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Burkholderia pseudomallei is the cause of melioidosis, a severe and potentially fatal disease of humans and animals. It is endemic
in northern Australia and Southeast Asia and is found in soil and surface water. The environmental distribution of B. pseu-
domallei worldwide and within countries where it is endemic, such as the Lao People’s Democratic Republic (Laos), remains un-
clear. However, this knowledge is important to our understanding of the ecology and epidemiology of B. pseudomallei and to
facilitate public health interventions. Sensitive and specific methods to detect B. pseudomallei in environmental samples are
therefore needed. The aim of this study was to compare molecular and culture-based methods for the detection of B. pseudomal-
lei in soil and surface water in order to identify the optimal approach for future environmental studies in Laos. Molecular detec-
tion by quantitative real-time PCR (qQPCR) was attempted after DNA extraction directly from soil or water samples or after an
overnight enrichment step. The positivity rates obtained by qPCR were compared to those obtained by different culture tech-
niques. The rate of detection from soil samples by qPCR following culture enrichment was significantly higher (84/100) than that
by individual culture methods and all culture methods combined (44/100; P < 0.001). Similarly, qPCR following enrichment was
the most sensitive method for filtered river water compared with the sensitivity of the individual methods and all individual
methods combined. In conclusion, molecular detection following an enrichment step has proven to be a sensitive and reliable
approach for B. pseudomallei detection in Lao environmental samples and is recommended as the preferred method for future

surveys.

he Gram-negative bacterial saprophyte Burkholderia pseu-

domallei is the causative agent of melioidosis and is found in
soil and surface water predominantly in regions of Southeast Asia
and northern Australia, where the organism is endemic (1-3). Itis
a common cause of fatal community-acquired bacteremia, pneu-
monia, and visceral and soft tissue abscesses and poses a signifi-
cant public health burden (4, 5). Most patients are thought to
contract the infection from skin inoculation; other possible routes
of transmission are inhalation and ingestion (6). Due to the high
mortality from infection with the organism and potential trans-
mission of the organism by aerosols, B. pseudomallei is classified as
a tier 1 select agent (7). Melioidosis was first reported in the Lao
People’s Democratic Republic (Laos) in 2001 with the description
of two patients with the disease (8). In a randomized soil survey
conducted in 2009, the highest isolation frequency was in Sara-
vane Province (southern Laos) (9). Little is known about the true
geographical distribution of melioidosis across the country, high-
lighting the need for a detailed risk map to support empirical
patient management. The current “gold standard” for detection of
environmental B. pseudomallei is culture from soil or water sam-
ples (10, 11). Culture methods for soil samples have successfully
been employed in many studies, with proposed consensus guide-
lines being based on a simplified qualitative technique recently
published (11). Similar guidelines do not yet exist for the detec-
tion of B. pseudomallei in water (3, 11, 12). Investigations of B.
pseudomallei in Laos have highlighted the challenges of detecting
the pathogen in different environmental samples (9, 12), hamper-
ing the development of a detailed risk map (9). Despite their ex-
tensive use, culture methods have their limitations, including the
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potential overgrowth of B. pseudomallei by other environmental
bacterial species, especially when it is present in small numbers. In
addition, bacteria in a viable but noncultivable state are not de-
tectable (13), further decreasing the sensitivity of this approach.
To overcome these limitations, molecular methods have suc-
cessfully been developed and applied to detect B. pseudomallei in
soil (14, 15). A study in Thailand demonstrated that molecular
detection estimated the bacterial load per gram of soil to be 10
times higher than that determined by culture methods (15), and
investigations from northern Australia showed that quantitative
real-time PCR (qPCR) following an enrichment step yielded a
higher positivity rate than culture alone (14). Furthermore, the
high specificity of molecular assays allows the specific detection of
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B. pseudomallei even if closely related bacteria, such as Burkhold-
eria thailandensis, Burkholderia vietnamiensis, Burkholderia cepa-
cia, and other Burkholderia and Ralstonia species, are present in
the same environment (16-18). Although molecular methods
have been used for the detection of B. pseudomallei from soil, no
molecular methods for the detection of the pathogen directly from
water samples have been described. As soil and water sampling is
crucial for mapping disease risks in the country, updated tech-
niques suitable for large-scale screening are urgently needed.

The aim of this study was to use described and novel molecular
methods for the detection of B. pseudomallei in soil and water and
evaluate those approaches in comparison to different culture tech-
niques.

MATERIALS AND METHODS

Sample collection. (i) Soil. Soil sampling was performed during the dry
season (April 2013) in a rice paddy near the village of Ban Nabone, Vien-
tiane Province, Laos (18°22'51.4"N, 102°25'27.8"E; altitude, 195 m). Sam-
ples were collected from two depths (30 cm and 60 cm) at 50 random
points within a section of the field previously determined to have the
highest rates of positivity for B. pseudomallei by culture (19), with a min-
imum distance of 2 m being allowed between sampling sites. Oral in-
formed consent for the removal of soil samples was obtained from the
farmers concerned, and written permission was obtained from the rele-
vant authorities. Samples were collected from the field using a hand auger
that was disinfected between samplings with 70% alcohol (9). The sam-
ples were placed in sterile plastic bags, which were placed in an insulated
box that was kept in the shade and maintained at ambient temperature
during transport and subsequent manipulation. To ensure that represen-
tative subsamples were obtained, the two-dimensional Japanese slab cake
method was used, and ~0.5-g (direct extraction from soil), ~10-g (sim-
plified culture method [11]), ~20-g (extraction postenrichment [14]),
and ~100-g (conventional culture method [20]) subsamples were ob-
tained (Fig. 1) (21, 22).

Samples were collected within 24 h of each other, and subsampling was
performed up to 72 h postsampling. Processing of all samples was started
on the same day at 120 h postsampling.

(ii) Water. Water samples (600 ml; n = 20) were collected along the
course of the Sedone River (Saravane Province, Laos) (n = 7) and its main
tributaries (n = 13) at the onset of the rainy season (June 2013; mean
turbidity, 257 nephelometric turbidity units; mean water temperature,
26.3°C; mean pH, 7.1; see Table S2 in the supplemental material). Collec-
tion bottles were triple rinsed with river water from the collection site
before collecting the sample. The water was mixed thoroughly, and 30-ml
subsamples were filtered within 8 h of collection, using 47-mm-diameter
membranes. Six subsamples of water were filtered from each site; three
were filtered using 0.2-pm-pore-size filters (30 ml, cellulose acetate mem-
brane filter; Sartorius), and three were filtered using 3.0-pm-pore-size
filters (cellulose nitrate membrane filter; Sartorius) in an attempt to esti-
mate total and attached bacterial loads, respectively (Fig. 1) (23, 24). A
manual pump and a 1-liter glass vacuum flask with a stainless steel funnel
were used, and membrane supports were sterilized with 70% ethanol be-
tween filtrations. In addition, Moore’s swab samples (n = 10) were col-
lected as described previously (12).

Culture techniques. (i) Soil. Soil was cultured using both plating of
soil suspension supernatants on Ashdown’s agar as previously described
(20) and the simplified broth enrichment culture method recommended
in recent guidelines (11). The results of this comparison (unpublished
data) will be reported elsewhere.

(ii) Water. Three methods were used concurrently to attempt to cul-
ture B. pseudomallei from water at each sampling site. First, Moore’s swabs
(n = 10) were used as described previously (12). Second, individual filters
from each sampling point (n = 40; Fig. 1) were placed in 10 ml modified
Ashdown’s broth (14) and incubated aerobically without shaking for 7
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FIG 1 Schematic representation of the methodologies and environmental sam-
ples used in the study. Soil samples were taken from two different depths (30 cm
and 60 cm; ~0.5 g for DS DNA extraction, ~10 g for simplified culture, ~20 g for
ES DNA extraction, ~100 g for conventional culture) at 50 positions in the rice
field, and all samples were processed by direct or enrichment culture, direct DNA
extraction, or DNA extraction postenrichment. Water samples were collected at 20
different sites, separate samples were filtered through filters of two different pore
sizes (total n = 40), and all filters were processed by direct and enrichment culture,
while filters were split for molecular methods (direct DNA extraction and DNA
extraction postenrichment). In addition, 10 Moore’s swabs were collected, and the
water from these was cultured directly on solid medium (not shown), as previously
described (12). The latitudes/longitudes of the sampling sites were as follows:
15°7'26.22"N/105°48'28.02"E, 15°21'38.81"N/105°49'52.85"E, 15°34'48.01"N/
105°48'42.50"E, 15°40'4.62"N/105°54'40.13"E, 15°42'31.58"N/106°4'7.87"E,
15°47'23.56"N/106°17'26.87"E, 15°42'41.46"N/106°25'41.95"E, 15°13'16.88"N/
105°44'34.96"E, 15°20'5.86"N/105°58'58.87"E, 15°15'30.33"N/105°55'59.81"E,
15°29'44.72"N/105°45'51.05"E, 15°41'44.84"N/106°16'1.23"E, 15°38'12.39"N/
106°22'3.86"E, 15°39'16.84"N/105°50'54.55"E, 15°42'0.52"N/105°58'30.19" E,
15°42'26.27'N/106°8'38.07"E, 15°40'52.12"N/106°25'59.19"E, 15°32'24.51"N/
106°15'54.90"E, 15°27'59.66"N/106°10"12.32"E, 15°24'33.56"N/106°5'27.98"E.

days at 40°C. At days 3 and 7, 10-pl and 100-pl samples of broth were
subcultured onto Ashdown’s agar containing gentamicin at 8 mg/liter and
incubated at 40°C aerobically for 4 days with daily inspections for colonies
resembling B. pseudomallei (12). Third, filters from each sampling point
(n = 40; Fig. 1) were placed directly on Ashdown’s agar plates and cul-
tured at 40°C for up to 96 h. B. pseudomallei was identified and confirmed
as described previously (12). Briefly, all positive cultures were screened by
agglutination with a latex agglutination reagent specific for the 200-kDa
extracellular polysaccharide of B. pseudomallei and tested for susceptibil-
ity to amoxicillin-clavulanic acid (co-amoxiclav) and resistance to colistin
(8, 14). All suspected isolates were confirmed to be B. pseudomallei by
qPCR (16), and selected isolates were confirmed to be B. pseudomallei by
use of an API 20NE system.

Molecular detection. (i) Soil. Direct soil (DS) DNA extraction, in
which DNA was extracted from ~0.5 g of soil, was attempted using a kit
(PowerSoil DNA isolation kit; Mo Bio) as described previously (14). En-
richment soil (ES) DNA extraction was done as described previously (14)
with minor modifications. In brief, soil was homogenized in the modified
Ashdown’s enrichment broth, shaken for 2 h at 240 rpm, and then incu-
bated at 37°C for 22 h. The liquid phase (~10 ml) was decanted and
centrifuged at 700 X g for 2 min, and the supernatant (~7 ml) was re-
moved and aurintricarboxylic acid (14) was added. After further centrif-
ugation (45 min, 4,000 X g), DNA was extracted from the soil pellet (~0.5
g) as described previously (14).

(ii) Water. Filters were cut diametrically in half; one half was used to
extract DNA directly from the filter (direct filter [DF] extraction), while
the other half was subjected to an enrichment step (enrichment filter [EF]
extraction) (Fig. 1). For DF extraction, the filter membrane was cut into
small pieces using sterile scissors. DNA was extracted from the filter mem-
branes with the PowerSoil DNA isolation kit (Mo Bio), and the detach-
ment of soil particles could be visually observed. After 60 l of C1 solution
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TABLE 1 Isolates used to test the specificity of the molecular methods

Organism Source Location Strain
International reference strains
B. cepacia Environmental NA* NCTC 10743
B. thailandensis Environmental Thailand E264 (ATCC 700388)
Ralstonia pickettii Human Unknown ATCC 27511
Local isolates
B. pseudomallei (n = 9) Human Laos Clinical isolate”
B. pseudomallei (n = 8) Environment Laos Soil isolate”
B. cepacia (n =9) Human Laos Clinical isolate”
B. cepacia (n = 2) Environmental Laos Soil isolate®
Local competing soil flora®
Ralstonia spp. (n = 2) Environmental Vientiane, Laos Soil isolate?
Burkholderia spp. (n = 12) Environmental Vientiane and Luang Namtha, Laos Soil isolate”?

2 NA, not available.

b Identities were confirmed by determination of the colony morphology by use of the API 20NE system (bioMérieux, France) and molecular methods (36).

¢ Isolates collected during previous environmental surveys.

9 Identities were confirmed by use of the API 20NE system (bioMérieux, France) and 16S rRNA sequencing (GenBank accession numbers KM058066 to KM058079).

was added, DNA extraction was performed according to the manufactur-
er’s instructions (Mo Bio). The second half, used for EF extraction, was
incubated in modified Ashdown’s broth for 24 h at 37°C (14). Membranes
were repeatedly vortexed to release the sediment and bacteria, and after
incubation, the filters were removed and free sediment and bacteria were
pelleted (45 min, 4,000 X g). The pellet (~0.2 g) was processed for DNA
extraction as described previously (14).

qPCR. The PCR targets a 115-bp stretch in orf2 of the type III secretion
system gene cluster (TTS1) of B. pseudomallei and was performed, with
minor modifications, as described previously (14, 16). In brief, the 25-pl
master mix consisted of 1 U Platinum Tag DNA polymerase (Invitrogen),
500 nM each primer, 250 nM probe, 7 mM MgCl,, 1 X PCR buffer, 200
M deoxynucleoside triphosphates, and 4 pl of soil DNA. To reduce the
effect of inhibitors, 400 ng/pl of bovine serum albumin (BSA; New Eng-
land Biolabs, USA) was added (15). To control for PCR inhibitors, ~10°
copies of inhibitor control plasmid (47 kDa, Orientia tsutsugamushi [25,
26]) were amplified alone and in parallel spiked with 4 pl of sample DNA.
Inhibition was monitored as described previously (14). Amplification was
performed on a Rotor-Gene 6000 system (Qiagen, Germany) at 94°C for
10 min, and then 45 cycles of 94°C for 15 s and 60°C for 1 min were
performed. A standard curve was included in every run, using 1 genome
equivalent (GE)/pl to 10° GE/ul of B. pseudomallei (clinical isolate 1106a
from Thailand; assumed genome size, 7.25 Mb). Nontemplate controls
were added to each run and were always negative; i.e., no amplification
was detected. Extraction controls (# = 10) using molecular-grade water
(AccuGENE molecular biology water; Lonza) were used to rule out B.
pseudomallei contamination of reagents and equipment (27). Samples
with threshold cycle (C;) values below 40 were considered positive (28).
The limit of detection and the specificity of the assay under the conditions
described above were confirmed using B. pseudomallei (n = 17), B. thai-
landensis (n = 6), and B. cepacia (n = 11) isolates and other competing soil
flora (Table 1), artificial soil (29) (n = 4), as well as soil from an area where
melioidosis is not endemic (Germany, n = 4; latitude, 48°21'56.29"N;
longitude, 10°50'38.32"E; altitude, 514 m).

Data analysis. For the final analysis of the data, the results of all culture
methods from soil were combined, and the rate of positivity by any culture
method was compared with the rate of positivity by direct DNA extraction
or DNA extraction postenrichment. Statistical analysis was performed
using Stata/IC (v10) software (StataCorp, College Station, TX, USA).
Comparisons were made by the use of McNemar’s test (paired samples) or
the Mann-Whitney U test, as appropriate. Significance was set at a P value
of <0.05.
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Nucleotide sequence accession numbers. Sequences were analyzed
using NCBI-BLAST and subsequently submitted to GenBank and are ac-
cessible under accession numbers KM058066 to KM058079 (Table 1).

RESULTS

Comparison of methods for B. pseudomallei detection in soil.
The qPCR was highly specific (100%) when tested with a range of
reference strains and Lao clinical and environmental isolates (Ta-
ble 1). The local limit of detection (LOD), which was determined
using serial dilutions, was 8 GE/pl of soil DNA (equivalent to 32
GE/reaction).

Using the various culture methods, B. pseudomallei was de-
tected in 44 out of 100 soil samples (44%; see Table S1 in the
supplemental material). B. pseudomallei was detected in 6 out of
100 soil samples (6%) using DS DNA extraction, which was a
significantly smaller number of soil samples than the number in
which B. pseudomallei was detected by culture methods (P <
0.001). However, when using the ES DNA extraction method fol-
lowed by qPCR, nearly double the number of samples (84/100,
84%) were identified to be positive compared to the number pos-
itive by the culture approach (P < 0.001; Fig. 2). Samples positive
after direct extraction from soil contained between ~1 and 6 X
10> GE/g soil (range; median, ~1.3 X 10> GE/g soil). Of the 44
culture-positive soil samples, all but 1 were also positive by gPCR
following ES DNA extraction (97.7%). No inhibition was ob-
served with any of the extraction methods (change in C; value,
=2), suggesting the complete removal of inhibitors using the
commercial soil extraction kit. There was no difference in the
overall rates of positivity by PCR and/or culture between sam-
ples taken at 30 or 60 cm (for samples taken at 60 cm, 42/50
samples [84%)] were positive; for samples taken at 30 cm, 43/50
samples [86%] were positive).

Due to the culture step, reliable and accurate quantification of
B. pseudomallei by qPCR following enrichment was not possible.
However, it was observed that culture-positive soil samples had
significantly lower C; values after enrichment than culture-nega-
tive soil samples (median C; value for culture-positive soil sam-
ples = 27.4; interquartile ratio [IQR] of C;values = 23.4 to 30.7;
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FIG 2 Comparison of percent positivity by detection type for different envi-
ronmental sample types. The detection capacities for culture and for enrich-
ment, DNA extraction from soil, and qPCR were significantly different (*, P <
0.001). The results obtained by all different culture methods for the different
samples were combined.

median C; value for culture-negative soil samples = 34.3; IQR of
Cyvalues = 32.0 to 45.1; P = 0.0001; Fig. 3).

Comparison of methods for B. pseudomallei detection in
river water. Overall, samples taken at 15/20 (75%) sampling
points were positive by culture and/or PCR (Table 2; see also Table
S2 in the supplemental material). The yield obtained by direct
placement of filters on Ashdown’s agar (13/20, 65%) was higher
than that obtained from broth enrichment cultures (10/20, 50%);
the duration of broth enrichment prior to subculture made no
difference to the yield. The yield of the 0.2-pum-pore-size filter
(12/20, 60%) was higher than that of the 3-pm-pore-size filter
(6/20, 30%) when placed on agar; this difference was, however,
not significant (P = 0.070). No difference in yields from filters of
the two pore sizes was observed when broth enrichment was used.
Only in one case was culture of the filter directly on Ashdown’s
agar negative while the enrichment culture was positive with a
sample from the same sampling site. In total, 55% (11/20) of sam-
pling points were positive by qPCR when DNA was directly ex-
tracted from any filter and 75% (15/20) of sampling points were
positive by gPCR when the enrichment approach was used. Sam-
ples from nearly all qPCR-positive sites (14/15) were positive with
both filter sizes when using the molecular approach with enrich-
ment, with only 1 additional sample being positive with the 3-pum-
pore-size filter. No difference in the positivity rates by sampling
point was found when the molecular and culture methods were
compared (for enrichment and qPCR, 15/20 [75%] samples were
positive; for culture, 15/20 [75%] samples were positive). When
comparing rates of positivity for individual filters, gPCR posten-
richment was more often positive than culture methods (for
qPCR postenrichment versus direct plating, P = 0.003; for gPCR
postenrichment versus broth enrichment culture, P < 0.001).

The B. pseudomallei bacterial load was estimated to be ~7.5 X
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10° GE/liter river water (median; range, 8 X 10> to 1.3 X 10°
GE/liter river water) after direct DNA extraction from filter mem-
branes (pore sizes, 0.2 pm and 3 pm).

DISCUSSION

In order to increase the awareness of health care staff, assist with
patient management, and implement public health actions, the
availability of a detailed risk map for melioidosis is essential. Our
aim was to update and improve detection methods to facilitate
further research into the distribution of B. pseudomallei in the Lao
environment.

Bacterial culture methods have, until now, been the methods of
choice to detect B. pseudomallei in soil (9, 11, 20, 30). In this
investigation, B. pseudomallei was detected in 44% of the Lao soil
samples tested by culture, while DNA detection following an en-
richment step gave a much higher positivity rate for the same
sample set (84%). Use of an initial propagation step significantly
increased the ability to detect the bacterium in Lao soil, consistent
with findings from Australia (14), where DNA detection directly
from soil lacked sensitivity. Direct DNA detection from clay-rich
soils, like those found in the Lao rice paddy investigated in the
present study (~30 to 45% clay-size particles; data not shown),
can be extremely challenging, as clay particles can reduce the ex-
traction efficiency (14, 31) of commercial kits (32). It is therefore
important to include inhibition controls to identify one impor-
tant cause of false-negative results for samples. Despite the limi-
tations when extracting DNA directly from soil, B. pseudomallei
DNA has successfully been obtained from sandy loam soils from
northeastern Thailand (15) using the SoilMaster DNA extraction
kit (Epicentre Biotechnologies, USA). Interestingly, in that inves-
tigation the estimated bacterial counts per gram of soil were up to
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TABLE 2 Overview of detection methods and positivity frequency for individual water samples and sampling sites”

Positivity frequency”

After filtering through:
Technique A 0.2-pm-pore-size filter A 3-pm-pore-size filter In water By sample site
Culture techniques
Moore’s swab NA NA 2/10 (20) 2/10 (20)
Filtering, direct plating of filter on Ashdown’s agar® 12/20 (60) 6/20 (30) NA 13/20 (65)
Filtering, filter placement in Ashdown’s broth (3 days)“’d 6/20 (30) 6/20 (30) NA 10/20 (50)
Filtering, filter placement in Ashdown’s broth (7 days)“’d 6/20 (30) 6/20 (30) NA 10/20 (50)
Molecular techniques
Enrichment, qQPCR 14/20 (70) 15/20 (75) NA 15/20 (75)
Direct qPCR 8/20 (40) 10/20 (50) NA 11/20 (55)

@ The positivity of individual filters, as well as the overall positivity by sampling site, is listed for the individual techniques.
b Data represent the number of samples positive/total number of samples tested (percent). NA, not applicable.

¢ Combined observations after 48 h, 72 h, and 96 h.
@ Combined results for culture of 10-pl and 100-pl supernatants.

140 times higher than those in Lao samples from this study (in
Thailand the median is 1.8 X 10* GE/g soil [15]; in Laos the me-
dian is 1.3 X 10> GE/g soil). This overall lower B. pseudomallei
load in Lao soil could also be responsible for the increased diffi-
culties of bacterial DNA detection, and the observed correlation
between low C; values after enrichment and culture positivity
might point toward lower B. pseudomallei loads in Lao soil.

To reduce the influence of sample variations on the method
comparison, we employed a rigorous soil subsampling approach
(21,33, 34). Still, the possibility that variations in results are due to
an uneven distribution of the organism within the samples cannot
be ruled out (33). Quantitative real-time PCR assays are thought
to be highly specific, and the findings of extensive analytical spec-
ificity studies performed in this and previous studies (14, 16) sup-
port this. In addition, nontemplate and negative controls, used to
monitor the potential contamination of reagents and equipment,
were consistently negative, supporting the specificity of our re-
sults. In future studies, the inclusion of dedicated extraction con-
trols monitoring the DNA extraction efficiency should be consid-
ered to further increase the quality of the data.

As with B. pseudomallei detection from soil, nucleic acid ex-
traction from filters following an enrichment step proved to be the
most sensitive and reliable method to detect the organism in water
samples. This report represents the first description of the use of
molecular methods to detect B. pseudomallei in surface water sam-
ples. Water sampling campaigns might represent a promising al-
ternative to large-scale soil sampling campaigns, for example, by
using river water as an initial screen to determine whether B. pseu-
domalleiis present in the relevant catchment area (12). Despite the
overall high positivity rate obtained when using qPCR postenrich-
ment, only the combination of molecular and culture tech-
niques allowed the identification of a B. thailandensis isolate that
cross-reacted with the B. pseudomallei latex reagent (35) due to the
presence of a B. pseudomallei-like extracellular exopolysaccharide
(EPS), emphasizing that one methodology does not fit all research
questions.

In conclusion, molecular detection methods using an addi-
tional initial enrichment step have proven to be sensitive, specific,
and reliable approaches for the detection of B. pseudomallei in
environmental samples, particularly soil samples. They have the
potential for simple scale-up and are less time- and labor-inten-
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sive than culture methods. However, the consumables are more
expensive (~$9 per sample) than the consumables used for iden-
tification by agglutination assay alone (~$0.50 per sample), and
further follow-up phylogenetic investigations are limited without
isolation of the organism.

Additional studies are needed to investigate in particular the
water sampling approach and explore the influence of physical
and chemical characteristics as well as bacterial loads on the dif-
ferent B. pseudomallei detection methods. These data suggest that
molecular methods will be an important tool in establishing a
melioidosis risk map in Laos and elsewhere.
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