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Haplodiploidy has evolved repeatedly among invertebrates, and appears to be associated with inbreeding. Evolutionary biologists

have long debated the possible benefits for females in diplodiploid species to produce haploid sons–beginning their population’s

transition to haplodiploidy–and whether inbreeding promotes or inhibits this transition. However, little attention has been given

to what makes a haploid individual male rather than female, and whether the mechanism of sex determination may modulate

the costs and benefits of male haploidy. We remedy this by performing a theoretical analysis of the origin and invasion of male

haploidy across the full range of sex-determination mechanisms and sib-mating rates. We find that male haploidy is facilitated

by three different mechanisms of sex determination–all involving male heterogamety–and impeded by the others. We also find

that inbreeding does not pose an obvious evolutionary barrier, on account of a previously neglected sex-ratio effect whereby the

production of haploid sons leads to an abundance of granddaughters that is advantageous in the context of inbreeding. We find

empirical support for these predictions in a survey of sex determination and inbreeding across haplodiploids and their sister taxa.

KEY WORDS: Kin selection, haplodiploidy, inbreeding, male heterogamety, population genetics, sex chromosome, sex determi-

nation.

Impact Summary
This article deals with an important outstanding ques-

tion: why is reproduction, an essential feature of all

living systems, so variable across the tree of life?

Haplodiploidy––an unusual reproductive system in

which females develop from fertilised (diploid) eggs in

the usual way but males develop from unfertilised (hap-

loid) eggs–is one of the most common alternative repro-

ductive modes among animals, and has attracted huge

and sustained attention from evolutionary biologists for

decades, particularly in relation to its association with

eusocial insect societies.

Evolutionary biologists have long debated the pos-

sible benefits for females in diplodiploid species to start

producing haploid sons, and thereby begin their popula-

tion’s transition to haplodiploidy. However, little atten-

tion has been given to what makes haploid individuals

male rather than female in the first place, and how the

mechanism of sex determination affects the costs and

benefits of male haploidy. Moreover, there has been a

longstanding debate as to whether inbreeding tends to

promote or inhibit the evolution of haplodiploidy, with

the majority view tending to favour an inhibitory role

for inbreeding, on theoretical grounds, despite an ap-

parently strong positive association between inbreeding

and haplodiploidy in nature.

We address these problems by means of a theoret-

ical analysis of the evolution of male haploidy across

the full range of sex-determination mechanisms and

inbreeding rates. This reveals that male haploidy is
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facilitated by three different mechanisms of sex deter-

mination and is impeded by others, and that inbreeding

does not pose the evolutionary barrier that had previ-

ously been imagined. We also conduct an empirical sur-

vey of all known independent origins of haploidiploidy,

finding support for our theoretical predictions.

Sexual reproduction, whereby each offspring receives ge-

netic material from two parents, is by far the most common mode

of reproduction across the animal kingdom. Yet, in a sizeable

minority of extant animal species (�12%), whilst daughters are

produced sexually and receive a genome from both their mother

and their father, sons are produced asexually from unfertilised

eggs and have just one haploid genome that they derive from their

mother (Normark 2003; la Filia et al. 2015; Blackmon et al. 2017).

Such haplodiploid inheritance has evolved repeatedly and in a va-

riety of different invertebrate clades, where it is often associated

with gregarious broods and chronic inbreeding (Hamilton 1967,

1993; Normark 2004, 2006; Fig. 1A and B, Table S1).

The transition from standard diplodiploid sexual reproduc-

tion to haplodiploidy requires that some mothers start producing

haploid sons, and a long-running strand of evolutionary theory

has explored the possible benefits of doing so (Table 1). As the

de novo appearance of the haploid condition is likely associated

with substantial viability costs–which might be lessened under

inbreeding on account of the purging of recessive deleterious

alleles (Hartl and Brown 1970; Borgia 1980; Goldstein 1994;

Smith 2000)–it appears there must also be substantial benefits if

the transition to haplodiploidy is to be driven by natural selection.

According to the “maternal transmission advantage” hypothesis,

a female gains a twofold benefit from producing a haploid son

instead of a diploid son, as all the genes he successfully transmits

to future generations are derived from her, rather than half from

her and half from her mate (Brown 1964; Hartl and Brown 1970;

Bull 1979; Smith 2000). Whilst this advantage could potentially

explain the evolution of haplodiploidy in outbred populations,

the twofold benefit has been predicted to disappear as popula-

tions become increasingly inbred, because as a female becomes

increasingly related to her mates, her preventing them from ge-

netically contributing to her sons becomes increasingly pointless

(Brown 1964; Bull 1979; Smith 2000). Alternatively, some theo-

rists have suggested that haplodiploidy enables a level of control

over sex allocation that is not enjoyed under diplodiploidy, and

which might be particularly useful in the context of ecological

factors–such as inbreeding–that favour biased sex ratios (Hamil-

ton 1967; Borgia 1980; Bull 1983; Haig 1993; Normark 2004;

Burt and Trivers 2006).

However, whilst existing theory has considered the costs and

benefits of producing a haploid male, relatively little attention

has been given to the circumstances under which haploid indi-

viduals are expected to develop as males as opposed to females

in the first place. That is, the sex determination (SD) mechanism

employed by a given diplodiploid species may dictate whether

it is even possible for that species to transition to haplodiploidy,

irrespective of the costs and benefits involved. Moreover, whilst

existing theory frames the mother’s decision in terms of produc-

ing haploid sons versus diploid sons, of more relevance might be

the tradeoff between producing haploid offspring versus diploid

offspring, with the mother having little direct control of their sex.

For example, if diploid offspring are equally likely to develop as

sons or daughters, the production of haploid males might come

at the expense of biasing the overall sex ratio toward males, with

potential consequences for sex-ratio selection. Furthermore, the

SD mechanism will likely influence the sex of a haploid male’s

own offspring. For example, under classic haplodiploid inheri-

tance, haploid males father only daughters and not sons. This too

may have consequences for sex-ratio selection, particularly in the

context of an inbreeding lifestyle that favours female-biased sex

allocation.

Here, we investigate the origin and evolutionary invasibility

of haploid males in diploid populations for a range of different

SD mechanisms and sib-mating rates. First, we identify which

SD mechanisms–including different types of male (X0 and XY)

and female (ZW and Z0) heterogamety–lead haploid individuals

to develop as males versus females, with reference to published

data on the molecular mechanisms underpinning SD in differ-

ent taxonomic groups. Second, for those SD mechanisms that do

robustly allow for the production of haploid males, we develop

mathematical population models to quantify the likelihood of in-

vasion of male haploidy from rarity, as a function of sib-mating

rate. Third, we compare the resulting theoretical predictions with

the scant empirical data that exist in relation to mechanisms of

SD across haplodiploids and their sister taxa, and consider the

implications of our theoretical analysis for the longstanding puz-

zle as to whether inbreeding preceded or followed the evolution

of haplodiploidy.

Methods
THEORETICAL ANALYSIS

First, we investigate how the SD mechanism employed in a

diploid population will determine the sex of rare haploid in-

dividuals developing from unfertilised eggs. We exclude from

our analysis those mechanisms of SD that are “environmental”,

that is, where the haploid individual’s genomic constitution does

not determine its sex, but consider the full range of known–and
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A

B

Figure 1. The phylogenetic distribution of haplodiploidy among invertebrates. (A) The distribution of genetic sex determination systems

(GSDs) and haplodiploidy across invertebrates based on the Tree of Sex database (Tree of Sex Consortium 2014). The tree figure was

adapted from Tree of Sex Consortium (2014), but only including those tips for which relevant SD data was available. The innermost ring

depicts GSD systems (with male heterogamety in blue and female heterogamety in red). The outer ring depicts haplodiploid and related

SD systems (with dark green depicting “true” haplodiploidy (arrhenotoky), light green depicting “Paternal genome elimination, PGE”

where males develop from fertilized eggs but lose their paternal genome during development (Gardner and Ross 2014) and olive green

depicting species with haploid males that could either result from PGE or arrhenotoky. (B) Cladogram of all haplodiploid (arrhenotokous)

clades and their diploid sistergroups. Tree topology based on Misof et al. (2014), Blackmon et al. (2015), Johnson et al. (2018) and the Tree

of Life (http://tolweb.org/tree/). Pie charts show the frequencies of different SD systems for each clade (see Table S1), with X0 in pink,

XY in red and haplodiploidy in blue. Branch colour indicates if inbreeding is frequent (obligate, in blue), inbreeding is rare (facultative,

in red) or inbreeding rate is unknown (black). More details and references in Table S1.
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Table 1. An overview of adaptive hypotheses for the evolution of male haploidy.

Benefits of
haplodiploidy

Predictions under inbreeding References Notes

Maternal
transmission
advantage

Inbreeding inhibits
haplodiploidy, because drive
is only worthwhile in
heterozygotes.

(Brown 1964; Bull
1979; Smith
2000)

This effect is captured in the
present model.

Local mate
competition I

Inbreeding promotes
haplodiploidy, as it favours
female bias, and
haplodiploidy might enable
maternal control of sex
allocation.

(Hamilton 1967;
Borgia 1980;
Normark 2004)

Although mothers may control
offspring sex in haplodiploid
populations, this does not
mean that a mother who
chooses to produce a haploid
offspring in an otherwise
diploid population has much
control over her offspring’s
sex ratio, as her diploid
offspring are probably an
equal mix of sons and
daughters. Direct control of
sex allocation is neglected in
the present model.

Local mate
competition II

Inbreeding promotes
haplodiploidy, as inbreeding
favours female bias, and
producing haploid males
might lead to female bias in
subsequent generation.

(Bull 1983; Haig
1993; Burt and
Trivers 2006)

Bull (apparently incorrectly)
attributed this to Hamilton
and Borgia, and dismissed it
as lacking generality. This
effect is captured in the
present model.

Reduced mutation
load

Unclear. (Goldstein 1994) Inbreeding was not considered
in Goldstein’s analysis.
Deleterious mutations are
neglected in the present
model.

Maternally
transmitted
endosymbiont

Inbreeding promotes
haplodiploidy, because
inbreeding favours female
bias, and haploid
males–induced by
endosymbiont in order to
enhance its own transmission
–might lead to a female bias
in subsequent generation.

(Normark 2004;
Kuijper and Pen
2010)

Endosymbionts are neglected
in the present model.

unknown but feasible–“genetic” mechanisms of SD. Second,

narrowing our attention to those SD mechanisms under which

haploid individuals robustly develop as males, we investigate

the invasibility of male haploidy in an evolutionary, population

model.

We base our population model upon Gardner and Ross’s

(2014) analysis of whole genome elimination. Specifically, we

assume an infinite number of patches, with each patch containing

mated, adult females (foundresses) who lay eggs within that patch.

Rather than specify the number of foundresses on each patch and

their fecundities directly, we instead denote by a the probability

that any two eggs chosen at random from the same patch were laid

by the same foundress. In a departure from Gardner and Ross’s

(2014) model, we consider that although most eggs are fertilized

and develop as viable diploid offspring with sex dependent on

the details of the SD mechanism, a vanishing proportion of eggs

remain unfertilized and develop as viable haploid male offspring

with probability 1-c, where c is the viability cost of haploidy.

Viable offspring mate at random within their patch, with each

female mating with a large number of males. Males then die, and

females disperse to found new patches, returning the population

to the beginning of the lifecycle.

1 7 6 EVOLUTION LETTERS APRIL 2019



HOW TO MAKE A HAPLOID MALE

The larger the viability cost c of haploidy, the more stringent

will be the condition for natural selection to favour an increase in

allocation to haploid males. Accordingly, the goal of our analysis

is to determine the threshold haploid viability cost c∗, such that

natural selection favours an increase in allocation to haploid males

when c < c∗ and favours a decrease in allocation to haploid males

when c > c∗. We may term this threshold viability cost c∗ the

“potential for male haploidy” (cf Gardner 2010). By expressing

the threshold viability cost c∗ in terms of SD mechanism and rate

of inbreeding, we may determine how these factors modulate the

benefit of male haploidy (see Box 1 and Supplementary Material

for more details).

Box 1. Inclusive fitness derivation
We derive the potential for male haploidy c∗ when sex

is determined by X-chromosome count or a paternal-

origin X-linked feminizer as follows (see Methods for

model assumptions). Consider a population in which

foundresses who produce haploid sons are vanishingly

rare, and fasten attention upon a focal foundress who

leaves a proportion δ of her eggs unfertilized. If the to-

tal number of eggs produced by all foundresses on her

patch is N and her eggs constitute a proportion x of this

total, then she gives rise to m1 = Nxδ(1-c) viable hap-

loid sons, m2 = Nx(1-δ)/2 diploid daughters and m3 =
Nx(1-δ)/2 diploid sons, whilst her cofoundresses collec-

tively produce m4 = N(1-x)/2 diploid daughters and m5

= N(1-x)/2 diploid sons. All of the female offspring pro-

duced on this patch experience exactly the same mating

environment, with a proportion α = m1/(m1+m3+m5)

of their mates being haploid sons of the focal foundress,

a proportion β = m3/(m1+m3+m5) of their mates being

diploid sons of the focal foundress, and a proportion γ

= m5/(m1+m3+m5) of their mates being diploid sons of

the cofoundresses.

Now consider a patch founded by a daughter of

the focal foundress, and denote the number of eggs that

she produces Ny and the number of eggs that her co-

foundresses produce N(1-y). This daughter of the focal

foundress produces n1 = Nyα diploid daughters fathered

by her haploid brothers, n2 = Nyβ/2 diploid daughters fa-

thered by her diploid brothers, n3 = Nyβ/2 diploid sons

fathered by her diploid brothers, n4 = Nyγ/2 diploid

daughters fathered by unrelated diploid males and n5 =
Nyγ/2 diploid sons fathered by unrelated diploid males,

whilst the other foundresses on her patch collectively

produce n6 = N(1-y)/2 diploid daughters and n7 = N(1-

y)/2 diploid sons. The ratio of females to males on the

patch is therefore F = (n1+n2+n4+n6)/(n3+n5+n7).

Finally, consider a patch founded by a daughter of

a cofoundress of the focal foundress, and denote the

number of eggs that she produces Nz and the number of

eggs that her cofoundresses produce N(1-z). This daugh-

ter of a cofoundress of the focal foundress produces n8

= Nzα diploid daughters fathered by haploid sons of

the focal foundress, n9 = Nzβ/2 diploid daughters fa-

thered by diploid sons of the focal foundress, n10 =
Nzβ/2 diploid sons fathered by diploid sons of the fo-

cal foundress, n11 = Nzγ/2 diploid daughters fathered

by diploid sons of a cofoundress of the focal foundress

and n12 = Nzγ/2 diploid sons fathered by diploid sons

of a cofoundress of the focal foundress, whilst the other

foundresses on her patch collectively produce n13 = N(1-

z)/2 diploid daughters and n14 = N(1-z)/2 diploid sons.

The ratio of females to males on the patch is therefore

G = (n8+n9+n11+n13)/(n10+n12+n14).

The inclusive fitness (Hamilton 1964) of the focal

foundress may then be defined as H = E(m2(n1 p1 + n2

p2 + n3 F p3 + n4 p4 + n5 F p5 + n6 p6 + n7 F p7)

+ m4(n8 p8 + n9 p9 + n10 G p10 + n11 p11 + n12 G

p12 + n13 p13)), where p denotes the consanguinity of

the focal foundress to each type of grandoffspring and

E denotes an expectation taken over the values x, y, and

z. The consanguinities are given by p1 = (3+5f)/8, p2 =
(1+3f)/4, p3 = (1+3f)/4, p4 = (1+3f)/8, p5 = (3+5f)/8,

p6 = 0, p7 = 0, p8 = (1+f)/4, p9 = (1+3f)/8, p10 =
(1+3f)/8, p11 = 0, p12 = 0, and p13 = 0, where f is

the consanguinity between mating partners. Note that f

= a((1/4) × (1+f)/2 + (1/2) × f + (1/4) × f), which

rearranges as f = a/(8-7a). Also note that E(x) = E(y) =
E(z) = �i = 1

T(1/T)xi = σ and E(x2) = E(y2) = E(z2) =
�i=1

T(1/T)xi
2 = τ, where xi denotes the proportion of

a patch’s total egg production that derives from the ith

foundress among the T foundresses that contribute eggs

to the patch, and that τ/σ = a.

The focal foundress increases her inclusive fit-

ness by increasing her investment into haploid sons

if dH/dδ > 0, decreases her inclusive fitness by in-

creasing her investment into haploid sons if dH/dδ < 0,

and breaks even if dH/dδ = 0. Accordingly, the thresh-

old viability cost c∗ that defines the potential for male

haploidy satisfies dH/dδ|c=c∗ = 0, and is given by c∗
= (2-4a+5a2-2a3)/(4-5a+5a2-2a3), as reported in the

Results.
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EMPIRICAL SURVEY

To empirically assess our key theoretical predictions, we survey

sex chromosome karyotype data available on the “Tree of Sex”

database (Tree of Sex Consortium 2014) for the diploid sister

groups of known haplodiploid clades. Haplodiploidy has evolved

once within the Rotifera, once within the Nematoda, 8–12 times

within the Acari and seven times within the Insecta. We deter-

mine the most likely diploid sister group based on published

phylogenies for each clade (see Lohse and Ross 2015 and ref-

erences in Table S1). For each of these sister groups we have

collected available data on chromosome karyotype, which allows

us to distinguish between male and female heterogametic sys-

tems. Sex chromosome karyotype cannot decisively distinguish

between any of the five possible mechanisms underlying genomic

SD we have considered above. In species where the Y or W chro-

mosome is absent (X0 and Z0 systems), SD involving a dominant

SD locus is unlikely, but the other four mechanisms are equally

plausible. In contrast, in XY and ZW systems all five mechanisms

could underlie this karyotype. However, it is generally assumed

that the loss of a Y/W chromosome is less likely in dominant

SD-locus systems (Bachtrog et al. 2014; Blackmon and Demuth

2014), so frequent sex chromosome loss within a clade may indi-

cate the presence of a counting, dosage, parent-of-origin, or CSD

mechanism. We present the results of our survey in Fig. 1B and

Table S1.

We also assess the likelihood that haplodiploidy evolved in

the context of inbreeding. We have done so by combining infor-

mation about the mating systems of haplodiploid clades as well

as their diploid sistergroups. We surveyed a number of different

aspects of species’ mating system (see Table S1 and Gardner and

Ross 2014) that together allow us to classify each clade as being

“frequently inbreeding”, “facultatively inbreeding” or “primarily

outbreeding”. We find that inbreeding (either frequent or faculta-

tive) is common in most haplodiploid clades. It is currently unclear

whether inbreeding was already present before the evolutionary

transition towards haplodiploidy: our inference of inbreeding in

the diploid sistergroups suggests most of these are either out-

breeders or of unknown mating system. This suggests that mating

systems involving frequent inbreeding may have evolved after the

transition to haplodiploidy, but the long evolutionary history of

haplodiploidy in most clades makes it challenging to draw any

firm conclusions.

Results and Discussion
ONLY SOME SD MECHANISMS ALLOW THE RELIABLE

PRODUCTION OF HAPLOID MALES

Under what conditions are unfertilised, haploid eggs expected

to develop as males rather than females (Fig. 2)? In the over-

whelming majority of terrestrial arthropods, including all those

that have given rise to haplodiploid clades (Fig. 1), an individ-

ual’s sex is determined by the genomic material it receives from

its parent(s), and so we restrict our attention to such “genetic”

sex-determination (GSD) mechanisms (Bull 1983; Bachtrog et

al. 2014; Beukeboom and Perrin 2014). Here, we consider five

different classes of possible SD mechanism.

First, sex might be determined by the presence versus absence

of a sex-linked dominant allele (Fig. 2). Under male heterogamety

(XY) this must involve a Y-linked masculinizer gene, which will

be absent from haploid individuals developing from unfertilized

eggs, making them female (Hartl and Brown 1970), not male.

Under female heterogamety (ZW), a W-linked feminizer gene

will be involved. Accordingly, half of the haploid individuals will

inherit a Z chromosome—making them male—but the other half

will inherit a W chromosome—making them female, and likely

inviable, owing to their lacking crucial Z-linked genes that would

normally be carried by both sexes (Bull 1983; Bachtrog et al.

2014).

Second, sex might be determined by sex-chromosome/

autosome balance (Fig. 2). Under male heterogamety (X0 and

XY), diploid individuals carrying one set of X-linked genes and

two sets of autosomal genes have a “low” X:A ratio and de-

velop as males, whilst individuals carrying two sets of X-linked

genes and two sets of autosomal genes have an “even” X:A ra-

tio and develop as females. Accordingly, haploid individuals will

carry one set of X-linked genes and one set of autosomal genes

(“even” X:A ratio) and hence will be female (Bridges 1930; Whit-

ing 1945; Crozier 1971; Bull 1983; Miller et al. 1988; Erickson

and Quintero 2007). Under female heterogamety (Z0 and ZW)

diploid individuals carrying one set of Z-linked genes and two

sets of autosomal genes have a “low” Z:A ratio and develop as

females, whilst individuals carrying two sets of Z-linked genes

and two sets of autosomal genes have an “even” Z:A ratio and

develop as males. Accordingly, half of all haploid individuals will

carry one set of Z-linked genes and one set of autosomal genes

(“even” Z:A ratio) and hence will be male, but the other half will

carry no Z-linked genes and one set of autosomal genes (“zero”

Z:A ratio) and hence will probably be female (Whiting 1945; Bull

1983)—and likely inviable owing to their lacking crucial Z-linked

genes.

Third, X-chromosome or Z-chromosome count per se might

determine sex (Fig. 2), which has been suggested for Drosophila

(Erickson and Quintero 2007). This could perhaps involve either

a threshold dose of an X or Z-linked transcript being assessed

at a set point in development, or the dose of X or Z-linked tran-

scripts being assessed relative to maternally derived transcripts

(Erickson and Quintero 2007; Salz and Erickson 2010). Under

male heterogamety (X0 and XY), diploid individuals carrying

one X chromosome per cell develop as males, whilst individuals

carrying two X chromosomes develop as females. Thus, haploid
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Figure 2. How to make a haploid male. The sex and viability of haploid offspring developing from unfertilized eggs under five alternative

sex determination systems. Under male heterogamety (top row), unfertilized eggs reliably develop as males under the X count, Paternal-

origin X feminizer, and X-linked CSD mechanisms (marked with green ticks). Under female heterogamety (bottom row), none of the five

mechanisms reliably cause unfertilized eggs to develop as males. Haploid offspring may suffer from additional viability costs beyond the

cost of haploidy per se, as follows: no Y, males lacking a Y chromosome under XX–XY (but not XX–X0) may incur a viability cost since

males normally carry a Y chromosome in these species; no W, females lacking a W chromosome under ZZ–ZW (but not ZZ–Z0) may incur a

viability cost since females normally carry a W chromosome in these species; no Z, individuals lacking a Z chromosome may incur a viability

cost since individuals of either sex normally carry a Z chromosome in these species. Known examples of SD mechanisms are as follows:
amammals, Diptera (Aedes aegypti, Anopheles gambiae, Ceratitis capitata, Lucilia cuprina, Musca domestica), Coleoptera (Tribolium

castaneum), fish (Oryzias latipes, Oryzias luzanensis, Odontesthes hatcheri, Oncorhynchus mykiss) (Stuart and Mocelin 1995; Bachtrog

et al. 2014; Hall et al. 2015; Krzywinska et al. 2016); bDrosophila melanogaster (disputed; Erickson and Quintero 2007), tiger pufferfish

(Takifugo rubripes) (Bachtrog et al. 2014); cCaenorhabditis elegans (with XX individuals hermaphrodite, not female); dD. melanogaster

(suggested; Erickson and Quintero 2007); esilkworm (Bombyx mori) (Kiuchi et al. 2014); fchicken (Gallus gallus), smooth tongue sole

(Cynoglossus semilaevis) (Bachtrog et al. 2014); †hypothetical/examples unknown. See main text for details of each mechanism.
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L. ROSS ET AL.

individuals will each carry one X chromosome per cell and hence

will be male—although possibly inviable or infertile under XY

owing to lack of Y-linked genes crucial for male function. Under

female heterogamety (Z0 and ZW), diploid individuals carrying

one Z chromosome per cell would develop as females, whilst in-

dividuals carrying two Z chromosomes would develop as males.

Thus, half of the haploid individuals will carry one Z chromosome

per cell and hence would be female (and possibly inviable under

ZW owing to lack of W-linked genes crucial for female function),

and the other half will carry no Z chromosomes, making their sex

difficult to predict (and likely they would be inviable owing to

lack of crucial Z-linked genes).

Fourth, parent-of-origin effects could in principle determine

sex (Fig. 2). Whilst such a mechanism has not been confirmed in

any species, it has been suggested to underpin haplodiploid SD

in a parasitoid wasp (Verhulst et al. 2010). Under male heteroga-

mety (X0 and XY) diploid individuals carrying a paternal-origin

Xp chromosome have karyotype XmXp and are female, whereas

diploid individuals lacking a paternal-origin Xp chromosome have

karyotype Xm0 or XmYp and are male. Haploid individuals will

have karyotype Xm and hence will be male—although possibly

inviable under XY owing to lack of Y-linked genes crucial for

male function. In contrast, under female heterogamety (Z0 and

ZW) diploid individuals carrying a maternal-origin Zm chromo-

some have karyotype ZpZm and would be male whereas diploid

individuals lacking a maternal-origin Zm chromsome have kary-

otype Zp0 or ZpWm and would be female. Half of the haploid

individuals will have karyotype Zm and hence would be male,

but the other half will have karyotype 0 or Wm and hence would

be female (and likely inviable owing to lack of crucial Z-linked

genes, and possibly also under ZW owing to lack of W-linked

genes crucial for female function).

Finally, another possible scenario involves X/Z-linked com-

plementary SD (X-CSD/Z-CSD; Fig. 2). In this scenario, there are

many alleles segregating at an X- or Z-linked SD locus, and the

sex of an individual is determined by whether they carry two dif-

ferent SD alleles or just one—in the latter case either (i) because

they are hetero- or hemigametic, and in possession of only one X

or Z chromosome, which means they can only carry one allele at

the SD locus, or (ii) because they have two X or Z chromosomes

but are homozygous at the SD locus. Such a SD mechanism is

currently unknown among diplodiploids but has strong similar-

ities to autosomal-SD mechanisms found in Hymenoptera (Bull

1983; Heimpel and de Boer 2008). For example, in the honey

bee (Apis mellifera), “femaleness” is determined by heterozygos-

ity at the csd locus directing female-specific splicing of the fem

gene (Beye et al. 2003; Hasselmann et al. 2008). Furthermore,

autosomal CSD is so widespread among hymenopteran insects

that it could conceivably pre-date the evolution of haplodiploidy

(Heimpel and de Boer 2008) and have been present in their diploid

ancestors. In the context of male heterogamety (X0 and XY) we

assume that diploid individuals with genotype xx (i.e. the same

allele x present in two copies) or x (i.e. a single allele x present in

one copy) at an X-linked CSD locus are male, whereas diploid in-

dividuals with genotype xx′ (i.e. two alleles x and x′ each present

in one copy) are female. Haploid individuals will have genotype

x and hence will be male—although possibly inviable under XY

owing to lack of Y-linked genes crucial for male function. In con-

trast, in the context of female heterogamety (Z0 and ZW), diploid

individuals with genotype zz or z at a Z-linked CSD locus would

be female whereas diploid individuals with genotype zz′ would

be male. Accordingly, half of the haploid individuals will have

genotype z and hence would be female (and possibly inviable

under ZW owing to lack of W-linked genes crucial for female

function), and the other half will have a null genotype and hence

their sex is difficult to predict (and they would likely be inviable

owing to lack of crucial Z-linked genes).

In summary, only three of the above mechanisms of SD–X-

chromosome counting, paternal-origin X-linked feminizer and X-

linked CSD–appear to have unfertilized eggs robustly developing

as haploid males, and all three involve male heterogamety.

INBREEDING DOES NOT PRESENT AN OBVIOUS

BARRIER TO MALE HAPLOIDY

We now ask under which circumstances natural selection is ex-

pected to favour an increase in allocation to haploid males, and

how this is modulated by inbreeding, for each of the three SD

mechanisms identified above under which haploid males robustly

develop from unfertilized eggs. Our mathematical model (see

Methods) assumes a patch-structured diplodiploid population, in

which the rate of sib-mating is described by a parameter a, and

we use this to calculate the fitness consequences for a mother who

produces a small number of haploid offspring among her brood.

The key output of the model is a real-valued “potential for male

haploidy” c∗, representing the maximum viability cost associated

with the haploid condition that nevertheless permits male hap-

loidy to be favoured by natural selection. The scenarios in which

SD is by X-chromosome counting or a paternal-origin X-linked

feminizer are formally equivalent in terms of their evolutionary

dynamics, and yield the following potential for male haploidy:

c∗ = 2 − 4a + 5a2 − 2a3

4 − 5a + 5a2 − 2a3

(see Box 1 for derivation). This equation describes a U-shaped

relationship between rate of inbreeding and potential for male hap-

loidy (Fig. 3A and B). Specifically: in the absence of sib-mating (a

= 0), the potential for male haploidy is c∗ =½, recovering Bull’s

(1979) prediction that natural selection favours male haploidy so

long as the viability cost does not exceed one half; an interme-

diate level of sib-mating (0 < a < 1) leads to a slightly reduced
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A B C

Figure 3. Inbreeding does not present an obvious barrier to the evolution of male haploidy. Natural selection favours the invasion of

male haploidy when the viability cost of haploid males is less than c∗, which varies with the degree of sib-mating and the mechanism

of sex determination (SD). For the three SD systems under which unfertilised eggs reliably develop into males (see Fig. 2), inbreeding

does not strongly inhibit male haploidy. The SD systems shown here are (A) X count, where individuals are female if they have two X

chromosomes and are otherwise male; (B) paternal-origin X feminizer, where individuals are female if they inherit an X chromosome

from their father and are otherwise male; and (C) X-linked complementary sex determination (CSD), where individuals are female if they

are heterozygous at an X-linked CSD locus and male if they are homozygous or hemizygous at this locus. Numerical and, where possible,

analytical results are shown (see Methods). Note that panels (A) and (B) are identical.

potential for male haploidy (c∗ < ½; with a minimum of c∗ �

0.40 at a � 0.46); and under full sib-mating (a = 1), the po-

tential for male haploidy is c∗ = ½. The complexity of the X-

linked CSD scenario means that it resists analytical solution, but

numerical analysis–performed under the assumption that males

homozygous at the SD locus are inviable (see Supplementary

Material)–reveals a very similar U-shaped relationship: in the

extremes of absent or full sib-mating (a = 0 or 1), the poten-

tial for male haploidy is c∗ = ½, while an intermediate level of

sib-mating (0 < a < 1) leads to a reduced potential for male

haploidy (c∗ < ½; with a minimum of c∗ � 0.38 at a � 0.56;

Fig. 3C).

Why is the potential for male haploidy under full inbreeding

exactly the same as in a fully outbred population? Under full sib-

mating (a = 1), a mother gains no transmission advantage from

haploid male production (since she is genetically identical to her

mates), nor does she lose grandoffspring owing to haploid-male

inviability among her sons (since her surviving sons inseminate

her daughters just as surely). Instead, leaving some eggs unfer-

tilized reduces her production of daughters (since females never

develop from unfertilized eggs) while increasing the rate at which

her remaining daughters produce daughters of their own (since

her haploid sons only sire daughters), and these two effects ex-

actly cancel when c = 1/2 (see Supplementary Material). That

is, inbreeding does not necessarily inhibit the evolution of male

haploidy.

X0 MALES AND INBREEDING ARE ASSOCIATED

WITH THE ORIGINS OF HAPLODIPLOIDY

How do these theoretical predictions compare with empirical ob-

servation? Comparative empirical data on the molecular mecha-

nisms of SD across taxonomic groups relevant to the evolution of

male haploidy are scant (Blackmon et al. 2017), such that they

cannot be brought to bear upon the detailed predictions emerg-

ing from our theoretical analysis. The only molecular insights

into haplodiploid sex determination come from a small number

of species within the Hymenoptera (e.g., Hasselmann et al. 2008;

Verhulst et al. 2010), while no data is available for any other hap-

lodiploid clade. However, two broad predictions may be assessed

in light of the empirical–mainly karyotype–data that are avail-

able. First, our theoretical analysis suggests that mechanisms of

SD involving male heterogamety (X0 and XY) relatively promote,

and those involving female heterogamety (Z0 and ZW) relatively

inhibit, the evolution of male haploidy. Second, our analysis sug-

gests that the X0 form of male heterogamety relatively promotes,

whilst the XY form of male heterogamety relatively inhibits, the

evolution of male haploidy, on account of male function in the lat-

ter system becoming evolutionarily reliant upon Y-linked genes

that cannot be passed from mother to haploid son, and dominant

Y-linked sex determiners resulting in haploid offspring develop-

ing as female rather than male. Surveying the sex chromosome

karyotype data available on the “Tree of Sex” database (Tree of

Sex Consortium 2014) for the diplodiploid sister groups of known
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haplodiploid clades (Fig. 1B; Table S1), we find support for both

of these predictions: the diplodiploid ancestors of all haplodiploid

clades (i) were male heterogametic and (ii) most likely did not

employ a Y-linked dominant SD gene, as the vast majority were

either exclusively X0 (six out of the eight origins for which we

have data) or a mixture of X0 and XY. The survey also makes clear

that inbreeding is common in all haplodiploid clades, but cannot

resolve whether inbreeding preceded or followed the evolution of

male haploidy.

HOW TO MAKE A HAPLOID MALE

Heritable variation is the fuel that drives the process of adaptation,

and natural selection can only work with the raw variation that

it has at its disposal. Accordingly, if genetic and developmental

systems introduce biases in the heritable variation that is gener-

ated, then predictable patterns of evolution may be discernable

even before the logic of natural selection is brought to bear upon

a given problem. Here, we have shown that taxonomic patterns of

male haploidy may be, in part, driven by ancestral mechanisms

of SD employed in a diplodiploid context. Specifically, we have

found that haploid individuals are not expected to robustly de-

velop as males under any form of female heterogamety (i.e. Z0

and ZW systems), but that they may do so under some forms of

male heterogamety (i.e. X0 and XY systems)–which might itself

be viewed as a partial form of male haploidy, as males are haploid

with respect to their X-linked genes. Despite the scarcity of rele-

vant data, we have found support for this theoretical prediction in

our empirical survey.

Moreover, we have suggested that an X0 system of male

heterogamety might be particularly conducive to the evolution of

male haploidy, as in XY systems haploid males would lack any

Y-linked genes that are crucial for male function. For example,

Drosophila males that lack a Y chromosome are viable but sterile

(Brosseau 1960). Again, despite the scarcity of data, we have

found support for this prediction in our empirical survey. Note that

whilst Y-chromosomal material may be required for male function

in some taxa, it is not required for viability in general for any taxon,

as females who lack it remain fully viable. The same applies to

W-chromosomal material in ZW systems of female heterogamety,

which might conceivably be essential for female function but is

not essential for viability in general as males who lack it remain

viable. However, the same is not true for X and Z material which,

in their corresponding taxa, are carried by all individuals (and tend

to contain many more genes than the Y and W) and hence may be

more necessary for viability. Accordingly, whilst females in male

heterogametic taxa are guaranteed to transmit an X chromosome

to each of their haploid offspring, females in female heterogametic

taxa are expected to transmit Z chromosomes to only half of their

haploid offspring, which is likely associated with a large viability

cost of haploidy and represents a further barrier to the evolution

of haploid individuals in these taxa (Whiting 1945).

Our analysis has highlighted that knowing the precise molec-

ular mechanism underpinning male heterogamety is crucial for

predicting the sex of a haploid individual developing from an

unfertilised egg and, accordingly, a taxon’s predisposition to

male haploidy. Our empirical survey of SD mechanisms in the

diplodiploid species most closely related to haplodiploids shows

that haplodiploidy almost certainly evolved in the context of male

heterogamety (most likely X0). Sadly, there appears to be no in-

formation about the actual mechanism of SD in any X0 species

(Beukeboom and Perrin 2014). Furthermore the lack of knowl-

edge of sex determining pathways in haplodiploid taxa them-

selves, especially outside of the Hymenoptera, hinders our un-

derstanding about what might have been the mechanism in the

diploid ancestor. As a result we have necessarily had to be spec-

ulative about the space of possibilities. In fact the exact molec-

ular mechanism of SD is only known for a handful of animal

species (Bachtrog et al. 2014; Beukeboom and Perrin 2014)–none

of which occur in taxonomic groups giving rise to haplodiploidy–

so it seems likely that many such mechanisms remain to be un-

covered. In diploid insects and nematodes, the known molecular

mechanisms underlying GSD are either based on dominant mas-

culinizing/feminizing genes (such as the Y-linked Yob gene in

Anopheles gambiae (Krzywinska et al. 2016) and the Z-linked

fem gene in Bombyx mori (Kiuchi et al. 2014)) or X:autosome

ratio (found in the nematode genus Caenorhabditis (Miller et

al. 1988) and originally suggested for the X-linked XSE genes

in Drosophila (Bridges 1930; Salz and Erickson 2010)). Recent

work suggests that SD in Drosophila might be based on absolute

rather than relative dose of XSE: when the XSE dose reaches a

certain threshold by the 12th embryonic division this activates

the Sxl gene and initiates female development. However, haploid

embryos still develop as females, as haploidy slows down em-

bryonic development enough to allow the threshold XSE dose to

accumulate (Erickson and Quintero 2007). So, none of the mech-

anisms described in insects and nematodes have unfertilized eggs

robustly giving rise to haploid males.

Having narrowed the space of possibilities to three SD mech-

anisms that lead haploid individuals to develop as males, we con-

sidered the subsequent evolutionary dynamics with a particular

focus on how the invasion success of haploid males is modulated

by sib-mating. The haploid condition is initially expected to be

associated with substantial viability costs–as recessive deleteri-

ous mutations are exposed in haploid males and male fertility

is likely reduced during the transition from meiotic to mitotic

spermatogenesis–and so there has been a longstanding search

for compensating benefits. Previously, the maternal-transmission-

advantage hypothesis has emphasised the benefit accruing to a

female who produces a haploid as opposed to a diploid offspring
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owing to her monopolising her offspring’s reproductive value,

rather than sharing half of this with her mate, and this benefit

diminishes when mating partners are genetically related (Brown

1964; Bull 1979; Smith 2000). However, a possibly countervail-

ing evolutionary pressure may arise owing to sex-ratio selection

which, in the context of inbreeding, is often expected to favour

a female-biased sex allocation. Bull (1983) briefly considered–

but thought of little importance–the possibility that such sex-ratio

selection could have a male-haploidy promoting effect, as the

offspring of haploid males are–at least in extant haplodiploid

taxa–all female (in our model, this follows directly from an-

cestral male heterogamety, whereby all haploid-male sperm are

X-carrying).

Our analysis reveals how these two opposing effects of

inbreeding quantitatively balance out in the context of X-

chromosome counting, a paternal-origin X-linked feminizer or

X-linked CSD. We have found that, in contrast to the expectation

of many researchers who have investigated this topic, inbreeding

does not necessarily inhibit the evolution of male haploidy, and

indeed male haploidy appears to evolve just as readily under full

sib-mating as it does in a fully outbred population. One aspect of

inbreeding not explicitly captured in our model is the concomi-

tant purging of recessive deleterious alleles, which could reduce

the viability cost incurred by haploid males, further promoting

the transition to haplodiploidy. That is, inbreeding could alter the

stringency of the condition c < c∗ for male haploidy to be evo-

lutionary favoured either by altering the threshold viability cost

c∗ (as explored in the present analysis) or else by altering the

viability cost c itself (as explored in the simulation study of Smith

2000). In line with this prediction, we find in our empirical survey

unequivocal support for the idea that inbreeding is often associ-

ated with haplodiploidy. Our analysis cannot determine which

came first, but it clearly repudiates the entrenched view that in-

breeding must have come second because it inhibits the evolution

of haplodiploidy.
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