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Abstract

Background: Maternal pre-pregnancy body mass index (BMI) is positively associated

with offspring birth weight (BW) and BMI in childhood and adulthood. Each of these

associations could be due to causal intrauterine effects, or confounding (genetic or

environmental), or some combination of these. Here we estimate the extent to which the

association between maternal BMI and offspring body size is explained by offspring ge-

notype, as a first step towards establishing the importance of genetic confounding.

Methods: We examined the associations of maternal pre-pregnancy BMI with offspring

BW and BMI at 1, 5, 10 and 15 years, in three European birth cohorts (n �11 498).

Bivariate Genomic-relatedness-based Restricted Maximum Likelihood implemented in

the GCTA software (GCTA-GREML) was used to estimate the extent to which phenotypic

covariance was explained by offspring genotype as captured by common imputed single

nucleotide polymorphisms (SNPs). We merged individual participant data from all

cohorts, enabling calculation of pooled estimates.

Results: Phenotypic covariance (equivalent here to Pearson’s correlation coefficient) be-

tween maternal BMI and offspring phenotype was 0.15 [95% confidence interval (CI):

0.13, 0.17] for offspring BW, increasing to 0.29 (95% CI: 0.26, 0.31) for offspring 15 year

BMI. Covariance explained by offspring genotype was negligible for BW [–0.04 (95% CI:

–0.09, 0.01)], but increased to 0.12 (95% CI: 0.04, 0.21) at 15 years, which is equivalent to

43% (95% CI: 15%, 72%) of the phenotypic covariance. Sensitivity analyses using weight,

BMI and ponderal index as the offspring phenotype at all ages showed similar results.

Conclusions: Offspring genotype explains a substantial fraction of the covariance be-

tween maternal BMI and offspring adolescent BMI. This is consistent with a potentially

important role for genetic confounding as a driver of the maternal BMI–offspring BMI

association.
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Introduction

It has been hypothesized that development in the uterus of

an obese mother may programme a fetus for increased risk

of obesity in subsequent postnatal life.1–3 Accordingly, in-

tervening to prevent maternal obesity prior to pregnancy

has been proposed as a means to reduce obesity risk in the

offspring.4–6 Maternal body mass index (BMI) or obesity

pre- or during pregnancy is associated with offspring

adiposity measures at birth,7 in childhood8–15 and in adult-

hood,16,17 as well as offspring cardiometabolic risk factors

and outcomes.12,16,18–20 However, these associations could

be due to confounding, either by environmental factors or

by maternal genotype inherited by the offspring.

Furthermore, the contribution of causal intrauterine

effects, genetic confounding and environmental confound-

ing could be different for each of these associations.

Key Messages

• Maternal body mass index (BMI) is associated with offspring weight at birth and BMI in childhood and adulthood

• Each of these associations could be due to causal intrauterine effects, or confounding (genetic or environmental), or

to some combination of these

• Our study suggests that a substantial part of the maternal BMI–offspring BMI association is explained by offspring ge-

notype, but that in contrast the maternal BMI–offspring birth weight association is not explained by offspring

genotype

• This is a first step towards establishing the importance of genetic confounding of the maternal BMI–offspring BMI

association
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Mendelian randomization (MR)21 evidence suggests

that greater maternal BMI is likely to cause, via intrauter-

ine mechanisms, greater offspring weight and ponderal in-

dex (PI) at birth.22 However, the balance of evidence from

MR,11,23 within sibship analyses,24,25 and paternal nega-

tive exposure control studies8–13,26 suggests that maternal

BMI is not causally related to offspring BMI in later life. It

is therefore likely that confounding explains the associa-

tion between maternal BMI and offspring child/adolescent

adiposity but not offspring birth adiposity.

In published studies adjustment for numerous poten-

tial confounders makes a negligible difference to the

strength of the association between maternal (pre-)preg-

nancy adiposity and offspring adiposity in childhood or

adulthood9,11,12,24,26–35 (Supplementary Note S1 and

Supplementary Table S1, available as Supplementary

data at IJE online). This could be because the confound-

ers that were adjusted for were measured poorly, or be-

cause other unmeasured confounders explain the

association; maternal genotype inherited by the offspring

could be an important unmeasured confounder. General

population data suggest that the narrow-sense heritabil-

ity [the proportion of phenotypic variance due to addi-

tive genetic effects (denoted by h2)] of BMI is at least

30%,36,37 with higher estimates from family (�45%)

and twin (�75%) studies.38,39 It is plausible therefore

that the direct effects of alleles shared by the mother

and offspring explain a substantial part of the maternal

BMI–offspring BMI association; we refer to this as ge-

netic confounding (Figure 1).

Here we aimed to estimate the extent to which the co-

variance between maternal BMI and offspring body size

from birth to adolescence is explained by offspring geno-

type, as a first step towards establishing the importance of

genetic confounding.

Methods

Study design

We analysed data from three prospective population-based

birth cohorts: the Northern Finland Birth Cohort (NFBC)

1966,41 NFBC198642 and Avon Longitudinal Study of

Parents and Children (ALSPAC).43,44 Details of sample re-

cruitment are given in Supplementary Note S2, available as

Supplementary data at IJE online. Ethical approval for

NFBC1966 and NFBC1986 was obtained from the

University of Oulu Ethics Committee and the Ethical

Committee of the Northern Ostrobothnia Hospital

District, and for ALSPAC was obtained from the ALSPAC

Ethics and Law Committee and the Local Research Ethics

Committees.

Exclusion criteria

We excluded stillbirths, multiple births and individuals

with missing genotype data, and removed one member

of any sibling pairs present at random. We then excluded

participants with missing maternal BMI or offspring

BMI/birth weight (BW) data. For our main analyses we

used Genomic-relatedness-based Restricted Maximum

Likelihood implemented in the GCTA software (GCTA-

GREML), which requires that cryptic (unknown) relat-

edness be removed to avoid confounding due to

familial environment and non-additive genetic effects.45

After merging data from the three cohorts we removed

one individual from each cryptically related pair using a

relatedness threshold of 0.05, resulting in inclusion of

up to 11 498 participants (Supplementary Note S3 and

Figure S4, available as Supplementary data at IJE

online).

Figure 1. Directed acyclic graph (DAG) showing genetic confounding of

the maternal BMI–offspring BMI association. The potentially causal as-

sociation of interest is between maternal BMI and offspring BMI. The

genetic confounding path (maternal BMI  maternal genotype ! off-

spring genotype ! offspring BMI) results from direct effects of mater-

nal genotype on maternal BMI and direct effects of offspring genotype

on offspring BMI, as well as inheritance of maternal alleles by the off-

spring. We use the term genetic confounding to refer to only the afore-

mentioned path; although another potential confounding path involves

genotype (i.e. maternal BMI  maternal genotype ! other maternal

phenotypes! offspring BMI), this latter path involves variables that are

non-genetic from the offspring’s perspective. In the DAG, variables

used in the present analysis are in bold lettering; other variables that

we have not included in our analyses are italicized. Given that we in-

clude only offspring genotype, and not maternal genotype, in our analy-

ses we are unable to distinguish genetic confounding from maternal

genetic effects [i.e. indirect effects of maternal genotype on offspring

BMI, mediated by the offspring’s prenatal or postnatal environment40

(dashed arrows)]; both could result in genetic covariance (Methods) be-

tween maternal BMI and offspring BMI.
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Genotyping, quality control and imputation

Genotyping was carried out using genome-wide microar-

ray chips followed by standard quality control (QC) proce-

dures; details of genotyping and QC for each cohort are

given in full in Supplementary Note S5, available as

Supplementary data at IJE online. During QC, individuals

with non-European ancestry were excluded. For all three

cohorts, array genotypes were harmonized and imputed to

the Haplotype Reference Consortium (HRC) imputation

reference panel46 via the Michigan imputation server.47

Maternal and offspring BW and BMI

For our primary analyses we examined the associations of

maternal pre-pregnancy BMI with offspring weight at birth,

and BMI at 1, 5, 10 and 15 years, in all studies

(Supplementary Note S6, Table 1 and Supplementary Table

S7, available as Supplementary data at IJE online). We also

analysed BMI data at 31 and 46 years in NFBC1966. We

calculated maternal pre-pregnancy BMI using pre-

pregnancy weight reported by the mothers during early

pregnancy and either self-reported or measured height

(Supplementary Table S8, available as Supplementary data

at IJE online). Offspring sex, BW, length and gestational

age were obtained from the birth record or measured by re-

search staff (Supplementary Table S8, available as

Supplementary data at IJE online). In childhood and adult-

hood offspring weight and height were obtained from clini-

cal examination, growth records or questionnaires

(Supplementary Table S8, available as Supplementary data

at IJE online). For all weight, height and BMI variables we

set outlying values that we judged to be physiologically im-

plausible to missing. We standardized maternal and off-

spring phenotypic variables to give mean zero and variance

one in the pooled dataset, using the usual formula

(Supplementary Note S9, available as Supplementary data

at IJE online). With standardized variables, phenotypic co-

variance is equivalent to phenotypic correlation, enabling

direct comparison of phenotypic covariance for offspring

phenotypes that are measured in different units. Although

BMI variables were positively skewed, sensitivity analyses

indicated that results were similar when using a variety of

normalizing transformations (Supplementary Note S10 and

Figure S11, available as Supplementary data at IJE online),

therefore we used untransformed variables for our primary

analyses. Supplementary Note S12, available as

Supplementary data at IJE online, gives details of other

pregnancy variables that we used in sensitivity analyses.

Table 1. Phenotypic characteristics of the mothers and offspring. Sample sizes are the same as for the main analyses.

Supplementary Note S39, available as Supplementary data at IJE online gives more detailed characteristics of the mothers and

offspring.

Cohort n Phenotype Age Offspring sex

Mean SD Mean SD Male Female

NFBC1966 2894 Maternal BMI (kg/m2) 23.0 3.3 Maternal age at offspring birth (years) 27.6 6.3

NFBC1986 2094 22.2 3.3 28.0 5.3

ALSPACa 6510 22.9 3.8 29.4 4.6

NFBC1966 2894 Birth weight (g) 3510 520 Gestational age at birth (weeks) 40.1 1.9 48.3% 51.7%

NFBC1986 2094 3610 490 40.0 1.5 49.3% 50.7%

ALSPACa 6510 3450 520 39.5 1.7 51.2% 48.8%

NFBC1966 2736 1 year BMI (kg/m2) 17.8 1.6 Age at BMI measurement (years) 1.0 0.1 48.2% 51.8%

NFBC1986 1838 17.3 1.4 1.0 0.1 49.0% 51.0%

ALSPACa 6159 17.5 1.5 0.9 0.2 51.2% 48.8%

NFBC1966 2145 5 year BMI (kg/m2) 15.5 1.4 5.1 0.8 49.4% 50.6%

NFBC1986 1840 15.8 1.5 5.0 0.4 49.2% 50.8%

ALSPACa 5930 16.2 1.5 4.1 0.7 51.3% 48.7%

NFBC1966 2146 10 year BMI (kg/m2) 17.0 2.3 10.4 0.8 50.0% 50.0%

NFBC1986 1793 17.6 2.7 9.9 0.6 49.5% 50.5%

ALSPACa 5494 17.7 2.8 9.9 0.5 50.2% 49.8%

NFBC1966 2866 15 year BMI (kg/m2) 19.7 2.6 14.7 0.5 48.0% 52.0%

NFBC1986 2107 21.3 3.7 16.0 0.4 48.6% 51.4%

ALSPACa 4902 21.0 3.5 14.9 0.9 49.3% 50.7%

NFBC1966 3711 31 year BMI (kg/m2) 24.6 4.2 31.1 0.3 47.6% 52.4%

NFBC1966 3079 46 year BMI (kg/m2) 26.9 5.0 46.5 0.6 44.4% 55.6%

aALSPAC offspring were born between 1991 and 1992.

SD, standard deviation.
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Estimation of genetic and residual covariance

We used bivariate GCTA-GREML to estimate the extent

to which the phenotypic covariance between maternal BMI

and offspring phenotype was explained by imputed off-

spring single nucleotide polymorphisms (SNPs). The sim-

plest GCTA-GREML model is a univariate model48 that

estimates the phenotypic variance explained by a set of

genome-wide SNPs (termed the SNP heritability). Like

other heritability estimation methods, GCTA-GREML

exploits the fact that for heritable phenotypes, genetically

similar individuals are likely to be phenotypically similar.

Traditional heritability estimation methods use probability

theory to infer expected genetic similarity between close

relatives in pedigrees,45,49 and the phenotypic variance

explained by all genetic variants is estimated. In contrast,

in GCTA-GREML the genetic similarity between pairs of

distantly related individuals is calculated directly from a

set of SNPs, which enables utilization of non-pedigree sam-

ples. However, the phenotypic variance explained by only

those genetic variants that are tagged by the set of SNPs is

estimated. Accordingly, the two approaches estimate dif-

ferent quantities, and GCTA-GREML estimates are usu-

ally somewhat lower than pedigree-based heritability

estimates.36–39 GCTA-GREML has been widely applied to

diverse phenotypes.37,50–53

GCTA-GREML has been extended to a bivariate

model that partitions the phenotypic covariance between

two traits,54 and has again been widely applied to di-

verse phenotypes.51,55–58 Often these studies report the

genetic correlation (rG) between two phenotypes, which

quantifies the extent to which the additive genetic effects

on phenotype one are shared with those on phenotype

two (Supplementary Note S15, available as

Supplementary data at IJE online). However, bivariate

GCTA-GREML also enables estimation of the propor-

tion of phenotypic covariance that is explained by the set

of SNPs. This has previously been applied to two pheno-

types measured in the same individual.56,59 In the pre-

sent study we exploited this approach, but instead

partitioned the phenotypic covariance between maternal

BMI and offspring phenotype. In typical bivariate

GCTA-GREML analyses, trait one, trait two and geno-

type are measured in the same individual, therefore the

unit of analysis is the individual. In our analyses, geno-

type and trait one (offspring phenotype) were measured

in the offspring and trait two (maternal BMI) was mea-

sured in the mother, therefore the unit of analysis was

the mother–offspring dyad.

Assuming independence between additive genetic effects

and other contributing factors, we can partition the pheno-

typic covariance as follows:

CovP ¼ CovG þ CovE (Equation 1)

where CovP is the covariance between maternal BMI and

offspring phenotype (BW or BMI) estimated using the usual

formula (Supplementary Note S9, available as

Supplementary data at IJE online), CovG is the contribution

to this covariance from additive genetic effects captured by

the offspring’s imputed SNPs genome-wide, estimated using

bivariate GCTA-GREML54 and CovE is the residual (unex-

plained) covariance, which is a combination of additive ge-

netic effects not captured by SNPs, non-additive genetic

effects and environmental effects (the latter would be re-

ferred to as common environmental effects in the quantita-

tive genetics literature, because by definition common

environmental effects are those that cause relatives to be

more similar phenotypically). A detailed description of our

statistical approach is given in Supplementary Note S9,

available as Supplementary data at IJE online.

The ratio of CovG to CovP is our quantity of interest

and has been termed the bivariate heritability60 or coherit-

ability61 in the quantitative genetics literature. When both

CovG and CovE have the same sign, CovG:CovP is equiva-

lent to the proportion of phenotypic covariance that is

explained by additive genetic effects. If CovG and CovE are

opposite in sign then CovG:CovP may be negative or >1; in

this case CovG:CovP cannot be interpreted as a proportion,

but still gives an indication of the extent to which pheno-

typic covariance is explained by genotype.

GCTA-GREML requires computation of a genetic relat-

edness matrix (GRM) containing a SNP-based estimate of

relatedness for each pair of individuals in the sample. We

used imputed autosomal SNPs with minor allele frequency

(MAF) >0.01, imputation quality score (r2) >0.3 and lack

of evidence for Hardy-Weinberg disequilibrium (P>1e-6);

hard called (best-guess) genotypes (as output by the mini-

mac3 software package47) were used to construct the

GRM. Hard calls are integer values representing the most

likely genotype, and are assigned by minimac3 based on

the imputed haplotype probabilities. We fitted the GCTA-

GREML model using a single GRM. Twenty ancestry in-

formative principal components (PCs) calculated from the

GRM were included as fixed effects in all models to adjust

for population stratification; cohort, offspring sex and age

at phenotype measurement (replaced with gestational age

at birth for BW models) were also included as fixed effects.

We conducted sensitivity analyses (Supplementary

Notes/Tables/Figures S10, S11 and S16–S33, available as

Supplementary data at IJE online) to examine the impact of

1. alternative phenotype transformations including rank-

based inverse-normal transformation, natural loga-

rithm and UK-WHO z-scores
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2. using different MAF and imputation r2 thresholds, as

well as only directly genotyped (array) SNPs

3. varying the other covariates, as well as the number of

PCs, that were fitted as fixed effects

4. varying the relatedness exclusion threshold

5. using alternative phenotypes including weight, BMI

and PI [weight (kg)/height (m)3] at all ages.

We also tested for inflation of SNP heritability estimates

due to cryptic relatedness or population stratification62,63

(Supplementary Note S34 and Supplementary Table S35,

available as Supplementary data at IJE online). All analy-

ses were performed using the GCTA software package64

version 1.91.1 with the ‘reml-no-constrain’ option; results

were similar when we did not use this option.

Estimation of confidence intervals and meta-

analysis

The GCTA software supplies standard error (SE) estimates

for CovG, but not for CovG:CovP; we therefore used a

leave-one-out jackknife procedure65,66 to estimate all SEs,

and calculated 95% confidence intervals (CIs) as the point

estimate 6 1.96 x SE (Supplementary Note S36, available

as Supplementary data at IJE online). We confirmed via

simulation that the jackknife approach is likely to give CIs

with good coverage properties for a ratio of covariances

(Supplementary Note S37, available as Supplementary

data at IJE online). We merged individual participant data

(IPD) from the three cohorts and fitted the GCTA-GREML

model on this pooled dataset. In the meta-analysis litera-

ture this is referred to as one-stage IPD meta-analysis,67

and has also been referred to as mega-analysis, however

for simplicity we use the term ‘pooled IPD estimates’ here.

These pooled IPD estimates had greater statistical

efficiency than a standard meta-analysis in which the

GCTA-GREML model is fitted separately for each cohort,

followed by estimation of the pooled effect using a fixed or

random effects model. However, our pooled IPD estimates

assumed that the three cohorts were from the same popula-

tion. As a sensitivity analysis we therefore conducted a

standard meta-analysis using a random effects model

(DerSimonian and Laird68) which relaxed this assumption.

Analyses were conducted in Stata version 13.1 (StataCorp,

College Station, Houston, USA) and R version 3.5.0.69

Results

Sample characteristics

Table 1 shows the sample characteristics. Prevalence of

maternal obesity (BMI�30) was 3.7% (95% CI: 3.0%,

4.4%) in NFBC1966, 3.2% (95% CI: 2.4%, 3.9%) in

NFBC1986 and 5.4% (95% CI: 4.9%, 6.0%) in ALSPAC.

Maternal BMI was associated with several non-genetic po-

tential confounders (Supplementary Table S39, available

as Supplementary data at IJE online).

Phenotypic and genetic covariance

Table 2 shows correlations between maternal and offspring

phenotypic variables. There were weak to moderate corre-

lations between all phenotypes, with stronger correlations

for temporally adjacent BMI phenotypes. Figure 2 shows

pooled IPD estimates from the combined cohorts for the

phenotypic covariance (CovP), genetic covariance (CovG)

and the ratio of genetic to phenotypic covariance

(CovG:CovP) between maternal BMI and offspring pheno-

type. Phenotypic covariance was 0.15 (95% CI: 0.13,

0.17) for offspring BW, decreasing to 0.10 (95% CI: 0.08,

0.12) for offspring 1 year BMI before increasing to 0.29

(95% CI: 0.26, 0.31) for offspring 15 year BMI.

Covariance explained by offspring genotype was negligible

for BW [–0.04 (95% CI: –0.09, 0.01)] but increased over

childhood, reaching 0.12 (95% CI: 0.04, 0.20) at 10 years

and 0.12 (95% CI: 0.04, 0.21) at 15 years, which is equiva-

lent to 44% (95% CI: 16%, 71%) and 43% (95% CI:

15%, 72%) of the phenotypic covariance at 10 and

15 years respectively. This pattern continued into adult-

hood, with high CovG:CovP estimated in NFBC1966 at

31 years [1.25 (95% CI: 0.35, 1.37)] and 46 years [0.78

(95% CI: –0.46, 1.87)], albeit with wide confidence inter-

vals (Supplementary Table S40, available as

Supplementary data at IJE online).

Sensitivity analyses

Standard meta-analysis using a random effects model gave

similar estimates to the pooled IPD estimates, although

with wider confidence intervals (Supplementary Notes/

Tables/Figures S41–S47, available as Supplementary data

at IJE online), and estimates changed little as we varied

covariates, phenotypes (weight, BMI or PI) or normalizing

transformations (Supplementary Notes/Figures S10, S11,

S20, S30–S33, available as Supplementary data at IJE on-

line). Results from analyses in which we varied the related-

ness exclusion threshold or the set of SNPs used to

calculate the GRM suggested that our primary analyses are

unlikely to be substantively biased, and estimates for

CovG:CovP and SNP heritability were not attenuated as we

varied the number of PCs fitted as fixed effects between

zero and one thousand (Supplementary Notes/Tables/

Figures S16–S29, available as Supplementary data at IJE

online). Finally, we fitted the univariate GCTA-GREML

model with disjoint halves of the genome and found little
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evidence of inflation of SNP heritability estimates due to

cryptic relatedness or population stratification

(Supplementary Note S34 and Supplementary Table S35,

available as Supplementary data at IJE online).

Discussion

Main findings

We estimate that offspring genotype, as captured by com-

mon imputed SNPs, explains 43% of the covariance be-

tween maternal pre-pregnancy BMI and offspring 15 year

BMI. In contrast, offspring genotype does not explain the

covariance between maternal BMI and offspring BW, al-

though we could not reject the possibility of a small genetic

covariance here due to the imprecision of the estimate. The

observed pattern of genetic covariance is consistent with

the hypothesis that maternal alleles inherited by the off-

spring potentially have an important confounding effect on

the association between maternal BMI and offspring child

and adolescent BMI. However, further work using meth-

ods that account for maternal genotype70 will be required

before this conclusion can be drawn.

Interpretation

To our knowledge we are the first to use bivariate GCTA-

GREML to partition the covariance between the same phe-

notype measured in the mother and offspring, although the

method has previously been used to investigate genetic co-

variance between offspring BW and cardiometabolic

traits56 and family socio-economic position and offspring

educational attainment.59 Genetic covariance was close to

zero for maternal BMI and offspring BW, suggesting that

genetic confounding (Figure 1) does not explain this associ-

ation. This is consistent with MR evidence,22 paternal neg-

ative exposure control studies,9,13,71,72 and evidence of

minimal shared genetic aetiology between BW and adult

BMI.56 In contrast, offspring genotype explained almost

half of the covariance between maternal BMI and offspring

Figure 2. Estimates of phenotypic covariance (CovP), genetic covariance (CovG) and the ratio of CovG to CovP, between maternal BMI and offspring

phenotype, from the combined cohorts (pooled IPD estimates). All variables were standardized to give mean zero and variance one in the combined

cohorts, therefore phenotypic covariances are equivalent to Pearson correlation coefficients. If CovG and CovE (the residual covariance) are opposite

in sign then CovG:CovP may be negative or >1; in this case CovG:CovP cannot be interpreted as a proportion, but still gives an indication of the extent

to which phenotypic covariance is explained by genotype. BW, birth weight, BMI, body mass index.

Table 2. Correlation matrices for maternal and offspring phenotypic variables. Values are Pearson correlation coefficients

Cohort Phenotype Birth weight 1 year BMI 5 year BMI 10 year BMI 15 year BMI 31 year BMI 46 year BMI

NFBC1966 Maternal BMI 0.22 0.13 0.16 0.22 0.22 0.18 0.16

Birth weight 0.22 0.20 0.15 0.11 0.06 0.06

1 year BMI 0.49 0.32 0.27 0.17 0.12

5 year BMI 0.66 0.53 0.35 0.26

10 year BMI 0.77 0.50 0.40

15 year BMI 0.58 0.49

31 year BMI 0.80

NFBC1986 Maternal BMI 0.19 0.09 0.19 0.25 0.27

Birth weight 0.18 0.18 0.13 0.08

1 year BMI 0.53 0.34 0.22

5 year BMI 0.75 0.61

10 year BMI 0.77

ALSPAC Maternal BMI 0.13 0.09 0.19 0.32 0.35

Birth weight 0.20 0.18 0.13 0.10

1 year BMI 0.44 0.25 0.20

5 year BMI 0.50 0.39

10 year BMI 0.79
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BMI in late childhood and adolescence, which is consistent

with an important role for genetic confounding for this lat-

ter association. However, our present data are insufficient

to firmly draw this conclusion: because of the correlation

between offspring genotype and maternal genotype, our es-

timate of genetic covariance could include a contribution

from any effects of maternal genotype on offspring BMI

via the offspring’s prenatal or postnatal environment, in-

cluding any causal intrauterine effect. Data from a recent

study suggest that parental BMI-increasing genotype does

not have a large indirect effect on offspring BMI via the

offspring’s environment,73 which in combination with our

data would suggest an important role for genetic

confounding, consistent with MR,11,23 within sibship

analyses,24,25 and paternal negative exposure control stud-

ies.8–13,26 In future work it will be important use the ma-

ternal GCTA-GREML model70 to test for maternal genetic

effects on childhood BMI, which if absent would provide

more evidence for the presence of genetic confounding

when considered in combination with our present results.

It should also be noted that our estimate of genetic covari-

ance only takes into account genetic variation captured by

common imputed SNPs, and therefore represents a lower

bound on the true genetic covariance.

Simulation studies suggest that the GCTA-GREML

model is robust to violation of several of its assumptions.74

However, GCTA-GREML estimates can be biased if causal

genetic variants have dissimilar MAF or linkage disequilib-

rium (LD) properties to the SNPs used to calculate the

GRM.36,62,74,75 A recent simulation study by Evans et al.37

concluded that MAF stratified (MS) or LD and MAF strati-

fied (LDMS) GCTA-GREML models are most robust to

these potential biases; unfortunately we had insufficient

sample size to implement GCTA-GREML-MS or GCTA-

GREML-LDMS. However, we are reassured by the empiri-

cal results presented by Evans et al.: in the UK Biobank

single-component-GCTA-GREML (GCTA-GREML-SC)

using imputed SNPs with MAF >0.01 gave a similar SNP

heritability estimate for BMI to the gold standard GCTA-

GREML-LDMS-I model.37 Given that we used SNPs with

MAF >0.01 for our primary GCTA-GREML-SC analyses,

it seems unlikely that our estimates for the ratio of genetic

to phenotypic covariance are substantively affected by

MAF or LD related biases.

Strengths and Limitations

Our study has several important strengths. We analysed

rich prospective data from three birth cohorts, collected

from early pregnancy to adolescence (and until middle age

in one study). Our use of bivariate GCTA-GREML en-

abled inference on the combined effects of hundreds or

thousands of genetic variants that individually would not

be observable. Furthermore, we meta-analysed data from

three cohorts, giving sufficient sample size to obtain statis-

tically robust evidence for genetic covariance. However,

replication in other birth cohorts would be desirable, par-

ticularly as the mothers in our cohorts were lean compared

with many present-day populations in high-income coun-

tries.5 Our primary pooled IPD estimates were not mean-

ingfully changed when we instead used standard

meta-analysis with a random effects model, relaxing the as-

sumption of effect homogeneity (Supplementary Notes/

Tables/Figures S41–S47, available as Supplementary data

at IJE online). We conducted extensive sensitivity analyses

to explore the likelihood of bias due to confounding by

familial environment45 or population stratification76,77

(Supplementary Notes/Tables/Figures S20–S29, S34 and

S35, available as Supplementary data at IJE online). Given

reassuring results from analyses in which we (i) varied the

relatedness exclusion threshold, (ii) fitted a large number

of principal components as fixed effects, and (iii) used dis-

joint halves of the genome to test for inflation due to popu-

lation structure, we feel that neither coarse nor fine

population structure are likely to pose a serious threat to

the validity of our findings.

Several limitations apply to this work. First, assortative

mating has been observed for BMI,78 and the implications

for heritability estimation using GCTA-GREML are cur-

rently unclear. Second, selection bias may occur even in

studies such as ours that estimate genetic effects.79 We

note that associations between maternal BMI and offspring

BW were similar in the samples used for our main analyses

and the larger sample of live born babies at baseline

(Supplementary Note S48 and Supplementary Table S49,

available as Supplementary data at IJE online), suggesting

that this phenotypic association is unlikely to be meaning-

fully affected by selection bias. Although we are unable to

rule out an effect of selection bias on our genetic covari-

ance estimates, it seems unlikely that such an effect would

be of sufficient magnitude to wholly account for our

results. Finally, weight at birth and BMI from childhood to

adulthood are imperfect proxy measures for adiposity.

However, there is evidence that the correlation with di-

rectly measured adiposity is strong for child and adult

BMI80,81 and moderate for neonatal weight.82

Conclusion

In conclusion, our data are consistent with, although do

not confirm, the hypothesis that genetic confounding

explains a substantial part of the association between ma-

ternal pre-pregnancy BMI and offspring adolescent BMI. It

will be important to confirm whether this is the case,
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because if there is substantial genetic confounding then in-

tervention to reduce maternal pre-pregnancy BMI with the

aim of reducing offspring obesity risk will have a smaller

effect than if such confounding did not exist.

Supplementary data

Supplementary data are available at IJE online.

Funding

NFBC1966 and 1986 have received financial support from the

Academy of Finland [EGEA, grant number: 285547]; University

Hospital Oulu, Biocenter, University of Oulu, Finland [grant num-

ber: 75617; 2016-20]; NIHM [grant number: MH063706]; Juselius

Foundation; NHLBI [grant number: 5R01HL087679-02] through

the STAMPEED program [grant number: 1RL1MH083268-01]; the

European Commission [EURO-BLCS, Framework 5 award QLG1-

CT-2000-01643], the Medical Research Council, UK [grant num-

bers: MR/M013138/1, MRC/BBSRC, MR/S03658X/1 (JPI

HDHL)]; the EU H2020 DynaHEALTH action [grant number:

633595]; the EU H2020-HCO-2004 iHEALTH Action [grant num-

ber: 643774]; the EU H2020-PHC-2014 ALEC Action [grant num-

ber: 633212]; the EU H2020-SC1-2016-2017 LifeCycle Action

[grant number: 733206]; the EU H2020-MSCA-ITN-2016 CAPICE

Action [grant number: 721567]. The DNA extractions, sample qual-

ity controls, biobank upkeep and aliquoting were performed in the

National Public Health Institute, Biomedicum Helsinki, Finland and

supported financially by the Academy of Finland and Biocentrum

Helsinki. The UK Medical Research Council and Wellcome [grant

number: 102215/2/13/2] and the University of Bristol provide core

support for ALSPAC. Genotyping of the ALSPAC maternal samples

was funded by the Wellcome Trust [grant number: WT088806] and

the offspring samples were genotyped by Sample Logistics and

Genotyping Facilities at the Wellcome Trust Sanger Institute and

LabCorp (Laboratory Corporation of America) using support from

23andMe. This study was also supported by the US National

Institute of Health [grant number: R01 DK10324] and the

European Research Council under the European Union’s Seventh

Framework Programme (FP7/2007–2013) / ERC grant agreement

[grant number: 669545]. A comprehensive list of grants funding is

available on the ALSPAC website (http://www.bristol.ac.uk/alspac/

external/documents/grant-acknowledgements.pdf). T.A.B. is sup-

ported by the Medical Research Council (UK) [grant number: MR/

K501281/1]. D.M.E. and D.A.L. work in / are affiliated with a unit

that is supported by the UK Medical Research Council [grant num-

ber: MC_UU_00011/6] and D.A.L. is a NIHR Senior Investigator

[grant number: NF-SI-0611–10196]. I.P. is funded by the World

Cancer Research Fund (WCRF UK) and World Cancer Research

Fund International [grant number: 2017/1641] and the Wellcome

Trust [grant number: WT205915].

This publication is the work of the authors and T.A.B., M.-R.J.

and D.A.L. will serve as guarantors for the contents of this paper.

Acknowledgements
We thank Julian Higgins, Nic Timpson, Ioanna Tzoulaki, Paul

Aylin, Laura Howe, Carolina Borges, Rebecca Richmond and Eva

Krapohl for helpful discussions, Amanda Hill and David Hughes for

support in delivery and management of the ALSPAC data and the

NFBC study team for support in delivery and management of the

NFBC data. We thank all NFBC study participants and staff, and

the late Professor Paula Rantakallio (launch of NFBCs), and Ms

Outi Tornwall and Ms Minttu Jussila (DNA biobanking). The

authors would like to acknowledge the contribution of the late

Academian of Science Leena Peltonen. We are extremely grateful to

all the families who took part in ALSPAC, the midwives for their

help in recruiting them, and the whole ALSPAC team, which

includes interviewers, computer and laboratory technicians, clerical

workers, research scientists, volunteers, managers, receptionists and

nurses. The views expressed in this paper are those of the authors

and not necessarily any people acknowledged here. The authors take

full responsibility for the integrity of the research.

Conflict of interest: D.A.L. has received support from numerous na-

tional and international government and charity funders and from

Medtronic LTD and Roche Diagnostics for research unconnected

with that presented in this study. All other authors report no conflict

of interest.

References

1. Whitaker RC, Dietz WH. Role of the prenatal environment in

the development of obesity. J Pediatr 1998;132:768–76.

2. Taylor P, Poston L. Developmental programming of obesity in

mammals. Exp Physiol 2007;92:287–98.

3. Godfrey KM, Reynolds RM, Prescott SL et al. Influence of ma-

ternal obesity on the long-term health of offspring. Lancet

Diabetes Endocrinol 2017;5:53–64.

4. Hanson M, Barker M, Dodd JM et al. Interventions to prevent

maternal obesity before conception, during pregnancy, and post

partum. Lancet Diabetes Endo 2017;5:65–76.

5. Poston L, Caleyachetty R, Cnattingius S et al. Preconceptional

and maternal obesity: epidemiology and health consequences.

Lancet Diabetes Endo 2016;4:1025–36.

6. Davies S. Annual Report of the Chief Medical Officer, 2038: The

Health of the 51%: Women. London: Department of Health,

2015.

7. HAPO Study Cooperative Research Group. Hyperglycaemia and

Adverse Pregnancy Outcome (HAPO) Study: associations with

maternal body mass index. BJOG 2010;5:575–84.

8. Davey Smith G, Steer C, Leary S, Ness A. Is there an intrauterine

influence on obesity? Evidence from parent–child associations in

the Avon Longitudinal Study of Parents and Children

(ALSPAC). Arch Dis Child 2007;92:876–80.

9. Fleten C, Nystad W, Stigum H et al. Parent-offspring body mass

index associations in the Norwegian Mother and Child Cohort

Study: a family-based approach to studying the role of the intra-

uterine environment in childhood adiposity. Am J Epidemiol

2012;176:83–92.

10. Patro B, Liber A, Zalewski B, Poston L, Szajewska H, Koletzko

B. Maternal and paternal body mass index and offspring obesity:

a systematic review. Ann Nutr Metab 2013;63:32–41.

11. Lawlor DA, Timpson NJ, Harbord RM et al. Exploring the de-

velopmental overnutrition hypothesis using parental–offspring

associations and FTO as an instrumental variable. PLoS Med

2008;5:e33.

12. Gaillard R, Steegers EA, Duijts L et al. Childhood cardiometa-

bolic outcomes of maternal obesity during pregnancy: The

Generation R Study. Hypertension 2014;63:683–91.

International Journal of Epidemiology, 2019, Vol. 0, No. 0 9

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/advance-article-abstract/doi/10.1093/ije/dyz095/5487736 by London School of H

ygiene & Tropical M
edicine user on 17 M

ay 2019

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyz095#supplementary-data
http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
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