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Background: Two conserved pneumococcal proteins, pneumolysin toxoid (dPly) and pneumococcal his-
tidine triad protein D (PhtD), combined with 10 polysaccharide conjugates from the pneumococcal
non-typeable Haemophilus influenzae protein D-conjugate vaccine (PHiD-CV) in two investigational pneu-
mococcal vaccine (PHiD-CV/dPly/PhtD) formulations were immunogenic and well-tolerated when
administered to Gambian children. Here, we report immunogenicity of the polysaccharide conjugates,
and immunogenicity and reactogenicity of co-administered routine vaccines.

Methods: In this phase II, controlled, observer-blind, single-centre study, healthy infants aged 8-
10 weeks were randomised (1:1:1:1:1:1) to six groups. Four groups received 3+0 schedule (2-3-4 months
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[M]) of PHiD-CV/dPly/PhtD (10 or 30 pg of each protein), PHiD-CV, or 13-valent pneumococcal conjugate
vaccine; and two groups received 2+1 schedule (2-4-9 M) of PHiD-CV/dPly/PhtD (30 ug of each protein)
or PHiD-CV. All infants received diphtheria-tetanus-whole cell pertussis-hepatitis B-Haemophilus influen-
zae type b (DTPw-HBV/Hib) and oral trivalent polio vaccines (OPV) at 2-3-4 M, and measles, yellow fever,

and OPV vaccines at 9 M. We evaluated immune responses at 2-5-9-12 M; and reactogenicity 0-3 days
post-vaccination.

Results: 1200 infants were enrolled between June 2011 and May 2012; 1152 completed the study. 1 M
post-primary vaccination, for each PHiD-CV serotype except 6B and 23F, >97.4% (3+0 schedule) and
>96.4% (2+1 schedule) of infants had antibody concentrations >0.2 pig/mL. Immune responses were com-
parable between groups within the same vaccination schedules. Observed antibody geometric mean con-
centrations (GMCs) increased by 1 M post-primary vaccination compared to pre-vaccination. In the

Abbreviations: ATP, according-to-protocol; CI, confidence interval; dPly, pneumolysin toxoid; DTPw-HBV/Hib, diphtheria-tetanus-whole cell pertussis-hepatitis B-
Haemophilus influenzae type b vaccine; ELISA, enzyme-linked immunosorbent assay; EPI, Expanded Programme on Immunisation; GMC, geometric mean concentration; GMT,
geometric mean titre; IPD, invasive pneumococcal disease; IU, International Units; OPA, opsonophagocytic activity; OPV, oral trivalent polio vaccine; PCV, pneumococcal
conjugate vaccine; PCV13, 13-valent pneumococcal conjugate vaccine; PHiD-CV, pneumococcal non-typeable Haemophilus influenzae protein D-conjugate vaccine; PHiD-CV/
dPly/PhtD, pneumococcal vaccine that contains 10 PHiD-CV polysaccharide conjugates combined with conserved pneumococcal proteins - pneumolysin toxoid and
pneumococcal histidine triad protein D; PhtD, pneumococcal histidine triad protein D; PS, polysaccharide; PRP, polyribosyl-ribitol-phosphate; TCIDso, 50% tissue culture
infectious dose; TVC, total vaccinated cohort; WHO, World Health Organization.
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following months, GMCs and opsonophagocytic activity titres waned, with an increase post-booster for
the 2+1 schedule. Immune responses to protein D and, DTPw-HBV/Hib, OPV, measles, and yellow fever
vaccines were not altered by co-administration with pneumococcal proteins. Reactogenicity of co-
administered vaccines was comparable between groups and did not raise concerns.

Conclusion: Immune responses to the 10 PHiD-CV polysaccharide conjugates and co-administered vacci-
nes were not altered by addition of dPly and PhtD. ClinicalTrials.gov identifier NCT01262872.

© 2019 GlaxoSmithKline Biologicals SA. Published by Elsevier Ltd. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Pneumococcal disease mainly affects infants and young chil-
dren and is responsible for approximately 500,000 deaths of chil-
dren under 5years of age every year [1]. While Streptococcus
pneumoniae has more than 90 serotypes, only 6-11 of these sero-
types were responsible for >70% of all invasive pneumococcal dis-
ease (IPD) globally before the introduction of pneumococcal
conjugate vaccines (PCVs) [2,3]. From the year 2000 onwards, PCVs
containing capsular polysaccharides (PSs) of the most prevalent
IPD-causing serotypes conjugated to a carrier protein have been
successfully used in preventing IPD in children worldwide [4-6].

Recently, new formulations containing highly conserved pneu-
mococcal proteins such as pneumolysin toxoid (dPly) and
pneumococcal histidine triad protein D (PhtD) have been in develop-
ment [7,8] and have the potential to offer protection against a wider
spectrum of pneumococcal serotypes and prevent serotype emer-
gence and replacement in nasopharyngeal colonisation [8-10].
These new protein antigens were combined with a PCV into one vac-
cine: the protein-based pneumococcal vaccine containing 10
serotype-specific PS conjugates of the pneumococcal non-typeable
Haemophilus influenzae protein D-conjugate vaccine (PHiD-CV)
combined with dPly and PhtD (PHiD-CV/dPly/PhtD) [11-13].

Infant vaccination programmes are becoming increasingly elabo-
rate through the addition of new vaccines that are co-administered to
reduce the number of visits [14,15]. Therefore, it was important to
assess whether addition of these pneumococcal proteins alter the
immune response to the PHiD-CV serotype-specific PS conjugates
or to the co-administered routine paediatric vaccines.

This phase II study in Gambian children assessed the efficacy of
two formulations of the PHiD-CV/dPly/PhtD vaccine against pneu-
mococcal nasopharyngeal carriage, and their immunogenicity and
safety. We previously reported that inclusion of dPly and PhtD in
the PHiD-CV/dPly/PhtD investigational formulations had no impact
on pneumococcal nasopharyngeal carriage prevalence beyond the
protection already provided by the licensed PHiD-CV, regardless of
protein dose or schedule; and that the PHiD-CV/dPly/PhtD formula-
tions had an acceptable safety profile in infants [16] and in children
2-4 years of age [17]. Both formulations elicited immune responses
to the pneumococcal proteins in infants [ 16]. Here, we report on the
immune response to the serotype-specific PS conjugates, as well as
immunogenicity and reactogenicity of co-administered Expanded
Programme on Immunisation (EPI) vaccines.

2. Methods
2.1. Study design and participants

This was a phase II, randomised, controlled, observer-blind, sin-
gle centre study (NCT01262872) conducted in The Gambia
between June 2011 and March 2013. Participants were healthy
infants aged 8-10 weeks at study start. Inclusion and exclusion cri-
teria were presented previously [16].

Written informed consent was obtained from each parent/leg-
ally acceptable representative before vaccination, except for a

few deviations as previously presented [16]. The study was con-
ducted in accordance with principles of Good Clinical Practice
and the Declaration of Helsinki, and is registered at www.clinical-
trials.gov (NCT01262872).

2.2. Randomisation and blinding

Infants were randomised 1:1:1:1:1:1 into 6 parallel groups to
receive PHiD-CV/dPly/PhtD-30, PHiD-CV/dPly/PhtD-10, PHiD-CV
(Synflorix; GSK), or 13-valent PCV (PCV13; Prevenar 13; Pfizer)
according to a 3+0 schedule, or PHiD-CV/dPly/PhtD-30 or PHiD-
CV in a 2+1 schedule (Fig. 1). We randomly selected 50% of partic-
ipants (100 per group) for analysis of opsonophagocytic activity
(OPA) (OPA subset). In the remaining participants (100 per group),
serological testing of co-administered vaccine antigens (co-ad sub-
set) was performed.

Randomisation was performed using MATEX, a block randomi-
sation program developed for use in Statistical Analysis System by
GSK. Treatment allocation for pneumococcal vaccines at the inves-
tigator site was performed with an internet randomisation system
using a minimisation procedure. Treatment numbers were allo-
cated by dose. Co-administered vaccines were managed through
sequential numbering of treatment and were administered by
the site staff. The study was conducted in an observer-blind man-
ner within each defined pneumococcal vaccination schedule,
meaning that vaccine recipients, sponsor, laboratory personnel
and anyone responsible for evaluation of any study endpoint were
unaware of the administered pneumococcal vaccine.

2.3. Study vaccines

PHiD-CV/dPly/PhtD-10 and PHiD-CV/dPly/PhtD-30 contained
the 10 PHiD-CV PS conjugates combined with either 10 or 30 pug
of dPly and PhtD each, as detailed previously [17]. PHiD-CV is a
suspension of 1 ug of PS for serotypes 1, 5, 6B, 7F, 9V, 14 and 23F
and 3 pg for serotype 4 conjugated to protein D, 3 ug of PS for ser-
otype 18C conjugated to tetanus toxoid, and 3 ug of PS for serotype
19F conjugated to diphtheria toxoid. Its protein carrier content is
9-16 pg of protein D, 3-6 pg of diphtheria toxoid, and 5-10 pg of
tetanus toxoid. PCV13 contained 2 pg of each pneumococcal PS
for serotypes 1, 3, 4, 5, 6A, 7F, 9V, 14, 18C, 19A, 19F, and 23F and
4 ug for serotype 6B conjugated to cross-reactive material
CRMg7 carrier protein.

One dose of diphtheria-tetanus-whole cell pertussis-hepatitis
B-Haemophilus influenzae type b vaccine (DTPw-HBV/Hib, Tritanrix-
HepB/Hib, GSK) (0.5 mL) contained >30 International Units (IU) of
diphtheria toxoid, >60 IU of tetanus toxoid, >4 IU of killed Borde-
tella pertussis, 10 ug of recombinant hepatitis B surface antigen
and a pellet containing 10 pug of polyribosyl-ribitol-phosphate
(PRP) conjugated to 20-40 pg of tetanus toxoid to be reconstituted
with the DTPw-HBV suspension. One dose of oral trivalent polio
vaccine (OPV, Polio Sabin, GSK) (0.135 mL) contained a solution
with poliovirus type 1 (LS-c, 2ab strain) 10° 50% tissue culture
infectious dose (TCIDsg), poliovirus type 2 (P712, Ch, 2ab strain)
10° TCIDsg and poliovirus type 3 (Leon 12a1b strain) 10>% TCIDsp.
Measles vaccine (M-Vac, Serum Institute of India) (0.5 mL)
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Fig. 1. Study design. PHiD-CV, pneumococcal non-typeable Haemophilus influenzae protein D-conjugate vaccine; PHiD-CV/dPly/PhtD-10, pneumococcal vaccine that contains
10 PHiD-CV polysaccharide conjugates combined with 10 ug pneumolysin toxoid (dPly) and 10 ug pneumococcal histidine triad protein D (PhtD); PHiD-CV/dPly/PhtD-30,
pneumococcal vaccine that contains 10 PHiD-CV polysaccharide conjugates combined with 30 pg dPly and 30 pg PhtD; PCV13, 13-valent pneumococcal conjugate vaccine; N,

number of infants with available results;

, pneumococcal vaccine; @, Expanded Programme on Immunisation vaccines; DTPw-HBV/Hib, diphtheria-tetanus-whole cell

pertussis-hepatitis B-Haemophilus influenzae type b vaccine; OPV, oral trivalent polio vaccine; BS, blood sample.

contained a freeze-dried pellet of live attenuated measles virus
(Edmonston Zagreb strain) >1000 50% cell culture infectious dose.
Yellow fever vaccine (Stamaril, Sanofi Pasteur) (0.5 mL) contained a
freeze-dried pellet of live attenuated yellow fever virus (17 D-204
strain) >1000 IU.

Pneumococcal vaccines were administered at either 2, 3, and
4 months of age (3+0 schedule) or 2, 4, and 9 months of age (2+1
schedule). All participants received DTPw-HBV/Hib and OPV at 2,
3, and 4 months of age, and measles, yellow fever, and OPV vacci-
nes at 9 months of age (the 4th dose of OPV was added to study
procedures to comply with national immunisation programme in
The Gambia). Study staff administered pneumococcal vaccines
intramuscularly into the right thigh, and co-administered inject-
able vaccines (DTPw-HBV/Hib, measles, yellow fever) intramuscu-
larly into the left thigh.

2.4. Study objectives

In addition to previously reported objectives [16], study objec-
tives included evaluation of immune responses to the components
of the investigational vaccines, other than the pneumococcal pro-
tein antigens, and co-administered vaccines, and occurrence of
local solicited adverse events at co-administered vaccine injection
site (pain, redness, and swelling at injection site) within 4 days
(days 0-3) post-each dose. The results of these objectives are dis-
closed here. The impact of dPly and PhtD in the PHiD-CV/dPly/
PhtD investigational formulations on the nasopharyngeal carriage
of bacteria other than Streptococcus pneumoniae can be found at
ClinicalTrials.gov (NCT01262872).

2.5. Immunogenicity assessment

Blood samples were collected from each participant at 2, 5, 9,
and 12 months of age (Fig. 1).

Immune responses to pneumococcal vaccines were evaluated
pre-vaccination, and 1, 5, and 8 months post-dose 3 for the 3+0
schedule; or pre-vaccination, 1 and 5 months post-dose 2, and
3 months post-dose 3 for the 2+1 schedule. Pneumococcal
serotype-specific IgG antibodies were measured by 22F-
inhibition enzyme-linked immunosorbent assay (ELISA) for sero-
types 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F (assay
cut-off: 0.05 ug/mL). Immune responses were described in terms
of percentages of infants with IgG concentrations >0.2 ug/mL
(equivalent to antibody concentrations >0.35 ug/mL measured by
the non-22F ELISA of the World Health Organization [WHO] refer-
ence laboratory) [18]. Pneumococcal serotype-specific OPA was
measured at the above-mentioned time points except pre-
vaccination, by a killing-assay using an HL60 cell line [19], in
single-plex for all serotypes except serotype 19A for which a mul-
tiplex assay was used. For all serotypes but 19A, a generic cut-off
was applied (opsonic titre of 8), corresponding to the lowest sam-
ple dilution in the assays. For 19A, a serotype-specific cut-off was
applied, corresponding to the lower limit of quantitation deter-
mined for this serotype in the multiplex assay (opsonic titre of
143). Protein D antibodies were quantified using an ELISA with a
cut-off of 100 ELISA units (EL.U)/mL.

Immune responses were evaluated 1 month post-dose 3 for the
DTPw-HBV/Hib and OPV vaccines, and 3 months after administra-
tion of measles and yellow fever vaccines. Diphtheria and tetanus
antibody concentrations were measured using standard in-house
ELISA; an antibody concentration of >0.1 IU/mL was defined as
the cut-off for seroprotection. Antibodies against the whole cell
B. pertussis antigens were determined by ELISA using the IgG
enzyme immunoassay test kit from Labsystems (cut-off: 15 EL.U/
mL). Antibodies against recombinant hepatitis B surface antigen
were measured by an in-house chemiluminescent immunoassay
(cut-off: 6.2 mIU/mL). Concentrations of >10 mlU/mL were
considered protective. Antibody concentrations against the Hib
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polysaccharide PRP were measured by ELISA (cut-off: 0.15 pg/mL;
this was also the cut-off for seroprotection). Antibody titres >8 for
poliovirus types 1, 2, and 3 determined by a virus micro-
neutralisation test adapted from WHO guidelines were considered
as seropositive and protective [20]. Measles antibodies were
titrated using commercially available Enzygnost ELISA kits manu-
factured by Dade Behring (assay cut-off and cut-off for seroprotec-
tion: 150 mIU/mL). Antibodies against yellow fever virus were
determined by a plaque reduction neutralisation test by Focus
Diagnostics Inc, California, US. Antibody titres >10 were consid-
ered seroprotective.

2.6. Reactogenicity assessment

Injection site symptoms (pain, redness, and swelling) were col-
lected using diary cards within 4 days post-each dose. Intensity for
the local adverse events (AEs) was assessed with grades from 1 to
3; grade 3 for pain was considered crying when limb was moved or
limb was spontaneously painful, and for swelling and redness,
>30 mm surface diameter. Each parent(s)/legally acceptable repre-
sentative(s) was instructed to contact the investigator immediately
should the infant manifest any signs or symptoms. Trained field
workers working under the supervision of the principal investiga-
tor visited each vaccinated child on days 1, 2, and 3 following each
vaccine dose to collect information on any AEs and to record any
medication taken.

2.7. Statistical analysis

Statistical analyses were performed using Statistical Analysis
System Discovery Drug on Windows. A target sample size of 170
evaluable participants per group was driven by confirmatory
objectives (a sample size of 200 participants per group allowed
detection of a 35% reduction in non-PHiD-CV serotypes or
serogroups carriage prevalence with 82% power, assuming that
non-PHiD-CV serotypes or serogroups carriage prevalence in the
comparator PHiD-CV group was 40%; results were previously pre-
sented) [16].

Total vaccinated cohort (TVC) for safety included all partici-
pants with at least 1 study vaccine administration documented.
According-to-protocol (ATP) cohort for immunogenicity analysis
included all evaluable participants (i.e. those meeting all eligibility
criteria, complying with protocol-defined procedures and intervals,
with no elimination criteria during the study) for whom data con-
cerning immunogenicity endpoint measures were available. These
included children with results for at least 1 study vaccine antigen
component post-vaccination. Maximum interval allowed between
primary vaccine doses was 28-48 days for 3+0 schedule and 49-
90 days for 2+1 schedule; booster dose was administered at
approximately 9-10 months of age.

Geometric mean antibody concentrations (GMCs) and geomet-
ric mean titres (GMTs) were calculated with 95% confidence inter-
vals (CIs) by taking the anti-log of the mean of the log antibody
concentration or titre transformations. Antibody concentrations
and titres below assay cut-offs were given an arbitrary value of half
the cut-off for GMC and GMT calculations. Seropositivity/seropro-
tection rates with exact 95% Cls were calculated for each appropri-
ate serotype/antigen.

3. Results
3.1. Demographic characteristics

Out of 1200 infants in the TVC, 1164 were included in the ATP
cohort for immunogenicity and 1152 completed the study. Reasons

for withdrawals have been previously published [16]. All infants
were African. Demographic characteristics were similar across
groups and have been previously published [16].

3.2. Immune response to the 10 PHiD-CV polysaccharide conjugates

Within the same vaccination schedule, the infants’ immune
responses were similar for the PHiD-CV/dPly/PhtD and PHiD-CV
groups in terms of antibody GMCs, OPA GMTs, and proportion of
infants with antibody levels and OPA titres above the cut-off values
(Tables 1 and 2; Figs. 2 and 3; Tables S1 and S2).

One month post-primary vaccination, for each of the 10 PHiD-
CV serotypes common to the pneumococcal study vaccines,
>97.4% of children in the groups who received a 3+0 schedule
and >96.4% of children in the groups with a 2+1 schedule had anti-
body concentrations >0.2 pg/mL, except for serotypes 6B (78.4-
92.7% [3+0] and 72.0-72.5% [2+1]) and 23F (86.8-97.4% [3+0]
and 76.2-77.8% [2+1]) (Table 1). Within the 3+0 schedule, for ser-
otypes 6B and 23F, the percentage of infants with antibody concen-
trations above the cut-off appeared to be lower in the PHiD-CV
group compared to the PCV13 group at 1 month post-primary vac-
cination; however at 5 and 8 months post-primary vaccination,
those percentages for serotypes 6B and 23F appeared lower in
the PCV13 group compared to the PHiD-CV group (Table 1). One
month post-primary vaccination, for each of the 10 PHiD-CV sero-
types, the percentage of children with OPA titres >8 was >85.3% in
the 3+0 groups and >82.5% in the 2+1 groups, except for serotype 1
(74.0-90.3% [3+0] and 75.3-75.5% [2+1]) (Table 2).

In both schedules, for all 10 common serotypes, antibody GMCs
increased post-primary vaccination but waned in the following
months, while remaining above pre-vaccination levels (except for
serotype 14 in the 2+1 groups pre-booster vaccination). Within
the 3+0 schedule, antibody levels post-primary vaccination
appeared lower for serotypes 18C and 19F in the PCV13 group
compared with PHiD-CV recipients, while the opposite was
observed for serotypes 1, 5, and 14 (Fig. 2 and Table S1). Increases
in antibody GMCs were observed post-booster vaccination for
PHiD-CV/dPly/PhtD-30 and PHiD-CV administered as a 2+1 sched-
ule. For all PHiD-CV serotypes, observed antibody GMCs at
12 months of age were higher in the 2+1 compared to 3+0 groups
in the PHiD-CV-vaccinated groups (i.e. 3 months post-booster for 2
+1 or 8 months post-primary vaccination for 3+0 schedules) (Fig. 2
and Table S1). For the majority of the 10 common vaccine pneumo-
coccal serotypes, OPA responses were within similar ranges across
all groups at 1 and 5 months post-primary vaccination. Increases in
OPA GMTs were observed following booster vaccination in the 2+1
schedule for most serotypes (Fig. 3 and Table S2).

3.3. Immune response to serotypes 3, 6A, and 19A

One month post-primary vaccination, the percentage of infants
with antibody concentrations >0.2 pg/mL ranged from 6.3% to
10.3% for serotype 3, from 21.9% to 34.6% for serotype 6A and from
47.9% to 56.5% for serotype 19A across all groups except for the
PCV13 group, where all infants had antibody concentrations
>0.2 ug/mL for serotype 3, and 99.5% and 98.4% for serotype 6A
and 19A, respectively (Table 1). In the 3+0 and 2+1 schedules,
the percentage of infants in the PHiD-CV groups having OPA titres
>8 ranged from 5.4% to 8.7% for serotype 3 and from 13.4% to 29.5%
for serotype 6A. In both schedules, the percentage of infants having
19A OPA titre >143 ranged from 35.2% to 59.2%. For the PCV13
group this percentage was 99.0% for serotypes 3 and 6A, and
100% for 19A (Table 2).

In the PCV13 group, observed antibody GMCs for serotypes 3,
6A and 19A increased post-primary vaccination but waned in the
following months while remaining above pre-vaccination levels.



Table 1

Percentage of infants with serotype-specific pneumococcal antibody concentrations >0.2 ng/mL pre- and post-vaccination (ATP cohort for immunogenicity).

3+0 schedule

2+1 schedule

PHiD-CV/dPly/PhtD-30 PHiD-CV/dPly/PhtD-10 PHiD-CV PCV13 PHiD-CV/dPly/PhtD-30 PHiD-CV
Serotype Time point N % (95% CI) N % (95% CI) N % (95% CI) N % (95% CI) N % (95% CI) N % (95% CI)
PHiD-CV vaccine serotypes
1 M2 195 27.2 (21.1-34.0) 192 30.2 (23.8-37.2) 196 32.7 (26.1-39.7) 194 27.3 (21.2-34.2) 191 35.6 (28.8-42.8) 193 31.1 (24.6-38.1)
M5 194 100 (98.1-100) 191 100 (98.1-100) 193 100 (98.1-100) 193 100 (98.1-100) 192 100 (98.1-100) 191 100 (98.1-100)
M9 192 86.5 (80.8-91.0) 190 93.2 (88.6-96.3) 195 90.8 (85.8-94.4) 189 98.9 (96.2-99.9) 189 82.5 (76.4-87.7) 191 86.4 (80.7-90.9)
M12 189 73.0 (66.1-79.2) 189 76.2 (69.5-82.1) 194 78.4 (71.9-83.9) 187 96.8 (93.1-98.8) 190 97.9 (94.7-99.4) 190 98.4 (95.5-99.7)
4 M2 194 13.9 (9.4-19.6) 192 18.8 (13.5-25.0) 196 14.3 (9.7-20.0) 195 14.4 (9.8-20.1) 193 16.6 (11.6-22.6) 193 20.2 (14.8-26.6)
M5 195 99.5 (97.2-100) 191 100 (98.1-100) 195 99.5 (97.2-100) 192 100 (98.1-100) 192 97.4 (94.0-99.1) 193 99.0 (96.3-99.9)
M9 192 100 (98.1-100) 191 99.5 (97.1-100) 194 98.5 (95.5-99.7) 190 97.9 (94.7-99.4) 189 98.9 (96.2-99.9) 190 93.2 (88.6-96.3)
M12 190 89.5 (84.2-93.5) 189 93.7 (89.2-96.7) 195 91.3 (86.4-94.8) 188 87.8 (82.2-92.1) 190 100 (98.1-100) 190 99.5 (97.1-100)
5 M2 193 22.8 (17.1-29.4) 192 229 (17.2-29.5) 193 24.4 (18.5-31.0) 193 20.2 (14.8-26.6) 189 19.0 (13.7-25.4) 192 19.8 (14.4-26.1)
M5 193 100 (98.1-100) 186 100 (98.0-100) 187 99.5 (97.1-100) 190 100 (98.1-100) 188 100 (98.1-100) 186 98.9 (96.2-99.9)
M9 192 99.0 (96.3-99.9) 190 98.9 (96.2-99.9) 194 99.0 (96.3-99.9) 190 98.9 (96.2-99.9) 188 98.4 (95.4-99.7) 190 93.7 (89.2-96.7)
M12 187 89.8 (84.6-93.8) 189 94.2 (89.8-97.1) 194 93.8 (89.4-96.8) 187 96.8 (93.1-98.8) 190 100 (98.1-100) 190 100 (98.1-100)
6B M2 195 35.4 (28.7-42.5) 190 25.3 (19.3-32.1) 196 29.6 (23.3-36.5) 195 29.7 (23.4-36.7) 192 31.8 (25.3-38.9) 193 34.7 (28.0-41.9)
M5 194 78.4 (71.9-83.9) 190 85.3 (79.4-90.0) 192 82.3 (76.1-87.4) 191 92.7 (88.0-95.9) 189 72.0 (65.0-78.2) 189 72.5 (65.5-78.7)
M9 190 90.5 (85.4-94.3) 190 94.2 (89.9-97.1) 194 94.8 (90.7-97.5) 189 77.2 (70.6-83.0) 186 87.1 (81.4-91.6) 189 87.8 (82.3-92.1)
M12 189 91.5 (86.6-95.1) 189 92.6 (87.9-95.9) 195 94.9 (90.8-97.5) 188 68.1 (60.9-74.7) 190 95.8 (91.9-98.2) 190 96.8 (93.3-98.8)
7F M2 195 27.7 (21.5-34.5) 192 35.9 (29.2-43.2) 196 29.6 (23.3-36.5) 195 29.7 (23.4-36.7) 193 31.6 (25.1-38.7) 193 31.1 (24.6-38.1)
M5 194 99.5 (97.2-100) 190 100 (98.1-100) 195 99.0 (96.3-99.9) 195 100 (98.1-100) 192 100 (98.1-100) 191 99.5 (97.1-100)
M9 192 99.5 (97.1-100) 191 99.5 (97.1-100) 195 100 (98.1-100) 190 100 (98.1-100) 189 99.5 (97.1-100) 191 97.9 (94.7-99.4)
M12 190 97.9 (94.7-99.4) 189 98.9 (96.2-99.9) 195 99.5 (97.2-100) 188 99.5 (97.1-100) 190 100 (98.1-100) 190 100 (98.1-100)
9V M2 194 37.1(30.3-44.3) 192 38.0 (31.1-45.3) 196 38.8 (31.9-46.0) 194 40.2 (33.2-47.5) 193 42.5 (35.4-49.8) 193 31.6 (25.1-38.7)
M5 194 99.0 (96.3-99.9) 188 100 (98.1-100) 196 98.0 (94.9-99.4) 194 98.5 (95.5-99.7) 191 97.4 (94.0-99.1) 191 98.4 (95.5-99.7)
M9 192 97.4 (94.0-99.1) 191 97.9 (94.7-99.4) 193 97.4 (94.1-99.2) 189 95.2 (91.2-97.8) 189 96.3 (92.5-98.5) 191 95.3 (91.2-97.8)
M12 189 95.2 (91.2-97.8) 189 97.9 (94.7-99.4) 195 96.9 (93.4-98.9) 188 88.8 (83.4-93.0) 190 100 (98.1-100) 190 98.9 (96.2-99.9)
14 M2 195 95.9 (92.1-98.2) 192 91.7 (86.8-95.2) 194 95.9 (92.0-98.2) 194 92.3 (87.6-95.6) 192 92.7 (88.1-96.0) 193 94.3 (90.0-97.1)
M5 193 100 (98.1-100) 191 99.5 (97.1-100) 192 99.5 (97.1-100) 194 100 (98.1-100) 192 99.0 (96.3-99.9) 190 98.9 (96.2-99.9)
M9 192 95.3 (91.3-97.8) 190 98.4 (95.5-99.7) 194 94.3 (90.1-97.1) 189 94.7 (90.5-97.4) 189 85.2 (79.3-89.9) 191 88.0 (82.5-92.2)
M12 190 94.7 (90.5-97.4) 189 94.7 (90.5-97.4) 195 93.8 (89.5-96.8) 188 95.2 (91.1-97.8) 190 98.9 (96.2-99.9) 189 98.9 (96.2-99.9)
18C M2 195 42.1 (35.0-49.3) 192 39.6 (32.6-46.9) 195 41.0 (34.0-48.3) 195 41.0 (34.0-48.3) 193 39.4 (32.4-46.7) 192 40.6 (33.6-47.9)
M5 194 100 (98.1-100) 186 100 (98.0-100) 189 99.5 (97.1-100) 193 98.4 (95.5-99.7) 191 99.5 (97.1-100) 188 98.9 (96.2-99.9)
M9 192 100 (98.1-100) 191 100 (98.1-100) 195 99.5 (97.2-100) 190 96.3 (92.6-98.5) 189 96.8 (93.2-98.8) 190 99.5 (97.1-100)
M12 190 99.5 (97.1-100) 189 100 (98.1-100) 195 99.5 (97.2-100) 188 91.0 (85.9-94.6) 190 100 (98.1-100) 190 100 (98.1-100)
19F M2 195 77.9 (71.5-83.6) 192 78.6 (72.2-84.2) 195 82.6 (76.5-87.6) 194 82.5 (76.4-87.5) 192 81.8 (75.6-87.0) 192 76.6 (69.9-82.4)
M5 193 99.0 (96.3-99.9) 189 97.4 (93.9-99.1) 193 97.4 (94.1-99.2) 193 100 (98.1-100) 193 96.4 (92.7-98.5) 192 97.4 (94.0-99.1)
M9 191 97.9 (94.7-99.4) 190 97.9 (94.7-99.4) 195 97.4 (94.1-99.2) 188 97.9 (94.6-99.4) 187 99.5 (97.1-100) 191 97.4 (94.0-99.1)
M12 188 94.1 (89.8-97.0) 189 96.3 (92.5-98.5) 194 97.4 (94.1-99.2) 187 82.4 (76.1-87.5) 189 98.9 (96.2-99.9) 189 98.4 (95.4-99.7)
23F M2 195 36.4 (29.7-43.6) 192 33.9 (27.2-41.0) 196 34.7 (28.1-41.8) 195 34.4 (27.7-41.5) 193 37.8 (31.0-45.1) 193 38.3 (31.5-45.6)
M5 194 89.2 (83.9-93.2) 185 90.8 (85.7-94.6) 189 86.8 (81.1-91.3) 192 97.4 (94.0-99.1) 189 76.2 (69.5-82.1) 189 77.8 (71.2-83.5)
M9 192 91.1 (86.2-94.8) 191 89.5 (84.3-93.5) 195 91.3 (86.4-94.8) 190 78.9 (72.5-84.5) 189 78.3 (71.7-84.0) 191 79.1 (72.6-84.6)
M12 190 84.7 (78.8-89.5) 189 88.4 (82.9-92.6) 195 90.3 (85.2-94.0) 188 67.6 (60.4-74.2) 190 95.3 (91.2-97.8) 190 95.3 (91.2-97.8)
Other serotypes
3 M2 195 34.4 (27.7-41.5) 192 38.5 (31.6-45.8) 195 31.3 (24.8-38.3) 195 35.4 (28.7-42.5) 193 33.7 (27.1-40.8) 193 33.7 (27.1-40.8)
M5 192 6.3 (3.3-10.7) 184 103 (6.3-15.7) 186 10.2 (6.3-15.5) 192 100 (98.1-100) 186 6.5 (3.4-11.0) 187 9.6 (5.8-14.8)
M9 192 16.1 (11.2-22.1) 189 15.9 (11.0-21.9) 191 19.4 (14.0-25.7) 188 92.6 (87.8-95.9) 187 13.9 (9.3-19.7) 191 19.9 (14.5-26.3)
M12 190 26.3 (20.2-33.2) 188 21.8 (16.1-28.4) 195 246 (18.7-31.3) 187 67.4 (60.2-74.0) 190 22.1 (16.4-28.7) 190 25.8 (19.7-32.6)
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Table 1 (continued)

2+1 schedule

3+0 schedule

PHiD-CV

PHiD-CV/dPly/PhtD-30

PCV13

PHiD-CV

PHiD-CV/dPly/PhtD-10

PHiD-CV/dPly/PhtD-30

% (95% Cl) % (95% Cl) % (95% Cl) % (95% CI) % (95% CI)

% (95% Cl)

N

Time point

Serotype

)
5)
)
)
)
)
)

54.2-69.5
23.0-36
242-37.8
30.0-44.8)
60.6-74.3
49.0-63.7
38.6-53.2
64.6-78.0

62.0
29.4
30.7
37.1
67.7
56.5
45.8
71.7

166
187
189

75
192
186
190
187

62.0
21.9
23.8
36.2
62.1
53.5
48.6
68.9

171
187
185
174
190
187
183
190

63.0 (55.2-70.4)
99.5 (97.1-100)
93.2-98.
91.9 (86.3-95.7
60.1 (52.8-67.1
4 (95.5-99.
91.4 (86.5-95.0
82.2 (75.9-87.4

165
190
189
14

193
191
187
185

63.3 (55.6-70.6)
28.9 (22.5-35.9)
51.0 (43.7-58.3)
50.0 (42.4-57.6)
66.3 (59.2-72.9)
53.8 (46.3-61.2)
57.2 (49.9-64.3)
55.2 (47.9-62.4)

169
187
192
178
193
182
194
192

60.7 (52.8-68.3)
34.6 (27.8-41.9)
442 (37.0-51.6)
40.7 (33.4-48.3)
68.6 (61.5-75.1)
54.1 (46.6-61.4)
51.9 (44.5-59.2)
54.3 (46.9-61.7)

63
185
190
177
191
185
187
184

24.8-38.3)
31.5-45.7)
25.6-39.8)
60.3-73.9)
40.6-55.2)
37.3-52.1)

50.8 (43.4-58.2)

60.6 (52.8-68.0)

313
38.4
324
67.4
479
446

170
192
190
179

193
190
186
185

6A
19A

Footnote: ATP, according-to-protocol; M, months; N, numbers of infants with available results at each time point; CI, confidence interval; M2, pre-primary vaccination; M5, 1 month post-primary vaccination; M9, 5 months post-

primary vaccination (pre-booster in 2+1 groups); M12, 8 months post-primary vaccination in 3+0 groups and 3 months post-booster in 2+1 groups.
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In PHiD-CV groups for both schedules, observed antibody GMCs for
these 3 serotypes decreased post-primary vaccination, and
remained below pre-vaccination levels except for 2+1 groups
where an increase in antibody GMCs was observed for serotype
19A post-booster vaccination (Fig. 2 and Table S1). For serotypes
3, 6A and 19A, at each timepoint, OPA responses were within sim-
ilar ranges across all PHiD-CV groups except an increase in 19A
OPA titre post-booster vaccination in the 2+1 groups. Observed
OPA GMTs were higher in the PCV13 group and decreased post-
primary vaccination (Fig. 3 and Table S2).

3.4. Immune response against protein D

One month post-primary vaccination, in groups receiving the 3
+0 schedule, all participants in the PHiD-CV/dPly/PhtD-30, PHiD-
CV/dPly/PhtD-10, or PHiD-CV groups and 39.7% of infants in the
PCV13 group had anti-protein D concentrations >100 EL.U/mL
(Table 3), compared to 98.9% and 100% of participants receiving
PHiD-CV/dPly/PhtD-30 or PHiD-CV in a 2+1 schedule. Eight months
post-primary vaccination, the percentage of children with anti-
protein D concentrations >100 EL.U/mL had decreased in 3+0
groups, while an increase was reported post-booster for 2+1
groups (Table 3). Increases in anti-protein D GMCs were observed
post-vaccination in all groups receiving a protein D-containing
vaccine when compared to pre-vaccination levels, regardless of
the presence of dPly and PhtD.

3.5. Immune response to the co-administered vaccines

One month post-vaccination, all children in all groups had anti-
body levels equal to or above the seroprotective threshold for diph-
theria, tetanus, and Hib. The observed anti-diphtheria GMC tended
to be lower in the PCV13 group compared to the other groups. At
least 98.0% of children in each group were considered seropro-
tected against pertussis, and >96.6% were considered seropro-
tected against hepatitis B (Table 4). For all groups, the
percentages of children considered seroprotected against polio-
virus 1, 2, and 3 were 89.1-96.8%, 93.4-100%, and 85.3-95.5%,
respectively (Table 4). Three months post-vaccination, 72.9-
85.6% of children in the 3+0 groups and 82.3-84.0% of children in
the 2+1 groups had antibody levels equal to or above the seropro-
tective level for measles, and 96.9-100% and 95.8-97.9%, respec-
tively, were considered seroprotected against yellow fever
(Table 4). In both schedules, immune responses to the co-
administered vaccines were similar between PHiD-CV/dPly/PhtD
and PHiD-CV groups.

3.6. Reactogenicity of co-administered vaccines

General symptoms, local reactogenicity at the injection site of
the pneumococcal vaccines, incidence of unsolicited adverse
events after priming and booster vaccine doses, and incidence of
serious adverse events were reported previously [16].

For all co-administered vaccine doses, whatever the pneumo-
coccal vaccine and vaccination schedule, injection site pain was
the most frequent solicited local symptom both post-primary and
post-booster vaccination (Fig. 4). The most frequent grade 3 injec-
tion site symptom was swelling, reported in up to 4% of infants in
the PHiD-CV/dPly/PhtD-30 (2+1) group following the first dose of
the DTPw-HBV/Hib vaccine (Fig. 4).

4. Discussion

Our study evaluated the serotype-specific immune responses to
pneumococcal PS conjugates when combined in investigational



Table 2

Percentage of infants with serotype-specific pneumococcal OPA titres above the threshold post-vaccination (ATP cohort for immunogenicity, OPA subset).

3+0 schedule

2+1 schedule

PHiD-CV/dPly/PhtD-30 PHiD-CV/dPly/PhtD-10 PHiD-CV PCV13 PHiD-CV/dPly/PhtD-30 PHiD-CV
Serotypes Time point N % (95% CI) N % (95% CI) N % (95% CI) N % (95% CI) N % (95% CI) N % (95% CI)
PHiD-CV vaccine serotypes
1 M5 96 74.0 (64.0-82.4) 93 90.3 (82.4-95.5) 98 88.8 (80.8-94.3) 96 89.6 (81.7-94.9) 98 75.5 (65.8-83.6) 97 75.3 (65.5-83.5)
M9 95 28.4 (19.6-38.6) 93 38.7 (28.8-49.4) 94 30.9 (21.7-41.2) 90 37.8 (27.8-48.6) 95 23.2 (15.1-32.9) 95 22.1 (14.2-31.8)
M12 95 25.3 (16.9-35.2) 91 29.7 (20.5-40.2) 96 27.1(18.5-37.1) 88 35.2 (25.3-46.1) 95 67.4 (57.0-76.6) 95 68.4 (58.1-77.6)
4 M5 95 98.9 (94.3-100) 91 98.9 (94.0-100) 98 100 (96.3-100) 94 100 (96.2-100) 97 100 (96.3-100) 96 95.8 (89.7-98.9)
M9 91 68.1 (57.5-77.5) 86 84.9 (75.5-91.7) 93 73.1 (62.9-81.8) 84 72.6 (61.8-81.8) 92 63.0 (52.3-72.9) 90 61.1 (50.3-71.2)
M12 90 56.7 (45.8-67.1) 86 67.4 (56.5-77.2) 91 68.1 (57.5-77.5) 85 58.8 (47.6-69.4) 93 95.7 (89.4-98.8) 91 91.2 (83.4-96.1)
5 M5 95 85.3 (76.5-91.7) 93 95.7 (89.4-98.8) 97 93.8 (87.0-97.7) 96 92.7 (85.6-97.0) 98 86.7 (78.4-92.7) 97 82.5 (73.4-89.4)
M9 96 53.1 (42.7-63.4) 93 72.0 (61.8-80.9) 97 59.8 (49.3-69.6) 90 64.4 (53.7-74.3) 95 53.7 (43.2-64.0) 95 51.6 (41.1-62.0)
M12 95 34.7 (25.3-45.2) 92 42.4 (32.1-53.1) 98 49.0 (38.7-59.3) 89 50.6 (39.8-61.3) 96 91.7 (84.2-96.3) 95 85.3 (76.5-91.7)
6B M5 95 89.5 (81.5-94.8) 93 95.7 (89.4-98.8) 96 95.8 (89.7-98.9) 96 94.8 (88.3-98.3) 95 87.4 (79.0-93.3) 96 87.5(79.2-93.4)
M9 91 87.9 (79.4-93.8) 93 89.2 (81.1-94.7) 97 92.8 (85.7-97.0) 88 64.8 (53.9-74.7) 91 80.2 (70.6-87.8) 91 73.6 (63.3-82.3)
M12 88 80.7 (70.9-88.3) 90 83.3 (74.0-90.4) 97 90.7 (83.1-95.7) 83 69.9 (58.8-79.5) 94 89.4 (81.3-94.8) 89 89.9 (81.7-95.3)
7F M5 95 100 (96.2-100) 93 100 (96.1-100) 98 99.0 (94.4-100) 96 100 (96.2-100) 98 100 (96.3-100) 96 100 (96.2-100)
M9 96 100 (96.2-100) 93 100 (96.1-100) 97 99.0 (94.4-100) 90 100 (96.0-100) 95 98.9 (94.3-100) 94 100 (96.2-100)
M12 95 100 (96.2-100) 92 100 (96.1-100) 98 100 (96.3-100) 89 100 (95.9-100) 96 100 (96.2-100) 95 100 (96.2-100)
9V M5 96 99.0 (94.3-100) 93 100 (96.1-100) 98 96.9 (91.3-99.4) 94 96.8 (91.0-99.3) 98 99.0 (94.4-100) 96 100 (96.2-100)
M9 95 98.9 (94.3-100) 92 95.7 (89.2-98.8) 97 95.9 (89.8-98.9) 90 94.4 (87.5-98.2) 91 89.0 (80.7-94.6) 94 87.2 (78.8-93.2)
M12 92 95.7 (89.2-98.8) 89 95.5 (88.9-98.8) 97 90.7 (83.1-95.7) 88 94.3 (87.2-98.1) 95 100 (96.2-100) 95 96.8 (91.0-99.3)
14 M5 95 97.9 (92.6-99.7) 93 95.7 (89.4-98.8) 97 95.9 (89.8-98.9) 93 96.8 (90.9-99.3) 98 90.8 (83.3-95.7) 96 87.5 (79.2-93.4)
M9 95 87.4 (79.0-93.3) 89 92.1 (84.5-96.8) 95 89.5 (81.5-94.8) 89 94.4 (87.4-98.2) 89 70.8 (60.2-79.9) 91 65.9 (55.3-75.5)
M12 89 87.6 (79.0-93.7) 88 86.4 (77.4-92.8) 95 89.5 (81.5-94.8) 89 93.3 (85.9-97.5) 93 100 (96.1-100) 93 93.5 (86.5-97.6)
18C M5 96 97.9 (92.7-99.7) 93 100 (96.1-100) 98 98.0 (92.8-99.8) 94 97.9 (92.5-99.7) 98 90.8 (83.3-95.7) 97 94.8 (88.4-98.3)
M9 95 75.8 (65.9-84.0) 92 83.7 (74.5-90.6) 96 85.4 (76.7-91.8) 90 37.8 (27.8-48.6) 93 72.0 (61.8-80.9) 95 76.8 (67.1-84.9)
M12 92 52.2 (41.5-62.7) 88 52.3 (41.4-63.0) 97 61.9 (51.4-71.5) 88 21.6 (13.5-31.6) 96 97.9 (92.7-99.7) 94 98.9 (94.2-100)
19F M5 95 92.6 (85.4-97.0) 90 95.6 (89.0-98.8) 98 96.9 (91.3-99.4) 94 94.7 (88.0-98.3) 96 92.7 (85.6-97.0) 96 92.7 (85.6-97.0)
M9 96 76.0 (66.3-84.2) 92 85.9 (77.0-92.3) 98 89.8 (82.0-95.0) 91 22.0 (14.0-31.9) 93 76.3 (66.4-84.5) 94 76.6 (66.7-84.7)
M12 94 58.5 (47.9-68.6) 92 67.4 (56.8-76.8) 97 73.2 (63.2-81.7) 89 19.1 (11.5-28.8) 96 89.6 (81.7-94.9) 95 85.3 (76.5-91.7)
23F M5 94 89.4 (81.3-94.8) 93 93.5 (86.5-97.6) 98 92.9 (85.8-97.1) 96 94.8 (88.3-98.3) 94 86.2 (77.5-92.4) 95 85.3 (76.5-91.7)
M9 87 85.1 (75.8-91.8) 85 82.4 (72.6-89.8) 90 76.7 (66.6-84.9) 86 83.7 (74.2-90.8) 90 70.0 (59.4-79.2) 91 70.3 (59.8-79.5)
M12 81 82.7 (72.7-90.2) 87 79.3 (69.3-87.3) 89 83.1 (73.7-90.2) 83 83.1 (73.3-90.5) 95 91.6 (84.1-96.3) 91 91.2 (83.4-96.1)
Other serotypes
3 M5 92 5.4 (1.8-12.2) 92 8.7 (3.8-16.4) 97 7.2 (3.0-14.3) 96 99.0 (94.3-100) 96 8.3 (3.7-15.8) 97 7.2 (3.0-14.3)
M9 94 12.8 (6.8-21.2) 91 22.0 (14.0-31.9) 94 20.2 (12.6-29.8) 89 58.4 (47.5-68.8) 87 17.2 (10.0-26.8) 86 14.0 (7.4-23.1)
M12 91 28.6 (19.6-39.0) 86 29.1 (19.8-39.9) 95 26.3 (17.8-36.4) 87 43.7 (33.1-54.7) 92 22.8 (14.7-32.8) 93 23.7 (15.5-33.6)
6A M5 91 27.5(18.6-37.8) 88 29.5 (20.3-40.2) 96 26.0 (17.6-36.0) 96 99.0 (94.3-100) 96 14.6 (8.2-23.3) 97 13.4 (7.3-21.8)
M9 92 25.0 (16.6-35.1) 92 30.4 (21.3-40.9) 94 37.2 (27.5-47.8) 88 94.3 (87.2-98.1) 93 28.0 (19.1-38.2) 95 25.3 (16.9-35.2)
M12 86 25.6 (16.8-36.1) 86 29.1 (19.8-39.9) 88 36.4 (26.4-47.3) 87 83.9 (74.5-90.9) 88 26.1 (17.3-36.6) 91 18.7 (11.3-28.2)
19A M5 72 45.8 (34.0-58.0) 70 54.3 (41.9-66.3) 71 59.2 (46.8-70.7) 89 100 (95.9-100) 69 43.5 (31.6-56.0) 71 35.2 (24.2-47.5)
M9 75 21.3 (12.7-32.3) 71 19.7 (11.2-30.9) 61 26.2 (15.8-39.1) 69 79.7 (68.3-88.4) 67 13.4 (6.3-24.0) 81 13.6 (7.0-23.0)
M12 79 22.8 (14.1-33.6) 67 25.4 (15.5-37.5) 69 23.2 (13.9-34.9) 60 58.3 (44.9-70.9) 72 44.4 (32.7-56.6) 79 53.2 (41.6-64.5)
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Footnote: OPA, opsonophagocytic activity; ATP, according-to-protocol; CI, confidence interval; M, months; N, numbers of infants with available results at each time point; M5, 1 month post-primary vaccination; M9, 5 months
post-primary vaccination (pre-booster in 2+1 groups); M12, 8 months post-primary vaccination in 3+0 groups and 3 months post-booster in 2+1 groups. The OPA titre threshold is 8 for all serotypes except for 19A, for which the
serotype-specific threshold is 143.
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Fig. 2. Kinetics of serotype-specific pneumococcal antibody GMCs (ATP cohort for immunogenicity). ATP, according-to-protocol; GMC, geometric mean concentration; M,
months; M2, pre-primary vaccination; M5, 1 month post-primary vaccination; M9, 5 months post-primary vaccination (pre-booster in 2+1 groups); M12, 8 months post-
primary vaccination in 3+0 groups and 3 months post-booster in 2+1 groups. Note: Error bars indicate 95% confidence intervals. Data for the groups are slightly shifted for
better visualisation.
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PHiD-CV vaccinees. These results are in line with previous findings
from European studies assessing pneumococcal protein-containing
formulations in infants [13] and toddlers [12]. Efficacy/effective-
ness data of PHiD-CV have been reported for various clinical trials
and post-marketing surveillance studies [21-24]. Based on the
observed immune responses to PHiD-CV in the current study,
showing no substantial difference when combined in PHiD-CV/
dPly/PhtD formulations, we can presume that the vaccine efficacy
of the PS conjugates against pneumococcal disease would remain
unaffected when combined with dPly and PhtD.

Pneumococcal protein antigens seemed not to alter immune
responses to co-administered EPI vaccines (DTPw-HBV/Hib, OPV,
measles, and yellow fever). Similarly, in a study in European chil-
dren, the immune response induced by DTPa-HBV-IPV/Hib vaccine
did not appear altered when co-administered at 2, 3, 4, and 12-
15 months of age with PHiD-CV/dPly/PhtD-10 or PHiD-CV/dPly/
PhtD-30 formulations [13].

No apparent differences in reactogenicity were observed when
co-administering DTPw-HBV/Hib, measles and yellow fever vacci-
nes with PHiD-CV/dPly/PhtD formulations compared to co-
administration with PHiD-CV. Pain was the most commonly
reported injection site symptom for co-administered vaccines, in
line with results described by Dicko et al. [25] in children in the
same age group in African settings who received PHiD-CV co-
administered with DTPw-HBV/Hib. Incidences of pain and swelling
at the DTPw-HBV/Hib injection site were higher in the study of
Dicko et al. [25] than observed in the current study. This disparity
could be due to the different DTPw-HBV/Hib vaccines that were
administered (Zilbrix in the previous study [25], Tritanrix-HepB/
Hib in this study), or to differences in the method used in the reac-
togenicity data collection. Reactogenicity data were collected by
field workers in our study, but by either field workers (in Nigeria)
or study physicians (in Mali) in the study by Dicko et al [25].
Another study with PHiD-CV and DTPw-HBV/Hib (Tritanrix-HepB/
Hib) co-administration in an African setting also reported pain as
the most frequent injection site symptom for observations com-
bined for PHiD-CV and DTPw-HBV/Hib injection sites, but injection
site swelling was rare and no redness or grade 3 injection site
symptoms were reported [26]. These results were similar to our
study where low percentages of infants with injection site swelling
and redness were reported.

As this study used both PHiD-CV and PCV13 as controls, it pro-
vided a unique opportunity to assess their immunogenicity in this
setting. It has to be noted, however, that our study was not
designed for such inter-group comparisons and these findings
should be interpreted with caution, especially considering that
many factors could play a role (e.g. size and quantity of the PSs,
protein carriers and conjugation methods, manufacturing process)
and influence antibody functionality. For the majority of the com-
mon serotypes, no major differences were observed between PHiD-
CV and PCV13. Immune responses for serotypes 18C and 19F
tended to be higher for the PHiD-CV group compared with the
PCV13 group while immune responses for serotypes 1, 5, and 14
appeared higher for the PCV13 group. For serotypes 6B and 23F,
at 1 month post-primary vaccination, immune responses appeared
to be lower in the PHiD-CV group compared to the PCV13 group;
however, this trend reversed at later time points, suggesting a dif-
ference in antibody kinetics and persistence for these serotypes eli-
cited by the two vaccines. In the non-inferiority study for PHiD-CV
licensure, non-inferiority of PHiD-CV compared to PCV7 could not
be shown for serotypes 6B and 23F at 1 month post-primary vacci-
nation [27]. However, several trials and post-marketing studies
have reported efficacy data for PHiD-CV [21-24], and efficacy/ef-
fectiveness of both PHiD-CV and PCV13 is further exemplified by
a recent review paper [28]. A systematic review of literature on
the impact or effectiveness of PHiD-CV and PCV13 on deaths or

Table 3

Percentage of infants with anti-protein D antibody concentrations >100 EL.U/mL and antibody GMCs (ATP cohort for immunogenicity).

2+1 schedule

Time 3+0 schedule

point

PHiD-CV

PHiD-CV/dPly/PhtD-30

PCV13

PHiD-CV

PHiD-CV/dPly/PhtD-10

PHiD-CV/dPly/PhtD-30

% GMC

GMC

% (95% CI)

N

GMC

GMC (95% CI)

% (95% CI)

N

GMC

GMC

(95% CI)

(95% CI)

(95% CI)

(95% CI)

(95% CI)

(95% CI)

(95% CI)

(95% CI)

(95% CI)

194 19.6 (14.2-25.9) 71.9 (64.0-80.7) 192 19.3 (13.9-25.6) 72.1 (63.8-81.4) 190 13.2 (8.7-18.8) 62.5 (57.1-68.4)

187 17.1 (12.0-23.3) 65.1 (59.4-71.5) 196 22.4 (16.8-28.9) 75.5 (67.0-85.1)

192 17.7 (12.6-23.9) 70.9 (62.8-80.0)

193 100 (98.1-100)

M2

1990.2 (1765.7-2243.3) 189 39.7 (32.7-47.0) 84.8 (76.4-94.1) 187 98.9 (96.2-99.9) 990.9 (869.3-1129.5) 187 100 (98.0-100) 1126.7 (999.4-1270.2)

1922.8 (1739.3-2125.6) 187 100 (98.0-100)

1833.8 (1628.5-2065.0) 186 100 (98.0-100)

M5

185 38.9 (31.9-46.3) 83.1 (74.9-92.2) 188 89.9 (84.7-93.8) 2813 (247.5-319.7) 187 92.0 (87.1-95.4) 313.0 (276.2-354.7)

193 98.4 (95.5-99.7) 609.9 (537.0-692.8)
194 923 (87.6-95.6) 344.2 (300.6-394.2)

191 97.4 (94.0-99.1) 559.2 (496.8-629.6)
187 90.9 (85.8-94.6) 324.3 (282.2-372.7)

191 95.8 (91.9-98.2) 499.2 (439.9-566.5)

M9

187 26.7 (20.5-33.7) 69.2 (63.6-75.3) 190 97.9 (94.7-99.4) 534.8 (468.9-610.0) 190 96.8 (93.3-98.8) 664.9 (580.1-762.2)

M12 190 86.8 (81.2-91.3) 288.2 (248.5-334.2)

Footnote: EL.U/mL, ELISA (enzyme linked immunosorbent assay) units per millilitre; ATP, according-to-protocol; CI, confidence interval; GMC, geometric mean concentration; M, months; N, numbers of infants with available

results at each time point; M2, pre-primary vaccination; M5, 1 month post-primary vaccination; M9, 5 months post-primary vaccination (pre-booster in 2+1 groups); M12, 8 months post-primary vaccination in 3+0 groups and

3 months post-booster in 2+1 groups.
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Table 4

Immune response to co-administered DTPw-HBV/Hib, OPV, measles, and yellow fever vaccines (ATP cohort for immunogenicity, co-ad subset).

Antibody (Cut-off) Time point

3+0 schedule

2+1 schedule

N PHiD-CV/dPly/PhtD-30 N PHiD-CV/dPly/PhtD-10 N PHiD-CV N PCV13 N PHiD-CV/dPly/PhtD-30 N PHiD-CV
Anti-D (>0.1 1U/mL) M5 % (95% CI) 99 100 (96.3-100) 99 100 (96.3-100) 98 100 (96.3-100) 99 100 (96.3-100) 95 100 (96.2-100) 9% 100 (96.2-100)
GMC (95% CI) 2.7 (24-3.1) 2.5 (2.1-3.0) 2.9 (2.5-3.3) 1.5 (1.3-1.8) 2.6 (2.2-3.0) 2.6 (2.2-3.0)
Anti-T (>0.1 IU/mL) M5 % (95% CI) 99 100 (96.3-100) 99 100 (96.3-100) 98 100 (96.3-100) 99 100 (96.3-100) 95 100 (96.2-100) 9% 100 (96.2-100)
GMC (95% CI) 5.1 (43-6.1) 5.0 (4.1-6.0) 4.7 (4.0-5.6) 40 (3.5-4.7) 5.7 (4.8-6.8) 47 (3.9-5.7)
Anti-BP (>15 ELU/mL) M5 % (95% CI) 99 100 (96.3-100) 99 99.0 (94.5-100) 98 98.0 (92.8-99.8) 99 99,0 (94.5-100) 94 100 (96.2-100) 9% 99.0 (94.3-100)
GMC (95% CI) 110.3 (99.3-122.5) 111.9 (99.4-125.8) 105.8 (94.4-118.6) 117.0 (105.0-130.3) 123.2 (112.0-135.5) 114.7 (101.3-129.9)
Anti-PRP (>0.15 pg/mL) M5 % (95% CI) 99 100 (96.3-100) 99 100 (96.3-100) 98 100 (96.3-100) 99 100 (96.3-100) 95 100 (96.2-100) 9% 100 (96.2-100)
GMC (95% CI) 19.4 (15.3-24.6) 23.4(19.3-28.3) 19.2 (15.1-24.5) 19.0 (15.2-23.6) 213 (17.9-25.3) 212 (17.4-25.7)
Anti-HBs (>10 miU/mL) M5 % (95% CI) 93 100 (96.1-100) 94 98.9 (94.2-100) 91 97.8 (92.3-99.7) 89 98.9 (93.9-100) 89 98.9 (93.9-100) 88 96.6 (90.4-99.3)
GMC (95% CI) 1165.8 (910.7-1492.3) 1235.8 (946.9-1612.9) 990.1 (757.6-1294.0) 1206.6 (946.2-1538.7) 1318.5 (1062.5-1636.3) 976.5 (724.2-1316.8)
Anti-Polio 1 (>8) M5 % (95% CI) 92 89.1 (80.9-94.7) 97 92.8 (85.7-97.0) 91 912 (83.4-96.1) 94 90.4 (82.6-95.5) 87 93.1 (85.6-97.4) 93 96.8 (90.9-99.3)
GMT (95% CI) 314.8 (202.7-488.7) 4132 (287.0-594.9) 447.9 (278.5-720.1) 398.3 (256.6-618.3) 330.3 (208.6-523.0) 415.6 (286.7-602.6)
Anti-Polio 2 (>8) M5 % (95% CI) 78 100 (95.4-100) 76 93.4 (85.3-97.8) 76 96.1 (88.9-99.2) 73 97.3 (90.5-99.7) 75 94.7 (86.9-98.5) 82 100 (95.6-100)
GMT (95% CI) 619.5 (462.0-830.7) 545.8 (371.6-801.6) 5142 (353.8-747.2) 536.9 (400.6-719.6) 486.7 (319.7-741.1) 702.9 (529.6-932.8)
Anti-Polio 3 (>8) M5 % (95% CI) 88 95.5 (88.8-98.7) 80 86.3 (76.7-92.9) 82 85.4 (75.8-92.2) 84 88.1(79.2-94.1) 75 853 (75.3-92.4) 80 93.8 (86.0-97.9)
GMT (95% CI) 166.0 (124.5-221.5) 135.4 (91.5-200.5) 110.1 (72.5-167.2) 191.8 (129.4-284.4) 106.9 (71.8-159.1) 181.1 (131.7-249.0)
Anti-Measles (>150 mIU/mL) M12 % (95% CI) 95 853 (76.5-91.7) 9 85.6 (76.6-92.1) 96 72.9 (62.9-81.5) 86 77.9 (67.7-86.1) 9% 823 (73.2-89.3) 94 84.0 (75.0-90.8)
GMC (95% CI) 208.6 (254.9-349.8) 3292 (272.6-397.5) 295.8 (237.2-368.8) 274.1 (227.7-330.0) 284.5 (240.9-336.0) 305.9 (256.5-364.8)
Anti-YFV (>10) M12 % (95% CI) 95 98.9 (94.3-100) 97 96.9 (91.2-99.4) 97 100 (96.3-100) 98 98.0 (92.8-99.8) 94 97.9 (92.5-99.7) 95 95.8 (89.6-98.8)

GMT (95% CI)

264.7 (201.0-348.5)

334.0 (250.6-445.1)

379.9 (293.2-492.2)

306.7 (242.9-387.3)

342.0 (252.2-463.7)

239.0 (176.0-324.5)
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Footnote: DTPw-HBV/Hib, diphtheria-tetanus-whole cell pertussis-hepatitis B-Haemophilus influenzae type b vaccine; OPV, oral trivalent polio vaccine; ATP, according-to-protocol; N, numbers of infants with available results; M,
months; Anti-D, anti-diphtheria; Anti-T, anti-tetanus; Anti-BP, anti-Bordetella pertussis; Anti-PRP, anti-polyribosyl-ribitol-phosphate; anti-HBs, anti-hepatitis B; anti-YFV, anti-yellow fever; IU/mL, international units per millilitre;
EL.U/mL, ELISA (enzyme linked immunosorbent assay) units per millilitre; M5, 1 month post-primary vaccination; M12, 3 months post-vaccination; CI, confidence interval; GMC, geometric mean concentration; GMT, geometric
mean titre.
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Fig. 4. Percentage of infants reporting at least 1 solicited local symptom, at injection site and overall at any of the vaccine injection sites, for EPI routine vaccines co-
administered with pneumococcal vaccines (total vaccinated cohort). EPI, Expanded Programme on Immunisation; In the 3+0 schedule, diphtheria-tetanus-whole cell
pertussis-hepatitis B-Haemophilus influenzae type b vaccine (DTPw-HBV/Hib) and oral trivalent polio (OPV) vaccines were co-administered with pneumococcal vaccines at 2,
3, 4, months of age. In the 2+1 schedule, DTPw-HBV/Hib and OPV were co-administered with pneumococcal vaccines at 2, 4 months of age and measles, yellow fever, and OPV
vaccines at 9 months of age. Grade 3 for pain was considered crying when limb was moved or limb was spontaneously painful, and for swelling and redness, >30 mm surface

diameter. Note: Error bars indicate 95% confidence intervals.

A limitation of this study is the fact that the assessment of
immune responses for the PS conjugates and the co-administered
vaccines was descriptive, which was justified by the phase Il design

hospitalisation due to IPD, pneumonia, meningitis, and sepsis in
children below 5 years of age, also showed that there was no evi-
dence of superiority of one vaccine over the other [6].
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of the study. Also, due to the non-standard interval used for post-
booster timepoint (3 months from last dose), no direct comparison
between post-primary (1 month from last dose) and post-booster
vaccinations should be made. Another limitation is the fact that
polio vaccination campaigns were run in The Gambia in 2011
and 2012. Some of the children may have received additional doses
of polio vaccine; these children were not eliminated from the ATP
cohort for immunogenicity. Thus, results for those antigens should
be interpreted with caution as they may not reflect only study vac-
cination. Reactogenicity assessment for co-administered vaccines
was performed only after vaccination visits where pneumococcal
vaccines were administered, e.g. it was not done for measles and
yellow fever vaccines given at 10 months of age in 3+0 groups,
and post-dose 2 of DTPw-HBV/Hib vaccine for the 2+1 groups since
no pneumococcal vaccine was co-administered.

To conclude, both pneumococcal vaccine formulations contain-
ing the proteins dPly and PhtD induced similar immune responses
against the 10 common vaccine serotypes and protein D at all post-
vaccination time points as observed for PHiD-CV. No differences
were observed in the immune responses to DTPw-HBV/Hib, OPV,
measles and yellow fever vaccines used for infant EPI vaccinations
in The Gambia, and reported reactogenicity rates for co-
administered vaccines were also comparable between groups.
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