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Highlights
Hotspots are an intrinsic part of malaria
transmission biology.

The size of hotspots depends on the
spatial resolution of the input data with
important implications for any resulting
inference.

Where an infectious mosquito/human
interacts with a susceptible human/
mosquito determines the unit of trans-
mission. The underlying transmission
unit is currently unclear and may involve
complex nested spatial scales.
Asdata at progressively granular spatial scales becomeavailable, the temptation is
to target interventions to areas with higher malaria transmission – so-called
hotspots – with the aim of reducing transmission in the wider community. This
paper reviews literature to determine if hotspots are an intrinsic feature of malaria
epidemiology and whether current evidence supports hotspot-targeted interven-
tions. Hotspots are a consistent feature of malaria transmission at all endemicities.
The smallest spatial unit capable of supporting transmission is the household,
where peri-domestic transmission occurs. Whilst the value of focusing interven-
tions to high-burden areas is evident, there is currently limited evidence that
local-scale hotspots fuel transmission. As boundaries are often uncertain, there
is no conclusive evidence that hotspot-targeted interventions accelerate malaria
elimination.
Infections are more likely to be related
when detected closely in space and
time; advances in parasite genetic analy-
sis are needed to allow the elucidation of
transmission networks at local spatial
scales and inform the optimum scale
at which interventions need to be
undertaken.

Evidence for impact on transmission as a
result of hotspot-targeted strategies has
been limited but is likely due to con-
founding factors and an incomplete un-
derstanding of spatial transmission
dynamics.
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Spatially Targeted Interventions
Spatial heterogeneity has been recorded in themajority of disease systemswhereby certain areas
experiencemore intense transmission than others [1,2]. For malaria, this phenomenon has largely
been attributed to environmental risk factors, at both the macro (e.g., temperature, precipitation)
and the micro (e.g., local elevation, land use) spatial scales, linked to the Anopheles mosquito
vector’s preferred habitat and the temperature range that modifies the extrinsic incubation period
of the Plasmodium parasite [3–8]. However, environmental factors associated with Plasmodium
falciparum transmission are inconsistent in different settings, likely due to the diversity of vector
species, the analytical methods used to identify risk factors, and in some situations, the subopti-
mal resolution of available spatially referenced data [3,9–11]. The causes and consequences of
malaria spatial heterogeneity across the transmission spectrum are current areas of interest
both in terms of understanding and monitoring transmission but also for providing an opportunity
for more effective control [12–14].

Maps of malaria burden are of value and are increasingly used to prioritize resource allocation
[15,16]. In low-transmission settings there is a temptation to spatially target interventions as
finely as possible with the objective of targeting residual transmission in order to accelerate
the path to elimination [17]. Targeting malaria foci (see Glossary) in elimination and
postelimination settings has been recommended by the World Health Organization (WHO)
[18]. Interventions utilized by National Malaria Control Programmes (NMCPs) that are typically
considered for spatial targeting include reactive case detection (RACD), targeted mass
drug administration (tMDA), and targeted indoor residual spraying (tIRS) [19–21]. In
addition to the impact of these approaches within targeted areas, there is an assumption
that these ‘hotspots’ contribute disproportionately to maintaining transmission and that
targeting them will therefore achieve greater impact. Despite the attractiveness and biological
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Glossary
Foci: any area with active malaria
transmission: may consist of a cluster of
a few houses to entire countries or
regions.
Force of infection: the rate at which
individuals are exposed to malaria
infections, as either new or incident
infections or the number of new malaria
parasite clones acquired.
Hotspot: household or cluster of
households within an area of ongoing
transmission that have a higher burden
than the surrounding area andmay seed
transmission.
Long-lasting insecticide-treated
bednet (LLIN): netting impregnated
with durable insecticide formulations
placed over sleeping spaces, providing a
protective barrier to mosquito vectors.
Peri-domestic transmission: malaria
transmission occurs around the
household, therefore the household
location is a reasonable proxy for the
location where transmission has
occurred.
Reactive case detection (RACD): the
practice where a programmatically
detectable confirmed malaria infection
(e.g., a clinical case) is traced back to
their place of residence to either test for,
or presumptively treat, household
members and sometimes neighbors
under the assumption that additional
infections will be detected in proximity to
the index case.
Reproductive rate, basic (RO): the
number of secondary infections resulting
from a single infected individual in a naïve
population.
Reproductive rate accounting for
malaria control interventions (RC):
the number of secondary infections
resulting from a single infected individual
in a population implementing control
interventions that change the rate at
which an infection will generate
secondary cases , for example, in
malaria, use of LLINs or indoor residual
spraying will reduce the potential for
vectors to contract and transmit the
parasite.
SatScan: software for cluster detection
that employs Kuldorff’s scanning
statistic comparing the point data inside
a window with the global study area.
Options are available for binary or count
data, circular or elliptical shaped
windows, or adjusting for covariables
known to impact the disease.
Targeted indoor residual spraying
(tIRS): a campaign where the inside of
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plausibility of a spatially targeted approach as a means to interrupt onward transmission in low-
transmission settings where peri-domestic transmission occurs, it is important to examine
whether the available evidence justifies this approach and what knowledge gaps exist to quan-
tify the potential impact of hotspot-targeted interventions on malaria in the wider communities.
Therefore, the aim of this work is to undertake a critical review of literature on the spatial dynam-
ics of P. falciparum malaria transmission biology to understand if the evidence supports the
pursuit of spatially targeted interventions as part of malaria control and elimination programs.

Evidence for Spatial Heterogeneity of Malaria Infections
The notion of malaria hotspots has been in the literature for the last two decades, with hotspots
identified at a variety of spatial scales, and heterogeneity identified within and between communi-
ties, politically defined regions, and countries [1,15,22–26]. More recently, the spatial connected-
ness of malaria, related to travel behavior of (infected) individuals, has been used to identify
so-called sources and sinks in different regions [27]. Targeting malaria sources is important
but distinct from the topic of the current review that deals with hotspot-targeted interventions
that aim to reduce local transmission by targeting those high-burden areas within a locality
(hotspots). The term 'hotspot' has been used interchangeably to mean small geographic
regions all the way up to country level, with the subsequent interpretation depending on the
malaria metric(s) and spatial analytical methods used [28]. The definition of hotspot also
tends to vary depending on program objectives, spatial scale, and transmission intensity. For
clarity, in this review, the term ‘hotspot’ is considered to be a subnational area where malaria
is higher compared with the surrounding area (in places where peri-domestic transmission
occurs). In low-transmission settings, hotspots may be important in sustaining transmission
within foci [17,29]. The term ‘foci’ is here considered to be any area with active transmission
in settings with transmission ranging from pre-elimination to elimination, as defined by the
WHO [30]. We are considering hotspots to represent any spatial scale which could range
from a single household to an entire subnational region, depending on the transmission inten-
sity of the area and what is relevant for the operational aims of the programs (Table 1).

Hotspots in High-Transmission Settings
In higher-transmission areas, where granularity of heterogeneity is of less interest for defining
malaria intervention policy, national-level maps are justifiably utilized to prioritize highest risk
areas. Identification of the highest risk areas is typically conducted through risk mapping with na-
tional or global-level surfaces typically generated with a 1 or 5 km grid cell resolution [11,16,31].
Of note is that environmental suitability alone is not enough to identify high-burden areas, and the
models are improved when accounting for nonecological covariates, including intervention cover-
age, access to health services, and population density [4]. The precision and quality of maps will
always be linked to the spatial resolution and quality of the data used to inform predictions. In
terms of using these methods to define hotspots, the minimum hotspot size will be restricted
to the resolution of the map pixel used. In areas with high transmission, where the objectives
are to prioritize areas to target limited resources, the 1 or 5 km resolution is usually sufficient as
within-pixel heterogeneity, whilst almost certainly present, is less operationally relevant when
transmission is universally high (Table 1) [32].

Hotspots in Low-Transmission Settings
In lower transmission settings, targeting may aim to accelerate the path to elimination in a cost-
effective manner. For this, higher spatial resolution is required to increase the degree of heteroge-
neity detected with the resulting map more intrinsically linked to working with the optimal spatial
unit, which is dependent on transmission intensity and programmatic objectives (Table 1). For
example, in larger areas with hypo but stable endemic transmission focusing on heterogeneity
2 Trends in Parasitology, Month 2019, Vol. xx, No. xx



houses in a specified area is sprayed
with a long-lasting insecticide that will
both kill and repel the mosquito vector,
effectively reducing the vectorial
capacity.
Targeted mass drug administration
(tMDA): a campaign where entire
populations are given a curative dose of
malaria medication that also ideally has a
long prophylactic period to both cure
any current infection and protect from
reinfection.
Transmission network: linking
parasite strains in space and time to
trace the source and subsequent
spread of an infection in a population.
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at the village scale, hotspots have been detected ranging in size from a single community (Bioko
Island) to a cluster comprising over 40 villages (Cambodia) [33,34].

When malaria data with spatially referenced households are available, additional layers of hetero-
geneity become apparent with identified hotspots being as small as 120 meters in diameter, or
even single households, which becomes increasingly relevant in pre-elimination settings [35].
Individual and household-level heterogeneity in malaria risk has been well documented. The
majority of infections are routinely identified in less than half of all households within villages with
significant differences in malaria risk between households [36–40]. Between-household variability
has also been observed when exposure to the malaria vector was measured. Spatial variations in
Anopheles densities have been observed, with a few households experiencing a disproportionate
fraction of the overall mosquito burden [41,42]. Combining parasitological and entomological
data, evidence supports the notion that, in areas with peri-domestic transmission, households
may be the relevant spatial unit of transmission and would therefore be the optimal spatial
scale for delineating hotspots.

Hotspots in Elimination/Prevention of Reintroduction Settings
In areas where the objective is to achieve or maintain malaria elimination, taking a spatially defined
approach could be important to target the remaining vestiges of transmission, to maximize the
sensitivity of surveillance activities, and to confirm the absence of infections [30]. In settings aiming
to achieve elimination, the evidence to support the concept of hotspot-targeting is mixed. For
instance, the assumption that an index infection provides a source of parasites that spreads in
the surrounding population has fueled the use of RACD strategies [20]. However, the resource-
intensive RACD can yield few additional infections [e.g., 9 rapid diagnostic test (RDT) positives
of 1898 screened in a recent study evaluating RACD in Cambodia [43]], suggesting that there
may be a threshold in transmission where investigating hotspots yields too few additional infec-
tions to be of value [21,43]. Alternatively, RACD strategiesmay be of most value where population
levels of protective immunity are sufficient and asymptomatic infections are likely. In an immuno-
logically naïve population, as would be expected once transmission has been interrupted for a
sufficient period of time, secondary infections resulting from onwards transmission of the index
case are likely to result in clinical symptoms and, if access to care is adequate, makes reactive
testing and/or treatment activities less important [20].
Table 1. Approaches for Targeting High-Risk Populations in Different Transmission Settings

Transmission intensitya Relevant spatial scale for
interventions

Relevant definition of hotspot Programmatic objective
for spatially targeted
intervention

Targeted
intervention
options availableb

High/hypo/hyper
endemic; PfPR N50%

National or subnational areas
(e.g., districts)

Areas of higher burden Control; prioritize resources
to highest burden areas

IRS; LLIN; case
management

Stable/meso endemic;
PfPR ~ 10.1–50%

Subnational high-burden areas
(e.g., districts or villages)

Areas of higher burden Control; prioritize resources
to highest burden areas

IRS; LLIN; case
management

Unstable/hypo endemic;
PfPR ~ 1–10%

High-burden foci (e.g., individual
villages or parts of villages)

Areas of high burden that may serve as
a source to maintain transmission

Transmission reduction RACD; tMDA; tIRS;
case management

Unstable, nonendemic;
pre-elimination; PfPR b1

Small-scale hotspots (within village
foci or high-burden households)

Areas of high burden that may serve as
a source to maintain transmission

Transmission interruption RACD; tMDA; tIRS;
case management

Elimination/ prevention of
reintroduction

At-risk households or individuals Households with evidence of infection
or exposure that may reinitiate
transmission

Prevention of transmission
resurgence

RACD; tMDA; tIRS;
case management

aTransmission intensity was defined according to the strata outlined in [108].
bAbbreviations: IRS, indoor residual spraying; LLIN, long-lasting insecticide-treated bednets; PfPR. Plasmodium falciparum parasite rate; RACD, reactive case detection;
tIRS, targeted indoor residual spraying; tMDA, targeted mass drug administration.
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How Stable Are Hotspots Over Time?
There are two distinct spatiotemporal dynamics that have been associated with hotspot transmis-
sion in the literature: stable and unstable. Stable hotspots are consistent with the classic definition
of hotspots in the sense that they are persistent areas of higher burden within an area with overall
lower levels of transmission intensity [17]. Several studies have identified hotspots that are tempo-
rally stable and range in size from single households to several villages [34,44,45]. Characteristics
of stable hotspots include having a greater prevalence of asymptomatic infections and a younger
average age of clinical infections [45,46]. These findings are consistent with the development of
protective immunity resulting from higher levels of exposure in these populations. Due to their per-
sistence over time, stable hotspots have been found to be predictive of future malaria incidence,
with one study suggesting that they may seed transmission in the surrounding area [47–49].

In contrast, unstable hotspots have also been identified in the literature; they exhibit characteristics
similar to epidemics and tend to be characterized at more granular spatial resolution in low-trans-
mission settings. Unstable hotspots typically emerge during the peak transmission season and are
not necessarily sustained throughout the year; this is consistent with epidemics dying out [46,50].
Unstable hotspots by nature will not be identified in the same place over time, so they are poorly
predictive of future malaria risk [35,51,52]. Unstable hotspots are typically associated with more
symptomatic malaria in older age groups, consistent with expected lower levels of population
immunity in areas not experiencing continuous levels of exposure [53]. The presence of these
unstable hotspots suggests that malaria cannot be sustained in these populations without an intro-
duced infection. The frequency of unstable hotspots may potentially be a function of the broader
transmission intensity in the area and local population movement [54].

Both the presence and absence of spatiotemporal stability associated with detected hotspots in
low-transmission areas suggest that hotspots are a fundamental, yet stochastic, part of malaria-
transmission biology. In the next section we examine the evidence for whether these hotspots are
responsible for propagating transmission into broader areas.

Is There Evidence That Local-Scale Hotspots Amplify Transmission?
Malaria interventions have been found to influence the force of infection in neighboring,
untargeted communities [55,56]. This diffusion of infection has also been observed in E-Swatini,
an area with very low transmission, whereby additional infections clustered around detectable in-
fections [21]. However, other settings have demonstrated that the expected pattern of infections
spreading from high-burden households/areas to surrounding ones does not occur and that
household-level burden is more stochastic in nature [39]. Some of the inconsistencies in the evi-
dence may be explained by vector behavior. For an extreme example, if 100% of mosquitoes
are consistently biting the same 20% of the population this would effectively create a closed circuit
with limited spreading of infections to the wider community [57,58]. In reality, it is likely that hotspots
are both self-contained transmission units while also serving as the source of infections outside of
the hotspot contributing to the stochastic patterns observed and fueling unstable hotspots via
human and/or mosquito movement [54]. The implications of this potential dynamic are that it will
be harder to disentangle any intrinsic between household transmission. Evidence focusing on
transmission networks and any factors associated with any subsequent diffusion of parasites
between mosquitoes and people could answer this question directly.

Following the parasite genetic signature to link infections in time and space could confirm the
presence of hotspots and quantify the extent to which they seed transmission outside hotspot
boundaries [59]. Parasite genetic tools have been able to identify the source and routes of
propagation of malaria between communities, particularly in relation to population movement
4 Trends in Parasitology, Month 2019, Vol. xx, No. xx
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[60,61]. However, to address the question of hotspots, transmission dynamics within villages are
most relevant, ideally capturing both local human movement and the time and location of all new
parasites’ genetic barcode [62].

Evidence from some settings has been consistent with parasite transmission networks between
neighboring households or within households when samples are identified closely in time [63,64].
For example, studies in Colombia and Cameroon found that there was a high probability of
sampling-related parasites in different residents of the same and neighboring households
[65,66]. Yet, there are also reports that have identified limited spatiotemporal correlation in
parasite strains, consistent with local transmission networks being more stochastic in nature
[67,68]. For instance, work in Senegal found that parasites with similar genetic barcodes
were not clustered within households [69]. The lack of a clear spatial clustering of genetically
related parasites in these studies may be due to technical limitations in data analytical methods,
study designs used not employing optimal sampling methods both in terms of space and time
to capture all transmission events, or transmission being too high within the broader foci to
discern a signal. In addition, the presence of undetected asymptomatic and/or polyclonal infec-
tions that are poorly amplified with current technologies, or challenges with identifying key
parasite genetic markers within each setting that are relatively conserved but able to determine
heredity, may play a role and blur patterns, thereby yielding insufficient discriminative power to
identify related infections (see Box 1 for further discussion) [70,71].

Evidence of the Impact of Spatially Targeted Interventions
To reduce malaria transmission, a strategy must target and eliminate enough of the parasite
reservoir in humans and/or mosquitoes before it can be replenished either by infections missed
by the campaign or from human movement bringing in parasites from the surrounding areas
[19,43]. The impact of hotspot-targeted interventions for reducing transmission in low-
transmission settings, where hotspot dynamics are more relevant, has been mixed. In settings
where village-level interventions, including tMDA and/or tIRS, have been employed, transmission
is often temporarily reduced, but gains are not always sustained [19,20]. Several factors likely
impact the efficacy of hotspot-targeted interventions to date, including not having sufficient
control populations with which to evaluate efficacy, incomplete intervention coverage, not sus-
taining interventions long enough to interrupt transmission, or not accounting for population
movement reintroducing parasites into the population postintervention. Also, when community-
based hotspot-targeted activities have been attempted in the research context, hotspots are
typically defined in one transmission season, with targeted interventions often applied in the
subsequent season: effectively assuming that all hotspots identified are stable and correctly
Box 1. Considerations for Data Collection with the Aim of Teasing Apart Malaria-Transmission Networks

• A sufficient proportion of all prevalent infections should be mapped in space and time, and parasite genotypes
determined with markers related to parental lineage targeting conserved regions that are able to link parasite
generations, accounting for the high rates of parasite recombination. All subsequent incident infections should be
captured, and parasites similarly typed.

• The detection limit of genotyping tools must ensure that low-density infections can be characterized and mapped.
• Multiclonal infections must be accounted for and included in any analysis, something not easily achieved with current

genetic tools. In other words, when an individual is infected with more than one parasite, the parasite barcode for each
unique clone must be identified with high degrees of confidence.

• Analytical methods to determine if infections are related must account for the sexual recombination and the extrinsic
incubation period of the Plasmodium parasites.

• Local movement of humans (e.g., whether they spend the night in other houses within a village or travel that otherwise
incurs exposure risks) must be measured to determine the appropriate unit of transmission for each infection.

• To identify parasite strains that can be considered as the parent infection, it may maximize the likelihood of detecting a
network if all prevalent infections are cleared prior to the study, or if the study begins during the low-transmission season.

Trend
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delineated. Between the time when an area is labelled as ‘hot’ and deploying interventions the
hotspot location and/or size may have changed, which could limit any expected impact [72].

In terms of RACD-type interventions, where households and/or neighbors of index cases are
targeted, there is currently no evidence that this results in transmission reduction [21,39]. The
lack of impact may be due to suboptimal implementation or evaluation, as described above. It
is more plausible that the proportion of infections that are targeted is insufficient to result in a
sustained decrease in transmission: one third to one half of infected individuals and high-
burden households may evade detection by current methods (Figure 1) [35,73–75]. Furthermore,
the time between detection and response may be an important confounder. Strategies using a
clinical-based reactive strategy (i.e., RACD) attempt to respond to the households to be targeted
within a week of the case being reported, and this may be too long to prevent subsequent trans-
mission. Similarly, for RACD to be considered as a transmission-reduction strategy, one would
have to assume that all ‘hotspots’will have a symptomatic case [74,76,77]. In elimination settings
that are immunologically naïve, this assumption is likely valid, and RACD strategies could help to
TrendsTrends inin ParasitologyParasitology

(A)

(B)

Figure 1. High-Burden Households Consistently Located Outside of ‘Hotspots’. Current malaria metrics used to
measure, and spatial methods used to delineate, hotspots consistently miss some high-burden households. This measuremen
bias may be why hotspot-targeted approaches within villages show limited impact on sustained reductions in transmission. The
plot shown is of the data collected in the Western Kenyan highlands (A) as has been described [72], with areas identified as
hotspots delineated by SatScan shown in red. The sampled households are shown as the circles, with the color denoting the
prevalence of malaria within the household, with a section zoomed in (B) to provide an example of the number and distribution o
households not included as part of a hotspot. In this setting, of the 3204 households sampled, 778 of 1866 households with
zero infections detected (46.1%) were within the hotspot boundaries, and 47 of 121 (38.8%) high-burden households (PCR
prevalence N70%) were not included within hotspot boundaries.
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contain transmission as part of outbreak responses. However, in pre-elimination settings, limited
impact on transmission is expected.

Before it will be possible to confirm or disprove the theory that local-level hotspots in low-
transmission settings fuel or sustain transmission, it will be important to address the potential
confounding factors that may obscure our ability to implement locally targeted intervention
strategies to achieve maximum impact.

Confounding the Hotspot Issue: Why Evidence of Impact is Elusive
Several factorsmay bemasking our ability to detect the hypothesized trends. The inconsistent or lack
of impact may be partly due to our incomplete understanding of the transmission biology in terms of
relevant spatial units and a lack of a clear standard for delineating and defining hotspots appropriately.

Unit of Transmission
In higher transmission settings, programs typically target interventions based on a convenient
administrative unit that may not reflect the relevant spatial unit of transmission. To date, studies
have defined the unit of spatial analysis opportunistically based on the spatial resolution of the
available data, including politically defined units (e.g., districts), health facility catchment areas,
village-, household-, and pixel-level with the size depending on the resolution of the input raster
layers [78–82]. In settings where transmission intensity is higher, whereby a health facility catchment
or entire village is the logical spatial unit to receive interventions, or interventions are most effective
when there is an expected community effect, working at this resolution appears appropriate.

However, the base unit of transmission likely exists at the intersection of two nested components:
one being the area over which themosquito vector travels from a specific breeding site to feed, and
the second being where humans interact with the vector (Figure 2, Key Figure) [83,84]. The role of
the vector habitat in driving hotspots is supported by ecological factors conducive to mosquito
breeding and measures of vector density consistently associated with higher risk of malaria [85,
86]. The second relevant spatial scale, where the infectious mosquito comes into contact with
the human, is also intuitive and is consistent with spatial analysis consistently using the household
location as the proxy for the location of transmission [6]. This assumption is not valid in settings
where transmission occurs in nondomestic settings, that is, the forest or other ecological niches
[29]. Translating these nested spatial scales, which may consist of a single household or two
households linked by the distance between where a mosquito ingests gametocytes, becomes in-
fectious, and where that infection was subsequently retransmitted into a hotspot that can be de-
tected by spatial algorithms, will be required for any spreading effect to be observed. Identifying
these potentially nested spatial scales becomes even more difficult in practice when also account-
ing for the heterogeneities and nuances within transmission systems, including mosquito vector
dynamics, human genetic factors modifying susceptibility (Box 2), short- or long-distance move-
ment of individuals, and the expected lag-time between related infections [87].

Delineating Hotspots: Implications for Choice of Hotspot Detection Method
Statistically, ‘hotspots’within foci have been delineated using different methods, including cluster
detection algorithms and geostatistical models [88,89]. Spatial clustering detection algorithms
generally involve comparing the density of points (i.e., malaria infections) within a defined area
with the distribution of all sampled points (both negative and positive cases) in the entire study
area, with Kulldorf’s spatial scanning statistic (SatScan) and Getis Ord-Gi* being the most regu-
larly applied tools [31,90]. Spatial prediction algorithms, using model based geostatistics, kriging,
or regression trees, for example, are used to estimate the malaria burden at unsampled locations
informed by the available malaria data and any relevant covariable information available such as
Trends in Parasitology, Month 2019, Vol. xx, No. xx 7



Key Figure

Schematic to Represent the Unit of Malaria Transmission.

Parasite burden In 
humans (low to high)

Humans exposed to infec�ous mosquito

Mosquito exposed 
to infec�ous 

humans
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Figure 2. Malaria transmission requires the interface between an infectious Anopheles mosquito vector and a susceptible
human host. In areas with transmission expected to occur around the household, the unit of transmission is likely to be
the nested space where the mosquito interacts with the infectious human, and the human subsequently interacts with the
infectious mosquito. These units are not necessarily static over time and space and could consist of a single household o
two households connected by the plausible flight range of the mosquito. The dark grey area is shaded to represent where
the mosquito is expected to be infected by humans, with the broader light-grey area representing the area where humans
could become infected by an infectious mosquito. Houses are colored to represent the parasite burden in the humans
with the arrows denoting possible routes for how parasites move between households (with transmission also expected to
occur within the household). Adapted from [17].

Trends in Parasitology
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long-lasting insecticide-treated bednet (LLIN) coverage, elevation, or land use to help pre-
dictions. Hotspots are then considered as those areas where the predicted burden is at or
above a predefined threshold with a given degree of certainty [91]. Analytically, each of these
methods is different, with the appropriateness of the tool depending on the specific question
of interest, the data available, and any underlying spatial dynamics present. Therefore, it is
unsurprising that the precise boundaries delineated are sensitive to the methods used to define
them [92]. Until there is a standard for what constitutes a hotspot, the optimum method or
minimum data required for delineating it cannot be effectively determined, and the impact of a
targeted strategy cannot be fairly ascertained. Furthermore, for spatial analysis to be meaningful,
the spatial unit used to represent the location of transmission should be representative of the
expected epidemiological dynamics, with the household location being relevant only where
peri-domestic transmission occurs.

The sample size used to inform the spatial algorithm also impacts how hotspots are delineated
[93]. For example, a study in Kenya demonstrated that, as the spatial denominator became
more granular, the resulting areas considered to be hotspots were refined [53]. If the extent of
any identified hotspots depends on the spatial resolution of the input data and spatial method
employed, to what extent do any identified hotspots reflect areas that maintain transmission vs.
a spatial process reflecting the quality of the data available and algorithms employed? If the former



Box 2. Unquantified Impacts of Vector Behavior and Human Genetics on Hotspots

Vector Ecology

Interaction between the human and the mosquito vector is a necessary component for malaria transmission to take place. In
areas with peri-domestic transmission, this is assumed to take place within or around the household as Anopheles
mosquitoes are typically active at night. However, transmission can also take place in forest or other settings, depending
on the ecology of the specific vector species and risk factors for infection (e.g., hot-pops) [29,99]. Transmission hotspots could
therefore be considered as the areas within both the normal flight distance from the vector breeding site, the density of
mosquitoes that are old enough to have survived the extrinsic incubation period, and the availability of suitable hosts for blood
meals [22]. In settings where breeding sites are not static and are strongly influenced by (seasonal) rains, areas to be
considered as a ‘hotspot’ may change accordingly and account for the degree of stability/instability of hotspots observed
in the field. Other potentially modifying factors include wind speed and direction, and availability of alternative species providing
an acceptable bloodmeal source, and distribution of vector-control interventions, none of which are static factors [57].

Heterogeneity of exposure to mosquito vectors will vary at the household and individual level. Mosquito abundance and
subsequent risk of malaria will be modified by household factors, including the presence of containers providing a source
of stagnant water, house construction, use of vector-control interventions such as insecticide residual spraying or the use
of LLINs, as some examples [100,101]. Individual-level factors may also confound hotspot analysis. Exposure tomosquitoes
can still be substantially different within the same household, with mosquitoes exhibiting preferential biting behavior towards
specific individuals based on their attractiveness or who is not protected by LLINs [41,102]. For example, adults tend to be
bitten more frequently than children [103,104]. Generally, vector ecology, and how it relates to malaria-infectious individuals,
may drive hotspot transmission dynamics, confound efforts to understand and delineate them, or a combination of both.
Teasing apart this complex interaction would lead to being able to better map transmission between individuals and identify
who contributes disproportionately to onward transmission.

Human Genetics

Human genetic diversity may also modify malaria hotspot dynamics. It has been suggested that approximately 25% of the
variation in individual susceptibility is due to host genetic factors [105,106]. Several genetic factors, including the sickle-cell
trait, α-thalassemia, gucose-6-phosphate dehydrogenase deficiency, and having the O blood group, offer protection against
infection, clinical symptoms, or severe disease [66,107]. An individual's attractiveness tomosquitoes has also been identified
as a heritable trait, with those least attractive protected from malaria and those most attractive being most at risk [98,104].
When genetically similar groups cluster together in space, as happens with a family unit in a household, or genetically similar
populations in villages, it could impact the observed spatial patterns of malaria but may not be connected with hotspot trans-
mission dynamics. Although it may not be practical to measure all of these characteristics, which are likely secondary in
importancewhen compared to environmental characteristics, the human genetic component and their relative attractiveness
to mosquitoes adds another layer of complexity to delineating hotspots of malaria transmission.

Trends in Parasitology

Trend
is true, then the evidence supports the use of these methods to initiate hotspot-targeted strate-
gies where the aim is to reduce transmission. If the latter explanation is closer to reality,
either hotspot-targeted strategies with the expectation that efforts will result in a sustained
decrease in transmission are not justified or approaches should be refined to better reflect the
nuances in spatially delineated transmission.

Delineating Hotspots: Implications for Choice of Malaria Metric
Malaria transmission is ideally measured in a way that accounts for all components of
the parasite lifecycle. The basic reproductive rate (RO), or reproductive rate
accounting for malaria control interventions (RC), which provide a direct measure of
transmission efficiency could be used, but this is difficult to measure in practice [94]. In-
stead, proxies of transmission measuring a single component of the parasite lifecycle,
such as prevalence of infection in the human population or entomological inoculation
rate, are typically used [32]. In practice, different metrics tend to identify different areas
as hotspots and it is often unclear how best to operationally use the information garnered
[28,95]. Alternative approaches that may lead to more accurate hotspots could be to
consider combined metrics that account for different measurable components of transmis-
sion or to account for the nested and overlapping factors that enable exposure, although
this increases the logistical expense.
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Outstanding Questions
What is the geographical unit of malaria
transmission in different epidemiologies?

How does short-distance popula-
tion movement affect this unit of
transmission?

What metric(s) and spatial method(s)
can most accurately delineate
hotspots of malaria transmission?

How can we map transmission
networks, ensuring the largest possible
fraction of infections in humans linked to
its parent infection?

When mapping transmission networks,
do you gain extra resolution by including
entomological assessments whereby
parasite genotypes are determined in
infected/infectious mosquitoes?

What is the relevant temporal window
between detected infections whereby
they are likely to be linked transmission
events?

What is the optimum duration of
hotspot-targeted interventions to ob-
serve an effect in the wider community?
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Ultimately, the malaria metric and spatial method used will impact the feasibility and sensitivity
of hotspot detection [96,97]. Regardless of which method and malaria metric are used, some
areas/households will always be identified as ‘hot’ but there will also be households missed or
erroneously included (Figure 1) [98]. For example, if malaria is measured by RDT alone, any
resulting hotspot will not account for infections with parasite densities below the limit of detec-
tion of the tool. Similarly, if a cluster detection algorithm is used, assuming the household is the
location of transmission, it will identify areas which can be a group of houses or a single house
that has higher transmission than the surrounding area. Some houses may not meet criteria to
form part of a statistically significant hotspot but are nevertheless characterized by above-
average malaria exposure and may contribute to sustaining transmission. As transmission
becomes very low, and only key foci sustaining transmission remain, their delineation may
become consistent irrespective of the metric used [93]. However, being able to identify the
‘truth’ for what constitutes a hotspot, if they are truly present within the investigated locality,
is required before the optimal metric(s) and method can be identified and any associated
measurement biases can be accurately ascertained.

Concluding Remarks
The decision to undertake a spatially targeted approach for malaria control is ideally made
based on the available evidence that justifies its use. Hotspots have been identified in many
settings, across all transmission intensities, using different malaria metrics and spatial statistical
methods. Defining hotspots and a relevant spatial scale based on transmission intensity and
program objectives provides a consistent framework in which hotspot theory should be
applied. In high-transmission settings, identifying that smallest geographical unit of transmis-
sion is less relevant given that a large proportion of the population is infected, meaning that a
uniformly applied strategy, as is currently being advocated, is most appropriate. In areas
where transmission occurs in the forest or other nondomestic settings, spatially delineated
targeted approaches should not be employed, with a targeted approach to high-risk individuals
being more appropriate.

In low-transmission settings where a more granular spatially targeted approach becomes
attractive, the evidence is mixed. This review suggests that hotspots are an intrinsic part of ma-
laria-transmission biology, with the household being the smallest operational unit capable of sus-
taining transmission (where peri-domestic transmission occurs). However, there is no conclusive
evidence as to whether hotspots fuel transmission to an extent that justifies their preferential
targeting. This lack of evidencemay in part stem from factors confounding our ability to accurately
measure hotspots and transmission from hotspots (see Outstanding Questions). The pressing
need is to ensure that a robust approach is developed, ideally one that enables an accurate de-
lineation of parasite transmission networks within and between households (Box 1). Improve-
ments in the available tools and analytical techniques to map parasite lineage and to enable
tracking of sexually recombining Plasmodium parasites between individuals (via the mosquito
vector) may provide the required evidence to confirm to what extent high-burden households
seed transmission and how this can be most effectively delineated with available spatial tools
and malaria data [59]. Until this evidence is available, a hotspot-targeted strategy with reactive
drug or vector-control strategies targeting the household, or entire communities, is justified
once transmission becomes sufficiently low and focal but alone may not lead to a sustained re-
duction in transmission outside of the targeted area.
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