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Summary

Distinct molecular pathways govern the differentiation of CD8+ effector T cells into memory or 

exhausted T cells during acute and chronic viral infection but these are not well-studied in 

humans. Here, we employed an integrative systems immunology approach to identify 

transcriptional commonalities and differences between virus-specific CD8+ T cells from patients 

with persistent and spontaneously resolving hepatitis C virus (HCV) infection during the acute 
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phase. We observed dysregulation of metabolic processes during early persistent infection that 

were linked to changes in expression of genes related to nucleosomal regulation of transcription, T 

cell differentiation, and the inflammatory response and correlated with subject age, sex and the 

presence of HCV-specific CD4+ T cell populations. These early changes in HCV-specific CD8+ T 

cell transcription preceded the overt establishment of T cell exhaustion, making this signature a 

prime target in the search for the regulatory origins of T cell dysfunction in chronic viral infection.

eTOC blurb

Wolski et. al show that transcriptional dysregulation of metabolic, nucleosomal, and immune 

processes in virus-specific CD8+ T cells during early persistent HCV infection is both under tight 

transcriptional control and associated with differences in predictors of disease outcome, like 

patient sex, age, and the presence of HCV-specific CD4+ T cells.
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Introduction

Over the last two decades we have gained important insights into the defining features of T 

cell responses in controlled versus chronic viral infection. These advances, most notably the 

differentiation between effective T cell memory and functionally exhausted T cells (Wherry 

and Kurachi, 2015) have largely been driven by work performed in animal models such as 

lymphocytic choriomeningitis virus (LCMV) infection in mice, and have had a major impact 

on our understanding of T cell immunology beyond the scope of viral infections (Pardoll, 

2012). Key concepts from these studies have been translated to many human infections, 

including those with human immunodeficiency virus (HIV), hepatitis B virus (HBV), and 

HCV (Kahan et al., 2015). Nevertheless, our understanding of how different molecular 
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mechanisms initiate and govern effective or failing T cell responses remains incomplete, 

especially for humans, where genetic diversity and variability, differences in age and 

comorbidities, as well as environmental factors influence both the immune response and the 

outcome of infection significantly (Brodin and Davis, 2016).

HCV infection presents an exceptional opportunity to study regulation of immune responses, 

as it is unique among chronic infections with spontaneous and complete resolution of 

infection in about 20% of subjects within 6–9 months, even after exposure to a viral 

inoculum that can establish persistent infection in other subjects (Major et al., 2004). Data 

from humans and the chimpanzee model of infection have demonstrated that the presence of 

adaptive immune responses by both CD4+ and CD8+ T cells, while indispensable (Grakoui, 

2003; Shoukry et al., 2003), is not sufficient for resolution of infection, as such responses are 

also detected early on in subjects developing chronic infection (Cox et al., 2005a; Schulze 

zur Wiesch et al., 2012). Neutralizing antibodies might also contribute to viral control, as 

their induction correlates with viral clearance (Osburn et al., 2014; Pestka et al., 2007). This 

strong host component to viral control, further evident in associations between HLA 

expression or sex with infection outcome (Bakr et al., 2006; Kuniholm et al., 2010), 

separates HCV from LCMV, a classic model of viral infection in inbred mouse strains, 

where different courses of viral replication are only observed when animals are infected with 

different viral strains. The analysis of the early anti-HCV T cell response in humans with 

different clinical outcomes can therefore add additional insights into the complexity of 

immune response regulation in genetically diverse hosts.

Here, we defined the molecular components of a successful CD8+ T cell response to HCV 

infection and contrasted it with transcriptional events that govern CD8+ T cells in persisting 

HCV infection. Taking advantage of two main features of HCV infection, its dichotomous 

outcome, with chronic viremia or complete clearance of the virus, and the occurrence of 

HCV viral sequence variation leading to viral escape from the CD8+ T cell response, we 

were able to not only compare T cell responses that control viremia to those that do not, but 

also to differentiate between changes mediated by prolonged high level T cell receptor 

(TCR) stimulation and those driven by a chronic inflammatory environment.

Our results revealed both a preserved co-regulatory structure, referred to as core T cell 

identity hereafter, as well as distinct outcome-associated patterns of gene regulation 

indicating early dysregulation of HCV-specific CD8+ T cell responses. Specifically, we 

identified a signature of major metabolic dysregulation at the transcriptional level during 

early chronic HCV infection, that was tightly linked to by expression changes of genes 

related to nucleosomal regulation and compounded by broader patterns of differential 

expression of genes involved in T cell differentiation and the inflammatory response.

By identifying programs that differentiate T cells from distinct outcomes of HCV infection 

during the earliest phase of the adaptive immune response, we gainec insights into which 

processes govern T cells on their way to T cell exhaustion or T cell memory and established 

a reference framework for more detailed mechanistic studies investigating the determinants 

of T cell mediated viral control and T cell failure.

Wolski et al. Page 3

Immunity. Author manuscript; available in PMC 2018 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Multivariate analysis of adaptive immunity during early HCV infection

To identify regulatory processes controlling the CD8 response during early infection, we 

isolated 78 HCV-specific CD8+ T cell populations (Figure 1A) from 43 subjects at multiple 

time points within the first 36 weeks of infection (Figure 1B and Table S1) and analyzed 

their transcriptional profiles by microarray. To detect potential effects of other branches of 

the adaptive immune system on CD8+ T cell gene regulation, we assessed the presence of 

HCV-specific CD4+ T cells targeting a panel of dominant CD4+ epitopes by peptide-MHC 

(pMHC) multimers and neutralizing antibody titers by HCV pseudoparticle assay in a subset 

of these samples (Figure 1B and Table S1, STAR Methods). For analysis, we divided 

subjects and samples into three groups of distinct immunological states based on disease 

outcome and conservation of the viral epitope recognized by the TCR: 1) Chronic (persisting 

infection, preserved targeted epitope), 2) Escape (persisting infection, mutated targeted 

epitope with known diminished signal) and 3) Resolver (resolving infection, preserved 

targeted epitope), that we refer to as Chronic (C), Escape (E), and Resolver (R) hereafter.

Virus-specific CD8+ T cells display distinct transcriptional profiles of resolution, 
inflammation and persistent antigen exposure

To identify outcome-associated differences in gene expression levels we analyzed CD8+ T 

cell transcriptional profiles of Chronic and Resolver groups and found 258 genes that were 

significantly differentially expressed (|fold change|>1.5, FDR<0.05, Table S2) between 

Chronic and Resolver during either early (<18 weeks) or late (>18 weeks) phase of infection 

or between early and late phase of infection in either Chronic or Resolver (Figure 2A). 

Despite not being used for detection of differentially expressed genes (DEGs), we observed 

that Escape samples clearly helped to separate genes into distinct expression patterns for 

each group.

About half of all DEGs were expressed at similar levels between Chronic and Resolver 

within each phase of infection (Figures A2 and 2B), with higher and lower overall 

expression levels dominating the early and late phase, respectively. Among these genes were 

markers of T cell activation, such as CD74 and HLA-DRB1, and T cell homing and 

proliferation, like ELF4, which exhibited much lower expression levels in the later phase 

compared to the early phase. This apparent dampening of the T cell response, irrespective of 

outcome, is consistent with the natural course of persistent HCV infection, where 

inflammation is much less pronounced in the later phase of infection compared to the early 

acute phase (Bowen and Walker, 2005).

Another group of genes with similar expression levels in Chronic and Resolver included 

cytokines TNF and TGFB1 and their respective downstream signaling components (NKFB1, 
JUNB, KLF10, and SMAD7), as well as the chemokine receptors CXCR4 and CCR7. These 

functionally related genes were all down-regulated in early Chronic and Resolver samples, 

but up-regulated in Escape samples throughout both early and late phase, indicating that 

diminished TCR stimulation evoked a distinct and sustained transcriptional profile in these 

cells.
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While many genes shared expression levels between Chronic and Resolver both in the early 

and late phase, we also found significant differences between these two groups. Throughout 

the observation period, Chronic samples were characterized by higher expression levels for 

important regulators of T cell immune function, proliferation, and survival, such as TBK1, 

SIRT1, BCOR, and BCL2L11, while Resolver samples were marked by higher expression 

for regulators of T cell differentiation and memory, e.g. TCF7 and its transcriptional target 

LEF1. Escape samples exhibited a mixed expression profile for most of these genes, either 

sharing expression levels with Resolver (TCF7) or with Chronic (LEF1) throughout the 

infection, or sharing features of Chronic early and Resolver later (BCL2L11) or vice versa 

(SIRT1), suggesting that persistent TCR stimulation and chronic inflammation each drive 

different aspects of the divergent transcriptional programs in CD8+ T cells during the acute 

phase of HCV infection. These patterns of differential and shared gene expression between 

CD8+ T cells in different immunological states highlight the complexity of biological 

processes that dynamically govern the adaptive T cell response to infection.

Modules of tightly co-regulated genes give rise to distinct patterns of transcriptional 
regulation in different infection outcomes

To address the complexity of the regulatory processes that govern CD8+ T cell responses we 

applied a weighted gene co-expression network analysis (WGCNA) approach (Langfelder 

and Horvath, 2008), combining early and late samples for each group and constructed 

correlation networks for them (Table S4, STAR Methods).

By means of hierarchical clustering, we identified 9, 8, and 8 modules of tightly co-

expressed genes (Figure 3A) for Chronic, Escape, and Resolver, respectively. When 

examining overall network topology (Figure 3B), we observed that genes not only correlated 

with other genes in the same module, but could also correlate with genes in other modules, 

indicating a second tier of interconnectedness.

Next, we assessed preservation of modules between outcomes by analyzing the overlap in 

gene content between individual modules from the different immunological states (Figures 

3C and 3D), defining the significance of overlap between a module and another module as 

core score, and the overlap between a module in one group and the grey pseudo-module of 

uncorrelated genes in another group as its isolation score (STAR Methods). Most modules in 

Chronic and Resolver were dominated either by genes that shared co-regulation (Figure 3C, 

high core score, blue connections) or by genes that were exclusively co-regulated (high 

isolation score, red connections).

Many genes accounting for a high core score, like JUNB, TNF, and KLF10 in modules c1-r5 

(Table S4), also exhibited similar differential expression patterns for Chronic and Resolver, 

but not Escape samples (Figure 2A), supporting preserved regulation in early T cell 

responses that receive TCR signal. In contrast, other genes within preserved modules were 

part of the differential expression signature that distinguished Chronic from Resolver, such 

as IFNGR1 and SIRT1 in c2-r5, emphasizing that shared co-regulation did not imply similar 

directionality of expression.
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Escape modules exhibited an overall weaker pattern of co-regulation on the gene and 

module correlation levels (Figures 3A and 3B), indicating less concerted regulation with 

abrogation of TCR stimulation. Nonetheless, we identified several modules with significant 

preservation between Escape and Chronic and/or Resolver, in particular c7-e7-r8, suggesting 

a core of processes that are regulated independent of TCR signaling.

To formalize patterns of interconnection between modules within and across groups, we 

combined intra-group module correlations (Figures 3B and Figure 3E, left) and inter-group 

module overlap (Figure 3C and Figure 3E, middle), identifying module community 

structures (Figure 3E, right, STAR Methods). We found three core-centric (c7-e7-r8, c2-r3-

r4, and c1-e4-e5-r5) and one isolation-centric module community (c3-c5-c6-r1-r2), as well 

as one with more complex connectivity (c4-c8-c9-e2-r6-r7). While the latter two module 

communities highlight unique regulatory features of different infection outcomes, the 

former, core-centric module communities define elements of a core T cell identity, as they 

comprise genes that are co-regulated irrespective of immunological state. Among these, the 

community of modules c7-e7-r8 featured a particularly high core score between all three 

immunological states and contained many important immune genes, including CXCL8, 

CD14, TLR2, and LILRB2, which are parts of important co-stimulatory and inhibitory 

pathways that help modulate and maintain CD8+ T cell responses (Komai-Koma et al., 2004; 

Shiroishi et al., 2003). The module community structure revealed by integrating correlations 

between modules and overlap between experimental groups illustrates how context-specific 

and universal transcriptional modules in combination shape distinct transcriptional states and 

highlights the importance of a broadly integrative analytic approach.

Differential expression of network modules is preserved across cohorts of acute HCV 
infection

To ensure the validity and reproducibility of our observations and to assert robustness of the 

identified network modules, we confirmed the results in an independent transcriptional data 

set. We analyzed HCV-specific CD8+ T cells from 10 subjects with acute and chronic 

courses of infection sampled during the early acute phase of infection (≤ 21 weeks, Table 

S5). As this data set was too small for WGCNA analysis, we validated network modules by 

testing differential expression results from both the original and the validation cohort for 

enrichment of network modules (Figure 4 and Table S6).

We based this approach on the rationale that any enrichment of network modules or lack 

thereof in the original cohort, should be mirrored in the validation cohort, i.e. that any 

module that is strongly enriched among differentially expressed genes between Chronic and 

Resolver patients of the original cohort, should, if modules represent preserved co-regulatory 

structures, also be enriched in differentially expressed genes in the validation cohort. 

Similarly, modules for which no enrichment was observed in the original cohort should not 

be enriched in the validation cohort. We chose the competitive gene set test CAMERA (Wu 

and Smyth, 2012) (STAR Methods) for this approach, as it accounts for inter-gene 

correlation of tested gene sets and was therefore particularly suited to this analysis. Testing 

for enrichment of network module signatures in differential expression results from the 

original data (early and late) and the validation data (all early), we observed significant 
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enrichments for only a few modules, such as r2, r5, and r6, in both the validation (Figure 4B) 

and the early original data set (Figure 4A, left). Most modules exhibited no significant 

enrichment in the early original or in the validation cohort (Figure 4C). Late samples of the 

original data set did not share strong enrichment patterns with the validation set, which was 

limited to early samples. Overall, the large degree of concordance between the early original 

and validation set (Figure 4C), particularly of the matching strong enrichments of modules 

r2, r5, and r6, support that our findings are robust and pertain to acute and chronic HCV 

infection beyond the original cohort.

Outcome-associated clinical traits impact co-regulated modules representing different 
cellular processes and immune pathways

To identify network modules most likely to be relevant to disease status and progression, we 

tested modules for correlations with clinical and immunological traits, i.e. subject sex and 

age, HCV viral load, alanine transaminase levels (ALT), and time from infection, as well as 

presence of HCV-specific CD4+ T cells targeting a set of dominant viral epitopes (Figure 

5A, STAR Methods). To further link modules to biological function we tested them for 

enrichment of: 1) differential expression signatures of CD8+ T cells in different disease 

models (HCV (from Figure 2), HIV (Gaiha et al., 2014), LCMV (Doering et al., 2012), and 

cancer (Singer et al., 2016)) or T cell memory states (Subramanian et al., 2005), 2) module 

gene signatures of antigen-specific CD8+ T cells in chronic vs acute LCMV infection 

(Doering et al., 2012), and 3) functional gene sets related to immune pathways (Langfelder 

and Horvath, 2008), gene ontology, and KEGG pathway databases (Ashburner et al., 2000; 

Kanehisa, 2000) (Figures 5B, 5C, and 5D, Tables S3 and S7, STAR Methods).

To ease interpretation of functional enrichments in the context of module communities 

(Figure 3E, right) and immunological states, we grouped enriched terms into clusters of 

processes related to immune and T cell regulation (Figure 5D, grey panel, red dots), 

nucleosome associated regulation of transcription (grey panel, blue dots) and metabolism 

(grey panel, yellow dots), based on functional annotation and co-occurrence in modules 

across different groups.

We found that about half of all modules correlated significantly with at least one clinical trait 

(Figure 5A), with ALT, sex, and age showing the most correlations, suggesting a strong 

impact of liver inflammation and of disease-relevant demographic features. The only two 

modules, c3 and c5 (Figure 5A), that were (negatively) correlated with time after infection 

(decreasing expression over time), also exhibited the highest isolation scores (Figure 3C and 

3D) and were enriched for metabolic pathways (Figure 5D), indicating unique dynamics of 

metabolic regulation in CD8+ T cells during early chronic infection. Higher expression 

levels of genes in c3 and c5 also correlated with female sex and younger age (negative 

correlation), both of which are predictors of favorable disease outcome, while another 

module that was enriched for metabolic pathways and apoptosis, c1, exhibited an inverse 

correlation (Figure 5A), with higher expression levels correlating with higher age and male 

sex.

c5 was also enriched for a signature associated with long-term viral control in HIV (Gaiha et 

al., 2014) and correlated with CD4 help status as measured by our targeted CD4 assays. 
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While not comprehensively assessing all targeted CD4 epitopes in a patient, this assay 

captures the decline of HCV-specific CD4+ T cell populations in chronic infection (Schulze 

zur Wiesch et al., 2012). c8 (Figure 5A), displayed an even stronger association with the 

measured CD4 response and was enriched for multiple processes related to regulation of 

immune response, cell adhesion and homing, and nucleosomal regulation of transcription 

(Figure 5D), identifying specific CD8+ T cell programs that rely on sustained T cell help. 

We did not find correlations with neutralizing antibodies (nAb) as we detected barely any 

nAb responses in this cohort during the observation period.

While we found little enrichment of differential expression signatures from acute versus 

chronic LCMV infection (Doering et al., 2012) or cancer (Singer et al., 2016), we observed 

significant overlap between co-regulation modules from acute vs. chronic LCMV infection 

(Figure 5C) and the human HCV modules, particularly between immune related modules 

signatures and the core-centric module community (c7-e7-r8). This demonstrates 

preservation of central processes across different species, highlights the advantage of 

employing a co-regulation based network analysis approach and provides further evidence of 

the validity of our results.

While significant parts of these core modules were preserved both across different infection 

models and across all immunological states, they also exhibited distinct functional 

enrichments for immune pathways (Figure 5D), suggesting that co-regulation of core genes 

with additional genes that are not shared across groups could result in distinct functional 

output. Such functional differences, coupled with group-specific connectivity patterns that 

span preserved and non-preserved modules, hold important clues as to how T cell-mediated 

viral control is orchestrated at the transcriptional level.

Functional immune networks identify patterns of outcome-exclusive transcriptional 
regulation for T cell metabolic processes in persisting infection

To delineate the commonalities and differences in T cell regulation between Chronic, Escape 

and Resolver groups, we created functional cluster networks (STAR Methods) from the 

original gene correlation networks of each group, using the genes that were annotated in the 

immune, nucleosome, and metabolism clusters (Figure 5D, grey panel, colored dots) and 

examined them for patterns of shared and exclusive regulation at the gene level. We 

observed shared components between all three or any combination of two groups in each 

cluster network, but also group-exclusive components containing genes that were co-

regulated in only one immunological state. Components of genes with shared co-regulation 

between all three groups were most prominent in the immune and nucleosome networks 

(Figure S2, Table S8). These two networks were further characterized by considerable 

overlap between Chronic and Resolver samples, indicating that diminished TCR signaling in 

Escape samples disrupts co-regulation of gene networks otherwise conserved in CD8+ T 

cells irrespective of viral control. This Chronic-Resolver exclusive component contained 

more than half of all histone genes annotated in the nucleosome cluster network (Figure 

S2D-F, Tables S4 and S8).

The metabolism network featured large components that were absent in resolving infection, 

co-regulated either in Chronic alone (Figures 6A and S1, yellow component) or in Chronic 
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and Escape samples (pink component) and contained many genes from c3 and c5, modules 

for which we had identified strong associations with age, sex, presence of HCV-specific 

CD4+ T cells, and time from infection (Figure 5A). To further pinpoint the functional 

processes impacted by this dysregulation, we performed a second KEGG pathway 

enrichment analysis (STAR Methods), revealing a strong enrichment of genes involved in 

oxidative phosphorylation in the C-exclusive component (Figure 6B, Table S9).

In a recent publication, Bengsch et al. report oxidative phosphorylation (OXPHOS) as one of 

the key processes involved in metabolic dysregulation of exhausted T cells in persisting 

clone 13 LCMV infection (Bengsch et al., 2016). When comparing genes driving the 

enrichment of OXPHOS in the C-exclusive component of the human cluster network to the 

leading edge signature driving the signature of metabolic dysregulation in LCMV, we found 

not only that they overlapped highly (12/17 genes, Figure 6C), but also that this overlap was 

dominated by genes in modules c3 and c5 (and c6), with expression kinetics similar to those 

observed in chronic LCMV infection, where an early surge in expression was followed by 

rapid downregulation (Figure 6D). This similarity between HCV and LCMV-specific CD8+ 

T cells, however, seemed to be limited to enrichment and expression kinetics of OXPHOS-

related genes, as enrichment of other metabolic processes found in HCV (Figure 6B), such 

as biosynthesis of amino acids in the R-exclusive component and cysteine and methionine 

metabolism in the chronic-exclusive component, have not been described for LCMV. 

Conversely, genes driving enrichments of fatty acid metabolism and glycolysis in acute 

LCMV (Figures 6A, 6B and S1, Table S9) did not rank highly in HCV, demonstrating 

pointed differences between these two infection models.

Together, the results strongly suggest that early dysregulation of metabolic processes, 

particularly of pathways related to cellular respiration, play a central role on the way towards 

an exhausted T cell response that is unable to control viral replication. At the same time, our 

data indicate that specific features of metabolic dysregulation might be highly dependent on 

infection-and cellular context.

A small group of key transcriptional regulators drive early dysregulation of metabolism in 
conjunction with nucleosomal and immune processes in persisting HCV infection

As the dysregulation of CD8+ T cell metabolic gene expression in chronic subjects was both 

associated with time from infection and the presence of HCV-specific CD4+ T cells, and was 

highly consistent across multiple functionally related modules (Figure 6D), we hypothesized 

that it might be the result of active transcriptional regulation and that the responsible 

regulators were likely to share expression patterns with their targets, and should therefore be 

part of the same module.

To test this hypothesis, we assembled a network of ~2.9 million unique regulatory 

interactions between 1319 known transcriptional regulators (TRs) and their targets, sourced 

from publicly available databases, network repositories and published CD8- and 

lymphocyte-specific regulatory networks (STAR Methods), and intersected it with the 

correlation networks we constructed (Figure 3) to determine the number of interactions 

between TRs and targets within their respective modules (TR-target coverage, Table S10, 

STAR Methods). We then related this information to the intramodular connectivity of each 
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TR to approximate how likely it was to be involved in active regulation of its respective 

module. We observed a positive trend of increasing intramodular connectivity (kWithin) 

with increasing target coverage (Figures 7A, S3A, and S3B), indicating that genes with high 

kWithin, so-called hub genes, are likely to be of high functional importance.

To identify the TRs that were most likely to be involved in the dysregulation of metabolic 

processes (Figure 6), we constructed a regulatory network based on the top scoring TRs in 

c3, c5 and c6, (STAT5A, KDM5B, RFX5, NELFE, CBX3, STAT1, and TP53, Figure 7A, 

Table S10). In addition, and to account for the possibility that the observed changes might 

not be caused by active regulation, but rather by the lack thereof, we also included the TRs 

CREB1, IRF3 and FLI1 from r2, a module from the same community as c3, c5, and c6 

(Figure 3E), in which STAT1 and TP53 were also co-regulated (Figure S3A).

The resulting regulatory network (Figure 7B), not only mapped many of the metabolic 

dysregulation signature genes (Figures 6A and 6C, Table S8) to known regulatory 

interactions for the identified transcriptional regulators, but also contained regulatory 

interactions for several histone subunits, integrins, class II MHC molecules, chemokines and 

chemokine receptors (Figure 7B, Table S8) and was only partly preserved in Escape and 

Resolver groups. Specifically, we identified regulatory interactions between STAT5A, 

KDM5B, and RFX5 and genes of the metabolism cluster (Table S8), that were regulated 

exclusively in Chronic (Figure S4C, yellow nodes) or Chronic and Escape groups (pink 

nodes), and which included the hub genes for modules c3, c5, and c6 (TYMS, CMAS, and 

B4GALT3) as well as important genes annotated to the nucleosome (e.g. multiple histone 

subunits and integrins, Figure 7B) and immune clusters (e.g. chemokine receptors CCR5 and 

CX3CR1, and chemokines CCL4, and CCL5).

The genes in this Chronic regulatory network were, for the most part, marked by the same 

distinctly temporal expression kinetics we already described for the metabolic dysregulation 

signature, with strongly elevated levels of expression at the beginning of infection being 

followed by rapid downregulation (Figures 7C and S3C). What is more, these expression 

changes occurred during the first 12-18 weeks of infection, before outcome can be predicted 

clinically and before CD8+ T cells can be differentiated as either exhausted or T cell 

memory by conventional T cell assays. This makes the identified regulatory interactions 

prime targets for closer investigation of their role in initiating divergent differentiation 

programs of CD8+ T cells, leading to either resolved or persistent viral infection.

Discussion

Here we employed a stepwise, integrative systems immunology approach to identify key 

transcriptional commonalities and differences between virus-specific CD8+ T cells from 

subjects with persistent and spontaneously resolving hepatitis C virus infection during the 

critical acute phase. While the inter-individual heterogeneity of human data sets presents 

challenges for their analysis and interpretation, our work underlines the importance of 

studying human populations that fully reflect the differences in genetic backgrounds, age, 

sex, and environmental influences, by adding important insights and offering a unique and 
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partly contrasting perspective to knowledge gained primarily from disease models in inbred 

laboratory animals.

To account for human diversity and create a robust data set we generated a large 

transcriptional data set of human primary virus-specific CD8+ T cells. By comparing cells 

from three, rather than two distinct immunological states, we simultaneously increased the 

precision and accuracy of our analysis, since links between multiple groups are less likely 

occur by chance alone and because it enabled us to distinguish between antigen- and 

inflammation-mediated effects on adaptive immunity. We tested the validity of our results 

beyond the original cohort of HCV infection through a constrained validation analysis in a 

separate gene expression data set from other patients with acute HCV infection that, while 

limited in scope, confirmed reproducibility of our findings.

The main analysis approaches we used (supervised differential expression analysis and 

WGCNA), complement each other in that they interrogate both gene expression levels and 

patterns of co-regulation. Both analyses revealed a host of genes that undergo similar 

regulation in both Chronic and Resolver samples, but also identified significant differences 

between the groups that manifested during the earliest stages of infection, indicating that 

differential regulatory programs are initiated in these T cells well before differences in the 

quality of the T cell response and the level of viral control become more apparent. Among 

these differences was a highly distinct co-expression signature of genes related to metabolic 

processes that were regulated exclusively in Chronic samples, with high initial expression 

levels followed by rapid downregulation in the very early phase of infection. This rapid 

onset and marked temporality of gene expression changes make this signature a prime target 

in the search for the regulatory origins of T cell dysfunction in chronic viral infection, 

especially since this differential regulation manifests before classical CD8+ T cell studies are 

able to reveal clear differences in T cell frequency, function or phenotype.

Parts of this metabolic dysregulation signature are shared by a signature recently described 

for CD8+ T cells in persistent LCMV infection with clone 13 (Bengsch et al., 2016), further 

highlighting its potential significance for T cell exhaustion and indicating that proper 

regulation of metabolic processes is likely to present a truly universal feature of a proficient 

immune response, even across different species. Moreover, one of the driving modules 

behind this signature was also strongly enriched for genes identified in HIV-specific CD8+ T 

cells from patients that maintain long-term control of viral replication (Gaiha et al., 2014), 

lending further support to this notion.

Apart from overlap in metabolic dysregulation signatures, we find other modules that share 

significant overlap with LCMV infection, as a sign of significant cross-species preservation 

of T cell regulation. At the same time, we also observed significant differences between 

HCV and LCMV not just in key genes and pathways comprised in the metabolism signature, 

but also at the module level of the larger transcriptional networks, with several modules that 

are entirely exclusive to HCV, suggesting that regulation of metabolism and other T cell 

functions is, beyond certain immutable properties, also context-specific and influenced by 

unique characteristics of each infection, on the side of the both the host and the virus.
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Our analysis revealed strong correlations between expression changes in the modules 

containing this metabolic signature and subject age, sex, and the presence of HCV-specific 

CD4+ T cells, three traits that present the strongest predictors of HCV infection outcome. 

Identifying these correlations is one of the key strengths of this human study, as diversity in 

age and sex is rarely reflected in animal models. Here we can, module by module, select the 

strongest drivers of these correlations as specific targets to investigate the molecular 

mechanisms by which human host factors impact antiviral immunity and viral control 

(Giefing Kröll et al., 2015).

Delving deeper into the regulatory interactions that might drive this dysregulation by cross-

referencing identified modules with known regulatory interactions, we find that most 

dysregulation signature genes are regulated by a small group of transcription factors that are 

not only highly connected within their respective modules, but also annotated for 

interactions with many genes related to immune function and nucleosomal regulation of 

transcription in closely connected modules, demonstrating that metabolic dysregulation lies 

at the heart of more extensive transcriptional changes. This process is highly dynamic, with 

a very early burst in expression of most genes, followed by rapid downregulation, indicating 

that this highly activated initial state of the network is not sustained for long.

The transcriptional regulators driving these early changes in T cell regulation include 

CREB1, FLI1, KDM5B, RFX5, STAT1, STAT5A, and TP53, most of which are known 

regulators of immune function, with STAT1 and STAT5A typically being associated with 

effective IFN responses and T cell memory differentiation (O’Shea and Plenge, 2012), 

whose involvement in metabolic regulation has not been elucidated so far. Conversely, the 

role of TP53 in metabolism is well documented (Berkers et al., 2013), but its immune-

regulatory role has only recently gained increasing attention (Muñoz-Fontela et al., 2016). 

As such, this regulatory network represents a distinctive feature of the early CD8+ T cell 

response in persistent HCV infection in humans, highlighting previously unknown 

connections for a small group of key transcription factors. Outcome-dependent differences 

in the connectivity of transcriptional regulators have also been described in the chronic 

phase of LCMV infection, (Doering et al., 2012), albeit for different transcription factors 

and without dissection of TCR- and inflammation-mediated effects.

Of note in this context, we find that Escape samples only partially shared the signature of 

metabolic and immune dysregulation we observe in Chronic samples, indicating that this 

process likely requires strong and sustained TCR signaling. Indeed, there is convincing data 

supporting that escaped CD8 responses in chronic HCV infection recover to some extent, as 

these cells adopt a memory phenotype, upregulate CD127 and downregulate PD-1 

(Kasprowicz et al., 2010), and respond better to a therapeutic vaccine (Swadling et al., 

2014). On the other hand, Escape samples lacked distinct co-regulation of most histones, in 

contrast to Chronic and Resolver, and exclusively expressed TNF and TGFB1 and their 

downstream targets at constantly high levels, suggesting that diminished TCR signal in a 

chronic inflammatory environment does not match spontaneous resolution, where both TCR 

signal and inflammation disappear together. Whether this distinct transcriptional profile is a 

result mainly of prolonged exposure to type I interferons, or other inflammatory pathways, 

and whether it is associated with less overt functional deficits, warrants further investigation.
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Together, our data from acute HCV infection identify a set of transcription factors that 

facilitate a synchronized, early but transient transcriptional burst related to oxidative 

phosphorylation that is limited to T cells from patients who go on to develop persisting 

infection. These early changes in HCV-specific CD8+ T cell transcription precede the overt 

establishment of T cell exhaustion and extend beyond T cell metabolism to regulation of 

immune function and nucleosomal regulation of transcription. Furthermore, they are 

associated with strong and prolonged TCR signal and factors of human heterogeneity, like 

age and sex of the patient as well as with the disappearance of HCV-specific CD4+ T cells. 

Our data set therefore provides potential links between metabolic and epigenetic regulatory 

aspects of CD8+ T cell immunity and key clinical determinants of infection outcome, which 

is highly relevant for pressing question about the impact of sex and age on the adaptive 

immune response (Giefing Kröll et al., 2015).

In addition to these specific findings, this extensive human data set of virus-specific CD8+ T 

cells from different infection outcomes and with varying levels of viral control constitutes a 

valuable resource for the scientific community, that will enable and inspire further inquiry 

into the regulatory mechanisms that govern adaptive immunity in response to viral infection.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

All requests for reagents and resources can be directed at Georg M. Lauer 

(glauer@mgh.harvard.edu)

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Human subjects and samples—We collected blood samples from 41 patients at 

multiple time points during the early and late acute phase (0 to 36 weeks) of infection with 

hepatitis C virus and extracted PBMC and plasma by Ficoll-Paque (GE Healthcare Life 

Sciences) density gradient centrifugation. To reduce the impact of sources of variability or 

bias, we excluded subjects that had tested positive for co-infections such as HIV or HBV as 

well as subjects that had previously been treated for HCV infection or resolved a previous 

infection on their own. Furthermore, we excluded subjects for whom the natural course of 

infection could not be determined accurately, due to lack of follow-up or treatment within 

the acute phase of infection. All included patients were followed for at least 1 year post the 

estimated infection date in order to obtain reliable data on the outcome of infection. 

Informed consent was given by all subjects under two protocols approved by the Partners 

Healthcare Human Research Committee and the IRB of the Oswaldo Cruz Institute in Rio 

de Janeiro, Brazil.

To capture both cross-sectional and longitudinal changes, we sampled subjects during the 

entire phase of acute infection, capturing 1–3 time points per patient, for a total of 78 

samples, 41 from chronic and 37 from resolving patients. For analysis purposes, we 

distinguished between CD8+ T cells from chronic infection targeting conserved vs escaped 

viral epitopes as determined by viral sequencing (described below), resulting in three groups 

of samples that we refer to as Chronic (C. chronic with conserved epitope, nchronic = 27), 
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Escape (E, chronic with escaped epitope, nescape = 14), and Resolver (R, resolver with 

conserved epitope, nresolver = 37) (Figure 1B, Table S1).

For the validation cohort (Table S5), we sampled 7 chronic (C) and 3 resolving (R) patients 

at the earliest time point each (≤ 21 weeks) using the same criteria as outlined above.

METHOD DETAILS

Flow Cytometry and Cell Sorting—We detected, quantified, and sorted HCV-specific 

CD8+ T cells from human PBMC by multi-color flow cytometry and fluorescence assisted 

cell sorting using class I MHC multimers (Figure 1A). Subject-specific response profiles 

were established by screening using IFN-gamma secretion assays and available HLA-

matched peptide-MHC multimers. Positive multimer responses were used for sorting of 

specific cells. HCV-specific CD8+ T cells were defined as cells positive for CD8/pMHC-

multimer (inclusion of specific CD8+ T cells) and negative for CD4/CD14/CD19/CD16/

CD56 (exclusion of CD4+ T cells, natural killer T cells, natural killer cells, monocytes, and 

B cells) as well as negative for Live/Dead viability dye and Annexin V (exclusion of dead 

and apoptotic cells). All steps were performed at 4°C, unless specified otherwise by the 

manufacturer. In brief, cells were thawed to a temperature of 4°C washed in FBS (1x) and 

R10 (1x), and resuspended in phosphate buffered saline (PBS) for LiveDead viability 

staining (Thermo Fisher Scientific) at room temperature for 30min. Cells were washed in 

FACS buffer, stained for TCR using peptide-MHC multimers and washed again (FACS 

buffer, 1x) prior to surface antigen staining (KEY RESOURCES TABLE). Following 

surface antigen staining, cells were washed (FACS buffer, 2x) and stained for Annexin V 

(Thermo Fisher Scientific) per manufacturer instructions and cells were sorted in the Ragon 

Institute Imaging Core Facility using a BD FACSAria II cell sorter (BD Biosciences) at 70 

psi with a 70um nozzle in a Bioprotect IV biosafety cabinet (The Baker Company) into PBS 

in eppendorf tubes maintained at 4 °C in the collection tube holder, subsequently pelleted by 

centrifugation, and resuspended in cold TRIzol (Invitrogen). Samples were then stored at 

−80°C until further processing. Details on used antibodies and reagents are listed in the 

KEY RESOURCES TABLE.

Data on Other Adaptive Immune Effectors

Magnitude of CD4+ T cell response: In a subset of the samples used for CD8 gene 

expression analysis we measured HCV-specific CD4+ T cell responses targeting a set of 

dominant HCV CD4 epitopes (Schulze zur Wiesch et al., 2012; 2005) by multi-color flow 

cytometry using pooled HLA-matched pMHC class II multimers, with the same 

experimental protocol described for CD8+ T cells above. We used this data as a basic 

indicator for the presence of HCV-specific CD4+ T cells that could provide help to CD8+ T 

cells (n = 37/78, Figure 1, Table S1). Different levels of HCV-specific CD4+ T cell presence 

(referred to as CD4 Status in Figure 1) were categorized as follows-Samples with no 

detectable CD4+ T cells (≤ 0.001% of total T cells (CD3+)) at the time point in question or 

within 2 weeks of it and which had detectable CD4+ T cells at other time points (including 

time points outside of this study) were classified as “none”, samples with detectable CD4+ T 

cells (>0.001% and < 0.01% of CD3+) at the time point in question or within 2 weeks of it 

were classified as “low”, and samples with detectable CD4+ T cells (e 0.01% of CD3+) at 
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the time point in question or within 2 weeks of it were classified as “high”. Furthermore, 

samples from subjects with “high” CD4 status at a later time point (> 2 weeks) were 

classified as “high” and samples from subjects with CD4 status “none” at an earlier time 

point (> 2 weeks) were also classified as “none”.

Neutralizing antibodies: HCV-specific neutralizing antibodies were quantified in serum of 

a subset of patients (n=32/78, Figure 1B, Table S1) using a neutralization assay based on the 

infection of Huh7 cells with retroviral pseudoparticles (HCVpp) that express genotype-

specific HCV envelope glycoproteins E1 and E2. Neutralizing antibodies were quantified 

using endpoint titration (Fafi-Kremer et al., 2010; Pestka et al., 2007). For analysis purposes, 

titers were classified as non-neutralizing (<1:100) and neutralizing (1:100). Neutralizing 

antibodies could not be used for trait correlations with module genes (Figure 5A), since only 

4 subjects, distributed over all three groups, displayed significant levels of neutralization.

Viral Genome Sequencing and Testing of Variant Epitopes: We sequenced the Hepatitis 

C viral genome on a per patient and time point basis for samples where a sufficiently high 

viral load was detectable. We surveyed the relevant viral epitopes used in the flow 

cytometry/cell-sorting step for sequence conservation. Samples with conserved epitopes 

were grouped into Chronic and Resolver samples based on infection outcome. If the 

circulating virus contained epitope variants, we generated short-term T cell lines by 

stimulating the patient’s PBMC with the prototype peptide under addition of IL-2 and 

subsequently tested recognition of both prototype and variant epitope by intracellular 

cytokine staining. We did not test again the mutation in the HLA B*0801 epitope 

(HSKKKCDEL to HSKKKCDEF), which leads to altered peptide processing and 

presentation (Timm et al., 2004). The effect of epitope sequence variations were categorized 

into three types of 1) complete absence of T cell stimulation 2) significantly diminished T 

cell stimulation (more than one log higher peptide concentration required for same level of T 

cell stimulation with variant peptide) and 3) minimal effect on T cell stimulation (Cox et al., 

2005b; Kasprowicz et al., 2010). For our analysis, we considered samples of type 1 and 2 to 

be Escape samples and samples of type 3 to be Chronic samples.

RNA Processing: We extracted total RNA from samples with >500 sorted cells using the 

RNAdvance Tissue Isolation Kit (Agencourt), reverse transcribed RNA into cDNA and 

amplified it using the WT-Ovation Pico Amplification System (Nugen). Following that, we 

tested for cDNA yield by Nanodrop (Thermo Fisher Scientific) and purity by 2100 

Bioanalyzer (Agilent Technologies). We then hybridized concentration-adjusted amounts of 

cDNA to GeneChip HG U133A 2.0 (Affymetrix) microarrays to measure gene expression. 

Details on used reagents are listed in the KEY RESOURCES TABLE.

QUANTIFICATION AND STATISTICAL ANALYSIS

Microarray Data Preprocessing—Raw CEL files, containing probe level expression 

data, were imported into R using affy (Gautier et al., 2004), background-corrected, 

normalized, summarized to probe set level, and finally log transformed by robust multi-array 

average (RMA) using a custom HGU133A2_Hs_ENTREZG v20.0.0 chip definition file 

(CDF) file obtained from http://brainarray.mbni.med.umich.edu (Dai et al., 2005). Prior to 
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correction for known technical batch effects (sample source and array batch), we ensured 

that variables of interest (disease outcome, viral escape) had a reasonably balanced 

distribution among batches and estimated the number of latent variables by sva (Leek and 

Storey, 2007). Probe set level data were batch effect corrected using the risk-conscious PCA-

based adjustment method Harman (Oytam et al., 2016), while controlling for variables of 

interest. We reran sva to confirm successful batch correction and confirm that no significant 

latent variables remained in the data.

To remove lowly expressed genes and reduce the impact of noise on analysis of the data, 

probe sets were filtered based on mean expression and variance, keeping only those with a 

mean log2 expression value >4.25 and a variance >0.3 across all samples. Finally, probe sets 

were collapsed to the gene level using genefilter (Kauffmann et al., 2009), removing 

duplicate entries and manufacturer quality control probe sets, resulting in a set of 5246 

genes.

Data were split into three sample sets by disease outcome and status of viral escape. 

Obvious outlier samples were identified by hierarchical clustering and excluded from further 

analysis.

In order to improve speed and sensitivity of our analysis pipeline we calculated the nearest 

neighbor connectivity for each of the 5246 genes (per group) using WGCNA (Langfelder 

and Horvath, 2008) by set (nneighbors=50) and kept only the union of the top 45% most 

connected genes from each group, resulting in a final set of 3850 genes used for all 

downstream analysis.

For the validation experiment (Figure 4, Tables S5 and S6), we processed data in the same 

manner as outlined above using a custom CDF file (HTHGU133A_Hs_ENTREZG v20.0.0) 

and used the same subset of genes that were used in the original data set for subsequent 

analysis.

Differential Expression Analysis—To improve group homology for detection of 

differentially expressed genes, sample groups were split into early (≤18 weeks post 

infection) and late (>18 and <36 weeks post infection) subgroups (Figure 1B). We assessed 

differential gene expression between early (differential gene expression and late (>18 and 

<36 weeks post infection) Chronic and Resolver samples (Figure 2A, Table S2), using an 

empirical Bayes moderated ANOVA after fitting an observation level mean-variance model 

to data subsets to adjust for heteroscedasticity as implemented in limma (Ritchie et al., 

2015), returning an F test statistic and p value analogous to those of regular ANOVA. P-

values were corrected for multiple hypothesis testing by controlling the false discovery rate 

(FDR). Genes were called differentially expressed with an FDR <0.05 and an absolute fold 

change > 1.5, corresponding to a 50% difference in expression between Chronic and 

Resolver groups during early or late acute phase of infection or between early and late phase 

of acute infection in Chronic or Resolver groups, resulting in a set 4 contrasts between 

groups and timeframes across which we detected 258 differentially expressed genes (Figure 

2, Table S2). We expressly based detection of differentially expressed genes on Chronic and 

Resolver samples only, as the differences between these samples were the focus of this 
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study, but also plotted the mean scaled expression scores for the early and late Escape 

samples (Figure 2A), to identify whether Escape samples shared part of their transcriptional 

signature with Chronic or Resolver groups.

Based on shared expression profiles of differentially expressed genes between Chronic, 

Escape and Resolver groups (Figure 2A) we defined a set of 8 gene expression signatures for 

both the early and late acute phase of infection (Figure 2B, Table S3). Each set was defined 

as 7 signatures of upregulated genes (Resolver, Escape/Resolver, Chronic/Resolver, Escape, 

Chronic/Escape, Chronic, and All) and one signature of downregulated genes (All).

The same parameters as described above were used for differential expression analysis in the 

validation cohort (Figure 4, Tables S5 and S6).

Network Construction and Module Detection—We used WGCNA (Langfelder and 

Horvath, 2008) to construct a weighted gene co-expression network for each sample set. 

WGCNA assumes that co-expression of genes, measured by their correlation across samples 

within an experimental group also implies their co-regulation. In this semi-supervised way, 

WGCNA allows for detection of modules of highly correlated and often functionally related 

genes that can be tested for their degree of preservation and difference in connectivity 

between individual networks. By applying weights to correlations by raising them to a 

power beta, giving preference to strong correlations over weak ones, WGCNA achieves both 

a reduction of noise in the data and a scale-free network topology. This scale-freeness is 

considered to reflect an intrinsic and desirable property of most biological networks, as it is 

strongly correlated with a network’s robustness to random perturbation (e.g. random 

mutation) (Barabási and Oltvai, 2004). Accordingly, a signed network adjacency matrix was 

calculated from the biweight midcorrelation between all gene pairs of each group (Chronic, 

Escape, and Resolver) using soft thresholding powers (see WGCNA parameter table). 

Network adjacencies were then transformed into topological overlap dissimilarity measures 

and subjected to average distance hierarchical clustering. The resulting clustering 

dendrograms (Figure 3A), that visualize distances between genes in terms of their co-

expression profiles, with lower hanging branches indicating clusters of highly correlated 

genes, were then used to isolate 9 Chronic, 8 Escape, and 8 Resolver gene modules using a 

dynamic tree cutting algorithm (Langfelder and Horvath, 2008).

Highly similar modules were merged based on a minimum dissimilarity threshold. Since 

WGCNA allows a host of different parameter choices, and to ease reproduction of our 

results, we have itemized details of parameter choices below.

Parameter choices for construction of weighted gene co-expression networks

Category Function Parameter Value

Network Construction adjacency corFnc “bicor”

corOptions “use = ‘p’, maxPOutliers = 0.05”

type “signed hybrid”

power 4/7/3 (Chronic /Escape/Resolver)
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Category Function Parameter Value

TOMsimilarity TOMType “signed”

TOMDenom “min”

TOM scalinga

(scale TOM matrices for 
comparability)

percentile 0.95

sample size 1/(1-percentile) * 1000

reference set “Resolver”

Gene clusteringa

(cluster genes based on scaled 
TOM)

dist 1-scaledTOM

Clustering method “average”

Module Detection cutreeDynamic method “hybrid”

minClusterSize 60

maxCoreScatter 0.75

minGap (1-maxCoreScatter)*3/4

pamStage FALSE

mergeCloseModules useAbs TRUE

cutHeight 0.25

Identification of Module Communities—We calculated pairwise biweight 

midcorrelations between first principal components of individual modules (module 

eigengenes) within groups and determined correlation significance using Fisher’s exact test. 

We also determined overlap in gene content between modules between different groups and 

calculated the significance of this overlap using a one-tailed Fisher’s exact test. Both 

correlation and overlap p-values were corrected for multiple comparisons by control of FDR. 

Furthermore, for Figures 3C and 3D we defined the significance of each overlap as its core 

or isolation score, depending on whether the overlap was between two modules in two 

groups (core score) or a module and unconnected genes (grey pseudo module) (isolation 

score). Next, we created correlation and overlap module networks (Figure 3E, left and 

middle), where module correlations or overlaps with FDR <0.01 were defined as 

connections between individual modules. We then used the strength, defined as -

log10(FDR), and number of these connections to identify communities of related modules 

(Figure 3E) in a merged network of correlations and overlaps (Figure 3E, right). Modules 

communities were detected using a multi-level algorithm (Blondel et al., 2008) as 

implemented in igraph (Csardi and Nepusz, 2006).

Trait Correlations—To correlate identified modules with clinical traits, we calculated the 

first principal component (eigengene) of each module and correlated it with several clinical 

and immunological traits (Figure 5A), including HCV viral load (log2 transformed), alanine 

aminotransferase (log2 transformed), time from infection (weeks), subject sex and age, as 

well as status of CD4 help (measured as number of detectable HCV-specific CD4+ T cells, 

see above) or neutralizing antibody status (measured as titer threshold, see above). Biweight 

midcorrelation was used for all continuous variables (age, viral load, ALT, time from 

infection) and Pearson correlation was used for all ordinal variables (sex, CD4 help). Ordinal 

variables were coded as follows-sex, female = 1, male = 2; CD4 help, none = 0, low = 1, 

high = 2.
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Gene Set Enrichment

Analysis Assembly of external gene signatures: We assembled a set 6 of HIV-specific 

CD8+ T cell signatures from based on genes that were differentially expressed (FDR ≤ 0.05, 

|log2(fold change)| ≥ 1.5) in HIV-specific CD8+ T cells from elite or viremic controllers and 

chronic progressors (Gaiha et al., 2014) based on comparisons between peptide-stimulated 

controllers and progressors and between stimulated and unstimulated cells in controller and 

progressor groups (Table S3).

For mouse signatures of T cell dysfunction vs activation, we used a set of 4 signatures (Table 

S3) recently published by Singer et al., that define genes related to T cell dysfunction, T cell 

activation, T cell activation/dysfunction and naïve/memory like T cells based on their 

correlation with the first two principal components that separate tumor-infiltrating 

lymphocytes according to their functionality and activation status based on expression of 

inhibitory receptors Tim-3 and PD-1 and deficiency of metallothioneins MT1 and MT2 

(Singer et al., 2016).

We assembled other mouse signatures of naïve, memory and exhausted T cells from the 

literature as detailed by Singer et al. (Singer et al., 2016), to ensure direct comparability with 

the novel signatures of T cell dysfunction and activation they describe. In brief, we compiled 

consensus signatures of naïve and memory T cells from multiple MSigDB v5.0 gene 

signatures (Subramanian et al., 2005) (naïve-28 genes upregulated in > 10/26, memory-23 

genes upregulated in > 6 out of 13 signatures, Table S3). Furthermore, we compiled a T cell 

exhaustion signature from genes that were differentially expressed (FDR < 0.05 and |fold 

change| ≥ 2) in LCMV-specific CD8+ T cells between chronic and acute disease on day 15 

and 30 of LCMV infection (Doering et al., 2012) (73 genes, Table S3). In addition to the late 

exhaustion signature, we also assembled an early exhaustion signature (31 genes) based on 

differential expression (FDR < 0.05 and |fold change| ≥ 2) at day 8 of LCMV infection as 

well as resolution signatures at day 8 (4 genes, Table S3) and day 15/30 (7 genes, Table S3).

For external module signatures, we used WGCNA based gene modules from CD8+ T cells in 

chronic and acute LCMV infection (Doering et al., 2012).

To account for mismatches in gene annotation between organisms, we transformed all mouse 

signature into human signatures by mapping from MGI symbols to ENSEMBL identifiers 

and from ENSEMBL identifiers back to HGNC symbols using biomaRt (Durinck et al., 

2009).

HCV module signature enrichments for module validation: For validation of detected 

network modules we used CAMERA (Wu and Smyth, 2012) to test both the original data set 

(Table S1) and a separate data set of microarray data from HCV-specific CD8+ T cells from 

patients with persisting and resolving infection within 20 weeks of infection (“validation” 

set, Table S5) for enrichment of the modules we derived from the original data set. Similar 

to GSEA (Subramanian et al., 2005), CAMERA allows ranked list of genes as input (here, 

we rank genes by differential expression between Chronic and Resolver within the different 

data sets). The idea behind CAMERA is based on the fact that gene set tests that use gene-

label permutation are often affected by inflated false discovery rates, and that thee 
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alternative, sample permutation, is not applicable for experiments with small numbers of 

replicates. Therefore, CAMERA instead incorporates an estimated variance inflation factor 

that is associated with inter-gene correlation into the test procedure to correctly control the 

type I error rate. Since this approach will specifically penalize sets of co-regulated genes 

which are often the most biologically relevant, CAMERA also allows for a preset inter-gene 

correlation to regain biological relevance at a slight cost of error rate control. Since we were 

interested in sets of genes that were defined by their high degree of correlation, we set the 

inter gene correlation to be at a low, fixed level of 0.01, deliberately allowing our module 

gene sets with high inter-gene correlation to achieve high enrichment scores, which were 

then corrected for multiple hypothesis testing within each data set (early, late, and 

validation) by controlling the FDR and setting a strict significance threshold of FDR <0.001 

to offset the slight loss of type I error control resulting from a preset inter-gene correlation 

value. Figure 4 shows examples of enrichment plots for modules r2, r5, r6, and c5 for both 

the early and late group of the original data set (Figure 4A) and the validation data set 

(Figure 4B). Full enrichment results are listed in Table S6.

Differential Expression and Module Signature Enrichments: We performed a variety of 

gene set enrichment analyses per module per experimental group (Chronic, Escape, 

Resolver). For the differential expression signature enrichment analysis (Figure 5B), we 

used 30 CD8+ T cell gene expression signatures related to different T cell states, including 

the 16 gene signatures defined from differential expression profiles in our data set of HCV-

specific CD8+ T cells (Figure 2, Tables S2 and S3) as well as 14 gene sets assembled from 

the literature which were related to CD8+ T cell dysfunction, exhaustion and memory state 

in murine models (Doering et al., 2012; Singer et al., 2016; Subramanian et al., 2005) or 

derived from peptide stimulated CD8+ T cells in subjects with controlled or progressing HIV 

infection (Gaiha et al., 2014) (Table S3).

For a module signature enrichment analysis (Figure 5C), we used 19 CD8+ T cell co-

expression module signatures that were identified using WGCNA in longitudinally sampled, 

antigen-specific CD8+ T cells isolated from mice infected with acute (13 modules) or 

chronically persisting (6 modules) strains of lymphocytic choriomeningitis virus (LCMV) 

(Doering et al., 2012) (Table S3). Details for the assembly of the used gene signatures are 

explained earlier in STAR Methods.

Both expression and module signature enrichments (Figures 5B and 5C) were calculated 

using a standard hypergeometric test as implemented in WGCNA using the entire set of 

3850 genes included in the analysis as background. Gene signature enrichment scores in the 

form of p-values were corrected for multiple hypothesis testing within experimental groups 

and modules by control of FDR. All enrichments with FDR <0.05 are shown in Figures 4B 

and 4C. A comprehensive list of signature enrichment results for all groups and modules can 

be found in Table S7.

Functional Enrichments: For the Immune Pathway enrichment (Figure 5D, top) we used a 

manually curated list of 54 immune pathways as contained in the WGCNA package 

(assembled from Ingenuity, WikiPathways, and literature (Langfelder and Horvath, 2008) 

(Table S3). Immune pathway enrichments were calculated using a standard hypergeometric 
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test as implemented in WGCNA. Enrichment scores in the form of p-values were corrected 

for multiple hypothesis testing within experimental groups and modules by control of FDR. 

The top 5 enrichments (by score and size of overlap) per group and modules that were also 

enriched above a significance threshold of FDR < 0.05 are shown in Figure 5D.

For the functional database enrichment (Figure 5D, bottom) we used the publicly available 

gene ontology and KEGG pathway databases (Ashburner et al., 2000; Kanehisa, 2000). We 

used topGO (Alexa et al., 2006) to test the identified network modules for enrichment of 

gene ontology terms related to biological processes, cellular components and molecular 

function with scoring based on topGO’s mixed elimination and weight algorithm and 

Fisher’s exact test. For analysis of KEGG pathway enrichments (Figures 5D) we used the 

corresponding function implemented in limma (Ritchie et al., 2015). Rather than controlling 

the FDR, we opted to impose a more stringent cutoff for significance thresholding of GO 

and KEGG enrichment analyses (p < 1e-10), since these generally produced very strong p-

values. Furthermore, topGO utilizes the underlying graph structure of the GO topology to 

return enrichment scores which can be considered to not be affected by multiple testing. A 

comprehensive list of functional enrichment results for all groups and modules can be found 

in Table S7.

For the KEGG enrichment analyses of the metabolism cluster network (Figure 6B, Table S8) 

we corrected enrichment scores (p-values) for multiple hypothesis testing by controlling the 

FDR. For this enrichment, all significant enrichments with ≥4 genes and FDR <0.05 are 

shown.

All functional enrichments were calculated using the entire set of 3850 genes included in the 

analysis as background.

Identification and visualization of cluster networks: Based on detected module 

communities (Figure 3E, right) and results from enrichment analysis of gene ontologies, 

pathways and gene signatures performed (Figure 5) we selected gene sets of common 

functional annotation to construct networks of co-regulated gene clusters related to 

metabolism, nucleosome and immune signaling (Table S8). We visualized these networks 

with igraph (Csardi and Nepusz, 2006) using a fixed network structure to allow for easy 

identification of functionally preserved components and connections within subnetworks 

(Figures 6A, S1 and S2).

Regulatory Network Analysis

Regulatory interaction network assembly: We integrated information on experimentally 

confirmed and predicted interactions of regulatory genes and their targets from multiple 

publicly available repositories to create a large regulatory interaction network, consisting of 

1319 regulators and ~2.9 million unique regulatory interactions. We combined data from 

CHEA, ENCODE (Dunham et al., 2012), TRANSFAC (Matys, 2006), and JASPAR 

(Mathelier et al., 2014) data sets obtained from the Harmonizome (Rouillard et al., 2016) 

repository and combined it with information on interactions from the TRRUST (Han et al., 

2015) and RegNetwork (Liu et al., 2015) repositories, which also included information on 

interaction type and confidence. Links to the individual resources are given in the KEY 
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RESOURCES TABLE. Furthermore, we included interactions from two weighted, cell type-

specific regulatory networks for CD8+ T cells and lymphocytes inferred recently published 

by Marbach et al. (Marbach et al., 2016). For purposes of this study, only interactions with 

an interaction weight >0.005 were included from these two networks.

Regulatory molecules were annotated for their class (transcription factor, transcription co-

factor, and chromatin remodeling gene) in accordance with their annotation in the animal 

transcription factor database (Zhang et al., 2015).

Identification of High Confidence Transcriptional Regulators: We intersected the 

assembled regulatory interaction network with the constructed gene co-expression networks 

for Chronic, Escape, and Resolver groups that were pruned to exclude weak interactions 

(only interactions with weight >0.025 were included), resulting in networks of high-

confidence regulatory interactions present in the HCV data.

To identify the most important within-module regulatory interactions for each regulator 

annotated for a module, we counted the number of regulatory interactions between the 

regulator and its targets within the same module and compared it to its intramodular 

connectivity (Figures 7A and S3, Table S10). To account for varying module sizes, we 

assessed regulatory target coverage both by total number of connections and number of 

connections relative to module size (percentage).

Construction of HCV-specific CD8+ T cell regulatory networks: To identify and 

highlight high-confidence regulatory interactions between important transcriptional 

regulators (Figure 7A) and genes of interest from the functional cluster networks (Figures 

6A, S1, and S2), we subset regulatory interaction networks for Chronic, Escape, and 

Resolver groups to important transcriptional regulators of interest (Figures 7A and S3, Table 

S10) and genes with intramodular connectivity >0.25 contained in metabolism, immune, and 

immune/nucleosome cluster networks. We allowed for connections of regulatory genes to 

targets across modules that had been omitted in the transcription factor identification step, 

since the existence of such connections is likely to better reflect the underlying biology as 

investigated modules are highly co-regulated. In contrast, their inclusion in the identification 

step would have inevitably lead to overestimation of the importance of individual 

transcription factors (as some TFs are annotated for >20,000 interactions) and likely obscure 

the highly combinatorial design, by which transcriptional regulation is organized (Ernst and 

Smale, 1995).

We created regulatory networks based on the interactions of the transcriptional regulators 

STAT5A, KDM5B, CBX3, RFX5, NELFE, STAT1, TP53, FLI1, IRF3, CREB1 within 

Chronic, Escape and Resolver groups in our data set and visualized them by functional 

annotation (Figure 7B) as well early and late gene expression levels (see Figure 2), module 

color (see Figure 3) and shared co-regulation among groups (see Figures 6A, S1 and S2) 

using igraph (FigureS4). To reduce visual redundancies, regulatory interactions for 

annotated as transcription co-factors and chromatin remodeling genes were subset to those 

targeting transcription factors.
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DATA AND SOFTWARE AVAILABILITY

Data Resources—The raw and processed microarray data generated for this study are 

deposited in the gene expression omnibus (GEO) and can be found under the accession 

numbers GSE93712 for the original data set and GSE93711 for the validation data set.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

FITC mouse Anti-Human CD4,
mAb, clone 13B8.2

Beckman Coulter Cat# IM0448U

APC-Cy7 mouse Anti-Human CD8,
mAb, clone SK1

BD Biosciences Cat# 557834

FITC mouse Anti-Human CD14,
mAb, clone RMO52

Beckman Coulter Cat# IM0645U

PE-Cy7 mouse Anti-Human CD16,
mAb, clone 3G8

BD Biosciences Cat# 557744

FITC mouse Anti-Human CD19,
mAb, clone J3-119

Beckman Coulter Cat# IM1284U

PE-Cy7 mouse Anti-Human CD56,
mAb, clone B159

BD Biosciences Cat# 557747

   

Biological Samples

   

   

   

   

   

Chemicals, Peptides, and Recombinant Proteins

Unlabeled peptide-MHC Multimers (class I) ProImmune Cat# Fxxx-80A-D

   

   

   

   

Critical Commercial Assays

Annexin V, Pacific Blue conjugate Thermo Fisher Scientific Cat# A35122

Annexin Binding Buffer (5X) Thermo Fisher Scientific Cat# V13246

Live/Dead Fixable Yellow Dead Cell Stain Kit Thermo Fisher Scientific Cat# L34959

APC Fluorotag ProImmune Cat# K4A-D

PE Fluorotag ProImmune Cat# K2A-D

Agencourt RNAdvance Tissue Kit Beckman Coulter Cat# A32649

Trizol Invitrogen Cat# 15596026

Ovation® Pico WTA System V2 Nugen Cat# 3302-12

MinElute PCR Purification Kit Quiagen Cat# 28004

Phase Lock Gel Heavy 5 Prime Cat# 2302810

Human Genome U133A 2.0 Array Affymetrix Cat# 900471

GeneChip HT Human Genome U133A 96-Array Plate Affymetrix Cat# 900751

Deposited Data

HCV-Specific CD8 T cells, microarray, original data set This paper GEO: GSE93712

HCV-Specific CD8 T cells, microarray, validation data set This paper GEO: GSE93711

HIV-specific CD8 T cells, microarray,
differential expression signature

Gaiha et al., 2014 GEO: GSE56775; GEO: GSE56971

LCMV-specific CD8 T cells, microarray,
differential expression and module signatures

Doering et al., 2012 GEO: GSE41867

CD8+ tumor infiltrating lymphocytes, high-throughput 
sequencing, activation/dysfunction score signature

Singer et al., 2016 GEO: GSE86042
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REAGENT or RESOURCE SOURCE IDENTIFIER

LCMV-specific CD8 T cells, microarray, leading edge 
signature

Bengsch et al., 2016 GEO: GSE41867

   

Experimental Models: Cell Lines

   

   

   

   

   

Experimental Models: Organisms/Strains

   

   

   

   

   

   

Recombinant DNA

   

   

   

   

   

Sequence-Based Reagents

   

   

   

   

   

Software and Algorithms

affy (v1.52.0) Gautier et al., 2004 https://www.bioconductor.org/packages/release/bioc/html/affy.html

biomaRt (v2.30.0) Durinck et al., 2009 https://bioconductor.org/packages/release/bioc/html/biomaRt.html

Harman (v1.2.0) Oytam et al., 2016 https://bioconductor.org/packages/release/bioc/html/Harman.html

igraph (v1.0.1) Csardi and Nepusz, 2006 http://igraph.org/r/

limma (v3.30.0) Ritchie et al., 2015 https://bioconductor.org/packages/release/bioc/html/limma.html

sva (v3.22.0) Leek and Storey, 2007 https://www.bioconductor.org/packages/release/bioc/html/sva.html

topGO (v2.26.0) Alexa et al., 2006 https://bioconductor.org/packages/release/bioc/html/topGO.html

WGCNA (v1.51) Langfelder and Horvath, 2008 https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/

Other

Custom microarray annotation
hgu133a2hsentrezg.db (v20.0.0)

Psychiatry/MBNI Microarray Lab http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/20.0.0/entrezg.asp

Custom microarray annotation chip definition file
hgu133a2hsentrezgcdf (v20.0.0)

Psychiatry/MBNI Microarray Lab http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/20.0.0/entrezg.asp

Custom microarray annotation
hthgu133ahsentrezg.db (v20.0.0)

Psychiatry/MBNI Microarray Lab http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/20.0.0/entrezg.asp

Custom microarray annotation chip definition file
hthgu133ahsentrezgcdf (v20.0.0)

Psychiatry/MBNI Microarray Lab http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/20.0.0/entrezg.asp

Harmonizome database, transcriptional regulatory interactions Rouillard et al., 2016 http://amp.pharm.mssm.edu/Harmonizome/

RegNetwork database, transcriptional regulatory interactions Liu et al., 2015 http://www.regnetworkweb.org

TRRUST database, transcriptional regulatory interactions Han et al., 2015 http://www.grnpedia.org/trrust/

Cell type and tissue-specific regulatory networks,
Lymphocytes and CD8 T cells, transcriptional regulatory 
interactions

Marbach et al., 2016 http://regulatorycircuits.org/download.html
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Highlights

Disease outcome and viral escape are linked to transcriptional differences in T 

cells

T cells from different outcomes share a core of co-regulated T cell identity genes

Metabolic, nucleosome, and immune genes are dysregulated early in chronic 

infection

Dysregulation correlates with sex, age, and presence of HCV-specific CD4 T cells
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Figure 1. Multivariate analysis of adaptive immunity during early HCV infection
(A) Gating strategy for sorting of HCV-specific CD8+ T cells, defined as CD8 and pMHC 

multimer positive lymphocytes negative for CD4, CD14, CD19, CD16, CD56, Annexin V, 

and LiveDead viability stain.

(B) Sampling and assay overview. HCV-specific CD8+ T cells from 43 subjects with 

different outcomes and varying levels of antigen recognition (Chronic (C), Escape (E), and 

Resolver (R)) were sampled at multiple time points (dots) within the first 36 weeks of 

infection (ntotal = 78, STAR Methods). CD4+ T cell status (magnitude of HCV-specific 
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CD4+ T cell response, dot color) and neutralizing antibodies (titers from HCV 

pseudoparticle neutralization assay, white bars) were assessed for a subset of these samples 

(nhelp = 37 and nneutralization=32).

See also Table S1.

Wolski et al. Page 31

Immunity. Author manuscript; available in PMC 2018 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Virus-specific CD8+ T cells display distinct transcriptional profiles of resolution, 
inflammation and persistent antigen exposure
(A) Heatmap of 258 differentially expressed genes across C, E, and R groups during early 

and late acute phase of HCV infection (<18 and >18 weeks post infection). Transcriptional 

profiles of HCV-specific CD8+ T cells were analyzed for differential gene expression 

between C and R in early or late acute infection or between early and late infection within C 

or R. Shown are means of scaled expression levels (expression scores) by group. Expression 

levels for E samples are shown but not used for detection of differential expression.
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(B) Venn diagrams of distinct transcriptional signatures defined by patterns of shared 

differential expression between C, E, and R groups and in early and late acute phase of 

infection.

See also Tables S1, S2, and S3.
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Figure 3. Modules of tightly co-regulated genes give rise to distinct patterns of transcriptional 
regulation in different infection outcomes
(A) Detection of gene co-expression modules in C, E, and R groups. Weighted gene co-

expression networks were constructed using WGCNA and modules of highly correlated 

genes were detected by hierarchical clustering. Colored bars indicate detected modules and 

their relative size, similar colors across groups do not imply overlap.

(B) Heatmap of scaled topological overlap matrices for isolated network modules from C, E, 

and R groups. Lighter colors indicate stronger positive correlation between genes within and 

across modules.
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(C and D) Chord diagrams of gene module correspondence between C, E, and R groups. 

Diagrams show significance of gene overlap between two modules (core score, blue 

connection) or a module and unconnected genes (isolation score, red connections) for 

individual group pairs of (C) C/R or (D) C/E and E/R. Shown are scores that passed a 

significance threshold of FDR <0.01.

(E) Correlation, overlap and community networks for modules detected in C, E, and R 

groups. Correlation and overlap networks were constructed using within-group correlation 

significance (FDR <0.01) and across-group overlap significance (FDR <0.01) and merged 

for detection of module communities (indicated by color) (STAR Methods). Significance of 

correlation and overlap were used for network layout and shown as width of the edges 

connecting modules within networks.

See also Table S4.
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Figure 4. Differential expression of network modules is preserved across cohorts of acute HCV 
infection
(A and B) Barcode plots of network module signature enrichments for HCV-specific CD8+ 

T cells from (A) C and R patients during the early and late phase of acute infection and (B) a 

separate validation cohort of chronic and resolving patients sampled during the early acute 

phase of infection (≤ 21 weeks post infection).

Ranked lists of log2 fold changes from analysis of differential expression between C and R 

groups were tested for enrichment of network modules (STAR Methods). Shown are 

representative examples of modules that were significantly enriched in early samples of the 
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original data set (FDR < 0.001) (r2, r6 and r5) as well as a universally non-enriched module 

(c5). (C) Overview of enrichment results for all three sample subsets and all modules. Dot 

size indicates FDR corrected p-values of enrichment. Statistically significant enrichments 

(FDR < 0.001) are highlighted in color according to directionality of enrichment in respect 

to up-regulation (red) or down-regulation (blue) in the R group.

See also Tables S4, S5, and S6.
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Figure 5. Correlation and enrichment maps link gene co-expression modules from different 
immunological states to clinical traits, immune signatures and biological function
(A) Trait correlation map for C, E and R groups in acute HCV infection. Eigengenes (first 

principal components) of network modules were correlated with clinical traits (colors 

indicate r value and sign of correlations (red = positive, blue = negative). Shown are 

correlations with FDR < 0.1.

(B and C) Enrichment maps for C, E, and R groups, showing enrichments scores for all 

significant enrichments (FDR < 0.05). (B) Modules were tested for enrichment of CD8+ T 

cell differential expression signatures from HCV (Figure 2), HIV (Gaiha et al., 2014), and 
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mouse models of T cell memory and exhaustion (Doering et al., 2012; Singer et al., 2016; 

Subramanian et al., 2005) (C) Modules were tested for enrichment of CD8+ T cell WGCNA 

module signatures from acute (AM) and chronic (CM) LCMV infection (Doering et al., 

2012).

(D) Functional enrichment maps for C, E, and R groups. Detected modules were tested for 

enrichment of immune pathways (Langfelder and Horvath, 2008), GO terms, and KEGG 

pathways. Shown are enrichment scores for top-scoring immune pathways (top 5 per group 

per module by enrichment score and number of enrichment-driving genes) with FDR <0.05 

and KEGG pathway/GO term enrichments below a significance threshold of FDR <1e-10. 

Enriched processes were grouped into clusters of functionally related and co-regulated terms 

related to metabolism, immune, and nucleosome clusters as indicated by colored dots in grey 

panels to the right of enrichment maps.

See also Tables S3, S7 and S8.
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Figure 6. A distinct temporal pattern of metabolic regulation marks chronic HCV infection
(A) Metabolism Cluster Network for C, E, and R, groups. Co-expression networks for each 

group were subset to genes annotated to the metabolism cluster and visualized as networks 

with components of genes grouped by exclusive or shared regulation between groups 

(colored bubbles). Nodes are sized by intramodular connectivity and colored by group 

expression score during the early phase of infection.
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(B) KEGG pathway enrichment in metabolism cluster network. Individual components from 

(A) were tested for enrichment of KEGG pathways. All pathways that were significantly 

enriched (FDR <0.05) in at least one component are shown.

(C) Chronic-exclusively regulated genes annotated for OXPHOS. Genes (shown as nodes), 

colored by their module membership in the C group. Genes that overlap with a leading-edge 

signature of metabolic processes associated with T cell exhaustion (Bengsch et al., 2016) are 

encircled by a dashed line (12/17 genes).

(D) Expression kinetics of hub genes for modules c3, c5, c6. Log2-transformed gene 

expression levels for the most highly connected gene of each module are plotted over time 

for each group (dots = individual samples, color = module membership in C). Longitudinal 

trends in expression are visualized using a local regression based (LOESS) smoother (grey 

shading = 95% confidence interval).

See also Figures S1 and S2, and Tables S4, S8, and S9.
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Figure 7. Distinct regulatory interactions link dysregulation of metabolic, nucleosomal, and 
immune processes in CD8+ T cells from early chronic HCV infection
(A) TR-target coverage for CD8+ T cells in chronic HCV infection. A large network of 

regulatory interactions was assembled from the literature (STAR Methods) and subset to 

TR-target interactions with matching module assignments. TRs are plotted by number (left) 

or percentage (right) of within-module regulatory interactions and intramodular connectivity. 

Transcription factors with intramodular connectivity > 0.5 and/or target coverage count > 20 

or percentage >5% are labeled with their respective gene symbols. TR module membership 

is indicated by color.

Wolski et al. Page 42

Immunity. Author manuscript; available in PMC 2018 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(B) Regulatory networks for select TRs from modules c3, c5, c6, and r2. Weighted gene 

correlation networks were restricted to strong interactions (weight > 0.025) between selected 

TRs and known targets (kWithin >0.25). For transcription co-factors and chromatin 

remodeling genes, only interactions targeting transcription factors are shown. TRs and 

targets are labeled with gene symbols and colored by regulatory function or annotation in 

metabolism, nucleosome, or immune cluster networks. Interaction types are indicated by 

color of edges connecting TRs and targets.

(C) Representative expression kinetics of Chronic regulatory network genes. Shown are 

log2-transformed expression levels (dots represent individual samples) of genes annotated 

for regulation of transcription (Histones, RNA & DNA polymerases), metabolism (ATP 

Synthase, NADH dehydrogenase, Cytochrome C oxidase, and Oxidoreductase activity), and 

T cell function and homing (T cell maintenance & activation, Cell adhesion & migration). 

Color and number indicate C group module membership. Longitudinal trends in expression 

are visualized using a local regression based (LOESS) smoother (grey shading = 95% 

confidence interval).

See also Figures S3 and S4, and Tables S8 and S10.
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