
 

 1 

Short-form paper 1 

Revised interpretation of the Hain Lifescience GenoType MTBC to differentiate Mycobacterium 2 

canettii and members of the M. tuberculosis complex 3 

 4 

Running title: Hain GenoType MTBC 5 

 6 

Chloé Loiseau1,2, Daniela Brites1,2, Irmgard Moser3, Francesc Coll4, Christine Pourcel5, Suelee Robbe-7 

Austerman6, Vincent Escuyer7, Kimberlee A. Musser7, Sharon J. Peacock8, Silke Feuerriegel9,10, 8 

Thomas A. Kohl9,10, Stefan Niemann9,10, Sebastien Gagneux1,2, Claudio U. Köser11* 9 

 10 

1Swiss Tropical and Public Health Institute, Basel, Switzerland. 11 

2University of Basel, Basel, Switzerland. 12 

3Friedrich-Loeffler-Institut, Federal Institute for Animal Health, Institute of Molecular Pathogenesis, 13 

Jena, Germany. 14 

4Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, 15 

London, UK. 16 

5Institute for Integrative Biology of the Cell, Université Paris-Sud, Université Paris-Saclay, Gif-sur-17 

Yvette, France. 18 

6National Veterinary Services Laboratories, United States Department of Agriculture, Ames Iowa, 19 

USA. 20 

7Wadsworth Center, New York State Department of Health, Albany, New York, USA. 21 

8Department of Medicine, University of Cambridge, Cambridge, UK. 22 

9Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany. 23 

10German Center for Infection Research, Partner site Hamburg-Lübeck-Borstel-Riems, Germany. 24 

11Department of Genetics, University of Cambridge, Cambridge, UK. 25 

 26 

AAC Accepted Manuscript Posted Online 8 April 2019
Antimicrob. Agents Chemother. doi:10.1128/AAC.00159-19
This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Foreign copyrights may apply.

 on M
ay 13, 2019 by guest

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


 

 2 

*Corresponding author: cuk21@cam.ac.uk  27 

 on M
ay 13, 2019 by guest

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


 

 3 

Abstract 28 

Using 894 phylogenetically diverse genomes of the Mycobacterium tuberculosis complex (MTBC), we 29 

simulated in silico the ability of the Hain Lifescience GenoType MTBC to differentiate the causative 30 

agents of tuberculosis. We propose a revised interpretation of this assay to reflect its strengths (e.g. 31 

it can distinguish some strains of M. canettii and variants of M. bovis that are not intrinsically 32 

resistant to pyrazinamide) and limitations (e.g. M. orygis cannot be differentiated from M. 33 

africanum). 34 

 35 

Manuscript 36 

The IVD-CE marked Hain Lifescience GenoType MTBC is the oldest and likely most widely used 37 

commercial assay to differentiate the causative agents of tuberculosis (TB) (1). Strictly speaking, 38 

these comprise Mycobacterium canettii, which is almost exclusively limited to the Horn of Africa, on 39 

the one hand and several species/ecotypes of the M. tuberculosis complex (MTBC) on the other, 40 

although most researchers and guidelines consider M. canettii to be part of the MTBC (2, 3). 41 

Clinically, the early identification of the precise causative agent of TB is important because it can 42 

serve as a marker for intrinsic resistance or may inform the attribution of the source of infection 43 

(e.g. in case of M. bovis, intrinsic resistance to pyrazinamide can usually be ruled in and a human 44 

source for the infection is unlikely (4)). 45 

 Throughout the past decade, the interpretation of the GenoType MTBC, but not its design, 46 

has been revised to reflect changes in our understanding of the causative agents of TB (1, 3, 5). More 47 

recently, several new animal species/ecotypes have been discovered, which prompted us to 48 

investigate to what extent these could be differentiated with the Hain assay using a collection of 894 49 

diverse genomes representing M. canettii and major phylogenetic groups of MTBC (Figure S1 and 50 

Table S1) (6). This was possible because Hain Lifescience has filed a European patent (EP1490518B1) 51 

for its assay, which relies on a 23 rRNA probe to identify M. canettii/MTBC as a whole, whereas 52 

mutations in gyrB and the RD1BCG deletion differentiate individual species/ecotypes (Figures S1 and 53 
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S2 and Table S2 (7)). Specifically, we typed all 894 genomes in silico for the SNP and deletion markers 54 

from the patent (Supplemental methods). 55 

 The current package insert of the GenoType MTBC lists seven binding patterns for M. 56 

canettii or MTBC isolates (patterns 2-8 in Figure 1 and Table S1). In 2010, however, Fabre et al. 57 

demonstrated experimentally that a minority of M. canettii strains yield a novel pattern, which does 58 

not feature in the package insert (8). Our simulation confirmed these results. Specifically, two of the 59 

M. canettii strains with the unusual experimental pattern (i.e. Percy157 and Percy525) from Fabre et 60 

al., for which genomes were available and, therefore, could be included in our study, also yielded 61 

the novel pattern in silico (pattern 1 in Figure 1 and Table S1) (8). The remaining five M. canettii 62 

genomes from Fabre et al. (i.e. Percy22, Percy32, Percy50, Percy79, and Percy301) could not be 63 

differentiated from M. tuberculosis in silico, which was in agreement with the experimental findings 64 

(pattern 2 in Figure 1 and Table S1) (8). Given the highly recombinogenic nature of M. canettii, it is 65 

not surprising that this species yields two different patterns (9, 10). All representatives of this 66 

species, including the two strains that gave the new binding pattern experimentally and in silico, 67 

have been found to be resistant to pyrazinamide when tested with the BACTEC MGIT 960 at 100 68 

g/ml, the only critical concentration recognized by the Clinical and Laboratory Standards Institute 69 

and the World Health Organization (8, 11-16). Although it is unclear whether this phenotype is due 70 

to a single mechanism shared by all strains (e.g. rpsA T5A) or whether different mutations are 71 

responsible in different strains (e.g. panD M117T or a series of pncA mutations (Table S3)), we 72 

recommend that the package insert is updated to include this novel pattern as “M. canettii 73 

(intrinsically resistant to pyrazinamide)” (13, 17-19). 74 

Moreover, our findings suggest the following changes for the remaining seven binding 75 

patterns (Figure 1 and S1 and Table S1). First, pattern 3, currently used to differentiate M. africanum 76 

from the rest of the MTBC and M. canettii, has to be revised since our analysis showed this pattern 77 

cannot distinguish M. africanum from M. orygis, M. pinnipedii, nor the clade A1 ecotypes (i.e. M. 78 

mungi, M. suricattae, the chimpanzee bacillus, and the dassie bacillus) (6, 20, 21). Second, for the 79 
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sake of clarity we would separate M. bovis and M. caprae as they belong to two independent 80 

phylogenetic groups and are usually recognised as separate species/ecotypes (3). By contrast, BCG 81 

was derived from a M. bovis strain and is best described as M. bovis BCG to emphasize its intrinsic 82 

resistance to pyrazinamide (4). Finally, the current package insert features two binding patterns for 83 

“M. bovis subsp. caprae”, of which one is described to occur in only 5% of cases of M. caprae (5). 84 

Our collection featured seven genomes consistent with this rarer pattern. However, the seven 85 

genomes did not group together phylogenetically (Figure S1). Three of the strains were isolated in 86 

2009 from primates that were placed in quarantine upon entering the United States (22, 23). Their 87 

genomes grouped together with the M. caprae genomes on the phylogeny and shared the lepA 88 

V424V marker for this species (24). By contrast, the other four genomes were more closely related 89 

to M. bovis, but lacked the pncA H57D mutation that is responsible for intrinsic pyrazinamide 90 

resistance in this species (7, 13). Three of these isolates were isolated from humans in Malawi and 91 

the fourth from an antelope in Germany. For the latter sample, we knew the spoligotyping pattern, 92 

which we used to query the M. bovis spoligotype database (25). The spoligotype for the antelope 93 

isolate from 1996 (SB1898) appears to be very rare as only one identical representative was found, 94 

which was submitted from Spain in 2009. Thus, it is unclear whether these four strains represent a 95 

novel ecotype or species, but, because they are phylogenetically closer to M. bovis than M. caprae, 96 

we recommend that pattern 6 should be reported as “M. caprae/M. bovis (not intrinsically resistant 97 

to pyrazinamide)”.  98 

M. orygis has been isolated from many different animals and there is a growing recognition 99 

that it is a zoonotic source of human TB (26). Our in silico typing approach confirmed that M. orygis 100 

could be specifically identified by a mutation at codon 329 of gyrB (7). Since this marker is contained 101 

within the gyrB amplicon, we suggest it could be added to the Hain assay, as this would avoid 102 

misclassifications, such as in Rahim et al. in which cattle from Bangladesh were erroneously reported 103 

to have been infected with M. africanum instead of M. orygis (27). 104 

 on M
ay 13, 2019 by guest

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


 

 6 

 The findings in this study are important for two reasons. First, most of our proposed changes 105 

can be implemented easily by updating the package insert of the Hain Lifescience GenoType MTBC 106 

(5). More broadly, given that whole-genome sequencing is now increasingly being used as a routine 107 

diagnostic tool, it would be possible to implement our in silico surveillance approach in real time to 108 

automatically flag unusual isolates for experimental follow-up. In fact, if clinical sequencing 109 

providers, such as Public Health England in the United Kingdom, were to offer this as a professional 110 

service, it could generate much-needed revenue to reduce the cost of sequencing to public health 111 

systems and, therefore, the tax payer, whilst enabling commercial companies to conduct post-112 

marketing surveillance for genotypic assays comprehensively and cost-effectively – a win-win 113 

situation for all parties.  114 
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Figure 1. Proposed interpretation of binding patterns of Hain Lifescience GenoType MTBC. 115 

Eight binding patterns are possible for samples that contain a single strain of MTBC or M. canettii. 116 

The first binding pattern is not currently included in the package insert of the GenoType MTBC (5, 8). 117 

With the exception of pattern 4 for M. microti, the interpretations of the remaining patterns were 118 

updated to include information about intrinsic resistance to antibiotics and/or to reflect the 119 

improved understanding of the phylogenetic diversity amongst the causative agents of TB. More 120 

information about clade A1 can be found elsewhere (6). Additional binding patterns are possible for 121 

samples that are negative, contain other bacteria, or when the assay was not carried out correctly 122 

(in these cases one or more of the conjugate control (CC), universal control (UC), or MTBC bands 123 

would be negative (5)). 124 

   125 
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Clade A1: M. mungi, M. suricattae, Dassie bacillus, Chimpanzee bacillus
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