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Abstract 

 

Polyglutamine tract-binding protein-1 (PQBP-1) is a nuclear intrinsically disordered protein 

playing important roles in transcriptional regulation and RNA splicing during embryonic and 

postembryonic development. In human, its mutations lead to severe cognitive impairment 

known as the Renpenning syndrome, a form of X-linked intellectual disability (XLID).  Here, 

we report a combined biophysical study of two PQBP-1 frameshift mutants, K192Sfs*7 and 

R153Sfs*41. Both mutants are dimeric in solution, in contrast to the monomeric wild-type 

protein. These mutants contain more folded contents and have increased thermal stabilities. 

Using small-angle X-ray scattering data, we generated three-dimensional envelopes which 

revealed their overall flat shapes.  We also described each mutant using an ensemble model 

based on a native-like initial pool with a dimeric structural core.  PQBP-1 is known to repress 

transcription by way of interacting with the C-terminal domain of RNA polymerase II, which 

consists of 52 repeats of a consensus heptapeptide sequence YSPTSPS. We studied the 

binding of PQBP-1 variants to the labelled peptide which is phosphorylated at positions 2 and 

5 (YpSPTpSPS) and found that this interaction is significantly weakened in the two mutants.  
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INTRODUCTION 

Polyglutamine tract-binding protein-1 (PQBP-1) is expressed mainly in neurons throughout 

the brain, with abundant levels in cerebellar cortex and hippocampus (Kunde et al., 2011; Qi 

et al., 2005; Waragai et al., 1999).  The expression level of PQBP-1 in the brain is the highest 

at birth which gradually decreases towards adulthood, suggesting its importance in early 

development. The cellular interactors of PQBP-1 infer that it plays important roles in 

transcription regulation and RNA processing. Among these, PQBP-1 binds to the 

phosphorylated C-terminal domain (CTD) of RNA polymerase II (pol II), which is a platform 

with which many transcription regulatory proteins interact (Egloff and Murphy, 2008; 

Okazawa et al., 2002; Waragai et al., 1999). PQBP-1 also interacts with many components of 

the splicing machinery (Iwasaki and Thomsen, 2014; Mizuguchi et al., 2014; Wang et al., 

2013; Waragai et al., 2000). The presence of PQBP-1 in RNA granules and early spliceosome 

further confirms its critical roles in pre-mRNA processing and transportation (Kunde et al., 

2011; Wang et al., 2013). 

 PQBP-1 is 265 amino acids in size and consists mainly of three domains: the WW 

domain, the polar-amino-acid-rich domain (PRD) and the C-terminal region (Fig. 1A). WW, 

the only folded domain, is a small three-stranded antiparallel -sheet structural motif 

commonly found in a diverse range of proteins of cell signaling and transcription regulation 

(Hu et al., 2004; Otte et al., 2003).  This domain, in other contexts, has been implicated in 

many human diseases including muscular dystrophy, cancer, hypertension, Alzheimer’s and 

Huntington’s diseases (Hu et al., 2004). It is the WW domain (residues 48-81) of PQBP-1 

that mediates its interaction with RNA pol II CTD (Okazawa et al., 2002; Waragai et al., 

1999). The isolated PQBP-1 WW domain is a transcription activator, whereas the full-length 

protein represses transcription (Komuro et al., 1999). 
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 The PRD (residues 104-163) has five consecutive copies of the heptapeptide motif 

DRXH (D/E) KX, then three copies of (D/E) R, a small stretch of intervening amino acids 

and seven copies of (D/E) R. This low complexity region of high charge density mediates 

binding to polyglutamine tracts (Waragai et al., 2000). The C-terminal region (residues 190-

265) contains a stretch of highly conserved amino acids (Sudol et al., 2012) that interacts 

with spliceosome protein U5-15kD (Mizuguchi et al., 2014; Takahashi et al., 2010; Waragai 

et al., 2000).  

 The mutations in PQBP-1 have deleterious effects that lead to severe cognitive 

impairment and results in the Renpenning syndrome, a type of X-linked intellectual disability 

(XLID) (Germanaud et al., 2011). Its clinical features include mental retardation, 

microcephaly, short stature, facial dysmorphy, spastic paraplegia and midline defects. 

(Stevenson et al., 2005).  In this work, the mutant protein products implicated in two 

particularly severe clinical manifestations were studied. The first was a 4-basepair deletion 

(c.459_462delAGAG) which produces a 192-residue mutant protein, p.Arg153Serfs*41 

(denoted R153Sfs*41 here); the second was a 2-basepair deletion (c.575_576delAG) that 

produces a 197-residue mutant protein, p.Lys192Serfs*7 (denoted K192Sfs*7) (Germanaud et 

al., 2011; Kalscheuer et al., 2003; Lenski et al., 2004).  Both frameshift mutants are shortened 

in protein sizes by approximately 25% compared to the wild-type PQBP-1 (Fig. 1A,B).  

While K192Sfs*7 is effectively PQBP-1 lacking its CTD, R153Sfs*41 has a disrupted PRD and 

the rest replaced by a long non-native tail (Fig. 1B).  It is worth noting that a natural splice 

variant, PQBP-1b/c, has a similar sequence composition to K192Sfs*7: consisting of residues 

1-192 but has a variant tail of 32 residues (27). R153Sfs*41 is found to be dispersed throughout 

the cell, presumably due to losing its nuclear localisation signal sequence (Kalscheuer et al., 

2003).  In order to understand the molecular basis of these diseases, we investigated the 

structural properties exhibited by these two mutant proteins.  The natively-unfolded nature of 
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the wild type (Rees et al., 2012; Takahashi et al., 2009) led us to employing solution 

biophysical methods: analytical ultracentrifugation (AUC), circular dichroism (CD) 

spectroscopy and small angle X-ray scattering (SAXS). We further studied if the interactions 

between these mutants and RNA pol II are affected by measuring the change in fluorescence 

polarisation of a labelled peptide. 
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MATERIALS & METHODS 

 

Construction of expression plasmids 

The plasmids for producing the two XLID mutants were generated by the QuikChange 

mutagenesis method (Agilent Technologies) from the expression plasmid pHMGW-PQBP-1 

(Rees et al., 2012) with the following sets of primers  

p.Lys192Serfs*7: 

5’ CCTTTCGGCTTACTGCTCTTGCTCTTGGGATAG 3’ 

5’ CTATCCCAAGAGCAAGAGCAGTAAGCCGAAAGG 3’ 

 

p.Arg153Serfs*41:  

5’ CGTTCCCTGTCTCGCTCTCTCTGTCTAC 3’ 

5’ GTAGACAGAGAGAGCGAGACAGGGAACG 3’ 

 

Expression and purification 

We expressed the fusion proteins in Escherichia coli strain Rosetta 2 DE3 (Merck). We 

cultured bacterial cells at 37 °C till its absorbance at 600 nm reached 0.6. Protein expression 

was induced by adding 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) followed by 

further incubation at 18 °C for 18 hours. We then pelleted and resuspended the cells in 

binding buffer (20 mM Na2HPO4 pH 7.4, 150 mM NaCl). After cell breakage, the cleared 

lysate was loaded on a 5 mL HisTrap column (GE Healthcare) and purification was carried 

out as per manufacturer’s instructions. The purified sample was dialyzed in PreScission 

buffer (20 mM Tris-HCl pH 7.0, 150 mM NaCl, 1 mM 1,4-dithiothreitol (DTT), 1 mM 
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ethylenediaminetetraacetic acid (EDTA)) and digested overnight with PreScission protease at 

4 °C. The digested samples were loaded onto a HiLoad 26/600 Superdex 75 pg column (GE 

Healthcare) and eluted in phosphate-buffered saline (PBS, pH 7.4) at 4 °C.   

 

Analytical ultracentrifugation 

We performed sedimentation velocity experiments on a Beckman Coulter model XL-A 

analytical ultracentrifuge equipped with UV scanning optics.  K192Sfs*7 samples (420 μL) 

were prepared in PBS at concentrations of 0.06, 0.49, and 1.38 mg mL-1, then the set of three 

samples were loaded into 12 mm double-sector cells with quartz windows along with a buffer 

reference (PBS). Likewise, R153Sfs*41 samples at concentrations of 0.07, 0.29, and 0.63 

mg mL-1 were used. Centrifugation speed was 50,000 rpm with 300 scans monitored and 

collected continuously at 280 nm at 20 °C.  

For each sample, data from the scans were fitted to a continuous sedimentation 

coefficient distribution c(s) in inhomogeneous solvent model with the program SEDFIT 

(Schuck, 2000). From the program SEDNTERP (Hayes D., 1995), we computed the buffer 

density (ρ = 1.0053 g mL-1), buffer viscosity (η = 1.0189 cP), and partial specific volume at 

20 °C of K192Sfs*7 ( 𝑣  = 0.713505 cm3 g-1) and R153Sfs*41 ( 𝑣 =  0.718124 cm3 g-1). We 

calculated the molecular mass M corresponding to each peak appearing in c(s) distribution 

from the formula: 

𝑀 = (𝑠𝑅𝑇) [𝐷 (1 −⁄ 𝑣 𝜌 )] 

Where R is gas constant, T is temperature, D the diffusion coefficient of the sedimenting 

species characterised by sedimentation coefficient s. The Stokes radii are obtained by 

integration in SEDFIT.  
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Circular dichroism spectroscopy 

CD spectra of samples at 0.30 mg mL–1 in CD buffer (20 mM Tris-HCl pH 7.4) were 

measured on a Chirascan-Plus spectrometer (Applied Photophysics Ltd., Leatherhead, UK). 

We collected spectra from 260–190 nm in a 1.0 mm rectangular cell at 20 C, with a step size 

of 1 nm, 1 s acquisition time per point with a spectral bandwidth of 2 nm. 

 For the variable temperature experiment, we measured CD spectra at 0.2 mg mL–1 of 

each protein sample in a 0.5 mm-pathlength cell, with 1.42 s acquisition time. The samples 

were cooled to 8 C, then heated to 90 C at the rate of 1 C per minute with a step size of 

2 C and then cooled to 20 C.  Melting data at 225 nm was extracted for analysis. We used 

the protocols of Greenfield (2006) (Greenfield, 2006) to fit the thermal denaturation data with 

monomer, 2-state dimer, or 3-state dimer (with monomeric or dimeric intermediates) 

folding/unfolding models.  From non-linear regression curve fitting (Supplementary 

information S3), melting temperature (Tm) and standard enthalpy change of folding (ΔH°) 

were determined. With a single melting experiment, the change in heat capacity under 

constant pressure, ΔCp, was assumed to be zero to simplify the calculations.  This condition is 

not real and will lead to an overestimation of Tm as well as an underestimation of ΔH at 

where the equilibrium constant, K = 1 (Greenfield, 2004).  Nevertheless, the thermodynamic 

properties so quantified could be descriptively compared.  Using the integrated form of the 

van’t Hoff equation, K = KTm exp [ ΔH / R (1/Tm – 1/T) ], the equilibrium constants of folding 

at T = 298K were calculated, assuming ΔH to be independent of temperature. Then we 

calculated the standard free energy change of folding and standard entropy change of folding.  

 The data of the wild-type protein (Rees et al., 2012) was re-analysed with a 2-state 

monomer unfolding model (Supplementary Fig. S3.1).  
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SAXS experiments and data processing  

SAXS data were collected at the European Molecular Biology Laboratory P12 beamline 

(wavelength used was 0.124 nm) at the PETRA III storage ring at Deutsches Elekronen 

Synchrotron (DESY), Hamburg, Germany. Scattering data were collected at 10 °C on 

samples in PBS and at the following concentrations: K192Sfs*7, at 0.73, 4.4, 5.2, and 

9.2 mg mL–1; R153Sfs*41, at 1.0, 3.0, 6.1 and 7.3 mg mL–1, on a Pilatus 2M detector at a 

distance of 3.0 m.  Each image was averaged from up to 20 frames of exposure time 0.045 s. 

 The ScÅtter program (v.2.3F) was employed for data processing (Rambo and Tainer, 

2013). The data collected for the higher concentration samples showed signs of aggregation 

and thus their low-angle ranges (first 100~150 data points) were discarded. For each protein, 

buffer-corrected data were scaled to the highest concentration set, then averaged and 

normalised. The reduced data was analysed with the ATSAS suite of programs (Petoukhov et 

al., 2012). The forward scattering I0 and the radius of gyration Rg were determined using the 

Guinier method implemented in ATSAS Data Analysis module, with data restricted to the 

limit of q  Rg = 1.1 for intrinsically disordered proteins (Borgia et al., 2016). The molecular 

mass of these samples was estimated by comparing their I0 with that of the reference, bovine 

serum albumin (BSA). Indirect Fourier transform on the scattering curves were calculated 

with GNOM (versions 4.5a and 5.0) to yield the pair distribution function, P(r).  GNOM was 

first run in automatic mode (AutoGnom) to give an estimation of the maximum particle 

dimension Dmax, using a subset of the data.  After the initial AutoGnom run, the analysis was 

extended to the full range of data up to q = 4 nm–1.  Dmax was manually varied in steps in both 

directions in order to achieve a good quality P(r) function (smooth curve with minimal 
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oscillation, no negative values and gentle approach to Dmax) which also satisfies the 

constraints  that P(r) function is 0 at r = 0 and r = Dmax.   

 

SAXS structural analysis and modelling 

The normalised Kratky plot (implemented in ScÅtter) was employed to compare the overall 

conformational states of the proteins (Durand et al., 2010). Here, [(q Rg)
2  Iq / I0] was plotted 

against (q Rg), where Iq is the scattering intensity at the scattering vector, q (q = 4 sin() / , 

where 2 is the scattering angle and  is the wavelength), and I0 is the scattering intensity 

extrapolated to zero scattering angle.  

 The quantitative estimates of the degree of the dynamics and conformational 

heterogeneity were analysed using an ensemble optimisation method (EOM, version 2.0) 

(Bernadό et al., 2007; Tria et al., 2015) hosted by the ATSAS online web server 

(https://www.embl-hamburg.de/biosaxs/atsas-online/). Briefly, an initial pool of 10,000 

“native-like” structures were generated, with or without a structured WW domain dimer 

(WW2). Two models of WW2 dimeric domains were prepared with MODELLER v.9 (Sali 

and Blundell, 1993) using PDB IDs 2DWV and 3LE4 as templates, respectively 

(Supplementary information S2A,B).  The parts of the polypeptide chain outside the WW 

domain were constructed from the protein sequence represented by Cα atoms. The 

conformations of each residue are selected from a database of known coil parameters derived 

from high-resolution crystal structures. The “native-like” models were constrained to have a 

Cα distribution following those of disordered proteins. For each pool of initial structures, a 

genetic algorithm was applied to select for those leading to minimal discrepancy (assessed by 

the reduced χ2 value) between the calculated scattering of the ensemble model and the 

experimental data. 
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 Molecular envelope models of the two mutants were constructed using DAMMIF (20 

models). The range of data used was restricted to 2.0 and 2.2 nm-1 for K192Sfs*7 and 

R153Sfs*41, respectively, according to the empirical qmax  Rg < 7~8 / rule (Petoukhov et al., 

2012).  Simulated annealing was employed to minimize the discrepancy between calculated 

and experimental data. The success of reconstruction was assessed by the normalized spatial 

discrepancy (NSD). The most representative model was recycled into DAMMIN for a final 

round of refinement. Bead models were rendered using the graphics program QuteMol 

(Tarini et al., 2006) with the respective sphere radii. 

 The experimental data, P(r) function output, DAMMIN model and EOM model of the 

wild type and the two mutants have been deposited in the Small Angle Scattering Biological 

Data Bank (SASBDB: SASDED2, SASBDB: SASDET6 and SASBDB: SASDEU6). 

. 

Peptide binding studies 

The RNA pol II CTD peptide (YpSPTpSPS) was purchased from lifetein LLC (Somerset, NJ, 

USA) with a fluorophore, 5-carboxytetramethylrhodamine (5-TAMRA) attached to its N-

terminus.  The concentration of the peptide was 10 μM for all experiments.  For each protein 

sample, six concentrations covering up to 300 μM were used.  The proteins (100 μL) and 

peptides (10 μL) were mixed at room temperature for 30 minutes before measurements were 

taken.  The readings of fluorescence polarisation were recorded on a FluoroMax-4 (Horiba 

Scientific, Kyoto, Japan).  The excitation wavelength was 594 nm whereas the emission 

wavelength was 577 nm. The data were analysed using a single-site specific binding model, 

by non-linear regression to the equation  

P = Pmax x / (Kd + x) + background 
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where P is the measured fluorescence polarization, x is the concentration of the proteins 

(PQBP-1 or its mutants), Pmax is the maximum polarization corresponding to all specific 

binding sites occupied, Kd is the equilibrium dissociation constant of the protein-peptide 

complex and “background” is a constant value.  Curve fitting and error calculations were 

performed with GraphPad Prism 7. 
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RESULTS 

PQBP-1 mutants are dimeric species 

In analytical ultracentrifugation (AUC) studies, K192Sfs*7 showed a major peak at 𝑆20,𝑤
0  = 

2.76 (±0.87) S from distribution analysis, which accounts for 80% of the sedimenting species 

and corresponds to a molecular mass of 46.2 (±0.9) kDa (Fig. 2A).  A minor peak at S = 4.8 

which corresponds to a molecular mass of ~120 kDa was also registered. For R153Sfs*41, we 

observed a major peak at 𝑆20,𝑤
0  = 2.95 (±0.70) S accounting for 90% of the sedimenting 

species and corresponding to a molecular mass of 43.5 (±0.8) kDa (Fig. 2B).  Therefore, both 

K192Sfs*7 and R153Sfs*41 are dimers (Table 1). The frictional coefficient ratios (f / f0) of 

K192Sfs*7 and R153Sfs*41 are 1.8 and 1.6 respectively, thus these mutants behave like 

elongated molecules similar to the wild type (f / f0) = 1.74) (Rees et al., 2012).  

 The molecular masses obtained from SAXS analyses for both mutants were 43-

46  (±5) kDa (Table 1); which agreed well with the AUC results.  

 

PQBP-1 mutants dimerisation contribute to high thermal stability  

Like the wild-type protein, the circular dichroism (CD) spectra of both mutants (Fig. 3A,C) 

are characteristic of samples that do not have regular secondary structures (Rees et al., 2012). 

The spectra lack features and have negative maxima at 200 nm (Drake et al., 1988; Siligardi 

and Drake, 1995). The temperature dependences of CD spectra of both mutants are also 

typical of disordered proteins showing broad melting curves with a shallow transition (Fig. 

3A-D). For both mutants, the CD spectra at higher temperatures differ significantly from 

those at lower temperatures. At the wavelength we monitored denaturation (225 nm), thermal 

unfolding was reversible (Fig. S.3.2). The biggest CD signal changes for both mutants were 
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registered at around 225-230 nm. For both mutants, the negative maximum signal (~198-200 

nm) increased significantly after thermal unfolding and refolding by cooling (Fig. S.3.2). 

 With a set of single-concentration temperature-melting data, we attempted semi-

quantitative 2-state and 3-state unfolding analyses described in Supplementary section S3. 

The K192Sfs*7 data fit well to a 2-state dimer folding model (Table 2).  Attempts to fitting 

with either of the 3-state models were unsuccessful.  The data of the R153Sfs*41 mutant were 

best interpreted with a 3-state folding/unfolding mechanism (Tables 2 and S3.1). 

 With a ΔG° of –2 kJ mol–1, the native state of the wild-type protein is only marginally 

more stable than its unfolded state.  Both mutants are significantly more stable in their 

respective native states with more negative ΔG°s (Table 2). The melting temperature of 

K192Sfs*7 (Fig. 3B) is similar to that of the wild type and close to the physiological body 

temperature. For R153Sfs*41, its Tm1 is lower and Tm2 is higher than the body temperature 

(Fig. 3D). The thermal stability of the K192Sfs*7 mutant is mainly contributed by increased 

enthalpy. Both the standard enthalpy and entropy changes, ΔH° and ΔS°, involved in the 

formation of the R153Sfs*41 dimer are much larger (eight to ten times) than those of the 

K192Sfs*7 mutant. 

 

PQBP-1 mutants are more compact than the wild type 

Analysis of the low-angle region of scattering data of K192Sfs*7 yielded a radius of gyration 

(Rg) of 3.83 (±0.08) nm and that of R153Sfs*41 gave 3.63 (±0.05) nm (see Supplementary 

section S4 for Guinier plots).  These Rg values are similar to that of the monomeric wild type 

— considering that the mutants are dimeric, this suggests that they are more densely packed.  
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The P(r) analyses yielded Rg values (of both real and reciprocal spaces) that agree well with 

those obtained from the respective Guinier analyses (Table 1). 

 The ratio Rg / Rs is an indicator of the compactness of a molecule in solution.  

K192Sfs*7 and R153Sfs*41 have Rg / Rs ratios of 0.91 and 0.97 (Table 1), respectively, which 

are closer to the value of a compact spherical species (0.8) than that of an unstructured 

random coil (1.5). They both are more compact than the wild type (Rg / Rs = 1.03) (Table 1).  

K192Sfs*7 has a substantially larger Rs value (4.23 nm).  Our interpretation is that the 

mutation left it with a highly-charged (29 out of 45 residues, 64%) C-terminal tail (Fig. 1B), 

which promotes an extensive hydration shell, i.e. a large hydrodynamic radius.  On the 

contrary, the non-native tail of R153Sfs*41 (Rs = 3.71 nm) has a balanced distribution of 

charged and uncharged residues (Fig. 1B) that favours formation of local folded structures. 

 The normalized Kratky plots (Fig. 4A) for both mutants peaked at approximately 

q  Rg = 2.1 followed by a valley; revealing that both mutants are partially unfolded but are 

more folded and more compact than the wild-type protein (Fig. 4A).   

 The P(r) functions of mutants K192Sfs*7 and R153Sfs*41 have asymmetric shapes (Fig. 

4B), with maxima at low r followed by a long tail, which is consistent with an elongated and 

partially unfolded molecule, like the wild-type protein. This is consistent with the AUC 

results. For both mutants, the peak of their distance distribution functions are at 3.5 nm which 

is similar to their respective Rg and Rs values (Table 1). The maximum molecule dimension is 

14 (±1) nm for K192Sfs*7 and 13 (±1) nm for R153Sfs*41 (Table 1, Fig. 4B). Both values are 

similar to that of the wild-type protein. 

 The knowledge that these two mutant proteins are partially folded justified the use of 

an ensemble optimisation method (EOM) to gain insights. We obtained the best models from 
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a “native-like” initial pool of structures that included two protomer sequences and a fixed 

dimeric model of the WW domain, although EOM did not discriminate between the two 

different modes of dimerisation (see Methods section).  The following analysis was based on 

dimer Model-1 (supplementary section S2A). After optimisation, the ensemble model of 

K192Sfs*7 has a χ2 value of 1.18 (11 structures) and for R153Sfs*41, 1.14 (14 structures), 

showing that the ensemble models describe their respective experimental scattering data 

satisfactorily (Fig. 5A,B).  The average Rg of the K192Sfs*7 ensemble is 3.89 nm, whereas that 

of the R153Sfs*41 ensemble is 3.72 nm. Both are considerably smaller than the average Rg of 

the initial pools of 4.3–4.4 nm (Fig. 5E,F); i.e. the optimised ensembles are more compact 

than the initial native pool populations. The distribution of Rg values of both K192Sfs*7 and 

R153Sfs*41 EOM models consist of one major peak whereas for the wild-type EOM model, 

the distribution of Rg consists of one main peak with a heterogeneous higher population  

(Rees et al., 2012). The average Dmax of the K192Sfs*7 ensemble is 13.9 nm, and that of the 

R153Sfs*41 ensemble is 12.5 nm (Figs. 5C,D). The distribution of these values follows one 

major peak in both mutants similar to the overall distribution of the wild-type protein (Rees et 

al., 2012).  The average Rg and Dmax of each ensemble model agree well with the 

experimentally determined values (Table 1). 

 

Solution models of PQBP-1 mutants  

Since both mutants have increased compactness (i.e. they contain more folded structures), we 

attempted ab initio modeling to visualise their average conformations.  The 20 DAMMIF 

models of K192Sfs*7 aligned with an average normalized spatial discrepancy (NSD) value of 

0.62 indicating a successful shape reconstruction. The R153Sfs*41 models also agreed with a 

mean NSD value of 0.68. However, attempts to impose two-fold symmetry gave worse 
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results.  After the final round of refinement, the respective models fit well with the 

experimental data showing χ2 values of 1.06 for K192Sfs*7 and 1.16 for R153Sfs*41 (Fig. 

6A,B). The molecular envelopes show in general, a flat shape with a broad face (Fig. 6C,D). 

The longest molecular spans of the models for K192Sfs*7 and R153Sfs*41 were 14 nm and 

13 nm respectively, in good agreement with the Dmax estimated from their respective P(r) 

functions (both 13 nm). 

 

PQBP-1 mutants bind weaker to RNA polymerase II 

The CTD of RNA polymerase II consists of 52 repeats of the consensus heptapeptide 

sequence YSPTSPS that is subjected to phosphorylation during the initiation and elongation 

steps of transcription. We studied the binding of PQBP-1 variants to the heptapeptide 

phosphorylated at positions 2 and 5 (YpSPTpSPS) (Verdecia et al., 2000). Wild-type PQBP-1 

binds the peptide with a dissociation constant, Kd of 154 (±10) μM.  Previously, the 

interaction between other WW domains with various phosphopeptides have been studied.  

The Pin1 WW domain binds to the same peptide studied here with a Kd of 34 μM (Verdecia 

et al., 2000).  Pin1 WW domain also binds to a peptide from Cdc25 phosphatase with a Kd of 

117 μM; and to a peptide from human τ protein with a Kd of 230 μM (Wintjens et al., 2001).  

Our result showed similar weak binding affinity and is consistent with the nature of a 

reversible interaction that is required for effective transcription regulation (Tapia et al., 

2010). The mutants K192Sfs*7 and R153Sfs*41 bind substantially weaker with Kd values of 

456 (±16) μM and 338 (±35) μM, respectively (Fig. 7).   
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DISCUSSION 

In this study, the structural properties of two frameshift mutants were compared with those of 

wild-type PQBP-1. Solution models built from SAXS analysis revealed that both mutants are 

flat dimeric molecules with the same maximum dimensions as the wild type, suggesting that 

the two protomers lie lengthways alongside each other.  In the case of K192Sfs*7, we 

observed a tendency to form even higher oligomers (4–6 protomers, Fig. 2A).  The two 

clinically important mutants in this study show many similar structural properties: they are 

partly unfolded but have more structure and are more compact than the wild-type protein. 

The apparent increase in structure of both mutants is presumably due to the removal of the C-

terminal region, which is largely disordered (Nabeshima et al., 2014; Takahashi et al., 2009). 

Despite their similar sizes (K192Sfs*7 has 197 residues; R153Sfs*41 has 192), their sequences 

and natures are very different owing to R153Sfs*41 having a long non-native tail. The 

thermodynamic properties of K192Sfs*7 is more like the wild-type protein whereas those of 

R153Sfs*41 is completely different (Table 2).  The fitting of thermal melting data was 

performed to test if simple folding models can be used to describe the mechanisms of 

“folding” (here refers to the formation of the physiological dimer from the denatured 

monomers). K192Sfs*7 showed 2-state melting whereas R153Sfs*41 denatured via an 

intermediate.  Our analysis did not discriminate between the two (monomeric or dimeric 

intermediate) unfolding models as they showed similar R2 values of non-linear regression 

(Table S3.1). 

 The melting profiles of the mutants showed only limited cooperativity. In PQBP-1, the 

melting curve has contributions from the WW domain and the rest of the protein. Even the 

isolated WW domain does not show a steep melting transition (Tapia et al., 2010). PQBP-1 is 

best described as of the molten globule state, consisting of near-native secondary structures 

with a loosely-packed hydrophobic core (Rees et al., 2012). The shallow melting curves of 
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PQBP-1 and the two mutants indicate that their “folding” represents an increase of 

compactness of the molten globular states. The Tm of the WW domain is 45 °C (Tapia et al., 

2010); therefore its folding is concomitant with the rest of the protein. In the case of the 

mutants, the “folding” further includes the dimerisation events, which can be considered an 

intermolecular packing of secondary structures.  

 The RNA pol II peptide binding studies may shed some light on the dimerisation 

interface.  Presumably, both mutants have their peptide-binding sites blocked on 

dimerisation.  The protein sequence of K192Sfs*7 has only six non-native residues at its tail 

(Fig. 1B), therefore, it is conceivable that the PQBP-1 sequence up to residue 191 has the 

propensity to dimerise.  The full-length protein being monomeric then argues for the C-

terminal region playing an auto-inhibitory role against homo-dimerisation.  Indeed, the N-

segment (residues 1–219) and C-segment (residues 220–265) interact with each other weakly, 

with a dissociation constant of > 10–4 M (Nabeshima et al., 2014).  

 Assuming that the regions responsible for dimerisation are in common on both mutants, 

we speculate that the WW domain itself is involved.  Some WW domains are known to form 

hetero- or homo-dimers (Ohnishi et al., 2007; Senturia et al., 2010). Here, the ensemble 

models which had a dimeric WW domain incorporated showed the best fit to the SAXS data. 

Dimerisation of the PQBP-1 WW domain is known in one other XLID mutant, which has a 

missense mutation (Pucheta-Martinez et al., 2016; Sudol et al., 2012; Tapia et al., 2010).  

This is the result of disulphide bond formation of the introduced cysteine (Y65C) residue. 

 In earlier works, it has been found that the loss of the C-terminal region in most of the 

PQBP-1 frameshift mutants will abolish its interaction to the spliceosomal protein U5-15kD 

(Mizuguchi et al., 2014).  Here we show that mutant proteins dimerise and their interactions 

with the transcription machinery are affected. In addition, toxic gain-of-function associations 

with other cellular molecules may also be present because of the higher stabilities of the 
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mutants.  In the case of R153Sfs*41, it is further complicated by having its nuclear localisation 

compromised (Kalscheuer et al., 2003) — thus the mutant dimers may also interact with 

cytoplasmic molecules.  These results suggest that inhibition of dimer formation may be a 

strategy worthy of pursuing for therapeutic intervention of the Renpenning syndrome. 

 

CONCLUSIONS 

We performed structural and biophysical characterisation of two disease proteins involved in 

X-linked intellectual disability.  Our main finding is that the mutant proteins form stable 

dimers unlike the wild type which are monomers.  We obtained the solution models 

(molecular envelope and ensemble representation) of these partially disordered proteins from 

X-ray scattering data and discussed their global structural changes relative to the wild type.  

The mutated proteins have much reduced interactions with the cell transcription machinery, 

and thus gene expression is affected in these developmental diseases. 
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Table 1. Solution properties of PQBP-1 wild type and mutants compared. 

 K192Sfs*7 R153Sfs*41 wild type 

Hydrodynamic radius, Rs, nm     

 AUC 4.23 (±0.07) 3.71 (±0.07) 3.67 (±0.02) a 

Shape parameters    

 SAXS Rg (Guinier), nm 3.83 (±0.08) 3.63 (±0.05) 3.77 (±0.03) b 

 SAXS Rg (P(r) real), nm 3.78 (±0.01) 3.61 (±0.01) N.A. 

 SAXS Rg (P(r) recip.), nm 3.76 3.59 N.A. 

 Rg / Rs  
c 0.91 (±0.02) 0.97 (±0.02) 1.03 (±0.01) b 

 AUC f / f0 1.8 1.6 1.7 a 

Molecular mass, kDa    

 Calculated 23.25 21.91 30.63 a 

 AUC 46.2 (±0.9) 43.5 (±0.8) 31.0 (±0.5) a 

 SAXS d 45 (±5) 43-46 (±5) 30 (±3) a 

Dmax, nm 13 (±1) 13 (±1) 13 a 

 

a The values of the wild type were from Rees et al (2012).   

b The Rg values from Guinier analysis of the wild type were recalculated in this work with 

data to q  Rg = 1.1.  

c The Rg values used in these calculation were those obtained from Guinier analysis.  

d The molecular masses obtained from SAXS are expressed in ranges because they are 

dependent on the method and data range used.  

AUC: analytical ultracentrifugation; SAXS: small angle X-ray scattering; N.A.: not available. 
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Table 2. Thermodynamic properties of PQBP-1 wild type and two mutants. 

 Wild type K192Sfs*7 R153Sfs*41 

Folding Model 
monomer, 2-state 

N Ý U 

dimer, 2-state 

N2 Ý 2U 

dimer, 3-state 

N2 Ý 2I Ý 2U 

Tm, °C 38.0 ±0.9 39.5 ±0.6 
Tm1=17.9 ±0.8 

Tm2=50.9 ±0.4 

ΔH°, kJ mol-1 –50.5 ±3.5 –72.5 ±3.2 

–580 ±44 

ΔH1=–155 ±18 

ΔH2=–425 ±41 

ΔG°, kJ mol-1 –2.13 ±0.08 –31.7 ±0.1 

–59.2 ±1.7 

ΔG1° = –25.1 ±0.3 

ΔG2° = –34.1 ±1.6 

ΔS°, J K-1 mol-1 –162.3 ±11.7 –136.9 ±10.6 

–1748 ±149  

ΔS1 = –437 ±61 

ΔS2 = –1311 ±136 

R2 of fit 0.9956 0.9983 0.9993 

 

N, native state; I, intermediate; U, unfolded state; Tm, melting temperature; ΔH°, standard 

enthalpy change; ΔG°, standard free energy change; ΔS°, standard entropy change.  For the 

R153Sfs*41 mutant, the analysis with a monomeric intermediate (highest R2 value) is shown.  

See Table S3.1 for a comparison of three different folding/unfolding models.  

 

 

 

Figure Legends 

 

Figure 1. Domain architecture of PQBP-1 and its mutants. (A) WW: WW domain; 

PRD: polar-amino-acid-rich domain; N: nuclear localisation signal; CTR: C-terminal 

region. For the two mutants, black and grey bars denote regions with native and non-

native sequences respectively.  The grey bars on top indicate the regions which 

mediate interactions with other proteins or motifs (P-rich: proline-rich motifs; polyQ: 

polyglutamine tracts; Atx-1: ataxin-1; Htt: huntingtin; AR: androgen receptor). (B) 

Sequences from PQBP-1 residue 153 to C-termini of the wild type (WT) and the two 

mutants. The frameshift mutation occurs at the residue marked with an inverted 

triangle, with a C-terminal asterix marking the position encoded by the stop codon.  
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Acidic residues are coloured red; basic, blue and hydrophobic, green.  The 

sequences preceding residue 153 are common to all three proteins. 

 

Figure 2.   Hydrodynamic properties of PQBP-1 mutants.  Velocity sedimentation 

AUC results of (A) K192Sfs*7 and (B) R153Sfs*41 analysed with SEDFIT are presented 

as the concentration distribution c(s) of sedimentation species at varying sample 

dilutions. 

 

Figure 3. Thermodynamic properties of two PQBP-1 mutants.  Left panels are the 

CD spectra of temperature scanning experiments for (A) K192Sfs*7 and (C) 

R153Sfs*41. The samples were heated from 6°C (dark blue) to 90°C (brick red). Right 

panels are non-linear regression analyses of the temperature dependence of CD 

(mean residue ellipticity, [θ]MR) at 225 nm of the two mutants: a two-state model (red 

line) was used for (B) K192Sfs*7 and a three-state model (red line) for (D) R153Sfs*41.  

See supplementary section S3 for details.  The respective melting temperatures (Tm) 

were indicated.  The goodness-of-fit is represented by the R2 value. 

 

Figure 4.   SAXS analysis of two PQBP-1 mutants.  (A) Normalised Kratky plots 

show that both K192Sfs*7 (orange) and R153Sfs*41 (light green) are partially 

disordered yet both have more structure than the wild-type protein (grey). (B) The 

P(r) distribution (in arbituary units) of the two mutants and the wild type compared, 

with same colouring scheme as in (A). 
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Figure 5. EOM Analysis of PQBP-1 mutants. Top panels show fitting for K192Sfs*7 

(A) and R153Sfs*41 (B). The calculated model intensities were in orange (K192Sfs*7) 

and in light green (R153Sfs*41) respectively.  The experimental SAXS profiles of the 

mutants were shown as black open circles.  The middle panels show the respective 

maximum dimension (Dmax) distribution of EOM models of K192Sfs*7 (orange, C) and 

R153Sfs*41 (light green, D). The Dmax distributions of the pool of starting structures 

before EOM refinement are shown in grey (C,D). The lower panels show the 

respective distribution of radii of gyration of EOM models of K192Sfs*7 (orange, E) 

and R153Sfs*41 (light green, F). The Rg distributions of the pool of structures before 

EOM refinement are shown in grey (E,F). The EOM model properties of the wild type 

are shown as dark grey lines (C,D,E,F). 

 

Figure 6. Ab initio modelling of PQBP-1 mutants. Top panels show Dammin fitting 

for K192Sfs*7 (A) and R153Sfs*41 (B). The simulated model intensities were in orange 

(K192Sfs*7) and in light green (R153Sfs*41) respectively.  The GNOM intensities used 

in modelling were shown as black open circles.  Data to 2.0 nm-1 were used for 

K192Sfs*7 and to 2.2 nm-1 for R153Sfs*41. The experimental SAXS profiles of the 

mutants were shown as light-grey filled circles in the background.  The middle and 

lower panels (C,D) show the respective refined bead models of the mutants; each 

set related by a 90° rotation along the X-axis.  A colour-filled circle is drawn with the 

respective radius of gyration determined by SAXS of each mutant. A broken-line 

open circle was drawn using the radius of gyration of the wild-type protein (3.8 nm) 

for comparison.  The bead models were drawn to the same scale, with bead radii of 

K192Sfs*7 and R153Sfs*41 being 3Å and 2.5Å respectively. 

 

Figure 7.   Protein-peptide binding assay. Fluorescence polarisation is plotted 

against protein concentration. The data were analysed with a single-site specific 

binding model, with R2 = 0.9964 (wild-type PQBP-1, grey), 0.9996 (K192Sfs*7, 

orange) and 0.9962 (R153Sfs*41, light green), respectively. All vertical error (standard 

error of 6 observations) bars are smaller than the symbol and are not shown. 

Horizontal error bars are estimated experimental errors. 
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 Both PQBP-1 frameshift mutants are dimeric, more compact and more stable 

 ab initio bead models showed overall flat shapes, probably parallel arrangement  

 Ensemble models showed folded core (WW domain) with the rest as unfolded regions 

 The interactions with an RNA pol II-derived peptide were weakened in both mutants 

 Homo-dimerisation of these mutants may link to loss of transcription functions  

 

 


