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Abstract 
 
Background: Global dietary recommendations for and cardiovascular effects of linoleic acid, 
the major dietary omega-6 fatty acid, and its major metabolite, arachidonic acid, remain 
controversial. To address this uncertainty and inform international recommendations, we 
evaluated how in vivo circulating and tissue levels of linoleic acid (LA) and arachidonic acid 
(AA) relate to incident cardiovascular disease (CVD) across multiple international studies. 
Methods: We performed harmonized, de novo, individual-level analyses in a global consortium 
of 30 prospective observational studies from 13 countries. Multivariable-adjusted associations of 
circulating and adipose tissue LA and AA biomarkers with incident total CVD and subtypes 
(coronary heart disease (CHD), ischemic stroke, cardiovascular mortality) were investigated 
according to a prespecified analytical plan. Levels of LA and AA, measured as % of total fatty 
acids, were evaluated linearly according to their interquintile range (i.e., the range between the 
mid-point of the first and fifth quintiles), and categorically by quintiles. Study-specific results 
were pooled using inverse-variance weighted meta-analysis. Heterogeneity was explored by age, 
sex, race, diabetes, statin use, aspirin use, omega-3 levels, and fatty acid desaturase 1 genotype 
(when available).  
Results: In 30 prospective studies with medians of follow-up ranging 2.5 to 31.9 years, 15,198 
incident cardiovascular events occurred among 68,659 participants. Higher levels of LA were 
significantly associated with lower risks of total CVD, cardiovascular mortality, and ischemic 
stroke, with hazard ratios per interquintile range of 0.93 (95% CI: 0.88-0.99), 0.78 (0.70-0.85), 
and 0.88 (0.79-0.98), respectively, and nonsignificantly with lower CHD risk (0.94; 0.88-1.00). 
Relationships were similar for LA evaluated across quintiles. AA levels were not associated with 
higher risk of cardiovascular outcomes; comparing extreme quintiles, higher levels were 
associated with lower risk of total CVD (0.92; 0.86-0.99). No consistent heterogeneity by 
population subgroups was identified in the observed relationships.  
Conclusions: In pooled global analyses, higher in vivo circulating and tissue levels of LA and 
possibly AA were associated with lower risk of major cardiovascular events. These results 
support a favorable role for LA in CVD prevention.  
 
Key Words: Linoleic acid; Arachidonic acid; Pooled analysis; Cardiovascular Disease; Diet and 
Nutrition; Epidemiology; Primary Prevention; Biomarkers   
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Clinical Perspective 

 

What is new?  

• We conducted the hitherto largest pooled individual-level analysis using circulating 

and adipose tissue levels of linoleic acid and arachidonic acid to examine the link 

between omega-6 fatty acids and cardiovascular outcomes in various populations. 

• Our approach increases statistical power and generalizability compared to individual 

studies; lowers the risk of publication bias and heterogeneity compared to meta-

analyses of existing literature; and allows evaluation of the associations in key 

population subgroups.  

• Strikingly, higher level of linoleic acid was associated with lower risks of total 

cardiovascular disease, ischemic stroke, and cardiovascular mortality, while 

arachidonic acid was not associated with cardiovascular risk. 

 

What are the clinical implications? 

• Our findings support potential benefits of the main dietary omega-6 fatty acid, i.e., 

linoleic acid, for cardiovascular disease prevention. 

• Furthermore, our results do not support any theorized cardiovascular harms of omega-

6 fatty acids. 

• Our findings provide evidence to help inform currently inconsistent global dietary 

recommendations on omega-6 consumption. 
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Introduction  

Recommendations for dietary consumption omega-6 (n-6) polyunsaturated fatty acids (PUFA) 

for cardiovascular disease (CVD) prevention remain controversial and inconsistent.1 For 

example, the American Heart Association and the Academy of Nutrition and Dietetics 

recommend 5-10%,1, 2 the United Nations Food and Agriculture Organization recommends 2.5-

9%,3 while the French national guidelines recommend 4%.4 Pooled evidence from clinical trials 

and cohort studies suggests a moderate benefit of consuming n-6 PUFA, predominantly linoleic 

acid (LA, 18:2n-6), for coronary heart disease (CHD) risk, whether replacing saturated fat or 

total carbohydrate.5-7 In contrast, recent secondary analyses of clinical trials of LA-rich corn oil 

(although not LA-rich soybean oil) conducted in the 1960s-1970s suggest a possible increased 

risk of overall and CHD mortality.8, 9 The interpretation of these latter trials is hampered by their 

short duration,8, 9 small numbers of events,8 substantial drop-out,9 and confounding by industrial 

trans-fats.8, 9 In addition, many of the other prior trials are limited by lack of blinding or 

randomization, and major dietary pattern shifts; and most are decades old, creating potentially 

low generalizability to contemporary diets and clinical settings. Cohort studies are limited by the 

common reliance on self-reported dietary habits, which can be influenced by memory errors and 

inaccurate nutrient databases. Thus, for many scientists, clinicians, and policy makers, the role of 

LA in CVD risk remains uncertain. 

 In addition, concerns have been raised that n-6 PUFA could actually increase CVD risk, 

due to potential pro-inflammatory effects.9, 10 LA is a precursor of the n-6 PUFA arachidonic 

acid (AA, 20:4n-6), which gives rise to a range of eicosanoids considered to be pro-inflammatory 

and pro-thrombotic.10, 11Yet, stable isotope studies suggest very limited conversion of LA to AA 

in humans,12 and trials show limited effects of increasing dietary LA on plasma and adipose 
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tissue AA levels.12-14 These findings indicate the importance of directly evaluating AA levels 

instead of inferring them from LA levels or intakes in relation to CVD risk. As LA cannot be 

produced endogenously (making tissue levels reasonable markers of intake), biomarker 

(circulating and adipose tissue) levels correlate with dietary consumption.15, 16 Such objective 

biomarkers allow evaluation of dietary exposure of LA status independent of self-reported food 

habits and estimated nutrient composition of different foods. Circulating and adipose biomarkers 

also allow direct evaluation of AA, which is highly metabolically regulated and for which dietary 

estimates correlate poorly with in vivo levels.  

 Yet, the relations between in vivo levels of LA and AA and CHD risk have been 

evaluated in relatively few studies, with different study designs, outcomes, exposures (e.g., lipid 

compartment), covariates, and statistical methodology. Results from meta-analyses of published 

studies using circulating or adipose tissue levels of n-6 PUFA have been contradictory.17, 18 

Furthermore, associations between in vivo n-6 PUFA levels and other CVD outcomes including 

stroke, total CVD, and CVD mortality have been studied less frequently19-23 and remain 

uncertain. 

 To address these major gaps in knowledge, we conducted a pooled analysis of 

harmonized, de novo, individual-level data across 30 cohort studies in the Fatty Acid and 

Outcome Research Consortium (FORCE) to evaluate associations of LA and AA levels with 

incident total CVD and subtypes (CHD, ischemic stroke, CVD mortality). 
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Methods 

Data Availability 

The institutional review board approvals and data sharing agreements for the participating 

cohorts allowed us to share cohort results. Individual participant data are owned by individual 

participating cohorts and are available to researchers consented from participating cohorts. For 

further queries or requests, please contact force@tufts.edu. Further details are available at the 

FORCE website: http://force.nutrition.tufts.edu/. 

Study setting and population: FORCE Consortium  

The study was conducted within FORCE (http://force.nutrition.tufts.edu), a consortium of studies 

with circulating or adipose tissue fatty acid biomarker measurements and ascertained chronic 

disease events.24 Studies were identified and invited to participate if assessing biomarker 

(circulating or adipose tissue) levels of LA and AA, and incident CVD (or subtypes thereof), 

based on previous FORCE projects,24, 25 expert contacts, and online searches. Studies with adult 

participants (≥18 y) free of CVD (myocardial infarction, angina, coronary revascularization, 

stroke) at the time of fatty acid sampling were invited. Retrospective case-control studies were 

included in a sensitivity analysis if fatty acids were assessed in adipose tissue, which have a long 

half-life of exposure.26 To minimize potential reverse causation, the main analysis included only 

prospective studies. Of 38 studies invited by September 2017, 31 participated (Table 1 and 

Supplemental Tables 1-2 in the online-only Data Supplement), while 7 were ineligible, declined 

to participate, or failed to respond (Supplemental Table 3 in the online-only Data Supplement). 

The study was approved by the institutional review boards of the participating cohorts. 
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Fatty acid measurements 

Studies measured fatty acids in differing compartments, including plasma phospholipids, 

erythrocytes, plasma, serum, cholesterol esters, and adipose tissue. All fatty acid levels were 

reported as percent of total fatty acids. Detailed information regarding fatty acid measurements 

in each study is provided in the Supplemental Material.  

Outcome assessment 

In each cohort, study participants were excluded if they were children (age <18 years) or had 

prevalent CVD at the time of fatty acid measurement. Among the remaining participants, we 

evaluated incident CVD (defined as incident CHD or stroke) and its subtypes including CHD 

(fatal or nonfatal myocardial infarction, CHD death, or sudden cardiac death), ischemic stroke 

(fatal or nonfatal ischemic stroke), and CVD mortality (the subset of fatal events from these 

causes). Studies that did not separately assess ischemic stroke used total stroke (n=5 studies). 

Detailed information on outcomes in each study is provided in the Supplemental Material. 

Covariates 

To minimize potential confounding, prespecified and harmonized covariates were utilized 

included age (years), sex (male/female), race (Caucasian/non-Caucasian, or study-specific), field 

center if applicable (categories), body-mass index (BMI, kg/m2), education (less than high school 

graduate, high school graduate, some college or vocational school, college graduate), smoking 

(current, former, never; if history not assessed, then current/not current), physical activity 

(quintiles of metabolic equivalents (METs)/ week), alcohol intake (none, 1-6 drinks/week, 1-2 

drinks/day, >2 drinks/day), prevalent diabetes mellitus (defined as treatment with oral 

antihyperglycemic agents, insulin, or fasting plasma glucose >126 mg/dL), treated hypertension 

(defined as hypertension drug use; or if unavailable, as diagnosed/history of hypertension), 
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treated hypercholesterolemia (defined as LDL-lowering drug use; if unavailable, as 

diagnosed/history of hypercholesterolemia), regular aspirin use (defined as ≥2 times/week), 

levels of α-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3), sum of trans 

isomers of oleic acid (trans18:1), and sum of trans isomers of LA (trans-18:2) (each expressed 

as % total FAs). If data did not allow such categorization, study-specific categories were used. 

Imputation was allowed for linear covariates if previously established in each cohort; missing 

indicator categories were utilized for missing covariate data in categories.  

Statistical analysis and pooling 

All participating studies followed a prespecified, harmonized analysis protocol with standardized 

exclusions, exposures, outcomes, covariates, and analytical methods. In each study, de novo 

analyses of individual data were performed according to the protocol. Cox and weighted Cox 

proportional hazards models were used to estimate hazard ratios in cohort and nested unmatched 

case-cohort studies, respectively, with follow-up from the date of blood or adipose tissue 

sampling to date of incident event, death, loss to follow-up, or end of follow-up. In matched 

nested case-control studies, conditional logistic regression was used to estimate odds-ratios for 

each outcome, considered to approximate hazard ratios. To assess potential nonlinear 

associations, each cohort also evaluated study-specific quintiles as indicator categories, with the 

lowest quintile as the reference. Studies assessing fatty acids in multiple compartments 

conducted separate analyses in each compartment. To investigate potential heterogeneity by 

other factors, associations in each study were also assessed in prespecified strata by age, sex, 

race, ALA and EPA levels, prevalent diabetes, drug-treated hypercholesterolemia, and regular 

aspirin use. Potential interactions by genotype were examined in the 14 studies with available 

data for rs174547 (single nucleotide polymorphism in the gene for fatty acid desaturase 1, a 
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major genetic determinant of circulating LA and AA).27 Interaction terms were constructed as a 

cross-product of LA or AA and rs174547 (as an additive effect: 0, 1, or 2 T-alleles) and included 

with the main effects in the models. Robust variance was used in all analyses.  

 Results from each study were provided to the lead author in standardized electronic forms 

and pooled using inverse-variance weighted meta-analysis. The results were pooled overall and 

within each specific type of fatty acid compartment including phospholipids (erythrocyte 

phospholipids or plasma phospholipids), total plasma, cholesterol esters, and adipose tissue. To 

allow comparison and pooling of results across different compartments, LA and AA 

concentrations were standardized to study-specific interquintile range defined as the range 

between the midpoint of the first and fifth quintiles (i.e., range between 10th and 90th 

percentiles).Potential semi-parametric associations were assessed by meta-regression with 

restricted cubic splines constructed from study-specific quintiles.28  

 Overall heterogeneity was assessed by the I2-statistic, with values of ~ 25%, 50%, and 

75%, considered to indicate low, medium, and high heterogeneity, respectively.29 Heterogeneity 

between prespecified subgroups was explored by meta-analyzing study-specific effect estimates 

from each stratum, with statistical differences between subgroups tested by meta-regression. 

Potential interactions by desaturase genotype were examined by meta-analyzing study-specific 

interaction terms. For each study, associations of n-6 PUFA with CVD per genotype at rs174547 

(i.e, CC, CT, or TT) were calculated from beta coefficients and the variance-covariance matrix of 

the main and interaction terms.24 The genotype-specific estimates were pooled using pooled 

using inverse-variance weighted meta-analysis. While subgroups were prespecified, all 

heterogeneity analyses were considered exploratory and Bonferroni-corrected for multiple 

comparisons (10 subgroups; corrected α=0.005).  
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 In sensitivity analyses, we evaluated compartment-specific associations using absolute 

percent of total fatty acids as the unit of exposure, instead of study-specific interquintile range. In 

other sensitivity analyses, we censored events at maximum 10 y of follow-up, to minimize bias 

by changes in fatty acid levels over time; used alternative blood compartments in the overall 

pooled analysis for studies having more than one measure; included one retrospective study; and 

excluded studies assessing only fatal outcomes. 

Meta-analyses were performed using Stata 13 (StataCorp, College Station, TX), with two-tailed 

α=0.05 for the primary analyses. 

 

Results  

The pooled analyses included 76,356 fatty acid measurements from 68,659 participants in 30 

prospective studies from 13 countries (Table 1). The studies included 18 cohort and 12 nested 

case-control or case-cohort studies. Most studies assessed fatty acids in blood compartments 

(plasma phospholipids, n=11 studies; erythrocyte phospholipids, total plasma, or cholesterol 

esters, n=7 studies each), while adipose tissue was less commonly used (n=3 studies).  One 

retrospective case-control study measuring adipose tissue biomarkers was included in a 

sensitivity analysis, but not in the primary analyses.  

 Across studies, mean age at baseline ranged from 49 to 77 years (Table 1 and 

Supplemental Table 4). Overall proportions of women and men were comparable, although some 

studies included one sex only (Table 1). Most participants were Caucasian, but several studies 

included sizable numbers of African Americans, Asians, and Hispanics (Supplemental Table 5). 

In most studies, up to 30% of the participants smoked, and alcohol intake was generally 

moderate (<1 drink/d). Education level, diabetes prevalence, and medication use varied across 
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studies. As would be expected, levels of fatty acids varied between different compartments 

(Figure 1 and Supplemental Tables 4 and 6). 

 Median study follow-up durations ranged from 2.5 to 31.9 years. Among the 30 

prospective studies, 10,477 total incident CVD events, 4,508 CVD deaths, 11,857 incident CHD 

events, and 3,705 incident ischemic strokes occurred (Supplemental Table 7).  

 Per interquintile range, higher LA levels were associated with 7% (95%CI: 1-12%), 22% 

(15-30%), and 12% (2-21%) lower incidence of total CVD, CVD mortality, and ischemic stroke, 

respectively (Figures 2-3, Table 2). LA levels were also nonsignificantly (P=0.065) associated 

with lower incidence of total CHD. Overall heterogeneity was moderate (I2=28-63%). 

Associations of LA with total CVD, total CHD, and CVD mortality varied by compartment (P-

interaction≤0.031), with generally less prominent inverse associations in studies utilizing 

phospholipids (Figures 2-3).  

 Compared to the lowest quintile, participants in the highest quintile of LA levels 

experienced lower risk of CVD mortality (HR=0.77; 95% CI, 0.69-0.86), with nonsignificant 

trends toward lower risk of total CVD (0.94; 0.87-1.01), CHD (0.92; 0.85-1.00), and ischemic 

stroke (0.90; 0.79-1.02) (Supplemental Table 8). There was no significant evidence of non-linear 

associations between LA and each outcome (P-nonlinearity>0.05 each). 

 AA levels evaluated linearly were not significantly associated with CVD events, with a 

hazard ratio of 0.95 (0.90-1.01) for total CVD (Table 2, Figures 4-5). When different lipid 

compartments were assessed, AA levels in total plasma, but not other compartments, were 

associated with lower risk of total CVD (HR=0.81 (0.70-0.94) (Table 2, Figure 4). Overall 

heterogeneity was low to moderate (I2≤54%). When AA levels were evaluated in quintiles 

(Supplemental Table 9), participants in the highest quintile, compared to the lowest, experienced 
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significantly lower incidence of total CVD (0.92; 0.86-0.99). There was evidence for a 

borderline nonlinear association (P-nonlinearity=0.039) between total plasma AA and ischemic 

stroke (Supplemental Figure 1).  

 Associations of LA and AA with CVD outcomes did not significantly differ according to 

subgroups defined by age, sex, race, n-3 PUFA levels, diabetes status, statin use, aspirin use, or 

baseline year of fatty acid measurement (Supplemental Table 10). In 14 studies with genotype 

data (Supplemental Table 11), a significant interaction (P-interaction=0.002) was observed 

between LA and rs174547 genotype in relation to risk of ischemic stroke (Supplemental Table 

12), with inverse associations appearing stronger in carriers of the major T-allele. The 

associations of AA with cardiovascular outcomes did not significantly vary by rs174547 

genotype. 

 In sensitivity analyses, results of compartment-specific analysis that utilized units of 

percent of total fatty acids, rather than study-specific interquintile ranges, were not appreciably 

different from the main findings (Supplemental Table 13). Results were also similar across all 

other sensitivity analyses (Supplemental Table 14).  

 

Discussion 

In this harmonized, individual-level pooled analysis across 30 prospective studies from 13 

countries, higher in vivo levels of the n-6 PUFA LA were associated with lower risk of CVD 

events, in particular CVD mortality and stroke. AA levels were not associated with higher risk, 

and were associated with lower CVD risk in some analyses. To our knowledge, this is the largest 

pooled analysis of fatty acid levels and CVD endpoints, including almost 70,000 individuals and 

10,000 total CVD events.  
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 Our findings provide evidence to help inform currently inconsistent global dietary 

recommendations on n-6 PUFA consumption. LA, an essential fatty acid not synthesized by 

humans, is the main dietary PUFA, comprising about 85-90% of the total. While circulating and 

adipose tissue LA levels can be influenced by metabolism,27, 30 they are established and useful 

markers of diet as they increase in a dose-response manner in response to dietary LA in 

controlled feeding trials15, 26, 30 and consistently correlate with self-reported dietary estimates in 

large cohort studies,26 including a considerable number of studies participating in the current 

analysis (Supplemental Table 15). Several lines of evidence support mechanisms by which 

dietary LA may reduce CVD. In randomized controlled feeding trials, dietary PUFA (primarily 

LA) as a replacement for either carbohydrates or saturated fat lowers low density lipoprotein 

(LDL)-cholesterol, triglycerides, and ApoB levels, and raises high density lipoprotein (HDL)-

cholesterol;14, 31 and also lowers hemoglobin A1c and insulin resistance and potentially augments 

insulin production.32 Other potential cardiometabolic benefits of dietary LA may include 

favorable effects on inflammation,14 blood pressure,33 and body composition, including 

prevention and reduction of visceral and liver fat.14, 34 In a pooled analyses of prospective cohort 

studies, self-reported estimates of LA consumption are associated with lower CHD risk.6 

Similarly, in meta-analyses of older, limited clinical trials, increased consumption of LA-rich 

vegetable oils, especially soybean oil, reduces the risk of CHD.5 Our findings evaluating in vivo 

levels of LA status across multiple global studies add strong support for cardiovascular benefits 

of LA.  

 While AA has long been considered an archetypical pro-inflammatory and pro-

thrombotic fatty acid, growing evidence suggests its effects may be more complex.35 In the 

present investigation, AA levels were not associated with higher risk of CVD, and indeed in 
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some analyses were associated with lower risk. These results do not provide support for adverse 

cardiovascular effects of AA. While AA is the precursor to potentially pro-inflammatory 

leukotrienes, it is also the main precursor to key anti-inflammatory metabolites, such as 

epoxyeicosatrienoic acids and prostaglandin E2, as well as other mediators that actively resolve 

inflammation, such as lipoxin A4. 
35 It also gives rise to prostacyclin, a potent anti-aggregatory 

and vasodilatory molecule.36 These complex biologic effects preclude simplistic inference on 

health effects of AA metabolites and further support the importance of empiric assessment of 

relationships with clinical events, such as in our investigation. 

 Overall, our findings provide little support for the hypothesis that LA or AA, the major n-

6 PUFA, may increase CVD risk. We also identified little evidence for any interaction between 

n-6 and n-3 PUFA levels, consistent with prior reviews of dietary data.1 n-6 PUFA may also 

have additional metabolic benefits. For example, a recent pooled analysis from FORCE 

identified a strong inverse association of circulating and adipose tissue LA levels and incidence 

of type 2 diabetes, with no significant associations for AA.25 Taken together with results of 

randomized controlled feeding trials of blood lipids, glucose-insulin homeostasis, and other 

metabolic risk factors; prospective cohort studies of self-reported consumption; and (older, 

methodologically limited) clinical trials of LA-rich plant oils, our novel findings do not support 

recommendations of some10 to reduce n-6 PUFA consumption or reduce the n-6:n-3 ratio (as 

opposed to increasing n-3 intake). Rather, the findings from the present study, together with the 

prior research summarized above, support independent cardioprotective benefits of LA.  

 Our results provide important evidence that helps inform clinical and population 

recommendations. Dietary guidelines from several organizations, including the American Heart 

Association, recommend increased consumption of n-6 PUFA to prevent CVD.7 However, some 
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researchers9, 10, 37 and other national guidelines4 currently recommend avoidance of n-6 PUFA 

and reductions from current intake levels. Furthermore, current trends in oil production are 

leading to increased use of high-oleic, LA-depleted seed oils,38 which can increase the risk of 

insufficient PUFA consumption in population subgroups. Our findings, combined with prior 

evidence from metabolic feeding trials, supports cardiovascular benefits of LA and a need to 

harmonize international guidelines and priorities for oilseed production and use. 

 A unique strength of our investigation was the ability to assess associations across 

distinct lipid compartments across which LA (AA) levels intercorrelate to varying degrees (e.g., 

r=0.4-0.9),26, 39, 40 suggesting that each compartment reflects partly differing metabolic and 

physiologic influences. Yet, our findings were generally concordant across compartments, 

providing support for common or similar biologic effects of these n-6 fatty acids across these 

compartments.  

 The inverse association of LA levels with ischemic stroke was more pronounced in T-

allele carriers of rs174547, a polymorphism in FADS1 associated with higher fatty acid 

desaturase activities27, 41 and FADS1 expression.42 Although located in FADS1, rs174547 is also 

in strong linkage disequilibrium with polymorphisms in FADS2 (encoding the LA-desaturating 

FADS2) and has emerged as the main genetic determinant of circulating LA and AA in a recent 

genome-wide association study.27 The T-allele has been linked to several metabolic traits 

including higher cholesterol (total, LDL, and HDL)43 and fasting glucose44, but also lower 

triglycerides43 and heart rate.45 The pleiotropy of the FADS cluster and the specificity for 

ischemic stroke rather than all CVD endpoints complicates the interpretation of the observed 

gene-LA interaction, which should therefore be viewed cautiously. Yet, one could also speculate 

that carriers of the major T-allele derive greater benefits from the established LDL-lowering 
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effects of dietary LA and thus have accentuated health benefits –a ripe area for further 

investigation.  

 Few prior meta-analyses of LA and AA levels in CVD have been performed. In one 

analysis of 10 published studies with 28,000 participants and 3,800 events, LA was not 

significantly associated with coronary events, while AA was associated with a 17% reduction in 

risk.18 In a meta-analysis of published studies acute myocardial infarction and coronary 

syndromes including many retrospective case-control studies, circulating and adipose tissue LA 

levels were inversely associated with the risk of CHD events, while overall associations for AA 

were null.17 Our investigation considerably extends these prior results by focusing on prospective 

studies, performing new individual-level study-specific analyses using a standardized and 

harmonized analysis protocol, including a much larger number of participants and events, and 

evaluating several major CVD outcomes. Importantly, our consortium also greatly minimizes 

publication bias by incorporating new (unpublished) findings from all available studies, rather 

than pooling only prior published results. 

 Other strengths include use of in vivo n-6 PUFA levels, which complement self-reported 

dietary estimates, reduce errors from memory, and allow assessment of biologically relevant in 

vivo levels- especially important for AA. Outcomes in nearly all studies were defined by 

centralized adjudication processes or validated registries rather than from self-report alone, 

reducing the potential for missed or misclassified endpoints. Inclusion of cohorts from 13 

countries across several continents enhances generalizability. The large numbers of participants 

and events allowed us to explore several potential effect modifiers and the shape of the 

associations.  
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 Potential limitations deserve attention. For certain compartments, such as adipose tissue, 

few studies were available. Most individuals were of European descent, lowering statistical 

power for evaluating other races/ethnicities. Despite extensive efforts to harmonize study-

specific methods, some dissimilarities remained between cohorts in outcome definitions (see 

Expanded Methods in the Supplemental Material) and covariate categorization (Supplemental 

Table 5). Although such variety and unmeasured background population characteristics may 

increase generalizability, these may also have contributed to the moderate between-study 

heterogeneity observed for some exposure-outcome relationships. Fatty acids were measured 

once at baseline, and changes over time could lead to misclassification, which would attenuate 

the associations. However, reasonable temporal reproducibility has been reported for LA and AA 

concentrations over time.46 Since few studies evaluated multiple compartments, and because 

cholesterol esters were only assessed by studies from Northern Europe, we were hampered in 

drawing any conclusions of true predictive differences between lipid fractions. Although fatty 

acid analytical methods were not standardized across studies, the use of a quintile-based 

statistical approach minimizes this concern. We did not adjust for non-fatty acid dietary factors, 

but pooling results across multiple cohorts with different population characteristics increases the 

validity of the findings. While all studies consistently adjusted for other major CVD risk factors, 

we cannot exclude residual confounding due to unmeasured or imprecisely measured covariates. 

However, the concordance of the present observed associations with other lines of evidence on 

cardiovascular benefits of LA1, 5, 6, 32 provide biologic plausibility for our findings. We did not 

evaluate the associations after exclusion of early cases. However, such sensitivity did not 

produce results substantially different from the main findings in our previous pooling 
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projects24,25 and in cohort-specific analyses,23 suggesting that the observed associations are not 

likely due to reverse causation.  

 In summary, based on pooled individual-level analyses of prospective studies, circulating 

and adipose tissue biomarker concentrations of LA were inversely associated with CVD while 

AA was not associated with higher CVD risk. Together with prior research, these results support 

CVD benefits of LA.  
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Table 1. Characteristics of 31 studies and baseline characteristics of individual study participants with linoleic acid (LA; 18:2n6) and 
arachidonic acid (AA; 20:4n6) biomarker measures and follow-up for cardiovascular disease incidence or mortality.* 

 

Study† Country 
Study 
design‡ 

Age, y 
(mean) 

Sex  
(% male) 

BMI, kg/m2 
(mean) 

Biomarker 
compartment§ 

Year of 
biomarker 
sampling Outcome assessed|| 

AGES-Reykjavik Iceland PC 77 39 27.1 PP 2002-2006 All# 
ARIC USA PC 54 52 27.0 PP 1987-1989 All 
CCCC Taiwan PC 61 55 23.3 TP 1992-2000 All 
CHS USA PC 73 36 26.7 PP 1992-1993 All 
CRS Costa Rica RCC 58 73 26.2 AT 1994-2004 Non-fatal MI 
DCH Denmark PNC 57 61 26.6 AT** 1993-1997 Total CHD 
EPIC-Norfolk UK PCC 63 49 26.5 PP 1993-1997 All 
EPIC-Potsdam Germany PC 50 37 26.0 RBC 1994-1998 Total CVD 
FHS USA PC 66 43 28.2 RBC 2005-2008 All 
HPFS USA PCC 65 100 25.8 RBC, TP 1993-1995 Total CVD, CHD, & stroke 
HS Japan PC 61 42 23.1 TP 2002-2003 All 
KIHD Finland PC 52 100 26.7 TP 1984-1989 All 
MCCS Australia PC 56 46 27.2 PP 1990-1994 Fatal CVD, CHD, & 

ischemic stroke 
MESA USA PC 62 47 28.3 PP 2000-2002 All 
METSIM Finland PC 55 100 26.5 CE, PP, RBC 2006-2010 Total CVD 
MORGEN (CHD) Netherlands PCC 52 79 26.2 CE 1993-1997 Fatal CHD 
MORGEN (Stroke) Netherlands PCC 50 53 25.9 CE 1993-1997 Ischemic stroke 
MPCDRF Netherlands PCC 51 70 25.9 CE 1987-1991 Fatal CHD 
NHS USA PCC 60 0 25.6 RBC, TP 1989-1990 Total CVD, CHD & stroke 
NSHDS I Sweden PCC 54 79 26.2 PP 1987-1994 Total CHD 
NSHDS II Sweden PCC 54 76 26.4 PP 1987-1999 Total CHD 
NSHDS III Sweden PCC 55 61 26.7 PP 1987-1995 Ischemic stroke 
PHS USA PCC 69 100 25.7 RBC 1995-2001 Total CHD 
PIVUS Sweden PC 70 47 26.9 CE, PP 2001-2004 All 
SCHS Singapore PCC 66 65 23.0 TP 1994-2005 Total CHD 
SHHEC UK PC 49 52 25.6 AT 1985-1986 All 
60YO Sweden PC 60 48 26.8 CE 1997-1998 All 
3C Study France PC 75 39 26.0 TP 1999-2000 All 
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ULSAM-50†† Sweden PC 50 100 25.0 CE 1970-1973 All 
ULSAM-70†† Sweden PC 71 100 26.4 AT 1991-1995 All 
WHIMS USA PC 70 0 28.2 RBC 1996 All 

*AA, arachidonic acid; BMI, body mass index; LA, linoleic acid. †AGES-Reykjavik: Age, gene/environment susceptibility – Reykjavik Study; ARIC: 
Atherosclerosis Risk in Communities; CCCC: Chin-Shan Community Cardiovascular Cohort Study; CHS: Cardiovascular Health Study; CRS: Costa 
Rica study on adults; DCH: Diet, Cancer, and Health study; EPIC: European Prospective Investigation into Cancer; FHS: Framingham Heart Study; 
HPFS: Health Professionals Follow-up Study; HS: The Hisayama Study; KIHD: Kuopio Ischaemic Heart Disease Risk Factor Study; MCCS: 
Melbourne Collaborative Cohort Study; MESA: Multi-Ethnic Study of Atherosclerosis; METSIM: Metabolic syndrome in men study; MORGEN: 
Monitoring Project on Risk Factors for Chronic Diseases; MPCDRF: Monitoring Project on Cardiovascular Disease Risk Factors; NHS I: Nurses’ 

Health Study I; NSHDS I-III: Northern Sweden Health and Disease Study; PHS: Physicians’ Health Study; PIVUS: Prospective Investigation of the 
Vasculature in Uppsala Seniors; SCHS, Singapore Chinese Health Study; SHHEC, Scottish Heart Health Extended Cohort; 60YO, 60-year-old 
Swedish men and women; 3C Study: Three City Study; ULSAM-50 &-70: Uppsala Longitudinal Study of Adult Men investigations at ages 50 y and 
70 y, respectively. ‡PC, prospective cohort; PCC, prospective nested case-control; PNC, prospective nested case-cohort; RCC, retrospective case-
control. §AT, adipose tissue; CE, cholesterol ester; PP, plasma phospholipid; RBC, erythrocyte phospholipid; TP, total plasma. ||CVD, cardiovascular 
disease; CHD, coronary heart disease; MI, myocardial infarction. #All specified outcomes (total CVD, CVD mortality, total CHD, and ischemic 
stroke) were assessed. **In DCH, the association of adipose tissue arachidonic acid, but not linoleic acid, with total CHD was evaluated. ††Fatty acids 
were measured in cholesterol ester and adipose tissue at the first and third ULSAM investigation, respectively. 
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Table 2. Risk of incident CVD according to objective biomarker levels of linoleic acid (18:2n6) and arachidonic acid (20:4n6) in 30 
pooled prospective cohort studies. 

 

    Multivariable-adjusted hazard ratio (95% CI) 
per interquintile range† 

Outcome Biomarker Studies (n) Cases (n) Linoleic acid Arachidonic acid 

Total CVD Phospholipid 14 6 853 1.00 (0.92-1.09) 0.95 (0.87-1.03) 

 Total plasma 6 2 742 0.90 (0.78-1.03) 0.81 (0.70-0.94) 

 Cholesterol esters 4 1 300 0.74 (0.63-0.88) 1.03 (0.88-1.20) 

 Adipose tissue 2 1 412 0.87 (0.75-1.01) 0.98 (0.87-1.10) 

 Overall‡ 21 10 477 0.93 (0.88-0.99) 0.95 (0.90-1.01) 

      

CVD mortality Phospholipid 9 3 057 0.89 (0.79-1.00) 0.93 (0.83-1.05) 

 Total plasma 4 679 0.66 (0.50-0.86) 0.85 (0.66-1.09) 

 Cholesterol esters 3 473 0.56 (0.43-0.73) 0.99 (0.76-1.29) 

 Adipose tissue 2 418 0.60 (0.44-0.82) 1.02 (0.84-1.23) 

 Overall‡ 17 4 508 0.78 (0.70-0.85) 0.94 (0.86-1.02) 

      

Total CHD Phospholipid 14 6 075 1.01 (0.93-1.10) 0.96 (0.90-1.03) 

 Total plasma 7 2 430 0.86 (0.74-1.00) 0.86 (0.74-1.01) 

 Cholesterol esters 5 1 178 0.78 (0.65-0.94) 1.02 (0.85-1.23) 

 Adipose tissue 3§ 3 255 0.88 (0.74-1.03) 1.10 (0.98-1.23) 

 Overall‡  26§ 11 857 0.94 (0.88-1.00) 0.99 (0.94-1.04) 

      

Ischemic stroke Phospholipid 12 2 327 0.95 (0.82-1.10) 0.98 (0.85-1.13) 

 Total plasma 6 1 105 0.84 (0.66-1.06) 0.93 (0.73-1.18) 

 Cholesterol esters 4 598 0.67 (0.51-0.88) 1.13 (0.89-1.43) 
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 Adipose tissue 2 405 0.87 (0.65-1.15) 0.91 (0.74-1.11) 

 Overall‡ 21 3 705 0.88 (0.79-0.98) 0.99 (0.90-1.10) 
*AA, arachidonic acid; CHD, coronary heart disease; CI, confidence interval; CVD, cardiovascular disease; LA, linoleic acid.  
†Based on harmonized, de novo individual-level analyses in each cohort, pooled using inverse-variance weighted meta-analysis. Risk was assessed 
according to the interquintile range (i.e., range between the midpoint of the bottom quintile [10th percentile] and the top quintile [90th percentile]) 
of each fatty acid, corresponding to the difference between the midpoint of the first and fifth quintiless. Study-specific analyses were adjusted for 
age (years), sex (male/female), race (Caucasian/non-Caucasian, or study-specific), field or clinical center if applicable (study-specific categories), 
body-mass index (BMI, kg/m2), education (less than high school graduate, high school graduate, some college or vocational school, college 
graduate), smoking (current, former, or never; if former not assessed, then current or not current), physical activity (quintiles of metabolic 
equivalents (METs) per week; or if METs unavailable, quintiles of study-specific definitions of physical or leisure activity), alcohol intake (none, 
1-6 drinks/week, 1-2 drink/day, >2 drink/day [14 g alcohol=1 standard drink]), diabetes mellitus (yes/no; defined as treatment with oral 
hypoglycemic agents, insulin, or fasting plasma glucose >126 mg/dL), treated hypertension (yes/no; defined as hypertension drug use; or if 
unavailable, as diagnosed/history of hypertension according to study-specific definitions), treated hypercholesterolemia (yes or no; defined as 
lipid-lowering drug use; if unavailable, as diagnosed/history of hypercholesterolemia according to study-specific definitions), regular aspirin use 
(yes/no), biomarker concentrations of α-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3), sum of trans-18:1 fatty acids, and 
sum of trans-18:2 fatty acids (each expressed as % total fatty acids).  
‡For studies that assessed LA and AA levels in more than one biomarker compartment, the primary compartment for that study was pre-selected 
for pooled analyses based on the following order: 1) adipose tissue, 2) erythrocyte phospholipid, 3) plasma phospholipid 4) cholesterol ester, and 
5) total plasma. 
§Because the Diet, Cancer and Health study assessed associations of AA, but not LA, with total CHD (n cases=2138), a total of, 2 studies (n 
cases= 1117) evaluated adipose tissue LA and 25 studies (n cases=9719) assessed any biomarker level of LA in relation to total CHD. 
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Figure Legends  

 

Figure 1. Concentration of A) linoleic acid (LA; 18:2n6) and B) arachidonic acid (AA; 

20:4n6) across different biomarker compartments measured in the 31 contributing studies. 

Concentrations of arachidonic acid and linoleic acid concentrations are expressed as % of total 

fatty acids (FA), and indicated as median (circles) and interquintile range (lines; defined as the 

range between the midpoint of the bottom quintile [10th percentile] and the top quintile [90th 

percentile]), respectively. For MPCDRF and the MORGEN, values are only shown for 

controls.*Total number of individual FA measured in the biomarker compartment. †Not reported. 

 

Figure 2. Associations of linoleic acid (LA; 18:2n6) with total CVD (A) and CVD mortality 

(B) in pooled analysis of 30 prospective studies. Study-specific estimates for hazard ratio (HR) 

per interquintile range (i.e., range between the midpoint of the bottom quintile [10th percentile] 

and the top quintile [90th percentile]) of biomarker linoleic acid were pooled based on the 

following order: 1) adipose tissue, 2) erythrocyte phospholipid, 3) plasma phospholipid 4) 

cholesterol ester, and 5) total plasma. Study weights are indicated (grey squares) by individual 

biomarker compartment and overall. Study-specific analyses were conducted using models that 

included the following covariates: age (years), sex (male/female), race (Caucasian/non-

Caucasian, or study-specific), field center if applicable (categories), body-mass index (BMI, 

kg/m2), education (less than high school graduate, high school graduate, some college or 

vocational school, college graduate), smoking (current, former, never; if history not assessed, 

then current/not current), physical activity (quintiles of metabolic equivalents (METs)/ week), 

alcohol intake (none, 1-6 drinks/week, 1-2 drinks/day, >2 drinks/day), prevalent diabetes 
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mellitus (defined as treatment with oral antihyperglycemic agents, insulin, or fasting plasma 

glucose >126 mg/dL), treated hypertension (defined as hypertension drug use; or if unavailable, 

as diagnosed/history of hypertension), treated hypercholesterolemia (defined as LDL-lowering 

drug use; if unavailable, as diagnosed/history of hypercholesterolemia), regular aspirin use 

(defined as ≥2 times/week), levels of α-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid 

(EPA; 20:5n-3), sum of trans isomers of oleic acid (trans18:1), and sum of trans isomers of LA 

(trans-18:2) (each expressed as % total FAs). If data did not allow such categorization, study-

specific categories were used. See Table 1 footnote for abbreviations of cohorts. 

 

Figure 3. Associations of linoleic acid (LA; 18:2n6) with total CHD (A) and ischemic stroke 

(B) in pooled analysis of 30 prospective studies. Study-specific estimates for hazard ratio (HR) 

per interquintile range (i.e., range between the midpoint of the bottom quintile [10th percentile] 

and the top quintile [90th percentile]) of biomarker linoleic acid were pooled based on the 

following order: 1) adipose tissue, 2) erythrocyte phospholipid, 3) plasma phospholipid 4) 

cholesterol ester, and 5) total plasma. Study weights are indicated (grey squares) by individual 

biomarker compartment and overall. Study-specific analyses were conducted using models that 

included the following covariates: age (years), sex (male/female), race (Caucasian/non-

Caucasian, or study-specific), field center if applicable (categories), body-mass index (BMI, 

kg/m2), education (less than high school graduate, high school graduate, some college or 

vocational school, college graduate), smoking (current, former, never; if history not assessed, 

then current/not current), physical activity (quintiles of metabolic equivalents (METs)/ week), 

alcohol intake (none, 1-6 drinks/week, 1-2 drinks/day, >2 drinks/day), prevalent diabetes 

mellitus (defined as treatment with oral antihyperglycemic agents, insulin, or fasting plasma 
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glucose >126 mg/dL), treated hypertension (defined as hypertension drug use; or if unavailable, 

as diagnosed/history of hypertension), treated hypercholesterolemia (defined as LDL-lowering 

drug use; if unavailable, as diagnosed/history of hypercholesterolemia), regular aspirin use 

(defined as ≥2 times/week), levels of α-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid 

(EPA; 20:5n-3), sum of trans isomers of oleic acid (trans18:1), and sum of trans isomers of LA 

(trans-18:2) (each expressed as % total FAs). If data did not allow such categorization, study-

specific categories were used. See Table 1 footnote for abbreviations of cohorts. 

 

Figure 4. Associations of arachidonic acid (AA; 20:4n6) with total CVD (A) and CVD 

mortality (B) in pooled analysis of 30 prospective studies.  

Study-specific estimates for hazard ratio (HR) per interquintile range (i.e., range between the 

midpoint of the bottom quintile [10th percentile] and the top quintile [90th percentile]) of 

biomarker linoleic acid were pooled based on the following order: 1) adipose tissue, 2) 

erythrocyte phospholipid, 3) plasma phospholipid 4) cholesterol ester, and 5) total plasma. Study 

weights are indicated (grey squares) by individual biomarker compartment and overall. Study-

specific analyses were conducted using models that included the following covariates: age 

(years), sex (male/female), race (Caucasian/non-Caucasian, or study-specific), field center if 

applicable (categories), body-mass index (BMI, kg/m2), education (less than high school 

graduate, high school graduate, some college or vocational school, college graduate), smoking 

(current, former, never; if history not assessed, then current/not current), physical activity 

(quintiles of metabolic equivalents (METs)/ week), alcohol intake (none, 1-6 drinks/week, 1-2 

drinks/day, >2 drinks/day), prevalent diabetes mellitus (defined as treatment with oral 

antihyperglycemic agents, insulin, or fasting plasma glucose >126 mg/dL), treated hypertension 
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(defined as hypertension drug use; or if unavailable, as diagnosed/history of hypertension), 

treated hypercholesterolemia (defined as LDL-lowering drug use; if unavailable, as 

diagnosed/history of hypercholesterolemia), regular aspirin use (defined as ≥2 times/week), 

levels of α-linolenic acid (ALA; 18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3), sum of trans 

isomers of oleic acid (trans18:1), and sum of trans isomers of LA (trans-18:2) (each expressed 

as % total FAs). If data did not allow such categorization, study-specific categories were used. 

See Table 1 footnote for abbreviations of cohorts. 

 

Figure 5. Associations of arachidonic acid (AA; 20:4n6) with total CHD (A) and ischemic 

stroke (B) in pooled analysis of 30 prospective studies.  

Study-specific estimates for hazard ratio (HR) per interquintile range (i.e., range between the 

midpoint of the bottom quintile [10th percentile] and the top quintile [90th percentile]) of 

biomarker linoleic acid were pooled based on the following order: 1) adipose tissue, 2) 

erythrocyte phospholipid, 3) plasma phospholipid 4) cholesterol ester, and 5) total plasma. Study 

weights are indicated (grey squares) by individual biomarker compartment and overall. Study-

specific analyses were conducted using models that included the following covariates: age 

(linear), sex (male/female), race (binary: Caucasian/non-Caucasian, or study-specific), field or 

clinical center if applicable (study-specific categories), body-mass index (BMI, linear), education 

(less than high school graduate, high school graduate, some college or vocational school, college 

graduate), smoking (current, former, or never; if former not assessed, then current or not 

current), physical activity (quintiles of metabolic equivalents (METs) per week; or if METs 

unavailable, quintiles of study-specific definitions of physical or leisure activity), alcohol intake 

(none, 1-6 drinks/week, 1-2 drink/day, >2 drink/day [14 g alcohol=1 standard drink]), diabetes 
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mellitus (yes or no; defined as treatment with oral hypoglycemic agents, insulin, or fasting 

plasma glucose >126 mg/dL), treated hypertension (yes or no; defined as hypertension drug use; 

or if unavailable, as diagnosed/history of hypertension according to study-specific definitions), 

treated hypercholesterolemia (yes or no; defined as lipid-lowering drug use; if unavailable, as 

diagnosed/history of hypercholesterolemia according to study-specific definitions), regular 

aspirin use (yes or no), biomarker concentrations of α-linolenic acid (ALA; 18:3n-3), 

eicosapentaenoic acid (EPA; 20:5n-3), sum of trans-18:1 fatty acids, and sum of trans-18:2 fatty 

acids (all linear; expressed as % total fatty acids). If data did not allow such categorization, 

study-specific categories were used. See Table 1 footnote for abbreviations of cohorts. 
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