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Abstract

Cost effectiveness analysis (CEA) of randomised trials are an important source of evidence

for informing policy makers on how to best allocate limited resources. Missing data

are a common issue in trial-based CEA, and methods such as multiple imputation are

now commonly used to account for the missing values, assuming the data are ‘missing at

random’ (MAR). This implies that the reasons for the missing data can be explained by the

observed data. However, the missingness is often related to unobserved values, that is data

are ‘missing not at random’ (MNAR, or ‘informative’). For example, patients whose health

status is relatively poor may be less likely to return health questionnaires, even conditional

on their observed characteristics. In these settings, methodological guidance recommends

assessing whether conclusions are sensitive to departures from the MAR assumption.

Sensitivity analysis strategies for handling MNAR is an area of rapid development in

medical statistics, but this form of uncertainty has not yet been appropriately addressed

in health economics.

This PhD thesis aims to develop practical, accessible sensitivity analysis strategies and

software tools to handle MNAR data in trial-based CEA.

The thesis critically assessed the statistical methods for handling MNAR data in CEA

practice, and identified barriers to more widespread use of these methods, via a systematic

review and stakeholder focus groups. The research then focused on two strategies to

conduct sensitivity analysis under MNAR assumptions: pattern-mixture models, which

involve imputing the data assuming MAR, then modifying the imputed values to reflect

possible departures from that assumption; and reference-based imputation, where the data

are imputed assuming a distribution borrowed from a ‘reference group’. These approaches

were illustrated in CEAs of 10TT and CoBalT trials, which evaluated weight loss and

depression interventions. Software code and practical guidance are provided to facilitate

implementation in practice.
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Chapter 1

Introduction

1.1 Motivation

Health policy-makers worldwide aim to maximise population health given resource constraints.

Cost effectiveness analyses of randomised trials are an important source of information to help

decide which health care programmes to provide. Such studies can only provide a sound basis for

policy-making if they use appropriate analytical methods. An outstanding concern is that there

may be missing data, for example, because patients are lost to follow-up or fail to respond or fully

complete quality-of life (QoL) or resource use questionnaires.

Any analysis of trials with missing data relies on untestable assumptions, and there is now greater

awareness that naive analysis under a single simplistic assumption has the potential to bias statistical

inference [1–3]. The main challenge is that — even given the information in the observed data —

the reason for data being missing may well depend on the underlying, unobserved data values.

In this case the data are said to be informatively missing or Missing Not At Random (MNAR).

The consequence is that the statistical distribution of the missing effectiveness and/or cost data is

systematically different from that of the observed data. The importance of this issue has gained

wider recognition in recent statistical guidelines [4–6].

However, in trial based cost effectiveness evaluation (CEA), it is still very common to make the

simple, and often naive, assumption that the data areMissing Completely At Random (MCAR) (i.e.

that the reason for data being missing does not depend on the underlying values) [7]. Some studies

investigate the implications of assuming MCAR by making a more plausible Missing At Random

(MAR) assumption in a sensitivity analysis, typically using multiple imputation [8]. The MAR

assumption states that, given the observed data, the reason for the missing data does not depend
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on the underlying unseen values. However, this is an untestable assumption, and cost-effectiveness

studies rarely investigate any potential departures from it. While statistical methods for dealing

with informative missing data are available, they have yet to permeate economic evaluation studies.

The reasons for this are unclear, but may be associated with a lack of adaptation of the biostatistics

methods to the cost-effectiveness analysis context, or a lack of practical guidance or tools to implement

them.

The particular issues raised by informative missingness are illustrated in the 10 Top Tips (10TT)

[9] and CoBalT [10] trials. 10TT evaluated a brief weight-loss intervention for obese patients,

and CoBalT Cognitive Behaviour Therapy (CBT) for patients with treatment-resistant depression,

both in primary care setting. In both trials, not all randomised participants completed the entire

study follow-up, and it is quite possible that data are informatively missing. For example, it is

well-recognised in weight loss trials that completion could be associated with outcomes [11]. A

key question is the extent to which the effectiveness and cost-effectiveness of the intervention is

sensitive to the assumptions made about the missing data. Simply performing one analysis runs a

high risk of placing unwarranted confidence in results which are, in fact, biased.

We need a framework for expressing the assumptions in an accessible way to the analysts and other

Stakeholders, and appropriate statistical methods for valid inference under specific assumptions.

1.2 Aim and objectives

The overall aim of this thesis is to develop accessible tools and recommendations to perform cost-

effectiveness analysis of randomised trials when data may be informatively missing.

To achieve this, the specific objectives are to:

1. review how missing data are currently addressed in trial-based CEA;

2. identify the needs and barriers of analysts and other Stakeholders in relation to implementation

of CEA under MNAR assumptions;

3. provide tools and practical guidance to implement pattern-mixture model after multiple

imputation in CEA; and

4. resolve methodological issues and provide tools to implement reference-based imputation in

CEA.
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Specifically, the plan for the thesis is as follows. Chapter 2 introduces the background and concepts

relevant to the thesis. Then Chapter 3 reviews current missing data practice in CEA. Chapter 4

reports on discussions held with Stakeholders on the issue of informative missing data. In Chapters

5 and 6 we present two approaches for conducting sensitivity analysis in CEA with informatively

missing data. We finish by a discussion of the findings and their implications for current practice

and future research.
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Chapter 2

Background

2.1 Cost-effectiveness analyses

2.1.1 Cost-effectiveness analysis alongside randomised trial

Health economics is a key discipline underpinning health systems functioning, and strongly influences

how healthcare is funded and provided [12]. Economic evaluation is a branch of health economics,

characterised by the comparison of different health ‘options’ (health technologies, public health

interventions, etc.) in terms both of their costs and their consequences [13]. CEA is the main type

of economic evaluation, where ‘consequences’ are measured in health units, such as number of

malaria cases averted, or quality-adjusted life years gained. It is used by policy makers worldwide

(e.g. NICE [14] and theWorldHealthOrganisation [15]) with the aim ofmaximising health benefits

within a constrained budget. When comparing two (or more) alternative health interventions, a

CEA typically aims to estimate the difference in costs relative to the difference in health units.

For example, implementing a malaria intervention could cost on average £200 for each malaria

case averted. This information is used by policy makers as an indicator of whether an intervention

provides good value for money, and to identify the most ‘cost-effective’ choice among different

options. To decide whether an intervention provides good value for money, policy makers typically

have to attribute a monetary value they consider affordable to each ‘unit’ of health benefit. This is

referred to as the willingness-to-pay (WTP) threshold.

Policy-makers often have to make decisions across different disease areas, for instance to decide

whether it is more cost-effective to fund a malaria intervention or a new cancer treatment. Quality-

adjusted life years (QALYs) — a composite measure of gain of life-expectancy and health-related

quality-of-life [12,16] — aim to facilitate such comparison across disease areas, and are therefore
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commonly used as a generic measure of health benefit. In the UK, it is recognised that NICE

typically uses a WTP threshold of around £20,000 or £30,000 per QALY gain to assess whether an

intervention is cost-effective [17]. Given its relevance to decision makers, this thesis focus mainly

on QALYs as effectiveness measure.

Randomised controlled trials provide an ideal vehicle to collect data on costs and effectiveness

of new interventions [18, 19]. When a CEA is conducted based on randomised trial data, this

is commonly referred to as a ‘within trial’ or ‘trial-based’ CEA. Collection of economic data as

part of clinical trials is now increasingly common [20], and research funders such as NIHR HTA

require the trials they fund to include an economic evaluation [21]. Randomised trials provide a

key source of information for decision-making, as they allow unbiased estimation of the difference

in costs and in effectiveness between interventions compared [18, 20]. It is therefore critical that

methodological issues commonly encountered in RCTs, such as missing data, are appropriately

taken into account in the CEA; this is the focus of this thesis.

2.1.2 Statistical analysis of cost-effectiveness data

Consider the main estimands of interest in CEA. Denote by t = A,B the two interventions

compared (this can be extended to any additional pairwise comparisons). CEA is principally

concerned with estimating two quantities: ∆C = µCB−µCA and ∆E = µEB−µEA, where µCt and µEt
represent the expected (mean) cost and effectiveness of the intervention t. From these quantities, an

incremental cost-effectiveness ratio (ICER) can be derived, defined as ICER= ∆C/∆E , capturing

the expected difference in costs per unit of effectiveness. The interpretation of the ICER is not

always straightforward, as both the numerator and the denominator can be null or negative (the same

ICER can represent two opposite results). The mean differences in cost and in effect are therefore

also commonly represented graphically on a cost-effectiveness plane (CEP), with the difference in

effect on the horizontal axis and in cost on the vertical axis (Figure 2.1). An intervention is said

to ‘dominate’ its comparator if (∆C ,∆E) is in the South-East quadrant (more effective and less

costly), and to be ‘dominated’ if it sits in the North-West quadrant (less effective and costlier).

When the intervention sits in the South-West, or more commonly, in the North-East quadrant

(more effective but costlier), deciding whether an intervention represents good value for money will

depend on the WTP threshold. To facilitate interpretation, a straight line defined by ∆C = λ.∆E

can be plotted, where λ is the WTP threshold. An intervention will be considered cost effective

when (∆C ,∆E) sits below the line. At a given WTP, the interventions can also be compared in

terms of Incremental Net Monetary Benefit (INMB). That is INMB= λ.∆E − ∆C , representing
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the average benefit of intervention B compared to A, in monetary unit. A positive INMB indicates

that B is more cost-effective than A.

Figure 2.1: Cost-effectiveness plane

Cost-effectiveness data exhibit several challenging features compared to clinical outcomes, and the

analytical methods differ, to a certain extent, from those typically used in the analysis of clinical

effectiveness.

First, cost and effectiveness data are usually non-normally distributed. For example, the costs are

typically right skewed, with a peak close to zero for participants using few health care resources, and

a long right tail reflecting a minority of patients with very high costs [22]. This may explain why

non-parametric bootstrapping [23] is commonly used. It is worth noting that CEA is concerned

with inference about means (i.e. average cost of the intervention in the population), and some

approaches for handling non-normal data, such as transforming the data, or comparing medians,

are therefore not recommended [22].

Second, the cost and effectiveness endpoints are usually correlated. This needs to be taken into

account when capturing the uncertainty in cost-effectiveness ratio. A popular method to express

the joint uncertainty in ∆C and ∆E is to represent it graphically on the CEP. Non-parametric

bootstrapping can be used, and the replicates of ∆C and ∆E plotted to represent the posterior

joint distribution [24]. Parametric alternatives include using seemingly-unrelated regression which

models cost and effect in separate models related though correlated error terms [25]; essentially a

bivariate joint model.

Third, an important difference is that CEA and primary clinical trial analysis actually have different

objectives. The latter typically aims to demonstrate the efficacy of a novel intervention, and is

primarily interested in hypothesis testing. The former aims to inform decision-making and to
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recommend the best decision based on the cost-effectiveness information available, recognising

that both implementing or not implementing an intervention will have consequences in terms of

cost and health. The CEA therefore aims to inform a choice, and reflect the uncertainty of that

choice, not to provide statistical evidence for or against a specific hypothesis. A popular approach

to address this question is to derive the probability for the intervention to be more cost-effective

than the control, at a given WTP. This can be estimated non-parametrically, based on bootstrap

replicates, or parametrically, based on a regression of the INMB, or seemingly-unrelated regression

of the cost and effectiveness endpoints.

Fourth, whether an intervention is considered cost-effective will depend on the policy-makers’

WTP. Analysts therefore needs to reports results across a range of WTP. A popular approach for

this is to plot the probability for the intervention to be cost-effective over a range of WTP. This

is referred to as the ‘Cost-effectiveness Acceptability Curve’ (CEAC) [26], which can be used by

decision makers to identify the most cost-effective option, and the underlying uncertainty in that

choice, depending on their WTP.

Finally, CEA are often based on self-reported measures, collected on multiple occasions, over a

relatively long period of time. This has implications for the completeness of the data, and the

choice of method to handle them, as discussed in Section 2.3.

2.2 Missing data

2.2.1 Missing data mechanisms

An important concept to discuss missing data is the taxonomy of the missing data mechanism, first

developed by Rubin [27], then refined in various works, notably by Little and Rubin [28]. In the

context of a randomised clinical trial with partially observed outcomes, let us denote by:

- X a set of fully observed variables, including the randomisation arm and baseline variables;

- Y = (Y.1, Y.2, · · · , Y.J) a set of J variables of interest which are partially observed;

- Yij the value of the variable j for the patient i;

- M = (M.1,M.2, · · ·M.J) the matrix of indicators of whether Y is missing (for each patient i

and variable j,Mij = 1 ifYij is missing and 0 otherwise), also referred to as the ‘missingness

pattern’; and

- Yobs the observed entries of Y , and Ymiss its missing components.

Let also [X] denote the probability distribution of a random variableX , and [X|Y ] the conditional

distribution of X given Y .
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The missing data are said to be:

- Missing Completely At Random (MCAR) if the missingness is independent ofX or Y , that

is if [M |X,Yobs, Ymiss] = [M ].

- Missing At Random (MAR) if the missingness depends of the observed variables, but is

independent of the unobserved values, that is if [M |X,Yobs, Ymiss] = [M |X,Yobs].

- Missing Not At Random (MNAR, also called ‘informative’, or ‘non-ignorable’ missingness)

when the data are neither MCAR nor MAR, that is if the distribution ofM is dependent of

Ymiss, even after conditioning on X and Yobs, or if [M |X,Yobs, Ymiss] 6= [M |X,Yobs].

Based on the observed data, it is not possible to distinguish betweenMAR andMNARmechanisms.

MAR is an attractive assumption, as valid inference can be drawn based on the observed data.

For example in a longitudinal study, it assumes the distribution of later follow-up data, given the

baseline and earlier data, is the same whether or not the later follow-up data are observed. While

MAR assumption is often questionable, MNAR is substantially more challenging as it implies some

of the information needed to draw valid inference are not observed, and that further assumptions

are needed. This probably explains why the MAR assumption is typically chosen for the primary

analysis, while MNAR assumption is more often considered in the context of sensitivity analyses

[28, 29].

For this thesis, we focus on missing outcome (response) variables as most relevant to the MNAR

issue. For a discussion on missing baseline variables in randomised trials see for example White

and Thompson [30] and Carpenter and Kenward [31].

2.2.2 Statistical models for informative missingness

Informative missing data implies that inference requires Y andM to be modelled jointly, but that

part of this joint distribution cannot be identified from the data at hand. To conduct sensitivity

analyses under MNAR assumptions (MNAR SA), two factorisation of the joint distribution are

commonly used:

- Selection models:

[M,Y |X] = [Y |X][M |X,Y ]

Where [Y |X] represents the distribution of Y (conditionally on X) in the population, and

[M |Y,X] how the probability of the missingness pattern depends on Y and X . [M |Y,X]

is not estimable based on the observed data, but making different assumptions about its
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form (i.e. how the chance of being missing varies with Y ) allows sensitivity analyses to

be performed (see below and Chapter 5).

- Pattern-mixture models (PMM):

[M,Y |X] = [M |X][Y |X,M ]

Where [M |X] represents the probability of each missing data pattern in the population, and

[Y |M,X] the distribution of Y within each of these pattern. [Y |M,X] is unknown, but

making different assumptions about its distribution (i.e. how the distribution of Y varies

across pattern of observed and missing data) allows sensitivity analyses to be performed

(see below and Chapter 5 and 6).

As described in Chapter 5, identification in selection models requires elicitation of how the chance

of being observed is related to the outcome. For example, hypothesising that the chance of being

missing doubles for each 0.5 QALY increase. Selection models have been commonly used in

early work on informative missing data, as it could seem somehow more natural to analysts to

express the missingness as a function of the outcome. They are also common in econometrics,

where Heckmnan’s selection model [32] has been commonly used to account for selection bias.

The missing data model can be directly incorporated into the analysis model, for example using an

inverse probability weighting approach [33, 34] or numerical integration [35]. However, selection

models make untestable assumptions about the conditional distribution of the unobserved data, and

results can be very sensitive to departure from these assumptions [28]. Another key disadvantage

is that selection models formulate sensitivity analysis in a way that is not readily interpretable. A

typical sensitivity parameter is the (log-)odds ratio of how a unit change in the partially observed

outcome affects the chances of observing the data. This specification makes the elicitation of such

parameters and the communication of the sensitivity analysis results challenging, particularly to

non-statisticians.

The analysis of pattern-mixture models is covered in more details in Section 2.2.3. They are

typically parametrised by the difference between observed andmissing values. For example, assuming

that participants with missing data have a 0.1 lower QALY than those observed. They have received

more attention recently, particularly in clinical trials [31,36]. Their key advantage is that the model

parameters are more readily interpretable, and can therefore be informed and reviewed by a broader

audience, such as clinicians and decision-makers [33]. Another advantage is that they can easily

be implemented with standard missing data methods, such as MI, as we will see in Section 2.2.3.
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A third less common formulation of the MNAR problem is the shared parameter model, where Y

and M are linked through a set of latent (unobserved) random variables. The joint probability of Y

and M can then be decomposed as follows:

[M,Y, b|X] = [Y |X, b][M |X,Y, b][b] = [Y |X, b][M |X, b][b]

where b represents the set of latent variables, after conditioning on which M and Y are independent

[36, 37]. Early references include works by Wu and Carroll [38] and Wu and Bailey [39], and a

more recent review was conducted by Albert and Fullman [40]. Shared-parameter models have

some appeal to address missing data with complex data structure. However, they raise additional

assumptions (e.g. about the distribution of b) and computational issues, mainly related to the

integration over the latent variables. They have been generally advised against by regulatory bodies

due to “the many layers of assumptions” [41] and will not be considered further in this thesis as

they do not appear particularly accessible to non-statisticians.

2.2.3 Methods for informative missingness sensitivity analyses in clinical trials

Statistical books onmissing data commonly have a section covering the issue of informativemissing

data [28,29,31,36,37,41–43], introducing the concepts and challenges of informative missing data,

and discussing different analytical approaches possible.

Journal articles on methods for MNAR sensitivity analysis (MNAR SA) in clinical trials are also

numerous (see for example [34, 35, 44–54]). While there are some examples of selection model

applications [49,55–57], the focus has often been on pattern-mixture models, possibly due to their

more accessible formulation [36] or their compatibility with popular missing data methods such as

multiple imputation [58].

An approach that has been recurrently suggested— under various forms— is to perform a pattern-

mixture model with a simple parameter capturing how the conditional distribution of the missing

values [Ymiss|X] may differ from the observed distribution [Yobs|X] . This can be done by a shift

parameter, usually noted δ, so that [Ymiss|X] = [Yobs|X]+δ. Or less commonly— but which may

have relevance in CEA — using a scale parameter c so that [Ymiss|X] = [Yobs|X] × c. Note that
the parameters δ and c are not quantities estimated from the data, but are capturing an assumption

made about the missing data mechanism.

If relevant, more complex forms can be applied, for instance δ or c can vary depending on the

reason for being missing or on the values of a covariate (e.g. treatment arm), or with the time

since dropping out in longitudinal trials. Or both δ and c could be used simultaneously, or follow
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a probabilistic distribution (as opposed to a fixed value). Typically sensitivity analyses will be

performed over a range of values of δ or c, to represent a range of plausible scenarios.

To proceedwith the analysis under the assumed pattern-mixturemodel, several statistical approaches

are possible. Pattern-mixture models can naturally be fitted in a Bayesian framework [59]. They

can also be estimated using a regression-based approach, using delta method [60] or bootstrapping

to estimate the standard errors [5]. Multiple imputation is also a particularly convenient framework

to implement PMM [42].

In simple situations (e.g. analysing an outcome at a single time-point), a rough approximation can

by obtained by calculating the average of the observed and the transformed outcomes weighted by

the proportion of missing data. The standard errors based on the observed data can then be used

as a guide for inference.

Another approach particularly relevant in longitudinal trials, is a particular kind of pattern-mixture

model, where the distribution within each pattern is defined by reference to another group of

patients. This is termed a ‘reference-based’ approach, and is commonly implemented in a multiple

imputation framework [48]. It is part of a broader family of ‘controlled imputation’ methods,

which are gaining popularity in clinical trials sensitivity analyses. For recent reviews of controlled-

imputation methods, see O’Kelly and Ratitch [36], Kenward [61], Molenberghs et al. [37] and

Carpenter and Kenward [42]. The approach is described in detail in Chapter 6, but briefly, instead

of drawing the missing values from an estimate of [Yobs|X] as would be done in aMAR imputation,

reference-based imputation drawsmissing values from another ‘reference’ distribution, for example

from the distribution of Y in the control group. This choice would be suitable if one believes that

patients withmissing data have stopped their treatment and behave like patients in the control group.

The choice of the reference group, and how it is mimicked, will depend on the clinical context. One

key advantage of reference-based imputation over selection and pattern-mixture models is that it

does not require a quantitative elicitation of a sensitivity parameter, but it relies on a qualitative

assumption which can be readily understood. One limitation of reference-based imputation is that

it is not yet implemented in standard statistical software and it relies on user-written packages [36].

2.2.4 Uptake of informative missingness sensitivity analyses in clinical trials

The statistical literature on MNAR methods is extensive, but little attention has been paid to

translation of these methods in practice. It is currently unclear to what extent MNAR sensitivity

analyses have really permeated practice in the primary reporting of clinical trial results. Hayati et

al. reviewed studies (not necessarily trials) in which MI was used, published in the Lancet and New

20



England Journal of Medicine between 2008 and 2013. Out of 103 studies, only three conducted

sensitivity analyses departing from theMAR assumption, and only one reported clearly the method

used. Bell et al. [62] conducted a review of 77 trials published in leading medical journals in 2013,

and found that none reported sensitivity analyses under MNAR assumptions. However, leading

medical journals often have limited word counts, and do not necessarily encourage the reporting

of comprehensive sensitivity analyses. It is also possible that this has changed since. An updated

review looking a broader journals would be of interest.

Both reviews identified the lack of robust sensitivity analyses as a key issue in adressing missing

data, and discussed possible explanations. Hayati et al. mentioned the lack of explicit guidelines

to conduct sensitivity analysis, while Bell et al. hypothesised that it could be due to a lack of

knowledge or experience from the researchers, or a time-lag between methods development and

software to implement them [62]. These assumptions may also apply to the CEA setting, as we

will explore in Chapters 3 and 4.

2.3 Missing data in cost-effectiveness analyses

Missing data are a particularly relevant issue in trial-based CEA, which often relies on collecting

rich data over a long-period of time. It is common for some of these data to be incomplete [7], for

instance this could be because a participant dropped-out from the trial, missed a follow-up visit,

or was not able to answer part of a questionnaire. Most trial-based CEA analysts are therefore

confronted with missing data issues, and have to decide on the strategy to adopt and appropriate

statistical methods to implement that strategy.

In comparison to the broader medical statistics literature, the issue of missing data historically

received less attention in CEA. A review from 1999 shows that the issue of missing data was

not mentioned in most trial-based CEA [63], and a paper in 2009 discussed how guidelines for

CEA did not cover the issue of missing data [64]. The issue has however gained recognition since.

Several publications raised the importance of the issue andmethodological developments have been

undertaken to address it. Articles published on the topic include general guidance on missing data

in CEA, such as Faria et al. [65] andManca et al. [66]. Other articles looked specifically at multiple

imputation, and explain the benefits of the approach, illustrated by trial examples [64,67]. Diaz et

al. [68, 69] and Gomes et al. [70] have looked specifically at the issue of missing data in cluster-

randomised trials. Several articles discussed missing data for quality of life data [16,71–73] while

others have looked specifically at missing cost data [67, 74]. More recent handbooks on methods

for trial-based CEA generally discuss the implications and possible approaches to missing data
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[75–78]. The 2015 ISPOR (International Society for Pharmacoeconomics andOutcomesResearch)

task force for good research practices in trial-based CEA [79] discuss the importance of appropriate

data collection methods, the limitations of complete-case analysis and the advantages of multiple

imputation (see below). The report recognises the plausibility of non-informative censoring and

recommends using external information to try to address it.

Multiple imputation (MI) [6,8] has been the most widely discussed method for addressing missing

data in trial-based CEA, and is the approach suggested in most of the recent literature [64–66, 75,

79–81]. The idea of multiple imputation builds on regression imputation (using the observed data

to predict the missing values) by properly reflecting the uncertainty in the imputed values. This is

achieved by conducting multiple rounds of imputations, each draws the missing values from the

conditional predictive distribution of the missing data given the observed data. The substantive

analysis model is then fitted to each of the imputed datasets separately, and the results combined

for final inference using a specific formula (Rubin’s rules). When models are correctly specified,

multiple imputation gives valid inference under the MAR assumption. MI is not strictly necessary

for the analysis of clinical effectiveness in RCTs, where it is common to have a model with a single

outcome (with possibly repeated-measurements), and fully observed baseline variables. In this case

valid estimates of treatment effect under MAR can be obtained by standard maximum likelihood

methods conditioning on these variables [6].

The context of CEA raises important challenges to missing data methods, and by separating the

imputation and analysismodelsMI provides practical advantages particularly relevant to that setting.

First, it allows the inclusion in the imputation model of variables that are not in the analysis

model, such as post-randomisation costs to estimate incremental effectiveness, or baseline variables

to estimate mean costs or effectiveness. Second, cost and utilities are often based on multiple

items, and MI is a convenient way to preserve the information from the observed items, before

summing them up for the analysis. Similarly, utility and costs are typically measured over multiple

assessments, but analysed in aggregated form, as opposed to repeated-measure (longitudinal)models

more commonly used for clinical outcomes. This implies that if one assessment is missing the

overall outcome is missing and the participant would therefore be excluded from a complete-case

analysis. MI is a convenient way to preserve the information from the observed assessments, and

impute the missing ones, before deriving the total cost or QALYs as usual. Finally, MI can also

address the common features of CEA data, such as the correlation between endpoints, and the

non-normality of the data [65, 82, 83].
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In 2009, Noble et al. [7] conducted a review of missing data in trial-based CEA. They found

that the reporting was very poor, with the extent of missing data and the approach used often

unclear. They also found that complete-case analysis was the most commonly used approach (one

third of the articles reviewed). MI was used in one fifth of the study, and only one fourth of the

studies conducted sensitivity analyses (performing more than one approach to missing data). Since

2009, there has been wider recognition of the missing data problem and more methodological

development. One of the first objectives of this PhD is therefore to assess the extent to which

appropriate methods has permeated CEA practices.

While most of the recent developments focussed on the issue of missing data under MAR, the

issue of informative missing data has received little attention. MNAR analyses are of particular

relevance in that setting, as CEAoften relies on self-reportedmeasures and the dependence between

missingness and outcomes (e.g. quality-of-life or resource-use) is a source of concern. In fact, most

of the recent CEA guidance on missing data recognise the plausibility of informative missingness,

and the importance of conducting sensitivity analyses [16, 65, 66, 68, 70, 75, 79, 80]. However,

only one article provided practical advice on how to perform such analysis [65], while the others

recognised the need for further development in that area.

This thesis therefore aims to address this issue, by developing accessible tools and recommendations

to conduct sensitivity analyses for informatively missing data in trial-based CEA.
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Chapter 3

Missing data in trial-based
cost-effectiveness analysis: an
incomplete journey
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SUMMARY

Cost‐effectiveness analyses (CEA) conducted alongside randomised trials pro-

vide key evidence for informing healthcare decision making, but missing data

pose substantive challenges. Recently, there have been a number of develop-

ments in methods and guidelines addressing missing data in trials. However,

it is unclear whether these developments have permeated CEA practice. This

paper critically reviews the extent of and methods used to address missing data

in recently published trial‐based CEA.

Issues of the Health Technology Assessment journal from 2013 to 2015 were

searched. Fifty‐two eligible studies were identified. Missing data were very com-

mon; the median proportion of trial participants with complete cost‐effective-

ness data was 63% (interquartile range: 47%–81%). The most common

approach for the primary analysis was to restrict analysis to those with com-

plete data (43%), followed by multiple imputation (30%). Half of the studies con-

ducted some sort of sensitivity analyses, but only 2 (4%) considered possible

departures from the missing‐at‐random assumption.

Further improvements are needed to address missing data in cost‐effectiveness

analyses conducted alongside randomised trials. These should focus on limiting

the extent of missing data, choosing an appropriate method for the primary

analysis that is valid under contextually plausible assumptions, and conducting

sensitivity analyses to departures from the missing‐at‐random assumption.

KEYWORDS

cost‐effectiveness analysis, missing data, multiple imputation, randomised controlled trials, sensitivity

analysis
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1 | INTRODUCTION

Cost‐effectiveness analyses (CEA) conducted alongside randomised controlled trials are an important source of information
for health commissioners and decisionmakers. However, clinical trials rarely succeed in collecting all the intended informa-
tion (Bell, Fiero, Horton, & Hsu, 2014), and inappropriate handling of the resulting missing data can lead to misleading
inferences (Little et al., 2012). This issue is particularly pronounced in CEA because these usually rely on collecting rich,
longitudinal information from participants, such as their use of healthcare services (e.g., Client Service Receipt Inventory;
Beecham & Knapp, 2001) and their health‐related quality of life (e.g., EQ‐5D‐3L; Brooks, 1996).

Several guidelines have been published in recent years on the issue of missing data in clinical trials (National
Research Council, 2010; Committee for Medicinal Products for Human Use (CHMP), 2011; Burzykowski et al., 2010;
Carpenter & Kenward, 2007) and for CEA in particular (Briggs, Clark, Wolstenholme, & Clarke, 2003; Burton,
Billingham, & Bryan, 2007; Faria, Gomes, Epstein, & White, 2014; Manca & Palmer, 2005; Marshall, Billingham, &
Bryan, 2009). Key recommendations include:

• taking practical steps to limit the number of missing observations;
• avoiding methods whose validity rests on contextually implausible assumptions, and using methods that incorporate

all available information under reasonable assumptions; and
• assessing the sensitivity of the results to departures from these assumptions.

In particular, following Rubin's taxonomy of missing data mechanisms (Little & Rubin, 2002), methods valid under a
missing‐at‐random (MAR) assumption (i.e., when, given the observed data, missingness does not depend on the unseen
values) appear more plausible than the more restrictive assumption of missing completely at random, where missingness
is assumed to be entirely independent of the variables of interest. Because we cannot exclude the possibility that the
missingness may depend on unobserved values (missing not at random [MNAR]), an assessment of the robustness of
the conclusions to alternative missing data assumptions should also be undertaken.

Noble and colleagues (Noble, Hollingworth, & Tilling, 2012) have previously reviewed how missing resource use data
were addressed in trial‐based CEA. They found that practice fell markedly short of recommendations in several aspects.
In particular, that reporting was usually poor and that complete‐case analysis was the most common approach. How-
ever, missing data research is a rapidly evolving area, and several of the key guidelines were published after that review.
We therefore aimed to review how missing cost‐effectiveness data were addressed in recent trial‐based CEA.

We reviewed studies published in the National Institute for Health Research Health Technology Assessment (HTA)
journal, as it provides an ideal source for assessing whether recommendations have permeated CEA practice. These
reports give substantially more information than a typical medical journal article, allowing authors the space to clearly
describe the issues raised by missing data in their study and the methods they used to address these. Our primary objec-
tives were to determine the extent of missing data, how these were addressed in the analysis, and whether sensitivity
analyses to different missing data assumptions were performed. We also provide a critical review of our findings and rec-
ommendations to improve practice.

2 | METHODS

The PubMed database was used to identify all trial‐based CEA published in HTA between the January 1, 2013, and
December 31, 2015. We combined search terms such as “randomised,” “trial,” “cost,” or “economic” to capture rel-
evant articles (see Appendix A.1 for details of the search strategy). The full reports of these articles were downloaded
then screened for eligibility by excluding all studies that were pilot or feasibility studies; reported costs and effects
separately (e.g., cost‐consequence analysis); or did not report a within‐trial CEA.

For each included study, we extracted key information about the study and the analysis to answer our primary
research questions. A detailed definition of each indicator extracted is provided in Appendix B. In a second stage, we drew
on published guidelines and our experience to derive a list of recommendations to address missing data, and then re‐
reviewed the studies to assess to which extent they followed these recommendations (see Appendix B for further details).

Data analysis was conducted with Stata version 15 (StataCorp, 2017). The data from this review are available on
request (Leurent, Gomes, & Carpenter, 2017).
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3 | RESULTS

3.1 | Included studies

Sixty‐five articles were identified in our search (Figure 1), and 52 eligible studies were included in the review (listed in
Appendix A.2). The median time frame for the CEA was over 12 months, and the majority of trials (71%, n = 37) con-
ducted a follow‐up with repeated assessments over time (median of 2; Table 1). The most common effectiveness measure
was the quality‐adjusted life year (81%, n = 42). Other outcomes included score on clinical measures, or dichotomous
outcomes such as “smoking status”.

3.2 | Extent of missing data

Missing data was an issue in almost all studies, with only five studies (10%) having less than 5% of participants
with missing data. The median proportion of complete cases was 63% (interquartile range, 47–81%; Figure 2). Miss-
ing data arose mostly from patient‐reported (e.g., resource use and quality of life) questionnaires. The extent of
missing data was generally similar for cost and effectiveness data, but 10 (19%) studies had more missing data in
the latter (Table 1). The proportion of complete cases reduced, as the number of follow‐up assessments increased
(Spearman's rank correlation coefficient ρ = −0.59, p value < .001) and as the study duration increased
(ρ = −0.29, p = .04).

3.3 | Approach to missing data

In the remaining assessments, we excluded the five studies with over 95% of complete cases. Three main approaches to
missing data were used: complete‐case analysis (CCA; Faria et al., 2014), reported in 66% of studies (n = 31), multiple
imputation (MI; Rubin, 1987; 49%, n = 23), and ad hoc hybrid methods (17%, n = 8). For the primary analysis, CCA

FIGURE 1 Studies selection flow diagram. CEA = cost‐effectiveness analyses; HTA = health technology assessment; RCT = randomised

controlled trial

1026 LEURENT ET AL.



was the most commonly used method (43%, n = 20), followed by MI (30%, n = 14; Table 2). MI was more common when
the proportion of missing data was high and when there were multiple follow‐up assessments (see Table 3).

3.4 | Sensitivity analyses

Over half of the studies (53%, n = 25) did not conduct any sensitivity analysis around missing data, with 21% (n = 10)
reporting CCA results alone and 11% (n = 5) MI results under MAR alone (Table 4). The remaining studies (n = 22,
47%) assessed the sensitivity of their primary analysis results to other approaches for the missing data. This was usually
performing either MI under MAR, or CCA, when the other approach was used in the primary analysis. Other sensitivity
analyses included using last observation carried forward or regression imputation.

Only two studies (4%) conducted sensitivity analyses, assuming data could be MNAR. In both studies, values
imputed under a standard MI were modified to incorporate possible departures from the MAR assumption for both

TABLE 1 Characteristics of included studies (n = 52)

n %

Median (IQR)

General characteristics
Publication year
2013 14 27
2014 15 29
2015 23 44

CEA time frame
0–11 months 22 42
12 months 19 37
≥24 months 11 21

Follow‐up design
Continuous (time to event) 4 8
One follow‐up assessment 11 21
Repeated assessments 37 71

Effectiveness measure
QALY 42 81
Binary 6 12
Clinical scale score 3 6
Time to recovery 1 2

Missing data
Report exact number of complete cases 20 38
Proportion of complete casesa 0.63 (0.47–0.81)
Proportion complete effectiveness data (n = 47) 0.73 (0.55–0.86)
Proportion complete cost data (n = 40) 0.79 (0.67–0.92)
Differs between costs and effectivenessb

Yes, more cost data missing 3 6
Yes, more effect data missing 10 19
No 22 42
No missing (<5%) 5 10
Unclear 12 23

Differs between armsc

Yes 10 19
No 32 62
No missing (<5%) 5 10
Unclear 5 10

Note. IQR = interquartile range; QALY = quality‐adjusted life year.
aProportion of trial participants with complete cost‐effectiveness data. An upper bound was used if exact number not reported.
bMore than 5% difference in the proportion of participants with complete cost or effectiveness data.
cMore than 5% difference in the proportion of complete cases between arms.
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FIGURE 2 Proportion of trial participants with complete data for the primary cost‐effectiveness analysis. Shown for cost‐effectiveness

(n = 52), effectiveness (n = 47, unclear in 5 studies), and cost data (n = 40, unclear in 12 studies)

TABLE 2 Methods for handling missing data in primary analysis (n = 47)

Primary analysis method n %

Complete‐case analysis 20 43
Multiple imputation 14 30
Other—single methods
Inverse probability weighting 1 2
Bayesian model, missing data as unknown parameter 1 2

Other—ad hoc hybrid methodsa 8 17
Using a combination of
Mean imputationb 6
Regression imputationc 3
Inverse probability weightingd 2
Assuming failure when outcome missing 2
Multiple imputation 1
Last observation carried forward 1

Unclear 3 6

aAd hoc hybrid method = several approaches to missing data combined, for example, using mean imputation for missing individual resource use
items and multiple imputation for fully incomplete observations.
bMean imputation = replacing missing values by the average across other participants.
cRegression imputation = replace missing values by predicted value based on observed variables.
dInverse probability weighting = analysing complete data, weighted according to their modelled probability of being observed. These methods are
presented in more details in other references (Baio & Leurent, 2016; Faria et al., 2014).
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the cost and effectiveness data using a simplified pattern‐mixture model approach (Faria et al., 2014; Leurent et al.,
2018). The studies then discussed the plausibility of these departures from MAR and their implications for the cost‐
effectiveness inferences.

3.5 | Recommendations criteria

Table 5 reports the number of studies that reported evidence of following the recommendations from Figure 3 (see
Section 4). Most studies reported being aware of the risk of missing data, for example, by taking active steps to reduce
them (n = 35, 74%). In addition, almost two‐thirds of the studies (n = 29, 62%) reported the breakdown of missing data
by arm, time point, and endpoint. Only about one‐third of the studies have clearly reported the reasons for the missing

TABLE 3 Approaches to missing data, by year, number of follow‐ups, and extent of missing data (n = 47)

Primary analysis method Reported a sensitivity analysis

CCA MI Other Yes No

n % n % n % n % n %

Publication year
2013 (n = 13) 6 46 3 23 4 31 5 38 8 62
2014 (n = 15) 9 60 1 7 5 33 6 40 9 60
2015 (n = 19) 5 26 10 53 4 21 11 58 8 42

Number of follow‐up assessmentsa

1 (n = 10) 7 70 1 10 2 20 3 30 7 70
≥2 (n = 36) 13 36 13 36 10 28 18 50 18 50

Proportion of complete casesb

<50% (n = 15) 4 27 6 40 5 33 8 53 7 47
50–75% (n = 18) 10 56 4 22 4 22 9 50 9 50
75%–95% (n = 14) 6 43 4 29 4 29 5 36 9 64

Information missingc

Similar (n = 22) 13 59 6 27 3 14 10 45 12 55
More cost missing (n = 3) 1 33 2 67 0 0 2 67 1 33
More effect missing (n = 10) 4 40 2 20 4 40 6 60 4 40

Note. % = row percentages. CCA = complete‐case analysis; MI = multiple imputation.
aExcluding one study with continuous follow‐up (n = 46).
bFor the five studies with less than 5% of incomplete cases, four used CCA and one an ad hoc hybrid method for their primary analysis. One of the
five studies conducted a sensitivity analysis to missing data.
cExcluding 12 studies where this was unclear (n = 35).

TABLE 4 Sensitivity analysis, overall, and by primary analysis method (n = 47)

None

Sensitivity analysis method

CCA MI (MAR) MNAR Othera

n % n % n % n % n %

Overall
Total (n = 47) 25 53 11 23 9 19 2 4 5 11
By primary analysis
CCA (n = 20) 10 50 0 0 8 40 0 0 2 10
MI (n = 14) 5 36 9 64 0 0 2 14 2 14
Other (n = 13) 10 77 2 15 1 8 0 0 1 8

Note. % = row percentages; CCA = complete‐case analysis; MAR = assuming data missing at random; MI = multiple imputation; MNAR = assuming

data missing not at random. Total may be more than 100% as some studies conducted more than one sensitivity analysis.
aOther methods used for sensitivity analysis include last observation carried forward (n = 1), regression imputation (n = 1), adjusting for baseline pre-
dictors of missingness (n = 1), imputing by average of observed values for that patient (n = 1), and an ad hoc hybrid method using multiple and mean
imputation (n = 1).
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data (n = 16, 34%) and the approach used for handling the missing data and its underlying assumptions (n = 17, 36%).
Only one study (2%) appropriately discussed the implications of missing data in their cost‐effectiveness conclusions.

4 | DISCUSSION

4.1 | Summary of findings

Missing data remain ubiquitous in trial‐based CEA. The median proportion of participants with complete cost‐effective-
ness data was only 63%. This reflects the typical challenges faced by CEA of randomised controlled trials, which often
rely on patient questionnaires to collect key resource use and health outcome data. Despite best efforts to ensure

TABLE 5 Review of indicators based on recommendations criteria (n = 47)

Criteriona

Metb Not met Unclear

n % n % n %

Prevent
A1. Maximise response rate 35 74 12 26 0 0
A2. Alternative data sources 10 21 37 79 0 0
A3. Monitor completeness 17 36 30 64 0 0
Primary
B1. Assumption for primary analysis 17 36 27 57 3 6
B2. Appropriate primary method 17 36 27 57 3 6
Sensitivity
C1. Discuss departures from the primary assumption 0 0 47 100 0 0
C2. Consider broad range of assumptions 2 4 45 96 0 0
C3. Method valid under these assumptions 2 4 45 96 0 0
Report
D1. Missing data by endpoint, arm, and time point 29 62 18 38 0 0
D2. Discuss reasons for missing data 16 34 31 66 0 0
D3. Describe methods used and assumptions 17 36 30 64 0 0
D4. Conclusions in light of missing data 1 2 46 98 0 0

aSee Figure 3 and Appendix B for definition of each criterion.
bReport demonstrates evidence of having followed this recommendation. Not met if the recommendation was not followed or not mentioned. Unclear if

some suggestions the criteria may have been met but information not clear enough. See Appendix B for detailed definitions and methodology used.

FIGURE 3 Recommendations for

improving handling of missing data in

trial‐based cost‐effectiveness analysis.

References: 1, Little et al., 2012; 2, Noble

et al., 2012; 3, Faria et al., 2014; and 4,

Carpenter and Kenward 2007 [Colour

figure can be viewed at wileyonlinelibrary.

com]
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completeness, a significant proportion of nonresponse is likely. This is consistent with other reviews, which also found
no reduction of the extent of missing data in trials over time (Bell et al., 2014).

CCA remains the most commonly used approach for handling missing data in trial‐based CEA, in contrast to rec-
ommendations. This approach makes the restrictive assumption that, given the variables in the analysis model, the
distributions of the outcome data are the same, whether or not those outcome data are observed. This approach is
also problematic because it can result in a loss in precision, as it discards participants who have partially complete
data postrandomisation and who can provide important information to the analysis. Other unsatisfactory approaches
based on unrealistic assumptions, such as last observation carried forward and single imputation, are also occasion-
ally used.

MI (Rubin, 1987) assuming MAR has been widely recommended for CEA (Briggs et al., 2003; Burton et al., 2007;
Faria et al., 2014; Marshall et al., 2009), allowing for baseline variables and postrandomisation data not in the primary
analysis to be used for the imputation. It seems to be now more commonly used, with around half of the studies using
MI for at least one of their analyses (up to 74% in 2015). Around one‐third of the studies used MI for their primary CEA,
which is higher than seen in primary clinical outcome analyses (8%; Bell et al., 2014).

On the other hand, sensitivity analyses to missing data remain clearly insufficient. Only two studies (4%) conducted
comprehensive sensitivity analyses and assessed whether the study's conclusions were sensitive to departures from the
MAR assumption (i.e., possible MNAR mechanisms). Half of the studies did not conduct any sensitivity analysis regard-
ing the missing data. The remaining studies performed some sort of sensitivity analyses, but usually consisting of simple
variations from the primary analysis, such as reporting CCA results in addition to MI. This may be more for complete-
ness than proper missing data sensitivity analyses. For example, if MI is used for the primary analysis (having assumed
that MAR is the realistic primary missing data assumption), a sensitivity analysis that involves CCA will make stronger
missing data assumptions.

4.2 | Strengths and limitations

Our review follows naturally from the review of Noble et al. (2012) and gives an update of the state of play after the
publication of several key guidelines. Our review, however, differs in scope and methods and cannot be directly com-
pared with the results of Noble et al. One of the key strengths of this review is that HTA comprehensive reports
allowed us to obtain a more complete picture of the missing data and the methods used to tackle it. HTA mono-
graphs are published alongside more succinct peer‐reviewed papers in specialist medical journals, and they are often
seen as the “gold‐standard” for trial‐based CEA in the UK. It seems therefore reasonable to assume that these are
representative of typical practice in CEA. This review is, to our knowledge, the first to look at completeness of both
cost and effectiveness data. A limitation is the use of a single‐indicator “proportion of complete cases” to capture the
extent of the missing data issue. This is however a clearly defined indicator and allows comparison with other
reviews. The “recommendations indicators” also focused on the information reported in the study, not necessarily
what might have been done in practice.

4.3 | Recommendations

A list of recommendations to address missing data in trial‐based CEA is presented in Figure 3. Trial‐based CEA are prone
to missing data, and it is important that analysts take active steps at the design and data‐collection stages to limit their
extent (Bernhard et al., 2006; Brueton et al., 2013; National Research Council, 2010). Resource use questionnaires should
be designed in a user‐friendly way, and their completion encouraged during follow‐up visits, possibly supported by a
researcher (Mercieca‐Bebber et al., 2016; National Research Council, 2010). Alternative sources should also be consid-
ered to minimise missing information, for example, administrative data or electronic health records (Franklin & Thorn,
2018; Noble et al., 2012).

For any study with missing data, clear reporting of the issue is required. Ideally, the study should report details of the
pattern of missing data (Faria et al., 2014), possibly as an appendix. At a minimum, CEA studies should report for each
analysis the number of participants included by trial arm, as recommended in the Consolidated Standards of Reporting
Trials guidelines (Noble et al., 2012; Schulz et al., 2010).

Although CCA may be justifiable in some circumstances, the choice of CCA for the primary analysis approach
appears difficult to justify in the presence of repeated measurements, because the loss of power (by discarding all patients
with any missing values) across the different time points tends to be large. Other approaches valid under more plausible
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MAR assumptions and making use of all the observed data, such as MI (Rubin, 1987); likelihood‐based repeated mea-
sures models (Faria et al., 2014; Verbeke, Fieuws, Molenberghs, & Davidian, 2014); or Bayesian models (Ades et al.,
2006), should be considered. In particular, MI has been increasingly used in CEA, and further guidance to support an
appropriate use in this context is warranted.

An area with clear room for improvement is the conduct of sensitivity analyses. This review found that many studies
used CCA for the primary analysis and MI as a sensitivity analysis, or vice‐versa, and concluded that the results were
robust to missing data. This is misleading because both of these methods rely on the assumption that the missingness
is independent of the unobserved data. Although the MAR assumption provides a sensible starting point, it is not pos-
sible to determine the true missing‐data mechanism from the observed data. Studies should therefore assess whether
their conclusions are sensitive to possible departures from that assumption (National Research Council, 2010; Commit-
tee for Medicinal Products for Human Use (CHMP), 2011; Faria et al., 2014). Several approaches have been suggested to
conduct analyses under MNAR assumptions. Selection models express how the probability of being missing is related to
the value itself. Pattern‐mixture models, on the other hand, capture how missing data could differ from the observed
(Molenberghs et al., 2014; Ratitch, O'Kelly, & Tosiello, 2013). Pattern‐mixture models appear attractive because they
frame the departure from MAR in a way that can be more readily understood by clinical experts and decision makers
and can be used with standard analysis methods such as MI (Carpenter & Kenward, 2012; Ratitch et al., 2013). MNAR
modelling can be challenging, but accessible approaches have also been proposed (Faria et al., 2014; Leurent et al., 2018).
Further developments are still needed to use these methods in the CEA context and to provide the analytical tools and
practical guidance to implement them in practice.

5 | CONCLUSION

Missing data can be an important source of bias and uncertainty, and it is imperative that this issue is appropriately
recognised and addressed to help ensure that CEA studies provide sound evidence for healthcare decision making. Over
the last decade, there have been some welcome improvements in handling missing data in trial‐based CEA. In particular,
more attention has been devoted to assessing the reasons for the missing data and adopting methods (e.g., MI) that can
incorporate those in the analysis. However, there is substantial room for improvement. Firstly, more efforts are needed to
reduce missing data. Secondly, the extent and patterns of missing data should be more clearly reported. Thirdly, the pri-
mary analysis should consider methods that make contextually plausible assumptions rather than resort automatically to
CCA. Lastly, sensitivity analyses to assess the robustness of the study's results to potential MNAR mechanisms should be
conducted.
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APPENDIX B

INDICATORS DEFINITION

B.1 | Primary indicators

Indicator Definition Notes

Proportion of complete cases Proportion of randomised participants for
whom all data were available for the
primary cost‐effectiveness analysis

If the number of complete‐cases was not
clearly reported, we estimated an
“upper bound,” from information, such
as the proportion of participants with
complete cost, or effect, data. See
definition of primary analysis below.

Proportion complete effectiveness data Proportion of randomised participants for
whom all effectiveness data were
Available for the primary cost‐
effectiveness analysis

Same as above

Proportion complete cost data Proportion of randomised participants for
whom all cost data were available for
the primary cost‐effectiveness analysis

Same as above

Report exact number of complete cases Whether the number of participants with
complete cost and effectiveness data
was clearly reported.

More missing costs or effectiveness Whether the proportion of complete cases
differ between cost and effectiveness
variable.

Considered “similar” when the
proportion of complete cases was
within 5% of each other.

Primary analysis method Methods used to address missing data in
the primary (base case) cost‐
effectiveness analysis

When multiple effectiveness measures,
time‐frames, or cost perspectives were
reported, without a base‐case clearly
defined, we considered the analysis
based on quality‐adjusted life years
(QALYs) over the longest within‐trial
follow‐up period, from the NHS and
social services cost perceptive.

Conducted a sensitivity analysis to
missing data

Report results under more than one
approach for addressing missing data
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B.2 | Secondary indicators: Derived from the recommendations list

B.2.1 | Methods

Because these aspects could have been mentioned in multiple parts in the monograph, we used a systematic approach,
looking for keywords and checking the most relevant paragraphs in the full report.

i. Search in PDF: “Missing”; “Participation”; “Completion”; “Incomplete”; “Response”; “Non‐response”; “Monitor”;
“MCAR”; “MAR”; “MNAR.”

ii. If did not find “steps to reduce missing data,” also check “reminder,” “incentive,” “telephone,” and “contact.”
iii. Then, check relevant paragraphs manually: data source for cost‐effectiveness data; beginning of CEA results; and

CEA conclusions.

B.2.2 | Answers

“Yes”: The recommendation was clearly mentioned, and the criteria therefore met.
“No”: The recommendation was not clearly mentioned or found. The recommendation may still have been followed

but not reported (or at least not found with the above strategy).
“Unclear”: There was some suggestions the criteria may have been met but not enough information to be sure.

Recommendation Indicator definition Examples “yes” Examples “no” Notes

A1. Maximise response

rate (consider
questionnaire design,
mode of administration,
reminders, incentives,
participants'

engagement, etc.)

Mention taking steps to

maximise response rate

Reminder, incentives,

home/hospital visit,
multiple attempts,

Mention response was

maximised for clinical
outcome but not reported
for cost‐effectiveness
endpoints

Can be for overall trial data if implicit

includes cost or effect data. Except
if steps are clearly for non‐CE
variables only (e.g., primary
outcome only).

A2. Consider alternative

data sources (e.g.,
routinely collected data)

Mention that considered

missing data issues when
choosing appropriate
source, OR mention more
than one source used for a

CE data.

Use of electronic health

records or administrative
data, e.g., hospital episode
statistics were used to
supplement trial's data,

for example, about
hospital admissions post‐
randomisation (which
might be otherwise
missing).

Using routine data as a

primary source: e.g.,
resource use taken
primarily from
administrative/hospital

records.

A3. Monitor cost‐
effectiveness data

completeness while trial
ongoing

Mentioned monitoring data
completeness while trial

ongoing.

Data managers checked
inconsistent and missing

data (if not clear “while
trial ongoing” but
mention monitoring
probably fine). Mention
taking new steps to

reduce MD (e.g.,
incentive) as realised lots
of MD after trial started.

Mention data checks for
inconsistencies, but no

mention of checking
missing data.

Can be for overall trial data. Except if
monitoring clearly for non‐CE

variables only (e.g., primary
outcome only).

B1. Formulate realistic and
accessible missing data
assumption for the
primary analysis

(typically, but not
necessarily, a form of the
missing at random
assumption)

Primary (base‐case) CEA
based on reasonable
missing data
assumptions. (likely

MAR, or alternative if
well justified).

– Used MI for primary
analysis ‐ well justified
and clear alternative

– Hybrid method, except if
clearly explain and justify
underlying assumptions

(Continues)
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(Continued)

Recommendation Indicator definition Examples “yes” Examples “no” Notes

B2. Use appropriate
method valid under that

assumption (typically,
but not necessarily,
multiple imputation or
maximum likelihood)

Use appropriate analysis
method.

– MI for primary analysis ‐
Bayesian under MAR ‐

well justified and clear
alternative

– Use unadjusted CCA
when reporting data are

MAR.

C1. Discuss with clinicians
and investigators to
formulate plausible

departures from the
primary missing data
assumption

Conducted MNAR
SA + mention elicitation.

Did not conduct MNAR SA

C2. Consider a broad range
of assumptions,
including missing not at
random mechanisms

Conducted MNAR SA Did not conduct MNAR SA

C3. Use appropriate
method valid under

these assumptions
(typically, but not
necessarily, pattern‐
mixture models or
reference‐based

approach)

Conducted MNAR SA, and
used an appropriate

method (PMM, etc.).

Did not conduct MNAR SA

D1. Report number of

participants with cost
and outcome data, by
arm and time‐point

Report number (or %) of

complete or missing data.
Split at least by
effectiveness vs. cost, time
point (when applicable),
and arm

Reported missing data by

endpoint and arm, but
not by time point.

Do not have to be all at the same time

(split by endpoint + time + arm),
can be three separate table/texts.

D2. Report possible
reasons for non‐

response, and baseline
predictors of missing
values

Mention something about
main reason for the

missing data, OR Explore
factors associated with it.

Comment on why missing
data (e.g., “because

patients were too ill”). Or
explore baseline factors
associated with
missingness

No mention of reasons for
MD in the CE section.

Have to be specific to the CE missing
data, or clearly mentioning

something like “reasons for MD are
discussed in clinical analysis
section …”

D3. Describe methods
used, and underlying
missing data

assumptions

Clearly state the method
used to address missing
data, AND the underlying

assumption.

No report of missing data
assumption or method
used

Draw overall conclusion in

light of the different
results and the
plausibility of the
respective assumptions

Conduct sensitivity

analyses, and interpret
results appropriately.

Did MNAR SA and

appropriate conclusion.

– Did not conduct sensitivity

analyses
– Conducted sensitivity

analyses, but no
comment/conclusion

– Did MI and CC and only

say “results did not
change/robust to missing
data”
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Chapter 4

Stakeholders’ seminars

4.1 Preamble

Chapter 3 confirmed the importance of the missing data issue in trial-based CEA, and that MNAR

sensitivity analyses were rarely conducted. We now need to better understand the reasons behind

this gap between recommendations and practice. In addition, this thesis aims to develop relevant

and accessible tools and recommendations, and it is therefore critical to understand the viewpoints

and expectations of those conducting or usingCEA. The best way to gather this information appeared

to hold interactive seminars, encouraging discussion around MNAR issues between participants

using semi-structured questionnaires.

4.2 Aims

To deepen our understanding of practitioners’ views on MNARmissing data in CEA, we organised

two interactive seminars with a number of Stakeholders (i.e. those conducting or using CEA,

including health economists, decisionmodellers andmembers of decision committees). The objectives

of the seminars were to:

- understand the current awareness of, and experience with, MNAR missing data in CEA;

- explore awareness about the potential for, and implications of, conductingMNAR sensitivity

analyses in CEA and using these to inform decisions on resource allocation;

- identify current barriers to more widespread use of MNAR sensitivity analyses; and

- identify participants’ viewsmost relevant ways to conduct and report these sensitivity analyses.
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4.3 Methods

4.3.1 Seminars’ organisation and data collection

Interactive seminars were used to collect this information.

Two of these interactive seminars took place, one in the University of York Centre for Health

Economics, in April 2016, and the other at the London School of Hygiene and Tropical Medicine

(LSHTM) in June 2016.

The participants were recruited by advertising the seminars using the relevant mailing lists. They

were informed of the seminars’ structure, a presentation followed by discussion groups, and that

participation in either part was entirely voluntary. A consent form (Appendix B) was circulated to

inform of the data collection, and to authorise the use of their anonymised responses for research

purpose.

Each seminar started with a 45 minutes presentation (see Section 4.3.2), introducing the problem

of informative missing data in CEA, and outlining different approaches to conduct sensitivity

analyses, illustrated with examples. The presentation was then followed by 30 minutes small group

discussions. The attendees were split into groups of two or three, and asked to:

- complete a consent form (Appendix B);

- complete a short survey, about their role and experience with missing data (Appendix C);

- discuss one or more ‘theme’ questionnaires within their group (Appendix D).

Discussion questionnaires were organised around four themes:

- methodological approaches to deal with MNAR data;

- presentation of sensitivity analysis results;

- elicitation of expert opinion to inform sensitivity analyses; and

- barriers to MNAR methods implementation.

Each theme questionnaire included a list of questions to be discussed within group, and participants

were asked to report their answers on the paper questionnaires, whichwere then collected at the end.

The participants’ answers to the questionnaires, and other comments discussed during the seminars,

were then compiled in a Word document. See Appendices C and D, with the participants’s answers

in blue. Personal annotationswere then added (in green), highlighting the key findings and implications

for the remaining of the thesis.
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4.3.2 Presentation

The seminars startedwith a 45minutes presentation, introducing the problem of informativemissing

data in CEA, and presenting possible approaches to conduct and report MNAR sensitivity analyses

(see slides in Appendix A). To exemplify the various approaches, we used data from the 10TT

weight loss trial, described in more details in Chapter 5 (see also Beeken et al. [9] and Patel et

al. [84]).

The presentation focussed on key approaches which appeared potentially relevant in the CEA

context, based on their ability to address trial-based CEA complexities (see Section 2.1.2), their

availability (i.e. methodological developments and software), and the accessibility of their assumptions

to the different stakeholders. Three of themwere based on pattern-mixturemodels with a δ parameter

capturing how the missing-data distribution differed from the MAR distribution (see 2.2.3). The

first approach ‘back-of-the-envelope’ or ‘simple approximation’ approach arithmetically calculated

the MNAR estimates, using the MAR estimates and the departure parameter δ, weighted by the

proportion of missing data (see Section 2.2.3). The second, ‘MI + MNAR delta’, referred to

shifting MAR-MI imputed data by δ, as described in detail in Chapter 5. The third one was similar,

but instead of shifting the data by a fixed value, a stochastic distribution was used. Finally, we

discussed ‘reference-based’ imputation, introduced in Section 2.2.3 and covered in detail in Chapter

6. Because this approach had not yet been implemented in CEA, we only introduced the principles

for the clinical effectiveness outcome.

We illustrated the different approaches, and discussed alternative ways to report the sensitivity

analyses results. This presentation aimed to provide sufficient background knowledge and information

to facilitate the ensuing small group discussions.

4.4 Results

4.4.1 Number of participants and response rate

Twenty participants attended the seminar and participated in the small group discussion, seven in

York and thirteen at LSHTM. Not all participants completed the short survey, with nearly half of

the participants at LSHTM (6/13) not completing (or returning) the survey form. The reason is

not clear, but participants may have directly started their small group discussions, or completed a

single survey for their group. Each of the four themes were discussed by three to seven different

groups of participants, with 18 theme questionnaires completed in total (see Appendix D).
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4.4.2 Participants’ survey

Participants’ characteristics based on the survey can be seen in Appendix C. Most considered

themselves as ‘modellers’ and a minority as ‘trial-based analysts’. Five sat on, or reviewed evidence

for, decision-making committees (e.g. NICE Technology Appraisal Committee).

Three quarters (10/14) reported facingmissing data issues ‘regularly’ or ‘very often’. Every participant

(14/14) reported having already thought about the issue of informative missing data, and a majority

(8/13) reported having at least once faced a situationwhere they thought somethingmore could have

been done in terms of missing data sensitivity analysis. These findings support that missing data,

and MNAR SA, are perceived as relevant issues by health economists.

4.4.3 MNAR approaches

The participant’s answers to the different themes questionnaires are reported in Appendix D. The

first theme was about the different methods to implement MNAR sensitivity analyses.

None of the sensitivity analysismethods discussed particularly stood out asmost appealing. Participants

recognised the pros and cons in all of the approaches presented. Technically sound methods

appearedmore appealing, but they needed to remain accessible for the analysts, and for the decision-

makers. Participants listed perceived advantages and limitations for the differentmethods discussed.

For instance, reference-based imputation was well received, as more intuitive and not making

assumptions about δ, but it was recognised as more complex to implement. None of the methods

appeared clearly irrelevant, but it seemed there was greater potential in focussing on the more

‘advanced’methods (e.g. ‘MI +MNARdelta’ and ‘reference-based’) than the ‘simple approximation’

approach.

Questions about familiaritywith the different statistical frameworks indicated thatmultiple imputation

appeared now relatively well established, at least among analysts. By contrast, both analysts and

users appeared less familiar with Bayesian methods.

4.4.4 Reporting

Opinion differed on the most appropriate way to report sensitivity analyses results. For example,

some participants really liked the ‘contour plot’ (reporting results across a range of sensitivity

parameters values, see for example Chapter 5, Figure 6), but others found it confusing. What

appeared the most intuitive and accepted approach generally was the reporting of different MNAR

scenarios on a CEAC (see, for example, Chapter 5, Figure 4). An interesting suggestion was to

present the INB for different values of δ, which was developed and included in the next Chapter.
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Overall it seems the appeal of the different reporting approaches depends on the context and preferences,

but that the overlaying CEACmay be the most intuitive generally. In the following chapters we will

therefore focus on CEAC, but also provide other presentation options.

4.4.5 Elicitation

This questionnaire responses highlighted the challenges of elicitation. In particular it appears

challenging for clinicians to give informed views about parameters on a utility scale. Reference-

based ideas appeared more intuitive, but were also mentioned as potentially difficult and not always

implementable without a suitable control group. The list of ‘experts’ that should be involved in the

elicitation included clinicians, patients representatives, health economists and statisticians.

4.4.6 Barriers

In this themed discussion participants reflected on what they perceived to be the main reasons for

sensitivity analyses not being more commonly conducted. As with the other themes, the answers

varied between participants. The three key factors that emerged were: "would not know how to

do"; "do not have the software"; and "would take too much time". The first two items indicate the

need for guidance and software code to conduct this analysis, as we will try to address in Chapters

5 and 6. The third item indicates the importance of accessible methods, that are quick and easy to

implement. Again, this was kept in mind in Chapters 5 and 6.

Interestingly, participants did not seem to think MNAR sensitivity analyses were not conducted

because they were perceived to be irrelevant, but more because of the challenges in conducting

these analyses. They also mentioned additional reasons, such as investigators not being very keen

as they can increase the uncertainty, or because it was not common practice.

The main practical challenges to implement the analysis for the respondents appeared to be the lack

of software, and the elicitation of the sensitivity parameters (δ).

The implications of (MNAR) missing data in model-based CEA was also discussed. It seems

that the issue of missing data is commonly ignored, or that when analysts have access to the trial

data, multiple-imputation is often used (under MAR). However, modellers appeared potentially

interested in conducting MNAR sensitivity analyses. The issue of MNAR sensitivity analyses in

model-based CEA is discussed further in Chapter 7 (sections 7.3.1 and 7.7.3).

We also asked about the popularity of different statistical software, and Statawas themost commonly

used (followed by R and Excel). Our review of the HTA trials (Chapter 3) also indicated that Stata
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was the dominant software, used in 75% of the CEA (data not shown). The tools in Chapters 5 and

6 were therefore developed in Stata.

4.5 Conclusions

Participants engaged with the topic and enjoyed the interactive discussion groups. The summaries

of the discussions provided very valuable information for the PhD.

First, it confirmed the importance of the missing data issue in the CEA context. Second, it raised

numerous points which have helped shape this thesis. Most usefully, it gave me further information

on the CEA context and the viewpoints of analysts, which will help ensure the recommendations

and tools developed are relevant in practice.

While it was ‘reassuring’ to find that MNAR sensitivity analysis was indeed a highly relevant

issue, progress appear hampered by a lack of knowledge and software. This is in line with the

hypothesis advanced by Bell and al. [62] in the clinical effectiveness context. Further, opinions

differed between participants, suggesting scope for different analysis and reporting approaches,

depending on the context and preferences. This highlights the difficulty of suggesting a one-

size-fits-all approach for MNAR sensitivity analyses in CEA. In the remaining chapters, we will

therefore focus on two different approaches, but we will also indicate variations around these

approaches, e.g. in terms of reporting, or of choosing the sensitivity analysis scenarios.

The main limitation was that these ‘focus group’ discussions were held in leading CEA research

centres, with a limited sample of participants. These may not be representative of the CEA analysts

and users more generally. For example, they may be more aware of missing data issues and

methods. Nevertheless, these views both complement and reinforce the information from Chapter

3, and are extremely valuable in informing the research agenda for this thesis.

Based on these discussions, and on Chapter 3, the approach that appeared to have themost potential,

in terms of relevance, accessibility, and flexibility, was the ‘MI +MNAR delta’ approach. This will

therefore be the focus of Chapter 5.

The reference-based was also very well received. There was wide agreement it seemed more

intuitive than eliciting quantitative parameters from experts, and easier to understand for decision

makers. Indeed, on of the key challenge with elicitation is to know whether the elicited information

is clinically and empirically relevant. The implementation appeared the main drawback of this

method, which we will aim to address in Chapter 6.
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Chapter 5

Sensitivity analysis for not-at-random
missing data in trial-based
cost-effectiveness analysis: a tutorial

5.1 Preamble

The Stakeholders’ seminars strongly suggested that key barriers to more widespread conduct of

MNAR sensitivity analyses are the lack of knowledge on how to do in practice and the lack of

software code. This chapter is an article published in PharmacoEconomics (Springer) which aims

to address these key issues.

After explaining the importance of theMNAR issue, and different approaches to conduct sensitivity

analyses under MNAR, the article focuses on one approach that, based on Chapters 2 to 4, appeared

particularly accessible and relevant in the CEA context. This approach, pattern-mixture models

after multiple-imputation, is based on modifying data multiply-imputed under MAR to reflect

plausible MNAR mechanisms. Widespread use of multiple-imputation in trial-based CEA, as

identified in Chapters 3 and 4, makes it an ideal vehicle to implement these sensitivity analyses.

The article uses the 10TT weight-loss trial as an example to illustrate the approach. It starts by

providing a relatively simple example of MNAR sensitivity analysis, showing the analysis step by

step and the corresponding Stata code. It then covers further key topics for practitioners, including

how to decide on the relevant sensitivity parameters, and how to report the sensitivity analyses

results.
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Abstract Cost-effectiveness analyses (CEA) of ran-

domised controlled trials are a key source of information

for health care decision makers. Missing data are, however,

a common issue that can seriously undermine their validity.

A major concern is that the chance of data being missing

may be directly linked to the unobserved value itself

[missing not at random (MNAR)]. For example, patients

with poorer health may be less likely to complete quality-

of-life questionnaires. However, the extent to which this

occurs cannot be ascertained from the data at hand.

Guidelines recommend conducting sensitivity analyses to

assess the robustness of conclusions to plausible MNAR

assumptions, but this is rarely done in practice, possibly

because of a lack of practical guidance. This tutorial aims

to address this by presenting an accessible framework and

practical guidance for conducting sensitivity analysis for

MNAR data in trial-based CEA. We review some of the

methods for conducting sensitivity analysis, but focus on

one particularly accessible approach, where the data are

multiply-imputed and then modified to reflect plausible

MNAR scenarios. We illustrate the implementation of this

approach on a weight-loss trial, providing the software

code. We then explore further issues around its use in

practice.

Key Points for Decision Makers

Cost-effectiveness analysis of randomised trials with

missing data should assess the robustness of their

findings to possible departures from the missing at

random assumption.

Multiple imputation provides a flexible and

accessible framework to conduct these sensitivity

analyses.

Sensitivity analysis results should be reported in a

transparent way, allowing decision-makers to assess

the plausibility of their respective assumptions.

1 Introduction

Cost-effectiveness analyses (CEA) of randomised trials are

an important source of information to help decide which

health care programmes to provide. A common issue is that

there may be missing data, for example, because patients

withdrew from the trials or failed to respond to study

questionnaires, and this could result in biased findings and,

ultimately, wrong decisions being taken.
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There is now greater awareness that simple approaches,

such as discarding the participants with missing data, are

generally unsatisfactory [1–5]. The benefits of methods that

make use of all the available data and offer valid inference

under ‘missing at random’ (MAR) assumptions are now

well recognised, and recent years have seen an increase in

the use of such methods in CEA, in particular multiple

imputation (MI) [6, 7].

A key concern, however, is that conditional on the

observed data, the probability of cost-effectiveness data

being missing may still depend on the underlying unob-

served values, i.e. data may be ‘missing not at random’

(MNAR). For example, after adjusting for observed prog-

nostic factors, the chances of completing quality-of-life

questionnaires may depend on the patient’s (unobserved)

quality-of-life status. This raises particular challenges to

cost-effectiveness inferences because the analyst cannot

formally choose between MAR and MNAR given the data

at hand. Therefore, conducting sensitivity analyses to

assess whether conclusions are robust to plausible depar-

tures from MAR is widely recommended [1, 2, 8–10], and

these are particularly relevant for CEA which usually rely

on patient-reported outcomes. However, a recent review

has found that, in practice, cost-effectiveness studies rarely

conduct such a sensitivity analysis [7]. We discussed this

issue with stakeholders (academics from the University of

York and the London School of Hygiene and Tropical

Medicine analysing or reviewing cost-effectiveness evi-

dence for health care decision making), and an important

barrier that was identified was the lack of software tools

and guidance to conduct these analyses.

This tutorial paper aims to address this gap by present-

ing an accessible framework and practical guidance to

conduct sensitivity analysis for trial-based CEA with

missing data. This builds on previous guidance on missing

data in CEA [1, 3, 4], by focusing on sensitivity analysis

approaches to address MNAR. This paper introduces dif-

ferent approaches to MNAR analyses, but focuses partic-

ularly on the implementation of pattern-mixture models

using MI [11] as it was highlighted as the most accessible

and flexible approach during our discussions with stake-

holders. This tutorial assumes familiarity with the conduct

of MI (under the MAR assumption), which has been cov-

ered elsewhere [3, 4, 12, 13].

The remaining sections of this paper are organised as

follows. Section 2 provides a brief overview of the dif-

ferent approaches for MNAR analysis. Section 3 illustrates

a framework for MNAR sensitivity analysis, based on a

weight-loss trial, the Ten Top Tips (10TT) study. Section 4

discusses possible extensions to the proposed approach and

further considerations for implementing it in practice.

2 Overview of Missing Not at Random (MNAR)
Analysis Methods

2.1 Missing Data Mechanisms

The classification of the missing data mechanisms pro-

posed by Little and Rubin [14] provides a useful context.

Data are said to be missing ‘completely at random’

(MCAR), when missingness occurs for reasons unrelated to

the analysis question, and hence independent of the vari-

ables of interest. In this case, the observed data are repre-

sentative of the overall data and analysing the participants

with complete data will give valid results. A less restrictive

assumption is that the data are ‘missing at random’ (MAR),

so that the probability of a value being missing may be

dependent on observed data (e.g. intervention group, or

participants’ age), but—given the observed data—inde-

pendent of the underlying value itself. Finally, if, after

taking into account the observed variables, the chance of

observing the data is still associated with its value (for

example, if, after controlling for preceding data, a patient is

less likely to complete a health questionnaire when in

poorer health), the data are said to be ‘missing not at

random’ (MNAR, also called ‘informative’, or ‘non-ig-

norable’ missingness).

When missing data are MAR, valid conclusions can be

drawn from the data available using an appropriate

approach, such as MI [15]. MI has been widely recom-

mended as a flexible, practical approach to handle missing

data in CEA studies [1, 3–5, 12], and its uptake has been

steadily increasing [6, 7]. The idea of MI follows from

regression imputation (using the observed data to predict

the missing values), but appropriately takes into account

the uncertainty in the imputed values. To achieve this,

missing observations are replaced by plausible values

drawn from an appropriate predictive distribution of the

missing values given the observed data. To reflect the fact

that imputed values are estimated rather than known, and

hence uncertain, this process is repeated several times to

create several complete datasets. The analysis model is

then fitted to each ‘complete’ dataset, and the results are

combined for inference using Rubin’s MI rules [15], which

recognise the uncertainty both within imputations (sam-

pling uncertainty) and between imputations (uncertainty

due to missing data).

Analysis under MNAR is more challenging, as it implies

some relevant information is unobserved, and it requires

additional untestable assumptions to proceed with the

analysis. This naturally makes the MAR assumption the

typical starting point for the primary analysis of clinical

trials [16, 17]. However, because we cannot determine the

true missing data mechanism, sensitivity analyses should
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be conducted in order to assess whether conclusions are

robust to plausible departures from the MAR assumption

[1, 2, 8–10].

2.2 MNAR Modelling Frameworks

Various approaches have been proposed in the statistical

literature to conduct analysis under MNAR. These vary

according to how they formulate the MNAR model, how

they fit this model, and how the unobserved parameters are

informed and results reported as part of a sensitivity

analysis strategy. Here, we briefly review some of the main

MNAR modelling frameworks; for a more comprehensive

description, see Molenberghs et al. [11]. There are two

main ways to model possible departure from MAR:

selection models and pattern-mixture models.

Selection models specify the mechanism by which the

data are observed (or ‘selected’) as a function of the

underlying data values [15, 18]. For example, ‘for each

decrease of 0.1 in quality of life, the chance of being

missing doubles’ formulates the MNAR problem in

selection model terms. Selection models were commonly

used in early work on informative missing data; an

example in econometrics is Heckman’s selection model

[19], which is used to address selection bias. They have the

attractive feature that the missing data model can be

directly incorporated into the analysis model, for example,

using an inverse probability weighting approach [18, 20] or

numerical integration [21]. However, selection models

make untestable assumptions about the conditional distri-

bution of the unobserved data, and results can be very

sensitive to departure from these assumptions, as has been

shown elsewhere [14, 22–24]. This limitation is particu-

larly relevant for CEA studies, as the cost and effectiveness

endpoints tend to be difficult to parametrise. Another dis-

advantage is that selection models formulate sensitivity

analysis in a way that is not readily interpretable. For

example, a typical sensitivity parameter is the (log-)odds

ratio of how a unit change in the partially observed out-

come affects the chances of observing the data. This

specification makes the elicitation of such parameters

challenging, as well as the interpretation and communica-

tion of the sensitivity analysis results.

Pattern-mixture models, on the other hand, formulate

the MNAR problem in terms of the different distributions

between the missing and observed data. The overall dis-

tribution of a variable is seen as a mixture of the distri-

bution of the observed and the distribution of the missing

values (‘pattern-mixture’) [18, 25]. For example, ‘partici-

pants with missing data have a 0.1 lower quality of life than

those observed’ corresponds to a pattern-mixture formu-

lation. Pattern-mixture models have received increasing

attention over time [26], a key advantage being that they

rely on more easily interpretable parameters

[3, 18, 27–29]—such as the mean difference between

missing and observed data—and have therefore been

favoured in the context of clinical trial sensitivity analysis

[30, 31]. Different approaches can be used to formulate and

analyse pattern-mixture models, as we will see in the next

section.

Other forms of MNAR modelling have also been pro-

posed, but these can be seen as special cases of selection or

pattern-mixture models. In shared-parameter models, the

outcome and the missingness are linked through a latent

(unobserved) variable [32]. They have been particularly

used in the context of structural equation modelling.

Another approach which is gaining interest for use in

longitudinal trials is ‘reference-based’ or ‘controlled’

imputation, where missing data are assumed to follow a

distribution borrowed from another trial arm [33]. This

approach is yet to be explored in the CEA setting.

While any of the methods above would allow an

appropriate assessment of departures from MAR, we will

focus on the pattern-mixture approach in the remainder of

this paper because (1) it allows for more interpretable pa-

rameters, hence making this approach more accessible and

transparent; (2) it seems to be the main approach currently

used in clinical trial sensitivity analysis [7, 34]; (3) our

discussion with stakeholders confirmed this approach was

also appealing in the CEA context; and (4) pattern-mixture

models can be easily implemented using standard missing

data methods, such as MI, and build naturally on the MAR

analysis, as we will see below.

2.3 Sensitivity Analysis with Pattern-Mixture

Models

An approach for MNAR sensitivity analysis that has often

been suggested—under various forms—is to perform a

pattern-mixture model with a parameter capturing how the

distribution of the missing values Ymiss could differ from

the conditional distribution based on the observed data Yobs
[15, 18, 30, 35]. This can be done, for example, by using an

‘offset’ parameter d (delta) representing the average dif-

ference between the missing and observed values

(Ymiss ¼ Yobs þ dÞ: An alternative modification is to use a

multiplicative ‘scale’ parameter c, so that Ymiss ¼ Yobs � c.

For example, missing values could be assumed to be 10%

lower than those observed, or c ¼ 0:9. Figure 1 illustrates

an example of such modelling with a rescaling parameter.

In that example, a participant who drops out from the trial

is assumed to have on average a 10% lower quality of life

compared to a participant with similar characteristics who

remained in the trial. Note that this parameter is not derived

from the data, but is used to express one possible

assumption about the (unknown) missing data mechanism.
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Sensitivity analyses are then typically conducted over a

range of plausible values for this parameter, assessing how

different assumptions could result in different findings.

Several approaches can be used to inform the values of the

parameter in practice, and these are discussed further in

Sect. 4.3. We also discuss in Sect. 4.2 alternative

parametrisations that can be used to capture how missing

and observed data might differ.

Several approaches have been proposed to fit pattern-

mixture models, for example, within a Bayesian framework

[28, 36] or as an arithmetic function of the observed esti-

mates and using bootstrap or sandwich estimators to derive

the standard errors [18, 28]. But a particularly convenient

and flexible framework to fit these models is MI

[11, 15, 26, 37]. An approach commonly adopted in

practice consists of simply modifying multiply-imputed

data to reflect possible departures from the MAR

assumption [3, 7, 16, 38]. It involves the following steps:

1. Use MI to impute the missing values under an MAR

assumption.

2. Modify the MAR-imputed data to reflect a range of

plausible MNAR scenarios, for example, by multiply-

ing the imputed values by c, or by adding d:
3. Analyse the resulting dataset as one would a usual

multiply-imputed dataset, fitting the analysis model to

each imputed dataset and combining the results using

Rubin’s rules.

This approach is straightforward to implement in any

statistical software, and allows the effect of different

MNAR mechanisms on the conclusion to be easily asses-

sed, as we will illustrate in the next section.

3 Illustrative Application

3.1 The Ten Top Tips (10TT) Trial

3.1.1 Overview of the Trial and Cost-Effectiveness

Analysis

The 10TT trial was a two-arm, individually randomised,

controlled trial of a weight-loss intervention for obese

adults attending general practices in the UK [39]. The

intervention comprised self-help material delivered by a

practice nurse, providing the patients with a set of ten

simple weight-control behaviours, with strategies to make

them habitual. The participants randomised to the control

arm received care as usual from their general practices.

The primary trial outcome was weight loss at 3 months,

but participants were followed for 2 years to assess longer-

term outcomes and cost-effectiveness. Health-related

quality of life (HRQoL) was measured by EQ-5D-3L

questionnaires [40, 41] completed during study visits at

baseline and 3, 6, 12, 18 and 24 months, and quality-ad-

justed life years (QALYs) were derived by the ‘area under

the curve’, combining both time and utilities [10]. Total

costs were measured from the National Health Service

(NHS) perspective over the 2-year study period and based

on the intervention costs and the health resource use data

collected from the practice records at the end of the trial.

More details on the trial and CEA can be found in the

respective publications [39, 42, 43].

3.1.2 Missing Data

The trial recruited 537 participants, but only 313 (58%)

completed the last follow-up at 2 years. Missing data were

a major challenge for the CEA because only 31% of ran-

domised participants had complete HRQoL and cost data.

Missing data were mostly driven by missing EQ-5D data,

from participants who had either withdrawn from the trial

(76% of the missing HRQoL) or missed a follow-up

appointment (24%). Resource use data were derived from

the general practitioner records and were complete for 73%

of the participants (all the health care data were missing for

the remaining 27%). Details of the missing data by arm are

shown in Fig. 2. Although non-significant, missing data

appeared to be more common in the intervention arm (27

vs 34% of complete cases, p value = 0.075).

The primary CEA of the trial [43] was conducted under

the MAR assumption, using MI to impute the missing cost

and HRQoL values. It is, however, recognised in weight-

loss trials that participants who drop out could be those

with poorer outcomes [44]. This means that the chance of

Fig. 1 Example of pattern-mixture assumptions with rescaling.

Quality-of-life score over time for a trial participant, where missing

data are assumed to be 10% lower (c = 0.9) than would have been

imputed under a missing at random assumption. MAR missing at

random, MNAR missing not at random
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observing endpoints such as weight loss or HRQoL could

be dependent on their actual value, i.e. data are likely to be

MNAR. It is therefore important to assess the cost-effec-

tiveness results under different assumptions regarding the

missing data, including plausible MNAR mechanisms, as

we will illustrate in Sect. 3.2.

3.1.3 Cost-Effectiveness Analysis Methods

The CEA conducted in this tutorial follows the main

characteristics of the methods used for the trial’s primary

CEA [43], with some simplifications made to allow a clear

focus on the sensitivity analysis. Details of the analysis

variables are presented in Online Appendix 1 [see the

electronic supplementary material (ESM)]. Effectiveness

was measured in QALYs, and costs were captured by the

total health care use over the trial period (Sect. 3.1.1), as

derived for the primary analysis [43]. A discount rate of

3.5% per year was applied to both cost and effect.

Results are presented in terms of incremental cost,

incremental QALYs and incremental net monetary benefit

(INMB) at a cost-effectiveness threshold of £20,000 per

QALY. These were estimated alongside their 95% confi-

dence intervals (CIs) using non-adjusted linear regression,

comparing the 10TT arm to the control arm. Non-para-

metric bootstrap [45] was also used to produce the cost-

effectiveness plane [46], representing the uncertainty in

incremental cost and effect estimates, and the cost-

effectiveness acceptability curve (CEAC) [47], represent-

ing the probability of 10TT being cost-effective at different

thresholds. We focus on INMB rather than the incremental

cost-effectiveness ratio (ICER) as the intervention was

cost-saving. All the analyses were conducted in Stata

version 15 [48].

3.2 Sensitivity Analysis Example

In this section, we use the 10TT trial to illustrate MNAR

sensitivity analyses using a pattern-mixture approach fol-

lowing MI, as described at the end of Sect. 2.3.

3.2.1 MNAR Scenarios Explored

Several approaches can be used to decide on the relevant

MNAR scenarios for the sensitivity analyses, and this is

discussed further in Sect. 4.3. In this example, we con-

sidered that the missing HRQoL data may be MNAR,

while the MAR assumption is likely to hold for the

missing cost data (MNAR costs are discussed in

Sect. 4.1). It was postulated that patients who failed to

complete an EQ-5D questionnaire at a specific follow-up

assessment were likely to have been in relatively poorer

health (Sect. 3.1.2). More specifically, we assumed

patients’ HRQoL could be up to 10% lower (c = 0.9),

compared to the MAR setting (c = 1). This sensitivity

parameter c was allowed to differ by arm, with up to a

5% difference between the two arms (this reflects that the

missing data mechanism may not be the same in the two

arms, but that it is unlikely to be perfect MAR in one arm

and strong MNAR in the other). This resulted in seven

different MNAR scenarios, with c = 1.0, 0.95, or 0.9 for

either arm (Table 1).

3.2.2 Implementation of the Analysis in Stata

The annotated Stata code to conduct the analysis is pro-

vided in Online Appendix 2 (see the ESM), and the dataset

is described in Online Appendix 1.

Step 1. Performing Multiple Imputation

The first step of the analysis is to conduct standard MI

(under an MAR assumption), to ‘fill in’ the variables with

missing data. The missing HRQoL at each time point and

total costs were imputed stratified by arm, using a linear

model based on each other, and baseline characteristics

(age, sex, study centre, weight, body mass index and

baseline HRQoL). We conducted MI by chained equations,

using predictive-mean matching, and created 50 imputa-

tions. Note that alternative MI approaches, for example,

linear regression, would not affect the proposed sensitivity
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analysis strategy. More detailed guidance on conducting

MI in Stata is provided elsewhere [3, 13, 49].

Step 2. Modifying Imputed Data

To obtain the imputed data under MNAR, we simply need to

multiply each MAR-imputed value by c. For example:

replace qol_3=qol_3*0.9 if miss_qol_3==1 & arm==0 

will multiply the imputed values of qol_3 in the control

arm by 0.9.

Different versions of the modification could be imple-

mented at this stage (see Sect. 4.2), for example, by

alternatively considering an ‘offset’ additive parameter d:

replace qol_3=qol_3 + d if miss_qol_3==1 & arm==0 

This can be done in turn for each of the scenarios, or

storing each of the scenario parameters in a table (matrix)

allows Stata to execute this in one step, using a loop. The

modified data can then be saved in a single large dataset to

facilitate the remaining steps.

Step 3. Analysing the MNAR Dataset

The CEA analysis is then applied as usual to each of the

MNAR multiply-imputed datasets. To estimate the incre-

mental costs, QALYs and net monetary benefit and their

95% CIs, we have used the ‘mi estimate’ command, which

fits the analysis model on each of the imputed datasets,

then combines the results using Rubin’s rules [15]. We

have also used a non-parametric bootstrap approach to

produce the cost-effectiveness plane and the CEAC, with

the implementation described in Online Appendix 2 (see

the ESM). Further guidance on the analysis of multiply-

imputed cost-effectiveness data can be found elsewhere

[1, 3, 4, 12].

Step 4. Reporting

Clear reporting of the sensitivity analysis results is key to

ensure their implications are well understood. We recom-

mend a table which presents the summary findings for each

scenario (Table 1). Figure 3, which plots the cost-effec-

tiveness plane for the different MNAR scenarios is also

useful to understand the effect of each MNAR assumption,

as discussed in the next section. Our discussions with

stakeholders indicated that the most intuitive way to sum-

marise the findings was probably overlaying CEACs,

showing the probability of the intervention being cost-ef-

fective at different thresholds, for each MNAR scenario

(Fig. 4). Alternative presentations of the sensitivity analy-

sis results are discussed in Sect. 4.5.

3.2.3 Results

The 10TT CEA results under the different missing data

scenarios are reported in Table 1, Figs. 3 and 4. In par-

ticular, the CEAC (Fig. 4) shows that the probability of

10TT being cost-effective remains relatively stable when

Table 1 Cost-effectiveness of 10TT under different MNAR assumptions for missing quality-of-life data

Scenario

number

MNAR

rescaling

parametersa

Incremental costb (£) [95% CI] Incremental

QALYs [95% CI]

INMBc (£) [95% CI] Probability

cost-effectivec

(%)

ccontrol c10TT

1 (MAR) 1 1 - 35 [- 504 to 434] - 0.004 [- 0.074 to 0.066] - 49 [- 1632 to 1534] 48

2 1 0.95 - 35 [- 504 to 434] - 0.037 [- 0.107 to 0.032] - 713 [- 2280 to 853] 19

3 0.95 1 - 35 [- 504 to 434] 0.026 [- 0.044 to 0.095] 550 [- 1022 to 2121] 75

4 0.95 0.95 - 35 [- 504 to 434] -0.008 [- 0.076 to 0.061] - 115 [- 1670 to 1440] 44

5 0.95 0.90 - 35 [- 504 to 434] - 0.041 [- 0.109 to 0.027] - 780 [- 2321 to 762] 16

6 0.90 0.95 - 35 [- 504 to 434] 0.022 [- 0.046 to 0.091] 484 [- 1063 to 2030] 73

7 0.90 0.90 - 35 [- 504 to 434] - 0.011 [- 0.078 to 0.057] - 181 [- 1714 to 1352] 41

All results are based on imputed data and comparing the 10TT arm to the control arm (n = 537). For participants with complete cost and

effectiveness data (n = 166; 31%), the observed incremental cost was - £65 [95% CI - 924 to 794], incremental QALYs was - 0.040 [- 0.169

to 0.088], INMB was - £741 [- 3645 to 2163], and probability cost-effective was 31%

CI confidence interval, INMB incremental net monetary benefit, MAR missing at random, MNAR missing not at random, QALY quality-adjusted

life year, 10TT Ten Top Tips
aHow missing quality-of-life data are assumed to differ from the MAR-imputed values. ccontrol = 0.9 means that all imputed quality-of-life values

in the control arm have been reduced by 10%
bMissing costs assumed to be MAR in all scenarios
cAt a cost-effectiveness threshold of £20,000/QALY
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MAR departures are assumed to be the same across ran-

domised arms (scenarios 1, 4 and 7). This is also seen in

Table 1, where the alternative departures from MAR had

little effect on the incremental QALYs in these scenarios.

This will usually be the case when the missing data pattern

is broadly similar across treatment arms, as the MNAR bias

applies roughly equally to each arm and cancels out in the

treatment comparison.

As we move through the other scenarios, however, 10TT

alternates between being cost-effective and not depending

on which arm is assumed to have a stronger MNAR

mechanism. For example, 10TT appear unlikely to be cost-

effective when we assumed stronger MNAR (lower c) for

the treatment arm, with a probability of being cost-effec-

tive around 0.2 at £20,000 per QALY. Table 1 also shows

how the incremental QALYs vary across the different

scenarios, while the width of the 95% CI remains relatively

similar. Since the magnitude of the incremental QALYs

was relatively small, different missing data mechanisms

across arms led to substantially different incremental

QALYs estimates.

The impact of the different MNAR assumptions can also

be readily described in the cost-effectiveness plane

(Fig. 3). On the diagonal, where the MAR departures are

assumed to be the same in both arms, the joint distribution

of incremental QALYs and cost remains relatively

unchanged. However, differential changes of the sensitivity

parameter (c) between arms lead to a shift in the distribu-

tion of incremental QALYs to the right (10TT more cost-

effective) or left (10TT less cost-effective). These shifts

essentially reflect the impact of the MAR departures on the

incremental QALYs seen in Table 1. For example, for

scenarios where c is lower (stronger departure from MAR)

in the treatment arm (upper-right off-diagonal plots), the

joint distribution is shifted to the left and the proportion of

points below the cost-effectiveness threshold (£20,000 per

QALY) is lower (10TT less likely to be cost-effective).

4 Extensions

Section 3 provided a relatively simple example of a sen-

sitivity analysis. In this section, we discuss possible

extensions and further issues around their implementation

in practice.

4.1 Missing Cost

In our base-case example, we considered departures from

the MAR assumption for the effectiveness endpoint

(HRQoL) only. However, it is possible to consider MNAR

sensitivity analysis for the cost data as well, following a

similar approach.

Table 2 presents the results of a sensitivity analysis for

10TT when both the missing cost and HRQoL data were

considered to be MNAR. This involves four parameters,

capturing the MAR departure in total costs and HRQoL, in

each arm. The missing costs were assumed to be some-

where between MAR and up to 10% higher than observed

(i.e. participants who dropped out may have higher health

care use). Table 2 suggests that the departures from MAR

for the cost endpoint would only have a marginal effect on

the overall results, while departures for the HRQoL end-

point can strongly affect the conclusions, particularly if the

missing data mechanisms differ between arms. More

details on the analysis and the Stata code are provided in

Online Appendix 3 (see the ESM).

As the number of variables increase, so does the number

of sensitivity parameters, whose values we have to specify.

The number of plausible combinations of these parameters

can quickly become overwhelming, and it may be best to

focus on a limited number of scenarios, or on the param-

eters that affect the results the most, to allow for a mean-

ingful interpretation.

4.2 Alternative MNAR Parametrisation

In our example, we have rescaled the MAR-imputed

HRQoL by a multiplicative factor. As discussed in

Sect. 2.3, another popular pattern-mixture approach is to

‘offset’ the data by an additive factor. This is commonly

used for continuous outcomes measured on a readily

interpretable scale, such as EQ-5D, which is anchored at 0

(death) and 1 (full health). However, for cost data, a

multiplicative reduction may be more intuitive; for exam-

ple, a ‘10% reduction’ may be more readily understood

than a ‘£200 reduction’ as the latter is context specific. A

multiplicative transformation may therefore be more

appealing in the CEA context.

The values of the MNAR parameters could also be

varied according to other factors. With longitudinal data,

the departure from MAR can be assumed constant over

time—as was considered here—or changing over time, for

example, with the parameter increasing with time since

withdrawal [31, 37]. The parameter can also be applied at

different levels of data aggregation, for example, assuming

only one of the resource use components is likely to be

MNAR. Different parameters could also be used according

to the reasons for discontinuing the trial.

In principle, pattern-mixture models are very flexible

and the distribution of unobserved data could take any

shape or form. While it can be tempting to consider more

complex models (e.g. additional parameters), it can make

elicitation and interpretation challenging. In our view,

simple offsets or rescaling of the MAR distribution (al-

lowed to differ by arm) should usually provide sufficient
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span for a comprehensive sensitivity analysis, while

remaining sufficiently transparent.

4.3 Choosing the MNAR Parameters

One of the main concerns about conducting an MNAR

analysis is how to choose plausible sensitivity parameter

values. Several approaches and sources of information can

be used for this purpose. One potential approach is to

formally elicit ‘experts’ beliefs on the missing data distri-

bution [28]. These ‘experts’ can be anyone who can con-

tribute knowledge in understanding the missing data, such

as trial investigators, clinicians, or patients. Mason et al.

have developed a useful framework for eliciting expert

opinion about MNAR mechanisms in CEA [36]. The

experts’ beliefs, capturing the most likely value for the

MNAR parameters, and the uncertainty in that value, can

then be incorporated into the analysis model (see

Sect. 4.4).

Alternatively, one could simply use a ‘tipping point’ or

threshold analysis approach. This involves changing the

MNAR parameter until a different conclusion is reached

(for example, being or not being cost-effective). The ana-

lyst can then discuss with the relevant experts the plausi-

bility of this value. This approach is appealing because it is

more readily implemented and less time-consuming than

formal elicitation, and may provide sufficient information

for the decision problem at hand, especially when results

are robust to a wide range of assumptions. However, what

constitutes a ‘change of conclusion’ may not be uniquely

defined, and it may be difficult to implement with multiple

sensitivity parameters.

An intermediate approach would be to agree on plau-

sible sensitivity scenarios with those involved in the trial

or regulators, for example, at a steering committee

meeting. A ‘most likely’ scenario and several ‘most

extreme’ scenarios could be agreed on, without formally

eliciting the uncertainty in the parameters. The scenarios

should cover all plausible situations, so that readers can

be confident that missing data are unlikely to affect the

CEA conclusions beyond what is reported in the sensi-

tivity analysis.

Analysts should also consider how missing data are

addressed in the trial primary (clinical) analysis, and the

elicitation could be done jointly when suitable. The elici-

tation should ideally be conducted around the final stages

of data collection and be ‘pre-specified’ before the trial

results are known.

Overall, a clear understanding of the reasons for missing

data in the specific trial context, discussions with relevant

‘experts’, and insights drawn from the literature are key to

inform the choice of sensitivity parameters.

4.4 Probabilistic Parameters

An alternative to reporting results for specific sensitivity

parameters values is to incorporate the uncertainty around

the parameters into the analysis model. This is a natural

approach when a formal elicitation of the parameter’s value

and its uncertainty has been conducted (Sect. 4.3). While

the analysis can be conducted using a Bayesian framework

[36], it can also be implemented using MI [28, 37]. To do

so, instead of rescaling all the imputed dataset by a fixed

value, a random parameter value is drawn from the elicited

Table 2 Cost-effectiveness of 10TT under different MNAR assumptions for missing cost and effectiveness quality-of-life data

Scenario description Incremental cost

(£) [95% CI]

Incremental

QALYs [95% CI]

INMBa (£)

[95% CI]

Probability

cost-effectivea (%)

MAR - 35 [- 504 to 434] - 0.004 [- 0.074 to 0.066] - 49 [- 1632 to 1534] 48

Same MNAR parametersb in the two arms

- 10% QoL in both arms - 35 [- 504 to 434] - 0.011 [- 0.078 to 0.057] - 181 [- 1714 to 1352] 41

? 10% cost in both arms - 25 [- 512 to 462] - 0.004 [- 0.074 to 0.066] - 59 [- 1650 to 1532] 47

- 10% QoL and ? 10% cost - 25 [- 512 to 462] - 0.011 [- 0.078 to 0.057] - 191 [- 1733 to 1350] 40

Different MNAR parametersb in the two arms

- 10% QoL in intervention arm - 35 [- 504 to 434] - 0.071 [- 0.139 to - 0.002] - 1378 [- 2932 to 176] 4

- 10% QoL in control arm - 35 [- 504 to 434] 0.056 [- 0.014 to 0.125] 1148 [- 415 to 2711] 93

? 10% cost in intervention arm 20 [- 459 to 499] - 0.004 [- 0.074 to 0.066] - 104 [- 1691 to 1483] 45

? 10% cost in control arm - 80 [- 558 to 398] - 0.004 [- 0.074 to 0.066] - 4 [- 1591 to 1583] 50

All results are based on imputed data and comparing the 10TT arm to the control arm (n = 537)

CI confidence interval, INMB incremental net monetary benefit, MAR missing at random, MNAR missing not at random, QALY quality-adjusted

life year, QoL quality of life, 10TT Ten Top Tips
aAt a cost-effectiveness threshold of £20,000/QALY
bHow missing cost and QoL data are assumed to differ from MAR-imputed values
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distribution for each of the imputed datasets. An example is

provided in Online Appendix 4 (see the ESM).

This probabilistic approach is particularly appealing as it

incorporates the uncertainty related to MNAR into the

analytical model, providing a ‘single’ answer. It can be

particularly relevant, for example, if the result is to be

incorporated in a larger decision model.

However, some stakeholders found this approach less

comprehensive than the reporting under different MNAR

scenarios. Indeed, this approach also relies on making a

single assumption (that the uncertainty was captured

appropriately), whereas a range of plausible scenarios may

be more readily interpretable in showing how different

missing data mechanisms could result in different

conclusions.

4.5 Presentation of Results

We have shown how to report the results for different

MNAR scenarios by displaying the resulting CEACs. This

was flagged by stakeholders as an accessible way to report

the results, but they have also recognised that alternative

graphical representations may be preferred depending on

the decision problem at hand. In this section, we illustrate

some of these graphical tools (Stata code provided in

Online Appendix 5; see the ESM).

For example, Fig. 5 shows the INMB (and CIs) for

values of the c parameter, ranging from 0.8 to 1. The

parameter is applied to both arms simultaneously, or only

one of the arms.

Alternatively, a more comprehensive description of

possible combinations of the sensitivity parameters across

treatment arms is plotted in Fig. 6. This ‘colour-coded

graph’ (or contour plot) provides a useful tool to interpret

the implications of different departures from MAR on the

overall decision. For example, it illustrates that for lower

values of c (stronger departure from MAR) in the inter-

vention arm compared to the control group, the 10TT

intervention is unlikely to be cost-effective (red/orange

area).

5 Discussion

In this tutorial, we have outlined different approaches for

conducting sensitivity analysis for missing data in CEA.

We focused on one particularly accessible approach, based

on pattern-mixture modelling with MI, and illustrated how

it can be implemented in practice. While this is not, in any

sense, the final word, we believe that more widespread use

of the approach described here would represent a sub-

stantial step towards realising the regulatory call for sen-

sitivity analysis.

As Sect. 2 highlights, numerous approaches to MNAR

analyses are possible, and there is a large literature on this

topic [11, 18, 37]. However, we believe the approach

illustrated here has the key advantages of accessibility,

flexibility, and transparency. Transparency is indeed the

principal requirement for these sensitivity analyses to serve

their purpose, as the plausibility of their underlying

assumptions needs to be clearly understood and critically

assessed by a broad readership [2, 16, 31]. The straight-

forward implementation of the analysis within an MI

framework makes it accessible to the increasing number of

analysts who are routinely using MI. It can also be readily

implemented within any statistical software with MI (Stata,

R, SAS, SPSS, etc.).
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Fig. 5 Alternative presentation: incremental net monetary benefit of

10TT compared to control arm (at £20,000/QALY), for different

values of the MNAR rescaling parameter. CI confidence interval,

MAR missing at random, MNAR missing not at random, QoL quality

of life, 10TT Ten Top Tips

Fig. 6 Alternative presentation: contour plot of the probability of

10TT being more cost-effective than control (at £20,000/QALY), for

different values of MNAR rescaling parameters in the control and

intervention arms. MAR missing at random, MNAR missing not at

random, QALY quality-adjusted life year, QoL quality of life, 10TT

Ten Top Tips
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Ready implementation allows the focus to be on iden-

tifying relevant MNAR scenarios and assessing their

plausibility. We discussed here several approaches that can

be used in practice, whose suitability will depend on each

situation. Some approaches are more rigorous, but more

time-consuming, while others are cruder, but still infor-

mative. Deciding on the relevant scenarios is likely to

involve discussion with other collaborators, and the ana-

lysts should be able to explain the different assumptions in

non-technical language. Another challenge is the reporting

of the results: how can the analyst ensure that the sensi-

tivity analysis is comprehensive, without being over-

whelming for the readers? We have suggested a framework

where the analysis is conducted under a limited number of

plausible scenarios, and the results reported in a table and

on a combined CEAC, but also discussed alternative

presentations.

The proposed framework is not without some limita-

tions, however. First, every trial raises different issues, and

it is not possible to recommend a universal framework for

MNAR sensitivity analyses. The framework suggested here

is nevertheless relatively flexible, and should be suitable in

a wide range of settings, including longitudinal and cluster-

randomised trials. Secondly, an assumption such as ‘the

missing HRQoL are 10% lower’ could be too simplistic to

capture the varied reasons behind missing data. However, it

is important to consider this in light of several aspects. We

are primarily interested here, as is usually the case in

randomised trials, in estimating mean differences between

groups. To obtain valid conclusions, it is therefore not

necessary to predict accurately each missing value, but

only the average difference between observed and missing

data. Also, the true missing data mechanism is always

unknown, and the aim of the sensitivity analysis is not to

provide a definitive answer, but to indicate how conclu-

sions could differ under different missing data assump-

tions. Finally, the framework proposed here was for

continuous outcomes such as cost and quality of life. While

the main ideas of the framework are relevant for other

outcomes (e.g. binary or survival), they do raise additional

challenges, especially around model compatibility and

elicitation [37]. For example, differences between observed

and missing data in terms of ‘odds ratios’ may be more

difficult to elicit and interpret.

While this tutorial focuses on within-trial CEA, a similar

sensitivity analysis approach could possibly be used in

observational settings, for example, when analysing rou-

tinely collected data, where the issue of informative

missing data may arguably be even more important.

This tutorial highlights several areas where further

research could improve the value of CEA for decision

making in the presence of missing data. A particularly

interesting alternative MNAR approach is ‘reference-

based’ or ‘controlled’ imputation, where the missing data

are assumed to follow a distribution that is ‘borrowed’

from another group. For example, in a trial comparing a

drug to placebo, it could be assumed that patients dropping

out from the experimental arm have stopped taking their

treatment, and therefore follow a similar pattern to that

seen in the control arm [33]. This approach is appealing as

it sidesteps the elicitation of quantitative parameters

required for selection or pattern-mixture models, and

instead formulates the MNAR assumption in a qualitative

way. It was well received when discussed with stakehold-

ers, but, to our knowledge, has not yet been used in the

CEA context. Relevant areas for further research also

include incorporating the sensitivity analysis results into

broader decision models and, related to this, conducting

sensitivity analysis without patient-level data. One possi-

bility could be to approximate the MNAR bias based on the

proportion of missing data, and to retain the analysis

standard errors as a measure of sampling uncertainty.

Further guidance on how to best address missing binary

and survival endpoints is still needed. While we propose

some routes for eliciting sensitivity parameters, this critical

aspect deserves further attention, and is likely to evolve as

MNAR analyses become more routinely performed.

In summary, CEA based on incomplete data should

routinely assess whether the study’s conclusions are robust

to potential departures from the standard MAR assumption.

This paper described some approaches to conducting these

sensitivity analyses, and illustrated the application of a

practical, accessible framework using pattern-mixture

models with MI. This approach builds on the increasing use

of MI in CEA and should provide an important step

towards improving practice in trial-based CEA.
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ABSTRACT 

 
Missing data are a common issue in cost-effectiveness analysis (CEA) alongside randomised trials, 

and are often addressed assuming the data are “missing at random” (MAR). However, this 

assumption is often questionable and sensitivity analyses are required to assess the implications of 

departures from MAR. Reference-based multiple imputation provides an attractive approach for 

conducting such sensitivity analyses, because missing data assumptions are framed in an intuitive 

way by making reference to other trial arms. For example, a plausible not-at-random mechanism in a 

placebo-controlled trial would be to assume that participants in the experimental arm who drop out 

stop taking their treatment, and have similar outcomes to those in the placebo arm. 

Drawing on the increasing use of this approach in other areas, this paper aims to extend and 

illustrate the reference-based multiple imputation approach in CEA. It introduces the principles of 

reference-based imputation, and proposes an extension to the CEA context. The method is 

illustrated in the CEA of the CoBalT trial evaluating cognitive behavioural therapy for treatment 

resistant depression. Stata code is provided. We find that reference-based multiple imputation 

provides a relevant and accessible framework for assessing the robustness of CEA conclusions to 

different missing data assumptions. 
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1 | INTRODUCTION 

 

Cost-effectiveness analyses (CEA) of randomised trials provide an important source of information 

for decision-making, but are often limited by incomplete data collection. For example, participants 

may withdraw before the end of the study or fail to complete a questionnaire. This is particularly 

common in longitudinal studies, where data are collected at multiple follow up points, as is often the 

case in CEA.  There has been substantial progress in methods for handling missing data in CEA 

(Briggs, Clark, Wolstenholme, & Clarke, 2003; Burton, Billingham, & Bryan, 2007; Faria, Gomes, 

Epstein, & White, 2014; Manca & Palmer, 2005; Oostenbrink & Al, 2005), particularly those that 

allow valid inferences under the assumption that data are missing at random (MAR) (R. J. A. Little & 

Rubin, 2002), and in recent years there has been an increase in the uptake of methods such as 

multiple imputation (Gabrio, Mason, & Baio, 2017; Leurent, Gomes, & Carpenter, 2018; Noble, 

Hollingworth, & Tilling, 2012).  The MAR assumption often provides a desirable starting point for 

missing data analyses as it implies that any differences between individuals with missing and 

complete information can be explained by differences in the observed data. However, this 

assumption may not always hold, as the missingness could depend on unobserved values, i.e. data 

are missing not at random (MNAR). For example, participants in poorer health may be less likely to 

complete health-related quality of life questionnaires, conditional on their observed characteristics. 

Because the true missing data mechanism is unknown, methodological guidelines recommend 

conducting sensitivity analyses to departures from the MAR assumption, considering alternative, 

plausible MNAR mechanisms (Burzykowski et al., 2010; Committee for Medicinal Products for 

Human Use (CHMP), 2010; Faria et al., 2014; R. J. Little et al., 2012). However, these sensitivity 

analyses are not routinely conducted (Bell et al., 2014; Gabrio et al., 2017; Leurent, Gomes, & 

Carpenter, 2018), perhaps due to the lack of accessible methods, or because of the challenges of 

formulating relevant missing data assumptions beyond MAR. One approach that is receiving 

increasing attention in clinical trials is reference-based multiple imputation (Carpenter, Roger, & 

Kenward, 2013; Keene, Roger, Hartley, & Kenward, 2014; Kenward, 2015; R. Little & Yau, 1996). This 

approach recognises that individuals with missing data could differ from those who complete the 

study, and – reflecting this – the data are imputed using a different distribution. For example, in a 

placebo-controlled drug trial, participants in the experimental arm who drop out may stop taking 

their treatment, and be expected to have similar outcomes to those in the placebo arm. A key 

advantage of this approach over other methods that have been proposed (Gabrio, Daniels, & Baio, 

2018; Leurent, Gomes, Faria, et al., 2018; Mason, Gomes, Grieve, & Carpenter, 2018) is that the 
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departure from MAR is captured in a qualitative way, making the formulation of the problem more 

intuitive and accessible to a broader audience, including clinicians and decision makers.  

Drawing on recent work (Carpenter et al., 2013), this paper extends and illustrates the reference-

based multiple imputation approach to address MNAR data in trial-based CEA. In particular, we 

focus on adapting the approach to jointly model costs and effectiveness, and allow for different 

patterns of missingness on cost and effectiveness endpoints over time. 

This paper is organised as follows: Section 2 introduces the CoBalT trial, which is used as a 

motivating example to illustrate the methods. Section 3 introduces the reference-based multiple 

imputation approach, its extension to the CEA framework, and its implementation in Stata 

(StataCorp., 2017). Section 4 illustrates the methods, applied to the CoBalT trial. The paper finishes 

with a discussion of the proposed methods. 

 

2 | CASE-STUDY 

 

2.1 Overview of the CoBalT trial 

 

CoBalT was a two-arm individually randomised controlled trial of Cognitive Behavioural Therapy 

(CBT) as an adjunct to pharmacotherapy for treatment resistant depression (Wiles et al., 2014, 

2013). Patients with treatment-resistant depression were recruited from UK primary care practices 

between 2008 and 2010, and randomised to either usual care for depression (including 

pharmacotherapy), or to CBT in addition to usual care. CBT consisted of 12 to 18 sessions delivered 

by a trained therapist at the general practice or a nearby location, and followed standard CBT 

manuals (Thomas et al., 2012). The trial’s primary outcome was clinical response, defined as a 50% 

reduction in depressive symptoms (Beck Depression Inventory-II (BDI) (Beck, Steer, & Brown, 1996)) 

at six months compared with baseline. The trial had an originally planned sample size of 472 

participants recruited, to provide 90% power to detect an odds ratio of 2.0 (or an absolute 

difference of 16%) in clinical response, at the 5% level. 

 

2.2 Cost-effectiveness analysis 

 

A one-year CEA was conducted alongside the trial to assess the cost-effectiveness of CBT in 

addition to usual care and has been reported in detail elsewhere (Hollinghurst et al., 2010; Wiles et 

al., 2014). For the purpose of this article, we follow broadly the CEA methods described in 

Hollinghurst et al. (Hollinghurst et al., 2010) with some simplifications made to allow a clearer focus 
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on the relevant methodology (e.g. focussing only on unadjusted cost-utility analysis and total costs 

from the National Health Service (NHS) and Personal Social Service (PSS) perspective). Briefly, 

health-related quality-of-life (QoL) was measured by the EQ-5D-3L (EuroQol Group, 1990) at 

baseline, 6 and 12 months and converted into utility scores using a standard set of UK valuations 

(Dolan, 1997). Quality-adjusted life-years (QALYs) were derived by the ‘area under the curve’ 

approach, combining both time and utility scores (Drummond, Sculpher, Claxton, Stoddart, & 

Torrance, 2015). Costs were measured from the NHS and PSS perspective over a 12 months’ period, 

using resource-use data from the general practice records and patient-reported health service use. 

Missing QoL data at 6 and 12 months, and total costs were imputed under different assumptions 

using the referenced-based multiple imputation approach described in Section 3. Participants’ 

baseline QoL, age, sex and BDI were used as covariates in the imputation model, and a set of 100 

imputations were performed. The resulting multiply-imputed datasets were analysed using Rubin’s 

rules (Rubin, 1987). Mean differences between arms in QALYs and costs (and 95%CIs) were 

estimated using unadjusted linear regression, and divided to obtain the incremental cost-

effectiveness ratio (ICER) of CBT compared with usual care. The probability of CBT being cost-

effective at different willingness-to-pay thresholds (and the resulting cost-effectiveness acceptability 

curve (CEAC) (Fenwick, O’Brien, & Briggs, 2004)) were derived using unadjusted ‘seemingly 

unrelated regressions’ (Willan, Briggs, & Hoch, 2004) for QALYs and for costs. All analyses were 

performed in Stata version 15 (StataCorp., 2017). 

 

2.3. Missing data pattern and descriptive results 

 

The trial enrolled 469 participants, and 101 (22%) had some cost or effectiveness data missing. 

Table 1 shows the frequency of each missing data pattern for the cost and effectiveness variables. 

The cost endpoint had slightly more missing data than the effectiveness endpoint, and the missing 

data were mostly monotone (when QoL was unobserved at 6 months, QoL at 12 months and total 

costs tended to be missing as well) but there were also some participants with interim missing data 

(QoL missing at 6 months, but observed at 12). There was no important difference between arms, 

with 77% (182/235) of participants providing complete data in the usual care arm and 79% 

(186/234) in the CBT arm. Missing data were mostly due to participants withdrawing from the study 

or being lost to follow-up during the trial, and were more common in men and younger participants 

(Wiles et al., 2014) .  

Table 2 reports the observed mean and SD for the cost-effectiveness variables. The mean QoL over 

time is also shown by missing data pattern in Figure 1. In the participants with complete 
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effectiveness data, the QoL tended to increase over time, with a greater improvement in the CBT 

arm than the usual care arm, particularly between baseline and 6 months. Participants with missing 

data tended to have a lower QoL at baseline.  

The primary CEA (Hollinghurst et al., 2010) was conducted using multiple imputation, assuming 

missing data were MAR. However, due to the nature of the illness, it was argued that those with 

poorer outcomes could have been more likely to drop out of the trial (i.e. data may be MNAR).  To 

ensure the study provides sound evidence it is therefore important to assess the extent to which the 

cost-effectiveness inferences are robust to departures from the primary MAR assumption. 

Reference-based imputation provides a particularly appealing framework to conduct these 

sensitivity analyses under varying missing data assumptions, as we will see in the following sections.  

 

TABLE 1 Missing data patterns of CoBalT cost and effectiveness variables  

Missing data pattern Usual care 
(N=235) CBT (N=234) Total (N=469) 

QoL 
baseline 

QoL 
6 

months 

QoL 
12 

months 

Total 
cost n % n % n % 

    182 77.4 186 79.5 368 78.5 

    13 5.5 6 2.6 19 4.1 

    0 0.0 2 0.9 2 0.4 

    18 7.7 14 6.0 32 6.8 

    3 1.3 3 1.3 6 1.3 

    19 8.1 23 9.8 42 9.0 
Note. QoL: health-related quality-of-life measured by the EQ-5D-3L; CBT: cognitive behavioural therapy.  
Ticks indicate observed data, crosses indicate missing data. 

 

TABLE 2 Summary statistics of CoBalT cost and effectiveness variables 

 Usual care (N=235) CBT (N=234) 

Variable n Mean SD n Mean SD 

QoL baseline 235† .502 .311 234 .547 .315 

QoL 6 months 213 .542 .329 206 .662 .303 

QoL 12 months 198 .555 .358 197 .637 .338 

QALYs 195 .542 .292 192 .635 .279 

Total cost (£) 182 799 725 188 1,803 1,115 
Note. QoL: health-related quality-of-life measured by EQ-5D-3L; QALYs: quality-adjusted life years; CBT: 
cognitive behavioural therapy; SD: standard deviation. 
†One missing baseline QoL was mean-imputed.  
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FIGURE 1 CoBalT mean quality-of-life scores, by treatment arm and missing data pattern  

 
Note. CBT: cognitive behavioural therapy. 
The number of participants in each pattern is indicated next to the last observation. Linear change is assumed 
between time-points.  

 

 

3 | REFERENCE-BASED MULTIPLE IMPUTATION 

 

This section starts by introducing the basic principles of the reference-based multiple imputation 

approach drawing on recent work by Carpenter et al. (Carpenter et al., 2013). We then provide some 

technical details, and describe how the approach can be extended for the CEA setting and 

implemented in standard statistical software. 

 

3.1 Introduction  

 

Reference-based multiple imputation is part of the reference-based (or ‘controlled’ or ‘placebo-

based’) approaches to handling missing data (Ayele, Lipkovich, Molenberghs, & Mallinckrodt, 2014; 

Carpenter et al., 2013; Keene et al., 2014; Kenward, 2015; R. Little & Yau, 1996; Lu, 2014; Tang, 

2018) which belong to a broader class of ‘pattern-mixture models’ to model MNAR data (R. J. A. 

Little, 1993; Ratitch, O’Kelly, & Tosiello, 2013). It can be seen as an extension of ad hoc single 

imputation MNAR methods, such as assuming “missing=still smoking” commonly used in smoking 
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cessation trials (West, Hajek, Stead, & Stapleton, 2005), but appropriately capturing random 

variations and imputation uncertainty in a multiple imputation framework. Instead of a single 

imputation, an appropriate distribution is used to draw multiple plausible values. This distribution 

can come from any ‘reference’ group, but a typical choice in randomised trials would be to use the 

control arm information. For example, in a placebo-controlled trial, we may wish to use the 

distribution from the placebo arm to impute outcomes of active-arm individuals who dropped-out 

(assuming these have stopped taking their treatment). Multiple imputation provides a convenient 

framework to implement this approach, because it naturally builds on the MAR elements (Carpenter 

et al., 2013). Once a multivariate model has been fitted assuming MAR, the different elements of the 

model can be used as ‘building blocks’ to construct the desired distribution under MNAR. We 

describe this more formally in the next section. 

 

3.2 Generic algorithm 

 

Consider a randomised controlled trial, where an outcome (say QoL) is measured at multiple time-

points.  Let i=1,…,N index the N participants randomised in the trial, and Ti indicate the 

randomisation arm of participant i. Let j index the time-points, j=0,…,J , with j=0 the baseline 

measurement. Yij denotes the value of the outcome for participant i at time j. Let YOi and YMi denote 

the vectors of observed and missing variables for participant i. For now, let us also assume that all 

the missing data are due to drop out, so that for a participant i, data are all observed until time-point 

Di ∈ {0,…,J}, and missing thereafter. So YOi=(Yi0,…,YiDi)
T, and YMi=(YiDi+1,…,YiJ)T. 

To impute the missing values, we need to define a distribution for the missing data YMi, given the 

treatment arm and observed data, that is (YMi | YOi, Di, Ti). Under MAR, this distribution is 

independent of Di, and is (YMi | YOi, Ti).  Under MNAR assumptions, however, it depends on Di and we 

need to define the distribution according to some plausible assumption. A practical option is to 

make statements about the unobserved data by reference to other groups of participants in the trial 

(typically participants in different treatment arms). 

Reference-based multiple imputation involves the following steps (Carpenter et al., 2013; Cro, 

Morris, Kenward, & Carpenter, 2016): 

1. For each treatment arm separately, fit a multivariate normal (MVN) model for Yij 

using the observed data (assuming MAR).  

2. Draw a mean vector and a covariance matrix from the posterior distribution of the 

MVN model parameters. 
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3. For each participant with missing data, use the draw from step 2 to form the joint 

distribution of YOi and YMi. Different assumptions can be used to construct this joint 

distribution (see Section 3.3.). 

4. For each participant, use the joint distribution to construct the conditional 

distribution of YMi given YOi, and draw random values from that conditional distribution to 

impute the missing data. 

5. Repeat steps 2-4 m times to construct m imputed datasets. 

 

The analysis can then be conducted as with standard multiply-imputed datasets. That is the 

parameters of interest and their variances are estimated by fitting the model of interest to each 

dataset, and combined using Rubin’s rules (Rubin, 1987). Guidance for the analysis of multiply-

imputed cost-effectiveness data is provided elsewhere (Briggs et al., 2003; Burton et al., 2007; Faria 

et al., 2014; Manca & Palmer, 2005)  

 

 

3.3 Constructing the joint distribution 

 

Several options to construct the joint distribution of the observed and unobserved data have been 

proposed, each reflecting a different MNAR mechanism (Carpenter et al., 2013). The appropriate 

choice will be context-specific, but here we describe some options that may be of particular 

relevance to trial-based CEA. Each of these options is illustrated in Figure 2. 

Randomised-arm MAR. The distributions of the missing and observed values, conditionally on 

the observed variables, are assumed to be the same. The joint distribution follows a multivariate 

normal with mean and covariance corresponding to the participant’s randomised arm estimates. 

It corresponds to the default assumption with the standard multiple imputation approach. This 

is the natural choice when missingness is assumed independent of the outcome, or to estimate a 

‘de jure’ (per protocol) estimand, censoring after any protocol deviation.  

Jump to reference (J2R). After drop-out, the participant’s conditional outcomes are assumed to 

‘jump’ to those of the reference group (typically the control arm). The joint-distribution is a MVN 

model with mean parameters from the randomised arm until Di, and from the reference arm 

afterward. The covariance matrix corresponds to the parameters from the randomised arm until 

Di, and to the reference arm for the conditional components of the post drop-out variables, 

given the pre drop-out measurements. It corresponds to assuming that, after dropping-out, 
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participants from the active arm have the same outcomes as the reference-arm individuals. This 

is a plausible choice when the treatment effect is lost after the individual leaves the study.  

Copy increments in reference (CIR).  After drop-out, the participant’s conditional outcomes 

mimic (parallel) the gradient from a reference group. The joint distribution mean parameters 

follow those from the randomised arm until drop-out, and the increment in mean from the 

reference group thereafter. The covariance matrix is formed as under J2R. This may be plausible 

when participants are expected to maintain the treatment benefits accrued until drop-out, then 

follow (parallel) the outcome trajectory from the reference group after that. 

Last mean carried forward (LMCF). After drop-out, the participant’s conditional outcomes 

remain stable, around the mean at that last time-point (from their treatment arm). The joint 

distribution is a MVN with mean parameters from the randomised arm until drop-out, and the 

mean parameter from their randomised arm at time Di for all the following time-points. The 

covariance parameters follow those of the randomised arm. This is an appropriate choice when 

the outcomes are likely to remain stable, on average, after drop-out. Note that this is distinct 

from the ad-hoc “last observation carried forward” approach (Molenberghs et al., 2004), as 

values are drawn from a well-defined posterior distribution. 

Baseline mean carried forward (BMCF). After drop-out, the participant’s conditional outcomes 

are assumed to ‘jump’ back to the baseline mean level. The joint distribution is a MVN with 

mean parameters from the randomised arm until drop-out, and the mean parameter from their 

randomised arm at baseline for the following time-points. The covariance parameters follow 

those of the randomised arm. This assumption may be plausible when participants are 

anticipated to lose treatment benefits and return to their baseline values. Although this option 

was not considered in Carpenter et al. (Carpenter et al., 2013), it seemed relevant in our 

motivating example. 

Note that for J2R and CIR, we need to specify a reference group (typically the control arm). For a 

participant already in the reference group, the distribution will be the same as under MAR.  
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FIGURE 2 Illustration of reference-based imputation options 

 
Note. MAR: missing at random; J2R: jump to reference; CIR: copy increments in reference; LMCF:  last mean 
carried forward; BMCF: baseline mean carried forward. 
Black squares are observed values for a participant in the active arm dropping-out after the third time-point. 
Hollow diamonds are the mean of the imputed values for that participant, under the different assumptions. 
The curly brackets represent the imputation uncertainty around that mean. The reference group (for J2R and 
CIR) is the control arm. 
Note that for clarity the participant is assumed to follow closely the mean of its arm before drop-out. The 
imputed values will actually depend of the observed data, and for, example, a participant with higher values 
before drop-out will tend to have higher imputed values. 

 
 
3.4 Extension to cost-effectiveness data 

 

In this section, we build on the original framework described above to handle key features 

commonly encountered in CEA. 

 

3.4.1 Handling cost and effectiveness endpoints 

 

The MVN framework in which the algorithm is implemented can be extended naturally to 

accommodate additional endpoints. While in the original model the size of the Yij vector was defined 

by the number of repeated measures, it can be extended to a vector of size J = Je+Jc , where Je and Jc 

capture the number of repeated measures of effectiveness and costs, respectively. This results in a 

MVN model defined, for each treatment arm, by a mean vector of size J, and a variance-covariance 
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matrix of size JxJ, and therefore J(J+3)/2 parameters. The joint-distribution options described above 

in Section 3.3 can be logically extended for two distinct endpoints, which do not necessarily have to 

follow the same follow up measurements schedule (Je≠Jc), or missing data pattern. For example, with 

J2R, the distribution of the unobserved cost and effectiveness variables, conditional on the observed 

variables, can be set to follow the conditional distributions for the corresponding variables from the 

reference arm. Or with LMCF, it is simply the mean for the corresponding endpoint (cost or 

effectiveness) that is carried forward to the following time-points. 

 

3.4.2 Allowing for differential missing data assumptions between endpoints 

 

An important feature of cost-effectiveness data is that the mechanism that gives rise to missing 

costs may differ from that of missing effectiveness data. For example, the data may come from 

different sources (e.g. case-report forms versus patient-reported questionnaires), or be collected at 

different time points. We may want to assume that only one of the endpoints is MNAR, and that the 

other may be MAR. To allow for this, for each participant i, YMi can be split in two vectors: YMARi, 

consisting of the MAR-missing variables, and YMNARi, of the MNAR-missing variables.  The conditional 

distribution of YMNARi given YOi and YMARi can then be defined following the options described above. 

The mean parameters are straightforward to derive, following the principles described in Section 

3.3, with the mean parameters from the MAR-missing variables corresponding to those from the 

randomised-arm.  For MAR, LMCF, and BMCF, the covariance matrix will be that of the randomised 

arm. For J2R and CIR, the covariance matrix requires some further derivation and the technical 

details are reported in Appendix F.  Once the joint distribution has been defined, the remaining steps 

of the algorithm (see Section 3.2) can be followed, drawing values for (YMARi, YMNARi) conditionally on 

YOi for each participant. 

 

3.4.3 Interim missing data 

 

So far it was assumed missing data were monotone within each endpoint (cost or effectiveness), so 

that all data were missing after a given point in time. It is however common for trial-based CEA to 

have interim-missing data (an endpoint measure is missing at a particular time point, but observed 

at a subsequent follow-up point). We have extended the reference-based framework to 

accommodate this. If the interim and drop-out missing data mechanisms are the same, the joint 

distribution can be naturally defined. For example, with J2R, we can assume that for each individual, 

the missing (interim or drop-out) variables follow the distribution from the reference group 
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conditionally on the observed data. Similarly, for LMCF, the mean carried forward can be drawn 

from the last observation before the missing time-point. However, the reasons for the interim 

missing data may differ from those of the drop-out, and it will sometime seem sensible to assume 

only drop-out missing data are MNAR (while interim-missing are more likely to be MAR). In this case, 

the joint-distribution can be built following the approach described in Section 3.4.2, with the 

interim-missing data added to the vector of YMARi variables. The MNAR endpoints would then follow 

the specified distribution, conditionally on the observed and the interim-missing variables. 

 

3.5 Implementation in Stata 

 

Drawing on the mimix Stata command (Cro et al., 2016) we developed CEmimix, a Stata do-file 

to implement reference based multiple imputation for cost-effectiveness data. The code is reported 

in Appendix G, and instructions for using CEmimix are provided in Appendix H. In brief, the user 

needs to specify the list of effectiveness and cost variables, the treatment arm variable, any 

additional imputation covariates, and the choice of imputation methods for the effectiveness and 

cost endpoints. The program then follows the algorithm described in Section 3.2, and returns the 

corresponding multiply-imputed datasets which can be analysed using the mi estimate 

command in Stata. Optionally, it allows the user to specify different imputation methods for the 

interim-missing data, and to restrict the multiple imputation to a subset of participants. Further 

technical details are provided in the code file (Appendix G) and in Cro et al. (Cro et al., 2016). 

 

 

4 | RESULTS 

 

In this section we illustrate the reference-based multiple imputation approach for assessing the 

sensitivity of the CoBalT cost-effectiveness results to different missing data assumptions. 

 

4.1 MAR analysis 

For the base-case analysis, we assumed missingness was independent of the unobserved outcome 

values given the observed data (MAR). It is not possible to test whether this assumption holds based 

on the observed data, but it often constitutes a sensible starting point. Results are reported in Table 

3 and Figure 3. Under MAR, participants in the CBT arm had significantly higher QALYs (0.088, 95%CI: 

[0.035 to 0.142]) and costs (£996, 95%CI: [802 to 1,190]) than the usual care arm. This resulted in an 
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ICER of £11,260 per QALY, and a 90.8% probability of CBT being cost-effective at a willingness-to-pay 

threshold of £20,000 per QALY. 

 

TABLE 3 CoBalT reference-based imputation results under MAR and J2R assumptions 

 Usual care (N=235) CBT (N=234) Difference (N=469) 
 Mean [95%CI] Mean [95%CI] Mean [95%CI] 

MAR assumption 

QoL at 6 months 0.537 [0.494 to 0.581] 0.653 [0.611 to 0.694] 0.115 [0.055 to 0.175] 

QoL at 12 months 0.547 [0.498 to 0.595] 0.625 [0.579 to 0.671] 0.079 [0.012 to 0.145] 

QALYs 0.531 [0.492 to 0.569] 0.619 [0.582 to 0.657] 0.088 [0.035 to 0.142] 

Costs (£) 803 [694 to 912] 1,798 [1,641 to 1,956] 996 [802 to 1,190] 

ICER  (£/QALY)   11,260 

Probability cost-
effective†   90.8% 

J2R assumption‡ 

QoL at 6 months 
0.537 [0.494 to 0.581] 0.640 [0.597 to 0.683] 0.103 [0.042 to 0.164] 

QoL at 12 months 
0.547 [0.498 to 0.595] 0.614 [0.566 to 0.661] 0.067 [0.000 to 0.134] 

QALYs 
0.531 [0.492 to 0.569] 0.610 [0.572 to 0.649] 0.079 [0.025 to 0.134] 

Costs (£) 
803 [694 to 912] 1,615 [1,464 to 1,767] 813 [630 to 996] 

ICER  (£/QALY) 
  10,244 

Probability cost-
effective† 

  90.8% 

 
Note. MAR:  missing at random; J2R:  jump to reference; CBT: cognitive-behavioural therapy; QoL: quality-of-
life; QALYs: quality-adjusted life-years; ICER: incremental cost-effectiveness ratio. 
Based on m =100 imputations. 
†at £20,000/QALY. 
‡ J2R assumption: assuming QoL and costs for drop-out participants in CBT arm jump to usual-care values. 
Interim-missing QoL assumed to be MAR. 

 
 

4.2 MNAR sensitivity analyses 

We then conducted sensitivity analysis under different MNAR assumptions. First it was assumed 

that participants dropping out from the CBT arm stopped engaging with the intervention, and that 
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their QoL and costs followed (‘jumped to’) that of the control group from that point onwards (J2R). 

Interim missing data were assumed to be MAR. We can see in Table 3, how this assumption affected 

the mean QoL and cost estimates at the different time points. The QoL estimates in the CBT arm 

reduced towards the values of the usual care arm, resulting in a smaller difference in overall QALYs 

(0.079, 95%CI: [0.025 to 0.134]). Similarly, for the cost, the CBT arm costs were lower than under 

MAR, resulting in a smaller difference between arms (813, 95%CI: [630 to 996]). Overall, under this 

assumption the ICER of CBT was slightly lower than under MAR (£10,244 per QALY), but the 

probability of being cost-effective at £20,000 per QALY was unaffected (90.8%). We can see on the 

CEAC (Fig. 3) that MAR and J2R results were relatively similar across different willingness to pay 

thresholds, with a probability of CBT being cost-effective above 90% for any willingness to pay 

threshold above £20,000 per QALY. 

We then explored the impact of further missing data assumptions, for which results are 

summarised in Table 4. We first conducted the same sensitivity analysis, but assumed that interim-

missing QoL data also ‘jumped to reference’ (J2R-interim). This had little impact on the results (Table 

4). We then assumed that only QoL were J2R, and that costs were MAR (J2R-MAR). This was to 

represent a conservative scenario (for CBT cost-effectiveness), assuming that participants dropping-

out from the CBT arm ‘jumped to’ the QoL from the usual care group, but that costs would still be 

similar to completers in the CBT arm. Finally, we conducted a more extreme scenario where we 

assumed QoL of drop-out participants went back to baseline values (BMCF). Note that this is likely 

conservative in terms of within-arm QALYs, but not necessarily in term of difference between arms. 

While the exact estimates varied slightly under these different missing data assumptions, none 

significantly affected the CEA conclusions, with an ICER ranging from £10,244 to £12,552 per QALY, 

and a probability of being cost effective between 84.4% and 90.8% at £20,000 per QALY (Table 4 and 

Fig. 3). Overall, these results suggest that for any willingness to pay above £20,000 per QALY, CBT is 

likely to provide good value for money, and the trial CEA conclusions appear robust to various 

missing data mechanisms. 

TABLE 4 Summary of cost-effectiveness results under different missing data assumptions 

Missing data 
assumption 

Difference in QALYs 
 Mean [95%CI] 

Difference in costs (£) 
Mean [95%CI] 

ICER 
(£/QALY) 

Probability 
cost-

effective† 

MAR 0.088 [0.035 to 0.142]    996 [802 to 1,190] 11,260 90.8% 

J2R‡ 0.079 [0.025 to 0.134] 813 [630 to 996] 10,244 90.8% 

J2R interim§  0.078 [0.024 to 0.132] 813 [630 to 996] 10,423 90.0% 

J2R-MAR ¶ 0.079 [0.025 to 0.134]    997 [801 to 1,192] 12,552 84.4% 

BMCF # 0.083 [0.029 to 0.137] 996 [802 to 1,190] 12,016 87.2% 
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Note. MAR:  missing at random; J2R:  jump to reference; BMCF:  baseline mean carried forward; CBT: 
cognitive-behavioural therapy; QoL: quality-of-life; QALYs: quality-adjusted life-years; ICER: incremental cost-
effectiveness ratio; CI: confidence interval. 
Based on N=469 participants and m =100 imputations. 
Note that results on the 368 participants with complete cost and effectiveness data were incremental QALYS= 
0.091 (95%CI [0.032 to 0.149]) and incremental costs= £1,011 (95%CI [817 to 1,204]).  
†at £20,000/QALY. 
‡ J2R assumption: assuming QoL and costs for drop-out participants in CBT arm jump to usual-care values. 
Interim-missing QoL assumed to be MAR. 
§ Same as ‡, but interim-missing QoL were assumed J2R.  
¶ Same as ‡, but missing costs were assumed MAR. 
# Assuming QoL for drop-out participants goes back to baseline values. Missing costs and interim-missing QoL 
were assumed MAR. 

 
 
FIGURE 3 Cost-effectiveness acceptability curve under different missing data assumptions 
 

 
Note. MAR:  missing at random; J2R: jump to reference; BMCF: baseline mean carried forward; CBT: cognitive-
behavioural therapy; QALYs: quality-adjusted life-years. 
J2R-interim not shown, similar to J2R curve. 

 

5 | DISCUSSION 

 

This study proposes a sensitivity analysis framework for addressing MNAR cost-effectiveness data 

using the reference-based multiple imputation approach. Drawing on recent work proposed to 

address missing clinical outcomes in longitudinal trials (Carpenter et al., 2013), our paper extends 

reference-based multiple imputation to jointly handle missing cost and effectiveness endpoints, and 

allows for features commonly seen in CEA, such as interim missing data. We illustrated the approach 
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in the CoBalT trial, evaluating the cost-effectiveness of CBT as an adjunct to pharmacotherapy for 

primary care patients with treatment-resistant depression (Wiles et al., 2014). We formulated 

contextually plausible departures from the MAR assumption, and found that the trial cost-

effectiveness conclusions were robust to varied missing data assumptions. The software code was 

also provided, with instructions, to facilitate the implementation of the methods.  

 

The development of sensitivity analysis strategies for addressing potential departures from the 

MAR assumption in trial-based CEA is an active area of research (Faria et al., 2014; Gabrio et al., 

2018; Leurent, Gomes, Faria, et al., 2018; Mason et al., 2018). One of the key strengths of reference-

based imputation compared to other sensitivity analysis approaches is the intuitive formulation of 

the missing data assumptions. This matters because the main challenge when conducting missing-

data sensitivity analysis is to formulate assumptions which are contextually relevant and accessible 

to a broad audience. While similar claims have been made using other pattern mixture models (Faria 

et al., 2014; Leurent, Gomes, Faria, et al., 2018; Mason et al., 2018), these typically formulate 

departures from MAR in terms of quantitative differences between observed and missing data, 

which are less straightforward to interpret. Another strength of this approach is that it can be 

conveniently implemented after MAR multiple imputation, which is increasingly used to address 

missing data in trial-based CEA (Gabrio et al., 2017; Leurent, Gomes, & Carpenter, 2018).  While the 

potential of reference-based imputation is more obvious in longitudinal trials, it is also relevant with 

single follow-up trials, and provides a convenient way to conduct ‘worst-case'-type scenarios while 

appropriately preserving the variance and imputation uncertainty. 

 

A potential limitation of the proposed approach is that its current implementation relies on a MVN 

model, while QALYs and costs are likely to be non-normally distributed. MVN multiple imputation is, 

however, recognised as robust to non-normal data, as long as the estimators of interest are normally 

distributed (Lee & Carlin, 2017; Schafer, 1997) . This is expected to be the case for most trial-based 

CEA but could be an issue in small trials. For validation, we compared the CoBalT CEmimix results 

under MAR to multiple imputation by chained equations using predictive mean-matching – which 

has been recommended to handle non-normal data (White, Royston, & Wood, 2011) – using the mi 

impute chained command in Stata. We obtained very similar results, for example, the mean 

difference between arms in QALYs under MAR was 0.088 (95%CI [0.034 to 0.141]), with chained 

equations imputation, compared to 0.088 (95%CI [0.035 to 0.142]) with CEmimix MVN imputation 

(Table 3).  
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The estimation of the variance parameters in reference-based approaches has been a source of 

discussion (Ayele et al., 2014; Gao et al., 2017; Lu, 2014; Seaman, White, & Leacy, 2014). In 

particular, the model used for the imputation step differs from the one used for the analysis, an 

issue referred to as ‘incongeniality’. While the definition of what should be the appropriate variance 

estimator when making assumptions about unobserved data is still an area for debate, a recent 

study showed that the use of Rubin’s rules with reference-based multiple imputation has a desirable 

“information-anchored” property, in the sense that the amount of information lost by the missing 

data under MNAR is similar to the information loss caused by the missing data under MAR (Cro, 

Carpenter, & Kenward, 2018). It is worth noting that while multiple imputation provides a 

particularly convenient framework for implementation, the principles of reference-based are not 

necessarily tied with those of multiple imputation, and alternative frameworks have been proposed 

(Lu, 2014).  

One key challenge of MNAR sensitivity analyses concerns the choice of plausible missing data 

assumptions in practice (Faria et al., 2014; Leurent, Gomes, Faria, et al., 2018). While such 

assumptions are made more transparent in the proposed method, these still need to be informed by 

subject-matter knowledge and discussion with relevant ‘experts’ (e.g. trial investigators and 

practitioners, clinical experts, and patient representatives). The plausibility of each assumption is 

likely to be a matter of debate, but it is important to keep in mind that the true missing data 

mechanism is always unknown, and that the aim of the sensitivity analyses is to indicate how results 

could differ under a range of plausible assumptions (Morris, Kahan, & White, 2014). If sensitivity 

analyses results differ importantly, investigators should draw conclusions in light of the different 

results and the plausibility of the respective assumptions (Leurent, Gomes, & Carpenter, 2018). An 

additional complexity in CEA is to formulate relevant assumptions for each endpoint in light of their 

differential nature. For example, the J2R assumption is generally seen as conservative for the 

effectiveness, as it assumes no treatment effect in those with missing data. This may not be the case 

for the cost endpoint as the difference is typically expected in the opposite direction (new treatment 

more expensive) and a J2R assumption then becomes liberal.  

 

Reference-based methods are still relatively novel, and there is scope for further research. While 

the normality assumption has been found reasonable for multiple imputation under MAR, assessing 

the robustness of the proposed approach to non-normal data in realistic settings is warranted. This 

paper considered scenarios where one endpoint was assumed to be MAR and the other MNAR, but 

did not allow for multiple MNAR mechanisms simultaneously (e.g. assuming the effectiveness 

follows J2R and the cost LMCF). Another development would be to allow for different mechanisms 
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for different components of the endpoint. For example, assuming that self-reported resource use 

items are MNAR, while other costs items based on medical records are MAR. Finally, this paper 

focused on addressing continuous outcomes, as these are most common in CEA (Leurent, Gomes, & 

Carpenter, 2018), but extending to other types of effectiveness measure (e.g. binary or time-to-

event) would provide a valuable contribution.  

 

In conclusion, this study directly addresses the lack of accessible methods for handling MNAR data 

in trial-based CEA. Reference-based multiple imputation is relatively straightforward to implement 

and facilitates the formulation of relevant, accessible assumptions. We hope this approach will help 

future CEA based on incomplete trial data to routinely conduct sensitivity analyses departing from 

the MAR assumption. 
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Chapter 7

Discussion

7.1 Summary

Missing data are a common issue in cost-effectiveness analysis of randomised trials, and it is widely

recognised that sensitivity analyses should be conducted to assess the robustness of conclusions

to varied assumptions about the unknown distribution of the missing values. This is, however,

rarely done in practice. This thesis aimed to address this issue by developing practical, accessible

sensitivity analysis strategies and software tools to handleMNAR data in trial-based CEA. Thus we

reviewed current practice in the literature and engaged with analysts and other researchers. Then,

informed by this, we proposed two accessible frameworks to conduct these sensitivity analyses.

A review of recent trial-based CEA confirmed that missing data was indeed a ubiquitous issue,

and that MNAR sensitivity analyses were rarely conducted. Discussions with academics involved

in analysing or reviewing cost-effectiveness evidence, however, indicated that this was broadly

acknowledged to be unsatisfactory, and that there was corresponding interest in addressing this.

The main barriers appeared to be a lack of time combined with lack of practical methods and

guidance to conduct such sensitivity analysis.

The relevance of the issue was also highlighted in two trials, 10 Top Tips, evaluating a brief

intervention for weight loss, and CoBalT, evaluating CBT for treatment-resistant depression. In

both trials, it seemed possible that completion of the trial could be dependent on health outcomes,

and therefore the robustness of CEA conclusions to differentMNARassumptions should be assessed.

In the following two chapters, we therefore proposed frameworks for conductingMNAR sensitivity

analyses. The first one was based on a relatively straightforward method, consisting of directly

modifying multiply imputed data to reflect different pattern-mixture assumptions. The main appeal
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of the method is its simplicity and flexibility. We saw in the review that MI was commonly used to

address missing data, and this approach provides a particularly accessible and rapid way to conduct

sensitivity analysis after MI (under MAR) has been conducted. One of the key challenge remains

the elicitation of the sensitivity parameters. An alternative approach capturing the departure in a

more readily interpretable qualitative way, is reference-based imputation. While this approach has

gained popularity for the analysis of clinical outcomes [36, 61], it had not yet been implemented

in the CEA context. In Chapter 6, we developed a theoretical framework and associated software

to apply this approach in a CEA context, illustrating it on the CoBalT trial, and providing the

software code to conduct the analysis. The intuitive formulation of the missing data assumption

and ease of implementation (once the imputation code has been written) is likely to make this

method particularly appealing in CEA.

In both of ourmotivating examples, conducting the sensitivity analyses provided quantifiable insight

on the possible consequences of differentmissing datamechanisms on the cost-effectiveness estimates.

In one trial, the estimates variedwidely, reinforcing the initial conclusions that the cost-effectiveness

of the technology was highly uncertain. In the second trial, cost-effectiveness estimates were robust

to different missing data assumptions, and unlikely to affect decision regarding adoption of the

technology in practice.

7.2 Specific contributions

A first specific contribution from the thesis was to provide an update on the current state of play

regarding missing data in CEA, following on from the Noble review in 2012 [7]. Missing data

are a critical issue in trial-based CEA and it is key to remain aware of current practice. We also

conducted a critical review of current practice, and derived a checklist of key recommendations.

This checklist should provide analysts with simple points to consider when designing or analysing

CEA, and, if followed, could significantly reduce the impact of missing data in future trials.

This review, and the discussion with Stakeholders (Chapter 4), offered important insights into the

current CEA context, and perceptions of missing data issues. It provides a point of reference

and motivation for developing relevant and accessible methods in this context. The innovative

structure of informal discussion, organised around a seminar presentation, could be of interest to

other methodological researchers, when a gap between methods and practice has been identified.

We published an article providing an overview of different approaches for MNAR analysis, and

suggesting a practical framework to address this issue (Chapter 5). This simple guidance was
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clearlymissing, and should be an important contribution to raise awareness of the issue, and provide

cost-effectiveness analysts with a starting-point to approach the issue.

Themost important contribution of the thesis is probably the development of two accessible tools to

conduct CEA under MNAR assumptions. In Chapter 5, we focussed on one particularly accessible

and flexible method, PMM-MI. We made practical for performing the analysis, such as how to

decide the MNAR parameters, and how to report the results. In Chapter 6 we extended an existing

method, reference-based imputation, to the CEA context. We developed a theoretical framework,

addressing key issues for the approach to be applicable to CEA data. One important contribution

may be the more formal way of addressing data that could be MAR-missing within that framework.

In order to facilitate the uptake of these methods, Chapters 5 and 6 provided software to implement

these sensitivity analysis approaches. In particular, as part of Chapter 5, we uploaded some data

examples to an online repository to enable users to replicate the sensitivity analysis conducted in

this paper [85].

7.3 Other general contributions emerging from the thesis

7.3.1 The National Institute for Health and Care Excellence

During my PhD, I have explored the potential impact of using appropriate methods for handling

missing data, in particular sensitivity analyses, on the decision-making process of agencies such as

the UK National Institute for Health and Care Excellence (NICE). This research sought to better

understand NICE’s methods guidance, whether there were any recommendations about handling

missing data, and how alternative MNAR SA approaches could help improve the decision-making

process. For this, I met and corresponded with various staff involved with NICE, attended a

technology appraisal committee meeting, and reviewed several technology appraisal guidance and

clinical guidelines.

Although this remained an informal assessment, it became clear that decisions for technology

appraisal were commonly made on cost-effectiveness models typically trying to model the cost

and health outcomes of patients over a life-time, rather than individual trials cost-effectiveness

conclusions. Randomised trials seem mostly to be used as one of the sources of evidence to

populate themodel parameters, sometimes from single trials, or from systematic reviews combining

multiple trials. Modellers are typically faced with a high number of uncertainties, and seemed

usually more concerned by the generalisability of the parameters (to different population, over a

lifetime, etc.) rather than the internal validity of randomised trials. Typically, if missing data was an
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important issue in the studies used to inform the model, this would be recognised as a limitation in

the overall reliability, but the impact would not be quantified systematically. In the NICE guidance

for technology appraisal [86] and for clinical guidelines [87], missing data is noted as one example

of area of uncertainty that could require sensitivity analyses, but no further recommendations are

provided.

This suggest that randomised trials are a natural starting point to improve more general practice

for missing data sensitivity analysis — hence the focus of this thesis. Better sensitivity analysis in

trials should raise awareness of the issue, and encourage the uptake of appropriate methods in other

study designs. The thesis also focussed on developing accessible strategies which can be readily

interpreted by those involved in the decision making process; this is key to their adoption.

7.3.2 Multiple imputation

Multiple imputation had a prominent place in this thesis, and provided a practical, flexible framework

for estimation and inference for the two main approaches we focused on. MI has become the

dominant method to address missing data in health research in recent years, particularly in CEA,

as we saw in our review. While its suitability to address MAR missing data in a variety of settings

is widely recognised, this thesis harnessed the MI framework for addressing potential departures

from the missing data assumption. This was clearly illustrated in the two approaches proposed

in this thesis, where MI provided an accessible, user-friendly approach to sensitivity analysis.

The first involves modifying the multiply-imputed data to reflect a given MNAR pattern-mixture

assumption. The second is also based on a MI framework, but this time it is the MI procedure itself

that is modified, altering the conditional predictive distribution to reflect the MNAR assumption

before drawing the individual values.

The omnipresence of MI in trial-based CEA 8under MAR) was observed in our review, and is

likely to continue to increase in the future. It is therefore critical that analysts are familiar with the

approach and avoid its common pitfalls. In our review, the use ofMI did not appear always optimal.

The reporting of the exact imputation model and of the results was not always clear, the number of

imputations was typically small (e.g. 5), and the use of imputation covariates often limited.

7.3.3 MI and bootstrap

While MI has been commonly used with the non-parametric bootstrap, there is little guidance on

how to combine the non-parametric bootstrap with the MI procedure. Alternative approaches have

been proposed, which often involve conducting first MI then bootstrapping the imputed data, or first
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bootstrapping the data and conductingMI within each bootstrap sample. Some of these approaches

were evaluated in an article published during the course of this PhD [88], but not specifically

to address non-normal outcomes. I supervised a MSc student to explore the relative merits of

different approaches in CEA with missing data, particularly in the presence of skewed data such

as costs [89]. Briefly, we found that the different approaches we compared to combine MI and BS

were unbiased and that the confidence interval coverages seemed appropriate with large samples,

but problematic with small sample and strong skewness. It was not clear whether bootstrapping

improved inference with skewed outcomes. Given the popularity of non-parametric bootstrap

in CEA, further evaluation and understanding of relative performance compared to alternative

approaches would be of interest.

7.3.4 Bayesian analysis

A fully Bayesian framework is in many ways a natural framework for conducting analysis under

MNAR assumptions. Indeed, MNAR implies that some external information is needed to proceed

with the estimation, which is not very natural in a frequentist framework, but much more so in

Bayesian. Bayesianmodels can naturally include additional parameters on which there may be little

or no information in the data, so naturally allowing for a given selection or pattern-mixture model.

Reference-based imputation can also be implemented in a Bayesian framework [90]. It was one of

the approaches considered at the beginning of the PhD, but the review (Chapter 3), and discussion

with Stakeholders (Chapter 4) indicated that the framework was still relatively unfamiliar to many

analysts and decision-makers. In the review, only one trial CEA was conducted in a Bayesian

framework. Our aim was to develop methods with as broad a reach as possible, and MI seemed

a more suitable candidate for this purpose, as discussed above. However, while this PhD was

ongoing, several articles were published on Bayesian methods to address missing data in CEA, in

particular for MNAR analysis [91,92]. While the analytical techniques are different, the principles

and questions addressed tend to be very similar. For example, as discussed in Chapter 6, although

the tools to conduct expert elicitation are generally developed with a Bayesian analysis in mind,

they can also be used in a frequentist framework. These parallel developments in Bayesian methods

for MNAR missing data in CEA are indicative of the current interest in the topic, and should

provide additional tools to conduct sensitivity analyses, particularly relevant for those familiar with

Bayesian methods.
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7.3.5 Objective choice of MNAR scenarios and parameter values

MNAR sensitivity analysis typically involve external judgement and reporting of multiple results,

implying a higher risk of subjective analysis and interpretation. This has several implications.

First, it is important to define clearly a single primary (base-case) missing data assumption. The

MAR assumption seems a natural choice for the base-case assumption in most situations. Even

when some departure fromMAR sounds highly plausible, as in our two examples, it can be difficult

to assess whether any specificMNAR assumption is any closer to the true missing data mechanism.

Formulation of the MNAR model is challenging, and there is a risk that minor misspecification

could result in important departure from the ‘true’ result. Some may disagree and support that a

properly elicitedMNARassumption should bemore reliable than simply using theMARassumption

by default. Nevertheless, the challenges of eliciting something that is actually unknown has been

recognised [93].

For the sensitivity analyses, when several scenarios are considered, these scenarios should ideally

be decided a priori and by independent experts (it is relatively easy to try to favour one arm over

another if the MNAR approach used allows for different parametrisation by arm). The relative

plausibility of each assumption should also be agreed, giving an indication of what appears to be

the most plausible assumption(s), and the ones that are more to test results under ‘best/worst case’-

type scenarios. This would limit selective reporting when discussing the findings, for example

focussing on the only scenario where the intervention appears cost-effective.

However, there is a tension in such recommendations. First, while we advise choosing the scenarios

a priori, the data collected may also be useful to decide the scenarios or parameters. For example,

knowing more about the missing data or the difference between arms may be of relevance to decide

the sensitivity analyses of interest. Secondly, while we recommend independent decisions, the

‘experts’ with more knowledge of the missing data mechanism are probably those that have been

closely involved in the trial. But of course those may well have some bias, possibly unconscious,

toward favouring one or the other of the treatment arm.

Above all, this highlights the critical importance of having MNAR methods based on transparent

and accessible assumptions. Readers (of CEA results) need to be able to understand the assumptions

behind each analysis, and judge of their plausibility. If assumptions are unclear, readers will (and

should) be suspicious of the results provided. Having fully transparent assumptions is therefore

probably themost efficient way to ensure that analysts are sensible in their conduct—and interpretation

— of MNAR sensitivity analyses.
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7.4 Limitations

Inevitably, the research reported in this thesis has several limitations. First, all the tools and

recommendations were based on findings from our review of the HTA studies and discussions

with Stakeholders. It is therefore dominated by a UK academic perspective, and it is possible that

other countries or settings face different issues, for example QALYs or MI may be less established.

Secondly, it focuses on trial-based individual-patient level analysis. Some of the tools and recommendations

appear relatively transferable to other settings, such as PMM-MIwith observational studies. However,

we did not provide recommendations for more distinct settings such as decision modelling (see

above), meta-analysis, or expected value of perfect information.

Another limitation is that we did not perform a systematic assessment of the different sensitivity

analysis methods. No head to head comparison of different methods was performed, or simulations

conducted to assess the relative performance under different situations. We did not fully consider

alternative approaches which could be of relevance for MNAR analysis, such as selection models

or Bayesian methods. The relative advantages and disadvantages of the different approaches were

discussed, but more in terms of accessibility and applicability than statistical validation (Chapters

4 and 5).

We developed all our software code in Stata, as it was the dominating software identified in the

review (75%) and Stakeholders’ discussion, but implementation in other software, such as R,

could increase accessibility. While the adaptation is straightforward for PMM-MI, reference-based

imputation would require further work. Another limitation is that we focus mainly on continuous

outcomes, as, again, QALYs was seen as the dominating measure of effectiveness (81%) in the

HTA review. Addressing MNAR SA for different type of outcomes (e.g. binary or survival), raises

additional challenges such as the modelling technique and parameters elicitation, and are topics for

future work.

7.5 Implications for analysts

Drawing on the findings from the literature review and Stakeholders meetings, there are a number

of implications for practice:

- Sensitivity analyses for informative-missing data should be routinely conducted. Chapters 5

and 6 propose accessible, off-the-shelf methods for conducting these.

- The missing data issue and sensitivity analyses should be considered early. Analysts should

decidewhich approach appearsmore suitable, andwhat informationwill need to be collected.
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- Analysts should engage effectively with trial investigators and clinical experts. They should

be able to communicate clearly the implications of MNAR data and possible ways to address

it, ensuring that the choice of sensitivity analysis is contextually plausible.

- Analysts should report MNAR methods and results in a clear and transparent way. This is

to ensure readers can understand the methods used, and judge the plausibility of the missing

data assumption(s) made.

- More generally, analysts should keep in mind that the best way to address the issue is to

minimise the occurrence of missing data. Chapter 3 suggests some active steps to consider

at the design stage in order to minimise the scope for missing data.

7.6 Implications for health-care decision making

Whenever using information based on incomplete data, it is important that those involved in the

decision-making process understand the extent and impact that missing data may have on cost-

effectiveness inferences, and ultimately on decisions about resource allocation. Currently, it seems

the issue of missing data is usually recognised as a limitation, but its possible implications on

decisions are rarely or inappropriately quantified.

In Chapters 3 and 5 we have described the key concepts and statistical principles for addressing

issues raised by missing data, to help analysts assess how realistic missing data assumptions behind

an analysis appear, and the appropriateness of themethods considered for handling themissing data.

As highlighted is this thesis, a fundamental aspect of appropriately handling the missing data is

about reporting the results in a way that they are readily interpretable by the different Stakeholders.

This will enable those involved in the decision process to recognise the full extent of the uncertainty

to the decision at hand.

An increased awareness of the issue and the recognition that data are not systematically MCAR or

MAR is likely to result in additional uncertainty in decision models. But in the end, it will give

more confidence that this uncertainty has been appropriately been taken into account in the final

decision, and so improve the allocation of limited resources.

Decision-making authorities such as NICE should recognise more clearly the possible implications

of missing data, and provide further guidance on how they should be addressed, both at the study

design and analysis stage.
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7.7 Directions for future research

This thesis identified some areas for further methodological research.

7.7.1 Non-normal distributions

A key feature of cost-effectiveness data is that they are typically non-normally distributed (e.g.

strongly skewed with a peak at zero for costs). While the methods proposed should be robust to

non-normality in practice, simulations studies would be of interest to understand when the validity

of the approaches may be questionable. Clear recommendations for addressing imputation of non-

normally distributed data (specifically in the CEA context), are still lacking. This could be looked

at from the perspective of the MNAR SA methods suggested here.

7.7.2 Simulations studies

Asmentioned above, further simulation studieswould help understandingwhen themethods suggested

may or may not be valid. In addition to departures from normality, it would be of interest to

assess how each method performs if the missing data mechanism is misspecified. One challenge

with validation of missing data methods is that typically if the simulated missing-data mechanism

corresponds to the one assumed in the model, then results will be valid, and if they differ then

they will not. Thus validity of results typically depends on how the missing data mechanism

assumed differ from the true mechanism, but this is unknown in practice. Nevertheless, having

an idea of how far results may get when misspecified may be of interest, for example, by generating

missing data in a selection model framework, and analysing with one of the pattern-mixture models

presented here.

7.7.3 Cost-effectiveness modelling

As discussed in Section 7.3.1, cost-effectiveness models have a key role in the decision-making

process, and further research on MNAR SA in this context would be welcome. For example, how

should analysts account of theMNAR possibility when using estimates from a trial with incomplete

data? If sensitivity analyses are reported, they could probably be used directly in the model, using

deterministic or probabilistic sensitivity analysis.

If no sensitivity analyses have been conducted, one approach would be to approximate the MNAR

SA estimates arithmetically. For example, making assumptions similar to the PMM-MI approach

and assuming that, conditionally on the analysis variables, the missing values of an outcome are

on average δ higher than the observed, then the MNAR mean can be obtained by simply adding
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δ.π to the estimated mean (where π is the proportion of missing data) [60]. This approach has not

been, to our knowledge, extended to repeated measures, but if sufficient information is reported, it

should be possible to derive arithmetically the MNAR cost-effectiveness parameters estimates in

a similar way. It would be interesting to compare the performance of such approximation to the

more formal PMM-MI approach implemented in Chapter 5.

7.8 Concluding remarks

Informative missing data in cost-effectiveness analysis of randomised trials is an important issue

which has been neglected and often ignored. Based on a survey of the literature, and structured

discussion with analysts, we proposed and developed accessible tools and strategies to address the

issue. While these are in no sense the final word, this work both raises awareness of the issue

and provide practical solutions. We also hope our papers, software, and examples, will encourage

cost-effectiveness analysts to routinely conduct sensitivity analyses to assess robustness of their

conclusions to possible departures from the MAR assumption. Over the longer term, this should

ensure that missing data uncertainty is appropriately incorporated in the decision making process.

The proposed methods should help future studies provide sounder evidence about the effectiveness

and cost-effectiveness of health interventions, whichwill contribute to better decisions about resource

allocation and improving population health.
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1

Baptiste Leurent

Dr Manuel Gomes

Prof. James Carpenter

Cost-effectiveness analysis 
with informative missing data

Health Economics seminar, LSHTM
29th June 2016

Seminar aims
• Not a standard seminar where we tell you about our wonderful work

• Instead, we want to:
• raise the issue of data missing not at random in trials, which is typically 

overlooked when the trial contributes to the decision making process
• discuss some of the assumptions, and corresponding methods that can be used 

when data are MNAR
• Understand your thinking on these issues, e.g.

• Not an issue
• An issue, but don’t understand methods
• Understand the methods, but believe they are the wrong ones
• Would like to use the methods, but no code/time
• …..

2

Outline
• Introduction       MG
• Examples  BL

• The 10TT trial
• MCAR/MAR methods:

• Complete case results
• Multiple imputation

• MNAR methods
I. Simple approximation
II. MNAR MI
III. Including uncertainty in delta
IV. Reference-based method  JC

• General comments
• Conclusion

3

Missing data and CEA
• Missing data are common in RCTs

• Loss of power
• Risk of bias

• Particularly features in CEA
• composite outcomes (cost, QALY)
• More complex mechanism
• Intermittent patterns

• Typical assumptions about the reasons for the missing data:
• MCAR: e.g. lost questionnaires
• MAR: prob missingness unrelated to unobserved values given the 

observed; e.g. older people less likely to return QOL questionnaires

• Missing data receiving increasing attention
• MI more commonly used, still active area

4

Informative missing data
• MNAR (or ‘informative’, or ‘non-ignorable’) is particularly 

problematic
• Missing data is related to unobserved values, conditional on the 

observed
• We cannot test for MNAR, given the data at hand

• But often plausible
• Patients in poor health may be less likely to return their EQ-5D 

(conditional on X) questionnaires because they are depressed.

• MNAR methods have been commonly applied in other 
areas, but have not permeated CEA 

• Ongoing review HTA publications: 1 MNAR SA / 26 CEA  in 2015

• How to appropriately translated these to CEA?
5

Informative missing data
• Good starting point: sensitivity analysis

• Are the CEA results sensitive to departures from MAR?

Sensitivity analyses are often formulated:
• In terms of the missing data (selection) mechanism 

• how do the probability of missingness relates to the unobserved value?

[Y,M|X] =  [Y | X ]  [M| Y,  X]  Selection models

• According to differences between the observed and unobserved data

[Y,M|X] =  [M| X ]  [Y| M, X]  Pattern-mixture models

• Choice of method often related to the level of confidence               
about the likely values of the sensitivity parameters
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2

The ‘10 Top Tips’ trial

• The trial:
• Design:  2-arms randomised controlled trial
• Population:   Obese patients in 14 UK primary care practices
• Intervention:   Leaflet with 10 simple tips for weight loss, 

given by a practice nurse.  Compared to usual care.
• Follow-up:   2 years (3, 6, 12, 18, 24 months)

• CEA methods:
• Cost:  2 years, NHS perspective, GP records, no missing.
• QALY:  2 years, EQ-5D at each visit. Area under the curve
• Incremental Net Monetary Benefit, Cost-Effectiveness 

Acceptability Curve
• Non-parametric bootstrapping
• Only to illustrate MNAR methods
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EQ-5D Observed Missing

Missing data in 10TT
• 537 patients randomised

• Around 60% FU at 24M

• But complete case (all EQ-5D 
available) = 30% !

• Slightly more missing in intervention 
arm (e.g. CC = 27% vs. 34%) 

• Cost fully observed

• MAR or MNAR??
Weight loss trials  Less successful more likely to drop out1

1 Whare 2010 8

Methods presented
• MCAR/MAR methods:

• Complete case results
• Multiple imputation

• MNAR methods
I. Simple approximation
II. MNAR MI
III. Including uncertainty in delta
IV. Reference-based imputation
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Complete case results
Control arm

(n=91)
10TT

(n=72)
Difference

(n=163)

Cost (£)* 2,138
(1,490; 2,786)

1,985
(1,430; 2,540)

-153
(-1,027; 721)

QALY 1.518
(1.437; 1.599)

1.472
(1.366; 1.578)

-0.046
(-0.177; 0.084;)

-2,000

-1,500

-1,000

-500

0

500

1,000

1,500

2,000

In
cr

em
en

ta
l C

os
t (

£)

-.5 -.4 -.3 -.2 -.1 0 .1 .2 .3 .4 .5
Incremental QALY

Complete case, from 1000 bootstrap replications

Cost-effectiveness plane 10TT

10

Complete case results
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 Inefficient, drop participants any missing EQ-5D or cost.
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Multiple imputation
• MI : Replace each missing value by a set of plausible values given the 

observed data. Analyse each dataset, then combine results.
• MI commonly used in CEA

• Can include variables post-randomisation in imputation model MAR 
more likely

• Participants with partially missing data still contribute. 
• Either cost or effect available
• Cost and QALY = multiple components  missing if any missing 

• 10TT MI methods:
• 30 imputations
• Variables in imputation model: age, sex, GP, total cost, EQ-5D scores
• Chained equations, Stata
• Predictive-mean matching
• Stratified by arm
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MI – 10TT results
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MI better than CC
• Valid under less stringent missing data assumptions 
• Make use of more data  reduce uncertainty

 10TT looks possibly cost-effective
Still assume MAR (observed values are representative of the 
missing EQ-5D). What if was not the case??
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Methods presented
• MCAR/MAR methods:

• Complete case results
• Multiple imputation

• MNAR methods
I. Simple approximation
II. MNAR MI
III. Including uncertainty in delta
IV. Reference-based imputation
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MNAR sensitivity analyses –
PMM Framework
• All MNAR methods presented here will be in a pattern-mixture 

framework 

• In all (except last method) departure from MAR is captured by a 
parameter  “delta”:
 E(Ymiss|X) =  E(Yobs|X) + δ

• δ =  “Average difference in Y for missing vs. observed values 
(conditional on X)”

• If δ = 0   MAR

• Allowed to vary by arm: δ0, δ1  Important as results sensitive 

• PMM could take any form in principle. Shift in mean probably most 
intuitive/simple.

15

δ

16

I) Simple approximation
• Assume we have no access to the data. Only complete-case results 

reported previously.
• For arm i :  πi = proportion of observed data  

μi = observed mean
δi = MNAR parameter

 μi,MNAR =  πi μi +  (1- πi)(μi + δi)

• IncQALYMNAR =  π1μ1 + (1- π1)(μ1+δ1)   - π0μ0 + (1- π0)(μ0+δ0) 
= IncQALYCC +  (1-π1)δ1 - (1-π0)δ0

• What about sampling uncertainty?
 Observed standard error good approximation  

(correcting for bias, not regaining information lost)

17

Simple approximation -
10TT example

• Complete case: INMB at £20,000/QALY   :
£-777,  95%CI: [-3,711 ; 2,155]  

• What if those who dropped out from the study had a 0.1 lower QALY than 
completers?

INMBMNAR(-0.1,-0.1) =  £-901,  95% CI: [-3,835 ; 2,030]

18
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Simple approximation -
Comments
• Not ideal here: based on CC = not full use of data 

• Can be applied to adjusted results using same formula1

• To MI results?  What would be an appropriate π ?

• But can still give an idea: are the results sensitive to missing data?

• Interesting when
• No better alternative (=no IPD?)
• Modelling?

1 White et al. 2007 19

Formal MNAR modelling
• If have access to IPD, can do things better.

• Let’s assume E[ Ymiss|X ] =  E[ Yobs| X ] + δ

We can have valid estimates of E[Y] and standard errors (so CI, hypothesis 
testing, CEAC, etc.) under this assumption, even if Y not always observed

• Not directly done in software, but can be solved relatively easily:
• Maximum likelihood
• Bootstrapping
• Bayesian
• MI

• Here we will show in a MI framework

20

Methods presented
• MCAR/MAR methods:

• Complete case results
• Multiple imputation

• MNAR methods
I. Simple approximation
II. MNAR MI
III. Including uncertainty in delta
IV. Reference-based imputation

21

II) MNAR MI
• Again, we assume E[ Ymiss|X ] =  E[ Yobs| X ] + δ

• Straightforward implementation in MI
• i) Do MAR multiple imputation

• ii) Shift imputed data of δi

• iii) Analyse MI data as usual

• 10TT example:
• δ = shift in individual EQ-5D scores

• δ = { 0, -0.05, -0.10 }    (= Drop out probably worst health, somewhere between 0 to 
0.1 lower QoL)

• δ varies between arms. δ0 and δ1 more likely to be relatively close to each other.

•  7 different ‘scenarios’ for δ

22

MNAR MI – 10TT example
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Methods presented
• MCAR/MAR methods:

• Complete case results
• Multiple imputation

• MNAR methods
I. Simple approximation
II. MNAR MI
III. Including uncertainty in delta
IV. Reference-based imputation
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5

III) Incorporating uncertainty 
in delta 
• So far, presented results with different possible fixed values of deltas
• Another approach is to determine a possible distribution for delta and 

incorporate it in the analysis model.
• Will get a unique answer
• How to get distribution?

• Expert opinion
• See White et al. (2007), Mason et al. (in preparation)

• Bayesian concepts, but not necessarily analysis

• 10TT example:

•

• ρ can be difficult to elicit. Can do with (0,0.5,1), usually little difference
• Here shown for ρ = 0.
• In MI framework: MI + random draws for δ, added to the imputed EQ-5D
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Uncertainty in delta
- 10TT example
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Methods presented
• MCAR/MAR methods:

• Complete case results
• Multiple imputation

• MNAR methods
I. Simple approximation
II. MNAR MI
III. Including uncertainty in delta
IV. Reference-based imputation
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IV) Reference based MI
• Reference based MNAR analysis seeks to avoid specifying the 

parameters describing the difference between MAR and MNAR data 
(e.g. delta above)

• Instead, we make a qualitative statement about the behaviour of 
patients who deviate. For example, after deviation they may

• Jump to the distribution (behaviour) of patients in the control arm, or
• Track (parallel) the distribution (behaviour) of patients in the control arm, or
• …

• Such qualitative statements implicitly specify parameters describing 
the differences between MAR and MNAR.

• However,  framing it this way may be more accessible.

28

Reference based MI

• Computationally, it is convenient to implement reference based methods 
using multiple imputation

• This allows us to explore how inferences from our primary analysis model 
varies across a range of scenarios.

• Relative to the primary analysis (under MAR) the resulting sensitivity 
analysis are information preserving.

• Software is available for SAS (The 5 Macros) and Stata (mimics) from 
www.missingdata.org.uk

• Further details in Carpenter & Kenward (2013) Multiple Imputation and its 
Application (Wiley)

• Only used for continuous data, effectiveness (licencing) thus far…

29

Comments (1/2)

• Examples were illustrative: simple methods, arbitrary delta, ...
• MNAR  some information not in data  need external info
• Probably as sensitivity analysis. MAR as primary?
• Many other approaches possible

• PMM  ↔ Selection model, shared parameters, etc.
• MI       ↔  Bayesian, likelihood, bootstrap, etc.

• Which framework most promising for CEA? 

• Missing cost ? 
• Presentation of results 

• 3 main possible approaches illustrated:
i. Tipping point/contour plot
ii. Range of specific scenarios
iii. Combined uncertainty

• Challenges: many scenarios possible (+ if cost)
• How to make it comprehensive but informative?

??

??

30
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Comments (2/2)

• Elicitation
• How to decide relevant MNAR scenarios
• Particularly challenging and critical for “combined analysis”
• Typically little/no data available
• Ideally : a priori 
• Reference-based: information from the data only

• Modelling 
• MNAR methods more `natural’ in IPD. What place in modelling?

• Observational studies

• Outcomes other than QALY (binary, survival)

• Unlikely ‘one size fits all’. Can recommend principles. Can make 
methods more accessible.

??

??

31

Conclusion
• No magic, avoiding missing data best solution!
• Missing data Make assumptions What if do not hold?
• Results sensitive, especially to different mechanisms between arms
• Should be done more often
• Particularly when:

i. High missingness
ii. MNAR plausible
iii. Different drop out behaviours between arm

• This PhD aims to facilitate the use of these methods.  Need to understand 
needs of those conducting, and using, CEA  next part of seminar

• Any comments? Examples? baptiste.leurent@lshtm.ac.uk

32
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Discussion groups
• We would like to hear your views!
• Four themes:

1) Methodological approaches 
2) Presentation of results
3) Elicitation
4) Barriers

• On your tables:
• Consent form
• Survey + theme questionnaires

• Tasks:
1) Sign consent form    - Keep one copy, leave one
2) Complete survey  
3) Group discussion :

 Split in group of 2-3
 Pick one theme (if possible start by the highlighted ones)
 Take notes on sheet (or blank sheet at end of questionnaire) Will collect 

them
 If time, can discuss other themes.

34
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Cost effectiveness analysis with informative missing data: tools and strategies 

 

LSHTM seminar discussion – 29th June 2016 

 

 

Informed Consent Form 

 

 

 

The purpose of this meeting is to discuss the direction of the PhD research, and to advise on the 

development of methods for cost effectiveness analysis in presence of informative missing data. In 

particular, we would like to have your views on how to design, conduct, and report appropriate analyses 

for dealing with informative missing data in economic evaluations. 

 

Although the meeting will not be recorded, the content of the discussions may be used in future 

presentations, PhD thesis or other publications. This constitutes primary data collection, and we 

therefore need your formal consent for using this information. 

 

The individual contributions to the meeting will be anonymised. You can tell us anytime if you do not 

wish some specific content of the meeting to be reported. 

 

 

If you have any questions or concerns, please contact us at baptiste.leurent@lshtm.ac.uk 

 

 

By signing below, I acknowledge that I have read and understood the above information. 

I agree to participate, and understand that I can discontinue my participation at any time.  
 

 

 

 

 

 

 

____________________ ________________ ________________ 

Name of Participant Signature Date 

 

  
 

 

 

 

 

Please sign and return one copy, and keep the other copy for your records. 
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Stakeholders meeting 

Participants’ survey 

 

N=14. 7 from York, 7 from LSHTM (6 LSHTM group discussion participants did not complete survey) 

 

1. Your role  

 

ID 
Trial-

based 
Modeller 

Sitting on 

decision 

panel 

Reviewing 

evidence 

for panel 

Other 

01  1    

02  1    

03  1  1  

04  1   Econometrist 

05 1 1  1  

06     PhD 

07 1 1 1 1  

21 1     

22  1 1   

23  1    

24 1 1    

25 1 1    

26  1    

27  1   + Observational 

 

� Mostly modellers. 5 working on trial-based. 4 sitting/reviewing for panels 

 

2. As an analyst, or person using results from CEA, how often do you face the issue of missing 

data? 

 

ID 1-Never 2- Rarely 

3- 

Occasiona

lly 

4- 

Regular

ly 

5- Very 

often 

01   1   

02    1  

03   1   

04   1   

05    1  

06    1  

07     1 

21    1  

22  1    

23    1  

24    1  

25     1 

26     1 

27     1 

 

� Missing data is a common problem. 10/14 (71%) regularly face missing data issues. 

 



3. Before today, did you ever thought about the issue of “Missing Not At Random”? 

4. If yes, did you ever face a situation where you thought something more could be done but did 

not for some reasons (not sure how to do, no time, etc.)? 

 

 
Ever thought of 

MNAR? 

Ever wanted to do 

more? 

 No Yes No Yes 

01  1 1  

02  1  1 

03  1 . . 

04  1  1 

05  1  1 

06  1  1 

07  1 1*   

21  1  1 

22  1† 1  

23  1  1 

24  1 1  

25  1  1 

26  1  1 

27  1 1  

* “Unclear when MNAR is relevant and significant” 

† “Not much though” 

 

 

� Everyone thought about MNAR. Majority (8/13, 61%) ever wanted/thought about doing 

more.  
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Stakeholders meeting 

 

Answers to discussion groups, and other notes made during seminar 

 

 

 Combining notes from York (28th April) and LSHTM (29th June) discussions. 

 

 

Content: 

 

Answers from questionnaires 

Theme 1- Methodological approaches  

Theme 2- Presentation of results 

Theme 3- Elicitation 

Theme 4- Barriers 

Notes of questions during presentation and discussion 

 

 

Note: 

In blue are participants’ answers/comments 

In red are my comments/thoughts 

 

 

Number of respondents to each themes: 

Theme 1 -   7 

Theme 2 -   4 

Theme 3 -   3 

Theme 4 -   4 

Total = 18  

  



THEME 1 – METHODOLOGICAL APPROACHES  

 
Q1. How familiar/comfortable do you think analysts and “reader” of CEA are with the following 

approaches? Please mark from 1(few familiar with it) to 5(most familiar with it) 

 

 

 
CEA analysist 

Avera

ge 

 
CEA users 

Aver

age 

 1 2 3 4 5   1 2 3 4 5  

Multiple 

imputation 
 2  4 1 3.6 

 
3 2 1 1  2.0 

Bayesian 2 1 3  1 2.6  6  1   1.3 

Non-

parametric 

bootstrapping 

1  3 1 2 3.4 

 
5 1 1   1.4 

Regression-

based* 
1  1 2 3 3.9 

 
2 2 2  1 2.4 

*Regression model appropriate for cost-effect, such as seemingly unrelated regression, or linear 

regression on net monetary benefit. 
 

 Regression-based and MI most used/understood approach.  Seems like developing 

methods in MI context is the most promising. Probably not go into the Bayesian route. 

 

 
Q2.  MNAR SA is often a balancing act between making things simple enough to be done and 

understood, and more complex and accurate methods. Do you think it is more important to focus 

on methods that are easy to conduct, or one that are technically sound?  

 

Depends on what is the appropriate methodology: irrespective of whether the methods are 

complex, you would hope that they would be accepted by researchers following dissemination.  

 

Technically sound. 

 

Like the approach MAR as base-case, and MNAR as SA. 

Would be good to show difference in results + value foregone based on different methods 

(EVPI-type analysis). 

 

Methods technically sound, but need to be explained in a non-technical way. 

 

Technically sound if have to pick one. 

 

To make more analysts adopt some approach to conduct MNAR analyses most simple. 

To provide decisions makers with best evidence  most accurate.  

 

 Prefers “best methods”. Even if more complex will be adopted if is the appropriate way.   

(still think there is space for “Back of the envelope” when don’t have access to IPD / for 

modellers)  

 

 
Q3. Which of the two common framework for MNAR analysis do you think is more appealing 

for CEA? 



 Pattern mixture, where as discussed in the seminar, the sensitivity parameter describes 

how different the observed and missing data are; 

 Selection model, where the sensitivity parameter relates the chance of observing the data 

to the underlying (but potentially unobserved) value.  
 

The SM seems more intuitive and like the fact that it explicitly recognises the potential situation 

where we never observe the values. 

 

Pattern-mixture 

 

As analyst, using a selection model (how the prob of missingness related to unobserved values) 

have more face-value.   

Has to do also with how intuitive each model is and how much judgement (subjective) they are. 

 

Pattern-mixture, easier to understand and implement.  

 

Pattern mixture potentially sound simpler. 

 

Reference-based imputation appealing (unclear to me which category this fits in)  

 

Mixed views. Little time to explain well the difference between the 2 approaches during 

presentation, some liked SM as well. 

+ see question on elicitation, reported SM could be more intuitive for clinician. 

 

 

Q4: What do you see as the pros and cons of each approaches shown during the seminar? 
 

 Advantages Limitations 

Simple approximation 

Straightforward 

 

 

Relatively easy to understand 

and implement 

 

Simple, don’t need access to 

IPD 

 

 

 

If there are lots of different 

patterns? 

 

No estimates of uncertainty 

MI + MNAR delta 

 

 

A lot more sophisticated. 

 

Easier/less complex than 

MI+delta distribution 

Assumptions on delta 

 

 

Need IPD 

 

Constant delta too restrictive 

MI + delta distribution 

This one was my favourites of 

those seen.  

Seemed more amenable for 

estimating the opportunity 

cost of missing data. 

 

More comprehensive. 

 

 

Assumptions on delta 

 

 

 

 

 

 

 

 



Build on the above 

 

Seems more natural that 

delta is a distribution 

 

 

 

Need to specify distribution 

Referenced-based 

No explicit assumptions on 

delta 

 

 

Sounds in tune with common 

economic eval modelling 

 

Intuitive for experts/ decision 

makers 

Seems not easy to 

implement 

 

 

(More?) complex to 

implement 

 

Do we (trust?) the experts? 

Bayesian* 

 

 

Framework of combining 

data + priors 

 

 

May not be accessible for the 

analyst 

 
 

- One liked the MI + delta distribution.  

- One mentioned that only ref-based don’t need to elicit delta, but may be more complex 

to implement. 

- One liked simple approx. as other seems more complex to implement (I guess when not 

familiar with MI) 

Not really sure what new all this tells us. 

Ref-based seems to have some appeal, and probably worth developing.   

From the discussion in York people seems to like the delta-distribution approach (for EVPI, or as 

a formal way to get `final` decision uncertainty, taking into account the possibility of MNAR). In 

LSHTM preferred more the MI+ fixed values of deltas instead of trying to incorporate all 

uncertainty in one analysis. 

 Seems there is still scope for most methods! Depending on context, different methods 

may be more/less suitable. See summary comment at the end of the doc. 

 

 

  



 
 

THEME 2 – PRESENTATION OF RESULTS 
 

 

 
You have seen earlier three type of presenting results: 

i) Individual results for a range of specific scenarios.  

ii) A “tipping-point” approach,   

(contour plot example, showing results as a continuum on a  wide range of values 
and letting reader decide whether decision would be affected  in any plausible range.) 

iii) A combined analysis, considering the uncertainty in departure from MAR into the 

uncertainty modelling. 
 

 

Q1. Were these approaches clear to you when presented? Any was particularly clear/ unclear? 
 

 

“Tipping-point” not so clear. The 2 other approaches OK. 

 

Yes, clear 

 

i) was most clear, but CEAC always tricky for non-experts. ii) and iii) (somewhat?) unclear. 

 

Yes they were all clear to us. The delta-graph (ii) was the clearest. 

 

 

Q2. Which of the 3 type presentational approaches do you think is most relevant for people using 

cost-effectiveness analysis?  

Do you think the presentation should depend of the audience? If so, how? 

i) (CEAC with different deltas) most relevant and can be used with all audience ( CEA analysts or 

users). 

 

i) quite flexible and allows more engagement from ?  [Stake (=  stakeholders) / State ?] 

 

 

i)  

Not ideally, but for pragmatic purposes might be necessary. 

CEAC don’t go down well with clinical audience. 

 

We think method ii) is the clearest, but needs a lot of explanation to non-experts. It could have 

the complete case added as a comparator too. + shows the multiple thresholds. 

Yes, more details may be required for non-experts. 

 

 

 No agreement.  After York was starting to think contour plot maybe too confusing, but 

actually some liked it at LSHTM.  

 

 Some don’t like CEAC as may not be clear for non health-economist. I think still have to 

go with it as one way to present, recommended by NICE and commonly used, see HTA 

review. Keep in mind the audience not familiar with CEAC, probably need to show how 

to calculate other result such as ICER and INB as well. 

 



 

 Mixed view on “combined”, some don’t like to combine the uncertainty in one analysis. 

Some think that is the best/most realistic/comprehensive. 

 

 

Q3. Any other way to present the results you thought of? 

Could present INB versus delta 

Contingent on λ but `accepted’ cut: 20K or 30K 

 

Could add contours to (iii) like in (ii) to show uncertainty. 

Could do (ii) for costs and effect separately 

 

 Need to try INB with delta graph.  

 

Q4. For most approaches, the way to present the results was dependent on the number of 

sensitivity parameters. In the seminar presentation, there were two varying parameters (delta for 
EQ-5D in each arm), but what about if there were more parameters (such as delta for costs 

varying as well, so having four parameters): would that affect any of your comments above?  

 

No, this would simply add more graphs in approach i).  

 

The case for presenting one result which internalise the joint uncertainty is better. 

 

Harder to process but still prefer ii)  

 

 Not so much on this. Except that the “joint uncertainty” may be better when too 

complex. (But needs more elicitation of correlations or do not matter so much?) 

 

 

Any other thoughts/comments? 

 

- ?? about observational data 

- What about when have immature survival data? 

- Selection according to centre/patient prognosis 

- Allow for delta to differ by subgroup 

 

 

 In the end think contour plot may not be so clear/obvious, or at least need a couple of 

minutes to understand well, which people may not do if screening a paper quickly. CEAC 

with difference scenarios may look less scary, familiar with graph, should understand 

each curve correspond to a different scenario and just a matter of understanding what 

these different scenarios mean.   

 

 Preference for CEAC with different scenarios. CEAC commonly used in HTA. this was 

confirmed by answers to Q2 as well. 

Drawback compared to tipping point is that needs some sort of elicitation to decide 

scenarios [tipping point more flexible, shows all “possible” results and let the reader 

decide]. I think OK, no way around this, seems easier to convince that needs some sort 

of elicitation, that to push to use a graph that no one understands readily. 

 

 Also have to try suggestion to present INB. 

 



 Some audience not comfortable with CEAC, do no focus only on this graph but also how 

to calculate INB etc. (but in a similar way, with fixed scenarios more than combining 

distribution) 

 

 

Summary: 

 Tipping point may not be as obvious at initially thought 

 Preferred the CEAC with the individual scenarios. 

 If many scenarios/parameters, the “internalised uncertainty” could make presentation 

easier. 

 

  



 

 

THEME 3 – ELICITATION 

 

 

Q1. The required elicitation will depend of the approach used. Are there some approaches you 

have seen today where you think the elicitation will be particularly straightforward or difficult? 

 
Reminder of four main approaches for elicitation: 

 Elicitation of delta in a pattern mixture framework 

o Specifying a set of deltas of interest   

o Specifying a distribution for the deltas  

 Elicitation in a selection model* framework, where we seek to elicit how 

the probability of observing a value relates to that value. 

 Using a referenced-based approach 

 

[PMM:]   Difficult to elicit delta 

[Reference-based:]   Care needed as subjective  judgement 

 

In my experience it can be difficult to give clinicians a feel for what the utility scale means, so a 

selection model can be a more intuitive alternative.  

In the area I work (mental health economics), reference-based approach seems potentially 

difficult to implement. 

 

 Utility not so familiar for clinician. But not sure why SM easier, still relies on understanding 

utility (maybe even more?). 

 Reference based may not be suitable in all situation. Need a suitable control. 

 
Q2. In your opinion, who should be involved in eliciting MNAR scenarios?  

 

Clinical collaborators 

Patients representative 

Health economists 

 

Clinicians 

Patient groups 

Statisticians on the clinical trial 

 

 

Q3. Post-hoc MNAR SA are probably not ideal, but are they acceptable in some situations, or 

Should they always be pre-specified? 

 

Not conducting a post-hoc MNAR SA entails on implicit assumptions too, so if a case when 

MNAR appears plausible a post-hoc appears appropriate. 

 

It’s best so specify in study proposal but I suppose the details and extent of methos may be 

specified post-hoc. 

 

 

Q4. What will be the main challenges of eliciting missingness mechanisms for both cost and 

effect? How would you address these? 

 



 

Making assumptions about missing service use (or cost) may not be as easy as with effects 

 

Q5. What do you think about the idea of having a standard criterion for delta in the pattern-

mixture approach, such as setting delta to be +/- 1 standard deviation of the variable?  

 

 No answer to this question. Had some discussions on this, see notes at the end. 

 

  



 

THEME 4 – BARRIERS 

 
 

Q1. Here is a list of possible reasons why MNAR may not be more commonly conducted 

currently. How important do you think each reason is?  
 

 

 
1 

Not a 

reason why 

2 

Probably 
one of the 

reasons 

3 

important  

reason 

4 

Major 

reason 

Average 

Not relevant 2 2   1.5 

Interesting, but many other possible 

sensitivity analyses to perform. 
1 2  1 

2.25 

Never thought about it.  3  1 2.5 

Would not know how to do   3 1 3.25 

Do not have the software / technical code 

to perform it 
  3 1 

3.25 

Would not know how to decide the relevant 

scenarios 
1 3   

1.75 

Would take too much time  1 2 1 3 

No asked for by the funders/investigators  2   2 2.5 

It would not be understood  2 2  2.5 

Not comfortable in using info not from the 
data 

3 1   
1.25 

Not commonly done 2  2  2 

Not done for the clinical outcome  3  1 2.5 

 

Note : two questionnaires seems to have been completed as a group, and reported exact same 

answers. 

 

 Not so much agreement! 

Some findings: 

- “Would not know how to do” and “Do not have the software” identified as important 

reason by all.   

       Good to work on these two aspects during PhD 

- “Would take too much time” 

      Scope for simple methods: BoE, using standard values for deltas. 

- “Not asked by the investigator” identified as key reasons by the 2 respondents in York, 

but not at all by LSHTM.   

       Difficult to affect this directly. But if methods become more common, then may 

be asked more often. Shows importance of dissemination. Journal reviewers may be 

easier to reach than “funders/investigators” initially. 

-  “Not relevant” was not important  demonstrate people think the issue is relevant  

 

 

Other reasons? 

Might not give a clear answer  creates more uncertainty.  ( less publishable?) 

 

Accepted practice (challenged at review?) 

 



 Fair point! Investigators/analysts may not have interest, prefer to assume MAR and put 

uncertainty of missing data “under the carpet” (+ save time).  May need incentive (request by 

reviewers?)   importance of dissemination. 

 

Q2. Suppose you want to conduct a MNAR SA for a trial soon. What do you anticipate the 
problems will be? What would you like to see/have to help you performing it? 

 

Identification of delta. 

Interpretation 

 

 

More practical guidance and code on how to do it, including how to carry it to do the 

probabilistic analysis and code for graphs. 

Often the clinical report on the trials does not report it  There should be a need for MNAR 

analysis in the clinical report. 

 

Coding Stata commands! 

Fixing delta. Specifically δT≠ δC (evidence?!)  

 precendence for delta 

 

Code! Stata 

 

 

(Precedence? Meant if publishes a few delta in other papers can use same? Or want more 

research to get info on possible delta?) 

 

 Deciding relevant delta was a recurrent issue. 

 Want code + paper explaining methods in practice. 

 (Influence performing MNAR in clinical effectiveness? Probably beyond scope of my PhD. If 

done more in CEA, may be more common in clinical as well) 

 

 

Q3. Suppose you are a modeller and want to use data from a trial where missing data is a key 

issue (let us say 50% missing at the time-point of interest). 

 
a. What would be the common way to approach this currently? 

 

Attempt to perform MAR method? Such as MI 

 

The common way is to use it and not to think about it. This is not the most appropriate way. 

There is probably scope for a BMJ reporting paper on missing data to explain the issue in simple 

terms to clinicians and policy maker. 

 

Access to IPD-> MI. 

Otherwise ignore! 

Not top priority unless treatment effect 

 

b. Do you think modellers would use MNAR results if those were reported? How would they 

approach this if more than one result was reported? 

 

 

If key drivers of decision uncertainty, some assessment of plausibility of delta scenarios 



 

I think they would use it if they were reported, but in the sensitivity analyses. 

 

 

Possibly  SA.  

 

Possibly  

 

 Seems likely to start with MAR, then may possibly check if affect results when use results 

from MNAR scenarios.    

 May try to see if delta is a “key driver of decision uncertainty”.  (How done? Fits with the 

EVPI idea?  Think more: matters for PhD?  Can be tackled or focus on the rest first?)   

 

 

 

c. If the only results reported are complete-case, do you think modellers would be interested in 

conducting their own `ad hoc’ MNAR analysis? 

 

I think so. Probably first conducting MAR analysis given greater precedence. 

 

I think yes but uptake may be slow at start. 

 

Yes, possibly 

 

Yes, possibly. 

 

 Potential interest by modellers. 

 

Q6. If codes are developed to conduct MNAR SA, which software do you think are the most 

relevant?  (How familiar are analysts who may want to conduct MNAR SA with the following 
software?) 

 

 
1 

Few 
analysts 

use it 

2 

Some 
analyst 

use it 

3 

Often 

used 

4 
Most/all 

analysts 

familiar 

with it. 

Average 

Stata   1 3 3.75 

R   4  3 

SAS  4   2 

WinBugs / Other 

Bayesian 
 4   

2 

Excel   3 1 3.25 

Twice same answers, worked as group. 

 

 Stata (and R) main software for IPD.  

 

 

Any other thoughts? 
 

Mean delta – focus seems sensible as first step, but perhaps distribution idea seems interesting.   
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Online Appendix 1 – Ten Top Tips data description 

 

 

Variable Description N 
Missing 

(n) 

Missing 

(%) 
Min Max Mean 

Standard 

Deviation 

Baseline data 
pid Participant code 537 0 0 1 537 - - 

site_code Practice code 537 0 0 1 14 - - 
arm Trial arm 537 0 0 0 1 - - 
sex Gender 537 0 0 1 2 - - 
age Age (years) 537 0 0 18 83 56.80 12.73 

weight_0 Weight at baseline 

(kg) 

537 0 0 70 177 100.83 17.20 

bmi_0 BMI at baseline 

(kg/m2) 

537 0 0 30 61 36.38 5.10 

qol_0 HRQoL at baseline 537 0 0 -.18 1 0.75 0.25 

Quality of life 
qol_3 HRQoL – 3 months 395 142 26.4 -.18 1 0.77 0.25 
qol_6 HRQoL – 6 months 322 215 40 -.07 1 0.77 0.25 
qol_12 HRQoL – 12 months 286 251 46.7 -.18 1 0.77 0.24 
qol_18 HRQoL – 18 months 259 278 51.8 -.26 1 0.75 0.25 
qol_24 HRQoL – 24 months 284 253 47.1 -.14 1 0.77 0.24 
qaly QALYs 166 371 69.1 -.1 2 1.50 0.42 

Cost 
totalcost Total costs 0-24 

months (£) 

393 144 26.8 23 27578 1997.81 2546.65 

 

HRQoL= Health-related quality of life (derived from EQ-5D questionnaire), QALYs = Quality Adjusted Life Years, 

BMI = Body mass index 

Notes: missing data at baseline were mean-imputed. Data stored in a ‘wide’ format, with one record per 

participant.   
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Online Appendix 2 – MNAR sensitivity analysis of the 10TT trial – Stata code 

 

 

Step 1 - Perform multiple imputation under MAR 
   
 use "10TT_CEA_tutorial.dta", clear  
 
 *Generate missing data indicators 
  //Needed for step 2 
  misstable sum  qol_3-qol_24 totalcost qaly ,  gen(miss_) 
  
 *Set imputation 
  mi set flong   
  mi register imputed qol_3-qol_24 totalcost 
  mi register passive qaly 
   
 *Perform imputation 
  mi impute chained (pmm, knn(10)) qol_3-qol_24 totalcost = i.sex age i.site_code weight_0 
bmi_0 qol_0, add(50) by(arm) rseed(123456)   
  //Multiple imputation by chained equations, using predictive mean matching. 
  //Imputing the Qol at each follow up and the total cost, using baseline variables.  
  //Performing 50 imputations, stratified by arm.  
  //rseed()is for reproducibility. 
  //Alternatively could use "mi impute chained (regress)" or "mi impute mvn" 
 
 *Calculate QALY 
  mi passive: replace qaly=0.125*qol_0 + 0.25*qol_3 + 0.375*qol_6 + (0.25*1.965)*qol_12 + 
(0.5*0.965)*qol_18 + (0.25*0.965)*qol_24  
  //Area under the curve of the individual QoL (discounted by 3.5% the 2nd year) 
  //'mi passive' replace QALY only in imputed datasets. 
  
 *Save imputed dataset  
  save "10TT_MI.dta", replace 
   

 

Step 2 - Modifying imputed data 
 
  
 ** Define MNAR scenarios of interest 
  //MNAR parameters values are stored in a matrix 
  matrix mnar_param = ( 1.0,1.0 \ 1.0,0.95 \ 0.95,1.0 \ 0.95,0.95 \ 0.95,0.9 \ 0.9,0.95 \ 
0.9,0.9 )  
  matrix colnames mnar_param = C_ctr C_int  
  matrix list mnar_param   
  global nscen = rowsof(mnar_param)  // Saving number of scenarios in global macro 
  
 ** Modify MI data 
  clear  
  save "10TT_MI_MNAR.dta", replace emptyok //Empty dataset to start with    
  forvalues s = 1/$nscen {    //Loop over each MNAR scenarios 
    use "10TT_MI.dta" , clear  
     
    *Save scenario info 
     gen scenid=`s' 
     local q0 = mnar_param[`s',1]        
     local q1 = mnar_param[`s',2] 
     gen scenario= "`s' (`q0',`q1') "   
     
    *Modify QoL values 
     foreach var of varlist qol_3 qol_6 qol_12 qol_18 qol_24 { 
      replace `var'=`var'*mnar_param[`s',1] if miss_`var'==1 & arm==0    
      replace `var'=`var'*mnar_param[`s',2] if miss_`var'==1 & arm==1 
      } 
       
    *Calculate modified QALY 
     mi passive: replace qaly=0.125*qol_0 + 0.25*qol_3 + 0.375*qol_6 + 
(0.25*1.965)*qol_12 + (0.5*0.965)*qol_18 + (0.25*0.965)*qol_24  
  
    *Append and save 
     // The results for all MNAR scenarios are appended in a large dataset to 
facilitate remaining steps. 
     append using "10TT_MI_MNAR.dta" 
     save  "10TT_MI_MNAR.dta", replace 
    } 
 



Not-at-random missing data in trial-based cost-effectiveness analysis – Appendices  3 

 

 

Step 3a - Analysis:  Incremental cost, effect, ICER and INMB, using Rubin’s rules. 
 
 *** Incremental cost and effect    
  *Cost: 
   //Have not been MNAR-modified, same for all scenarios. 
   use "10TT_MI_MNAR.dta" if scenid==1, clear   
   mi estimate: mean totalcost if arm==0 
   mi estimate: mean totalcost if arm==1 
   mi estimate: regress totalcost arm      
      
  *QALY: 
   forvalues s = 1/$nscen { 
    use "10TT_MI_MNAR.dta" if scenid==`s', clear     
    list scenario in 1 
    mi estimate: mean qaly if arm==0 
    mi estimate: mean qaly if arm==1 
    mi estimate: regress qaly arm 
    }      
   
 *** ICER       
  forvalues s = 1/$nscen { 
   use "10TT_MI_MNAR.dta" if scenid==`s', clear 
   list scenario in 1 
   *Incremental cost 
    mi estimate: regress totalcost arm 
    local incc= el(e(b_mi),1,1)   
   *QALY 
    mi estimate: regress qaly arm   
    local incq= el(e(b_mi),1,1) 
   *Display ICER 
    list scenario in 1 
    display "MNAR scenario `s' : ICER = "  `incc'/`incq'  
   }     
    
 *** NMB 
  forvalues s = 1/$nscen { 
   use "10TT_MI_MNAR.dta" if scenid==`s', clear 
   list scenario in 1    
   gen inb20=qaly*20000-totalcost   
   mi estimate: regress inb20 arm     
   }    
   
 *** Probability cost effective 
  forvalues s = 1/$nscen {   
   use "10TT_MI_MNAR.dta" if scenid==`s', clear 
   list scenario in 1  
   gen inb20=qaly*20000-totalcost  
   mi estimate: regress inb20 arm 
   local pce = normal(el(r(table),1,1)/el(r(table),2,1) )    
   display "Probabiliy cost effective = " `pce'  
   } 

 

 

Step 3b - Analysis:  CEP and CEAC plots, using non-parametric bootstrap 
  
 *** Bootstrap 
  //Conduct bootstrap re-sampling on imputed dataset 
  //Note that alternatives to bootstrap could have been considered here (cf. Faria et al.)
    
  ** Set up 
   *Program returning incremental cost and effect 
    capture program drop ceestim   
    program define ceestim , rclass   
     regress qaly arm      
     return scalar inc_qaly = _b[arm]    
     regress totalcost arm 
     return scalar inc_cost = _b[arm] 
     end 
   *Dataset to store BS estimates    
    clear  
    save "bootstrap_mnar.dta", replace emptyok //Empty dataset 
      
  ** Run bootstrap 
   //Note: different approaches have been suggested to combine MI and BS  
   //(cf. Schomaker and Heumann, arXiv:1602.07933) 
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   //Here we are using one possible approach: drawing bootstrap samples from each of the 
imputed dataset separately, then pooling the estimates.       
   forvalues s = 1/$nscen { 
    forvalues m = 1/50 {      
     use "10TT_MI_MNAR.dta" if scenid==`s' & _mi_m==`m', clear   
     //Open one MI dataset, for one MNAR scenario.   
     bootstrap inc_cost=r(inc_cost) inc_qaly=r(inc_qaly), /// 
         reps(200) strata(arm) saving("bsres.dta", replace) : ceestim  
       // Bootstrapping the incremental cost and effect.  
       // 200 BS replications for each imputed dataset, stratified by arm.  
     *Pool all estimates 
      use "bsres.dta", clear 
      gen _mi_m=`m' 
      gen scenid=`s' 
      append using "bootstrap_mnar.dta" 
      save "bootstrap_mnar.dta", replace  
     } 
    }  
 
  ** Clean bootstrap dataset 
   *Add scenario label (used for graphs) 
    use "10TT_MI_MNAR.dta", clear 
    keep scenid scenario 
    duplicates drop 
    merge 1:m scenid using "bootstrap_mnar.dta", nogenerate  
   *Sort and save  
    sort scenid _mi_m  
    compress 
    save "bootstrap_mnar.dta", replace 
   
 
 *** Cost-effectiveness plane    
  use "bootstrap_mnar.dta" , clear 
  bysort scenario: egen meanc=mean(inc_cost)   
  bysort scenario: egen meanq=mean(inc_qaly) 
 
  *Graph 
   graph twoway scatter inc_cost inc_qaly, msize(*0.1) || scatter meanc meanq, /// 
       by(scenario, holes(3 7) compact leg(off)) /// 
       xlab(-0.2(0.1)0.2) xtitle("Incremental QALY") /// 
       ylab(-1000(500)1000,  nogrid angle(horizontal)) /// 
       ytitle("Incremental Cost (£)") /// 
       yli(0,lc(black) lw(thin))  xli(0,lc(black) lw(thin)) /// 
       name(CEP, replace) 
     
    
 *** Cost-Effectiveness Acceptability Curve 
  
  *Calculate probability cost effective at different threshold. 
   postfile ceac scenid str12 scenario wtp proba using "ceac.dta", replace  
   // Set-up 'postfile' to store results  
   forvalues s = 1/$nscen { 
    use "bootstrap_mnar.dta" if scenid==`s', clear     
    forvalues wtp = 0(1000)60000 { 
     qui: count if (inc_qaly*`wtp'-inc_cost)>0  
     local p = `r(N)' / _N  //Proportion of cost-effective BS replicates  
     post ceac (scenid[1]) (scenario[1])  (`wtp') (`p')  
     } 
    }     
   postclose ceac //Closing postfile    
        
  *Graph 
   use "ceac.dta", clear 
   separate proba, by(scenario) veryshortlabel gen(proba_)   
    //Create a new variable for each MNAR scenario (needed to show on same graph) 
   graph twoway line proba_* wtp, ///            
      xlab(0(10000)60000, format(%9.0fc)) /// 
      xtitle("Willingess to pay per QALY (£)") /// 
      yscale(range(0 1)) ylab(0(0.1)1, nogrid angle(horizontal) format(%2.1f)) /// 
      ytitle("Probability 10TT cost effective") /// 
      yline(0.5,lc(gs10) lw(thin) lpattern(dash)) /// 
      legend(label(1 "1 (1,1) (MAR)") title("MNAR scenario")) rows(3) hole(3 7)) ///  
      name(CEAC, replace) 
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Online Appendix 3 – MNAR sensitivity analysis for missing cost and effectiveness 

 

 

We reanalysed the 10TT trial data, this time considering the missing cost data could also be MNAR. 

 

1) Scenarios of interest 

 

The MNAR scenarios were defined by four parameters: 

• cQ0 : the MNAR rescaling factor for the imputed quality-of-life score (QoL) in the control 

group. For example, cQ0 =0.9 correspond to reducing MAR-imputed QoL values in the control 

group by 10%.  

• cQ1 : rescaling factor for HRQoL in the intervention group 

• cc0 : rescaling factor for total cost in the intervention group 

• cc1 : rescaling factor for total cost in the intervention group 

 

We considered eight scenarios, covering a range of MNAR variation for cost and QoL. We considered 

the missing QoL more likely to be lower, and the cost higher, than under MAR. 

 

Scenario description 

MNAR rescaling parameters 

QoL in control 

group 

QoL in 

intervention 

group 

Cost in 

control 

group 

Cost in 

intervention 

group 

1. (MAR) 1 1 1 1 

Same parameters in both arms     

2. -10% QoL in both arms -10% -10% 1 1 

3. +10% cost in both arms 1 1 +10% +10% 

4. -10% QoL and +10% cost  -10% -10% +10% +10% 

Different parameters by arm     

5. -10% QoL in intervention arm  1 -10% 1 1 

6. -10% QoL in control arm -10% 1 1 1 

7. +10% cost in intervention arm 1 1 1 +10% 

8. +10% cost in control arm 1 1 +10% 1 

 

2) Stata code to transform QoL and cost 

 
   ** Define scenarios    
      matrix mnar_param = (1.0,1.0,1.0,1.0 \  0.9,0.9,1.0,1.0 \ 1.0,1.0,1.1,1.1 \  
0.9,0.9,1.1,1.1 \ 1.0,0.9,1.0,1.0 \ 0.9,1.0,1.0,1.0\ 1.0,1.0,1.0,1.1\ 1.0,1.0,1.1,1.0) 
      matrix colnames mnar_param = Q0 Q1 C0 C1 
      matrix list mnar_param       
      global nscen = rowsof(mnar_param)  // Global macro, number of scenarios.  
          
   ** Modify MI data 
      clear  
      save "10TT_MI_MNAR_cost.dta", replace emptyok        
      forvalues s = 1/$nscen { 
            use "10TT_MI.dta" , clear                
            *MNAR parameters variable 
               gen scenid=`s' 
               local q0 = mnar_param[`s',1]  
               local q1 = mnar_param[`s',2]    
               local c0 = mnar_param[`s',3] 
               local c1 = mnar_param[`s',4] 
               gen scenario= "`s' (`q0',`q1',`c0',`c1') "   
            *Modify QoL values 
               foreach var of varlist qol_3 qol_6 qol_12 qol_18 qol_24 { 
                  replace `var'=`var'*mnar_param[`s',1] if miss_`var'==1 & _mi_m>0 & arm==0 
                  replace `var'=`var'*mnar_param[`s',2] if miss_`var'==1 & _mi_m>0 & arm==1 
                  } 
            *Modify cost 
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               replace totalcost=totalcost*mnar_param[`s',3] if miss_totalcost==1 & _mi_m>0 & 
arm==0  
               replace totalcost=totalcost*mnar_param[`s',4] if miss_totalcost==1 & _mi_m>0 & 
arm==1              
            *Calculate new QALY 
               mi passive: replace qaly=0.125*qol_0+0.25*qol_3+0.375*qol_6+(0.25*1.965)*qol_12 
+(0.5*0.965)*qol_18+(0.25*0.965)*qol_24 
            *Append and save    
               append using "10TT_MI_MNAR_cost.dta" 
               save "10TT_MI_MNAR_cost.dta", replace    
         } 

 

3) Results 

 

Scenario description 

Incremental cost 

(£)  

[95% CI] 

Incremental 

QALYs 

[95% CI] 

INMBa (£) 

[95% CI] 

Probability 

cost-

effectivea 

1. MAR 
-35 

[-504 to 434] 

-.004 

[-.074 to .066] 

-49 

[-1,632 to 1,534] 
48% 

Same MNAR parametersb in the two arms 

2.  -10% QoL in both arms 
-35 

[-504 to 434] 

-.011 

[-.078 to .057] 

-181 

[-1,714 to 1,352] 
41% 

3.  +10% cost in both arms 
-25 

[-512 to 462] 

-.004 

[-.074 to .066] 

-59 

[-1,650 to 1,532] 
47% 

4.  -10% QoL and +10% cost  
-25 

[-512 to 462] 

-.011 

[-.078 to .057] 

-191 

[-1,733 to 1,350] 
40% 

Different MNAR parametersb  in the two arms 

5.  -10% QoL in intervention arm  
-35 

[-504 to 434] 

-.071 

[-.139 to -.002] 

-1378 

[-2,932 to 176] 
4% 

6.  -10% QoL in control arm 
-35 

[-504 to 434] 

.056 

[-.014 to .125] 

1148 

[-415 to 2,711] 
93% 

7.  +10% cost in intervention arm 
20 

[-459 to 499] 

-.004 

[-.074 to .066] 

-104 

[-1,691 to 1,483] 
45% 

8.  +10% cost in control arm 
-80 

[-558 to 398] 

-.004 

[-.074 to .066] 

-4 

[-1,591 to 1,583] 
50% 

MAR missing at random, MNAR missing not at random, QALY quality-adjusted life year, INMB incremental net 

monetary benefit, QoL quality-of-life, 10TT Ten Top Tips, CI confidence interval 
a At a cost-effectiveness threshold of £20,000/QALY. 
b How missing cost and QoL data are assumed to differ from MAR-imputed values. 

 

4) Cost-effectiveness acceptability curve 
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We can see here that a departure from the MAR assumption for the costs is unlikely to affect 

significantly the findings, even if the missing costs are assumed 10% higher than under MAR only in 

the intervention arm. 

However, departure from the MAR assumption for QoL could importantly affect the conclusions, 

particularly if the MNAR mechanism is not the same in each arm. The results for varying MNAR 

parameters for QoL, as reported in the Section 3 of the tutorial, is probably of primary interest in this 

case. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

b
a

b
ili

ty
 1

0
T

T
 c

o
s
t-

e
ff
e
c
ti
v
e

0 10,000 20,000 30,000 40,000 50,000 60,000
Willingess to pay per QALY (£)

1 (1,1) (MAR) 2 (.9,.9,1,1) 3 (1,1,1.1,1.1) 

4 (.9,.9,1.1,1.1) 5 (1,.9,1,1) 6 (.9,1,1,1) 

7 (1,1,1,1.1) 8 (1,1,1.1,1) 

MNAR scenario

Cost-effectiveness acceptability curve



Not-at-random missing data in trial-based cost-effectiveness analysis – Appendices  8 

 

Online Appendix 4 -  Probabilistic MNAR parameters 

 

 

1) Distribution of the parameters 

 

In this example, let us assume we believe the rescaling parameter c to be around 0.95, with a 

standard deviation of 0.025 (this standard deviation corresponds to being 95% certain that the true 

parameter value is somewhere between 1 and 0.90).  We want to draw two correlated values from 

that distribution (ccontrol , c10TT ).   

 

A correlation would capture how the values of ccontrol and c10TT are related, for example if the 

departure from MAR is strong in one arm, it could be more likely to also be the case in the other arm 

(positive correlation). The difficulty of eliciting the correlation parameter has been discussed 

elsewhere1,2. One solution is to simply assume independence. Indeed, this should result in a slightly 

conservative estimate for the difference between arms (assuming the correlation is usually positive), 

and the difference will typically be negligible1,2 (to confirm this, the analysis could also be repeated 

with different correlations). 

 

We will therefore draw two parameters from the following distribution: 
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2) Analysis implementation 

 

We incorporated the random draw as part of the multiple imputation procedure, by drawing a 

different set of (ccontrol , c10TT ) for each of the imputed dataset, and rescaling each dataset accordingly. 

The standard analysis of the multiply imputed datasets (i.e. Rubin’s rules) should then take into 

account of both the imputation and the MNAR uncertainty, and approximate a fully Bayesian 

analysis1. Note that a sufficient number of imputations are needed to perform multiple draws of 

(ccontrol , c10TT ), to obtain sufficiently stable results (negligible Monte Carlo error). 

 

3) Stata code 

 
** Define parameters distribution 
 matrix C = (1,0.0,1) //Uncorrelated draw 
 global mu = 0.95 
 global sd = 0.025 
 
** Modify MI data 
 //Each MI dataset is MNAR-modified according to parameters drawn from the distribution 
 use "10TT_MI.dta", clear 
  
 *Draw random parameters 
  set seed 1234  //seed for reproducibility 
  drawnorm c0 c1, corr(C) cs(lower) //Draw values from 2 correlated normal distribution 
  replace c0 = $mu + $sd *c0  // Transform to wanted mean and SD  
  replace c1 = $mu + $sd *c1 
  bysort _mi_m: replace c0 = c0[1]  //Same parameter value for each imputed dataset 
  bysort _mi_m: replace c1 = c1[1] 
   
 *Modify QoL values 
  foreach var of varlist qol_3 qol_6 qol_12 qol_18 qol_24 { 
   replace `var'=`var'*c0 if miss_`var'==1 & arm==0 
   replace `var'=`var'*c1 if miss_`var'==1 & arm==1 
   } 

                                                             
1 White I.R., et al. "Eliciting and using expert opinions about dropout bias in randomized controlled trials." 

Clinical Trials 4.2 (2007): 125-139. 
2 Carpenter J., and Kenward M., “Multiple imputation and its application.” John Wiley & Sons, 2012. 
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 *Calculate modified QALY 
  mi passive: replace qaly=0.125*qol_0 + 0.25*qol_3 + 0.375*qol_6 + (0.25*1.965)*qol_12 + 
(0.5*0.965)*qol_18 + (0.25*0.965)*qol_24  
  
 *Save 
  save "10TT_MI_MNAR_probabilistic.dta", replace  

 

4) Results 

 

Scenario description 

Incremental 

cost (£)  

[95% CI] 

Incremental 

QALYs 

[95% CI] 

INMBa (£) 

[95% CI] 

Probability 

cost-

effectivea 

Probabilistic MNAR parameters 
-35 

[-504 to 434] 

-.004 

[-.085 to .076] 

-50 

[-1816 to 1716] 
47.8% 

QALY quality-adjusted life-years, INMB incremental net monetary benefit 
a At a cost-effectiveness threshold of £20,000/QALY. 

 

  
 

We can see that the resulting incremental estimates are very close to the MAR results. This is likely 

to be the case when i) the proportion of missing data is relatively similar between arms, and ii) the 

MNAR parameters have the same mean value in each arm.  

However, the probabilistic analysis increases the uncertainty (wider confidence intervals, less steep 

CEAC), although this is not strongly seen here. 

Note that the within arm QALYs estimates would differ from those under MAR (not shown here). The 

rescaling parameter is assumed to be around 0.95, meaning missing QoL are expected to be 

somewhat lower than under MAR, resulting in lower QALYs (in both arms). 
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Online Appendix 5 –  Presentation of results 

 

 

1) Net Monetary Benefit over range of MNAR parameter values 

 

 
 

Note: example shown here with INMB, but could also display other results such as ICER or 

probability of being cost-effective. 

 

Stata code: 
 
** Calculate results for different MNAR parameters 
 
postfile inbgraph c c0 c1 armscat inb ll ul using "inbgraph.dta", replace  //Set up 'postfile' 
to save results  
 
forvalues c=0.8 0.85 to 1.0 { // Range of MNAR parameter values  
forvalues armscat=1/3 {       // 3 series: applying MNAR parameter to either arm, or both 
 local c0=cond(`armscat'==1 | `armscat'==2,`c',1)   
 local c1=cond(`armscat'==1 | `armscat'==3,`c',1)   
 display "MNAR param = ( " `c0' " ; " `c1' " )" 
 *Modify QoL values 
  use "10TT_MI.dta" , clear    
  foreach var of varlist qol_3 qol_6 qol_12 qol_18 qol_24 { 
   replace `var'=`var'*`c0' if miss_`var'==1 & _mi_m>0 & arm==0    
   replace `var'=`var'*`c1' if miss_`var'==1 & _mi_m>0 & arm==1 
   } 
 *Calculate modified QALY and INB 
  mi passive: replace qaly=0.125*qol_0 + 0.25*qol_3 + 0.375*qol_6 + (0.25*1.965)*qol_12 + 
(0.5*0.965)*qol_18 + (0.25*0.965)*qol_24  
  mi passive: generate inb=qaly*20000-totalcost    
 *Do MI analysis and save results 
   mi estimate: regress inb arm 
   matrix res=r(table) 
   post inbgraph (`c') (`c0') (`c1') (`armscat') (res[1,1]) (res[5,1]) (res[6,1])    
 } 
 } 
postclose inbgraph  
 
** Graph set up 
 use "inbgraph.dta", clear   
 *Reshape to have one row by parameter (and 3 series, by 'armscat') 
  drop c0 c1 
  tab armscat 
  reshape wide inb ll ul, i(c) j(armscat)   
  list, noobs    
 *Convert to "-%" for presentation 
  gen cperc=string(-(1-c), "%8.2f")+"%"   
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** Graph  
 graph twoway (connected  inb1 c) (connected inb2 c) (connected inb3 c) /// 
     (rarea ll1 ul1 c, color(navy%10)) /// 
     (rarea ll2 ul2 c, color(maroon%10)) ///  
     (rarea ll3 ul3 c, color(forest_green%10)), ///      
     yline(0.5,lc(gs5) lw(thin) lpattern(dash)) /// 
     text(-4000 1 "Control more cost-effective", placement(w)) text(4000 1 "10TT 
more cost-effective", placement(w)) /// 
     xtitle("MNAR reduction for imputed QoL")  xlabel(0.80 "-20%" 0.85 "-15%" 0.90 
"-10%" 0.95 "-5%"  1.0 "MAR") /// 
     ytitle("Incremental Net Monetary Benefit (£)") ylabel(-5000(1000)5000, angle(0) 
format(%9.0fc)) /// 
     legend(order(1 4 2 5 3 6) label(1 "Reduction applied to both arms") label(2 
"Applied to control arm only") label(3 "Applied to intervention arm only") label(4 "95% CI") 
label(5 "95% CI") label(6 "95% CI")) 

 

 

2) Contour plot for the probability of 10TT being cost-effective by MNAR parameter       
 
 

  

 

Note: example shown here with probability of being cost-effective, but could also display other 

results such as INMB or ICER.  

 

Stata code: 

 
** Calculate results for different MNAR parameters 
 
postfile contour c0 c1 inmb ll ul pce using "contour_graph.dta", replace  //Set up 'postfile' 
 
forvalues c0=0.9 0.92 to 1.0 {   
 forvalues c1=0.9 0.92 to 1.0 {  
  *Modify QoL values 
   use "10TT_MI.dta" , clear    
   foreach var of varlist qol_3 qol_6 qol_12 qol_18 qol_24 { 
    replace `var'=`var'*`c0' if miss_`var'==1 & _mi_m>0 & arm==0    
    replace `var'=`var'*`c1' if miss_`var'==1 & _mi_m>0 & arm==1 
    } 
  *Calculate modified QALY and INB 
   mi passive: replace qaly=0.125*qol_0 + 0.25*qol_3 + 0.375*qol_6 + (0.25*1.965)*qol_12 
+ (0.5*0.965)*qol_18 + (0.25*0.965)*qol_24  
   mi passive: generate inb=qaly*20000-totalcost 
  *Do MI analysis and save results 
   mi estimate: regress inb arm 
   matrix res=r(table) 
   local pce = normal(res[1,1]/res[2,1])    
   post contour (`c0') (`c1') (res[1,1]) (res[5,1]) (res[6,1]) (`pce')  
   //Saving INMB, 95%CI, and probability cost-effective (at £20,000/QALY) 
  } 

Control more
cost-effective

10TT more
cost-effective

-10%

-5%

MAR

-10% -5% MAR
Reduction of imputed QoL in intervention arm

0

.2

.4

.6

.8

1
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 } 
postclose contour 
  
** Graph 
** Set up 
 use "contour_graph.dta",clear  
 label var c0 "MNAR parameter in control arm "   
 label var c1 "MNAR parameter in intervention arm"   
 label var pce "Probability 10TT cost-effective"  
 
** Graph  
 graph twoway (contour pce c0 c1, ccuts(0(0.05)1) zlabel(#6) scolor(red) ecolor(green)) ///
  
     (contourline pce c0 c1, ccuts(0.5) colorlines lpattern(dash)), /// 
     ytitle("Reduction of imputed QoL in control arm") ylabel(0.90 "-10%" 0.95 "-5%" 
1.0 "MAR", angle(0)) ///      
     xtitle("Reduction of imputed QoL in intervention arm") xlabel(0.90 "-10%" 0.95 "-
5%" 1.0 "MAR")  ///     
     text(0.965 0.935 "Control more" "cost-effective") text(0.93 0.975 "10TT more" 
"cost-effective") 
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Appendix - Covariance matrix derivation for J2R and CIR
Let µA, µR, ΣA, and ΣR denote the mean vectors and covariance matrices under MAR for the active and
reference arm respectively. For any individual, these matrices can be partitioned according to whether
the corresponding variables are observed (1), MAR-missing (2), or MNAR-missing (3).

So that ΣA =



A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3


 and ΣR =



R1,1 R1,2 R1,3

R2,1 R2,2 R2,3

R3,1 R3,2 R3,3




Let us denote 


Y1
Y2
Y3


 ∼ N





µ1
µ2
µ3


 ,




Σ1,1 Σ1,2 Σ1,3

Σ2,1 Σ2,2 Σ2,3

Σ3,1 Σ3,2 Σ3,3






the distribution for an individual in the active arm assumed to “jump-to-reference” for Y3. That is we
want the distribution of (Y1, Y2) to follow the distribution from the active arm, and the conditional dis-
tribution of Y3 given (Y1, Y2) to follow the corresponding conditional distribution from the reference arm.

The distribution of (Y1, Y2) is straightforward:
(
Y1
Y2

)
∼ N

([
µA1

µA2

]
,

[
A1,1 A1,2

A2,1 A2,2

])

Let 12 denotes the joined elements of the observed and MAR-missing variables. In the reference arm
the conditional distribution [Y3|Y12 = y12] is given by

N
([
µA3 + (y12 − µA12)

TR−1
12,12R12,3

]
,
[
R3,3 −R3,12R

−1
12,12R12,3

])

Following the same decomposition for the jump-to-reference distribution, we have the following con-
straints on the covariance parameters:

Σ12,12 = A12,12 (1)

Σ−1
12,12Σ12,3 = R−1

12,12R12,3 (2)

Σ3,3 − Σ3,12Σ
−1
12,12Σ12,3 = R3,3 −R3,12R

−1
12,12R12,3 (3)

Which can be resolved by
Σ12,12 = A12,12 (4)

Σ12,3 = A12,12R
−1
12,12R12,3 (5)

Σ3,3 = R3,3 −R3,12R
−1
12,12(R12,12 −A12,12)R

−1
12,12R12,3 (6)

The J2R distribution is therefore:



Y1
Y2
Y3


 ∼ N





µA1

µA2

µR3


 ,



A1,1 A1,2 Σ1,3

A2,1 A2,2 Σ2,3

Σ3,1 Σ3,2 Σ3,3






where Σ12,3 , Σ3,12, and Σ3,3 are defined in (5) and (6).

For CIR, the covariance matrix will be defined similarly, but the mean for Y3 will be defined by the
increment in mean from the reference arm. For MAR, LMCF, and BMCF the covariance matrix is that
of the active arm.

1
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CEmimix.do - Printed on 01/10/2018 10:38:36

Page 1

1   set more off
2   
3   version 15
4   
5   cd "H:\_PhD\6_Reference-based\Stata\CEmimix"
6   
7   capture: log close
8   local t = substr("$S_TIME",1,2)
9   log using "..\log\ce_mimix_`c(current_date)'_`t'.log", replace
10   
11   
12   *************************************************************
13   *** REFERENCE-BASED IMPUTATION OF COST-EFFECTIVENESS DATA ***
14   ************************************************************
15   
16   ********************************************************************
17   //Program to conduct reference-based multiple imputation with cost-effectiveness data
18   //See acommpanying instructions on using the do file
19   
20   * Version: 
21   * Author: BL, based on mimix program originally developed by Cro et al. (Stata J. 2016 16(2):443–463)
22   * Date: 01 October 2018
23   * Stata version 15
24   
25   ** CONTENT: 
26   * I  -  SET-UP
27   * II -  DEFINE ROUTINES 
28   * III - PREPARE DATA FOR IMPUTATION
29   * IV -  RUN MVN 
30   * V  -  MNAR IMPUTATION, FOR EACH ARM AND PATTERN 
31   * VI -  SAVE AS MI DATASET
32   
33   ********************************************************************
34   
35   
36   
37   ***********************
38   ***  I - SET-UP     ***
39   ***********************
40   //Define here program parameters (dataset,varaible names, imputation method, etc.)
41   //Please refer to the do-file instructions
42   
43   macro drop _all
44   
45   
46   ** Parameters **
47   
48   global m = 2 //Number of imputations
49   
50   global emethod J2R //MAR J2R CIR LMCF BMCF
51   global cmethod MAR //MAR J2R CIR LMCF BMCF 
52   global interimMAR effect cost // effect, cost, or leave blank 
53   
54   global restrictto //Restrict MNAR imputation to a specific subgroup (e.g. arm==1). Leave blank otherwise. 
55   
56   global seed //Specify seed for reproducibility. Leave blank for random seed
57   
58   *Set-up for COBALT dataset:
59   global data ..\COBALT\COBALT_short.dta
60   global effectv eq5d0 eq5d6 eq5d12
61   global costv tcost
62   global covariates age sex
63   global idv ptidno
64   global treatv arm
65   global refgroup 0
66   global saving "data/COBALT_imputed.dta"
67   
68   
69   
70   ** Check parameters
71   //Basic error checks
72   
73   if !inlist("$emethod","MAR","J2R","CIR","LMCF","BMCF") | !inlist("$cmethod","MAR","J2R","CIR","LMCF","BMCF") {
74   display as error "Please specify imputation method for effect and cost: MAR J2R CIR LMCF or BMCF"
75   exit
76   }
77   if inlist("$emethod","J2R","CIR","LMCF","BMCF") & inlist("$cmethod","J2R","CIR","LMCF","BMCF") & "$emethod"!=

"$cmethod" {
78   display as error "Different MNAR mechanisms for effect and costs not allowed"
79   exit
80   }
81   if !strpos("$interimMAR", "effect") & !strpos("$interimMAR", "cost") & "$interimMAR"!="" {
82   display as error " 'interimMAR' should be 'effect', 'cost', or nothing"
83   exit
84   }
85   if (inlist("$emethod","J2R","CIR") | inlist("$cmethod","J2R","CIR")) & "$refgroup"=="" {
86   display as error "Please specify reference group for CIR or J2R"
87   exit
88   }
89   if "$idv"=="" | "$treatv"=="" {
90   display as error "Please specify treatment arm and patient identifier variables"
91   exit
92   }
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93   
94   
95   
96   *********************************
97   ***  II - DEFINE ROUTINES     ***
98   *********************************
99   //Define Mata functions used in imputation step
100   
101   mata: mata clear
102   
103   ** Mata functions to manipulate list of variables 
104   mata
105   // Common : Returns common elements between 2 vectors
106   real vector common(real vector V1, real vector V2)
107   {
108   st_local("v1",invtokens(strofreal(V1)))
109   st_local("v2",invtokens(strofreal(V2)))
110   stata("local l2: list v1 & v2")
111   res=strtoreal(tokens(st_local("l2")))
112   return(res)
113   }
114   // Join: Returns elements in either of 2 vectors
115   real vector join(real vector V1, real vector V2)
116   {
117   st_local("v1",invtokens(strofreal(V1)))
118   st_local("v2",invtokens(strofreal(V2)))
119   stata("local l2: list v1 | v2")
120   res=sort(strtoreal(tokens(st_local("l2")))',1)'
121   return(res)
122   }
123   // Exclude: Returns elements of V1, not contained in V2.
124   real vector exclude(real vector V1, real vector V2)
125   {
126   st_local("v1",invtokens(strofreal(V1)))
127   st_local("v2",invtokens(strofreal(V2)))
128   stata("local l2: list v1 - v2")
129   res=sort(strtoreal(tokens(st_local("l2")))',1)'
130   return(res)
131   }
132   end
133   
134   ** Mata function to build conditional covariance matrix 
135   //Used for J2R and CIR imputation
136   //Build joint covariance matrix, so that MNAR-missing variables follow distribution from reference arm, 

conditionally on observed or MAR-missing variables.
137   //Parameters = covariance matrix in active arm; covariance in reference arm; indicator of observed or MAR 

variables; indicator of MNAR-missing varibales.
138   //See technical details in Appendix
139   mata
140   real matrix condcov(real matrix SigmaA, real matrix SigmaR, real vector vobsmar, real vector vmnar)
141   {
142   A11 = SigmaA[vobsmar,vobsmar] //Decompose var/covar in active and reference arm
143   R11 = SigmaR[vobsmar,vobsmar]
144   R12 = SigmaR[vobsmar,vmnar]
145   R22 = SigmaR[vmnar,vmnar]
146   J11=A11 //Solve contraints (see Appendix)
147   J12=A11*invsym(R11)*R12
148   J22=R22-(R12)'*invsym(R11)*(R11-A11)*invsym(R11)*R12
149   J = J(cols(SigmaA),cols(SigmaA),.) //Build joint covariance matrix
150   J[vobsmar,vobsmar]=J11
151   J[vobsmar,vmnar]=J12
152   J[vmnar,vobsmar]=J12'
153   J[vmnar,vmnar]=J22
154   return(J)
155   }
156   end
157   
158   
159   
160   ********************************************
161   *** III - PREPARE DATA FOR IMPUTATION    ***
162   ********************************************
163   
164   *** Open original dataset
165   use "$data" , clear
166   describe
167   list in 1/5, noobs
168   
169   *** Prepare macros and variables for program
170   
171   **Global macros
172   *Seed
173   capture: set seed $seed
174   //Affect random draws in MVN, and imputation steps. Will obtain same draws with same sorted data (and do 

file)
175   *Outcomes list
176   global responses $effectv $costv
177   *Number of variables
178   global nresp: word count $responses
179   global ncov: word count $covariates
180   global nvar = $nresp + $ncov //"nct" in mimix
181   *Number of treatment group
182   tab $treatv
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183   global ntreat = r(r)
184   *First effectiveness and cost variable
185   //Note: in mata, variables order always $effectv $costv $covariates
186   global v1effect=1
187   local neff: word count $effectv
188   global v1cost= `neff' + 1 // Cost var = first after effectiveness vars.
189   *Interim-MAR option
190   if strpos("$interimMAR", "effect") global eintmeth iMAR
191   else global eintmeth $emethod
192   if strpos("$interimMAR", "cost") global cintmeth iMAR
193   else global cintmeth $cmethod
194   *Check
195   macro list
196   
197   ** New variables
198   *Treatment arm variable
199   egen m_treat=group($treatv) //Recoding = 1,2,..
200   tab m_treat
201   *New reference-group code
202   if "$refgroup"!="" sum m_treat if $treatv==$refgroup
203   global m_refer=r(max)
204   display "New reference arm code = $m_refer"
205   *Observation ID
206   if substr("`:type $idv'",1,3)=="str" encode($idv), generate(m_id)
207   else gen m_id = $idv
208   duplicates report m_id
209   *Missing data pattern
210   qui: generate m_pattern = 0
211   local i=0
212   foreach var of varlist $responses {
213   local k2 = 2^(`i++') //Will assign a unique number by pattern, for any number of variables.
214   qui: replace m_pattern = m_pattern + `k2' if `var'== .
215   }
216   tab m_pattern m_treat ,m
217   *MNAR subgroup
218   //Use specified method by default, except if not part of "restcitto" ...
219   gen m_allmar=0
220   if "$restrictto"!="" replace m_allmar= !($restrictto) //AllMAR=1 only if observation not in "restrictto" 

subgroup.
221   qui: count if m_allmar==0
222   if "$restrictto"!="" display "MNAR imputation restricted to `r(N)' observations out of " _N
223   if `r(N)'==0 display as error "No observations MNAR-imputed - Check 'restrictto' option"
224   
225   *** Sort and save
226   *Save dataset
227   //Original dataset + system variables. Will be used to merge with imputed data at the end
228   sort m_id
229   compress
230   save "originalext.dta", replace
231   
232   *Save reduced version for imputation
233   keep m_id m_treat $responses $covariates m_pattern m_allmar
234   order m_id m_treat $responses $covariates m_pattern m_allmar
235   sort m_treat m_pattern m_allmar m_id //Sort by treat arm, missing data pattern, then PID.
236   compress
237   save "m_d2.dta", replace
238   
239   
240   *************************
241   ***  IV -  RUN MVN    ***
242   *************************
243   // Fit a multivariate normal model to the observed data, for each arm
244   // Then draw mean/covariance parameters from their posterior distribution
245   
246   
247   ** Set-up MCMC burn-in parameters
248   local burnin = 100 //Number of iterations for the initial burn-in period 
249   local burnbetween 100 //Number of iterations between imputation 
250   local burninM = `burnin' + (($m-1)*`burnbetween') //Total number of iterations
251   
252   *** Run MVN for each treament arm, and save parameters
253   forvalues i = 1/$ntreat {
254   **Set-up
255   use "m_d2.dta" if m_treat == `i', clear
256   mi set wide //Wide faster, can set to mlong if size error
257   qui: mi register imputed $responses $covariates
258   
259   **MVN
260   display as text "Performing imputation procedure for arm " as result "`i'" as text " of " as result

"$ntreat" as text "..."
261   mi impute mvn $responses $covariates , mcmconly burnin(`burninM') prior(jeffreys) initmcmc(em, iter(1000))

saveptrace(mimix_parms_a`i', replace)
262   //Note: Used only to fit MVN model and save trace, not doing imputation.
263   
264   **Save parameters
265   //Using values from the MCMC trace. Saving every 'burnbetween' iteration is like doing random draws from 

from posterior distribution of the parameters
266   
267   *Open trace
268   mi ptrace describe mimix_parms_a`i'
269   mi ptrace use mimix_parms_a`i', clear
270   
271   *Save every 100 iterations:
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272   local burn = `burnin' - 1
273   drop in 1/`burn'
274   keep if !mod(_n-1,`burnbetween')
275   generate m_treat = `i'
276   drop m iter
277   capture mata: mata drop mimix_all
278   mata: mimix_all= st_data( ., .) //Copy dataset (all params, m_treat) into mimix_all
279   *Save mean and covariance in matrices, for each m:
280   forvalues k=1/$m {
281   display _n " Draw for group `i', imputation `k' "
282   *Save mean matrice:
283   mata: mean_group`i'_imp`k' = mimix_all[`k',1..$nvar]
284   *mata: mean_group`i'_imp`k'  
285   *Save covariance matrices:
286   mata: mata_VAR_group`i'_imp`k'=J($nvar,$nvar,0)
287   local step = $nvar+ 1
288   forvalues r = 1/$nvar {
289   forvalues j = 1/$nvar{
290   if `j' <= `r' {
291   mata: mata_VAR_group`i'_imp`k'[`r', `j'] = mimix_all[`k', `step']
292   local step = `step' + 1
293   }
294   }
295   }
296   mata: mata_VAR_group`i'_imp`k' = makesymmetric(mata_VAR_group`i'_imp`k')
297   *mata: mata_VAR_group`i'_imp`k' 
298   } //End of saving mean and cov matrices
299   
300   } //End of MVN loop.
301   
302   
303   
304   *****************************************************************
305   ***  MNAR IMPUTATION, FOR EACH ARM AND MISSIGN DATA PATTERN   ***
306   *****************************************************************
307   
308   **** Set up 
309   
310   ** Describe data
311   use "m_d2.dta", clear
312   describe
313   tab m_pattern m_treat,m
314   
315   ** Save characteristics of each arm+pattern group
316   
317   *First and last observation
318   gen n=_n
319   bysort m_treat m_pattern m_allmar: gen nfirst=n[1]
320   bysort m_treat m_pattern m_allmar: gen nlast=n[_N]
321   *Number of missing var
322   egen nmiss=rowmiss($responses $covariates)
323   *Contract
324   contract m_treat m_pattern m_allmar nfirst nlast nmiss
325   rename _freq ncount
326   gen groupID=_n
327   *Order var and save in a matrix
328   mkmat m_treat m_pattern m_allmar ncount nfirst nlast nmiss groupID , mat(m_group)
329   matrix list m_group
330   *Save number of combinations/groups
331   global max_indicator=_N
332   
333   ** Indicator of effect/cost/MAR/MNAR variables
334   mata: mata_responses=J(1,0,.)
335   mata: mata_eff=J(1,0,.)
336   mata: mata_cost=J(1,0,.)
337   mata: mata_meth_mar=J(1,0,.)
338   mata: mata_meth_mnar=J(1,0,.)
339   local j=0
340   foreach var in $responses $covariates { //Note: Variables identified by their position, use always same 

order
341   local j=`j'+1
342   if strpos("$responses","`var'") mata: mata_responses=(mata_responses,`j')
343   if strpos("$effectv","`var'") mata: mata_eff=(mata_eff,`j')
344   if strpos("$costv","`var'") mata: mata_cost=(mata_cost,`j')
345   if strpos("$effectv","`var'")*("$emethod"=="MAR") | strpos("$costv","`var'")*("$cmethod"=="MAR") {
346   mata: mata_meth_mar=(mata_meth_mar,`j')
347   }
348   if strpos("$effectv","`var'")*("$emethod"!="MAR") | strpos("$costv","`var'")*("$cmethod"!="MAR") {
349   mata: mata_meth_mnar=(mata_meth_mnar,`j')
350   }
351   }
352   
353   
354   ** Empty matrix to save imputed data
355   global new_varlist m_treat m $responses $covariates m_id //List of variables to be saved after each 

mata-imputation (used when converting back to Stata)
356   mata: mata_all_new=J(0,$nvar+3,.) // Size= nvar+3(treat,m,ID)
357   
358   
359   **** Begining of "for each imputation group" loop
360   //Split data in imputation groups ( = arm + missing data pattern).
361   //For each group do:  1) Build joint distribution from MAR parameters 2) Draw missing values from that 

distribution 3) Redo 1-2 M times. 
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362   //Note: large loop, encompasses "foreach imputation" loop, see below.
363   
364   forvalues i= 1/$max_indicator { //For each imputation group
365   *local i=11 //COBALT 10: last qol and cost missing, in active arm. 11: 2 qol + cost missing. 9 = interim + 

cost missing
366   
367   display _n "--- Imputation for group `i' of $max_indicator ---"
368   
369   ** Set up 
370   //Group charateristics, before going into "for each m" loop.
371   
372   *Save group characteristics
373   matrix list m_group
374   local trt_grp= m_group[`i',1]
375   local pattern = m_group[`i',2]
376   local allmar= m_group[`i',3]
377   local ncount= m_group[`i',4]
378   local nfirst= m_group[`i',5]
379   local nlast= m_group[`i',6]
380   local miss_count= m_group[`i',7]
381   local refer = $m_refer //Note: reference arm currently same for everyone, but allow to change if needed.
382   
383   *Indicator of complete/missing var
384   qui: use m_d2.dta, clear
385   mata: mata_miss = J(1,0,.)
386   mata: mata_nonmiss = J(1,0,.)
387   local j=0
388   foreach var of varlist $responses $covariates {
389   local j=`j'+1
390   if (`var'[`nfirst']>=.) mata: mata_miss=(mata_miss,`j')
391   else mata: mata_nonmiss=(mata_nonmiss,`j')
392   }
393   
394   *Indicator of interim-MAR missing
395   *Last observed cost/effect:
396   mata: st_numscalar("lastobse",rowmax((common(mata_eff,mata_nonmiss),0))) //Adding a 0 so is "0" if 

empty matrix.
397   mata: st_numscalar("lastobsc",rowmax((common(mata_cost,mata_nonmiss),0))) //Adding a 0 so is "0" if 

empty matrix.
398   *Testing whether interim (+MAR option specified), for each missing variable:
399   mata: st_local("misslist",invtokens(strofreal(mata_miss)))
400   mata: mata_int_mar = J(1,0,.)
401   foreach v of local misslist {
402   if (`v'>=$v1effect & `v'<lastobse & "$eintmeth"=="iMAR" ) | (`v'>=$v1cost & `v'<lastobsc &

"$cintmeth"=="iMAR"){
403   mata: mata_int_mar=(mata_int_mar,`v')
404   }
405   }
406   *Check
407   mata: mata_int_mar
408   
409   *Indicator of forced-MAR variables
410   //If "restricto" specified, impute all var under MAR for observations not in that subgroup.
411   if `allmar'==1 mata: mata_allmar=mata_responses
412   else mata: mata_allmar=J(1,0,.)
413   
414   *Identify MAR-missing variables
415   //Will be MAR if either i)Main imputation-method=MAR or ii) is interim-MAR or iii) participant not in 

"restrictto" subgroup
416   //Note: use mata "common" and "join" functions defined above
417   mata: mata_mar2=join(mata_meth_mar,join(mata_int_mar,mata_allmar))
418   mata: mata_marmiss=common(mata_mar2,mata_miss) // MAR and actually missing. Will be those MAR-imputed for 

that pattern.
419   
420   *Identify MNAR-missing variables
421   // Main-method-MNAR, except for interim-MAR missing or if participant not in "restrictto" subgroup.
422   mata: mata_mnar2=exclude(mata_meth_mnar,join(mata_int_mar,mata_allmar)) // Main-method-MNAR, except for 

interim-MAR missing or "allmar"
423   mata: mata_mnarmiss=common(mata_mnar2,mata_miss) // MNAR and actually missing. Will be those MNAR-imputed 

for that pattern.
424   
425   *Indicator of any MNAR missing variables:
426   mata: st_local("n_mnar_miss",strofreal(cols(mata_mnarmiss)))
427   
428   *Check all indicators:
429   display as txt _n "Variables imputation status for group `i' (var numbered as: effect,cost,covariates)"
430   display as txt "Observed:"
431   mata: mata_nonmiss
432   display as txt "MAR-missing:"
433   mata: mata_marmiss
434   display as txt "MNAR-missing:"
435   mata: mata_mnarmiss
436   
437   *Save observed data 
438   //Save responses,covariates,ID in a mata matrix
439   qui: use m_d2.dta, clear
440   qui: keep in `nfirst'/`nlast'
441   keep $responses $covariates m_id
442   order $responses $covariates m_id
443   mata: mata_obs= st_data( . , .)
444   
445   
446   *** Begining "for each imputation" loop
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447   
448   forvalues imp = 1/$m {
449   display "." _cont
450   
451   ** If no missing data, copy data directly
452   if `miss_count' == 0 {
453   if `imp'==1 dis "No missing"
454   *Copy observed data
455   mata: mata_new = (J(`ncount',1,`trt_grp'), J(`ncount',1, `imp'), mata_obs) //Dataset with Arm + 

imp_number + observed data
456   *Append to existing
457   mata: mata_all_new = (mata_all_new \ mata_new)
458   }
459   
460   ** If missing data, build the joint distribution (mean vector, and covariance matrix)
461   else {
462   *All MAR
463   if `n_mnar_miss'==0 { // No MNAR missing
464   if `imp'==1 dis "Imputation (Method = MAR)"
465   mata: mata_Meansv=mean_group`trt_grp'_imp`imp'
466   mata: Sigma = mata_VAR_group`trt_grp'_imp`imp'
467   }
468   *J2R
469   if (`n_mnar_miss'>0) & ("$emethod" == "J2R" | "$cmethod" == "J2R") { //If any cost or effect is 

J2R.
470   if `imp'==1 dis "Imputation (Method = J2R)"
471   *Mean
472   mata: mata_Meansv=mean_group`trt_grp'_imp`imp'
473   mata: mata_Meansv[1,mata_mnarmiss]=mean_group`refer'_imp`imp'[1,mata_mnarmiss] //Replacing 

Mean from reference group for MNAR variables
474   *Covariance
475   mata: mata_nonmiss_marmiss=join(mata_nonmiss,mata_marmiss) //Observed or MAR-missing variables.
476   mata: Sigma=condcov(mata_VAR_group`trt_grp'_imp`imp', mata_VAR_group`refer'_imp`imp',

mata_nonmiss_marmiss,mata_mnarmiss)
477   }
478   *CIR
479   if (`n_mnar_miss'>0) & ("$emethod" == "CIR" | "$cmethod" == "CIR") { //If any cost or effect is CIR
480   if `imp'==1 dis "Imputation (Method = CIR)"
481   **Mean
482   mata: mata_Meansv=mean_group`trt_grp'_imp`imp'
483   mata: MeansC=mean_group`refer'_imp`imp'
484   *Effect
485   mata: mata_mnarmiss_e=common(mata_mnarmiss,mata_eff) // Effectiveness var MNAR-missing
486   mata: st_local("vlist",invtokens(strofreal(mata_mnarmiss_e)))
487   foreach v of local vlist {
488   if `v'==$v1effect mata: mata_Meansv[1,`v'] = MeansC[1,`v'] //If first var missing, copy 

from reference arm
489   else mata: mata_Meansv[1,`v'] = mata_Meansv[1,`v'-1] + (MeansC[1,`v']-MeansC[1,`v'-1])

//Previous mean (in current arm) + increment in mean in refer group
490   }
491   *Cost
492   mata: mata_mnarmiss_c=common(mata_mnarmiss,mata_cost)
493   mata: st_local("vlist",invtokens(strofreal(mata_mnarmiss_c)))
494   foreach v of local vlist {
495   if `v'==$v1cost mata: mata_Meansv[1,`v'] = MeansC[1,`v'] //If first var missing, copy 

from reference arm
496   else mata: mata_Meansv[1,`v'] = mata_Meansv[1,`v'-1] + (MeansC[1,`v']-MeansC[1,`v'-1])

//Previous mean (in current arm) + increment in mean in refer group.
497   }
498   **Covariance
499   mata: mata_nonmiss_marmiss=join(mata_nonmiss,mata_marmiss) //Observed or MAR-missing 

variables.
500   mata: Sigma=condcov(mata_VAR_group`trt_grp'_imp`imp', mata_VAR_group`refer'_imp`imp',

mata_nonmiss_marmiss,mata_mnarmiss)
501   }
502   *LMCF
503   if (`n_mnar_miss'>0) & ("$emethod" == "LMCF" | "$cmethod" == "LMCF") { //Either effect or cost is 

LMCF
504   if `imp'==1 dis "Imputation (Method = LMCF)"
505   *Mean
506   mata: mata_Meansv=mean_group`trt_grp'_imp`imp'
507   *Effect
508   mata: mata_mnarmiss_e=common(mata_mnarmiss,mata_eff) // Effectiveness variables MNAR-missing
509   mata: st_local("vlist",invtokens(strofreal(mata_mnarmiss_e)))
510   foreach v of local vlist {
511   if `v'>$v1effect { //Note: if first var missing, use the mean
512   mata: mata_Meansv[1,`v'] = mata_Meansv[1,`v'-1] // Copying previous mean
513   }
514   }
515   *Cost
516   mata: mata_mnarmiss_c=common(mata_mnarmiss,mata_cost)
517   mata: st_local("vlist",invtokens(strofreal(mata_mnarmiss_c)))
518   foreach v of local vlist {
519   if `v'>$v1cost {
520   mata: mata_Meansv[1,`v'] = mata_Meansv[1,`v'-1]
521   }
522   }
523   *Covariance
524   mata: Sigma = mata_VAR_group`trt_grp'_imp`imp' //Using MAR covariance from that arm
525   }
526   *BMCF
527   if (`n_mnar_miss'>0) & ("$emethod" == "BMCF" | "$cmethod" == "BMCF") { //Either effect or cost is 

BMCF
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528   if `imp'==1 dis "Imputation (Method = BMCF)"
529   *Mean
530   mata: mata_Meansv=mean_group`trt_grp'_imp`imp'
531   *Effect
532   mata: mata_mnarmiss_e=common(mata_mnarmiss,mata_eff) // Effectiveness variables MNAR-missing
533   mata: st_local("vlist",invtokens(strofreal(mata_mnarmiss_e)))
534   foreach v of local vlist {
535   mata: mata_Meansv[1,`v'] = mata_Meansv[1,$v1effect] // Copying mean of first variable
536   }
537   *Cost
538   mata: mata_mnarmiss_c=common(mata_mnarmiss,mata_cost)
539   mata: st_local("vlist",invtokens(strofreal(mata_mnarmiss_c)))
540   foreach v of local vlist {
541   mata: mata_Meansv[1,`v'] = mata_Meansv[1,$v1cost ]
542   }
543   *Covariance
544   mata: Sigma = mata_VAR_group`trt_grp'_imp`imp' //Using MAR covariance from that arm
545   }
546   
547   **Check joint distribution
548   *mata: mata_Meansv
549   *mata: Sigma
550   
551   ** Perform imputation
552   * Expand mean vector to n observations
553   mata: mata_Means=J(`ncount', 1, mata_Meansv)
554   * Decompose the covariance matrix observed/missing
555   mata: S11 = Sigma[mata_nonmiss, mata_nonmiss] //Covariance observed var.
556   mata: S12 = Sigma[mata_nonmiss, mata_miss] //Covariance for observed(row)Xmissing(col) var 
557   mata: S22 = Sigma[mata_miss, mata_miss] //Covariances missing var
558   *Draw missing values conditionally on observed
559   mata: m1=mata_Means[., mata_nonmiss] //Mean param for all observed var (n times)
560   mata: m2=mata_Means[., mata_miss] //Mean param for all missing var (n times)
561   mata: raw1=mata_obs[., mata_nonmiss] //Observed values matrix.
562   mata: meanval = m2 + (raw1 - m1)*invsym(S11)*S12 //Expectation given observed values.
563   mata:conds=S22-S12'*invsym(S11)*S12
564   mata: U = cholesky(conds)
565   mata: Z = invnormal(uniform(`ncount',`miss_count')) //Drawn n*nmiss standard normal
566   mata: mata_y1 = meanval + Z*U'  //Draw n X nmiss following N((cond mean),Covar). = Imputed values.
567   *Merge all variables
568   mata: mata_new =J(`ncount',$nvar,.) //Empty mat n*nvar
569   mata: mata_new[.,mata_nonmiss] = mata_obs[.,mata_nonmiss] //Add observed val
570   mata: mata_new[.,mata_miss] = mata_y1[.,.] //Add imputed val
571   mata: GI=J(`ncount',1,`trt_grp') //Treatment group
572   mata: II=J(`ncount',1,`imp') //Imputation number
573   mata: ID = mata_obs[.,cols(mata_obs)] //Last column of mata_obs = ID
574   mata: mata_new=(GI, II, mata_new, ID)
575   *Append to existing data
576   mata: mata_all_new = (mata_all_new \ mata_new)
577   
578   } //End of "if missing" loop.
579   
580   } //End of "for m" loop
581   
582   } //End of "for each group" loop
583   
584   
585   *** Check data
586   clear
587   getmata($new_varlist)=mata_all_new
588   describe
589   list in 1/5, header noobs
590   count
591   dis _N/$m //Check: number of obs in original dataset?
592   
593   
594   
595   *********************************
596   ***** SAVE AS MI DATASET  ****
597   *********************************
598   
599   *Prepare imputed data
600   clear
601   getmata($new_varlist)=mata_all_new //Convert mata "all_new" to Stata
602   keep $responses m m_id //Other var will be in original dataset, no need to keep them here.
603   sort m_id m
604   tempfile imputedv
605   save `imputedv', replace
606   
607   *Add other variables from original dataset
608   use originalext.dta, clear
609   count
610   sort m_id
611   merge 1:m m_id using `imputedv', nogen update
612   count //OK, N*$m
613   
614   *Add _m=0 (=observed data)
615   append using originalext.dta
616   replace m=0 if m==.
617   
618   *Convert to MI format
619   mi import flong , m(m) id($idv) clear
620   mi register imputed $responses $covariates
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621   mi describe
622   list in 1/5
623   
624   *Clean and save
625   describe
626   drop m_treat-m //Drop programming var
627   sort $idv _mi_m
628   list in 1/10, sepby($idv)
629   compress
630   label data "Reference-based imputed ($emethod-$cmethod) - `c(current_date)'"
631   save "$saving", replace
632   //! Will overwrite dataset if already exist.
633   
634   ** Delete temporary datasets
635   //Temporary datasets created for the program
636   erase originalext.dta
637   erase m_d2.dta
638   forvalues i = 1/$ntreat {
639   erase mimix_parms_a`i'.stptrace
640   }
641   
642   
643   
644   
645   ***** END *****
646   capture: log close
647   
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Using CEmimix.do 
 
 
 

I) Stata version 
 
The do-file needs Stata software1 to run. It was developed with Stata version 15, and should work 
with subsequent versions (type “version 15” at beginning of execution). It may work with other 
recent versions but not earlier than 11, when mi impute was implemented.  
 
  

II) Data input format 
 
The input dataset needs to be store in Stata ‘wide’ format. That is, with a single record per 
participant. The effectiveness and cost data should be stored as separate variables for each time-
point.  It also needs to include a treatment arm and patient identifier variable. 
 
 

III) Set up 
 
The user will need to define the following global macros at the beginning of the do-file: 
 
Required information: 
 
m: The number of imputation 
 
emethod:  Imputation method for the effectiveness variable. Should be one of MAR, J2R, CIR, LMCF, 
or BMCF  
 
cmethod:   Imputation method for the cost variable. Should be one of MAR, J2R, CIR, LMCF, or 
BMCF  
 
data:   Name of dataset to be imputed.  Can use path if dataset is not in working directory.  E.g.  
“Data\mydata.dta”    
 
effectv:  Effectiveness variable(s), in chronological order2.  E.g. eq5d0 eq5d6 eq5d12  
 
costv:  Cost variable(s), in chronological order.  E.g. tcost0 tcost6 tcost12 
 
idv :  Unique patient identifier variable. Can be either numerical or string.  
 
treatv :  Trial treatment arm variable. Need to be numerical. Multiple arms are allowed. 
 
 
Optional: 
 

                                                           
1 StataCorp. 2017. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC 
2 The temporal order of the variables is used for CIR, LMCF, BMCF, and for defining interim-missing. For BMCF, 
the first variable need to be the baseline measurement. 



refgroup :  Reference group number (as coded in treatv). Need to be defined for J2R and CIR, can be 
left blank otherwise. 
 
interimMAR:  Whether interim-missing data should be imputed under MAR. Can be cost and/or 
effect. If not specified, uses the imputation method specified above. 
 
covariates:  Additional variables used in the imputation model. Covariates need to be complete3 and 
numerical. Categorical variables need to be split in dummy (binary) variables.  
 
seed:  Specifies the seed for the random number generator. If a seed is specified (and data are 
sorted in same order), the program will return the same results on separate runs. If nothing is 
specified, a random seed is used and different runs will result in a different set of imputed data. 
 
restrictto:   Specify a subgroup on which to restrict the reference-based imputation. Other 
individuals are imputed under MAR. For example, could restrict MNAR assumption to a single arm or 
to participants who dropped-out for a specific reason. E.g. (arm==1 & 
reason==”withdraw”). 
 
using:   Specify file name to save imputed dataset. Note that it will overwrite file with same name if 
already exist.  
 
 
This do-file was primarily designed to be run on its’ own once these macros have been defined. If 
needed, the remaining of the do-file can be modified to accommodate particular situations (e.g. 
other outcome types) but this is not covered here. 
 
 

IV) Output 
 
On completion, CEmimix returns a multiply-imputed dataset corresponding to the options specified. 
If ‘saving’ was specified, the dataset is also saved in corresponding folder. This dataset is in Stata mi 
flong format, and can be analysed with the mi: family of commands. Note that CEmimix only 
returns a dataset and does not conduct any analysis. An example of analysis can be seen below. 
 
 

V) Example  
 
Here is an example of CEmimix set up for CoBalT study, under J2R assumptions for effectiveness and 
MAR for costs.  Interim missing are assumed MAR, and 100 imputations are performed. 
 

global m  100           //Number of imputations  
 global emethod  J2R     //MAR J2R CIR LMCF BMCF 
 global cmethod  MAR     //MAR J2R CIR LMCF BMCF  
  

global data  COBALT.dta  
 global effectv  eq5d0 eq5d6 eq5d12  
 global costv  tcost 
 global covariates  age sex  
 global idv  ptidno 
 global treatv  arm 
 global refgroup  0 

                                                           
3 If a baseline covariate is not fully observed, it could be mean-imputed beforehand (White & Thompson, 
Statistics in medicine, 24(7), pp.993-1007)  



 
 global interimMAR  effect cost  // effect, cost, or leave blank  
 global restrictto    //Restrict MNAR imputation to a specific subgroup 
 global seed //Specify seed for reproducibility. Leave blank for random seed 
 global saving  COBALT_imputed_J2R.dta 

  
 
And an example of analysis of the resulting dataset: 
 
use COBALT_imputed_J2R.dta, clear 
*Calculate imputed QALYs 

mi passive: gen qaly=0.5*(eq5d0+eq5d6)/2 +0.5*(eq5d6+eq5d12)/2  
*Incremental QALYs and costs  
 mi estimate: regress qaly arm    
 local incq=el(r(table),1,1) 
 mi estimate: regress tcost arm  
 local incc=el(r(table),1,1)  
*ICER 
 display "ICER = " `incc'/`incq'    
*Probability cost effective  
 gen inb20=qaly*20000-tcost  
 mi estimate: regress inb20 arm 
 local pce = normal(el(r(table),1,1)/el(r(table),2,1) )  
 display "Probability cost effective = " round(`pce'*100,0.1) "%"  
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