 3.2 times more likely to occur in patients who had 

experienced cancer progression than in those who had not.  

The generally higher incidence of MIs than deaths, and the strong relationships between MI 

and death in the trials cited above suggests that the dynamic path estimator proposed in this 

thesis could be affected late in follow-up by the occurrence of death if applied widely to trials 

in this clinical area. This implies that some of the results obtained using dynamic path analysis 

would have to be interpreted acknowledging the effect of post-MI deaths on the dynamic path 

analysis estimator. Analysis could be truncated as suggested in chapter 7 to mitigate this issue. 

The method could also be applied in other clinical areas. A survey of prospective randomised 

trials published in the Lancet Oncology in 2008 showed that of 20 trials, 6 had time-to-event 

composite outcomes. It therefore appears that there is scope to apply the extension to 

dynamic path analysis in different clinical fields. Application of this method would in general 

require some consideration at the design stage. Specifically, the main assumptions of the 

method described in section 5.4.2 (of no unmeasured confounding, no intermediate 

confounding and no treatment-medator interaction) would need to be considered. In a 

randomised trial, relationships between the treatment and mediator or distal outcome 

variables are unconfounded by design. However, attention may need to be given to potential 

confounders of the mediator-outcome relationship so that such confounders can be included 

in the analysis. In addition, intermediate confounding (see section 5.2.4), where treatment 

affects a variable which itself affects both the mediator and the outcome variable, could 

amount in this setting to the specification of an additional indirect effect of treatment. The 
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existence of such an effect would require changes to the structural models and path diagrams 

involved, and also lead to further complexities as discussed in the multiple mediators literature 

[90]. The assumption of no interaction between treatment and the mediator on the distal 

outcome would also need to be considered when planning to use dynamic path analysis. 

Finally, a trial planning to use dynamic path analysis as a secondary analysis would need to give 

some consideration to issues of sample size and power, especially as composite outcomes are 

often chosen in part to address sample size requirements [1]. 

There is potential for the extension to dynamic path analysis proposed in this thesis to be 

applied in other areas such as epidemiological research. This would require consideration of 

possible confounders of the effect of the exposure variable as outlined above. In some 

complex epidemiological settings, time-varying exposures may affect time-varying 

confounders, which in turn affect later values of the exposure variables (see for example [24]). 

This setting poses a set of complications similar to those of intermediate confounding. It would 

be interesting to investigate whether the extension to dynamic path analysis could be applied 

in this setting.   

The extension to dynamic path analysis proposed in this thesis is easy to implement using 

standard software (see the Zactima trials example in Appendix II). It produces simple graphical 

output which can be compared with estimates of the overall and direct effects to shed light on 

the mechanisms of action of treatment. It is therefore likely that the method could be widely 

and successfully applied to the secondary analysis of clinical trials. 

 

 

9.4 Areas for further research 

 

There are several areas of interest for further research in the application of dynamic path 

analysis with a time-to-event mediator. It would be useful to investigate whether an 

expression for the expected value of the estimator could be developed, perhaps inspired by 

the use of inverse probability of censoring weighting (IPCW), which has been used to correct 

estimates for dependent censoring.  Roysland [77] gave an example of the use of inverse 

probability of censoring weighting (IPCW) in analysis of the Swiss HIV Cohort Study. The setting 

was different from the setting used in this thesis, in that the authors constructed a series of 

“mimicked” randomised trials from the cohort data, based on treatment group during each of 
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a set of discrete time periods. Dependent censoring was introduced by assigning the treatment 

group on the basis of treatment during a given time period, and individuals who did not 

receive the treatment were the control group, censored at the later time they started 

treatment. This led to dependent censoring for individuals who started treatment when their 

CD4 count rose. Inverse probability of censoring weighting (IPCW) [91, 92] was used to correct 

for this dependent censoring, creating in effect a notional dataset where the censoring 

mechanism was independent. Traditional dynamic path analysis was then used to estimate the 

indirect effect of treatment on the composite outcome of AIDS or death through the time-

varying continuous mediator of CD4 count. The dependent censoring in this case (caused by 

individuals in the control group starting treatment) occurred before the outcome of AIDS or 

death. However, it might be of interest to investigate whether a similar approach could be 

applied to developing an expression for the expected value of the estimator in the presence of 

the distal event.    

Observation of the dates of cancer progression in the Zactima trials was subject to interval 

censoring, as described by Lindsey [93]. This occurs when an event of interest can only be 

observed at set follow-up times. Typically, such an event is identified by the results of 

investigations performed at scheduled follow-up visits. This contrasts with events requiring 

immediate medical intervention, or death, the precise dates of which are usually known. 

Interval-censored data are often analysed by attributing the date of the visit when the event is 

observed to have occurred to the event data, as in this thesis. This attribution can lead to 

results that are biased in either direction [93, 94], and to underestimated standard errors, 

leading in turn to type I error in the results of hypothesis tests [94]. However, Dorey [95] 

suggested that this bias is unlikely to be important in a randomised trial of a serious disease 

with a short interval between follow-up visits, as was the case with the Zactima trials.  

The interval censoring of the progression outcome in the Zactima trials datasets can be seen by 

examining the Kaplan-Meier estimates of survivor function for progression shown in Figure 

2-1. The plots appear stepped, with each vertical drop corresponding to the scheduled follow-

up visits when progression was assessed. When the datasets were pooled this stepping 

became less apparent (see Figure 2-3), because the follow-ups were staggered at every 6 

weeks in the Zodiac and Zeal trials, and every 8 weeks in the Zephyr trial. A closer examination 

suggests that in practice follow-up visits were spread out around the 6 and 8-week points. For 

example, of the 373 progressions recorded between 5 and 7 weeks, 58 (15.5%) were recorded 

at exactly 6 weeks. Of the 344 progressions recorded between 7 and 9 weeks, 87 (25.3%) were 

recorded at exactly 8 weeks.  
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Interval censoring may therefore not constitute a large source of bias in the analyses of the 

Zactima trials datasets presented in this thesis. However, it is likely that interval-censored 

events may commonly be component events of a composite outcome, and therefore it would 

be relevant to investigate the effects of interval censoring on the dynamic path analysis 

estimator. 

Throughout this thesis, estimates from both the additive hazards model and dynamic path 

analysis have been truncated at the 75th percentile of follow-up time, in line with 

recommendations by Hosmer and Royston [56]. This strategy addresses the issues of extreme 

variability of estimates based on very small sample sizes late in follow-up, and hence lack of 

variability in the data leading to some time points where the regression coefficients for the 

mediator and outcome models are not estimable. Other strategies could be used to mitigate 

these effects. For example, a weighting approach could be used to reduce the effects of very 

variable point-specific estimates on the cumulative effect late in follow-up; or standard errors 

of the point-specific coefficients could be estimated using a bootstrap, with a pre-specified 

maximum used to define “extreme” estimates to be excluded. Smoothing techniques could be 

used to address “missing” regression coefficients later in follow-up. Alternatively, a cut-off 

could be specified such that reporting ends after a certain proportion of “missing” regression 

coefficients are observed. These strategies could increase the amount of information used in 

the estimation both of the additive hazards model and dynamic path analysis, and as such 

would constitute interesting areas of further work. 

As noted in chapter 5 and in [20], direct and indirect effects are defined with respect to a 

specific mediator or mediators. The setting considered in this thesis has included one mediator 

variable. However, with more detailed data it could be possible to define a plurality of indirect 

pathways operating through one or more mediator variables, although no such examples 

currently exist in the literature. The application of dynamic path analysis in this context would 

be a useful area for further research. 

 

 

9.5 Concluding remarks 

 

This thesis was motivated by extending composite outcome analysis into cause-specific 

analysis of the effect of treatment on cancer progression and death in the Zactima trials. A 



176 
 

strong protective effect of treatment on progression was observed. A comparison of the 

overall effect of treatment on death and the direct (not via progression) effect of treatment on 

death suggested an indirect effect of treatment on death via progression, underscored by the 

strong protective effect of treatment on progression. The difficulty lay in estimating an indirect 

effect of treatment on a time-to-event outcome via a time-to-event mediator. 

This thesis has extended dynamic path analysis to propose a simple method of estimating an 

indirect effect on a time-to-event outcome via a time-to-event mediator. This extension 

represents a novel means of conducting mediation analysis in this setting and gaining insight 

into the possible mechanisms of action of treatment.  When applied to the Zactima trials 

dataset, a small but statistically significant indirect effect of treatment on death of -0.025 at 4 

months and -0.055 at 8 months was estimated.  

Further research is needed into the properties of this estimator. As it stands, however, the 

method represents a step forward in the secondary analysis of clinical trials with a time-to-

event composite outcome, and the elucidation of pathways through which treatment might 

work. 
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Appendix I: fitting an additive hazards model in Stata 

 

Analysis in this thesis was performed using Stata version 12.1. 

Additive hazards models were fitted using the stlh command, written by David W Hosmer and 

Patrick Royston and published on 8 March 2002. 

The full text of the command is reproduced below. It can be used in any version of Stata from 

version 6 onwards. 
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*****************

 

*! version 1.0.0 DWH/PR 08Mar2002.    (SJ2-4: st0024) 

program define stlh 

version 6 

st_is 2 analysis 

syntax varlist(min=1) [if] [in], [ noDOTs GENerate(string) noGRAph 

LEVel(string) /* 

 */ noMORE SAVing(string) TCent(real 75) TESTwt(numlist >=1 <=4 integer sort) 

* ] 

if "`saving'"!="" { 

 tokenize "`saving'", parse(" ,") 

 local s `1' 

 local replace `2'`3' 

 if "`4'"!="" | ("`replace'"!="" & "`replace'"!=",replace") { 

  di in red "invalid saving(`saving')" 

  exit 198 

 } 

 local saving `s' 

} 

* key st chars 

local id: char _dta[st_id] 

local wt: char _dta[st_wt]      /* type of weight */ 

if "`wt'"!="" { 

 di in red "weights not supported" 

 exit 198 

} 

local time _t 

local t0 _t0 

local dead _d 

 

if `tcent'>100 | `tcent'<10 { 

 di in red "tcent() must be between 10 and 100 (default is 75)" 

 exit 198 

} 

if "`level'"!="" { 

 confirm num `level' 

} 

else local level $S_level 

tempname zlevel 

scalar `zlevel'=-invnorm((100-`level')/200) 

 

if "`graph'"=="nograph" & "`saving'"!="" { 

 di in red "no graphs to save" 

 exit 198 

} 

 

quietly { 

 marksample touse 
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markout `touse' `varlist' 

 replace `touse'=0 if _st==0 

 count if `touse' 

 local nobs=r(N) 

 if "`graph'"!="nograph" & `tcent'<100 { 

  centile `time', centile(`tcent') 

  local tp=r(c_1) 

  local iftc "& `time'<=`tp'" 

 } 

 * Remove collinearities 

 noi _rmcoll `varlist' if `touse' 

 local varlist `r(varlist)' 

 local nx: word count `varlist'  

 local p 0 

 while  `p'<=`nx' { 

  local p=`p'+1 

  if `p'>`nx' { 

   local nm`p' "_cons" 

  } 

  else local nm`p': word `p' of `varlist' 

  tempvar a`p' 

  gen `a`p''=. 

  if "`generat'"!="" { 

   confirm new var `generat'A`p' 

   confirm new var `generat'S`p' 

  } 

 } 

 noi di in gr _n "Graphs and tests for Aalen's Additive Model" _n 

_dup(43) "-" 

 noi di in gr "Model:  " in ye "`varlist'" 

 noi di in gr "Obs:    " in ye `nobs' _n 

 local Np=`nobs'-`p' 

 * Handle possible ties by sorting data in order of time, censoring, 

covariates. 

 * Covariates are ordered lexicographically, so results can never change 

even 

 * if covariates are ordered differently on input. 

 listsort "`varlist'", lexicographic 

 local vlsort `s(list)' 

 * put obs with missing last then drop them 

 gsort -`touse' `time' -`dead' `vlsort' 

 local todrop=`nobs'<_N 

 if `todrop' { 

  preserve 

  if "`generat'"!="" { 

   tempfile orig 

   save `orig' 

  } 

  drop if `touse'==0 

 } 

 tempvar dN 

 gen byte `dN'=0 

 local it 1 

 while `it'<=`Np' {  /* begin it loop */  

  if "`dots'"!="nodots" { 

   if mod(`it',100)==0 { noi di in gr "." _continue } 

  } 

  if `dead'[`it']==1 {   /* begin dead==1 loop */    

   replace `dN'=(_n==`it') 

   * regress for any obs for which time>=current failure time 

   * and entry time (t0) is earlier than current failure time 

   capture regress `dN' `varlist' if _n>=`it' & 

`t0'<`time'[`it'] 

   if e(df_m)==`nx' {  /* full rank; regression can continue 

*/         

    local k 1 

    while `k'<=`p' { 

     replace `a`k''=_b[`nm`k''] in `it' 

     local k=`k'+1 

    } 

   } /* end of rss>0 */ 
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  } /* end of the dead==1 loop */  

  local it=`it'+1  

 } /* end it loop */ 

 noi di  

 local k 1 

 while `k'<=`p' { 

  tempvar A`k' VA`k' 

  gen `A`k''=sum(`a`k'') 

  gen `VA`k''=sum(`a`k''^2) 

  *replace `a`k''=. if `dead'==0 

  local k=`k'+1 

 } 

 if "`graph'"!="nograph" { 

  * Graph 

  if "`more'"!="nomore" { 

   set more on 

  } 

  tempvar lb ub 

  gen `lb'=. 

  gen `ub'=. 

  local k 1 

  while `k'<=`p' { 

   local t1 

   if `k'<`p' { /* k=p is _cons */ 

    local t1: var label `nm`k'' 

    if "`t1'"=="" {  

     local t1 `nm`k'' 

    }  

   } 

   else local t1 [Constant] 

   replace `lb'=`A`k''-`zlevel'*sqrt(`VA`k'') if `dead'==1 

   replace `ub'=`A`k''+`zlevel'*sqrt(`VA`k'') if `dead'==1 

   if "`saving'"!="" { 

    local sav saving(`saving'`nm`k''`replace') 

   } 

   graph `lb' `A`k'' `ub' `time' if `a`k''!=. `iftc', sort /* 

    */ pen(323) s(iii) c(JJJ) `sav' t1title(`t1') yline(0) 

`options' 

   if "`more'"!="nomore" & `k'<`p' { 

    more 

   } 

   local k=`k'+ 1 

  } 

 } 

 * hypothesis test(s), if specified 

 local ntest: word count `testwt' 

 if `ntest'>0 { 

  local maxtst: word `ntest' of `testwt' 

  if `maxtst'>=3 { 

   tempvar SKM 

   sts gen `SKM'=s 

  } 

  tempvar Asm AsmV zwt 

  gen `Asm'=. 

  gen `AsmV'=. 

  gen `zwt'=. 

  gsort `time' -`dead' `vlsort' 

  tokenize `testwt' 

  while "`1'"!="" { 

   local w `1' 

   if `w'==1   { 

    local wtt`w' "1.0" 

    replace `zwt'=1 

   } 

   else if `w'==2 { 

    local wtt`w' "the Size of the Risk Set" 

    replace `zwt'=_N-_n+1 

   } 

   else if `w'==3 { 

    local wtt`w' "Kaplan-Meier Estimator at Time t-" 

    replace `zwt'=cond(_n==1, 1, `SKM'[_n-1]) 
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   } 

   else { 

    local wtt`w' "(Kaplan-Meier Estimator at Time t-

)/(Std. Dev of the Time-varying Coefficient)" 

   } 

   local k 1 

   while `k'<=`p' { 

    if  `w'==4  { 

     replace `zwt'=cond(_n==1, 1, `SKM'[_n-

1])/abs(`a`k'') 

    } 

    replace `Asm'=sum(`a`k''*`zwt')  

    replace `AsmV'=sum((`a`k''*`zwt')^2) 

    local z`k'=`Asm'[_N]/sqrt(`AsmV'[_N]) 

    local k=`k'+ 1 

   } 

   noisily { 

    di in gr _n "Test `w': Uses Weights Equal to" _n 

"`wtt`w''" _n 

    di in gr "Variable" _col(17) "z" _col(27) "P" 

    di in gr "-----------------------------" 

    local k 1 

    while `k'<=`p' { 

     di in gr "`nm`k''" in ye _col(13) %7.3f 

`z`k'' /* 

      */ _col(25) %5.3f 2*(1-

normprob(abs(`z`k''))) 

     local k=`k'+1 

    } 

   } 

   mac shift /* to process next requested test number */ 

  } 

 } /* end of loop for hypothesis tests */ 

 if "`generat'"!="" { 

  local keep 

  local k 1 

  while `k'<=`p' { 

   gen `generat'S`k'=sqrt(`VA`k'') 

   rename `A`k'' `generat'B`k' 

   lab var `generat'B`k' "Aalen cum coeff for `nm`k''" 

   lab var `generat'S`k' "SE(Aalen cum coeff for `nm`k'')" 

   local keep `keep' `generat'B`k' `generat'S`k' 

   local k=`k'+1 

  } 

  if `todrop' { 

   tempfile addits 

   keep `keep' 

   save `addits' 

   use `orig' 

   merge using `addits' 

   drop _merge 

   restore, not 

  } 

 } 

} /* end quietly */ 

end 

 

*! version 1.0.0 PR 16Feb2001. 

program define listsort, sclass 

version 6 

gettoken p 0 : 0, parse(" ,") 

if `"`p'"'=="" { 

 exit 

} 

sret clear 

syntax , [ Reverse Lexicographic ] 

local lex="`lexicog'"!="" 

if "`reverse'"!="" { local comp < } 

else local comp > 

local np: word count `p' 

local i 1 
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while `i'<=`np' { 

 local p`i': word `i' of `p' 

 if !`lex' { confirm number `p`i'' } 

 local i=`i'+1 

} 

* Apply shell sort (Kernighan & Ritchie p 58) 

local gap=int(`np'/2) 

while `gap'>0 { 

 local i `gap' 

 while `i'<`np' { 

  local j=`i'-`gap' 

  while `j'>=0 { 

   local j1=`j'+1 

   local j2=`j'+`gap'+1 

   if `lex' { local swap=(`"`p`j1''"' `comp' `"`p`j2''"') } 

   else local swap=(`p`j1'' `comp' `p`j2'') 

   if `swap' { 

    local temp `p`j1'' 

    local p`j1' `p`j2'' 

    local p`j2' `temp' 

   } 

   local j=`j'-`gap' 

  } 

  local i=`i'+1 

 } 

 local gap=int(`gap'/2) 

} 

local p 

local i 1 

while `i'<=`np' { 

 sret local i`i' `p`i'' 

 local p `p' `p`i'' 

 local i=`i'+1 

} 

sret local list `p' 

end 
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Appendix II: estimating the indirect effect of treatment on death 

in the Zactima trials and bootstrapping the confidence intervals 

 

The code given below was used to estimate the indirect effect of treatment on death in the 

Zactima trials, and to bootstrap the confidence intervals as described in Chapter 8. Novel 

commands called in this programming are reproduced below the main body of the program. 

For ease of reading, the progression variable is given as [progression], the treatment variable is 

given as [treatment], the indicator variables for trial are given as [trial] and the baseline 

covariates are given as [covs]. 

*****************

 

Estimation of the indirect effect of treatment on death via progression and 

its bootstrapped 95% confidence interval using the Zactima trials data 

 

*load and prepare data (code not given) 

 

*estimate the effect of treatment on progression (code for the stlhregress 

*command given below, again this is a very slighly adapted version of the stlh 

*command) 

qui stlhregress [progression] [treatment] [trial] [covs],  gen(first) 

 

 

*graph of estimated effect of treatment on progression at each death time: 

gen trtprog_ub=firstb1+1.96*firsts1 

gen trtprog_lb=firstb1-1.96*firsts1 

#delimit ; 

twoway  (line firstb1 _t, sort)  

  (line trtprog_ub _t, sort lpattern(dot) lcolor(blue))  

  (line trtprog_lb _t, sort lpattern(dot) lcolor(blue))  

  if _t<8,  

  xtitle("Time since randomisation (months)")  

  ytitle("Regression coefficient") ylabel(,angle(h))  

  legend(on order(1 "Treatment effect" 2 "95% confidence limits" )) 

  ; 

#delimit cr 

 

 

*estimate the effect of progression on death using stlh_b (code for the stlh_b 

*command given below, this is a very slightly adapted version of the stlh code 

*reproduced in Appendix I which outputs the incremental estimates rather than 

their *sums) 

stlh_b  [progression] [treatment] [trial] [covs], nograph gen(second) 

 

*graph of estimated effect of progression on death  

gen progdth_ub=secondB1+1.96*secondS1 

gen progdth_lb=secondB1-1.96*secondS1 

#delimit ; 

twoway  (line secondB1 _t, sort)  

  (line progdth_ub _t, sort lpattern(dot) lcolor(blue))  

  (line progdth_lb _t, sort lpattern(dot) lcolor(blue))  

  if _t<8,  

  xtitle("Time since randomisation (months)")  

  ytitle("Cumulative regression coefficient") ylabel(,angle(h)) 
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  legend(on order(1 "Effect of progression" 2 "95% confidence 

limits" )) 

  ; 

#delimit cr 

 

 

*estimate of the indirect effect off treatment on death via progression using 

dynamic path analysis  

gen g2b1=secondb1*firstb1 

 gsort -_d _t [id] 

 gen estG2B1 = sum(g2b1) if _d==1 

  

 

*defining timepoints for evaluation of the bootstrapped confidence interval 

 local t1 =0.8 

 local t2 =1.6 

 local t3 =2.4 

 local t4 =3.2 

 local t5 =4.0 

 local t6 =4.8 

 local t7 =5.6 

 local t8 =6.4 

 local t9 =7.2 

 local t10 =8.0 

  

*bootstrapping the confidence interval using bootstrap_zp.ado (code for the 

ado file is given below) 

 set seed 1234 

  noi bootstrap r(estG2B1bs_8)  r(estG2B1bs_16) r(estG2B1bs_24) 

r(estG2B1bs_32)  r(estG2B1bs_40) r(estG2B1bs_48) /* 

   */r(estG2B1bs_56) r(estG2B1bs_64)  r(estG2B1bs_72) 

r(estG2B1bs_80), reps(1000): /* 

   */bootstrap_zp, eval(`t1' `t2' `t3' `t4' `t5' `t6' `t7' 

`t8' `t9' `t10') 

     estat bootstrap, all 

     matrix G=e(ci_percentile) 

     forval num=1/10 { 

      scalar u_cip`num'=el("G",2,`num') 

      scalar l_cip`num'=el("G",1,`num') 

    

    } 

 

*outputting results from bootstrapped confidence interval   

  

gen bstime=. 

gen pc_u=. 

gen pc_l=. 

forval num =1/10 { 

 replace bstime=0.8*`num'  in `num' 

 replace pc_u = u_cip`num' in `num' 

 replace pc_l = l_cip`num' in `num' 

 } 

replace bstime = 0 in 11 

replace pc_u        = 0 in 11 

replace pc_l        = 0 in 11 

 

*graph of estimated indirect effect of treatment on death via progression and 

its bootstrapped 95% confidence interval 

 

#delimit ; 

twoway (line estG2B1 _t if _t<8, sort)  

 (connected pc_u bstime , sort lpattern(dash) mcolor(blue) lcolor(blue))  

 (connected pc_l bstime , sort lpattern(dash) mcolor(blue) lcolor(blue)), 

 xtitle("Time since randomisation (months)")  

  ytitle("Cumulative regression function") ylabel(,angle(h)) 

  legend(on order(1 "Effect of treatment" 2 "95% confidence limits" 

)) 

 ; 

 #delimit cr 
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*********** 

Code for the stlhregress command 

 

*!based on stlh, changed to allow ols regression at each time point 

program define stlhregress 

syntax varlist(min=2) [if], [GENerate(string)] 

 

* key st chars 

local id: char _dta[st_id] 

local wt: char _dta[st_wt]      /* type of weight */ 

if "`wt'"!="" { 

 di in red "weights not supported" 

 exit 198 

} 

local time _t 

local t0 _t0 

local dead _d 

 

tokenize `varlist' 

local outcome `1' 

macro shift 

local covs `*' 

 

 

quietly { 

 marksample touse 

 markout `touse' `varlist' 

 replace `touse'=0 if _st==0 

 count if `touse' 

 local nobs=r(N) 

 

 * Remove collinearities 

 noi _rmcoll `covs' if `touse' 

 local covs `r(varlist)' 

 local nx: word count `covs'  

 local p 0 

 while  `p'<=`nx' { 

  local p=`p'+1 

  if `p'>`nx' { 

   local nm`p' "_cons" 

  } 

  else local nm`p': word `p' of `covs' 

  tempvar a`p' se`p' natrisk 

  gen `a`p''=. 

  gen `se`p''=. 

  gen `natrisk'=. 

  if "`generate'"!="" { 

   confirm new var `generate'A`p' 

   confirm new var `generate'S`p' 

  } 

 } 

 

  

 noi di in gr _n "Dpa ols regressions" _n _dup(43) "-" 

 noi di in gr "Outcome:  " in ye "`outcome'" 

 noi di in gr "Covariates:  " in ye "`covs'" 

 noi di in gr "Obs:    " in ye `nobs' _n 

 local Np=`nobs'-`p' 

 

 * Handle possible ties by sorting data in order of time, censoring, 

covariates. 

 * Covariates are ordered lexicographically, so results can never change 

even 

 * if covariates are ordered differently on input. 

 listsort "`covs'", lexicographic 

 local vlsort `s(list)' 

 * put obs with missing last then drop them 

 gsort -`touse' `time' -`dead' `vlsort' 

 local todrop=`nobs'<_N 
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 if `todrop' { 

  preserve 

  if "`generate'"!="" { 

   tempfile orig 

   save `orig' 

  } 

  drop if `touse'==0 

 } 

* tempvar dN 

* gen byte `dN'=0 

 local it 1 

 while `it'<=`Np' {  /* begin it loop */  

  if "`dots'"!="nodots" { 

   if mod(`it',100)==0 { noi di in gr "." _continue } 

  } 

  if `dead'[`it']==1 {   /* begin dead==1 loop */    

*   replace `dN'=(_n==`it') 

   * regress for any obs for which time>=current failure time 

   * and entry time (t0) is earlier than current failure time 

   capture regress `outcome' `covs' if _n>=`it' & 

`t0'<`time'[`it'] 

   count if _n>=`it'&`t0'<`time'[`it'] 

   replace `natrisk'=r(N) in `it' 

   if e(df_m)==`nx' {  /* full rank; regression can continue 

*/         

    local k 1 

    while `k'<=`p' { 

     replace `a`k''=_b[`nm`k''] in `it' 

     replace `se`k''=_se[`nm`k''] in `it' 

     local k=`k'+1 

    } 

   } /* end of rss>0 */ 

  } /* end of the dead==1 loop */  

noi di in y "regression loop `it'" 

  local it=`it'+1  

 } /* end it loop */ 

  

 

*ols regression outputs are scalar e(N) (number of obs), _b[varname] 

(regression coefficient for 

*varname), _se[varname] is the standard error of the regression coefficient of 

varname 

 

  

} 

 

local k 1 

while `k'<=`p' { 

 gen `generate'b`k'=`a`k'' 

 lab var `generate'b`k' "Regression coeff for `nm`k''" 

 gen `generate's`k'=`se`k'' 

 lab var `generate's`k' "SE(regression coeff for `nm`k'')" 

 local k=`k'+1 

 } 

gen `generate'N=`natrisk' 

lab var `generate'N "N at risk" 

end 
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***************** 

 

 

Code for the stlh_b command 

 

 

 

*based on stlh, altered so that increments as well as cumulative sums are 

reported as output 

program define stlh_b 

version 6 

st_is 2 analysis 

syntax varlist(min=1) [if] [in], [ noDOTs GENerate(string) noGRAph 

LEVel(string) /* 

 */ noMORE SAVing(string) TCent(real 75) TESTwt(numlist >=1 <=4 integer sort) 

* ] 

if "`saving'"!="" { 

 tokenize "`saving'", parse(" ,") 

 local s `1' 

 local replace `2'`3' 

 if "`4'"!="" | ("`replace'"!="" & "`replace'"!=",replace") { 

  di in red "invalid saving(`saving')" 

  exit 198 

 } 

 local saving `s' 

} 

* key st chars 

local id: char _dta[st_id] 

local wt: char _dta[st_wt]      /* type of weight */ 

if "`wt'"!="" { 

 di in red "weights not supported" 

 exit 198 

} 

local time _t 

local t0 _t0 

local dead _d 

 

if `tcent'>100 | `tcent'<10 { 

 di in red "tcent() must be between 10 and 100 (default is 75)" 

 exit 198 

} 

if "`level'"!="" { 

 confirm num `level' 

} 

else local level $S_level 

tempname zlevel 

scalar `zlevel'=-invnorm((100-`level')/200) 

 

if "`graph'"=="nograph" & "`saving'"!="" { 

 di in red "no graphs to save" 

 exit 198 

} 

 

quietly { 

 marksample touse 

 markout `touse' `varlist' 

 replace `touse'=0 if _st==0 

 count if `touse' 

 local nobs=r(N) 

 if "`graph'"!="nograph" & `tcent'<100 { 

  centile `time', centile(`tcent') 

  local tp=r(c_1) 

  local iftc "& `time'<=`tp'" 

 } 

 * Remove collinearities 

 noi _rmcoll `varlist' if `touse' 

 local varlist `r(varlist)' 

 local nx: word count `varlist'  

 local p 0 
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while  `p'<=`nx' { 

  local p=`p'+1 

  if `p'>`nx' { 

   local nm`p' "_cons" 

  } 

  else local nm`p': word `p' of `varlist' 

  tempvar a`p' 

  gen `a`p''=. 

  if "`generat'"!="" { 

   confirm new var `generat'A`p' 

   confirm new var `generat'S`p' 

  } 

 } 

 noi di in gr _n "Graphs and tests for Aalen's Additive Model" _n 

_dup(43) "-" 

 noi di in gr "Model:  " in ye "`varlist'" 

 noi di in gr "Obs:    " in ye `nobs' _n 

 local Np=`nobs'-`p' 

 * Handle possible ties by sorting data in order of time, censoring, 

covariates. 

 * Covariates are ordered lexicographically, so results can never change 

even 

 * if covariates are ordered differently on input. 

 listsort "`varlist'", lexicographic 

 local vlsort `s(list)' 

 * put obs with missing last then drop them 

 gsort -`touse' `time' -`dead' `vlsort' 

 local todrop=`nobs'<_N 

 if `todrop' { 

  preserve 

  if "`generat'"!="" { 

   tempfile orig 

   save `orig' 

  } 

  drop if `touse'==0 

 } 

 tempvar dN 

 gen byte `dN'=0 

 local it 1 

 while `it'<=`Np' {  /* begin it loop */  

  if "`dots'"!="nodots" { 

   if mod(`it',100)==0 { noi di in gr "." _continue } 

  } 

  if `dead'[`it']==1 {   /* begin dead==1 loop */    

   replace `dN'=(_n==`it') 

   * regress for any obs for which time>=current failure time 

   * and entry time (t0) is earlier than current failure time 

   capture regress `dN' `varlist' if _n>=`it' & 

`t0'<`time'[`it'] 

   if e(df_m)==`nx' {  /* full rank; regression can continue 

*/         

    local k 1 

    while `k'<=`p' { 

     replace `a`k''=_b[`nm`k''] in `it' 

     local k=`k'+1 

    } 

   } /* end of rss>0 */ 

  } /* end of the dead==1 loop */  

  local it=`it'+1  

 } /* end it loop */ 

 noi di  

 local k 1 

 while `k'<=`p' { 

  tempvar A`k' VA`k' 

  gen `A`k''=sum(`a`k'') 

  gen `VA`k''=sum(`a`k''^2) 

  *replace `a`k''=. if `dead'==0 

  local k=`k'+1 

 } 

 if "`graph'"!="nograph" { 

  * Graph 
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 if "`more'"!="nomore" { 

   set more on 

  } 

  tempvar lb ub 

  gen `lb'=. 

  gen `ub'=. 

  local k 1 

  while `k'<=`p' { 

   local t1 

   if `k'<`p' { /* k=p is _cons */ 

    local t1: var label `nm`k'' 

    if "`t1'"=="" {  

     local t1 `nm`k'' 

    }  

   } 

   else local t1 [Constant] 

   replace `lb'=`A`k''-`zlevel'*sqrt(`VA`k'') if `dead'==1 

   replace `ub'=`A`k''+`zlevel'*sqrt(`VA`k'') if `dead'==1 

   if "`saving'"!="" { 

    local sav saving(`saving'`nm`k''`replace') 

   } 

   graph `lb' `A`k'' `ub' `time' if `a`k''!=. `iftc', sort /* 

    */ pen(323) s(iii) c(JJJ) `sav' t1title(`t1') yline(0) 

`options' 

   if "`more'"!="nomore" & `k'<`p' { 

    more 

   } 

   local k=`k'+ 1 

  } 

 } 

 * hypothesis test(s), if specified 

 local ntest: word count `testwt' 

 if `ntest'>0 { 

  local maxtst: word `ntest' of `testwt' 

  if `maxtst'>=3 { 

   tempvar SKM 

   sts gen `SKM'=s 

  } 

  tempvar Asm AsmV zwt 

  gen `Asm'=. 

  gen `AsmV'=. 

  gen `zwt'=. 

  gsort `time' -`dead' `vlsort' 

  tokenize `testwt' 

  while "`1'"!="" { 

   local w `1' 

   if `w'==1   { 

    local wtt`w' "1.0" 

    replace `zwt'=1 

   } 

   else if `w'==2 { 

    local wtt`w' "the Size of the Risk Set" 

    replace `zwt'=_N-_n+1 

   } 

   else if `w'==3 { 

    local wtt`w' "Kaplan-Meier Estimator at Time t-" 

    replace `zwt'=cond(_n==1, 1, `SKM'[_n-1]) 

   } 

   else { 

    local wtt`w' "(Kaplan-Meier Estimator at Time t-

)/(Std. Dev of the Time-varying Coefficient)" 

   } 

   local k 1 

   while `k'<=`p' { 

    if  `w'==4  { 

     replace `zwt'=cond(_n==1, 1, `SKM'[_n-

1])/abs(`a`k'') 

    } 

    replace `Asm'=sum(`a`k''*`zwt')  

    replace `AsmV'=sum((`a`k''*`zwt')^2) 

    local z`k'=`Asm'[_N]/sqrt(`AsmV'[_N]) 
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    local k=`k'+ 1 

   } 

   noisily { 

    di in gr _n "Test `w': Uses Weights Equal to" _n 

"`wtt`w''" _n 

    di in gr "Variable" _col(17) "z" _col(27) "P" 

    di in gr "-----------------------------" 

    local k 1 

    while `k'<=`p' { 

     di in gr "`nm`k''" in ye _col(13) %7.3f 

`z`k'' /* 

      */ _col(25) %5.3f 2*(1-

normprob(abs(`z`k''))) 

     local k=`k'+1 

    } 

   } 

   mac shift /* to process next requested test number */ 

  } 

 } /* end of loop for hypothesis tests */ 

 if "`generat'"!="" { 

  local keep 

  local k 1 

  while `k'<=`p' { 

   gen `generat'S`k'=sqrt(`VA`k'') 

   rename `A`k'' `generat'B`k' 

   lab var `generat'B`k' "Aalen cum coeff for `nm`k''" 

   lab var `generat'S`k' "SE(Aalen cum coeff for `nm`k'')" 

    

 *output of increments as well   

   rename `a`k'' `generat'b`k' 

   lab var `generat'b`k' "Aalen coefficient for `nm`k''" 

    

    

    

   local keep `keep' `generat'B`k' `generat'S`k' 

`generat'b`k' 

   local k=`k'+1 

  } 

  if `todrop' { 

   tempfile addits 

   keep `keep' 

   save `addits' 

   use `orig' 

   merge using `addits' 

   drop _merge 

   restore, not 

  } 

 } 

} /* end quietly */ 

end 

 

*! version 1.0.0 PR 16Feb2001. 

program define listsort, sclass 

version 6 

gettoken p 0 : 0, parse(" ,") 

if `"`p'"'=="" { 

 exit 

} 

sret clear 

syntax , [ Reverse Lexicographic ] 

local lex="`lexicog'"!="" 

if "`reverse'"!="" { local comp < } 

else local comp > 

local np: word count `p' 

local i 1 

while `i'<=`np' { 

 local p`i': word `i' of `p' 

 if !`lex' { confirm number `p`i'' } 

 local i=`i'+1 

} 

* Apply shell sort (Kernighan & Ritchie p 58) 
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local gap=int(`np'/2) 

while `gap'>0 { 

 local i `gap' 

 while `i'<`np' { 

  local j=`i'-`gap' 

  while `j'>=0 { 

   local j1=`j'+1 

   local j2=`j'+`gap'+1 

   if `lex' { local swap=(`"`p`j1''"' `comp' `"`p`j2''"') } 

   else local swap=(`p`j1'' `comp' `p`j2'') 

   if `swap' { 

    local temp `p`j1'' 

    local p`j1' `p`j2'' 

    local p`j2' `temp' 

   } 

   local j=`j'-`gap' 

  } 

  local i=`i'+1 

 } 

 local gap=int(`gap'/2) 

} 

local p 

local i 1 

while `i'<=`np' { 

 sret local i`i' `p`i'' 

 local p `p' `p`i'' 

 local i=`i'+1 

} 

sret local list `p' 

end 

 

 

 

***************** 

Code for the bootstrap_zp command 

 

 

 

capture program drop bootstrap_zp 

program define bootstrap_zp, rclass 

syntax , eval(numlist)  

 

 

 

preserve 

 

qui { 

  

  stlhregress [progression] [treatment] [trial] [covs],  

gen(firstbs) 

  stlh_b [progression] [treatment] [trial] [covs], nograph 

gen(secondbs) 

  

  

  

 *increments of indirect effect: 

 gen g2b1bs=secondbsb1*firstbsb1 

 gsort -_d _t [id] 

 gen estG2B1bs = sum(g2b1bs) if _d==1 

  

  

  foreach timepoint in `eval' { 

   noi di "timepoint value is " `timepoint'  

   gsort -_d _t patid 

   local lab = `timepoint'*10 

   noi di "macro lab contains " `lab' 

   gen t`lab'tag= 1 if _d==1& 

_t<=`timepoint'&_t[_n+1]>`timepoint' 

   sort t`lab'tag 
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   return scalar estG2B1bs_`lab'=estG2B1bs 

    

  } 

 

   

 

 restore 

   

 }  

  

  

 

  end 
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Appendix III: simulation study investigating the performance of 

the extension to dynamic path analysis 

 

The code below corresponds to simulation setting 14 in Chapter 7. The code for obtaining the 

bootstrapped confidence intervals is not given below. 

 

***************** 

 

 

*Step 1: input values for simulation - the inputs below refer to simulation setting 

14 in chapter 7 

 

 

clear 

 

set seed 123456 

 

*input parameter values 

local gamma0  = 1.9 

local gamma1  = 0.1 

local gamma3  = 0.2 

local th0     = 1.8 

local th1   = 0.5 

 

 

*evaluation time points 

local  t0 = 0 

local  t1  = .25 

local  t2 = .5 

local  t3  = .68 

local  t4 = .69 

local  t5  = .75 

local  t6  = 1 

 

*number of repetitions, maximum time, number of observations 

local nreps=1000 

local tmax = 5 

 

local obs=3000 

set obs `obs' 

 

 

**************************** 

*Step 2: generate the data and fit the model 

 

tempname [tempfile] 

postfile [tempfile] simnum t1time t2time t3time t4time t5time t6time g2b1_t1 

g2b1_t2 g2b1_t3 g2b1_t4 g2b1_t5 g2b1_t6 /* 

*/  deathsat1 deathsat2 deathsat3 deathsat4 deathsat5 deathsat6 x2at1 x2at2 

x2at3 x2at4 x2at5 x2at6 using [filename] 

 

forval i=1/`nreps' { 

di in red "cycle number is " `i' 

qui { 

clear 

set obs `obs' 

gen id=_n 

 

*generate random variables and event times 
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 gen x1=rbinomial(1,0.5) 

 

 *time of Mbin(t) event 

 survsim tchange change, cumhazard((`th0':*#t):+(`th1':*x1:*#t)) 

maxt(5) nodes(30) 

 replace change =0 if tchange==5 

 

 *time of death event 

 survsim st1 event, cumhazard(`gamma0':*#t +`gamma1':*x1*#t+ 

`gamma3':*((#t>tchange):*change:*(#t-tchange))) maxt(`tmax') nodes(30) 

 

 replace change=0  if event==1&st1<tchange 

 replace tchange=st1 if event==1&st1<tchange 

  

 *generating time-updated binary variable x2 indicating progression 

 stset st1, failure(event) id(id) 

 stsplit x2 = tchange if change==1, at(0) 

 replace x2=x2+1 

 recode x2 .=0 

 

 *dynamic path analysis estimate of indirect effect of treatment 

 stlhregress x2 x1, gen(first) 

 stlh_b x2 x1, gen(second) nograph 

 gen g2b1=secondb1*firstb1 

 gsort -_d _t id 

 gen estG2B1 = sum(g2b1) if _d==1 

 

  

 *numeric output 

 forval timepoint=1/6 { 

  

  *identifying events just before evaluation timepoints  

  gsort -event _t 

  gen t`timepoint'tag= 1 if event==1& 

_t<=`t`timepoint''&_t[_n+1]>`t`timepoint'' 

  sort t`timepoint'tag 

  local t`timepoint'time  = _t 

   

  *estimated value of G2B1_t 

  local g2b1_t`timepoint'  = estG2B1 

   

  *percentage of deaths and x2(t)s at each timepoint 

  count if _d==1&_t<`t`timepoint'' 

  local deathsat`timepoint' = r(N)  

  count if x2==1&tchange<`t`timepoint'' 

  local x2at`timepoint' = r(N)  

  sort id _t 

 } 

  

 *output results 

 post [tempfile] (`i') (`t1time') (`t2time') (`t3time') (`t4time') 

(`t5time') (`t6time') (`g2b1_t1') (`g2b1_t2') (`g2b1_t3') (`g2b1_t4') 

(`g2b1_t5') (`g2b1_t6') /* 

*/  (`deathsat1') (`deathsat2') (`deathsat3') (`deathsat4') 

(`deathsat5') (`deathsat6') (`x2at1') (`x2at2') (`x2at3') (`x2at4') 

(`x2at5') (`x2at6') 

 

 

  

 local i=`i'+1 

 } 

 } 

 

postclose [tempfile] 

 

************************* 

*section 3 report results 

 

use [filename] , clear 

 



200 
 

 

 

 

  

forval timepoint=1/6 { 

 di in red "results for timepoint " `t`timepoint'' 

 di "" 

 

local trueval =  `gamma3' * exp(`t`timepoint''*(-1*(`th0'+`th1')))*(( 

1/(`th0'+`th1') ) - (exp(`th1'*`t`timepoint''))/`th0'  )  - (`gamma3' 

*( 1/(`th0'+`th1')  - 1/`th0'  )) 

 di in white "value of G2B1_t is " `trueval' 

 di "" 

  

 qui { 

  egen  meang2b1_t`timepoint' = mean(g2b1_t`timepoint') 

  gen  pcbias_t`timepoint'  = (meang2b1_t`timepoint'-

`trueval')/`trueval'*100 if g2b1_t`timepoint'<. 

  } 

  

 *mean value of estimate of G2B1 

 di in white "mean estimated value of G2B1_t:" 

 tab meang2b1_t`timepoint' 

 di "" 

 

 *percentage bias 

 di in white "percentage bias:" 

 tab pcbias_t`timepoint' 

 di "" 

  

 *percentage of deaths at each timepoint 

 qui summ deathsat`timepoint' 

 di in white "percentage of deaths is "  r(mean)/`obs' *100 

 di "" 

  

 *percentage of x2 at each timepoint 

 qui summ x2at`timepoint' 

 di in white "percentage of x2 is "  r(mean)/`obs' *100 

 di "" 

  

 *empirical SE 

 qui { 

gen S_t`timepoint'    = (g2b1_t`timepoint' - 

meang2b1_t`timepoint')^2 

  egen SS_t`timepoint'    = sum(S_t`timepoint') 

    if g2b1_t`timepoint'<. 

gen empSE_t`timepoint'    = 

sqrt((SS_t`timepoint')/(`nreps'-1)) 

  } 

 di in white "empirical SE:" 

 di "" 

 tab empSE_t`timepoint' 

  

   

   

} 
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Appendix IV: Results supplementary to chapter 7 

 

The following sets of results are referenced in chapter 7. 

Table IV-1 shows results of a repeat of simulation 1 with a sample size of n=3000.  

Table IV-1 Repeat of simulation 1 based on n=3000 

Time No 0.5 1.0 1.5 2.0 

 1 p25(Td)=p25(TMbin),   γ*3=0.2,  γ*0=0.6, θ*0=0.6   

True value of Γ3(t)  0.1 0.2 0.3 0.4 

Mean of estimates Γ3̂(t)  0.101 0.200 0.300 0.400 

Mean percentage bias  0.75 0.14 -0.09 0.001 

Mean % of deaths/ Mbin(t)   26.9 /22.5 47.7 /34.9 63.1 /41.7 74.3 /45.5 

95% coverage  91.0 94.0 93.5 94.3 

Empirical/ Model-based SE  0.067 /0.052 0.073 /0.060 0.080 /0.069 0.089 /0.081 

 

Compared to the results of simulation 1 shown in Table 7-10, the empirical and model-based 

standard errors are smaller when the simulations are based on a sample size of N=3000. The 

coverage is improved to acceptable levels at t=1.0, and is greater at t=0.5 although still below 

acceptable limits. 

Table IV-2 shows results obtained by repeating simulation 5 but truncating the reporting at the 

99th percentile of TMbin (equivalent to t=1.4). 

Table IV-2 Repeat of simulation 5 with follow-up truncated at t=1.4 

Time No 0.35 0.7 1.05 1.4 

 5 p25(Td)=p75(TMbin),   γ*3=0.2, γ*0=0.5, θ*0=2.7   

True value of Γ3(t)  0.07 0.14 0.21 0.28 

Mean of estimates Γ3̂(t)  0.069 0.141 0.215 0.286 

Mean percentage bias  -0.08 0.44 2.19 2.14 

Mean % of deaths/ Mbin(t)  18.1 /56.2 34.6 /75.3 48.4 /81.4 59.6 /83.4 

95% coverage  94.2  94.6  95.2  93.7  

Empirical/ Model-based SE  0.057 /0.043 0.071 /0.058 0.091 /0.083 0.136 /0.129 
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The results indicate that when estimation is truncated at the 99th percentile of TMbin, coverage 

falls within the acceptable limits of [93.6%, 96.4%]. 

Table IV-3 reports the results of investigation into the behaviour of dynamic path analysis 

estimates (aim 3) from simulation setting 13 where the 25th percentiles of TD and TMbin are 

similar, so that Mbin(t) occurs slightly more slowly than death. The simulations reported in 

Table IV-3 have different values of the baseline parameters, notably changing θ1
∗  to θ1

∗ = 0.1 

and θ1
∗ = 0.8, and changing the baseline parameters to keep the same relative event rates. A 

comparison of the percentage difference between ∫ β1(u)γ3
t

0
du and  ∑ β1̂(tj)γ3̂(tj)tj≤tD

 in 

Table 7-14 and Table IV-3 allows the effect of changing the value of θ1
∗  to be assessed. 95% 

coverage and the percentage difference between ∫ β1
t

0
(u)γ3du and Γ1

×̂(t) are not reported in 

Table IV-3. 

Table IV-3 Repeat of simulation 13 with two different values of 𝛉𝟏
∗   

  

θ1
∗ = 0.1 

 

 

Time 

γ0
∗ = 1.8, γ1

∗ = 0, γ3
∗ = 0.2, θ0

∗ = 1.8 

0.25 0.5 0.72 

(p75Mbin) 

0.75 0.77 (p25D) 1.0 

Uncensored value of 

∫ β1
t

0
(u)γ3du 

0.00046 0.0014 0.0023 0.0023 0.0024 0.0032 

Mean of ∑ β1̂(tj)γ3̂(tj)tj≤tD
 0.00045 0.0013 0.0022 0.0023 0.0023 0.0032 

Mean %age difference -2.61 -4.28 -4.62 -4.10 -3.68 -0.82 

Mean % of deaths / Mbin(t) 36.8 /30.3 60.7 /42.5 74.5 /47.2 75.6 /47.4 76.7 /47.6 85.1 /49.4 

Empirical SE 0.00091 0.002 0.0032 0.0034 0.0035 0.0051 

  

θ1
∗ = 0.8 

 

 

Time 

γ0
∗ = 1.8, γ1

∗ = 0, γ3
∗ = 0.2, θ0

∗ = 1.5, θ1
∗ = 0.8 

0.25 0.5 0.73 (p75D) 0.75 

(p75Mbin) 

0.76  1.0 

Uncensored value of 

∫ β1
t

0
(u)γ3du 

0.0037 0.011 0.018 0.019 0.019 0.025 

Mean of ∑ β1̂(tj)γ3̂(tj)tj≤tD
 0.0036 0.011 0.018 0.018 0.019 0.026 

Mean %age difference -0.63 -2.52 -1.18 -0.81 -0.89 1.47 

Mean % of deaths / Mbin(t) 36.9 /30.8 60.7 /42.8 74.8 /47.3 75.8 /47.6 76.2 /47.7 85.1 /49.5 

Empirical SE 0.0029 0.0062 0.010 0.010 0.011 0.015 
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In simulation setting 13, changing the value of θ1
∗  has a minimal effect on the percentage 

difference between ∫ β1(u)γ3
t

0
du and  ∑ β1̂(tj)γ3̂(tj)tj≤tD

. In contrast, as shown in section 

7.6.3, changing the value of γ3
∗  has a large effect. 

Table IV-4 below, similarly, shows the results obtained by repeating simulation setting 24 but 

setting  θ1
∗ = 0.1 and θ1

∗ = 0.8. 

 

Table IV-4 Repeat of simulation 24 with two different values of 𝛉𝟏
∗   

  

θ1
∗ = 0.1 

 

 

Time 

γ0
∗ = 0.15γ1

∗ = 0.1, γ3
∗ = 0.5, θ0

∗ = 1.9 

0.25 0.5 0.72 

(p75Mbin) 

0.75 1.0 2.4 (p75D) 

Uncensored value of 

∫ β1
t

0
(u)γ3du 

0.0011 0.0034 0.0054 0.0057 0.0076 0.012 

Mean of ∑ β1̂(tj)γ3̂(tj)tj≤tD
 0.0011 0.0033 0.0054 0.0057 0.0079 0.015 

Mean %age difference -1.35 -1.27 -0.40 0.06 3.92 24.13 

Mean % of deaths / Mbin(t) 7.2 /37.7 17.0 /59.8 26.0 /71.4 27.3 /72.6 37.2 /80.1 74.9 /90.2 

Empirical SE 0.0015 0.0034 0.0049 0.0051 0.0066 0.012 

  

θ1
∗ = 0.8 

 

 

Time 

γ0
∗ = 0.15γ1

∗ = 0.1, γ3
∗ = 0.5, θ0

∗ = 1.6  

0.25 0.5 0.72 

(p75Mbin) 

0.75 1.0 2.4 (p75D) 

Uncensored value of 

∫ β1
t

0
(u)γ3du 

0.0090 0.027 0.042 0.044 0.060  0.098 

Mean of ∑ β1̂(tj)γ3̂(tj)tj≤tD
 0.0089 0.026 0.043 0.045 0.063 0.120 

Mean %age difference -2.02 -1.20 0.92 1.31 4.62 23.15 

Mean % of deaths / Mbin(t) 7.3 /38.1 17.0 /59.9 26.0 /71.3 27.3 /72.5 37.1 /79.9 74.6 /90.3 

Empirical SE 0.0019 0.0040 0.0058 0.0061 0.0077 0.015 

 

The results shown in Table IV-4, when compared to the results of simulation setting 24 

reported in Table 7-15, demonstrate that changing the value of θ1
∗  has a minimal effect on the 

percentage difference between ∫ β1(u)γ3
t

0
du and  ∑ β1̂(tj)γ3̂(tj)tj≤tD

 in a setting where the 

percentage difference is large at later evaluation timepoints. 
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Figure IV-1 below shows estimates of the overall effect of X Γ1
×̂(t) and the indirect effect of X 

∑ β1̂(tj)γ3̂(tj)tj≤tD
 for a single simulation corresponding to simulation setting 15 (where there 

is no direct effect of X), with varying sample size of N=20000 and N=10000 

Figure IV-1 Estimates of 𝚪𝟏
×̂(𝐭) and ∑ 𝛃𝟏̂(𝐭𝐣)𝛄𝟑̂(𝐭𝐣)𝐭𝐣≤𝐭𝐃

 for a single simulation of setting 15 where N=20000 (left) 

and N=100000 (right) 

 

 

Figure IV-1 demonstrates the high variability in additive hazards model estimates of Γ1
×̂(t) with 

the smaller sample size of N=20000, decreasing with a larger sample size of N=100000. As a 

consequence, agreement between Γ1
×̂(t) and ∑ β1̂(tj)γ3̂(tj)tj≤tD

 is greater with the larger 

sample size.  

Figure IV-2 below shows estimates Γ1
×̂(t) and t ∑ β1̂(tj)γ3̂(tj)tj≤tD

 for a single simulation 

corresponding to simulation setting 23 (where there is no direct effect of X), with varying 

sample size of N=20000 and N=100000. 

Figure IV-1 Estimates of 𝚪𝟏
×̂(𝐭) and ∑ 𝛃𝟏̂(𝐭𝐣)𝛄𝟑̂(𝐭𝐣)𝐭𝐣≤𝐭𝐃

 for a single simulation of setting 23 where N=20000 (left) 

and N=100000 (right) 
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Figure IV-1 is another example of the lower variability in the estimates of Γ1
×̂(t) that is 

associated with large sample sizes. It also demonstrates agreement between Γ1
×̂(t) and 

∑ β1̂(tj)γ3̂(tj)tj≤tD
 when the sample size is large and Mbin(t) events are not too sparse (right-

hand panel). This agreement is expected, as both estimates are unbiased. 

 

 

 

 

 


