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Abstract

In this article, we will present statistical methods to assess to what extent the
effect of a randomised treatment (versus control) on a time-to-event endpoint might
be explained by the effect of treatment on a mediator of interest, a variable which
is measured longitudinally at planned visits throughout the trial. In particular,
we will show how to identify and infer the path-specific effect of treatment on the
event time via the repeatedly measured mediator levels. The considered proposal
addresses complications due to patients dying before the mediator is assessed, due
to the mediator being repeatedly measured, and due to post-treatment confounding
of the effect of the mediator by other mediators. We illustrate the method by an
application to data from the LEADER cardiovascular outcomes trial.
Key-words: g-formula; mediation; longitudinal data; path-specific effect; time-
dependent confounding.
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1 Introduction

There is a growing interest in statistical analyses that support insight into causal mecha-

nisms whereby an exposure affects intermediate variables (or mediators), to then in turn

produce an outcome. In many such studies, interest lies in one or more mediators that

are measured multiple times during the course of the study. The LEADER trial (1),

for instance, evaluated the effect of liraglutide (as opposed to placebo), over and above

standard care, on time from randomisation to first major adverse cardiovascular event

(MACE) in patients with Type II diabetes and high cardiovascular risk, in accordance

with FDA guidelines. Liraglutide is a once-daily injectable drug for the treatment of Type

II diabetes, commonly branded as Victoza. A total of 9340 patients were randomised to

either of the two treatments with a median follow-up time of 3.8 years. The primary

analysis showed a protective effect of randomised assignment to liraglutide on time to

first MACE, amounting to a hazard ratio of 0.87 (95% confidence interval 0.78 to 0.97;

this is based on an intention-to-treat analysis, thus not adjusting for time periods off

drug, which constituted only a minor fraction of the total patient observation time). Ef-

fects were also seen on other endpoints, e.g. glycated haemoglobin levels (HbA1c), blood

pressure, body weight and urinary albumin to creatinine ratio, which were all repeatedly

assessed at fixed time points 3 to 12 months apart. The question that motivated this

research was to what extent the treatment effect on cardiovascular events is mediated by

these repeatedly measured intermediate variables.

The literature on structural equation models provides methods for mediation analysis

that can handle multiple, repeatedly measured mediators (2). The assumptions are strong,

however. Besides relying on linear models without interactions for all involved outcomes

and mediators, untestable additivity assumptions are often made at the individual level.
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These assumptions, which are frequently left implicit, state for instance that the effect of

treatment while holding the mediators fixed is the same for all individuals, which is bio-

logically implausible (3). The causal inference literature on mediation analysis, pioneered

by Robins and Greenland (3) and Pearl (4), has explicated these weaknesses and tried to

overcome them by providing a framework that is also suitable to non-linear modelling.

However, this framework has mostly confined itself to applications involving single me-

diators assessed at a single time. The reason is that difficulties of identification tend to

pop up as confounders of the mediator - outcome association are themselves affected by

treatment. This happens in particular when multiple mediators are at play or repeatedly

measured mediators are assessed, for then the association between (a given) mediator (at a

given time) and outcome may be confounded by other or previously measured assessments

of the mediator.

Mediation analyses are ideally based on repeated assessments of the mediator for each

individual. This is because the scientific interest typically lies in the effect of an exposure

mediated via an entire mediator ‘process’. E.g. the interest in the LEADER trial lies in

the effect mediated, regardless of the time at which the mediator of interest was assessed.

The indirect effect via a single assessment of the mediator is likely to capture only part

of the indirect effect via the mediator ‘process’, as it does not pick up the indirect effects

through earlier or later instances of the mediator. The absence of repeated mediator

assessments therefore likely results in attenuation of the indirect effect.

When repeatedly measured assessments of the mediator are available, it is tempting

to consider simplifying the problem of mediation analysis by aggregating the longitudi-

nal mediators to a single one (e.g., in terms of some area under the curve, or the last

recorded glycated haemoglobin level). Such simplified mediation analyses may provide a

useful starting point, but are difficult to justify as the final analysis for various reasons.
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As previously suggested, a single summary cannot usually capture the full complexity of

the mediator, and this may lead to a weakening of the indirect effect. Such simplified

mediation analysis moreover prohibits adequate control for confounding. For instance,

area under the curve measurements combine the repeated assessments of the mediator

over time; this prohibits adequate control for confounding because some of the covariate

measurements measured during the study, will then be both cause and effect of the ob-

tained area under the curve which typically has undesirable consequences (5). Basing the

analysis on the last recorded level of the mediator may appear to overcome this problem,

but is equally problematic. The reason is that the association between the last recorded

level of the mediator and the time-to-event endpoint is confounded by previously recorded

levels of the mediator; adjusting for these would be undesirable as it would eliminate part

of the indirect treatment effect. Furthermore, the last recorded level of the mediator

may be influenced by the event time itself (whenever the mediator is subject to a period

effect), thereby inducing problems of reverse causality. In view of this, we will focus on

approaches that explicitly acknowledge the repeated measures nature of the mediator.

As previously suggested, the fact that the association between (a given) mediator (at

a given time) and outcome may be confounded by previously measured assessments of

the mediator typically complicates identification. The effect of exposure on outcome as

transmitted along a single pathway (e.g. the effect via the first assessment of the mediator

alone) is however generally not of interest when the mediator is repeatedly measured: the

primary scientific interest then lies in the effect via the ‘mediator process’, which is defined

by a combination of pathways that involve the different assessments of the mediator over

time. Interestingly, closer examination of the identification results for mediation analysis

clarifies that the effect of exposure on outcome as transmitted along specific combinations

of pathways (e.g. involving different or repeatedly measured mediators) is sometimes
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easier to identify (6). In this article we will therefore make use of a general theory of

identification in nonparametric structural equations models with independent errors and

possible latent variables (6), to infer the effect of exposure on outcome transmitted along

a combination of pathways. In doing so, we will address complications of working with a

time-to-event endpoint, such as that individuals may die before the mediator is assessed.

In the next section, we describe the setting under which we will work. In Section 3,

we first discuss our proposal to infer the direct and indirect effect of interest accounting

for repeatedly measured mediators subject to time-varying confounding. We start with

explaining how one may calculate these effects and end with a discussion of how the

proposed approach can be viewed as a generalisation of dynamic path analysis (7), as

well as how it relates to alternative proposals (8; 9; 10). In Section 4 we present the

method applied to the LEADER data and compare the results to less complex methods

(all variants of the common Cox regression model) and in Web Appendix B we present

a simulation study in order to evaluate the behavior of our proposal. We conclude with

some final remarks and ideas about possible extensions in Section 5.

2 Setting

Consider a study design which randomises independent patients i = 1, ..., n over 2 treat-

ment arms Ai, coded 1 for treatment and 0 for control, and intends to subsequently record

longitudinal measurements of the mediator Mi1, ...,Mik at visits 1, ..., k, along with a time-

to-event endpoint Ti. In actual fact, mediator measurements are only recorded until the

end-of-study time k or until the event of interest happens, whichever comes first. Our

results will also be applicable to non-randomised exposures, as they will accommodate ad-

justment for possible baseline confounding variables L0. Furthermore, the time-to-event

endpoint may be censored administratively or due to loss to follow-up. We assume, for no-
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tational convenience, that all patients are seen at the same, equidistant, time points. The

latter restriction is readily relaxed (by using time points ti1, ..., tik), provided that these

observation times are non-informative (and the no unmeasured confounding assumptions

that we will assume, remain plausible). We moreover assume the absence of competing

risks at this point, which we will address in the discussion of this paper.

Informally, in relation to the example from the LEADER trial, our proposed analysis

will infer how different the risk of being event-free at a given time would be in the liraglu-

tide arm if the mediator levels for each patient in that arm changed to the levels that we

would have seen for that patient on the placebo arm; we will give a formal description in

Section 3. Because such mediation analysis conceptualises modifying the mediator, it will

be important to control for confounding of the association between mediator and outcome

at each time. Our subsequent analysis, like nearly all mediation analyses in the litera-

ture, assumes that sufficient data is available on prognostic factors of the event of interest

that are also associated with the mediator, to trust that sufficient control for confounding

can be made. We will use Li0, Li1, ..., Lik to denote those confounders (e.g. concomitant

medication, ...) measured for patient i at baseline and at visits 1, ..., k, respectively; Lit

in particular includes the at-risk indicator I(T > t), which is 1 for subjects who are

event-free at time t and 0 otherwise. Thus Li0 refers to baseline covariates (e.g. age,

gender, baseline level of the mediator, ...), and Li1, ..., Lik refer to potential confounders

measured at visits 1, ..., k, the same visits at which the mediator levels were assessed.

Importantly, we will assume throughout that those confounders Lit measured at visit t

are not influenced by the mediator level assessed at that time, although we will allow

for those confounders to affect mediator levels at time t (as well as at later times) and

for them to have been influenced by mediator levels at earlier time points as in Figure

1. When only previous confounder measurements are known to influence the mediator at
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visit t and the mediator at visit t may influence confounders at visit t and later times,

then one must redefine Lit to include only covariates measured at visit t− 1.

Figure 1 about here.

The causal diagram in Figure 1 visualises the data-generating mechanism which we

will postulate, in the absence of censoring (the additional complications posed by cen-

soring of the event time will be addressed later). We will assume throughout that it

represents a nonparametric structural equation model with independent errors (11; 12).

It shows a clear, pre-specified causal ordering of the confounder and mediators over time,

as considered in (13) and (14) for cross-sectional multiple mediator settings. In spite

of this, we will not adopt the proposal by these authors for two reasons. First, it in-

fers the mediated effect via each of the mediators at each time separately, which gives

a more refined decomposition than we are aiming for. Indeed, our interest lies in the

effect mediated by Mi1, ...,Mik, regardless of the specific time. In particular, we will infer

the effect of randomised assignment to treatment as transmitted along the combination

of pathways whereby treatment directly influences one of the mediators Mi1, ...,Mik (not

via Li1, ..., Lik), which may in turn influence the risk of the event of interest through

an arbitrary mechanism (possibly via Li2, ..., Lik). Second, in their sequential approach,

VanderWeele and Vansteelandt (13) and Steen et al. (14) generally assume that the

mediators share no unmeasured common causes and moreover assume that none of the

intermediate confounders share unmeasured common causes with the outcome. We will

relax these assumptions for two reasons. First, to render the required no unmeasured

confounding assumptions plausible, Li0, Li1, ..., Lik will likely include a large number of

covariates, some of which may be influenced by treatment. This makes it unlikely that all

these components are only associated with the endpoint of interest by means of a causal
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effect. In our development below, as in Figure 1, we will therefore allow for the association

between the covariates Li0, Li1, ..., Lik and the outcome to be itself confounded by possibly

unmeasured factors Ul. In fact, our proposal will also be valid when - unlike suggested

by Figure 1 - these unmeasured factors are time-varying and influenced by the history,

including treatment. Second, it would be unlikely that repeated assessments of the medi-

ator for the same individual have no unmeasured causes in common. In our development

below, as in Figure 1, we will therefore allow for the association between the mediators

Mi1, ...,Mik to be affected by possibly unmeasured factors Um. Traditional longitudinal

mediation analyses (2), as well as dynamic path analysis which can be viewed as an exten-

sion thereof to survival endpoints (7; 15), implicitly assume the absence of such common

causes (or frailties) Ul and Um, because they attempt a more refined decomposition of the

exposure effect. They moreover invoke Markov assumptions which assume the absence of

long term effects of covariates and mediators on covariates and mediators measured later

in time; such assumptions are easy to avoid in our proposed approach below.

Note that the mediated effect on which we will focus, excludes pathways whereby

treatment initially influences time-dependent patient characteristics L, which then in

turn influence the mediator and thereby the risk of the event. Those pathways will be

attributed to the indirect effect via those patient characteristics. This seems logical from

an interpretational point of view, but is also a more fundamental requirement: we will

later see that the effect of treatment transmitted along the combination of all pathways

that intercept one or multiple mediators Mi1, ...,Mik (regardless of where in the causal

chain it intercepts these variables) cannot be identified without making overly stringent

assumptions.
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3 Proposal

3.1 Estimands

To define the direct and indirect effects of interest, we will make use of so-called path-

specific effects (16), expressed as differences or ratios of survival probabilities. In partic-

ular, we will calculate how likely it would be to be event-free at a chosen time t in the

experimental treatment arm if the mediator levels for each patient changed to the levels

that we would have seen if that patient had been assigned to control, but the levels of the

time-varying confounders had otherwise remained unchanged. That is, the probability for

a randomly chosen patient to be event-free at time t on treatment if L1 took on the value

L1(1) that we would have seen for that patient on treatment, if M1 were set to the level

M1(0, L1(1)) that we would have seen on control for that patient if L1 had been set to the

previously chosen value, if L2 were set to the level L2(1,M1(0, L1(1))) that we would have

seen on treatment for that patient if L1 and M1 had been set to the previously chosen

values, and so on (see the Appendix for more detail). Let us denote the corresponding

probability S1,0(t). When repeating this for all times t, we obtain two survival curves which

one may contrast to visualise the targeted path-specific effect via M . In particular, one

may express it as the contrast S1,1(t)/S1,0(t), S1,1(t)−S1,0(t) or {1−S1,1(t)}/{1−S1,0(t)}

for each time t. One may additionally contrast S1,0(t) with how likely it is to be event-free

at that time in the control arm. Let us denote this probability S0,0(t). If we repeat this

for all times t, we will once more obtain two survival curves which we may then contrast

to visualise the path-specific effect not via M . In particular, one may express this as the

contrast S1,0(t)/S0,0(t), S1,0(t)−S0,0(t) or {1−S1,0(t)}/{1−S0,0(t)} for each time t. The

mediated proportion can then be visualised as the ratio of the path-specific effect via M

to the total intention-to-treat effect over time:
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S1,1(t)− S1,0(t)

S1,1(t)− S0,0(t)
.

In the example from the LEADER trial, one may moreover have interest in contrasting

S1,1(t) and S0,0(t) with S0,1(t), the survival probability at time t in the control arm if

the mediator levels for each patient changed to the levels that we would have seen if

that patient had been assigned to experimental treatment, but the levels of the time-

varying confounders had otherwise remained unchanged. The methodology presented in

this article can easily be applied to derive this contrast as well.

One subtlety in the interpretation of S1,0(t) is that some patients may die sooner when

assigned to control than when assigned to experimental treatment, in which case their me-

diator values on control may appear ill defined until the considered time t (8). Note how-

ever that the variables Lt, t = 1, ..., k, include the at risk indicator I(T > t). Setting M1

to the level M1(0, L1(1)), M2 to the level M2(0, L1(1),M1(0, L1(1)), L2(1,M1(0, L1(1)))),

... thus amounts to setting the mediators to the level they would have taken in the control

arm if the history of time-varying confounders, including the survival status at that time,

were set to the level on the experimental arm. We will discuss implications in more detail

in the discussion section (see also Web Appendix A).

In the forthcoming sections, we will explain how one may calculate the probabilities

S1,0(t) for different times t. The probabilities S1,1(t) and S0,0(t) can likewise be obtained

upon reversing the codings 0 and 1 in the proposal below. They could also be obtained

directly from a standard nonparametric analysis of both treatment arms, although we

recommend calculating them in a model-based way as suggested below, to give results that

are better comparable with the calculation of S1,0(t). Our results in this section derive

from the general identification results in Web Appendix A. These identification results can

be obtained via application of the edge g-formula (17), which is a generalisation of the well-
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known g-formula to the identification of the distribution of so-called nested counterfactuals

(or counterfactual responses to so-called edge interventions). The identification results

are nonparametric, suggesting that arbitrary models can be used in each of the stages.

However, below we will suggest the use of Cox regression models as a special case.

3.2 General procedure

In Web Appendix A, we show formally that the chance Sa,a∗(t), for given values a and a∗,

can formally be identified as

Sa,a∗(t) =

∫
f
(
T > t|T > btc,mbtc, lbtc, A = a

)
×
btc∏
s=1

f
(
ms|T > s, ls,ms−1, A = a∗

)
f
(
ls|T > s− 1, ls−1,ms−1, A = a

)
dmsdls,

where btc is the visit time prior to (and including) time t, and we definems ≡ (m1, ...,ms),ls ≡

(l1, ..., ls), and m0 = ∅; here, where f
(
ms|T > s, ls,ms−1, A = a∗

)
is shorthand notation

for f
(
Ms = ms|T > s, Ls = ls,M s−1 = ms−1, A = a∗

)
. Specialising this to times t be-

tween the first and second mediator assessment and noting that L1 is composed of the

at-risk indicator I(T > 1) and patient characteristics V1, the chance S1,0(t) can formally

be calculated as∫
P (T > t|T > 1, A = 1,m1, v1, l0)f(m1|T > 1, A = 0, v1, l0)

× f(v1|T > 1, A = 1, l0)P (T > 1|A = 1, l0)f(l0)dm1dv1dl0. (1)

The above identification results show some similarity to the g-formula and the media-

tional g-formula (18), but do not follow from those theories, which apply to non-nested

counterfactuals only.

Monte Carlo integration can be used for evaluating the above identity, and moreover

gives it intuitive meaning. This involves first fixing L0 for each individual i = 1, ..., n at the
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observed value l0i. Next, for each individual, a (possibly counterfactual) event time ti(1)

is drawn from the distribution f(t|A = 1, l0i) and next, for individuals with ti(1) > 1, the

counterfactual level V1(1) is fixed at a random draw v1i(1) from the distribution f(v1|T >

1, A = 1, l0i). Subsequently, for each individual with ti(1) > 1, M1(0, L1(1)) is fixed at

a random draw m1i(0, l1i(1)) from the distribution f(m1|T > 1, A = 0, V1 = v1i(1), l0i),

and T (1, L1(1),M1(0, L1(1))) is fixed at a random draw ti(1, l1i(1),m1i(0, l1i(1))) from the

distribution f(t|T > 1, A = 1,M1 = m1i(0, l1i(1)), V1 = v1i(1), l0i); for each individual

with ti(1) ≤ 1, ti(1, l1i(1),m1i(0, l1i(1))) is fixed at ti(1). The chance S1,0(t) can then be

estimated as the proportion of individuals with ti(1, l1i(1),m1i(0, l1i(1))) > t.

The main drawback of the above Monte-Carlo strategy is that it involves modelling the

joint distribution of all variables, which becomes especially cumbersome when L1 is high-

dimensional. Upon rewriting (1) in terms of a series of nested conditional expectations

E (E [E {P (T > t|T > 1, A = 1,M1, L1, L0)|T > 1, A = 0, L1, L0} |A = 1, L0]

×P (T > 1|A = 1, L0))

(in line with a common representation of the g-formula), repeated regressions can be

used instead (see Web Appendix A for more detail). We will illustrate this for the data

structure in Table 1, which shows artificial data for 10 patients; here Ei is an indicator

for the event (1 if the event occurred while enrolled in the trial, 0 otherwise).

Table 1 about here.

In particular, at each time t, the chance S1,0(t) can be calculated as follows:

1. Fit a Cox regression model among people who survived the previous visit in the

experimental arm in function of the history of mediators and confounders up to

that visit, accounting for censoring in the default way. This analysis accommodates

12



non-informative censoring, given the history of measured mediators and confounders

up to the considered visit. Next, use the fitted model to predict the chance of

surviving the given time t for each patient in the study who survived the previous

visit, setting the mediators and confounders to their observed values. Denote the

result Q
btc
i (t) for patient i. Besides maximum partial likelihood estimators of the

regression coefficients, this requires an estimator of the cumulative baseline hazard,

for which we used the Breslow estimator. For instance, with parameter estimates

α̂1 = 0.02, α̂2 = 0.05 and α̂3 = −0.05 for the log hazard ratio corresponding to

M1, L0 and L1, respectively, the chance of surviving the given time t (e.g. 5 months)

for the first patient is exp[−Λ̂0(5)× exp{(0.02 × 63.36)+(0.05 × 62.79)+(−0.05 ×

62.36)}], with Λ̂0(5) the estimated cumulative baseline hazard which equalled 0.06

after 5 months.

2. Next, repeat the following for each of the previous visits k = btc to 1:

(a) Regress Qk(t) on the history of the mediators M̄k−1 = (M1, ...,Mk−1) and the

history of the covariates L̄k = (L0, ..., Lk) among people who were event-free at

visit k in the control arm. Since Qk(t) lies between 0 and 1, a quasi-binomial

regression with logit link may be an appropriate choice. Next, we can use

the model to calculate a prediction Qk
m(t) for all subjects who were event-free

at visit k, based on their observed data on mediators and confounders. For

instance, with parameter estimates β̂0 = 1.48, β̂1 = 0.049 and β̂2 = −0.051 for

the intercept and the log odds ratios corresponding to L0 and L1, respectively,

the prediction Qk
mi(t) for k = 1 for the first patient who was event-free at the

first visit would be calculated as expit{1.48 + (0.049 × 62.79) + (−0.051 ×

62.63)} and would equal 0.79.
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(b) Regress Qk
m(t) on the history of mediators M̄k−1 and confounders L̄k−1 among

people who were event-free at visit k in the experimental treatment arm. Since

Qk
m(t) lies between 0 and 1, a quasi-binomial regression with logit link may be

an appropriate choice. Use the model to calculate a prediction Qk−1
l (t) for all

patients who were event-free at visit k − 1, based on their observed data on

mediators and confounders. For instance, with parameter estimates δ̂0 = 1.71

and δ̂1 = −0.003 for the intercept and the log odds ratio corresponding to L0,

the prediction Qk−1
li (t) for k = 1 for the first patient is expit{1.71 + (−0.003 ×

62.79)} and equals 0.82. Note that Qk−1
l (t) is now also estimated for patients

who were not event-free at visit k, using their data on M̄k−1 and L̄k−1.

(c) Fit a Cox model among people who were event-free at visit k − 1 in the ex-

perimental treatment arm, in function of the history M̄k−1 and L̄k−1. Use the

fitted model to estimate the chance of surviving visit k for each patient in the

study who was event-free at visit k− 1, setting M̄k−1 and L̄k−1 to the observed

covariate values. Let Qk−1(t) denote the product of this predicted value and

the value of Qk−1
l (t) obtained in the previous step. For instance, with the fol-

lowing parameter estimate for the log hazard ratio, θ̂1 = 0.003, the probability

of being event-free at the first visit on the experimental treatment is calculated

as exp[−Λ̂0(3) × exp{0.003 × 62.79}] for patient 1, with Λ̂0(3) the estimated

cumulative baseline hazard which equalled 0.02 after the first visit.

3. When the previous steps have been repeated for visits k = btc to 1, then average

the value Q0(t) obtained in the final step across all patients. The resulting average

is an estimate of S1,0(t). Averaging Q0(t) across all patients in the example would

thus result in an estimate of S1,0(t) at 5 months, which equals 0.80.
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Note that step 2(a) involves regressing predictions among patients who were event-free

in the control arm (in order to integrate over the distribution of the mediator), while

step 2(b) involves regressing predictions among patients who were event-free in the ex-

perimental treatment arm (in order to integrate over the distribution of time-varying

confounders). This differential selection of patients in the respective steps is reflective of

the ‘construction’ of nested counterfactuals.

In the above procedure, we have chosen to use separate Cox models at each time at

which intermediate variables are assessed. Under correct specification of these models, the

required censoring assumption is that censoring at each study visit k is non-informative,

in the sense that the decision to discontinue the trial at a given time has no residual de-

pendence on the remaining survival time amongst (alive and participating) patients in the

same trial arm with the same history of the observed measurements M̄k and confounders

L̄k at that time. Alternatively, one may choose to obtain predictions from a Cox model

with time-varying covariates and avoid the need for separate Cox regression models at

each visit time. This approach has the advantage of yielding potentially more precise

predictions as this Cox regression model is fitted on the whole sample. The disadvantage

however is a greater risk of misspecifying this Cox regression model. In the above pro-

cedure, we could alternatively have used parametric survival models using splines for the

time effect (19), or binomial regression models for the chance of surviving time t, sepa-

rately for each time t. We have not considered the latter option because the information

may become sparse at the later time points, which does not pose complications when

relying on the proportional hazards assumption in the Cox regression model.

For computational convenience and to limit the modelling efforts, we have chosen to

use binomial regression models to model the predictions obtained from the Cox model.

One concern about this strategy is that the considered binomial regression model may
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fail to be congenial with the chosen Cox model. In view of this, we recommend the use of

quasi-binomial regression with a logit (as opposed to probit) link. The use of such models

ensures that when the above procedure is employed for the calculation of S0,0(t) or S1,1(t),

misspecification (and in particular lack of congeniality) of the logistic regression models

for Qk
m(t) and Qk

l (t) does not induce bias, because the average of the fitted values from

a logistic regression model (in the treatment or control arm) equals the average of the

outcome under that model (in the treatment or control arm), regardless of whether the

model is correctly specified (see e.g. (20)). To additionally ensure unbiased estimation

of S1,0(t) or S0,1(t), we further recommend that these logistic regression models obey the

structure of the models that were used to obtain the predictions which they use as input.

For instance, if the Cox model contains interactions between A and Lk, then these should

also be included in the logistic regression model for Qs(t), s < k; if the Cox model contains

interactions between A and Mk, then these will likely give rise to interactions between A

and predictors of Mk in the logistic regression model for Qs(t), s < k.

3.3 Dynamic path analysis

The proposed approach can be viewed as a generalisation of dynamic path analysis (7; 15),

which itself extends linear structural equation analysis to additive hazard models and

normally distributed mediators which obey additive linear models. To see this, we first

consider a setting with a single mediator and no confounders for pedagogic purposes.

Assuming an additive hazard model (21) for the time-to-event outcome

λ(t|A,M1) = λ0(t) + λ1(t)A+ λ2(t)M1I(t > 1)

and a linear regression model for the mediator

E(M1|T > 1, A) = α0 + α1A,
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with normal errors and constant variance σ2, we can evaluate expression (1) as fol-

lows. First, since the survival probability at time t is exp{−H(t)}, with H(t) the cu-

mulative hazard at time t, the survival probability P (T > t|T > 1, A,M1) can be

evaluated as exp {−∆Λ0(t)−∆Λ1(t)A−∆Λ2(t)M1} with ∆Λj(t) = Λj(t) − Λj(1) and

Λj(t) =
∫ t
0
λj(s)ds for j = 0, 1, 2 the cumulative hazard. Second, using that the moment

generating function E{exp(Zt)} of a normal variate Z ∼ N(µ, σ2) equals exp(µt + σ2t2

2
),

integrating out M1 in expression (1) yields

exp
{
−∆Λ0(t)−∆Λ1(t)−∆Λ2(t)E(M1|T > 1, A = 0) −

∆Λ2(t)
2

2
Var(M1|T > 1, A = 0)

}
,

which equals

exp

{
−∆Λ0(t)−∆Λ1(t)−∆Λ2(t)α0 −

∆Λ2(t)
2

2
σ2

}
.

Finally, multiplying this result with P (T > 1|A) = exp{−Λ0(1)− Λ1(1)A} yields

P (T1,0 > t) = exp

{
−Λ0(t)− Λ1(t)−∆Λ2(t)α0 −

∆Λ2(t)
2

2
σ2

}
.

Likewise,

P (T0,0 > t) = exp

{
−Λ0(t)−∆Λ2(t)α0 −

∆Λ2(t)
2

2
σ2

}
P (T1,1 > t) = exp

{
−Λ0(t)− Λ1(t)−∆Λ2(t)α0 −∆Λ2(t)α1 −

∆Λ2(t)
2

2
σ2

}
,

from which at each time t, the path-specific effect not via M and via M can be calculated

in terms of survival probabilities as

PDE(t) =
S1,0(t)

S0,0(t)
= exp {−Λ1(t)}

and

PIE(t) =
S1,1(t)

S1,0(t)
= exp {−∆Λ2(t)α1} = exp {−(Λ2(t)− Λ2(1))α1} ,
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respectively, for t > 1 and 1 for t ≤ 1. These expressions hold more generally for

studies with multiple waves if the event time obeys an additive hazard model at each

time (conditional upon the information observed until that time) and the mediator in each

wave of the study obeys a normal linear regression model with additive effects, constant

variance and normal errors. Similar expressions are also used in dynamic path analysis (7).

The only difference lies in the indirect effect that has the additional term Λ2(1)×α1 in our

proposal. This shows a first limitation of dynamic path analysis as currently considered in

(7) in that this strategy ignores the potential for the event happening prior to the mediator

assessment of the first wave. If all patients survive till the first mediator measurement, as

in the examples in (7), Λ2(1) equals zero and the approaches will coincide. As such our

results give formal justification for the expressions considered in dynamic path analysis

as expressing path-specific effects under the above listed assumptions. They also signal

the other limitations of dynamic path analysis in that it is limited to specific additive

models for the event time and the mediators, and that it cannot (easily) accommodate

time-varying confounders, nor lagged effects of the mediators.

4 Example from the LEADER trial

LEADER was a multi-centre, international, randomised, double-blind clinical trial evalu-

ating liraglutide (A = 1) against placebo (A = 0), both added to standard of care. The

trial was designed in accordance with guidance from FDA (22) regarding the evaluation of

cardiovascular risk for new antidiabetic therapies. In total, 9340 patients with Type II di-

abetes at high risk for cardiovascular disease were randomised to one of the two treatment

groups with a median follow-up time of 3.8 years (range 3.5-5.0 years). The subjects were

attending planned visits 3 months after randomisation and subsequently every 6 months

hereafter where at least HbA1c (M) was measured. The primary endpoint was the time T
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from randomisation to first occurrence of a so called major cardiovascular event (MACE)

defined as non-fatal myocardial infarction, non-fatal stroke or cardiovascular death. A

first MACE occurred in significantly fewer patients in the liraglutide group (13.0%) than

in the placebo group (14.9%) corresponding to an estimated hazard ratio of 0.87 (95% CI

[0.78; 0.97]; P = 0.01) in the pre-specified primary analysis, which was a Cox regression

model with treatment as the only fixed effect.

Significant positive effects of liraglutide vs. placebo were also found on cardiovascu-

lar risk factors such as glycated hemoglobin (HbA1c), body weight, urinary albumin to

creatinine ratio and blood pressure, and the interest is to evaluate to what extent these

potential pathways might explain liraglutide’s protective effect on cardiovascular events.

The main results from the study can be found in (1).

Figure 2 about here.

To illustrate the proposed approach for mediation analysis, we shall here restrict the

attention to the potential mediation on the primary endpoint via the effect of liraglutide

on HbA1c levels. Throughout, we will moreover assume that censoring is non-informative

in the sense that the time to first MACE is equally distributed in patients who do versus

do not discontinue the trial at a given time, but were assigned to the same arm and have

the same history of HbA1c at that time. In Figure 2, the mean HbA1c levels over time

are shown, as estimated by a mixed model for repeated measurements with adjustment

for baseline covariates. As reported in (1), the estimated treatment difference was −0.40

percentage points (95% CI [−0.45; −0.34]) at the 36-month visit, which was the last

scheduled visit with laboratory testing for the entire trial population. In Figure 3, the

estimated survival curves S1,0(t) are shown along with S1,1(t) and S0,0(t). The survival

curves were estimated in accordance to the method presented in Section 3 where HbA1c
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measured after 3, 6, 12, 18, 24, 30 and 36 months, respectively, were included as mediators.

Due to the novelty of the results, we could not present analyses that additionally adjusted

for confounders other than supplementary HbA1c measurements, e.g. body weight, insulin

use, ... Therefore, the results (which are also based on models with additive effects) are

only to be considered hypothesis-generating and should be interpreted with caution. The

proposed method provides a framework for further analyses that can adjust for various

confounders and explore other potential pathways than glycaemic control represented by

HbA1c. More exhaustive analyses are reserved for subsequent communication in a medical

journal.

Figure 3 about here.

Figure 4 visualises the estimated mediated proportions at each visit. Inference was

based on the nonparametric bootstrap with 1000 resamples. The results indicate that

HbA1c is mediating parts of the effect of liraglutide on time to first MACE. Note however

that the estimates of the mediated proportions are subject to uncertainty (reflected in

the wide confidence intervals), and potentially residual confounding bias. Moreover, the

mediated proportion appears to grow over time while the total effect as measured by

the hazard ratio is constant. This may suggest that the way by which glycaemic control

represented by HbA1c biologically influences the cardiovascular risk may be complex.

For instance, it may be the case that the mediated proportion over time depends on

the number of available HbA1c measurements that are included in the analysis. Nearly

identical results were found when body weight, urinary albumin to creatinine ratio and

systolic blood pressure were considered as additional potential mediators (not shown).

Figure 4 about here.
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As a comparison to the method presented in Section 3, three relatively simple medi-

ation analyses were also conducted:

1. Change in HbA1c after 6 months was used as mediator and included as a covariate

in a Cox regression model with treatment as fixed factor, and baseline HbA1c as

additional covariate.

2. Change in HbA1c over time was used as mediator and included as a time-dependent

covariate in a Cox regression model with treatment as fixed factor and baseline

HbA1c as additional covariate.

3. Change in the trapezoidal area under the HbA1c curve divided by time (updated

mean) was used as mediator and included as a time-dependent covariate in a Cox

regression model with treatment as fixed factor and baseline HbA1c as additional

covariate.

For all three models, the mediated proportion was calculated as the difference in log

hazard ratios between the models without and with the mediator, respectively, divided by

the log hazard ratio from the model without the mediator. The results, which can be found

in Table 2, are included because they represent rather standard analyses, even though they

are known to be biased. Analyses 1 and 3 indicate some mediation. However, note that

these mediated proportions have been calculated on different scales and are difficult to

interpret because they reduce the mediator process to a single summary and, partly as a

result, do not properly adjust for time-varying confounding by the mediator history. As

pointed out in Section 1, mediation analyses based on a single summary measure of the

mediator may result in an underestimation of the mediated proportion, and this could

very likely be the explanation for these differences. Furthermore, analysis 2 does not

indicate any clear mediation, which is in line with the expectation that an analysis based
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on the last recorded value of the mediator will eliminate parts of an existing indirect

effect. Also this analysis ignores confounding by the history of the mediators.

Table 2 about here.

5 Discussion

In this paper we have proposed a strategy to infer the effect of a randomised treatment

on a time-to-event outcome as transmitted along the combination of pathways, whereby

treatment directly - other than through a sufficient set of time-varying confounders - in-

fluences one of a sequence of repeatedly measured mediator measurements Mi1, ...,Mik,

which in turn influence the risk of the event of interest through an arbitrary mechanism.

This proposal builds on the general theory on identification of path-specific effects in non-

parametric structural equations models with independent errors (6). It can be considered

as a generalisation of the structural equation models extension to time-to-event outcomes,

the so-called dynamic path analysis (7), but can be used in more realistic settings as it

can handle events happening prior to the first assessment of the mediator, is not limited

to specific additive models for the event time and mediators, and easily accommodates

time-varying confounders and long-term effects of mediators and covariates. As the gen-

eral identification results in Web Appendix A are non-parametric, arbitrary models can

be used in each of the steps of the procedure and our proposal is thus not limited to time-

to-event outcomes. With a continuous outcome for instance, the Cox regression models

at each wave would be replaced with a single model for the mean outcome at time t.

Limited simulation studies in Web Appendix B demonstrate the adequate performance of

the proposed methodology. SAS code for running this analysis is available in the online

Supplementary Materials.
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Our results shed light on the subtle interpretation of direct and mediated effects in

studies with time-to-event endpoints. The notion of a direct effect conceptualises fixing

the level of the mediator in the experimental treatment arm as it would have been on

the control arm, but if a patient would have lived longer on the experimental treatment

arm, then it becomes vague at what level the mediator ought to be controlled. For that

reason, we have considered fixing the mediator at the level that would have been seen

on the control arm if the patient had been kept alive for the same duration as in the

experimental arm. In some cases, one may well hypothesize what would have happened if

an event such as death had been prevented. For instance, if one of the study participants

dies in a car crash, then we may well consider what that person’s mediator level would

have been at a given time had the car crash been prevented. In other cases, this is

much harder to conceptualise. For instance, it is more difficult to imagine interventions

that would prevent the event of interest in the considered patient populations. Strictly

speaking one does not need to be precise about the kind of underlying interventions as

inferences apply to all interventions that are non-invasive in the sense that if they had

been applied to individuals who remained event-free, the same data for the mediator

would have been observed. However, it does complicate interpretation in the same way

as treatment effects can be difficult to interpret in the presence of drop-out due to death

(23).

A simple fix to the above problem can be made in extreme cases where treatment is

beneficial for all patients. In that case, S0,1(t) is always well and unambiguously defined,

and thus one can use the contrast of S0,1(t) and S0,0(t) as a measure of indirect effect, and

the contrast of S1,1(t) and S0,1(t) as a measure of direct effect. Alternatively, and more

generally, note that expression (1) can also be interpreted as a so-called (randomised)

interventional effect (24). In particular, as in (9), it can be interpreted as the chance
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of being event-free at time t if all patients were randomised to liraglutide and at each

time s < t, the mediator were randomly drawn from the distribution of the mediator in

patients in the control arm who survived time s and have the same history of covariate

data (as observed under the considered regime). One potential concern here is that

patients who survive time s on the control arm may fail to be comparable with those

who survive time s on the intervention arm, even after adjusting for the history of time-

varying covariates. This may well happen as a result of survivor bias, due to which

surviving patients may become more and more selective as time goes by. In our proposal,

we have excluded this possibility by assuming the absence of unmeasured common causes

of mediator (e.g. M1) and time-varying confounders (e.g. L1) in the causal diagram

of Figure 1. Such assumptions tend not to be spelled out in the existing approaches

for (randomised) interventional direct and indirect effects. Also Didelez (10) proposes

related estimands. These estimands are well-defined, even when patients on the control

arm tend to experience events sooner than those on the intervention arm. They are

moreover identifiable under weaker assumptions than the considered path-specific effects,

as they are not defined in terms of cross-world counterfactuals, but have not been formally

extended to settings with confounding by time-varying covariates.

Our proposed approach is thus related to (9) and (10), but in contrast to these,

focuses on the identification of path-specific effects. VanderWeele and Tchetgen Tchetgen

(18) also adopted these interventional direct and indirect effects, but they consider random

draws from the distribution of the mediator at a certain exposure level conditional on only

baseline covariate data. Their indirect effect, unlike ours, thus includes pathways whereby

the treatment influences time-varying confounders, then in turn influences the mediator

and via that also the outcome. Their proposal also has the disadvantage that draws from

the mediator distribution are ill defined when patients may die during the study. Lin et al.
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(8) handled this problem by redefining nested counterfactuals to include a counterfactual

survival status in a similar way as in our proposal; in doing so, they eliminate pathways

whereby treatment influenced the mediator via survival from the indirect effect, as in

our proposal. However, in contrast to (9) and our proposal, they do not consider random

draws from the mediator distribution conditional on time-varying confounders. This raises

questions whether the values drawn for a given patient will be sufficiently representative

for what that patient might have ‘naturally’ experienced, making these estimands less

suitable to develop insight into mechanism. For instance, the assessment of a direct effect

demands fixing the mediator at subject-specific levels and it is unlikely that these can be

‘predicted’ well when only baseline confounders are used for prediction.

Zheng et al. (9) deemed the assumptions needed to infer the path-specific effects

with multiple mediators and time-varying confounders too strong for the purpose of effect

mediation in a survival study. In Web Appendix A, we argue that following arguments of

Shpitser (6) and the recanting witness criterion (16), the path-specific effects represented

by the causal diagram of Figure 1, are identified if a) the exposure A is randomly assigned,

b) all common causes of the time-to-event outcome and the mediator at each time are

measured and c) that this causal diagram represents a nonparametric structural equation

model with independent error terms (12; 25). In particular, this means that the only

variation in the variables (and their counterfactual values) on the causal diagram (not

explained by previous variables in the diagram) is due to mutually independent error

terms. Assumption b) further implies that unmeasured common causes of the mediators

over time are allowed (as long as they do not directly influence the time-to-event outcome),

as well as unmeasured common causes of baseline and time-varying confounders and

the time-to-event endpoint. Note that common causes of time-varying confounders and

mediators are not allowed to be unmeasured.
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The above results ignored competing risks due to death from non-cardiovascular

causes because the adjusted (Aalen-Johansen) cumulative incidence curves were almost

identical to the Kaplan-Meier-curves, suggesting that no appreciable differences can be

expected when accounting for competing risks. However, the proposed approach can rel-

atively easily be extended to handle competing risks. In that case, in each step of the

algorithm, we substitute the probability of being event-free by time t by the probability of

being either event-free by time t or having experienced a competing event. The latter can

be calculated either by combining the results from standard Cox regression models for the

two cause specific hazards for both causes (26), or using binomial regression models for

the cumulative incidence. Another obvious extension to the above proposal are settings

where the mediator is multivariate at each time, as may be the case when examining the

effect mediated via e.g. glycated hemoglobin and body weight. It then infers the effect

of treatment mediated via at least one of those mediators. This does not render the pro-

cedure any more complicated, in the sense that it requires no additional modelling. The

above procedure also readily extends to enable decomposition of the treatment effects via

multiple mediators. For instance, consider two mediators M
(1)
t and M

(2)
t , and a vector of

covariates L∗t at each time t = 1, ..., k, and suppose that M
(1)
t may influence M

(2)
t , but not

vice versa. Suppose furthermore that L∗t may influence M
(1)
t and M

(2)
t , but not vice versa.

Then one may use the above procedure with Mt ≡M
(2)
t and Lt ≡ (M

(1)
t , L∗t ) to infer the

effect of treatment mediated via M
(2)
t for t = 1, ..., k. One may likewise use the above

procedure with Mt ≡M
(1)
t and Lt ≡ (M

(2)
t−1, L

∗
t ) to infer the effect of treatment mediated

via M
(1)
t for t = 1, ..., k. When both effects are expressed on the risk difference scale, one

may subtracting the sum of both effects from the total effect S1,1(t) − S0,0(t) to obtain

the direct treatment effect, which is not mediated by either M
(1)
t or M

(2)
t , t = 1, ..., k.
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A M1

L1

TM2

L2

Ul

Um

Figure 1: Causal diagram. Um and Ul refer to unmeasured variables. The measured
time-varying confounders L1 and L2 include survival at visit 1 and 2 (T may thus be
viewed as survival beyond visit 2). Besides the assumptions embodied in this diagram,
we assume that censoring at each time is non-informative in each trial arm, given the
history of measured time-varying confounders and mediators at that time, in the sense
defined in the main text.
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Table 1: A toy example for a restricted set of patients.
Patient Ai L0i L1i M1i Ei Ti Q1

i (t) Q1
mi(t) Q0

li(t) Q0
i (t)

1 0 62.79 62.36 63.36 1 5.57 0.81 0.79 0.82 0.98
2 0 64.75 65.96 75.78 1 0.65 . . 0.82 0.97
3 0 57.13 56.35 74.80 1 11.44 0.77 0.80 0.83 0.98
4 1 56.28 55.27 53.08 1 9.42 0.84 0.80 0.83 0.98
5 1 72.55 68.05 59.07 1 13.68 0.85 0.82 0.82 0.97
6 1 67.61 61.02 54.17 1 9.61 0.87 0.84 0.82 0.98
7 0 52.84 46.85 65.93 1 6.70 0.84 0.84 0.83 0.98
8 1 65.16 58.16 51.88 0 24.00 0.88 0.84 0.82 0.97
9 0 62.69 59.91 66.51 1 5.61 0.82 0.81 0.82 0.98
10 1 74.23 65.88 50.62 0 24.00 0.89 0.85 0.82 0.97

Figure 2: Estimated HbA1c levels over time by treatment group. EOT: End-Of-Trial visit
(time varies by subject).

Table 2: Results from 3 simple mediation analyses
Model Hazard ratio 95% CI Mediated proportion
MACE primary analysis 0.87 (0.78; 0.97)
6-month HbA1c change from baseline 0.92 (0.81; 1.04) 0.40
as time-fixed covariate
HbA1c change from baseline 0.88 (0.79; 0.99) 0.08
as time-dependent covariate
Updated mean of HbA1c 0.92 (0.82; 1.03) 0.40
as time-dependent covariate
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Figure 3: Estimated probabilities S1,0(t), S1,1(t) and S0,0(t).

Figure 4: Mediated proportions for time to first MACE with longitudinal HbA1c levels
as mediators.
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