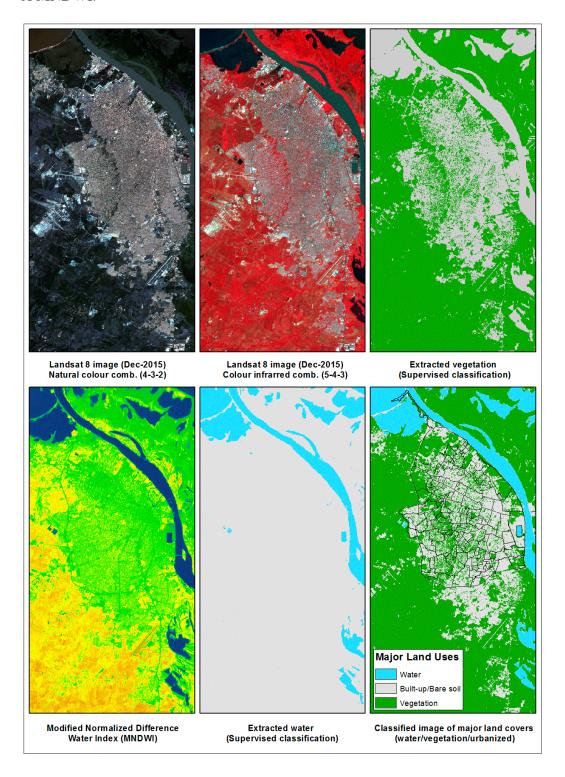
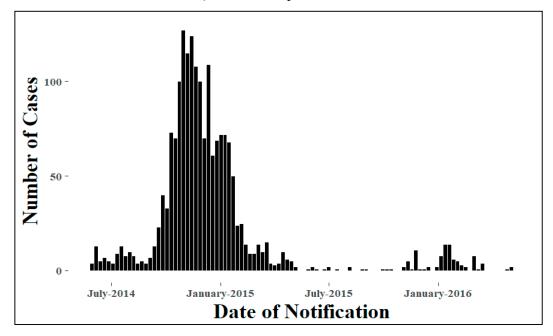
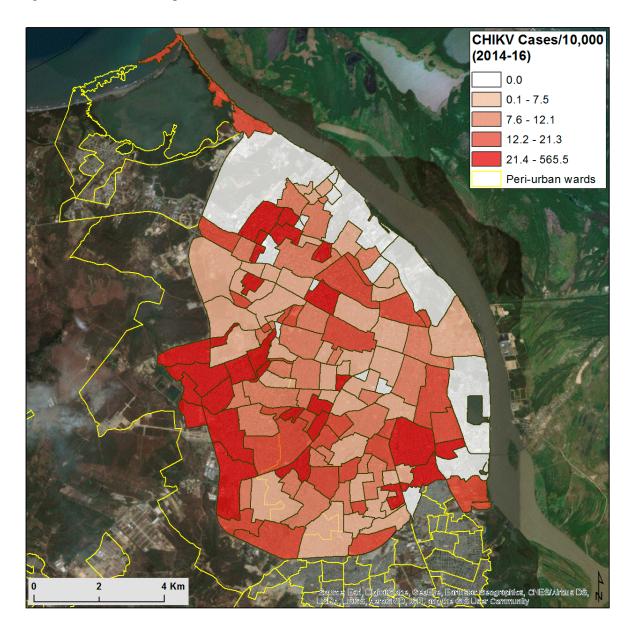
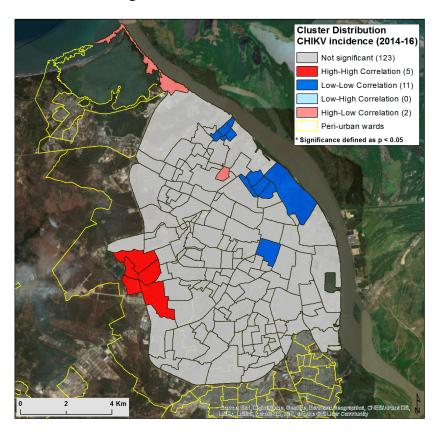

Supplementary file

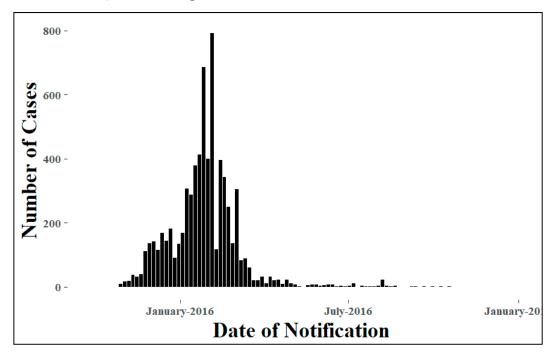

Table S1. Neighbourhood names with their corresponding codes, as used to the Barranquilla map (Figure 1)

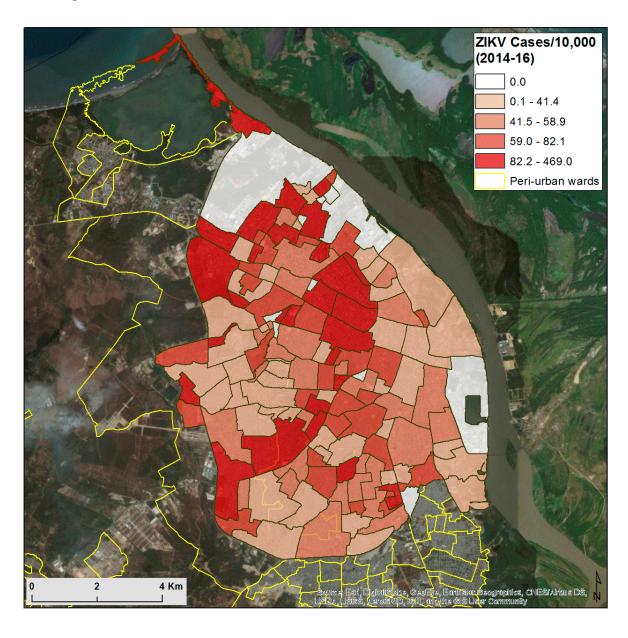
Figu	re 1).						
Code	Neighborhood	Code	Neighborhood	Code	Neighborhood	Code	Neighborhood
0802	ABAJO	0311	EL POBLADO	2602	LAS MALVINAS	2802	SAN LUIS
1803	ALFONSO LOPEZ	0504	EL PORVENIR	1105	LAS MERCEDES	3601	SAN NICOLAS
0310	ALTAMIRA	0602	EL PRADO	1103	LAS MERCEDES SUR	1901	SAN ROQUE
0503	ALTOS DEL PRADO	1206	EL PUEBLO	2201	LAS NIEVES	0104	SAN SALVADOR
0301	ALTOS DEL	1001	EL RECREO	3503	LAS PALMAS	0307	SAN VICENTE
0902	RIOMAR AMERICA	3203	EL SANTUARIO	1101	LAS TERRAZAS	0704	SANTA ANA
0302	ANDALUCIA	1401	EL SILENCIO	0203	LAS TRES	3701	SANTA ELENA
1802	ATLANTICO	0313	EL TABOR	2604	AVEMARIAS LIPAYA	2901	SANTA MARIA
0803	BARLOVENTO	2504	EL VALLE	1702	LOMA FRESCA	0306	SANTA MONICA
0013	BELLA ARENA	0308	GRANADILLO	0402	LOS ALPES	1405	SANTO DOMINGO
0601	BELLAVISTA	3602	JOSE ANTONIO	1601	LOS ANDES	2803	SANTO DOMINGO I
1106	BETANIA	3202	GALAN KENNEDY	3704	LOS ANGELES	0103	GUZMAN SIAPE
0903	BOSTON	3302	LA ALBORAYA	2405	LOS CONTINENTES	2902	SIETE DE ABRIL
3401	BOYACA	0309	LA CAMPINA	1104	LOS HOBOS	3702	SIMON BOLIVAR
1605	BUENA	2403	LA CEIBA	0020	LOS LAURELES	0303	SOLAIRE
3501	ESPERANZA BUENOS AIRES	2105	LA CHINITA	0405	LOS NOGALES	2603	SOURDIS
)406	CAMPO ALEGRE	0702	LA CONCEPCION	1204	LOS OLIVOS	3504	TAYRONA
2501	CARLOS MEISEL	2401	LA CUCHILLA DE	1602	LOS PINOS	3604	UNIVERSAL
3001	CARRIZAL	0401	VILLATE LA CUMBRE	1701	LUCERO	3606	VILLA BLANCA
0804	CENTRO	2503	LA ESMERALDA	1302	ME QUEJO	0502	VILLA COUNTRY
2303	CEVILLAR	0202	LA FLORESTA	0705	MODELO	0304	VILLA DEL ESTE
1801	CHIQUINQUIRA	1102	LA FLORIDA	0801	MONTECRISTO	1203	VILLA ROSARIO
0404	CIUDAD JARDIN	1402	LA LIBERTAD	1902	MONTES	2801	VILLA SAN PEDRO
2601	CIUDAD MODESTO	2101	LA LOMA	2502	NUEVA COLOMBIA	0312	VILLA SANTOS
1603	CIUDADEA DE LA	2104	LA LUZ	1404	NUEVA GRANADA	2102	VILLANUEVA
3101	SALUD CIUDADELA 20 DE	3502	LA MAGDALENA	0403	NUEVO	2402	VILLATE
0901	JULIO COLOMBIA	1303	LA MANGA	1403	HORIZONTE OLAYA	2103	ZONA INDUSTRIAL
2701	EL BOSQUE	1205	LA PAZ	3703	PASADENA	0102	ZONA INDUSTRIAL
3403	EL CAMPITO	1201	LA PRADERA	1301	POR FIN	0701	ZONA FRANCA
2301	EL CARMEN	2404	LA SIERRA	1604	PUMAREJO		
0205	EL CASTILLO I	3201	LA SIERRITA	2001	REBOLO		
0204	EL CASTILLO II	3402	LA UNION	0305	RIOMAR		
0007	EL FERRY	3301	LA VICTORIA	0805	ROSARIO		
0501	EL GOLF	2804	LAS AMERICAS	1501	SAN FELIPE		
3603	EL LIMON	1107	LAS DELICIAS	0703	SAN FRANCISCO		
0201	EL LIMONCITO	1202	LAS ESTRELLAS	1703	SAN ISIDRO		
0206	EL PARAISO	0101	LAS FLORES	2302	SAN JOSE		

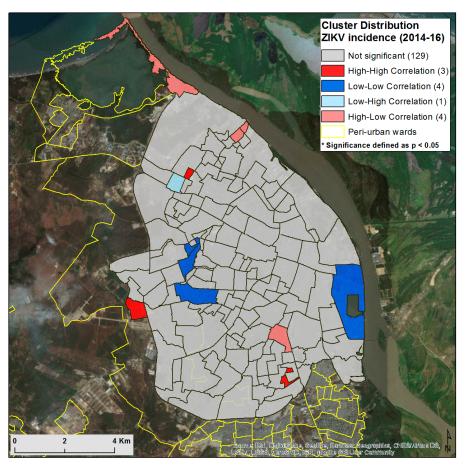

Figure S1. Satellite image from Landsat 8 mission for the Barranquilla area obtained in December 2014. The image shows maps of natural band combination (4-3-2) and infrared colour combination (5-4-3), and the derived products that resulted from the supervised classification and calculation of the MNDWI.


Figure S2. Satellite image from Landsat 8 mission for the Barranquilla area obtained in December 2015. The image shows maps of natural band combination (4-3-2) and infrared colour combination (5-4-3), and the derived products that resulted from the supervised classification and calculation of MNDWI.


Figure S3. Incidence of CHIKV infected case notifications to SIVIGILA (N.B. the case definitions are described in the Methods section). Each bar represents one week.


Figure S4. The estimated incidence of CHIKV infected cases per 10,000 residents by neighbourhood in Barranquilla between 2014 and 2015.


Figure S5. The univariate Local Moran's I (LISA) cluster map of the overall incidence of CHIKV infected cases during 2014-2016.


Figure S6. Incidence of ZIKV infected case notifications to SIVIGILA (N.B. the case definitions described in methods). Each bar represents one week.

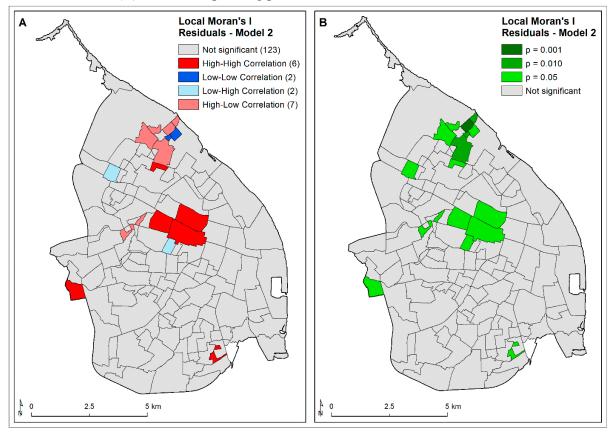

Figure S7. The estimated incidence of ZIKV infected cases per 10,000 residents by neighbourhood in Barranquilla between 2015 and 2016.

Figure S8. The univariate Local Moran's I (LISA) cluster map of the overall incidence of ZIKV infected cases during 2014-2016.

Figure S9. Local Moran's I analysis on the residuals resulting from fitting the ZIKV SIR values with spatial explanatory variables and independent random effects. Maps show (A) the persisting local clusters and (B) their corresponding p-values.

Text S1. Implementation of spatial autocorrelation analysis (Global Moran's I & Local Indicator of Spatial Autocorrelation, LISA)

Global Moran's I statistic provides an overall measure of spatial autocorrelation across the entire map of Barranquilla. This was calculated by first determining the relationship of each neighbourhood to its neighbours. In our analyses, we explored a sensitivity analysis of global spatial autocorrelation with 1st, 2nd, 3rd, and 4th order queen's contiguity. Queen's contiguity indicates that common sides and vertices of polygons or areas were considered to define the neighbour relation. The order indicates how many degrees of separation were allowed. For example, a 2nd order Queen's contiguity would include all adjacent neighbours and all the immediate neighbours of the original neighbours and so on. We determined that spatial autocorrelation disappeared after the 1st order and therefore we used 1st order Queen's contiguity throughout the analyses.

For the Moran's I statistic, the sum of covariations between the sites (neighbourhoods' centroids) for the distance d(i,j) is divided by the overall number of sites $W(d_{i,j})$ within the distance class d(i,j). Thus, the spatial autocorrelation coefficient for a distance class d(i,j) is the average value of spatial autocorrelation at that distance.

$$I = \frac{n}{s_p} \frac{\sum_{i=1}^n \sum_{j=1}^n W_{ij}(\gamma_i - \overline{\gamma})(\gamma_j - \overline{\gamma})}{\sum_{i=1}^n (\gamma_i - \overline{\gamma})^2}, \text{ where }$$

n =the sample size

$$W_{ij} = \begin{cases} 1 \text{ if sites i, j are neighbours} \\ 0 \text{ otherwise} \end{cases} = \text{row-standardized spatial weights matrix of sites i}$$
 and j

$$S_p = \sum_{i=1}^n \sum_{j=1}^n W_{i,j} = \text{sum of the number of sampling locations per distance class,}$$

$$\gamma_i = \text{the value at site i; } \bar{\gamma} = \text{global mean value}$$

The actual value for the Moran's I statistic was then compared with the expected value under the assumption of complete randomisation.

$$E(I) = -\frac{1}{n-1}$$

The lagged value of global Moran's I statistic was determined by calculating the mean of all 1st order neighbours. This value was then plotted against the incidence of each neighbourhood and a sum of least squares line was fitted. The slope of this line determined the Moran's I statistic. A Moran's I statistic value of 0 suggested complete spatial randomness. A value of 1 suggested very high spatial autocorrelation, while a value of -1 suggested spatial dispersion.

A local version, called local indicator of spatial association (LISA) or Anselin local Moran's I [1] allowed us to test for statistically significant local spatial clusters, including the type and location of these clusters. It is calculated as follows:

$$I_i(d) = \frac{(\gamma_i - \overline{\gamma})}{\frac{1}{n} \sum_{i=1}^n (\gamma_i - \overline{\gamma})} \sum_{i=1}^n W_{ij}(d) (\gamma_i - \overline{\gamma}), \text{ where}$$

 $W_{ij}(d)$ was the row-standardized weights matrix given a local neighbourhood search radius d. The neighbourhood definition was the same as the one applied previously when we explored the overall spatial pattern for the ZIKV and CHIKV incidence across Barranquilla. Unlike the global Moran's I statistic, which had the same expected value for the entire study area, the expected value of local Moran's I statistic varied for each sampling area because it was calculated in relation to its particular set of neighbours.

$$E(I_i) = -\frac{1}{n-1} \sum_{j=1}^{n} W_{i,j}$$

Positive spatial autocorrelation occurred when, for example, an area with a specific outcome value was surrounded by neighbouring areas with similar outcome values (e.g. low-low, high-high), thus forming a spatial cluster.

The statistical evidence for both the global and local autocorrelation was evaluated using a pseudo p-value generated from a Monte Carlo randomisation method with 999 permutations. Neighbourhoods were displayed as significant in the LISA maps if they had p values of < 0.05 [2].

Text S2. Details on the implementation of Bayesian statistical modelling

The infected case incidence data were fitted using multiple Bayesian Poisson models based on a suite of explanatory variables as potential risk factors and different options for random effects with: i) no random effects, ii) independent random effects, and iii) spatially correlated random effects, implemented through a conditional autoregressive model (CAR).

Let us first introduce the general formulation

$$Y_i | \mu_i \sim Poissson(\mu_i)i = 1, ..., N$$

 $log(\mu_i) = x_i^T \beta + O_i + U_i$
 $\beta \sim N(\mu_{\beta}, \Sigma_{\beta})$

where x_i was a $(p + 1) \times 1$ vector of known exploratory variables that were suspected to be risk factors for the disease, O_i were known offsets, in our case the expected number of cases, and U_i were random effects with a spatial structure to model the residual spatial variation that was not captured by the covariates.

- 1. The model without random effects. For this model, we initially fitted a Bayesian Poisson model with no random effects to the dataset. This corresponded to a model where $U_i = 0$ for each observation.
- 2. The model with independent random effects. To capture the extra Poisson variability present in the data, we introduced a set of independent and normally distributed random effects. This equated to define $U_i \sim N(0, \tau^2)$ in the general model previously introduced.
- 3. The globally smooth CAR model with spatially correlated random effects. For this model, we used the Besag-York-Mollie (BYM) model as described in Besag et al. (1991) [3]. In this case we had two sets of random effects (spatially structured and independent):

$$U_i = \phi_i + \theta_i$$

$$\theta_i \sim N(0, \sigma^2)$$

$$\phi_i \mid \phi_{-i} \sim N\left(\frac{\sum_{i=1}^n w_{ik} \phi_i}{\sum_{i=1}^n w_{ik}}, \frac{1}{\tau^2 \sum_{i=1}^n w_{ik}}\right)$$

$$\log \sigma, \log \tau \sim \log Gamma(1, 0.0005)$$

Weekly informative priors were specified on the log of the independent random effect precision value $1/\sigma$ and on the log of the spatially structured effect precision τ . Moreover, $w_{ik}=0$ was obtained if the neighbourhood i and k did not share a border and visa-versa if $w_{ik}=1$ was obtained. These values were fixed and calculated a priori based on the adjacency of neighbourhoods.

4. Locally smooth CAR model with spatially correlated random effects. The model that was implemented was described in Lee and Mitchell (2013) [4]. The random effects of the general model now had the following structure

$$\begin{array}{lcl} U_{i}|U_{-i} & \sim & N\left(\frac{\rho\sum_{i=1}^{n}w_{ik}\,U_{i}}{\rho\sum_{i=1}^{n}w_{ik}+1-\rho}, \frac{1}{\tau(\rho\sum_{i=1}^{n}w_{ik}+1-\rho)}\right)\\ logit(\rho) & \sim & N(0,100) \\ & & \tau \sim Gamma(0.001,0.001) \end{array}$$

where, ρ determined the global spatial correlation ($\rho = 0$ corresponded to independence everywhere, whereas $\rho = 1$ defined strong spatial correlation throughout the study region). Diffuse priors were assigned to both the precision parameter τ and the logit of ρ , Gamma and a Gaussian respectively. The neighborhood matrix elements w were usually fixed as for the BYM model previously specified. In this way it was not possible to capture localized spatial variation and discontinuities in the random effects surface. To solve this problem Lee and Mitchell (2013) [4] estimated the w_{ik} elements. This model was applied to the ZIKV case incidence because local autocorrelation was found in the residuals of the model with independent random effects.

REFERENCES

- 1. Anselin L. Local indicators of spatial association—LISA. Geogr Anal. 1995;27:93–115.
- 2. Ruxton GD, Neuhäuser M. Improving the reporting of P-values generated by randomization methods. Meths Ecol Evol. 2013;4:1033–6.
- 3. Besag J, York J, Mollie A. Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math. 1991;43:1–20.
- 4. Lee D, Mitchell R. Locally adaptive spatial smoothing using conditional auto-regressive models. J R Stat Soc Ser C (Appl Stat). 2013;62:593–608.