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ABSTRACT:  44 

Objectives 45 

Clostridium difficile is a major global human pathogen divided into five clades, of which clade 3 is the 46 

least characterised and consists predominantly of PCR ribotype (RT) 023 strains. Our aim was to 47 

analyse and characterise this clade.  48 

Methods 49 

In this cohort study the clinical presentation of C. difficile RT023 infections was analysed in 50 

comparison with known “hypervirulent” and non-hypervirulent strains, using data from the 51 

Netherlands national C. difficile surveillance programme. European RT023 strains of diverse origin 52 

were collected and whole-genome sequenced to determine the genetic similarity between isolates. 53 

Distinctive features were investigated and characterised.  54 

Results 55 

Clinical presentation of C. difficile RT023 infections show severe infections akin to those seen with 56 

“hypervirulent” strains from clades 2 (RT027) and 5 (RT078) (35%, 29% and 27% severe CDI 57 

respectively), particularly with significantly more bloody diarrhoea than RT078 and non-58 

hypervirulent strains (RT023 8%, other RTs 4%, p=0.036). The full genome sequence of strain CD305 59 

is presented as a robust reference. Phylogenetic comparison of CD305 and a further 79 previously 60 

uncharacterised European RT023 strains of diverse origin revealed minor genetic divergence with 61 

>99.8% pairwise identity between strains. Analyses revealed distinctive features among clade 3 62 

strains, including conserved PaLoc, CDT and phage insertion toxin genotypes, glycosylation of S-layer 63 

proteins, presence of the RT078 four gene trehalose cluster and an esculinase negative genotype. 64 

Conclusions 65 

Given their recent emergence, virulence and genomic characteristics, the surveillance of clade 3 66 

strains should be more highly prioritised.  67 

 68 
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INTRODUCTION  69 

C. difficile remains a major global pathogen; disease severity and relapse incidence have not abated, 70 

and community acquired infections have increased (1). C. difficile can be divided into five clades of 71 

virulent strains (2). The most understudied is clade 3, dominated by PCR ribotype (RT) 023 strains 72 

(2). RT023 has been reported primarily in Europe (3) and is amongst the top ten most common C. 73 

difficile PCR ribotypes in England (4) (CDRN report 2013-2015) and the Netherlands (unpublished 74 

data of the Dutch C. difficile Reference Laboratory). RT023 infections are not associated with 75 

increased mortality despite causing a high level of deleterious biomarkers (e.g. neutrophil counts) in 76 

patients and having toxin profiles similar to clade 2 (RT027) and clade 5 (RT078) strains (5, 6). 77 

However, disease severity with RT023 has been reported as similar to “hypervirulent strains”, 78 

particularly in elderly patients (7), and is frequently associated with a relapse of CDI (3). 79 

This study investigates the clinical presentation and phylogeny of C. difficile clade 3, uncovering and 80 

characterising unique features of these strains.  81 

 82 

METHODS 83 

Clinical data collection and analysis  84 

A cohort study was performed. Clinical data from the Dutch national CDI sentinel surveillance from 85 

May 2009 until February 2018 were used to analyse the clinical characteristics of CDI episodes due 86 

to RT023. For this sentinel surveillance all hospitalized patients >2 years old, with clinical signs or 87 

symptoms of CDI in combination with a positive test for C. difficile toxins or toxigenic C. difficile, in 88 

Dutch participating hospitals, are registered. The indication for testing on CDI and the assay or 89 

algorithm that is used to diagnose CDI is chosen by the local laboratory.  90 

Using classification criteria based on expert opinion that were previously used (8), CDI is classified as 91 

severe if one or more of the following conditions were present; fever (temperature of 38°C or 92 
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higher) and leucocytosis (>15 × 10
9
/L), diarrhoea with hypoalbuminemia (<20 g/L) and/or 93 

dehydration, pseudomembranous colitis and/or bloody diarrhoea. A complicated course is defined 94 

as the need for surgical procedure, admission to intensive care unit and/or mortality (CDI- or non-95 

CDI-related) within 30 days after CDI diagnosis (8).  96 

Our primary aim was to test the null hypothesis that RT023 causes the same proportion of severe 97 

CDI as non-hypervirulent ribotypes. Therefore, clinical characteristics and 30-day outcome of CDI 98 

episodes due to RT023 were compared to CDI episodes due to other ribotypes (excluding 99 

hypervirulent strains RT027 and RT078/126). Thereafter, the results of the RT023-group were 100 

compared to the results of 4 pre-specified groups; RT027 and RT078/126, which are well-known 101 

hypervirulent strains, and RT001 and RT014/020/295, which are non-hypervirulent strains that are 102 

common in the Netherlands. Each time, results of the RT023-group were compared with the results 103 

of one other group. Some ribotypes were merged into one group since they are hard to distinguish 104 

with PCR ribotyping. Further details are in the web-only Supplementary Material.  105 

Data are presented as number of cases (percentage). Age is presented as media [first quartile, third 106 

quartile], because of the skewed distribution. Categorical variables were compared by a Pearson’s 107 

Chi square test and numerical variables were compared by a Wilcoxon rank-sum test. To identify the 108 

effect of RT023 on CDI severity, a multivariable logistic regression analysis was performed with age 109 

and sex as covariates. A p-value of <0.05 was considered statistically significant. STATA SE version 110 

12.1 statistical software (StataCorp, Texas, USA) was used for statistical analysis. 111 

 112 

Ethics 113 

This was an observational study, using data that are already collected in the Dutch national CDI 114 

surveillance. This national surveillance program exists since 2009 and collects microbiological and 115 

clinical data from all hospitalized patients with CDI in the participating hospitals in the Netherlands. 116 

The surveillance has been developed by our National Institute of Public Health. There were no 117 
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additional data or isolates/materials specifically for this study collected and no actions were requested 118 

from patients.    119 

 120 

Whole-genome sequencing  121 

CD305 genomic DNA was sequenced using 454 pyrosequencing (GS-FLX pyrosequencing) to generate 122 

3 kb paired-end libraries and Illumina GAII paired-end libraries of 400 bp insert size and 108 bp read 123 

length. The resulting sequence was assembled using Newbler and Velvet and the assemblies were 124 

combined using Newbler (9, 10). CDS identification and annotation was generated using PROKKA 125 

(11) with a bespoke C. difficile library. The assembled and annotated genome is available at 126 

ERS2502454. For 79 study isolates genomic DNA libraries were created using a Nextera XT kit 127 

(Illumina, CA, USA) and data obtained using the MiSeq sequencing system (Illumina, CA, USA).  128 

 129 

Whole-genome bioinformatics analysis 130 

The sequence data were processed according to a standard protocol as previously described (12) 131 

(Detail in web-only Supplementary Materials). SNP loci were identified with a samtools Q-score >= 132 

30, coverage >= 10 and 80% of contributing reads. Pipeline, phylogenetic and post-analyses were 133 

carried out using Perl, R and RAxML (13).  134 

 135 

Glycoprotein detection 136 

Glycosylated proteins were detected using Pierce™ Glycoprotein Staining Kit according to the 137 

manufacturer’s instructions (Detail in web-only Supplementary Material).  138 

 139 

RESULTS 140 
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CDI in hospitalised patients due to RT023 strains is severe comparable with RT027 and RT078 141 

strains 142 

Between May 2009 and February 2018, 5359 samples from hospitalised patients in twenty-four 143 

hospitals in the Netherlands were PCR-ribotyped within the context of the national C. difficile 144 

surveillance program. Clinical data were complete in 4387 cases. RT023 accounted for 141 cases of 145 

CDI, a mean proportion of 2.4% (95% CI 2.0-2.8), which remained consistent within the study period.  146 

Demographic data, clinical characteristics and 30-day outcome of patients with CDI due to RT023 147 

were compared to data of five other pre-specified ribotype groups, shown in Table 1.  There were no 148 

significant differences in age and sex between the RT023 group and the other groups, except for 149 

higher age in the RT001 group.  150 

The primary question was whether CDI due to RT023 was more severe when compared to all non-151 

hypervirulent ribotypes, which was confirmed by our results (p=0.000: 35% (27-44) vs 22% (21-23)), 152 

also after correcting for sex and age. No significant differences of severity were found when RT023 153 

was compared to “hypervirulent” strains RT027 and RT078/126 (p=0.310 and p=0.065 respectively, 154 

RT023: 35% (27-44), RT027: 29% (20-38), RT078/126: 27% (24-31)), also not after correction for sex 155 

and age. Of note, bloody diarrhoea was more frequently reported in RT023 infections compared 156 

with RT078/126 infections (p=0.031), RT014/020/295 (p=0.036) and RT001 (p=0.037) (RT023: 8% (3-157 

13), RT078/126, 4% (2-5), RT014/020/295 4% (3-5), RT001 4% (2-5)). When compared to non-158 

hypervirulent RT001 and RT014/020/295 isolates, with or without correcting for sex and age, RT023 159 

presented with significantly more severe symptoms (p=0.000 for both, RT023: 35% (27-44), RT001: 160 

16% (13-19), RT014/020/295: 21% (18-23)), such as more frequent diarrhoea with dehydration 161 

and/or hypoalbuminemia. However, the outcomes of CDI due to RT023 in terms of a complicated 162 

course, including mortality, were comparable with outcomes of CDI due to RT001, RT014/020/295 163 

and all non-hypervirulent ribotypes. RT027 and RT078/126 infections showed higher overall 164 

mortality than RT023 (p=0.032, p=0.049 respectively, RT023: 9% (4-14), RT027: 19% (11-27), 165 



8 

 

RT078/126: 16% (13-19)) but CDI attributable mortality was similar between these groups (p=0.293, 166 

p=0.152 respectively, RT023: 2%(-1-4), RT027: 4% (0-8), RT078/126: 5%(3-7)). There were 167 

significantly more complicated courses in patients with CDI due to RT027 compared to RT023 168 

(p=0.038, 23% (14-31) vs 12% (6-18) respectively), but no significant differences were observed 169 

between RT078/126 and RT023 (p=0.144, RT078/126 17% (14-20)).  170 

Comparison of RT023 with all groups in this study revealed that the onset of symptoms of CDI due to 171 

RT023 was more frequently at home and less often in healthcare facilities (p=0.000 compared to all 172 

other groups). Subgroup analysis of community and hospital onset CDI can be found in the web-only 173 

Supplementary Material. The number of episodes that were recurrences of a previous CDI episode 2-174 

8 weeks earlier was the same in RT023 episodes compared to all other groups (Table 1).  175 

 176 

Clade 3 strains are highly related 177 

A high-quality (14) draft genome of strain CD305 (RT023) was generated and is presented here as a 178 

robust reference for this lineage. Further strains were sourced from across Europe (Supplementary 179 

Table S1), with this study comprising 86 strains: CD305 (reference); 79 (out of 170 WGS strains); and 180 

6 published clade 3 strains (15, 16) (Supplementary Table S2), the largest RT023 genomic collection. 181 

MLST were identified in silico from de novo assemblies. The six published strains matched their 182 

published MLST with new strains composed of 68 ST005, 10 ST022, and one novel ST (strain 183 

OUS23024) (Figure 1). 184 

The 79 core strains were aligned to the CD305 reference strain and a set of 19,262 (<0.5% of the 4.2 185 

Mbp genome) high quality SNP loci identified. The individual strains were very closely related with 186 

only between 58 and 7,876 pair-wise SNP differences, with a mean of 1,767 SNPs (mean: 9.2% of 187 

19262 SNPs; max: 40.9%) equating to >99.8% pairwise identity between strains. A phylogeny was 188 

created from all 86 strain’s SNPs that reinforces the conclusion of little genetic diversity within clade 189 
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3 strains (Figure 1). From our 80 strains there are two outliers: strains 91 and 108698, which are not 190 

RT023 (Figure 1A, Supplementary Figure S3, Supplementary Text). The unassigned MLST strain 191 

(OUS23024) diverged slightly from the main population (Figure 1B). No significant relationship was 192 

found with any phenotypes including the infection date (2007-2014) or geographic origin 193 

(Supplementary Table S1, Supplementary Figure S1). Detail on MLST and ribotype divergence can be 194 

found in the web-only Supplementary Material. 195 

There is high conservation in all 86 strains of larger clade-specific genetic features such as the 196 

pathogenicity locus (PaLoc), binary toxin CDT, PaLoc phage insertionand type B flagella glycosylation 197 

cluster (Supplementary Tables S2 and S3). The only common antibiotic resistance marker is gyrB 198 

(V426D) related to fluoroquinolone resistance. Analysis of twelve Polish RT023 strains for 199 

fluoroquinolone resistance revealed resistance to ciprofloxacin but sensitivity to moxifloxacin 200 

(Supplementary Table S4).  201 

 202 

A unique trehalose metabolism genotype is present in clade 3 strains 203 

Analysis of clade 3 strains for two trehalose clusters described to be important in global 204 

dissemination and virulence of C. difficile (17) showed a trehalose genotype unique to these strains. 205 

The primary cluster, in which SNP L172I defines increased metabolism in RT027 (clade 2) (Figure 2a), 206 

was absent from all clade 3 genomes analysed. This coincides with polymorphisms and a large 207 

deletion in sugar metabolism genes in clade 3, including beta-glucosidase genes (Supplementary 208 

Text). However, the RT078 (clade 5) second cluster (Figure 2b) was observed in all strains. 209 

Polymorphisms exist between the RT078 cluster in M120 cluster and RT023 CD305, with the most 210 

significant difference being a truncation of treX (Figure 2c). Between clade 3 strains there are only a 211 

small number of SNPs, predominantly in strain 91 (Supplementary Text).  212 

 213 
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Clade 3 have a glycosylated surface  214 

SlpA is the major surface protein of C. difficile comprised of high and low molecular proteins (HMW 215 

and LMW SLP) (18). A putative glycosylation cluster within the slp gene island (Figure 3a) for S-layer 216 

cassette type 11, SLCT11 (18), has been previously reported (19). 83 of the 86 strains contain this 217 

feature (Supplementary Table S2, Supplementary Figure S2). Strains 91, Ox2183 and WCHCD103 218 

from which this feature is absent are genetically distinct from other strains within this clade, with 219 

alternate slpA genes. In RT023 the slpA gene encodes a smaller LMW SLP than in other clades, 220 

predicted at approximately 18 kDa (Figure 3b). S-layer extracts of representative strains from each of 221 

the five clades of C. difficile show two distinct bands of equimolar ratio representing the HMW and 222 

LMW SLPs in clades 1, 2, 4 and 5 by Coomassie brilliant blue staining (Figure 3c). Strain Ox247 223 

(RT005, clade 1) containing SLCT11 (20) along with S-layer preparations from three representative 224 

RT023 strains show an alternative pattern of SLPs. HMW SLP migrates at its expected molecular 225 

weight, but a band at 18 kDa for LMW SLP is absent. A periodic acid-Schiff assay to stain for glycans 226 

on S-layer preparations showed glycosylated proteins at ~45 kDa only in strains containing the 227 

glycosylation cluster, demonstrating the presumed functionality of the cluster and glycosylation of S-228 

layer proteins.   229 

 230 

DISCUSSION  231 

This study provides a comprehensive analysis of clade 3 strains of C. difficile with an extensive report 232 

of RT023 CDI and detailed WGS analysis. The clinical characteristics of hospitalised patients with CDI 233 

due to RT023 showed CDI severity similar to the “hypervirulent” RT027 and RT078/126, with 234 

comparable CDI-related mortality, though overall mortality was lower in RT023 as previously 235 

reported (6). The phylogeny of clade 3 strains is compact, barring six distinct outliers. In contrast to 236 

clade 2 strains (RT027), clade 3 strains show great similarity consistent with a recently emerged 237 

clade under little selective pressure to evolve (21). WGS analysis revealed a unique trehalose 238 
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genotype and conserved incorporation of a glycosylation cassette into the clade 3 genomes which 239 

was demonstrated to glycosylate the S-layer. 240 

Considering previous investigations, the severity of disease is likely due to the production of binary 241 

toxin and the TcdC stop codon in RT023 (5). Recurrent infections due to RT023 were similar to other 242 

ribotypes. This contrasts with an earlier study, where RT023 was dominating among recurrent cases 243 

(22). We also observed more community acquisition of RT023 symptoms, but current reports cannot 244 

explain this observation. Circulating strains unlikely to be the source of RT023 with no 245 

representation of RT023 in a small group of C. difficile carriers (23) and a low representation in C. 246 

difficile infections in the community (24). The low proportion (2.4%) of CDI due to RT023 observed in 247 

this study in the Netherlands is consistent with a previous study on CDI in Europe (3).  248 

Strengths of this study are the high sample size, multicenter design with high number of hospitals in 249 

different geographic regions, and 10 years of available data, making the data generalizable for 250 

hospitalized patients. Similarly, a sample size of over 80 strains across 8 years from a variety of pan-251 

European sources for WGS, as well as published strains including Chinese strains, enabled us to 252 

understand the phylogeny of clade 3 in much greater detail. Limitations of the clinical data include 253 

the location of symptoms onset being documented but not the location of C. difficile acquisition. 254 

Furthermore, there was no data available regarding comorbidity, which might affect the outcome. 255 

Regarding severity of disease, occasionally not all laboratory parameters needing lab results were 256 

measured and included.  257 

It has recently been shown that S-layer glycosylation is important for adherence to Caco-2 intestinal 258 

epithelial cells but not biofilm formation (20). Therefore, glycosylation of the S-layer in clade 3 may 259 

be important for colonisation but not persistence, explaining a low level of carriage and recurrence 260 

of these strains. Despite severe clinical presentation this clade is not as widely disseminated as other 261 

clades. The emergence of RT027 and RT078 strains has been linked to an increased ability to 262 

metabolise the food additive trehalose (17). RT023 strains contain the second four gene cluster, 263 
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corroborated by a recent study of trehalose genes in all clades of C. difficile. The presence of only the 264 

secondary cluster and the SNPs between RT023 and RT078 may result in a difference in uptake and 265 

metabolism of trehalose between these strains, which could explain the relatively reduced 266 

prevalence of RT023 strains compared with RT078 and RT027 strains globally. No link between 267 

trehalose and adverse disease outcomes has been suggested (25). Meanwhile, the emergence of 268 

epidemic clade 2 strains has also been linked to environmental spore contamination and the 269 

acquisition of fluoroquinolone resistance, which is less pronounced for clade 3 strains (21). More 270 

analysis on sporulation in clade 3 is required as reduced sporulation efficiency and survival outside 271 

the human host has been reported (26), however, a recent study highlighted a clade 3 strain in China 272 

which had a high sporulation and germination rate (27).  273 

It remains to be determined why evolutionary distinct clades of C. difficile are emerging 274 

simultaneously to cause disease in human populations, or if C. difficile is evolving into subspecies 275 

(28). Our study suggests that a heightened awareness and continued surveillance of RT023 strains 276 

globally should be a current imperative.  277 
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FIGURE LEGENDS  384 

Figure 1: Phylogenetic Tree by MLST 385 

Phylogenetic tree of 86 strains generated from analysis of high-quality SNPs and coloured by MLST. 386 

A: full tree, with two cohort outliers (samples 91 and 108676), Ox2183 and three Chinese strains. B: 387 

the large, temporally indistinguishable main cluster, with reference CD305 and novel MLST strain 388 

OUS23024 indicated. 389 

 390 

Figure 2: Clade 3 show a unique trehalose genotype 391 

Schematic demonstrating the three trehalose metabolism genotypes observed in C. difficile with 392 

clade 3 strains lacking the primary trehalose metabolism cluster. A: RT012 630 and RT027 R20291 393 

genotypes of a primary trehalose cluster, with the L172I SNP associated with increased metabolism 394 

of trehalose. B: RT078 M120 genotype with primary and secondary trehalose metabolism gene 395 

clusters observed. C: RT023 CD305 trehalose genotype with only the secondary cluster including a 396 

truncated treX gene.  397 

 398 

Figure 3: Insertion of a glycosylation cluster results in S-layer glycosylation 399 

RT023 contains a glycosylation cluster within the slp gene island. A: Genomic organisation of the slp 400 

gene island in 630 (Clade 1) and CD305 (Clade 3) showing loss of Cwp2 and acquisition of a gene 401 

cluster comprising putative glycosylation genes (adapted from Kirk et al (18)). B: Structure of SlpA in 402 

630 and CD305 showing Cwp84 cleavage sites and truncated LMW (light grey) in CD305. C: 403 

Coomassie staining of S layer protein preparations from representative strains from each clade 404 

showing characteristic double banding for HMW and LMW SLP (grey arrows). D: Periodic acid-Schiff 405 

staining of glycans in S layer preparations.  406 
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 407 

 
 
Table 1. Comparison of clinical characteristics of patients with RT023 versus other ribotypes (excluding RT027 and RT078/126), RT027, RT078/126, RT014/020/295 and RT001.  

  Primary outcome 
 

Hypervirulent strains Non-hypervirulent strains  

  RT023, n=141 Others, n=4368 RT027, n=116 RT078/126, n=734 RT014/020/295, n=962 RT001, n=699 
All info 
available 

Age 71.4 [10.0, 97.7] 71.3 [1.9, 102.3] 73.2 [11.2, 91.5] 70.9 [5.2, 100.7] 70.4 [2.1, 99.2] 76.0 [3.3, 96.7]* 5359/5359 

Men 71 (50) 2095 (48) 63 (54) 365 (50) 444 (46) 344 (49) 5356/5359 

Severe CDI 45 (35) 880 (22)* 30 (29) 188 (27) 185 (21)* 104 (16)* 4948/5359 

Dehydration and/or hypoalbuminemia 25 (20) 450 (11)* 14 (14) 100 (15) 97 (11)* 44 (7)* 4940/5359 

Bloody diarrhoea 10 (8) 192 (5) 6 (6) 25 (4)* 34 (4)* 24 (4)* 4948/5359 

Pseudomembranous colitis 8 (6) 159 (4) 6 (6) 41 (6) 28 (3) 21 (3) 4948/5359 

Fever and leucocytosis 11 (9) 295 (7) 9 (9) 76 (11) 64 (7) 36 (6) 4940/5359 

Complicated course 13 (12) 485 (14) 21 (23)* 104 (17) 78 (10) 95 (17) 4387/5359 

Overall mortality 10 (9) 428 (12) 18 (19)* 98 (16)* 68 (9) 86 (15) 4387/5359 

CDI mortality 2 (2) 104 (3) 4 (4) 29 (5) 16 (2) 27 (5) 4387/5359 

Community onset 75 (54) 1545 (36)* 31 (27)* 272 (37)* 356 (38)* 155 (23)* 5283/5359 

CDI last 8 weeks 22 (27) 684 (25) 12 (20) 133 (29) 161 (27) 115 (25) 3312/5359 

Data are presented as number of cases (percentage). Age is presented as median [first quartile, third quartile], because of the skewed distribution. Categorical variables were 408 
compared by a Pearson’s Chi square test and numerical variables were compared by a Wilcoxon rank-sum test. An asterisk (*) represents a p-value<0.05, when comparing 409 
with RT023. Abbreviations: LTCF: longtermcare facility, HCF: healthcare facility, RT: ribotype, CDI: Clostridium difficile infection 410 
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