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Abstract 
 

A highly efficacious vaccine against the malaria parasite Plasmodium falciparum is needed. Repeat 

sequences are common in P. falciparum proteins and some are known immune targets. Short read 

sequence data are available for thousands of parasite isolates, but aligning and assembling repetitive 

sequences remains a challenge. A combined mapping and de novo assembly approach was 

developed to resolve highly complex and polymorphic allelic repeat sequences in the merozoite 

protein MSP-1. This approach gave an unbiased call of allele frequencies and full repeat sequence 

for a majority of clinical isolates tested. These data were used to design polyvalent hybrid sequences 

that would containing motifs from multiple alleles. Potential construct designs representing a 

greater spectrum of sequence diversity than that of previously designed polyvalent hybrid antigens 

were generated. 

 

Assays of mechanisms of antibody mediated inhibition of parasite growth are needed to identify 

which antigen sequences are functional targets of immunity. Such assays are hard to standardise and 

would be benefitted by availability of human monoclonal antibody reagents. As an approach 

towards obtaining these, a technique was developed using a tetramerised P. falciparum MSP-1 

recombinant antigen to isolate cognate B-cells from the blood of exposed Ghanaian adult donors. 

Despite lower than expected viability of cryopreserved samples, 82 memory antigen specific B-cells 

were successfully isolated by single cell flow sorting of lymphocytes from 16 donors. Complimentary 

DNA encoding both the heavy and light chain immunoglobulin variable regions was sequenced and 

analysed for two of these cells, revealing some distinct features. This is the first time a tetrameric 

antigen has been used to isolate human B-cells recognising a P. falciparum antigen, demonstrating 

their potential for use in the study of malarial immunity. The modest numbers of specific B-cells 

sorted from cryopreserved samples encourage the application of this approach to freshly obtained 

samples. 
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Chapter 1 - Introduction 
 

1.1 Global burden of P. falciparum and need for efficacious vaccines 
 

Human malaria is transmitted by the bite of mosquitoes infected with any of five Plasmodium 

species; P. falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi. Malaria caused a global disease 

burden estimated at 214 million cases and 438 000 deaths in 2015 with two thirds of deaths 

occurring in children under five in sub-Saharan Africa  as a result of P. falciparum infection (WHO, 

2015).  In the past 15 years there have been renewed international and regional initiatives to deploy 

new tools and drugs, namely insecticide-treated bed nets and artemisinin combination therapies, 

resulting in elimination in a few countries and substantial reductions in burden of disease in many 

other countries (figure 1.1). Targeted chemoprophylaxis has recently been employed in the Sahel 

region of Africa, and is proving to be successful at reducing the incidence of malaria amongst the 

population at highest risk (children and pregnant women). However, especially in hyper- and holo-

endemic settings, new tools will be required to prevent deaths from malaria, which some estimates 

put as the leading cause of mortality in children under five worldwide (Elliott and Beeson, 2008). 

Furthermore, mosquito resistance to insecticides and the beginning of resistance to artemisinin in 

the parasite threaten to reverse the progress made over the last few decades (Phyo et al., 2012, 

Protopopoff et al., 2013).  

Vaccines are highly efficacious public health tools, especially in tackling diseases of childhood, as 

they boost natural immunity and can provide life-long protection. Even before the molecular 

mechanisms were understood, vaccines were developed against smallpox and polio that have been 

used to eradicate and eliminate these once common diseases (Andre, 2003). Since the development 

of the first viral vaccines, global implementation of the MMR vaccine has led to dramatic reductions 

in the burden of mumps and measles, childhood diseases that were highly prevalent (Muller et al., 

2007). Vaccines have also been used to reduce the burden of bacterial diseases including pertussis, 

diphtheria, meningococcus, pneumococcus, cholera, typhoid and Haemophilus influenza (Natalia et 
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al., 2009). Efficacious anti-parasite vaccines have been developed for use in veterinary medicine. 

These include vaccines against Toxoplasma gondii and Emieria parasites, apicomplexans related to 

Plasmodium species (although it is worth noting that these are whole-parasite vaccines) (Dalton and 

Mulcahy, 2001). However, despite several decades of research, a highly effective malaria vaccine is 

still not available (Matuschewski, 2017). RTS,S is the only licensed malaria vaccine, which has 

recently been recommended by the WHO for pilot implementation in sub-Saharan Africa (WHO, 

2016). This vaccine contains epitopes from the circumsporozoite protein (CSP), which is expressed 

on the surface of the infective form of the parasite, and thus aims to boost immunity to initial 

infection and has been shown to be between 30% and 50% effective, although immunity wanes 

within a year of vaccination (RTS, 2015). Whilst this vaccine will might be useful in some situations, it 

is clear that an improved vaccine will be required in order to provide long lasting protection from 

disease. Whilst the RTS,S vaccine reduces the incidence of infection with P. falciparum, in those who 

are still infected it does not boost immune responses to the blood-stage form of the parasite, which 

is responsible for all disease symptoms. It is therefore important that P. falciparum blood-stage 

antigens are developed as vaccine targets, which could be co-formulated with RTS,S or used in other 

multi-stage formulations.  

 

(Gething et al., 2011)
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1.2 The lifecycle of P. falciparum offers multiple opportunities for a vaccine 
 

All Plasmodium species infecting humans share a common lifecycle. The human infective form of the 

parasite, the sporozoite, is injected into the skin from the salivary glands of an infected female 

anopheline mosquito. Sporozites then travel to the liver where they invade a hepatocyte and 

undergo schizogony to produce tens of thousands of merozoites which are then released into the 

blood. Once in the blood, parasites invade red blood cells (RBCs) and develop within a 

parasitophorous vacuole (PV), which, in the case of P. falciparum, takes around 48 hours and 

involves the transition through ring, trophozoite and schizont morphological stages. During this 

process, the parasite exports proteins to modulate the host cell membrane and promote adherence 

to endothelial cells (cytoadherence), presumably to avoid clearance in the spleen. At the end of 

intraerythrocytic cycle P. falciparum undergoes schizogony to produce an average of 16 daughter 

merozoites (Bannister and Mitchell, 2003), which are released following the breakdown of both the 

erythrocyte membrane and PV membrane and rapidly re-invade uninfected RBCs and establish 

another cycle of asexual reproduction. This haploid stage of the parasite life-cycle is the sole cause 

of pathology and also generates gametocytes, which result from the commitment of a small number 

(<10%) of schizonts to sexual development, known as gametocytogenesis, which produces mature 

male and female gametocytes after 10-12 days (Josling and Llinas, 2015). Upon uptake by a feeding 

mosquito gametocytes undergo rapid DNA replication and development to form gametes which fuse 

to form diploid zygotes that develop into motile ookinetes that infect the mosquito midgut wall. 

Ookinetes then develop into oocysts inside of which meiosis produces hundreds to thousands of 

haploid sporozoites (Stone et al., 2013)  that are released on rupture of the oocyst and migrate to 

the salivary glands of the infected mosquito, ready to infect another human host (figure 1.2).  

Vaccination against malaria has the potential to interrupt any stage of the parasite life-cycle in the 

human host and also to prevent transmission (figure 1.2). Pre-erythrocytic vaccines, including RTS,S, 

have been designed to elicit immune responses against sporozoites or liver-stage parasites to 
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prevent development of a blood stage infection. Blood-stage vaccines either aim to inhibit parasite 

replication through targeting merozoites or to block cytoadherence of infected RBCs (Richards and 

Beeson, 2009, Richie and Saul, 2002, Good et al., 1998). Transmission blocking vaccines aim to raise 

antibodies against gametocyte antigens that resulting in prevention of infection of the mosquito.  

The merozoite is of particular importance to the design of blood-stage vaccines as, despite being 

short-lived, it is the only extracellular stage in which the parasite is fully exposed to the host immune 

system. The merozoite is a small (1.5 µm long) tear-drop shaped cell that has two major specialised 

compartments at the apical end, termed micronemes and rhoptries (figure 1.2) that contain proteins 

essential for invasion of the RBCs. The surface of the merozoite is decorated with a coat of largely 

peripheral and glycosylphosphatidylinositol (GPI)-anchored merozoite surface proteins (MSPs) which 

are proposed to mediate initial contact with the RBC membrane. This first step in the invasion 

process is followed by the re-orientation of the merozoite such that the apical end is in contact with 

the RBC. Invasion ligands are then released from the apical organelles (micronemes and rhoptries) 

which bind receptors on the RBC surface and commit the merozoite to invasion, a process in which a 

tight junction is formed with the host cell membrane and an actin-myosin motor drives the 

merozoite into an invagination of the RBC surface membrane that will become the PV (Cowman et 

al., 2012). Proteolytic processing of many MSPs and invasion ligands is essential for the merozoite to 

invade the host cell, and results in the shedding of many of these proteins during the invasion 

process (Beeson et al., 2016).
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Figure 1.2 Schematic representation of the life cycle of P. falciparum and merozoite cell structure. 

Sporozoites travel from the salivary glands of the infected female mosquitoes via the skin to the liver 

where they invade hepatocytes. P. falciparum develops within the hepatocyte, generating thousands 

of merozoites which are then released into the blood where they invade RBCs to establish a blood-

stage infection. The parasite undergoes multiple cycles of asexual replication in the blood in which 

schizogony produces merozoites which invade fresh RBCs on rupture of the parent cell. The majority 

of schizonts produce merozoites that invade RBCs and develop into ring stage parasites which then 

develop into larger, amorphous trophozoites which modulate the RBC membrane to effect 

cytoadherence to the endothelia of microvasculature. A small minority of schizonts will commit to 

sexual development, producing merozoites that will invade RBCs to form rings stages but then go on 

to produce mature gametocytes which, following uptake by a feeding mosquito, will undergo sexual 

reproduction to produce mosquito invasive ookinetes that go on to produce sporozoites that can 

establish infection of the next human host. The three vaccination strategies are shown at the edge of 

the life-cycle. Authors own representation of malaria life cycle. 

 

1.3 Natural development of clinical immunity to P. falciparum is indicative of potential for 

effective vaccine development 
 

In malarial, sterile immunity is the development of immune responses that prevent the parasite 

from establishing an infection. In contrast, clinical immunity is a state in which the host can be 

infected with parasites but does not develop disease symptoms. Although sterile immunity to P. 

falciparum is rarely, if ever seen, partially protective acquired immunity can cause a reduction of 

parasite numbers in the blood by four or five orders of magnitude and prevent disease (Druilhe and 

Perignon, 1997); figure 1.3). Therefore it seems pertinent to pursue a vaccine that can induce clinical 

immunity to P. falciparum, which means developing a vaccine against the blood-stage of the parasite 

lifecycle.  

In the 1960s, treatment with immunoglobulin gamma (IgG) from clinically immune adults was shown 

to reduce parasite burden and cure symptoms in children suffering from malaria, demonstrating that 

this class of antibodies are the key component of clinical immunity (Cohen et al., 1961, Edozien et 

al., 1962, McGregor, 1964). These studies were replicated later with non-immune Thai adults as 

recipients (Bouharoun-Tayoun et al., 1990, Sabchareon et al., 1991). These findings suggest that 

vaccination with blood stage antigens could result in clinical immunity.  
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The fact that clinical immunity takes a long time to develop and has been reported to wane in the 

absence of repeated exposure has been used to argue that there may be a defect in the formation of 

immunological memory (Langhorne et al., 2008). The detection of asymptomatic infections in low-

transmission regions suggests, however, that clinical immunity is maintained despite sporadic 

exposure (Luxemburger et al., 1997, Alves et al., 2005, Branch et al., 2005, Cucunuba et al., 2008, 

Fugikaha et al., 2007, Roper et al., 2000, Roshanravan et al., 2003). Whilst it could be argued that 

clinical immunity to P. falciparum in low-transmission settings may not equate to clinical immunity in 

Africa due to the reduced parasite genetic diversity, similar observations were made in low 

transmission regions of Africa (Kleinschmidt and Sharp, 2001, Ouldabdallahi Moukah et al., 2016) 

where parasite genetic diversity is maintained by gene flow from neighbouring, high-endemic 

regions (Duffy et al., 2017). Studies comparing travellers who contract P. falciparum malaria found 

that, whilst both naïve and previously exposed individuals suffer morbidity, previously exposed 

patients cleared parasites faster, suffered milder disease symptoms and were less likely to die 

(Jelinek et al., 2002, Matteelli et al., 1999), although this finding was not replicated in a smaller study 

(Jennings et al., 2006). Malaria was eliminated from Madagascar in 1960 and was absent from the 

country until 1987 which marked the start of repeated outbreaks (Lepers et al., 1988, Romi et al., 

2002). A lower incidence of malarial fever was observed in people over 40, although the rate of 

infection in this group was the same as the younger population, providing evidence that a degree of 

clinical immunity persists in the absence of repeated exposure. Multiple studies have observed that, 

in the absence of infection, antibodies against P. falciparum blood stage antigens decrease but are 

quickly boosted on re-infection, indicating that whilst antibody responses in the absence of antigen 

may be short-lived, memory B-cells persist (Cavanagh et al., 1998, Fruh et al., 1991, Taylor et al., 

1998, Perraut et al., 2000, Jouin et al., 2001). Infection in a human challenge model has 

demonstrated the boosting of vaccine induced antibodies against two P. falciparum blood stage 

antigens by low-level parasitaemia (Elias et al., 2014). 
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The fact that the host immune response to P. falciparum, as with many parasitic organisms, appears 

to establish a balance in which low-level infection is tolerated (Bruce-Chwatt, 1963, Artavanis-

Tsakonas et al., 2003) suggests that a blood-stage vaccine against P. falciparum may not be able to 

eliminate the disease, from either individuals or the population but, by pre-empting naturally 

acquired clinical immunity, such a vaccine would result in a massive reduction in the burden of 

disease.
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Figure 1.3 Model predicted change in probability of severe malaria, clinical malaria and parasitaemia with age.  Griffin et al (2015) fitted a model of 

malaria transmission with the incidence of severe malaria by age obtained from hospital admission data collected in Africa. The change with age in (a) low 

(annual entomological inoculation rate (EIR) of 2) and (b) high (annual EIR of 50) transmission settings of the probability of severe malaria (blue), clinical 

malaria (red) parasite prevalence (green) as predicted by the model are shown. Increased exposure in high transmission settings results in a higher 

probability of disease but clinical immunity to disease develops faster. In both high and low transmission settings immunity to parasites develops slower 

than immunity to disease. Figure adapted from (Griffin et al., 2015).
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1.4 Overcoming parasite diversity through designing blood-stage malaria vaccines 
 

Whilst clinically immune individuals control parasitaemia, they very rarely develop responses that 

inhibit mosquito infection. The infected mosquito may then pass the parasite onto a naïve host for 

whom the infection may prove fatal. The development of an immune response that controls the 

replication of parasites in the blood whilst maintaining infectivity is evidence of parasite-host co-

evolution over many thousands of years. The establishment of this balance in naïve individuals is 

unlikely to be a straightforward task achieved by a single-antigen, mono-allelic vaccine.   

The use controlled of P. falciparum infection in the treatment of neurosyphilis provided the first 

direct evidence of development of clinical immunity as patients exhibited reduced symptoms on 

secondary infection (Collins and Jeffery, 1999b). However, analysis of the records of controlled P. 

falciparum infection showed that clinical immunity developed primarily against the homologous 

parasite strain (Collins and Jeffery, 1999a).This finding indicates one of the major challenges for 

malaria vaccine design; the high degree of antigenic polymorphism and variation in antigen 

expression that allows the parasite to evade immunological memory. Indeed, the repeated episodes 

of malaria experienced as clinical immunity develops can be explained by strain specific clinical 

immunity (Bull et al., 1998, Roper et al., 1996). 

Malaria vaccine antigens are generally polymorphic in natural parasite populations with some blood-

stage antigens exhibiting very high levels of polymorphism (Takala and Plowe, 2009, Ouattara et al., 

2015, Barry et al., 2009, Volkman et al., 2002, Polley and Conway, 2001, Miller et al., 1993, Smythe 

et al., 1990). The high degree of polymorphism is likely maintained by balancing selection exerted by 

the host immune system (Amambua-Ngwa et al., 2012b, Weedall and Conway, 2010). That these 

antigens appear to be under selection from the immune system provides evidence that they could 

potentially form the basis of a vaccine designed to offer clinical immunity. However, antigenic 

polymorphism poses a problem for vaccine design, as the presence of multiple alleles presents the 

opportunity for vaccine escape. Indeed, two trials of blood stage vaccines that showed little or no 
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vaccine efficacy did find strain-specific protective effects (Thera et al., 2011, Genton et al., 2002), 

which have been validated by in vitro analysis (Dutta et al., 2007, Ouattara et al., 2013, Stubbs et al., 

2011).  

Vaccines containing multiple allelic variants of antigens have been successfully used to immunise 

against both viral and bacterial diseases (Salk, 1953, Black et al., 2000). In the case of the influenza 

vaccine, antigenic variants are selected annually in response to predictions of the most prevalent 

strains (Ampofo et al., 2012). Vaccines containing multiple alleles have been proposed for apical 

merozoite antigen-1 (AMA-1), a region of merozoite surface protein-1 (MSP-1) and MSP-2, leading P. 

falciparum blood-stage vaccine candidates (Cowan et al., 2011, Krishnarjuna et al., 2016, Remarque 

et al., 2008, Tetteh and Conway, 2011, McCarthy et al., 2011). The only such vaccine to be subjected 

to a phase II trial contained two alleles of AMA-1 and was found to have no impact on parasite 

densities of vaccinated children (Sagara et al., 2009). However, AMA-1 contains many polymorphic, 

discontinuous epitopes (Duan et al., 2008, Escalante et al., 2001, Healer et al., 2002, Marshall et al., 

1996, Polley and Conway, 2001) which may facilitate vaccine escape even when two alleles are 

present in the vaccine. Vaccines designed to elicit immune responses against a broader range of 

AMA-1 epitopes are currently being developed (Faber et al., 2016). 

Whilst many cohort studies have found correlations between antibodies against blood stage 

antigens and protection from disease, results from separate studies are sometimes contradictory 

and a single leading blood-stage antigen is yet to emerge (reviewed in (Fowkes et al., 2010)). Studies 

that examined the response to panels of blood stage antigens have demonstrated that antibody 

responses to particular combinations of these antigens are most highly associated with protection 

(Osier et al., 2014b, Osier et al., 2008, Richards et al., 2013). This suggests that clinical immunity 

depends on antibody responses to a range of blood-stage antigens. For this reason, an efficacious 

blood-stage antigen is likely to require the combination of not just multiple allelic variants of an 

antigen, but multiple antigens as well. So far, only a few blood-stage vaccines comprising either 

fusion proteins containing domains of two antigens (Theisen et al., 2004, Hu et al., 2008) or mixtures 
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of two (Chitnis et al., 2015) or three (Saul et al., 1999) antigens have been entered into clinical trials. 

Results of phase II trials with two of these vaccines, whilst not showing high vaccine efficacy, 

encourage further development of multi-antigen vaccines (Sirima et al., 2016, Genton et al., 2002).  

Inoculation with irradiated sporozoites has shown that presentation of multiple pre-erythrocytic 

antigens leads to short-lived protection from infection (Seder et al., 2013). Infection of four subjects 

with low numbers of live blood-stage parasites followed by drug cure resulted in sterile immunity 

towards the homologous parasite strain in three subjects and reduced parasite growth in the fourth, 

indicating the potential of attenuated parasite vaccines (Pombo et al., 2002). However, the 

widespread use of whole organism parasite vaccines in endemic settings is prevented by technical 

barriers and cost of manufacture. It is therefore desirable to design a sub-unit or viral-vectored 

vaccine containing antigens that present a range of epitopes representing a selected combination of 

sequences of relevant blood-stage antigens.  

At the time of writing, 54 trials of vaccines containing one or more blood-stage antigen have been 

published (table 1.1). Around half (28) of these trials were conducted with a vaccine containing only 

a single blood-stage antigen. Seven trials assessed efficacy of vaccines containing a single blood-

stage antigen, with three finding evidence of protection (Ogutu et al., 2009, Sheehy et al., 2012, 

Sirima et al., 2011, Thompson et al., 2008, Thera et al., 2011, Laurens et al., 2017, Palacpac et al., 

2013, Yagi et al., 2016), although one of these studies was underpowered (Sirima et al., 2011) and 

one was not replicated (Laurens et al., 2017). Excluding trials of SPf66, which are the subject of a 

Cochrane review (Graves and Gelband, 2006), six trials assessed vaccine efficacy for vaccines 

containing multiple antigens or multiple antigen alleles and half of these found some degree of 

protection (Lawrence et al., 2000, Sheehy et al., 2012, Sagara et al., 2009, Ockenhouse et al., 1998, 

Genton et al., 2002, Sirima et al., 2016). Although none showed efficacy greater than RTS,S, the 

results of these trials demonstrate the potential for a blood stage P. falciparum vaccine (Beeson et 

al., 2016).  
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Whilst 13 trials have focused on vaccines comprising multiple different antigens, just three have 

been conducted for vaccines containing multiple antigen alleles and only one of these had multiple 

alleles for multiple antigens. All of these trials demonstrated the potential to raise antibodies against 

both alleles present in the vaccine (Sagara et al., 2009, McCarthy et al., 2011, Ellis et al., 2012). 

Whilst the only such trial to evaluate vaccine efficacy did not demonstrate protection (Sagara et al., 

2009), this should not discourage the continued development of vaccines design to raise antibodies 

against multiple strains of polymorphic antigens.  

Viral vectored vaccines not only offer a platform for the presentation of multiple antigens but can 

also be designed to elicit strong immune responses that can be polarised toward a cellular (T helper 

1) or a antibody (T helper 2) response (Rollier et al., 2011). Seven antigens, from sporozoites, liver 

stages, blood-stages and gametocytes were included in a single vaccina virus vectored vaccine (Tine 

et al., 1996), which was shown to cause a slight delay in the onset of parasitaemia in a human 

challenge model (Ockenhouse et al., 1998). However, no subjects sero-converted for all seven 

vaccines and immunogenicity was variable (Ockenhouse et al., 1998). Whilst more recent studies 

with viral vectored vaccines have not demonstrated efficacy in the same human challenge model 

(Sheehy et al., 2012), they do however suggest that vaccination with multiple viruses expressing 

different antigens may prove to be a better method for ensuring immune responses to all vaccine 

antigens and demonstrate the ability to elicit string humoral and cellular immune responses (Biswas 

et al., 2014, Elias et al., 2014). Whilst issues remain regarding pre-existing immunity to the viral 

vector itself, viral vectored vaccines promise to provide a platform for the delivery of multiple alleles 

of multiple P. falciparum antigens (Rollier et al., 2011).  

 

1.5 Repeat sequences are common features of P. falciparum antigens and have the 

potential to form the basis of multi-allelic vaccines 
 

Tandem repeat sequences are DNA sequences that contain a sequence of bases that is repeated two 

or more times with no other sequences in between. These repeats can be perfect, comprising 
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exactly the same sequence repeated each time, or imperfect, where the repeat sequence varies. 

Repeat sequences in protein coding regions of DNA will encode repeat sequence in the protein. The 

repeat sequences of P. falciparum proteins offer an attractive platform for the design of antigens 

presenting a range of common, linear B-cell epitopes that would allow the combination of multiple 

alleles of multiple blood-stage antigens required to elicit clinical immunity in naïve individuals. 

Previous work demonstrated the abundance of repeat sequences in P. falciparum genes, being 

found in 56% (3058) of known protein coding genes and constituting 9.5% of coding sequence 

(Aspeling-Jones, 2013). The overwhelming majority of peptides encoded by these sequences are 

predicted to be intrinsically disordered (Feng et al., 2006). This lack of secondary and tertiary protein 

structure results in the presentation of linear B-cell epitopes, predicted to be enriched in intrinsically 

disordered protein domains (Guy et al., 2015). Moreover, repetitive sequences are likely to increase 

the affinity of antibody binding due to the concentration of binding sites.  

Antibodies against the repeat sequences of the pre-erythrocytic antigen in RTS,S have been shown 

to be key for the protection offered by this vaccine (Kester et al., 2009, Foquet et al., 2014, Olotu et 

al., 2011). Antibodies against blood-stage antigens containing extensive repeat sequence have been 

shown correlate with protection from malarial disease (Taylor et al., 1995, Osier et al., 2010, Polley 

et al., 2007)  and, in the case of MSP-1, antibodies against the repeat sequence show a stronger 

association with protection than those against the neighbouring non-repetitive sequences (Polley et 

al., 2003b). Many of the polymorphic sequences found in antigens are intrinsically disordered repeat 

(Anders et al., 1988, Anders et al., 1993, Tetteh et al., 2009, Cowman et al., 1985).  

The amino acid moieties of a protein molecule that are recognised by an antibody are known as the 

antibody epitope and can be either linear or discontinuous. Linear epitopes consist of amino acids 

that are adjacent in the protein chain whereas discontinuous epitopes consist of amino acids that 

have been brought into proximity with one another as a result of the folding of the protein. In order 

to produce vaccines that contain discontinuous epitopes from multiple alleles, it is necessary to 
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design and express whole proteins or whole protein domains as the epitope is formed by the folding 

of the protein into its 3D structure. This has been done for AMA-1, an antigen that presents 

polymorphic, discontinuous epitopes (Remarque et al., 2008). This is in contrast to antigens that 

present polymorphic, linear epitopes where antigens can be designed that combine multiple 

epitopes in a much shorter peptide (Tetteh et al., 2005a). The latter approach would allow the 

inclusion of a greater number of antigen sequences without prohibitive increases in the cost of 

vaccine production.  

1.6 Challenges of extracting repeat sequence data with modern sequencing technologies 
 

The parallel nature of modern sequencing platforms allows for fast and inexpensive sequencing of 

large numbers of whole genomes. The application of these technologies to P. falciparum has led to a 

wealth of sequence data derived from thousands of clinical isolates taken from across the global 

distribution of the parasite. The sequence reads generated by this technology are short (50-150 base 

pairs). Typical approaches to analysing these short reads involve mapping reads onto a reference 

sequence. This alignment based approach then allows for calling of variance at the points where the 

mapped reads differ from the reference sequence to which they are aligned. However, this approach 

cannot handle highly divergent allele sequences, common to P. falciparum blood-stage antigens, as 

if a sequence is very different from the reference over the length of the sequence read it will not be 

mapped to the reference (MacLean et al., 2009).  

This problem can be overcome by using de novo assembly, in which short sequence reads are joined 

together based on shared sequence to reconstruct the original sequence (Zerbino and Birney, 2008). 

This approach runs into difficulties when attempting to assemble repetitive sequence because the 

longer repeat and the fewer the number of changes in the repeated unit, the harder it is to 

determine the length of the repeat sequence (Leggett et al., 2013, Zerbino, 2010). This poses a 

difficulty for the use of short read sequence data in the study of the polymorphic repeat sequences 

that could be used to form the basis of a multi-allelic, multi-antigen vaccine.  
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Linear antibody epitopes are between four and 12 amino acids in length (Buus et al., 2012). It is 

therefore possible to elicit antibodies against an intrinsically disordered sequence solely by the 

inclusion of short amino acid sequences in a synthetic antigen. This thesis describes a bioinformatic 

method that can extract the short amino acid sequences and their frequency in a parasite 

population from short read sequence data for use in the computational design of synthetic antigens 

containing multiple potential epitopes from disordered polymorphic protein domains.  

1.7 P. falciparum presents a wealth of potential vaccine antigens requiring 

characterisation and prioritisation 
 

The P. falciparum genome encodes over 5500 genes (Logan-Klumpler et al., 2012) with over 90% of 

these producing messenger ribonucleic acid (mRNA) transcripts during the blood-stage cycle of 

asexual replication (Otto et al., 2010). Proteomic analysis detects almost two thousand different 

proteins as being present in at least one asexual parasite stage (Le Roch et al., 2004). Analysis of the 

proteome of lipid rafts present in just the schizont stage of the asexual life-cycle revealed the 

presence of over 120 proteins (Sanders et al., 2005), demonstrating the abundance of potential 

vaccine candidates. Selecting the relevant antigens for inclusion in a blood-stage vaccine will require 

analysis of the antibodies against these candidates.  

Human antibodies recognise many linear epitopes from hundreds of P. falciparum proteins during 

blood-stage infection (Crompton et al., 2010a, Buus et al., 2012). Determining the contribution of 

these antibodies to clinical immunity is essential to designing efficacious blood-stage vaccines. 

Identifying key antigens for inclusion in a vaccine is a priority but it is also vital to determine how 

antibodies recognising these antigens work to protect the host from disease. Whilst some antibodies 

function by directly blocking invasion of RBCs by merozoites or cytoadherence of infected RBCs, 

others will induce secondary immune effector mechanisms against the parasite. Understanding the 

effector mechanisms of human antibodies is key to development of a malaria blood-stage vaccine 

(Crabb et al., 2012). 
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Early work used panels of mouse monoclonal antibodies raised against protein preparations or 

whole parasites to identify blood stage antigens (Miller et al., 1986).This approach tended to identify 

abundant antigens such as MSP-1 (Holder and Freeman, 1984) and MSP-2 (Miettinen-Baumann et 

al., 1988), although antigens of lower abundance, such as the rhoptry-associated protein RAP-1 

(Clark et al., 1987), were also identified. This was followed by screening of complimentary 

deoxyribonucleic acid (cDNA) expression libraries with serum collected from clinically immune 

individuals (Kemp et al., 1983), which allowed the discovery of less abundant antigens, such as the 

soluble antigen (S-Antigen) (Coppel et al., 1983), ring-infected erythrocyte surface antigen (RESA) 

(Coppel et al., 1984) and apical merozoite antigen-1 (AMA-1) (Peterson et al., 1989).This work, which 

focused largely on merozoite antigens, identified the majority of leading blood stage vaccine 

candidates, many of which have been formulated with adjuvant and trialled as vaccines (table 1.1). 

Advances in deoxyribonucleic acid (DNA) sequencing technology have allowed for the identification 

of potential antigens by detection of genetic signatures of balancing selection by the immune system 

(Ochola et al., 2010).The advent of whole genome sequencing means that such scans can now be 

carried out across the whole genome (Amambua-Ngwa et al., 2012b). Antigens such as merozoite 

surface protein Duffy binding like proteins (MSPBDLs) are promising candidates arising from this 

work, but characterisation of these new antigens is still in its infancy. Advances in the scale of sero-

epidemiology and detection of genetic signatures of selection will continue to expand the list of 

vaccine candidates (Richards et al., 2013, Osier et al., 2014b). In order to produce optimal multi-

component vaccines it is necessary to qualify these candidates by determining the efficacy of 

antibodies recognising them. 

1.8 Correlates of protection from P. falciparum malaria are lacking 
 

All blood-stage antigens that have been tested in phase II vaccine trials have been tested in animal 

models. Whilst studies in animal models found protection from disease, these results are not always 

replicated in vaccine trials or human challenge models (table 1.1). Therefore the in vitro and in vivo 



31 
 

use of human antibodies to qualify blood stage antigen candidates should be the focus of malaria 

vaccine research. Sero-epidemiology is a useful tool for the identification of vaccine candidates, but 

the results are often inconsistent between different cohort studies, and controlling for exposure is a 

persistent challenge for analysis and interpretation (Fowkes et al., 2010). The high cost of running 

phase II vaccine trials and human challenge models means that lab-based assays using human 

antibodies are needed in order to determine the potential of a vaccine candidate prior to 

progression into expensive validation studies. However, to date no lab based correlates of either 

sterile or clinical immunity to malaria have been developed.  

Human antibodies recognising merozoite antigens have been observed to inhibit parasite growth in 

two ways. Direct inhibition can occur when antibodies prevent the invasion of merozoites through 

blocking binding to RBCs or to other parasite proteins or through preventing processing of antigens 

or by agglutination of merozoites. Antibody mediated additional mechanisms of inhibition can occur 

when antibodies enhance killing of parasites via opsonic phagocytosis, neutrophil respiratory burst 

or complement mediated lysis (Bouharoun-Tayoun et al., 1990, Bouharoun-Tayoun et al., 1995) 

Boyle et al., 2015).  

Direct inhibition of parasite growth is the most straightforward antibody function to measure in the 

lab and can be standardised. Early studies using sera or purified immunoglobulin from individuals 

with clinical immunity to malaria found strong inhibition of in vitro parasite growth (Brown et al., 

1983). Since this finding, growth inhibition assays (GIAs) have been used to test the capacity of 

serum collected from clinically immune individuals and purified antibody to directly inhibit the 

replication of P. falciparum grown in culture. The results of a longitudinal study in Mali found that 

increased inhibition of in vitro parasite growth correlated with increased protection from malaria, 

but that such antibodies were not sufficient to explain protection from disease (Crompton et al., 

2010b).  Correlation between sera inhibition of in vitro parasite growth and time to next infection 

was found in studies in Kenya, which also found that, whilst the inhibitory capacity of sera increased 

with age in young children, older children and adult sera had lower levels of inhibition in GIAs (Dent 
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et al., 2008, McCallum et al., 2008). However, the associations between growth inhibitory capacity 

and increased protection from malaria were not replicated in a more recent study, also conducted in 

Kenya (Osier et al., 2014a). 

Sera from clinically immune individuals does not always inhibit parasite growth in vitro (Reese et al., 

1981, Brown et al., 1981, Wilson and Phillips, 1976, Phillips et al., 1972, Osier et al., 2014a), implying 

that antibodies against P. falciparum can function in ways other than direct inhibition of parasite 

growth. Early studies demonstrated the potential for antibodies to opsonise merozoites and thus 

enhance phagocytosis by immune effector cells and protect from disease (Druilhe and Khusmith, 

1987, Celada et al., 1982). More recently, the development of a standardised assays for phagocytosis 

of merozoites have been developed (Ataide et al., 2010, Hill et al., 2013) and used to demonstrate 

strong correlations between the ability of human sera to enhance merozoite phagocytosis and 

protection from disease in cohorts from Kenya, Ghana and Papua New Guinea (Osier et al., 2014a, 

Kana et al., 2017, Hill et al., 2013).  Antibodies from clinically immune individuals have also been 

shown to inhibit parasite growth in the presence of monocytes (Bouharoun-Tayoun et al., 1990, 

Bouharoun-Tayoun et al., 1995). Whilst protocols to assay antibody dependent cellular inhibition 

(ADCI) are well established (Khusmith and Druilhe, 1983, Bouharoun-Tayoun et al., 1990), alterations 

in the assay set up influence the mechanism by which the monocytes inhibit parasite growth 

(Kapelski et al., 2014). In addition to phagocytosis, immune effector cells have also been shown to 

inhibit parasite growth by respiratory burst (Bouharoun-Tayoun et al., 1995).The capacity of sera to 

enhance respiratory burst of polymorphonuclear neutrophils in response to presence of merozoites 

has been shown to correlate with protection from malaria (Joos et al., 2010).  

Whilst it is clear that cellular effector mechanisms play a key role in controlling parasite replication in 

the blood, one could hypothesise that, as RBCs outnumber lymphocytes 600 to one, many 

merozoites will escape this response by invading an RBC prior to encountering an immune effector 

cell. Although local inflammation and host cell suitability could act to shift the probability of 

encountering an immune effector cell prior to invasion, complement proteins, as soluble factors 
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present in the sera, will be able to act against the merozoite from the moment it is released from the 

schizont until it invades a new RBC and could, in theory, have a greater impact on merozoite survival 

and therefore parasite replication. Indeed, targeting of complement to merozoites by sera from 

clinically immune individuals has been shown to inhibit invasion (Boyle et al., 2015). However, 

difficulties in standardising this assay have prevented studies exploring the correlation with the 

capacity of sera to fix complement and protection from malaria. In accordance with the importance 

of cell and complement inhibition of merozoites being driven by antibody, cytophilic IgG3 (but not 

total IgG) binding to whole merozoites was shown to correlate with clinical protection from malaria 

(Kana et al., 2017).  

Blood-stage vaccine research has focused mostly on merozoite antigens. Whilst this extracellular 

form of the parasite is present for only a couple of minutes of, it is the only point during the 48 hour 

of the asexual life cycle when the parasite is directly exposed to antibodies. However, during 

intraerythrocytic development the parasite exports proteins to the erythrocyte membrane, probably 

to facilitate cytoadherence to endothelia of microvasculature, a phenomenon that not only allows 

evasion of circulation through spleen, but also correlates to the aetiology of many of the symptoms 

of severe malaria (Miller et al., 2013). Indeed, early studies found a correlation between the capacity 

of serum to inhibit rosetting of RBCs, an assay for cytoadherence, and protection from future disease 

(Marsh et al., 1989). Antibodies recognising parasite antigens on the infected RBC surface have the 

potential to directly inhibit cytoadherence (Bengtsson et al., 2013), which would not only reduce 

severe disease symptoms but could also lead to increased clearance of infected RBCs in the spleen, 

or to induce cell-mediated killing of infected RBCs by immune effector cells (Lambert et al., 2014).  

 

1.9 Human monoclonal reagents have the potential to inform design of vaccines aiming to 
block merozoite invasion of red blood cells 
 

Antibodies against proteins in the rhoptries and micronemes often function by direct inhibition of 

parasite invasion, either through blocking the binding to RBC ligands (Persson et al., 2008) or other 
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parasite proteins (Maskus et al., 2016) resulting in inhibition of merozoite invasion. AMA-1 is an 

integral membrane protein, which is sequestered in the micronemes of the merozoite and released 

on contact with the RBC surface, following proteolytic processing (Narum and Thomas, 1994). 

Domains I and II of AMA-1 form a hydrophobic pocket (Pizarro et al., 2005, Bai et al., 2005), which 

binds to Rhoptry Neck Protein 2 (RON-2) (Lamarque et al., 2011, Srinivasan et al., 2011), a member 

of a complex of rhoptry proteins, orthologous with a family of Toxoplasma gondii proteins which 

localise to the target cell membrane following release from the rhoptries (Besteiro et al., 2009). IgG 

against AMA-1 has been correlated with protection from malaria (Stanisic et al., 2009, Polley et al., 

2004, Gray et al., 2007, Nebie et al., 2008, Dodoo et al., 2008, Richards et al., 2013) (although not in 

all studies (Osier et al., 2014b)) and shown to inhibit merozoite invasion in vitro (Hodder et al., 

2001). 

Polyclonal rabbit antibodies against AMA-1 were shown to inhibit proteolytic processing of this 

antigen, rendering merozoites unable to invade (Dutta et al., 2003, Dutta et al., 2005), however this 

function has not been demonstrated with human antibodies. The study of a human monoclonal 

antibody demonstrated blocking of AMA-1 binding to RON-2 as the mechanism of invasion inhibition 

(Maskus et al., 2016), as had been suggested by work with mouse and rat monoclonal antibodies 

(Coley et al., 2007, Collins et al., 2007, Collins et al., 2009). Blocking of the interaction with RON-2 by 

human antibodies had been hypothesised due to the accumulation of polymorphic sites in the loops 

that surrounding the RON-2 binding pocket (Coley et al., 2006, Hodder et al., 1996). The 

polymorphism of AMA-1 at protective epitopes may explain the failure of single allele vaccines based 

on AMA-1 failing to demonstrate protection in phase II trials and human challenge models 

(Thompson et al., 2008, Thera et al., 2011, Laurens et al., 2017, Sheehy et al., 2012) table 1.1). Fine 

mapping of a rat monoclonal that inhibits merozoite invasion by binding to this region suggests that 

antibody recognition of the polymorphic loops is dependent on the conformation of the loop rather 

than linear epitopes (Collins et al., 2007). In order to induce strain transcending immune responses 

against AMA-1 it will therefore be necessary to combine complete AMA-1 domains of different 



35 
 

alleles in a single vaccine. One such vaccine, containing two alleles of AMA-1 was tested and showed 

limited efficacy (Sagara et al., 2009). However, vaccines containing a greater number of alleles are 

currently in development (Faber et al., 2016). A separate approach has also been suggested in which 

mutant forms of AMA-1 are engineered to direct antibody responses to conserved protective 

epitopes. This has been shown to induce strain-transcending inhibitory rabbit antibodies, but with a 

reduction in overall inhibitory capacity (Harris et al., 2014).  

In addition to AMA-1, merozoites express invasion ligands from two protein families; the erythrocyte 

binding antigens (EBAs) sequestered in the micronemes, and the reticulocyte-binding protein 

homolog (RH) family proteins which are sequestered in the rhoptries. These proteins mediate 

invasion via binding to a range of ligands on the host cell surface (Tham et al., 2012, Bei and 

Duraisingh, 2012). With the exception of PfRH-5 (see below) all of these are integral membrane 

proteins that are variably expressed and mediate redundant invasion pathways (Lopaticki et al., 

2011, Bowyer et al., 2015).  

EBA-175 binds to glycophorin A on the RBC surface (Sim et al., 1994). Antibodies against EBA-175 

have been shown to correlate with protection from malaria and high-density parasitaemia (Richards 

et al., 2010, McCarra et al., 2011, Richards et al., 2013) although this was not replicated in all studies 

(John et al., 2004, Okenu et al., 2000, Osier et al., 2008, Osier et al., 2014b). GIAs have demonstrated 

that antibodies specific for this antigen can inhibit in vitro parasite growth (Persson et al., 2013, 

Badiane et al., 2013). Naturally acquired antibodies that inhibit interaction with glycophorin-A 

thorough binding region II of EBA-175 were shown to correlate with protection, indicating that these 

antibodies act by direct blockade of merozoite-RBC interactions (Irani et al., 2015). Phase I vaccine 

trials with two different vaccines containing EBA-175 elicited antibodies that showed modest 

inhibition of parasite growth in GIA (Koram et al., 2016, Chitnis et al., 2015, El Sahly et al., 2010) 

(table 1.1). However, it is unlikely that a vaccination with EBA-175 alone would result in clinical 

immunity, as parasites are able to use other receptor-ligand interactions in place of EBA-175-
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glycophorin A (Lopaticki et al., 2011, Persson et al., 2013), reflected in variable expression of this 

antigen and the ability of parasites to invade RBCs from which glycophorin A has been enzymatically 

removed (Bowyer et al., 2015). 

The EBA family contains three other micronemal proteins: EBA-181, EBA-140 and EBL-1, each with its 

own Duffy-like binding domain (Adams et al., 1992, Adams et al., 2001), which bind glycophorins or 

sialic acid residues on the RBC surface (Lobo et al., 2003, Maier et al., 2003, Mayer et al., 2009, 

Gilberger et al., 2003, Lanzillotti and Coetzer, 2006). The reticulocyte-binding homologues (RH) are 

another family of invasion ligands that are sequestered in the rhoptries (Rayner et al., 2000); PfRH2, 

PfRH3, PfRH4 and PfRH5 bind to complement receptor 1, basigin and an unknown, trypsin resistant 

receptor on the RBC surface (Awandare et al., 2011, Duraisingh et al., 2003, Tham et al., 2011, 

Crosnier et al., 2011).  Studies have found strong correlations between levels of antibodies 

recognising EBA and RH proteins and protection from malaria (Reiling et al., 2010, Richards et al., 

2010, Richards et al., 2013). However, these findings were not for all antigens in all studies (Osier et 

al., 2014b, Richards et al., 2010).  

Evidence from the study of human genetic variation suggests that disrupting interactions between 

merozoite invasion ligands and receptors on the RBC surface can protect from malaria (Leffler et al., 

2017). In order to combat the redundancy of invasion pathways and variable gene expression, 

multiple invasion ligands will need to be incorporated into a single vaccine (Lopaticki et al., 2011). 

The generation of human monoclonal antibodies recognising merozoite invasion ligands will enable 

the detection of the protective epitopes presented by these ligands, as has been done with mouse 

monoclonal antibodies (Ambroggio et al., 2013), and thereby help to identify short peptide 

sequences for inclusion in such a vaccine.   

PfRH5 is a rhoptry protein that forms a complex with P. falciparum PfRH5 interacting protein (PfRipr) 

and cysteine-rich protective antigen (CyRPA) and binds Basigin on the RBC surface and, unlike other 

members of the RH  family, appears to be essential for parasite invasion (Baum et al., 2009, Crosnier 
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et al., 2011, Chen et al., 2011, Dreyer et al., 2012, Reddy et al., 2015). Human antibodies against 

PfRH5 have been shown to inhibit parasite invasion in GIA (Patel et al., 2013, Tran et al., 2014) and 

correlate with protection from disease in four out of five cohorts tested (Tran et al., 2014, Richards 

et al., 2013, Weaver et al., 2016, Osier et al., 2014b). Although seroprevalance was found to be low 

in some populations (Douglas et al., 2011, Villasis et al., 2012, Tran et al., 2014), this is not true for all 

populations (Richards et al., 2013, Weaver et al., 2016, Osier et al., 2014b). Rabbit and mouse 

antibodies induced by a 3D7 PfRH5 delivered on a viral vector were able to inhibit growth of both 

homologous and a heterologous strain (Douglas et al., 2011, Douglas et al., 2014), due to the limited 

polymorphism present in the gene encoding PfRH5, which may be due to restrictions imposed by 

binding to Basigin (Hayton et al., 2008, Wanaguru et al., 2013). Immunization with a PfRH5 viral 

vectored vaccine protected Aotus monkeys from challenge with heterologous parasites and 

produced antibodies that inhibit parasite growth in vitro (Douglas et al., 2015). PfRH5 has been 

formulated as a viral-vectored vaccine with chimpanzee adenovirus 63 (ChAd63) and modified 

vaccinia virus Ankara (MVA) strain and tested in a human challenge model (trial number 

NCT02181088), although at the time of writing the results of this trial have not been published. GIAs 

and epitope mapping using mouse monoclonal antibodies have determined two linear epitopes 

recognised by inhibitory antibodies (Douglas et al., 2014). Confirmation that these epitopes also 

elicit functional human antibodies would mean that these two short peptides could be included in a 

multi-antigen vaccine.   

Multiple merozoite surface proteins (MSPs) contain epidermal growth factor-like (EGF) domains that 

may mediate initial contact with the target RBC membrane (Goel et al., 2003, Kariuki et al., 2005, 

Boyle et al., 2010, Puentes et al., 2005, Puentes et al., 2003); antibodies against these domains can 

inhibit invasion, presumably by directly blocking this interaction (Maskus et al., 2015). MSP-1, the 

most abundant protein on the merozoite surface (Gilson et al., 2006),  is cleaved into four fragments 

that remain associated on the surface of the merozoite (Holder et al., 1987, McBride and Heidrich, 

1987), although only the C-terminal 42 kilodalton fragment (MSP-142) is covalently linked to the GPI 
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anchor. During invasion MSP-142 is cleaved, releasing the N-terminal fragments and leaving just a 19 

kilodalton fragment (MSP-119) that is carried into the RBC (Blackman and Holder, 1992, Stafford et 

al., 1994, Blackman et al., 1990).  

Antibodies against MSP-119 have been found to correlate with protection in some cohorts (Egan et 

al., 1996, Perraut et al., 2005, Stanisic et al., 2009), although a greater number of studies in different 

cohorts found no correlation (Egan et al., 1996, Cavanagh et al., 2004, Conway et al., 2000, Dodoo et 

al., 2008, Nebie et al., 2008, Osier et al., 2008, Soe et al., 2004, Richards et al., 2013). Only two 

studies, both conducted in Papua New Guinea have analysed antibodies against MSP-142 and 

protection from malaria with one study reporting an association (al-Yaman et al., 1996) and another 

reporting no association (Richards et al., 2013). Mouse and rabbit antibodies against MSP-119 and 

MSP-142 have been shown to directly inhibit parasite growth in vitro (Blackman et al., 1990, Chappel 

and Holder, 1993, Bergmann-Leitner et al., 2006). Whilst this has not been directly demonstrated for 

human antibodies, mutation of MSP-119  EGF domains does rescue inhibition by human sera 

(O'Donnell et al., 2001, Murhandarwati et al., 2008). Antibodies against MSP-142 could be blocking 

the proposed binding of heparin-like polysaccharides (Boyle et al., 2010) or Band-3 (Goel et al., 2003, 

Kariuki et al., 2005) on the RBC surface by MSP-142. Mouse antibodies and human sera from exposed 

children have been shown to prevent MSP-142 processing (Guevara Patino et al., 1997, Nwuba et al., 

2002), however, this is not considered to be major functional mechanism of naturally acquired 

antibodies (Moss et al., 2012). Furthermore, IgG against MSP-142 does not correlate with the 

invasion inhibitory capacity of sera from children living in an endemic area of Papua New Guinea 

(McCallum et al., 2008).  

Vaccination with MSP-119 was shown to be protective in a non-human primate model, although only 

when used with Freund’s adjuvant which is not licensed for use in humans (Egan et al., 2000, Kumar 

et al., 1995, Kumar et al., 2000). In the same model, vaccination with MSP-142, formulated with 

Montanide ISA-720, an adjuvant approved for human use, was shown to be protective against 
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challenge with homologous parasites (Lyon et al., 2008). MSP-119 has been included in several 

vaccine formulations although it often proves to be poorly immunogenic (Keitel et al., 1999, Chitnis 

et al., 2015) and has not progressed to phase II trials (table 1.1). In a formulation in which MSP-119 

elicited antibodies in a majority of participants, these did not inhibit parasite growth in vitro (Hu et 

al., 2008, Malkin et al., 2008). Two different alleles of MSP-142 have been formulated as two 

separate recombinant vaccines; both were immunogenic but only vaccination with the 3D7 allelic 

form produced antibodies capable of inhibiting parasite growth in vitro (Otsyula et al., 2013, 

Ockenhouse et al., 2006). The phase II vaccine trial with this allelic form did not demonstrate any 

protection from disease (Ogutu et al., 2009). This antigen has also been included in a viral vectored 

vaccine in combination with conserved N-terminal MSP-1 peptide sequences. Whilst this vaccine did 

induce antibodies recognising MSP-142, these did not inhibit parasite growth in vitro or in a human 

challenge infection model (Sheehy et al., 2011, Sheehy et al., 2012). 

MSP-10 was more recently identified based on homology with MSP-1 (Black et al., 2003) and has 

been implicated in binding the RBC membrane (Puentes et al., 2005). Three human monoclonal 

antibodies isolated from a clinically immune individual recognising conformational epitopes in the 

two EGF domains of MSP-10 have been shown to directly inhibit parasite invasion (Maskus et al., 

2015).  

Ring-infected surface antigen (RESA) is localised to the micronemes of the merozoite but appears to 

only be released following invasion (Brown et al., 1985) whereupon it localises to the membrane of 

the host cell and interacts with spectrin (Foley et al., 1991). High levels of anti-RESA antibodies 

correlate with lower parasite densities (Petersen et al., 1990) and protection from malaria 

(Astagneau et al., 1994a, Astagneau et al., 1994b, Astagneau et al., 1995). However, levels of IgG1 to 

a repeat unit of RESA were found to be negatively correlated with protection in one study (Dubois et 

al., 1993). High levels of IgG2 were shown to correlate with protection from disease in a population 

with a high prevalence of the H131 allele, suggesting a role for antibodies against RESA in immune 
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clearance (Aucan et al., 2000). The inhibitory capacity of sera collected from clinically immune 

individuals was found to correlate with levels of RESA specific IgG (Wahlin et al., 1984, Berzins et al., 

1986) and human and rabbit antibodies recognising an eight amino acid repeat unit of RESA 

inhibited parasite growth in vitro (Berzins et al., 1986). The first described human monoclonal 

antibodies recognising a P. falciparum antigen were against RESA and were also shown to inhibit 

parasite growth in vitro (Udomsangpetch et al., 1986, Berzins et al., 1985, Berzins et al., 1986). These 

results are confusing, given the description of apparent internal localisation of the protein in the 

merozoite and the fact that it was elsewhere shown that RESA does not appear to be essential for 

parasite growth (Cappai et al., 1989). However, the fact that antibodies against the repeat 

sequences of RESA elicited by immunisation of Aotus monkeys were found to protect these animals 

from infection with P. falciparum (Collins et al., 1986) encouraged the inclusion of the constant 

domain of this antigen in combination B, the first multi-antigen P. falciparum vaccine to be trialled. 

Results of a phase II trial of combination B vaccine showed reduced parasite burden in vaccinated 

individuals (Genton et al., 2002).  

1.10 Antibodies against antigens on the merozoite surface can trigger secondary immune 

mechanisms leading to merozoite neutralisation 
 

Antibodies recognising proteins present on the surface of the merozoite surface typically do not 

directly inhibit merozoite invasion (Beeson et al., 2016). However, antibodies against many of these 

proteins have been found to correlate with protection from disease (Richards et al., 2013, Osier et 

al., 2014b). Furthermore, assays of immune effector mechanisms have shown that antibodies 

against MSPs can enhance destruction of merozoite (Boyle et al., 2015, Osier et al., 2014a). 

Population genetic analysis indicates that a highly-polymorphic N-terminal region of MSP-1, termed 

MSP-1 block 2, is under strong immune pressure (Conway et al., 2000, Polley et al., 2003a). 

Accordingly, antibodies, especially IgG3, recognising this region have been found to associate with 

protection from malaria in several populations (Conway et al., 2000, Cavanagh et al., 2004, Polley et 
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al., 2003b). This protection is particularly associated with the polymorphic repeat sequences found 

in some alleles (Polley et al., 2003b). However, these results have not been replicated in every 

cohort (Osier et al., 2008, Gray et al., 2007). Human antibodies against MSP-1 block 2 do not inhibit 

parasite growth directly but have been shown to inhibit merozoites in the presence of monocytes in 

a strain specific manner (Galamo et al., 2009). Rabbit antibodies against MSP-1 block 2 were shown 

to inhibit merozoite invasion in the presence of complement in an allele specific manner (Boyle et 

al., 2015). Vaccination with a recombinant protein based on MSP-1 block 2 protected two out of four 

Aotus monkeys in a non-human infection challenge model (Cavanagh et al., 2014).  

MSP-2 is the second most abundant protein on the merozoite surface (Sanders et al., 2005) and is 

dimorphic (Fenton et al., 1991). Naturally acquired IgG3 against MSP-2 were found to correlate with 

protection (Taylor et al., 1998, Metzger et al., 2003, Polley et al., 2006, Stanisic et al., 2009, Osier et 

al., 2008, Flueck et al., 2009, Osier et al., 2014b). This was not shown in all cohorts (Sarr et al., 2006, 

Polley et al., 2006, Richards et al., 2013) and was found to be allele specific in at least one (Scopel et 

al., 2007). Vaccine induced antibodies against MSP-2 have been shown to inhibit parasite growth in 

ADCI assays (McCarthy et al., 2011). Naturally acquired MSP-2 antibodies were shown to enhance 

phagocytosis of merozoites (Osier et al., 2014a) and rabbit antibodies recognising one allele of this 

antigen have been shown to strongly inhibit invasion of merozoites in the presence of human 

complement (Boyle et al., 2015). Mutation of the Fc region that reduces binding to Fc receptors has 

been used to demonstrate inhibition of parasite growth via opsonic phagocytosis, ADCI and 

activation of complement by a recombinant human monoclonal recognising MSP-2 (Stubbs et al., 

2011, Boyle et al., 2015).  

MSP-3 was the first member identified of a family of six peripheral membrane proteins, the MSP3/6 

family, that have a common N-terminal motif and conserved C-terminal domains and are expressed 

on the surface of the merozoite (Oeuvray et al., 1994, Singh et al., 2009). The function of these 

proteins remains unknown, although binding of the RBC membrane has been demonstrated for one 
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family member (Sakamoto et al., 2012).Truncation of MSP-3 resulted in a reduction of invasion 

efficiency, suggesting that this family has a role in merozoite invasion but that there are overlapping 

functionalities (Mills et al., 2002). Antibodies against MSP-3 have been found to correlate with 

protection in many studies (Richards et al., 2013, Meraldi et al., 2004, Nebie et al., 2008, Osier et al., 

2014b, Osier et al., 2008, Osier et al., 2007, Polley et al., 2007) and this has also been shown for 

several other MSP-3/6 family members (Richards et al., 2013). In some studies the association 

between anti-MSP-3 antibodies and protection was found to be allele specific (Osier et al., 2007, 

Osier et al., 2008) and one study found no correlation (Gray et al., 2007). Human antibodies against 

MSP-3 also inhibit parasite growth in the presence of monocytes (Oeuvray et al., 1994) and can 

enhance phagocytosis of merozoites (Osier et al., 2014a). The analysis of a human monoclonal 

antibody binding to one heptad repeat unit of MSP-3, produced both as IgG1 and IgG3, showed 

inhibition of parasite growth via ADCI for both antibody isotypes (Lundquist et al., 2006). The 

conserved C-terminal region of MSP-3 was formulated as a vaccine that induced antibodies capable 

of inhibiting parasite growth in vitro in the presence of monocytes and in vivo in a mouse model 

(Druilhe et al., 2005). Subsequently, a small scale trial of this vaccine demonstrated protection 

(Sirima et al., 2011). Antibodies against each of the MSP-3/6 family members inhibited parasite 

growth in the presence of monocytes and were shown to be cross-reactive (Singh et al., 2009). 

Production of human monoclonal reagents against MSP-3/6 family members will aid the design of 

vaccines based on identification of common functional epitopes.  

Glutamate rich protein (GLURP) is another peripheral membrane protein found on the surface of 

merozoites, which contains two polymorphic repeats, R1 and R2 and a conserved non-repeat region, 

R0 (Borre et al., 1991, Hogh et al., 1993). High levels of antibodies against GLURP correlate with low 

density parasitaemia (Hogh et al., 1992) and protection from disease (Nebie et al., 2008, Dodoo et 

al., 2008, Meraldi et al., 2004), although this was not found for antibodies recognising GLURP R2 in 

one cohort (Richards et al., 2013). Human antibodies against GLURP have been shown to inhibit 

parasites in the presence of monocytes (Theisen et al., 1998) and such antibodies were induced in 
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adults by vaccination with a section of the R0 peptide. This region of GLURP combined with the 

conserved region of MSP-3 in a hybrid vaccine that showed modest and not statistically significant 

efficacy in a phase II trial (Sirima et al., 2016).  

Serine repeat antigen-5 (SERA-5) is a member of a family of SERA proteins (Bourgon et al., 2004). 

SERA-5 is a soluble, exported protein expressed during the late trophozoite and schizont stage of the 

asexual cycle (Delplace et al., 1987, Knapp et al., 1989). The N-terminal domain of SERA-5 consists of 

a polymorphic repeat sequence whereas the C-terminal domain is conserved (Morimatsu et al., 

1997, Fox et al., 1997). SERA-5 undergoes proteolytic processing during schizont maturation and an 

N-terminal fragment remains associated with merozoites following schizont rupture and egress from 

erythrocytes (Li et al., 2002). Antibodies recognising this N-terminal fragment correlated with lower 

parasitaemia amongst adults in an endemic area of Brazil (Banic et al., 1998) and signs of clinical 

immunity in adults and children living in Uganda (Okech et al., 2001). Accordingly, antibodies 

recognising SERA-5 have been shown to correlate with protection from malaria (Richards et al., 

2013, Okech et al., 2006). In combination with monocytes, antibodies against SERA-5 can inhibit 

parasite growth (Soe et al., 2002). The phase Ib trial of a recombinant vaccine containing the N-

terminus of a single allele of SERA-5 has shown protection from clinical malaria amongst high 

responders (Yagi et al., 2016).  The predicted disorder of both GLURP and SERA proteins means that 

identification of protective epitopes by analysis of human monoclonal antibodies would allow the 

use of short peptide sequences within immunogenic constructs to induce functional antibody 

responses.   

1.11 Antibodies target destruction of infected red blood cells 
 

Similar immune effector mechanisms appear to be involved in inhibition of parasite growth following 

invasion of the RBCs by merozoites; complement and P. falciparum specific antibodies have been 

shown to enhance killing of infected RBCs via respiratory burst by neutrophils (Salmon et al., 1986) 

and phagocytosis (Celada et al., 1983, Kumaratilake et al., 1997). Whilst the intra-erythrocytic 
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parasite is shielded inside the RBC membrane, this stage of the parasite does express variant 

antigens, namely P. falciparum erythrocyte membrane protein-1 (PfEMP-1) and rifins, on the surface 

of the infected RBC in order to adhere to other RBCs or endothelial cells thus preventing clearance in 

the spleen (Carlson et al., 1990, Carlson et al., 1994, Chen et al., 1998, Miller et al., 2013, Rowe et al., 

1995, Rowe et al., 1997, Scherf et al., 2008, Vigan-Womas et al., 2012, Goel et al., 2015). These 

proteins are encoded by gene families comprising ~60 or ~150 members for PfEMP-1 and rifins 

respectively (Fernandez et al., 1999, Horrocks et al., 2004). This has previously discouraged 

development of vaccines based on these antigens, apart from in the special case of pregnancy 

associated malaria. The fact that antibodies against the PfEMP-1 variant (VAR2-CSA) that causes 

pregnancy associated malaria protect against disease (Ampomah et al., 2014) has encouraged the 

development of a viral vectored vaccine based on this variant (Andersson et al., 2017), the phase I 

clinical trial for which is currently underway (trial number NCT02647489). Interestingly, increased 

phagocytosis of infected RBCs appears to be a factor contributing to resistance to malaria conferred 

by human genetic polymorphisms affecting the production of alpha (alpha-thal 1 trait (α α/--), alpha-

thal 2 trait (-α/- α), Hb H/Hb Constant Spring (CS) ( --/α αCS), HB CS trait (α α/ααCS) and CS disease 

(ααCS /ααCS)) or beta (beta+ thalassemia trait (HbA39 (C>T)/HbA)) haemoglobin chains  or introducing a 

mutation in the  beta haemoglobin chain (sickle cell trait (HbS/HbA) which are common in malaria 

endemic regions (Yuthavong et al., 1990, Ayi et al., 2004). Additionally infected RBCs with 

erythrocyte glucose-6-phosphate dehydrogenase (EG6PD) deficiency, caused by deletion of the 

EG6PD gene on the X chromosome, were shown to be phagocytosed at the ring stage rather than 

trophozoite stage of intraerythrocytic development, which reduces the toxicity to the phagocytosing 

cells (Cappadoro et al., 1998). 

Antibodies recognising a range of type A PfEMP-1 antigens were raised in rabbits and shown to 

inhibit rosetting and enhance phagocytosis of infected RBCs (Ghumra et al., 2012). Broad-specificity 

anti-PfEMP-1 antibodies were also observed following controlled infection in naïve adults, leading to 

the hypothesis that multiple var genes are expressed in the early stage of infection in order to allow 
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the parasite to find a permissive niche in the host circulatory system (Turner et al., 2011). This 

suggests that a vaccine comprising multiple PfEMP-1 motifs could induce broad immune responses 

against this antigen (Bull and Abdi, 2016). The recent discovery in two separate Kenyan populations 

of monoclonal antibodies, containing a large, mutated insertion from another gene, with broad 

specificity for rifins does lend promise to the development of a vaccine against these highly variant 

gene families (Tan et al., 2016). However, engineering a vaccine that can induce rare antibodies is 

not straightforward; a rare, broadly neutralizing antibody against human immunodeficiency virus  

(HIV) glycoprotein 120 was discovered over twenty years ago (Trkola et al., 1996), however, as yet 

no vaccine strategies have been developed to elicit antibodies with similar specificity and potency 

(Scanlan et al., 2007).   

1.12 Recombinant human monoclonal antibodies enable the assaying of antibody 

mediated killing of P. falciparum merozoites and infected red blood cells induced by 

antibody responses to specific antigens 
 

The production of recombinant monoclonal antibody reagents allows for the introduction of 

mutations that can remove C1q and Fc binding sites. Such reagents provide the perfect controls for 

assaying antibody mediated complement and cell driven parasite inhibition (Stubbs et al., 2011, 

Boyle et al., 2015). Improved standardisation of these assays will support key findings that will 

contribute to vaccine design. It is possible that antibody mediated enhancement of complement and 

cellular immune effector mechanisms is only optimal in the presence of multiple antibody 

specificities (Boyle et al., 2015). In order to explore the minimal number of antigen epitopes that 

need to be recognised in order to enhance these immune effector mechanisms it will be necessary 

to generate large numbers of human monoclonal antibody reagents.  

Advances in whole genome sequencing, proteomics and recombinant protein expression, have 

enabled the study of signatures of immune selection, protein localisation and antibody responses for 

large numbers of antigens. This has led to the identification of a number of novel vaccine candidates 

(Osier et al., 2014b, Sanders et al., 2005, Crompton et al., 2010a, Amambua-Ngwa et al., 2012b). The 
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generation of human monoclonal reagents against these antigens will help to determine which elicit 

functional antibody responses.  

1.13 MSP-1 is processed before and during merozoite invasion and encodes tripeptide 

repeat sequences 
 

The most abundant antigens on the merozoite surface are the peptides of the MSP-1 complex, which 

is conserved amongst all Plasmodium species studied (Cooper, 1993) and is the main focus of this 

study. The MSP-1 precursor is a large (~190 kDa) protein that forms a complex with a tetramer of 

MSP-6 proteins and MSP-7 (Kauth et al., 2003, Kauth et al., 2006, Lin et al., 2014, Pachebat et al., 

2001, Trucco et al., 2001). This complex is localised to the merozoite membrane via a C-terminal GPI 

anchor (Gerold et al., 1996). MSP-1 has been the focus of much research due to its capacity to 

antibodies able to inhibit in vitro parasite growth (Holder, 2009). The inability to knockout MSP-1, 

despite multiple attempts, suggests that this protein is essential for parasite growth (Combe et al., 

2009, Drew et al., 2004, O'Donnell et al., 2000) but also means we do not have direct evidence for 

the function of the protein (Das et al., 2015). There is indirect evidence that MSP-1 plays a role in 

invasion as it has been shown to bind to glycophorin A (Baldwin et al., 2015, Su et al., 1993), Band 3 

(Goel et al., 2003, Li et al., 2004) and heparin-like molecules (Boyle et al., 2010, Zhang et al., 2013), 

all molecules present on the RBC surface. The ability of heparin or heparin-like polysaccharides to 

block merozoite invasion suggests that interaction between merozoite surface proteins and heparin 

is an essential step in the invasion process (Boyle et al., 2010, Zhang et al., 2013, Clark et al., 1997, 

Crick et al., 2014, Kulane et al., 1992). However, the role played by MSP-1 in invasion is yet to be 

determined.  

The MSP-1/6/7 complex undergoes proteolytic processing as the merozite egresses from the 

schizont and invades a new RBC. MSP-7 is processed prior to incorporation into the MSP-1/6/7 

complex (Kauth et al., 2006). Minutes before parasite egress, subtilisin-1 is released into the PV 

which cleaves MSP-1 at three sites to produce four peptides (MSP-183, MSP-130, MSP-138 and MSP-
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142) that remain associated to the merozoite surface via the carboxy-terminal (C-terminal) GPI 

anchor of MSP-142 (Freeman and Holder, 1983, Blackman, 2000, Koussis et al., 2009; figure 1.4). 

Subtilisin-1 also truncates MSP-6 and MSP-7 (Koussis et al., 2009). This processing is required for 

efficient parasite egress, seemingly via enabling binding of the host cell cytoskeleton (Das et al., 

2015).  Prior to invasion, subtilisin-2 cleaves MSP-142 at a single site (Harris et al., 2005) releases the 

MSP-1 complex from the merozoite membrane (Blackman et al., 1991, Riglar et al., 2011) leaving the 

MSP-119 to be taken into the host erythrocyte (figure 1.4).   

The MSP-1 sequence has been divided into 17 blocks based on sequence polymorphism (Tanabe et 

al., 1987). MSP-1 block 2, contained within the MSP83 processing fragment, is one of the most 

divergent regions of the antigen (Miller et al., 1993). Three allelic types of MSP-1 block 2 have been 

defined: 3D7 like, MAD20 like and RO-33 like (Miller et al., 1993). Different forms of degenerate 

tripeptide repeats are found in the 3D7 and MAD20 allelic types but the repeat sequence is not 

present in the RO-33 type allele (Miller et al., 1993). 
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Figure 1.4 Schematic representation of processing of MSP-1. MSP-1 is expressed as a 190 kDa protein (blue) with the MSP-1 block 2 sequence (red) located 

near the N-terminus. This protein is associated to the merozoite membrane by a C-terminal GPI anchor. MSP-1 forms a complex with a tetramer of MSP-6 

(green) and MSP-733 (yellow) a fragment resulting from processing prior to complex formation with MSP-1. Minutes before egress from the host RBC the 

MSP-1/6/7 complex is processed. MSP-1 is cleaved at three sites by subtilisin-1 to form four fragments (MSP-183, MSP-130, MSP-138 and MSP-142) that 

remain associted. MSP-6 is cleaved and the resulting MSP-636 fragment remains associated to MSP-1. Alternate cleavage of MSP-733 results in either an 

MSP-722 or MSP-719 fragment which also remains in the MSP-1/6/7 complex. After egress from the schizont, extracellular processing of the MSP-1/6/7 

complex by subtilisin-2 cleaves MSP-142 into two fragments; MSP-119 that stays associated to the merozoite membrane and enters the RBC invaded by the 

merozoite and MSP-133 which detaches from the merozoite membrane along with the rest of the MSP-1/6/7 complex. Figure adapted from Koussis et al., 

2009.



49 
 

 

1.14 Aims and objectives 
 

Development of the next generation of P. falciparum vaccines will be aided by use of techniques that 

can access short read sequence data arising from polymorphic repetitive regions of antigen genes. It 

will also be benefited by in silico approaches that allow this sequence data to be used to inform 

multivalent vaccine design.  The aims of this work are to develop tools for bioinformatic analysis of 

repetitive antigen sequences from short read data and in silico design of multivalent antigen 

constructs based on these repeat sequences. This project also aims to trial a technique for 

monoclonal antibody production that would enable the testing of efficacy of naturally occurring 

antibodies recognising novel vaccine antigens.  

The work focuses on MSP-1 block 2 as this region of MSP-1 encodes a highly polymorphic repeat 

sequence (Miller et al., 1993) which is well characterised. To meet the first aim of this work, a library 

of known MSP-1 block 2 sequences was constructed by mining of sequence databases. This library 

was used to generate short sequence reads for use in validation of two approaches for extracting 

sequence data; the first was de novo assembly of short read sequences, which required optimisation 

of de novo assembly algorithms and validation using data generated from known MSP-1 block 2 

sequences. The second approach to extracting sequence data was to align short reads to a reference 

library of sequences representing the range of known MSP-1 block 2 sequences. This approach 

involved the construction and validation of the reference library. Both approaches were applied to 

short read sequence data from the Pf3k project. The approaches are compared to each other and to 

MSP-1 block 2 sequences from long read data.  

To meet the second aim of this thesis, algorithms were developed to rationally design multivalent 

antigens based on the MSP-1 block 2 repeat sequences identified in the previous work. The output 

of these algorithms are analysed in silico for coverage of MSP-1 block 2 sequences and compared to 

previous work in which multivalent antigens were designed by eye (Tetteh and Conway, 2011).  
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To meet the third aim of this thesis MSP-1 tetramers were created to demonstrate the potential use 

of such tetramers for the isolation of memory B-cells from the blood of malaria exposed individuals. 

mRNA encoding  the B-cell receptor was amplified to allow for sequencing of the Ig genes , which 

would enable the production of the antibody specificity encoded by the B-cell. 
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Table 1.1. Results of clinical trials of blood stage P. falciparum vaccines. 

Antigen(s) Vaccine Phase Participants Results Reference(s) 

MSP-119 P30P2 MSP-119 I 16 naïve adults Poor immunogenicity (Keitel et al., 1999) 

MSP-142 (3D7 allele) FMP001 I 15 naive adults Immunogenic (cellular and 

antibody responses). 

Antibodies inhibit parasite 

growth in GIA 

(Ockenhouse et al., 

2006) 

  I 40 exposed adults Boosting of antibody 

responses to homologous and 

heterologous MSP-1  

(Thera et al., 2006) 

  I 40 exposed adults Boosting of MSP-142 antibody 

responses 

(Stoute et al., 2007) 

  Ib 135 exposed children (1-4 years) Boosted antibody responses  (Withers et al., 2006) 

  II 400 exposed children (1-4 years) Boosted specific antibodies; 

no protection from disease 

(Ogutu et al., 2009) 

MSP-142 (FVO allele) FMP010 I 58 naïve and exposed adults Boosting of antibody 

responses to homologous and 

heterologous MSP-1; no 

change to inhibitory capacity 

of sera in GIA 

(Otsyula et al., 2013) 

MSP-142 + blocks 

1,3,5 and 12  (3D7 

allele) 

ChAd63-MVA MSP1

 

Ia 16 naive adults Immunogenic (cellular and 

antibody responses). Antibody 

titres not high enough to 

inhibit in GIA 

(Sheehy et al., 2011) 
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  IIa 10 naive adults Immunogenic but not 

protection in human challenge 

model 

(Sheehy et al., 2012) 

MSP-2 central 

domain (3D7 allele) + 

CSP 

Ro 46-2717 + Ro 46-

2924 

I 39 naïve adults Moderate immunogenicity 

(humoral) no significant 

difference in human challenge 

model (5 volunteers) 

compared to unvaccinated.  

(Sturchler et al., 

1995) 

MSP-3 C-terminal 

domain (conserved) 

MSP3-LSP I 35 naïve adults Immunogenic (antibody and 

cellular); elicited cytophilic 

antibody response capable of 

inhibiting parasite growth in 

ADCI and in vivo in a mouse 

model 

(Audran et al., 2005, 

Druilhe et al., 2005) 

  Ib 30 exposed adults No detection of boosting of 

antibody (high baseline); 

suggested increased cellular 

response.  

(Sirima et al., 2007) 

  Ib 45 exposed children (1-2 years) Protection from clinical 

malaria 

(Sirima et al., 2011) 

GLURP85-213 GLURP85-213 LSP I 36 naïve adults Induced mainly cytophilic 

antibody response that 

showed parasite growth 

inhibition in presence of 

monocytes 

(Hermsen et al., 

2007) 

AMA-1 (3D7 allele) AMA1 I 29 naïve adults Poor immunogenicity (Saul et al., 2005) 
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AMA-1 (3D7 allele) AMA1-C1 I 72 naive adults Addition of CPG7909 adjuvant 

increased AMA-1 specific 

antibody titres. IgG inhibited 

homologous parasite growth 

in GIA 

(Mullen et al., 2008) 

AMA-1 (FVO allele) PfAMA1-FVO I 56 naive adults Immunogenic (cellular and 

antibodies). Antibodies inhibit 

invasion in GIA 

(Roestenberg et al., 

2008) 

Loop 1 of AMA-1 

domain III 

PEV301 Ia 20 naïve adults Immunogenic (Genton et al., 2007) 

Loop 1 of AMA-1 

domain III 

+ CSP + TRAP 

FFM ME-TRAP+PEV3A I/IIa 24 naive adults Immunogenic (antibodies). 

Reduction of parasite growth 

rate versus controls but no 

significant reduction in time to 

detectable parasitaemia found 

in human challenge model 

(Thompson et al., 

2008) 

AMA-1 (3D7 allele) FMP2.1 I 23 naïve adults Immunogenic (cellular and 

antibodies). Antibodies 

inhibition parasite growth in 

GIA and block processing 

AMA-1 

(Polhemus et al., 

2007) 

  I 60 exposed adults Anti-AMA-1 antibodies 

significantly boosted by 

vaccination. No significant 

change in growth inhibitory 

capacity of sera 

(Thera et al., 2008) 
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  I 33 exposed children (2-3 years) Anti-AMA-1 antibodies 

significantly boosted by 

vaccination.  

(Dicko et al., 2008) 

  II 400 exposed children (1-6 years)  Limited vaccine efficacy (20%) 

but increased efficacy (68%) 

against infection with 

parasites bearing homologous 

AMA-1  

(Thera et al., 2011) 

  II 300  exposed children IgG from vaccinated 

individuals showed increased 

inhibition of homologous 

parasite growth, but no 

correlation with protection 

from malaria 

(Laurens et al., 2017) 

AMA-1 (FVO allele) ChAd63-MVA AMA-1 

 

IIa 9 naïve adults Immunogenic but no 

protection in human challenge 

model 

(Sheehy et al., 2012) 

SERA-5 (Honduras 

allele) 

BK-SE36 Ia 40 naïve adults Immunogenic (antibody 

responses) 

(Tanabe et al., 2010) 

  Ib 122 exposed children and adults 

(6-40 years) 

Immunogenic in sero-

negatives; protection from 

infection especially in high 

responders 

(Palacpac et al., 2013, 

Yagi et al., 2016) 

EBA-175 Region II EBA-175-RII-NG I 18 naïve adults Elicits EBA-175 specific 

antibodies that show modest 

parasite growth inhibition in 

GIA 

(El Sahly et al., 2010) 
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  I 52 exposed adults Boosts EBA-175 specific 

antibodies that increase 

growth inhibition in GIA 

compared to controls 

(Koram et al., 2016) 

MSP-1 block 1 

peptide + 

PF3D7_1026300 

peptide + AARP-1 

peptide + CSP NANP 

repeats 

SPf66* II 1548 adults and children resident 

in low endemic area 

33% vaccine efficacy  (Valero et al., 1993) 

  II 537 adults and children resident 

in low endemic area 

67 % vaccine efficacy (Sempertegui et al., 

1994) 

  II 1257 adults and children resident 

in low endemic area 

35 % vaccine efficacy  (Valero et al., 1996) 

  II 572 adults and children resident 

in low endemic area 

No efficacy (Urdaneta et al., 

1998) 

  II 586 children (1-5 years) 31% vaccine efficacy  (Alonso et al., 1994) 

  II 630 children (6-11 months) No significant efficacy (D'Alessandro et al., 

1995) 

  II 150 children (6-11 months) No efficacy (Bojang et al., 1997) 

  I 69 adults No impact on MSP-1 allele 

frequency in vaccinated 

individuals 

(Masinde et al., 1998) 

  IIb 1207 children (one month) 2% vaccine efficacy  (Acosta et al., 1999) 

  IIb 1348 children (2-15 years) No efficacy (Ballou et al., 1995) 
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AMA-1 (3D7 allele) + 

MSP-1 (Palo Alto 

strain) + SERA (FCR3 

allele) +  CSP + LSA-1 

+ TRAP 

+Pfs25 

NYVAC-Pf7 

 

I/IIa 35 naïve adults Poor immunogenicity 

(antibodies). Good cellular 

immune response. Protected 

one individual from infection 

and caused slight but 

significant delay in time to 

parasitaemia. 

(Ockenhouse et al., 

1998) 

MSP-1 blocks 3 and 4 

(K1 allele) + MSP-2 

(3D7 allele) + RESA 

constant domain 

(FQ-27/PNG allele) 

Combination B I 36 naïve adults Elicited humoral and cellular 

responses against all three 

antigens.  

(Saul et al., 1999) 

I 10 exposed adults Moderate boosting of 

antibody levels (high 

baseline); cellular responses to 

MSP-1 and RESA. 

(Genton et al., 2000) 

  IIa 12 naïve adults Strong cellular but weak 

humoral response. No 

significant difference in 

immune response or initial 

parasite growth rates 

following controlled infection 

with homologous strain.  

(Lawrence et al., 

2000) 

  I-IIb 120 children 5-9 years Boosting of humoral response 

to all three antigens; cellular 

response to MSP-1 only. 

Reduction of parasite burden; 

vaccinated individuals had 

lower prevalence of parasites 

with MSP-2 vaccine allele. 

(Genton et al., 2002, 

Genton et al., 2003) 
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AMA-1 domain III + 

MSP-119 (3D7 allele)  

PfCP-2.9 I 72 naive adults Immunogenic but no 

inhibition of parasite growth 

in GIA. 

(Hu et al., 2008, 

Malkin et al., 2008) 

MSP-142 + blocks 

1,3,5 and 12 (3D7 

allele) + AMA-1 (FVO 

allele) 

ChAd63-MVA MSP-1 

+ChAd63-MVA AMA-1

 

IIa 9 naïve adults Immunogenic but no 

protection in human challenge 

model. 

(Sheehy et al., 2012) 

MSP3 C-terminal 

domain + GLURP R0 

non-repeat region 

GMZ2 Ia 30 naïve adults Elicited antibodies and 

memory B-cells recognising 

MSP-3 and GLURP that 

persisted for up to one year 

post vaccination. 

(Esen et al., 2009) 

  I 40 exposed adults Significant boosting of 

antibody and memory B-cells 

specific for MSP-3 and GLURP 

despite high baseline. 

(Mordmuller et al., 

2010) 

  Ib 30 exposed children (1-5 years of 

age) 

Boosted antibody responses 

to both MSP-3 and GLURP; 

elicited antigen-specific 

memory B-cells that persisted 

for up to one year post 

vaccination. 

(Belard et al., 2011) 

  IIb 1849 exposed children (1-5 years) Vaccine efficacy of 14%; 

vaccine efficacy increased with 

age and levels of vaccine 

specific antibodies but was 

not statistically significant. 

(Sirima et al., 2016) 
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EBA-175 (Camp 

allele) + MSP-119 

(FVO allele) 

JAIVAC-1 I 45 naive adults  Elicits antibody responses to 

EBA-175 but not MSP-119. IgG 

inhibit growth of parasites 

expressing homologous EBA-

175. 

(Chitnis et al., 2015) 

MSP-2 (3D7 + FVO 

alleles) 

MSP2-C1 I 36 naïve adults Adverse effects in higher dose; 

elicited antibodies recognising 

both MSP-2 alleles that 

inhibited parasite growth in 

the presence of monocytes/ 

(McCarthy et al., 

2011) 

AMA-1 (3D7 and FVO 

alleles) 

AMA1-C1 II 300 exposed children  No reduction in parasite 

densities amongst vaccinated 

individuals 

(Sagara et al., 2009) 

MSP-142 (3D7 and 

FVO alleles) + AMA-1 

(3D7 and FVO 

alleles) 

BSAM2 I 30 naïve adults Some systemic adverse 

reactions; elicited antibodies 

against all antigens; total IgG 

inhibitory in GIA against 

homologous parasite strains 

(Ellis et al., 2012) 

 

The 43 clinical trials of vaccines containing one or more blood stage antigen that have been published to date are shown. The antigens and (where relevant) 

alleles present in the vaccine are listed along with the phase of the trial and summaries of participants and results. The table is coloured by the number of 

blood stage antigens/alleles: yellow denotes a single allele of a single antigen; blue denotes single alleles of multiple antigens; green denotes multiple 

alleles of a single antigen; and mauve denotes multiple alleles and multiple antigens. Darker shades highlight trials in which vaccine efficacy has been 

assessed, either by protection from disease by natural infection or human challenge model. Viral vectored vaccines are indicated (      ). Abbreviations: AMA-

1 – apical membrane antigen-1; MSP – merozoite surface protein; EBA – erythrocyte binding antigen; SERA – serine repeat antigen; GLURP – glutamate rich 

protein; LSA – liver stage antigen; CSP – circumsporozoite protein; TRAP thrombospondin-related adhesive protein; AARP-1 - asparagine and aspartate rich 

protein-1; ChAd63 - chimpanzee adenovirus 63;  MVA – modified vaccinia virus Ankara; GIA – growth inhibition assay; IgG – immunoglobulin gamma; C-
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terminal – carboxy terminal; FVO - falciparum Vietnam oak-knoll; PNG – Papua New Guinea. * Cochrane review of ten trials of SPf66 concluded that vaccine 

had no significant efficacy (apart from in South America) and that there was no justification for further trials (Graves and Gelband, 2006). 
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Chapter 2 - Calling msp1 block 2 alleles from short read data 
 

2.1 Introduction 
 

MSP-1 is encoded by a 5 kb gene (msp1) on chromosome 9. Early studies showed that this gene was 

composed of conserved and polymorphic regions (named blocks 1-17) (Tanabe et al., 1987). The 

most polymorphic region of the gene is block 2 (Miller et al., 1993). The polymorphism at block 2 has 

been classified into three main allelic types based on homology with laboratory lines: K1-like, 

MAD20-like and RO-33-like (Miller et al., 1993). K1-like and MAD20-like msp1 block 2 alleles contain 

highly polymorphic repeat sequences that are flanked at the 5’ and 3’ ends by non-repeat 

sequences. Both K1-like and MAD20-like alleles encode repeating tripeptide motifs. These motifs 

and the non-repeat flanking sequence are distinct between the allelic families. Whilst the non-

repetitive flanking sequences are conserved between members of the same allelic family, expansion, 

contraction and sequence variation of the repeats in both K1-like and MAD20-like families results in 

the presence of multiple individual alleles within each family. Analysis of polymerase chain reaction 

(PCR) fragment sizes shows around twenty distinct lengths present in each of the K1-like and 

MAD20-like allele families among large numbers of studies (Branch et al., 2001, Takala et al., 2006). 

Sequencing of these PCR products shows that variation in the repeat structure results in almost four 

times more K1-like alleles and almost twice as many MAD20-like alleles (Noranate et al., 2009). The 

RO-33-like allele does not contain a repeat sequence and is conserved with only six sites in which 

amino acid substitutions have been identified in total (including the results of this study, see below 

section 2.3.9), generating seven different alleles (Noranate et al., 2009, Tanabe et al., 2013). MR 

recombinant alleles, so named due to apparent recombination between the MAD20-like and RO-33-

like alleles, resulting in a sequence with homology at the 5’ end to MAD20-like alleles and at the 3’ 

end to RO-33-like alleles, were originally identified in East Africa (Takala et al., 2002) and 

subsequently in West Africa, Asia and South American (Takala et al., 2006, Noranate et al., 2009, 

Tanabe et al., 2007b).  
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Almost seventy studies (for list see appendix 7.1) have assayed the msp1 block 2 genotypes found in 

parasite populations using PCR to specifically amplify each of the three main allelic families 

(Viriyakosol et al., 1995). Genotyping of the msp1 block 2 locus by this method has shown that 

MAD20- and K1-like alleles are the most common, each representing about two fifths of all alleles 

with RO-33 like making up the remaining fifth (table 2.1). In parasites sampled from Africa, K1-like 

alleles dominate, whereas in Asian parasites MAD20-like alleles have a higher frequency (Table 2.1) 

(Conway et al., 2000). In South America MAD20-like alleles are the most common overall 

(accounting for four fifths of all alleles) but there is a large degree of variation in allele frequencies 

between study sites (Silva et al., 2000), consistent with a higher degree of isolation of parasite 

populations.  
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Continent Region K1-like MAD20-like RO-33-like 

Africa 

West Africa 1832 (42.4) 1241 (28.7) 1248 (28.9) 

East Africa 2127 (42.1) 1453 (28.7) 1470 (29.1) 

central Africa 539 (37.7) 417 (29.2) 473 (33.1) 

Southern Africa 43 (58.9) 20 (27.4) 10 (13.7) 

North Africa 93 (30.2) 108 (35.1) 107 (34.7) 

Total 4634 (41.4) 3239 (29.0) 3308 (29.6) 

Asia 

South East Asia 728 (34.7) 1005 (47.9) 367 (17.5) 

South Asia 413 (31.1) 488 (36.8) 426 (32.1) 

West Asia 33 (41.2) 16 (20.0) 31 (38.8) 

Total 1174 (33.5) 1509 (43.0) 824 (23.5) 

Oceania Melanesia 95 (19.8) 166 (34.7) 218 (45.5) 

South America Amazon basin 195 (11.3) 1386 (80.0) 151 (8.72) 

Total  6256 (36.2) 6379 (36.9) 4637 (26.8) 
 

Table 2.1 Distribution of msp1 block 2 allelic families by region from published studies. Literature 
searches were performed to find all studies using msp1 genotyping. Total counts, divided by region, 
are shown with percentage of total in parenthesis. The full list of studies can be found in appendix 
7.1. 
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Whilst allele frequencies vary between populations, the maintenance of multiple alleles at the msp1 

block 2 locus across populations suggests that natural selection is operating to keep these alleles in 

the population (Conway et al., 2000). Host immunological memory is predicted to select for the 

presence of multiple alleles, indicating that msp1 block 2 is an immune target (Weedall and Conway, 

2010). Indeed, antibodies recognising msp1 block 2, in particular IgG3 against the polymorphic 

repeat sequences, have been shown to correlate with protection from malarial disease in several 

West African populations (Cavanagh et al., 2004, Conway et al., 2000,Polley, 2003 #50). Although 

this finding was not replicated in all studies (Gray et al., 2007, Osier et al., 2008), a meta-analysis 

found an association between K1-like antibodies and protection from malaria (Fowkes et al., 2010). 

Furthermore, vaccination with a an antigen based on msp1 block 2 resulted in protection of two out 

of four Aotus lemurinus griseamembra monkeys from developing high parasitaemia after challenge 

with the virulent FVO parasite strain (Cavanagh et al., 2014). Human antibodies have been shown to 

inhibit parasite growth in the presence of monocytes (Galamo et al., 2009) and rabbit antibodies 

have been found to inhibit merozoite invasion with the addition of active complement (Osier et al., 

2014a), suggesting that antibodies against MSP-1 block 2 function via secondary mechanisms rather 

than direct blocking of RBC invasion. 

Antibodies against MSP-1 block 2 antigens have been repeatedly found to be against polymorphic 

epitopes, that are either major allele type specific or that reflect sub-typic polymorphism (Polley et 

al., 2003b, Cavanagh et al., 2004, Cavanagh et al., 1998, Cavanagh and McBride, 1997, Conway et al., 

2000, Mawili-Mboumba et al., 2003, Ekala et al., 2002, Jouin et al., 2005, Jouin et al., 2001, Kimbi et 

al., 2004, Da Silveira et al., 1999, Scopel et al., 2005). Surveillance of allele frequencies in parasite 

populations is essential in both determining the formulation of polymorphic vaccines and monitoring 

their impact to identify possible vaccine escape (Barry and Arnott, 2014, Ouattara et al., 2015, Takala 

and Plowe, 2009). Whilst the development of high-throughput technologies for genotyping relevant 
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parasite loci will need to be developed in order to perform surveillance, as has been done for drug 

resistance loci (Carnevale et al., 2007), large scale whole genome sequencing projects provide a rich 

source of parasite genetic data (consortium, 2015).   

Due to the interest in msp1, over thirty studies have sequenced this gene or the block 2 fragment 

over the past 30 years (for a list of all studies see appendix 7.2). All but one of these studies have 

used chain termination sequencing, which produces long (up to 600 bp) sequence reads that span 

the whole of block 2 (Sanger and Coulson, 1975, Sanger et al., 1977). One study used pyro-

sequencing, which produces sequencing reads of up to 300 bp (Juliano et al., 2010), long enough to 

capture the vast majority of msp1 block 2 sequences. These long read sequences provide a rich 

archive of msp1 block 2 sequence data.  

The capacity to perform massively parallel sequencing using the Illumina sequencing platform 

(Meyer and Kircher, 2010) has allowed for the generation of thousands of whole P. falciparum 

genomes (Miotto et al., 2015). The Pf3k project (https://www.malariagen.net/projects/pf3k) is a 

collaboration that aims to collate sequence data for at least three thousand P. falciparum parasite 

isolates from across the global distribution of the species (consortium, 2015). The project currently 

has short read sequence data from 2400 parasites isolates from 14 countries of Africa and Asia 

(consortium, 2015) and represents the largest resource of P. falciparum genetic data currently 

available.  

Processing of short read sequence data typically involves alignment of reads to a reference 

sequence. Single nucleotide polymorphisms (SNPs) can then be determined as the positions where 

the aligned reads differ from the reference sequence (MacLean et al., 2009). This approach for 

cataloguing genetic variation cannot be applied when there is an extended polymorphic sequence as 

only reads with the same polymorphism as the reference sequence will align (MacLean et al., 2009). 

Additionally, alignment based SNP calling can be confounded by the presence of repetitive 

sequence, as the alignment algorithm cannot place a read in a region where there are multiple 
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possible alignments (Li and Durbin, 2009). The msp1 block 2 locus contains both extended 

polymorphism and repeat sequence (Miller et al., 1993, Tanabe et al., 1987) and therefore msp1 

block 2 polymorphism cannot be assessed reliably from short read data by alignment to the P. 

falciparum reference sequence. In fact this and other repetitive and highly polymorphic loci are 

normally removed from analysis of genome wide polymorphism (Amambua-Ngwa et al., 2012a).  

One method that can circumvent the presence of highly polymorphic sequence data is the use of 

algorithms to assemble the sequence reads without the use of a reference sequence. This approach, 

known as de novo assembly, standardly uses one of two types of algorithm. The first assemblers 

used overlap-layout-consensus (OLC) algorithms which find the best overlaps between reads and 

finds a path that goes through each read just once (Hamiltonian path) before joining overlapping 

reads to assemble contigs (Staden, 1979) figure 2.1). The second generation of assemblers use De 

Bruijn graph (DBG) based algorithms which first split reads into sub-strings of length k (with the 

maximum value of one less than the read length), known as k-mers, before constructing a graph with 

nodes for each k-mer and edges for the overlap between each k-mer. DBG based algorithms then 

determine contigs by finding a path using all edges of this graph (Eulerian path) that links the 

greatest number of k-mers (Idury and Waterman, 1995) figure 2.1). DBG assemblers have greater 

efficieny than OLC assemblers, enabling their application to the large datasets such as those 

generated by next generation whole genome sequencing platforms meaning that this algorithm has 

now been widely adopted (Li et al., 2012). Both assembly algorithms are not able to resolve repeats 

longer than the k-mer or read length as these result in the formation of bubbles and branches in the 

graph (Miller et al., 2010) figure 2.2 a); the only way to overcome this issue is by increasing the k-

mer or read length (Li et al., 2012) until it is longer than the repeat region (figure 2.2 b).  

 The coverage depth at any position in the genome is defined as the number of reads containing the 

base at that position. The average coverage depth is the mean of coverage depth of all bases which 

is equal to the number of reads multiplied by the read length and divided by the length of the input 
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sequence. Increasing coverage depth will aid de novo assembly as a greater amount of information is 

provided by the increased number of reads (Li et al., 2012). Increasing coverage depth will also aid 

the error correction functions present in many algorithms that aim to correct sequencing errors by 

providing a greater number of reads or k-mers that can be used to determine the correct path 

through a branched graph (Miller et al., 2010). When the read or k-mer length is only marginally 

longer than a repeat sequence, increased coverage depth will aid de novo assemblers to resolve the 

sequence by stochastically increasing the number of reads or k-mers that span the repeat.  

Many DBG assemblers are available but only several, AllPaths-LG (Gnerre et al., 2011) SOAPdenovo 

(Li et al., 2010) and Velvet (Zerbino and Birney, 2008), allow long (> 31) k-mer lengths (Li et al., 

2012). Comparison of the three packages showed similar performance when assembling eukaryotic 

genomes (Zhang et al., 2011). Velvet was chosen for use in this project due to its common use in 

assembly of Illumina data, its ability to handle long k-mer lengths and its ease of use in comparison 

to other packages. Velvet also employs algorithms that remove sequencing errors through analysis 

of k-mer coverage and the DBG structure, leading to highly reliable sequence data (Zerbino and 

Birney, 2008).  

Another approach to calling highly polymorphic genomic regions is the construction of sequence 

libraries that contain a catalogue of the known diversity to which sequences can be aligned. Such an 

approach has been used for calling sequence polymorphisms at the HLA locus, the most polymorphic 

site in the human genome (Robinson et al., 2001). The major drawback of this approach is that it 

yields only the allelic type and not the complete sequence. Given the diversity within the allelic types 

of msp1 block 2 (Noranate et al., 2009) and other polymorphic repeat sequences (Anders et al., 

1988, Anders et al., 1993) this results in losing a large degree of information. Furthermore, the 

presence of novel alleles resulting from recombination between two different allelic types, as has 

been reported for msp1 block 2 (Takala et al., 2002), will be missed by this approach as such alleles 
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will be called as mixed genotype infections (infections in which the host contains parasites with two 

or more genotypes as a result of superinfection).  

We aim to employ both de novo assembly and alignment to a library of sequences to explore msp1 

block 2 polymorphism in the Pf3k short read data. The use of short read data in the study of msp1 

block 2 polymorphism can contribute to vaccine candidate design as well as surveillance of allele 

frequencies. Furthermore, this hybrid approach can also be applied to study other P. falciparum 

vaccine candidates, many of which are highly polymorphic and contain repeat sequences. The results 

of optimising and using both these approaches for msp1 block 2 are presented below.  
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Figure 2.1 Schematic representation of two main assembly algorithms. In this diagram, an input sequence generates 6 reads of 10 bp length (top right). 
Overlap-layout-consensus (OLC) algorithms will find the overlaps longer than a cut-off (5 bp is used here) between these reads and join them in a graph 
(bottom left) with each read as a node and overlaps as edges (coloured lines); note that there are up to three edges between reads. The contig sequence 
will be determined by finding a Hamiltonian path (grey arrows) between the reads. De Bruijn graph (DBG) algorithms will first split the reads into all possible 
sub-strings (k-mers) of length k (here k is 5) before building a graph with k-mers as nodes and the edges as the overlap of length k-1 between k-mers. The 
Euler path between these nodes then determines the contig; note that there is just one edge between each k-mer. 
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Figure 2.2 Schematic representation of how assembly algorithms represent repeat sequences. An 
input sequence has a repeated sequence (green) separated by three unique sequences (red, blue 
and yellow). When read and k-mer length are shorter than the repeat (A) all repeat containing reads 
will be present in the graph generated by overlap-layout-consensus (OLC) algorithms whereas the k-
mers containing the repeat sequence will be collapsed into a single sequence in the De Bruijn graph 
(DBG). Both graphs contain branches and loops (known as bubbles) as a result of the repeat 
sequence which cannot be resolved. When the read or k-mer length spans the repeat sequence (B) 
both algorithms can use the unique sequence at either end of the repeated sequence to produce a 
single path through the graph and reconstruct the original sequence accurately. Figure adapted from 
(Li et al., 2012) 
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2.2 Materials and methods 
 

2.2.1 Long read sequence data  

  

Long read sequence data (LRD) was downloaded from GenBank (Benson et al., 2013). GenBank was 

searched with the search terms: “plasmodium falciparum [organism] msp1”; “plasmodium 

falciparum [organism] msa1”; and “plasmodium falciparum [organism] gp195” on 4th December 

2015 1. All sequence 1831 results were downloaded and curated for presence of a complete msp1 

block 2 sequence, found in 1007 of these. Removal of sequences from identical laboratory strains 

resulted in a total of 964 sequences (381 K1-like, 350 MAD20-like, 202 RO-33-like and 31 MR-like). 

The list of studies and accession numbers for all sequences can be found in appendix 7.2 and a full 

list of sequences can be found in additional data file “long_read_sequences.fa”. 

2.2.2 Generation of synthetic reads from long read sequence data 

 

In order to generate short read data for known msp1 block 2 sequences for use in validating novel 

bioinformatic approaches, short reads were created in silico from msp1 block 2 sequences obtained 

by long read sequencing and deposited in GenBank. The msp1 block 2 sequence from each of the 

964 LRD sequences (section 2.2.1) was inserted into version 3 of the P. falciparum 3D7 reference 

sequence for the msp1 gene and 2kb of sequence upstream of the start of the gene (chr9:1199812-

1206974) downloaded from PlasmoDB (Aurrecoechea et al., 2009). The python script 

to_perfect_reads, part of the package Fastaq (downloaded from https://github.com/sanger-

pathogens/Fastaq) was modified to add quality scores from fastq files downloaded from Pf3k project 

(appendix 7.3) and used to create synthetic reads for each of the 964 msp1 block 2 sequences with 

flanking regions from the 3D7 reference sequence (figure 2.3). The majority of samples in the Pf3k 

dataset were sequenced with 100 or 75 bp read lengths. Therefore synthetic reads were created at 

both 100 bp and 75 bp length with a mean insert size and standard deviation (SD) representative of 

                                                           
1 GenBank search ignores the hyphen hence “msp-1” and “msa-1” are effectively included in these searches 
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the Pf3k data set (mean insert size2 of 250 bp, SD 83 bp for 100 bp reads and mean insert size of 277 

bp, SD 83  bp for 75 bp reads).  

2.2.3 Illumina paired-end short read sequence data 

 

Binary alignment/map (BAM) files and metadata were downloaded from Pf3k release version 4.0 

(available at ftp://ngs.sanger.ac.uk/production/pf3k/release_4/). For 113 of the 2518 Pf3k samples 

two sequencing runs had been performed; in these cases the run with the highest mean coverage 

was kept and the other discarded. The resulting dataset contains sequencing reads from 2400 

isolates collected by 10 studies from 26 sites in 15 countries with an additional 5 laboratory line 

sequences, which were not included in further analysis. The read length ranged from 30-100 bp, 

with a genome-wide mean coverage ranging from 1- to 676-fold. All samples, including those with 

low genome-wide coverage were included as the coverage of msp1 block 2 cannot be determined 

from this summary data and may well be higher due to increase GC content relative to non-genic 

regions.  

2.2.4 De novo assembly 

 

In an order to capture reads originating from msp1 block 2 sequences that are not mapped because 

of sequence polymorphism (see above section 2.1) read pairs with at least one mate mapping to the 

region of chromosome 9 encompassing msp1 and 2kb upstream (Pf3D7_09_v3:199812 – 1206974) 

were extracted from Pf3k BAM files with SAMtools (Li et al., 2009). This region was chosen as msp1 

block 2 sits toward the 5’ end of a ~5 kb gene and the vast majority of insert sizes are under 2 kb 

hence the vast majority of mate pairs of reads originating from msp1 block 2 will map within this 

region. Reads were also extracted from BAM files produced from alignment to an msp1 block 2 

                                                           
2 The insert size is the size of the DNA fragment from which both mates of a pair of sequence reads are created 
during Illumina sequencing. 
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sequence library. De novo assembly of these reads was performed with Velvet (version 1.2.10) 

(Zerbino and Birney, 2008), with a k-mer length of 81 (see section 2.3.2). 

2.2.5 Alignment of short reads 

 

Raw reads were extracted from BAM files into Fastq files using SAMtools (version 1.3) (Li et al., 

2009). These reads were aligned to a reference library of 15 msp1 block 2 sequences (section 2.3.4, 

appendix 7.4) using BWA-MEM (version 0.7.5a-r405) (Li, 2013) with default parameters. The 

resultant sequence alignment/map (SAM) files were sorted, indexed and compressed using 

Sambamba (version 0.6.0) (Tarasov et al., 2015). SAMtools (Li et al., 2009) was used to get the 

alignment statistics and thus determine the coverage over each sequence of the library. Coverage 

was calculated for each allelic type as the number of bases in reads align to reference sequences of 

that allelic type divided by the total length of reference sequences of that allelic type. Coverage was 

calculated for each sample by summing the coverage of each allelic type.  

2.2.6 Data analysis 

 

Data was analysed using the statistical analysis tool R (Team, 2008) with additional package ggplot2 

(Wickham, 2009) for graphical functions. Sequences were aligned using MAFFT (Katoh et al., 2002). 
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Figure 2.3 Flow chart showing how synthetic reads were generated from long read sequence data. 
964 long read MSP-1 block 2 sequences were extracted from GenBank (see section 2.2.1). For a 
given read length and coverage depth, synthetic reads were generated for each sequence. Read 
pairs were created by to_perfect_reads (downloaded from https://github.com/sanger-
pathogens/Fastaq; appendix 7.3); for each read pair the start position for read one was randomly 
selected. The insert size was selected from a binomial distribution of insert sizes around the mean 
insert size and used to determine the end position of read two. Quality scores for both reads were 
randomly selected from a bam file from the Pf3k project and added to the fasta file along with the 
read pair. 

https://github.com/sanger-pathogens/Fastaq
https://github.com/sanger-pathogens/Fastaq
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2.3 Results 
 

2.3.1 Creation of long read sequence dataset for msp1 block 2 

 

Multiple studies have used long read sequencing methods to sequence the block 2 region of msp1 

block 2. In order to build a database for the validation and benchmarking of novel methods 

developed for analysis of msp1 block 2 short read sequence data, long read sequences deposited in 

GenBank were downloaded. From the 1831 results of GenBank searches, removal of sequences for 

identical lab isolates, spurious results, sequences lacking a complete block 2 sequence resulted in 

964 sequences. The msp1 block 2 sequence was extracted from each of the 964 sequences and 

entered into the dataset, known from here on as the long read dataset (LRD). Thirty five of the 36 

studies contributing sequences to LRD used Sanger sequencing, one study used pyrosequencing 

(Juliano et al., 2010) (for a list of accession numbers and studies see appendix 7.2).  

2.3.2 De novo assembly optimised for reconstruction of msp1 block 2 sequences 

 

Due to the highly polymorphic nature of the msp1 block 2 locus, aligning short read data to a 

reference sequence would fail as reads from non-reference-like alleles could not be mapped 

(MacLean et al., 2009).  De novo assembly of reads could avoid this problem as reads are assembled 

by finding the sequence overlaps between reads so homology with a reference sequence is not 

required. Velvet is a collection of algorithms that can assemble short read data using De Bruijn 

graphs (Zerbino and Birney, 2008). The most important parameter to optimise for these algorithms 

is the length (k) of sub-sequences (termed k-mers) that the reads are broken into before 

construction of the De Bruijn graph (Zerbino, 2010). This is because a longer k-mer length will 

facilitate assembly of repeat regions by bridging the repeat (figure 2.4). However, longer k-mer 

lengths will result in a lower k-mer depth (as fewer k-mers can be made from the reads), resulting in 
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a lower probability of assembly in an analogous fashion to the coverage depth (firgue 2.5) (Li et al., 

2012).  

Assembly of synthetic short read data created in silico from LRD sequences (section 2.2.2) was used 

to optimise the k-mer length for Velvet and assess performance. Testing over a range of k-mer 

lengths between 31 and 99, demonstrated that a k-mer length of 81 was optimal for assembly of 

msp1 block 2 sequences of all allelic types (figure 2.4). Usage of Velvet with this k-mer length 

resulted in correct assembly of 93.6% (902/964) of msp1 block 2 sequences. The fact that a high 

proportion of msp1 block 2 sequences could be assembled from synthetic short read data, and that 

no assemblies contained errors was encouraging. However, the fact that a lower proportion of K1-

like sequences was assembled compared to MAD20-like and RO-33-like, warranted concern that use 

of de novo assembly to capture msp1 block 2 sequences would lead to an allele bias.  
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Figure 2.4. The effect of k-mer length on the fraction of msp1 block 2 sequences assembled by 
Velvet. 964 msp1 block 2 sequences from the LRD were used to create synthetic reads of 100 bp in 
length with a coverage of 50-fold. These reads were assembled using Velvet (Zerbino and Birney, 
2008) with a range of k-mer lengths. The resulting contigs were then scanned for the presence of the 
correct msp1 block 2 sequence. The fraction of msp1 block 2 sequences that were fully assembled 
for all 964 sequences is shown (solid line). The fraction of sequences fully assembled for K1-like 
sequences (triangles, n = 392), MAD20-like sequences (squares, n = 354) and RO-33-like sequences 
(crosses, n = 204) are also shown (dotted lines).  
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2.3.3 Optimised de novo assembly of msp1 block 2 sequences results in bias towards short alleles 

 

The algorithms used by Velvet and other de novo assemblers to assemble short read data are unable 

to resolve a perfect repeat sequence that is longer than the k-mer length (Li et al., 2012). As the 

majority of the msp1 block 2 sequence is repetitive, with expanded repeats resulting in longer 

sequences, it was necessary to investigate the effect of sequence length on the likelihood of 

assembly by Velvet with an optimised k-mer length of 81. It was found that synthetic reads created 

from longer sequences were less likely to be assembled by Velvet (figure 2.4, p < 0.001, Wilcoxon 

signed rank test).  This is of concern as de novo assembly of msp1 block 2 sequences will produce a 

bias towards shorter sequences. When using reads shorter than 82 bp (which includes the 75 bp 

read length used for sequencing 615 isolates in the Pf3k project), de novo assembly has to be 

performed with a sub-optimal k-mer length of 74. This is will further decrease the possibility of 

assembly of longer repeat sequences as the k-mers need to be long enough to span the repeat 

region in order to allow resolution by the assembly algorithm (figure 2.2). For this reason, only Pf3k 

samples that had been sequenced with a read length > 82 bp were used for de novo assembly. 

To ascertain the effect of coverage depth on the assembly of long sequences, synthetic reads were 

generated at a range of coverage depths (i.e. with a range of total number of reads) from the msp1 

block sequence of lab isolate Palo Alto (270 bp)(Chang et al., 1988). The synthetic read generation 

algorithm will position reads randomly (section 2.2.2) and, as the position of the reads will influence 

the ability to assemble them (see section 2.1), reads were generated 10 times for each coverage 

depth assayed. Velvet was then used to assemble the reads and the resulting contigs were scanned 

for the complete Palo Alto msp1 block 2 sequence. As expected, increasing coverage depth improves 

the chances of complete assembly of the msp1 block 2 region (figure 2.5, ρ = 0.96, p <0.001). At a 

coverage depth of over 80-fold, assembly of this long block 2 sequence is consistently achieved. 
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Figure 2.5. Frequency distributions of length of block two sequence for assembled and 
unassembled sequences show bias towards assembly of shorter sequences. Synthetic reads 
created from 964 msp1 block 2 sequences were assembled using Velvet (Zerbino and Birney, 2008). 
The frequency distributions of the lengths of the original msp1 block 2 sequences are shown for 
successfully assembled (black line, n = 902) and unassembled (red line, n = 62) sequences are shown 
(sequences lengths are grouped with a bin width of 5 bp).  
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Figure 2.6 Probability of complete assembly of msp1 block 2 is dependent on depth of coverage. 
Synthetic reads were generated in silico from the Palo Alto sequence of msp1 at 10 different 
coverage depths. Reads were generated 10 times for each coverage depth and then assembled using 
Velvet (Zerbino and Birney, 2008) and the presence of the complete block 2 sequence was 
determined. The probability of assembling the whole msp1 block 2 sequence is shown. There is a 
strong and significant correlation between coverage depth and the probability of complete assembly 

of the Palo Alto msp1 block 2 sequence ( = 0.96, p < 0.001).  
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2.3.4 Creation of a reference library of msp1 block 2 sequences allows for reads to be aligned 

 

In order to overcome the bias in de novo assembly of msp1 block 2 short read data and allow allele 

calls to be made from 75 bp sequence reads, a library of msp1 block 2 sequences was created to be 

used as reference sequences for alignment of short read data. To create the library, all LRD 

sequences were grouped into allelic type (MR-like recombinant alleles were excluded).  Sequences 

were aligned with all other sequences in the allelic group and the sequence closest to the consensus 

sequence (i.e. most similar to all sequences) was then added to the library. This generated the first 

library containing one sequence per allelic type (three sequences in total). Synthetic reads were then 

aligned to the library using the basic BWA algorithm, which does not allow reads to be gapped (Li 

and Durbin, 2009). The number of reads mapping for each sequence was analysed and the 

sequences for which fewest reads were mapped were then aligned in their allelic groups. Again the 

sequence closest to the consensus sequence was added to the library to give the second library 

containing two sequences per allelic type (6 in total). This process was repeated iteratively until 10 

libraries were generated with one to 10 sequences per allelic type (three to 30 sequences in total), 

see figure 2.7.  

The 10 libraries were then tested by aligning the same sets of 100 bp and 75 bp synthetic reads 

generated from all LRD  sequences to each library with BWA-MEM, which tolerates gaps in the 

alignment (Li, 2013). Use of the library containing 5 msp1 block 2 sequences per allelic type (15 

sequences total) resulted in the alignment of the greatest number of 75 and 100 bp reads (figure 

2.8). Aligning to this library also resulted in at least 67 reads (approximately 35-fold coverage) 

mapping for each sequence. The sequences used in this library are listed in appendix 7.4. This library 

will be used for all subsequent alignment and will be referred to as the msp-1 block 2 reference 

library (msp1b2RefLib).  
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Figure 2.7 Flow chart showing method for creaion of msp-1 block 2 reference libraray.   

All msp-1 block 2 sequences were grouped by allelic type and aligned. The sequence closest to the 

consensus from each type was used as the starting sequence for the reference library. Synthetic 

reads were then generated from all sequences in the LRD and aligned to the reference library with 

BWA. If just one or no reads aligned to the reference library for a given sequence, the allelic type of 

that sequence was determined and the sequence was added to a list of unaligned sequences of the 

same type.  Once all the sequences in the LRD had been put through this process all the sequences 

of each allelic type in the list of unaligned sequences were aligned with each other using MAFFT.  

The sequence closest to the consensus sequence was then added to the reference library. After each 

iteration, the library was saved so that it could be tested for its ability to align to reads from the LRD 

using the algorithm BWA-MEM (figure 2.8). The protocol was run for nine iterations to produce 10 

reference libraries (the first reference library containing the original three sequences and the tenth 

containing 30 sequences, 10 for each allelic type). 
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Figure 2.8 Effect of the number of sequences in the reference library on the number of reads 
mapped. Reference libraries were created with between one and 10 sequences per major allelic 
type (3 to 30 sequences total). Synthetic reads created from 964 long read sequences (section 2.2.2) 
and were aligned to the sequence libraries using BWA-MEM (Li, 2013). The fraction of all reads that 
were mapped to the reference library is shown for read lengths of 100 bp (circles) and 75 bp 
(triangles).  
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2.3.5 Alignment to library of msp1 block 2 sequences enables unbiased calling of allelic type from 

synthetic short read data 

 

It was expected that alignment to the msp-1 block 2 reference library (msp1b2RefLib; section 2.3.4, 

appendix 7.4) could be used to determine the allelic type of the sequence from which the short 

reads are derived, as the majority of reads would map to a reference sequence of the same allelic 

type. This was tested using synthetic reads generated in silico from LRD sequences and aligned to 

the msp1b2RefLib using BWA-MEM (Li, 2013). The allelic type of the reference sequence to which 

the reads were mapped was used to call the correct allelic type for all (964) sequences. Furthermore, 

there was no significant difference found in the distribution of coverage between the major different 

allelic types (figure 2.9). This demonstrates that this approach can be used to give unbiased allele 

calls from short read data for msp1 block 2. However, this approach cannot be used to determine 

the presence of MR-type recombinant alleles as these sequences give reads that map to both 

MAD20- and RO-33-like reference sequences. This problem cannot be overcome by inclusion of MR 

sequences in the library as reads from both MAD20-like and RO-33-like alleles would map to 5’ and 

3’ ends of these sequences respectively. All 31 MR recombinant sequences present in the LRD 

contain a conserved sequence (GGTGGTTCAGGTGCTACAGTACCT, from here on known as the MR 

identifier sequence (MRIS) at the site of recombination between the MAD20- and RO-33-like 

sequences (figure 2.10). MRIS is unique to MR recombinant alleles and not found in any of the other 

sequences in the LRD. When synthetic reads were created from LRD MR recombinant sequences and 

aligned to the msp1b2RefLib (section 2.3.4, appendix 7.4), the MRIS was found in at least 9 reads 

(aligned to either MAD200- or RO-33-like sequences in the msp1b2RefLib) for each of the 31 MR 

recombinant sequences. This suggests that presence of the MRIS can be used to determine the 

presence of MR alleles from msp1 block 2 short reads selected by alignment to the msp1b2RefLib 

containing only K1-, MAD20- and RO-33-like sequences.  

The MRIS can be used to determine the presence of MR recombinant alleles, but it will not be able 

to determine whether these are the only msp1 block 2 alleles present as reads will map to both 
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MAD20-like and RO-33-like sequences when only MR-recombinant alleles are present or when they 

are present in a mixed genotype infection with either MAD20-like, RO-33-like or both MAD20-like 

and RO-33-like alleles. However, if the MR recombinant alleles are not present as part of a mixed 

genotype infection with MAD20-like or RO-33 like sequences the 3’ and 5’ ends of these sequences 

will not be present, as they are lost in the recombination event that forms the MR recombinant 

alleles (figure 2.10). To test this, synthetic mixed genotype infections were created in silico by mixing 

equal numbers of randomly selected reads generated from LRD MR recombinant sequences and 

either RO-33 like sequences or MAD20-like sequences or both. Reads were then aligned to the 

msp1b2RefLib (section 2.3.4, appendix 7.4) and, as before, the presence of MR alleles could be 

detected by searching reads for the MRIS. As predicted, the presence of either MAD20-like or RO-33-

like 3’ and 5’ sequences (figure 2.10) could be used to determine when either or both of these allelic 

types were present., even when the overall coverage was low (10-fold). 
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Figure 2.9. Distribution of coverage by allelic type after alignment of synthetic reads to 
msp1b2RefLib. 100 bp synthetic reads created from 964 long read sequences were aligned to the 
msp1b2RefLib of 15 msp1 block 2 sequences (see section 2.3.4, appendix 7.4) using BWA-MEM (Li, 
2013). Coverage was calculated for each alignment and is shown for each major allelic type. 
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Figure 2.10 Recombination of MAD20- and RO-33-like alleles during formation of MR recombinant allele creates unique sequence. Alignment of a MAD20-like sequence 

(Accession number AF62449) and the RO-33 sequence (Certa et al., 1987) with the hypothetical recombination site highlighted (red) that produces the MR recombinant 

allele (Accession number AB502487) containing the conserved, unique MR identifying sequence (MRIS). The MR recombinant allele does not contain the conserved 5’ RO-

33 sequence (5’ RO-33) or the conserved 3’ MAD20 sequence (3’ MAD20) which can therefore be used to determine the presence of RO-33-like and MAD20-like alleles in 

combination with MR recombinant alleles in a mixed genotype infection. 
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2.3.6 Global distribution of msp1 block 2 alleles as determined from short read data is similar to 

historical long read data 

 

Aligning short read sequence data from the Pf3k dataset to the msp1b2RefLib (section 2.3.4, 

appendix 7.4) resulted in the alignment of 9.39 x 105 reads from the 2400 isolates collected from 

sites in West Africa and the Democratic Republic of the Congo (1119 isolates, from here on referred 

to collectively as West Africa), East Africa (271 isolates) and South East Asia and Bangladesh (1010 

isolates, from here on referred to collectively as Asia). In order to allow for comparison between 

different allelic types with different sequence lengths, coverage, scaled for differences in lengths of 

reference sequences (appendix 7.4), was calculated for each sample, giving a global mean coverage 

of 19.3 fold. Coverage of the msp1b2RefLib is approximately five times lower than the genome-wide 

mean coverage of 84.5 fold because reads from one allelic type are mapped across five different 

sequences in the msp1b2RefLib, whereas genome-wide coverage is derived from mapping to a single 

reference sequence.  

One hundred and thirty five samples had been culture adapted prior to sequencing, resulting in a 

higher coverage (mean coverage 84.1 fold, p < 0.001, Wilcoxon signed rank test) which is also seen in 

the mean coverage genome wide (mean coverage for culture adapted samples is 129 fold compared 

to 84.5 fold for isolates directly sequenced from patient samples, p < 0.001, Wilcoxon signed rank). 

Comparing the coverage of only directly sequenced isolates shows a significantly higher coverage for 

African samples (mean coverage 25.7 fold) compared to Asian samples (mean coverage 10.3 fold, p < 

0.001, Wilcoxon signed rank), which is also seen genome-wide (mean coverage for African samples is 

97.5 fold compared to for 65.3 fold for Asian samples). This is due to the lower levels of clinical 

immunity to malaria meaning that, on average, patients will report symptoms and therefore be 

diagnosed with malaria, exposing them to the studies contributing samples to the Pf3k, with lower 

parasitaemias than in Africa.  
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To determine if there was any bias in the coverage of different allelic types, samples determined to 

contain only one allelic type (see below) were compared to exclude any bias due to different levels 

of clones in mixed genotype infections. Due to the variation in coverage between African and Asian 

samples, comparisons were made between different allelic types within one continent. Comparing 

between all three major allelic types (K1-like, MAD20-like and RO-33-like) showed no difference in 

coverage (p > 0.48, appendix 7.5).  

After determining the presence of MR alleles (see above section 2.3.5) at least one allelic type was 

found to be present in 2385 (99.4%) of the 2400 clinical isolates with a total 3815 allelic types 

detected due to mixed genotype infections (table 2.4), of which 1455 (38%) were K1-like, 1384 (36%) 

were MAD20-like, 860 (23%) were RO-33-like and 116 (3.0%) were MR recombinants (table 2.2). 

These global frequencies are comparable to those for historic data using PCR-based genotyping 

(table 2.1).  As was found by previous studies, allele frequencies were skewed in favour of K1-like 

alleles in African populations and in favour of MAD20-like alleles in Asian populations (figure 2.11, p 

< 0.001, χ2 test) but, with the exception of MR recombinant alleles (see below), allele frequencies did 

not vary significantly between East and West Africa (p = 0.23, χ2 test). Comparison between typing 

by alignment of short read data in this study and historic PCR data shows that the allele frequencies 

are similar, however, the method described here gives a greater skew toward K1-like alleles in West 

Africa and a greater skew toward MAD20-like alleles in Asia (table 2.3). Allele frequencies do not 

differ significantly between the data presented here and historic PCR typing studies in East Africa (p 

= 0.39, χ2 test). There was variation in allele frequencies between study sites within each region, 

which was starker in Asia than in Africa, likely due to the higher degree of population structure in 

Asia (figure 2.12).  
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Region K1-like MAD20-like RO-33-like MR recombinant 

West Africa 897 (0.46) 474 (0.24) 479 (0.24) 109 (0.056) 

East Africa 222 (0.44) 144 (0.29) 131 (0.26) 6 (0.012) 

Asia 336 (0.25) 766 (0.57) 250 (0.18) 1 (0.00074) 

All 1455 (0.38) 1384 (0.36) 860 (0.23) 116 (0.030) 

Table 2.2 Allele frequencies determined by alignment to a library of reference sequences. Short 
read data for 2400 samples from the Pf3k project was aligned to a library of reference sequences 
(section 2.3.4, appendix 7.4). The presence of reads mapping to a library sequence of one of the 
three major msp1 block 2 allelic types (K1-like, MAD20-like and RO-33-like) was used to determine 
the presence of that allelic type. Presence of MR recombinant alleles were determined by the 
presence of the MRIS (section 2.3.5, figure 2.10). In the cases were MR recombinant alleles were 
present, additional presence of MAD20-like and RO-33-like alleles was determined by searching 
aligned reads for the presence of conserved 3’ and 5’ sequences (section 2.3.5, figure 2.10). Total 
counts for each allelic type are shown with fraction of all alleles detected in parentheses. 
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MR recombinant alleles were detected, by searching reads aligned to the msp1b2RefLib (section 

2.3.4, appendix 7.4) for the MRIS (figure 2.10), in a total of 116 (4.8%) isolates. In 51 of these fewer 

than 10 reads containing the MRIS were identified and these alignments were checked by eye to 

confirm the presence of reads containing MR sequence. As described above, the additional presence 

of MAD20-like and RO-33-like sequences was determined by the presence of 3’ MAD20 and 5’ RO-33 

conserved sequences. As only a handful of studies have used PCR genotyping to determine MR 

recombinant allele frequencies, formal comparison was not performed. However, the range of MR 

recombinant allele frequencies in African sites (2.1-10%) is in agreement with previous studies 

(figure 2.12; Noranate et al., 2009, Takala et al., 2006, Apinjoh et al., 2015). MR recombinant alleles 

had higher frequency in West Africa (5.6%) than in East Africa (1.2%), possibly due to the fact that all 

East African samples in the existing Pf3k dataset were collected in just two sites just over 100km 

apart. Only one MR recombinant allele was detected in Asia. MR recombinant alleles have previously 

been reported in Asia (Takala et al., 2006), but there are no large-scale studies that determine their 

frequency.  

Overall, 46% of infections contained two or more allelic types. Increased transmission intensity 

would predict a higher percentage of mixed genotype infections in Africa compared to Asia, and this 

was found to be the case with 56% of infections containing one or more allelic types in Africa 

compared to 31% in Asia (p < 0.001, χ2 test, figure 2.11). This difference is even clearer when 

considering infection with three or more allelic types which is seen in 19% of infections in Africa 

compared to just 2% in Asia (p < 0.001, χ2 test); all 32 infections containing all four allelic types 

occurred in Africa.  
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Region Alignment short read data PCR genotyping p-value 

(χ2 test) 
K1 MAD20 RO-33 K1 MAD20 RO-33 

West Africa 897(46) 474(24) 479(25) 1832(42) 1241(29) 1248(29) <0.001 

East Africa 222(44) 144(29) 131(26) 2127(42) 1453(29) 1470(29) 0.39 

Asia 336(24) 766(57) 250(19) 728(35) 1008(48) 367(17) <0.001 

 

Table 2.3 Comparison of msp1 block 2 genotyping by alignment of short read data and published 
type-specific PCR. Short read data from the Pf3k project was aligned to a library of msp1 block 2 
sequences. Reads mapping to an allelic type were taken to indicate the presence of that genotype in 
the sample. When MR recombinant alleles were detected, presence of the 3’ end of the MAD20 
sequence and 5’ end of the RO-33 sequence was used to infer presence of the MAD20 or RO-33 
alleles respectively. Raw counts for each major allelic type are shown with a percentage of total in 
parentheses. These data are compared to published PCR-based genotyping from the same region 
(see appendix 7.1 for a list of all studies). p-values determined by χ2 test are shown for comparison 
of short read alignment and PCR genotyping by region.  
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Number 

allelic types Africa Asia 

1 609 (44) 692 (69) 

>1 781 (56) 318 (31) 

>2 274 (20) 25 (2.5) 

4 32 (2.3) 0 (0.0) 

Samples 1390 (100) 1010 (100) 

 

Table 2.4 Comparison of mixed genotype infections between Africa and Asia based on msp1 block 
2 genotype. Alignment of short read data from the Pf3k project to a library of K1-like, MAD20-like 
and RO-33-like msp1 block 2 was used to determine the presence of these three alleles. Aligned 
reads were then searched to determine the presence of the unique sequence present in the MR 
recombinant allele. For samples containing the MR recombinant sequence, the presence of the 
MAD20 3’ sequence and RO-33 5’ sequence was used to infer whether this sample contained only 
MR-like alleles or MR mixed with MAD20-like and RO-33 like. The number of samples containing just 
one, two or more, three or more or all four allelic types is shown for Africa and Asia with percentage 
of all 2400 samples shown in parentheses. Mixed genotype infections had higher frequency in Africa 
than in Asia (p < 0.001, χ2 test). 
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Figure 2.11 Frequencies of alleles and mixed genotype infections vary by region. Alignment of short 
read data from 2400 Pf3k samples to the msp1b2RefLib (section 2.3.4, appendix 7.4) was used to 
determine the presence of K1- (red), MAD20- (blue)  and RO-330-like (green) msp1 block 2 alleles in 
each sample. Presence of MR recombinant alleles (yellow) was determined by searching aligned 
reads for MRIS (section 2.3.5, figure 2.10). The number of different allelic types present in each 
infection was also determined as either one (white), two (light grey), three (dark grey) or all four 
(black) depending on the number of msp1 block 2 alleles detected. In the samples where MR 
recombinant alleles were detected, the presence of additional MAD20-like and RO-33-like alleles 
was confirmed by searching aligned reads for conserved 3’ and 5’ sequences, respectively (section 
2.3.5, figure 2.10). The total number of genotypes detected (for pie charts showing allele 
frequencies) or the total number of isolates (for pie charts showing frequencies of mixed genotype 
infections) is shown below each pie chart.  
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Figure 2.12 Allele frequencies across different study sites. Short read sequence data from the 2400 
samples in the Pf3k dataset was used to detect the presence of msp1 block 2 allelic types by 
alignment and detection of identifying sequences (sections 2.3.4 and 2.3.5). The frequencies of K1-
like (red), MAD20-like (blue), RO-33-like (green) and MR recombinant (yellow) are shown for each 
site where over 20 samples were sequenced. The sites are grouped by region and the number of 
samples collected at each site is shown in parenthesis. Map showing the location of all sites 
contributing samples to the Pf3k project can be found in appendix 7.6.  

 

2.3.7 De novo assembly of library-aligned reads increases yield of sequences 

 

Due to the fact that the optimal k-mer value was found to be 81 bp (section 2.3.2), only Pf3k samples 

sequenced with a read length of over 90 bp were used for de novo assembly. Reads from these 

samples that mapped to the msp1 locus (including 2 kb upstream of the gene) of the 3D7 reference 

genome were extracted along with their mate pairs (even if the mate pair was unmapped). These 

reads were then assembled with Velvet using with an optimised k-mer value of 81 (section 2.3.2). 

Assembled contigs were scanned for the presence of a complete block 2 sequence, which was found 

for 791 (41.9%) out of 1886 samples with read length greater than 90 bp. For the vast majority of 

these samples only one sequence could be assembled, with just 9 samples giving two sequences. In 

order to increase the yield of complete block 2 sequences, reads aligned to the msp1b2RefLib 

(section 2.3.4) were used for de novo assembly. Using reads mapping to the library dramatically 

increased number of samples for which sequence was obtained to 1362 (77.2% of all samples with 

read length > 90 bp); 150 samples gave over two sequences, with 8 samples giving three sequences 

and one sample giving four.  Both sets of de novo assembled sequences were collated, removing 

identical sequences produced by the two approaches, to give a combined 1522 sequences, known 

from here on as the short read assembled (SRA) dataset (additional data file 

“Pf3k_short_read_assembled_translated_sequences.csv”). The SRA contains 529 (35.3%), 631 

(40.8%), 230 (21.7%) and 32 (2.10%) sequences of the K1-like, MAD20-like, RO-33-like and MR 

recombinant allelic type respectively with allele frequencies differing between Asia and Africa as 

expected given the established regional differences in allele frequencies (table 2.1).  
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For all samples where sequences could be assembled, the allelic type(s) of the assembled sequence 

matched the allelic type(s) called by alignment to the msp1b2RefLib (section 2.3.4) demonstrating 

the validity and compatibility of both methods. Alignment data cannot determine the presence of 

two different alleles of the same allelic type as reads from both alleles align to the same group of 

sequences in the msp1b2RefLib. De novo assembly produced two or more distinct alleles of the 

same allelic type in just 11 (0.83%) samples for which sequence was obtained. In all other cases 

where de novo assembly indicated a mixed genotype infection, this was also called by alignment of 

reads to the msp1b2RefLib. As would be predicted from analysis of mixed genotype infections using 

the alignment of short reads to the msp1b2RefLib (table 2. 4), there were approximately three times 

as many mixed genotype infections detected by de novo assembly in Africa (17% of total samples for 

which sequence was obtained) than Asia (5.5% of total samples for which sequence was obtained).  

2.3.8 Agreement between de novo assembly and alignment to the msp1b2RefLib 

 

In order to explore any bias in the de novo assembly of msp1 block 2 sequences, reads from the Pf3k 

project were assembled (see above, section 2.3.7). The allelic types of assembled sequences were 

determined and were compared to the allele calls made by alignment (section 2.3.5). Only samples 

for which all reads aligned to one allelic type were included in order to avoid a bias against samples 

from regions with a higher endemicity where both mixed genotype infections and K1-like alleles are 

at a higher frequency (figure 2.11). No significant difference was found in the allele frequencies 

between the two procedures (p = 0.17, χ2 test, table 2.6). Cross-checking between the two methods 

for typing showed that de novo assembly never produced a sequence of an allelic type that had not 

been detected in the given sample by alignment to the msp1b2RefLib. 
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Region K1-like MAD20-like RO-33-like MR-like 

West Africa 269 (0.48) 124 (0.22) 134 (0.24) 28 (0.050) 

East Africa 98 (0.42) 61 (0.26) 70 (0.30) 3 (0.013) 

Asia 172 (0.23) 436 (0.59) 126 (0.17) 1 (0.0014) 

Global 539 (0.35) 621 (0.41) 330 (0.22) 32 (0.021) 

Table 2.5 Allelic frequencies of de novo assembled sequences. Reads mapping to the msp1 locus 
(including 2kb upstream) and their mate pairs were extracted from samples in the Pf3k dataset 
which had been sequenced using reads > 90 bp in length. Msp1 block 2 reads were also extracted by 
alignment to a library of sequences (section 2.3.4, appendix 7.4). Both sets of reads were assembled 
independently using Velvet (Zerbino and Birney, 2008) with a k-mer length of 81. The two sets of 
assembled sequences were combined (removing identical sequences) to give a total of 1532 
sequences. The number of sequences identified as belonging to each allelic type is shown, with the 
fraction of all assembled sequences in parenthesis, for the three regions covered by the Pf3k project 
(West Africa (West Africa and DRC), East Africa and Asia (South East Asia and Bangladesh)) and 
globally.  
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 De novo assembly 

Count (% total) 

Alignment  

Count (% total) 

K1-like 251(34.1) 367 (38.6) 

MAD20-like 376 (50.7) 457 (48.1) 

RO-33-like 108 (14.7) 127 (13.4) 

Total 735 (100) 951 (100) 

 

Table 2.6 Comparison of frequencies of allelic types called by alignment and de novo.  Reads from 
Pf3k samples that were homogenous with respect to msp1 block 2, as determined by alignment to a 
library of sequences, and had a length of over 90 bp were assembled with Velvet. Allele calls were 
made based on the complete, assembled sequence. Counts of allelic type are shown with 
percentage of total called in parentheses. These data are compared to the allele calls made by 
alignment to a library of msp1 block 2 sequences for samples that meet the requirements specified 
above (homogenous at msp1 block 2 and read length over 90 bp.) There is no significant difference 
in the distribution of allele frequencies between the two methods for calling allelic type (p = 0.17, χ2 
test).  
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2.3.9 Msp1 block 2 repeat lengths and structures determined by de novo assembly vary between 

Africa and Asia 

 

With the exception of RO-33-like sequences, the variation between different msp1 block 2 alleles is 

almost entirely due to variation in the repeat sequences (Noranate et al., 2009). These changes in 

nucleotide sequence invariably lead to changes in amino acid sequence. Due to this fact, and the 

interest in these sequences as immune epitopes, the de novo assembled nucleotide sequences 

present in the SRA dataset were translated into their predicted amino acid sequences to give a 

dataset of peptide sequences, the translated SRA (tSRA) dataset. Analysis of the amino acid 

sequences shows that K1-like sequences are the most diverse with 224 distinct peptide sequences 

(from here on referred to as alleles) compared to 123 different MAD20-like, 9 RO-33 and just 6 MR 

recombinant alleles. The number of alleles within both the K1-like and MAD20-like allelic types was 

greater in African populations than in Asian populations (table 2.7). This is despite the fact that 

MAD20-like alleles are at a far higher frequency in Asia (p < 0.001, χ2 test, table 2.5). De novo 

assembly of the Pf3k data revealed 246 novel alleles that had not been seen by previous studies that 

deposited msp1 block 2 sequences in GenBank (additional data file 

“Pf3k_short_read_assembled_translated_sequences.csv”). The vast majority of these, 166 (67%) 

were of the K1-like variety with 73 (30%) MAD20-like, five (2.0%) RO-33-like and two (0.81% %) MR 

recombinant. 
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Region All types K1-like MAD20-like RO-33-like MR-like 

West Africa 240 (555) 166 (269) 60 (124) 8 (134) 6 (28) 

East Africa 101 (230) 65 (98) 32 (61) 3 (70) 1 (3) 

Asia 74 (735) 22 (172) 48 (436) 3 (126) 1 (1) 

Global 363 (1522) 225 (539) 123 (621) 9 (330) 6 (32) 

 

Table 2.7 Number of unique peptide variants by region. Msp1 block 2 short read sequences from 
the Pf3k data set were assembled using Velvet (Zerbino and Birney, 2008) with k-mer length of 81. 
Contigs containing complete msp1 block 2 sequences were compiled and translated to the predicted 
amino acid sequence. Unique peptide sequences (referred to as alleles) were determined by 
alignment. Total unique alleles are shown with the total number of sequences of that allelic type in 
parenthesis for each region covered by the Pf3k project (West Africa and DRC (West Africa), East 
Africa, and South East Asia and Bangladesh (Asia)).   
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The tripeptide repeats encoded by the K1-like alleles consist of four major tripeptides: serine-

alanine-glutamine (SAQ), serine-glycine-alanine (SGA), serine-glycine-threonine (SGT) and serine-

glycine-proline (SGP). The repeat almost always begins with the SAQ tripeptide, which, if present 

more than once, is always repeated as part of a motif with one of the other three tripeptides 

(resulting in SAQSGA, SAQSGT or SAQSGP motifs). Likewise, the SGA tripeptide is only present as 

part of the SAQSGA motif. SGT and SGP tripeptides are commonly encoded at the 3’ end of the 

repeat sequence and can be repeated as part of a motif (for example SGTPSGPSGTSGP) or 

independently (for example SGTSGTSGT) (Miller et al., 1993). Additionally rare K1-like msp1 block 2 

variants encoding serine-alanine-threonine/proline (SAT/P) tripeptides have been recorded (Juliano 

et al., 2010) but were not seen in the de novo assembled data presented here.  

Comparison of K1-like tripeptide repeat lengths showed that African alleles (median length: 12 

tripeptides) tended contain a greater number of tripeptides than Asian alleles (median length: 8 

tripeptides, p < 0.001, Wilcoxon signed rank test); a wider range in the number of tripeptide repeats 

was seen in Africa (seven to 19 tripeptides) than in Asia (five to 16 tripeptides). This is one factor 

explaining the increased number of K1-like variants seen in Africa.  

Analysis of the tripeptide repeat composition reveals that all but 3 of the 172 (98.2%) Asia alleles do 

not have any SGA motifs in the tripeptide repeat and the three that do are all identical sequences 

from the same site in Bangladesh. This is in contrast to Africa where the SGA motif is present in 211 

(57.5%) of all K1-like tripeptide repeats. All of these alleles encode a tripeptide repeat starting with a 

SAQSGA motif (meaning they can be classified within the 3D7-like subtype), which is repeated in just 

over half (55.9%) of these sequences between one and three times. This is consistent with previous 

data that has identified a high frequency of alleles containing the SAQSGA motif in Africa (Noranate 
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et al., 2009) but their absence in South East Asia (Tanabe, 2013). Interestingly, this motif is present in 

a previously published msp1 block 2 sequence from North Eastern India (Joshi et al., 2007).  

With the exception of six alleles, all the Asian K1-like alleles encode a tripeptide repeat consisting of 

a single SGA tripeptide followed by between two and eight SGT tripeptides and then either 

SGPSGPSGT (122/164 samples) or SGPSGTSGT (36/164 samples). This repeat structure (which is 

shared by the K1 isolate and K1-like alleles of the K1-like subtype) is seen in Africa as part of a mix of 

a much wider range of repeat structures. Amongst African alleles, SGA tripeptides are always part of 

an SAQSGA motif which, when repeated, is always encoded at the 5’ end of the repeat sequence and 

is not interspersed with SGT or SGP-containing motifs. In general, the 5’ end of the K1-like of the 

tripeptide repeat encodes SAQSGA motifs (if present) and the 3’end of the repeat encodes SGT and 

SGP tripeptides, but SAQ tripeptides can be found in all but the final two positions of the tripeptide 

repeat sequence. This heterogeneity in repeat structure, combined with the increased range of 

tripeptide repeat lengths results in a far greater number of K1-like alleles detected in Africa 

compared to Asia, even when considering the increased number of African K1-like sequences (table 

2.7).  

Despite the large number of K1-like alleles present in Africa, the top five most abundant K1-like 

alleles collectively account for 18.8% (69/367) of K1-like sequences assembled (figure 2.13) and 

appear closely related. All five alleles encode tripeptide repeats consisting of either one, two, three 

or four 5’ SGASAQ motifs followed by one or four SGT tripeptides then two or three SGP tripeptides 

before the final SGT tripeptide (figure 2.16), suggesting they arose by repeat expansion or retraction 

from a shared ancestor.  One of these alleles is identical to the only SGASAQ containing allele in Asia, 

but all other alleles are unique to Africa and found across all African sites sampled. The many other 

African alleles are all present at low frequency (< 2% of K1-like sequences). In Asia just 8 alleles 

account for 86.6% (149/172) of all K1-like sequences. Again, these alleles share a repeat structure, 

consisting of three to 8 SGT tripeptides followed by one or two SGP tripeptides and then either one 
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or two SGT tripeptides (figure 2.16), suggesting they originate via repeat expansion or contraction 

from a single common ancestor. These alleles are found across all Asian sites and five of them are 

also found in Africa, but at low frequencies (figure 2.13).  

There were two African alleles encoding K1-like tripeptide repeats in Africa that did not fit the 

general pattern described above. One sample from Malawi contained an allele encoding a tripeptide 

repeat where the first SGA tripeptide had been lost. Another sample from Malawi has a K1-like allele 

that is missing 60 bp from the 3’ non-repeat sequence. There is a rare SNP in the 5’ non-repeat 

sequence which is present in 19/367 African K1-like samples which were assembled. None of these 

rare variants have been reported previously. The SAT/P tripeptides, originally reported to be 

encoded in the sequence of the 3D7 msp-1 gene (Miller et al., 1993) but subsequently shown to be 

absent from the 3D7 sequence, and also reported in a small number of field isolates from both Africa 

and Asia (Juliano et al., 2010, Joshi et al., 2007) are absent from all of the 539 K1-like sequences 

assembled here. 

The MAD20-like repeats are known to be comprised of five different tripeptides: serine-lysine-

glycine (SKG), serine-glycine-glycine (SGG), serine-valine-alanine (SVA), serine-serine-glycine (SSG) 

and serine-valine-threonine (SVT) (Miller et al., 1993). The SKG, only occurs as the first tripeptide, 

only ever occurs once in the repeat and is at a higher frequency in Africa (63.7% of MAD20-like 

sequences) than in Asia (39.4%, p <0.001, χ2 test). When SKG is the first tripeptide, it is always 

followed by either SVA, SVT or SGG, in Asia all three motifs are common, but in Africa SVT is at a 

higher frequency than in Asia and SGG is rare (p <0.001, χ2 test). The first position in the repeat 

sequence can also be occupied by serine-glycine-glycine SGG or serine-valine-alanine SVA, which can 

both occur multiple times in the rest of the repeat sequence. The serine-serine-glycine SSG 

tripeptide is almost exclusively found in Asian MAD20-like alleles and only occurs once. The SSG 

tripeptide is present in 57 (13.1%) of the 436 MAD20-like sequences assembled from Asian samples, 

the majority (51/57) have this tripeptide as the first tripeptide followed by varying numbers of SGG 
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and SVA repeats. The other 6 samples all contain the same allele, which has the SGG tripeptide in 

the middle of the tripeptide repeat; this allele has previously been reported at low frequency in Asia 

and in one East African isolate (Juliano et al., 2010). Two African alleles analysed here contain a 

serine-aspartic acid-glycine (SDG) tripeptide, which has not been previously reported, but was 

present in one allele sequenced by Juliano et al (2010).  

MAD20-like tripeptide repeats have a greater range of lengths in Africa (5 to 19 tripeptides) than in 

Asia (5 to 17 tripeptides) and African alleles tend to encode longer stretches of tripeptide repeats 

(median = 14 tripeptides) than Asian alleles (median = 11 tripeptides, p < 0.001, Wilcoxon signed 

rank test), resulting in the greater number of alleles seen in Africa. This appears to be the result of 

expansion of SGG tripeptide repeats which, on average, comprise a greater fraction of MAD20-like 

repeat sequences in Africa (median 58.3% of tripeptides in repeat) than in Asia (median 50.0%, p < 

0.001, Wilcoxon signed rank test). The second most common tripeptide, SVA, comprises the a similar 

fraction of the tripeptide repeat, on average, in both Africa (median 33.3%) and Asia (median 

36.4%). However, in Africa this tripeptide is always followed by the SGG tripeptide whereas in Asia 

many alleles, including three of the five most abundant alleles, contain tandemly repeated SVA 

tripeptides. Accordingly, the length of the MAD20-like tripeptide repeat shows a stronger correlation 

to the number of SGG (r = 0.90, 95% confidence interval (CI) [0.87,0.92], p < 0.001, Pearson’s 

correlation) tripeptides than the number of SVA tripeptides in Africa (r = 0.53 95% CI [0.42,0.63], p < 

0.001, Pearson’s correlation) whereas in Asia, increases in SGG (r = 0.82, 95% confidence interval (CI) 

[0.78,0.85], p < 0.001, Pearson’s correlation) and SVA (r = 0.80, 95% confidence interval (CI) 

[0.77,0.83], p < 0.001, Pearson’s correlation) tripeptides contribute equally to the increased length 

of the repeat.  

Determining the frequency of each MAD20-like allele amongst all MAD20-like sequences from each 

continent reveals a similar pattern to that seen for K1-like alleles; the most common MAD20-like 

alleles in one continent are significantly less frequent or absent from the other, with the exception 



106 
 

of one allele which is found at comparable frequencies in both (figure 2.13) . Again, two alleles in 

Asia are present in over 10% of samples for which a MAD20-like sequence could be assembled, 

whereas in Africa there are no alleles above this frequency but a greater number of alleles at lower 

frequencies.  

Analysis of RO-33-like sequences de novo assembled from the Pf3k data showed the presence of 7 

single nucleotide polymorphisms (SNPs). One of these SNPs, found in just one Asian sample was 

synonymous, whilst the remaining 6 SNPs resulted in an amino acid substitution. At one position two 

variant bases mean that there are three different alleles creating 7 variants of the RO-33 peptide 

sequences that each contain one amino acid difference from the RO-33 sequence. The exact match 

to the RO-33 allele sequence accounted for over three quarters (155/204) of all assembled RO-33-

like sequences from Africa but was found at very low frequency (3/126 assembled RO-33-like 

sequences) in Asia (figure 2.14), in agreement with previous studies (Noranate et al., 2009, Tanabe 

et al., 2013). Just under one fifth (37/204) of African RO-33-like sequences had a SNP at the 3’ end of 

block 2 encoding substitution of a glycine for an aspartic acid residue (G97D), which was absent from 

Asia (figure 2.14). Another SNP towards the 3’ end of block 2 encodes an amino acid change from 

lysine to asparagine (K90N) and is found at low frequencies in both Africa (4/204) and Asia (1/126). 

This mutation has been previously reported (Noranate et al., 2009) but analysis of sequences 

assembled in this study uncovered a novel variant at this position resulting in mutation to a 

threonine (K90T). Three additional low frequency SNPs were identified in Africa (G91D, S73N and 

A74D), two of which (S73N and A74D) have not been previously reported (see 

“Pf3k_short_read_assembled_translated_sequences.csv”). There was one RO-33-like SNP encoding 

an aspartic acid to glycine substitution (D67G) that was present in two alleles, one of which contains 

no other SNPs and accounts for over 95% (122/126) of RO-33-like alleles in Asia but is not found in 

Africa (figure 2.14). This is in agreement with previous studies that find this allele be the dominant 

RO-33-like allele in South East Asia (Tanabe et al., 2013, Juliano et al., 2010). Interestingly, this SNP is 

seen in an African allele for the first time, but in combination with another low frequency SNP 
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(G91D) that is unique to Africa (figure 2.14) (Noranate et al., 2009). The previously reported Q27E 

mutation (Noranate et al., 2009) was not found here.  

RO-33-like alleles do not contain polymorphic repeat sequences, allowing alignment and analysis of 

mutations for signatures of selection. Such analysis was performed on the seven SNPs present in the 

330 RO-33 like sequences and showed no evidence of selection (nucleotide diversity () = 5.7 x 10-3, 

Tajima’s D = -0.64 (p > 0.1), Fu and Li’s D = -0.84 (p > 0.1), Fu and Li’s F = -0.92 (p > 0.1)). The same 

result is found with the 6 SNPs in the 231 African sequences ( = 1.1 x 10-3, Tajima’s D = -1.70 (p > 

0.05), Fu and Li’s D = -0.93 (p > 0.1), Fu and Li’s F = -1.40 (p > 0.1)) and the 2 SNPs in the 126 Asian 

sequences ( = 0.055 x 10-3, Tajima’s D = -1.22 (p > 0.1), Fu and Li’s D = -1.1 (p > 0.1), Fu and Li’s F = -

1.3 (p > 0.1)). This finding is in agreement with previous studies of African RO-33 sequences 

(Noranate et al., 2009).  

The 32 MR-recombinant sequences that were assembled contained just 6 different alleles. Five of 

these appear to have arisen from the same recombination event as they have identical 5’ MAD20-

like and 3’ RO-33-like sequences and only differ as a result of contraction or expansion of the SGG 

tripeptide repeat (figure 2.15). This one recombination event between a MAD20-like and RO-33-like 

allele appears to be responsible for all but one of the MR recombinant alleles that has been 

sequenced previously (Takala et al., 2002, Noranate et al., 2009)3. It is interesting to note that the 3’ 

sequence present in all MR recombinant alleles is identical to an RO-33-like sequence (bearing the 

G97D mutation) which is the second most abundant in Africa, but absent from Asia; the one Asian 

MR recombinant sequence also contains this motif, suggesting that this allele arose via 

recombination in Africa and was subsequently introduced into Asia. One sample, from West Africa, 

was found to contain a MR-like allele with a notably different MAD20-like sequence at the 5’ end, 

suggesting this allele arose from an independent recombination between a MAD20-like sequence 

                                                           
3 The sequences published by Takala et al (2002) were amplified using a 3’ RO-33 primer that changes the 
sequence of the 3’ MR-recombinant sequence from that found here and in the study by Noranate et al (2009) 
which uses a 3’ primer binding outside the block 2 sequence. All 5’ sequences published by Takala et al (2002) 
match with the majority of 5’ sequences in Noranate et al (2009) and those assembled in this study.  
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and the same RO-33-like sequence, or recombination of an MR-recombinant allele derived from the 

original MAD20-like/RO-33-like recombination and a different MAD20-like sequence. Long read 

sequence data also detected one MR-like allele with a divergent 5’ end, although this does not 

match the allele found here (Noranate et al., 2009).  
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Figure 2.13 Allele frequencies of K1-like and MAD20-like alleles show skews between continents. Msp1 block 2 allele sequences were determined by de novo assembly of 
short read sequences (section 2.3.7). The frequency as a percentage of all alleles in the population of the same allelic type that had been de novo assembled was calculated 
for both Africa (367 total K1-like sequences; 185 total MAD20-like sequences) and Asia (172 K1-like sequences; 436 MAD20-like sequences). All K1-like sequences (left) that 
had an allele frequency greater than 2% in either Africa (red) or Asia (pink) are shown; an additional 218 alleles were present at frequencies below 2%. Similarly, all MAD20-
like sequences with an allele frequency greater than 12% in either Africa (dark blue) or Asia (light blue) are shown; an additional 103 alleles occur at frequencies below 2%. 
Asterisks indicate significant differences between the allele frequency in Africa and Asia with p-values < 0.05 (*), < 0.01, (**) or p < 0.001 (***).  
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Figure 2.14 RO-33-like alleles and their frequencies. De novo assembly of short read sequences mapping to msp1 block 2 (section 2.3.7) revealed 6 non-synonymous single 
nucleotide polymorphisms (nsSNPs) in RO-33-like alleles creating 9 different peptide sequences, which are aligned. Changes in peptide sequence are highlighted (yellow and 
red) and the frequency of each allele is shown in Africa (right) and Asia (left).  
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Figure 2.15 MR alleles and their frequencies.  Msp1 block 2 sequences were assembled from short reads using Velvet. Nucleotide sequences encoding MR recombinant 
alleles were translated into the predicted amino acid sequence. Six different alleles, shown here, were found in the 32 samples bearing an MR recombinant allele. The 
difference between the alleles is due to expansion and contraction of the serine-glycine-glycine (SGG) tripeptide (highlighted in purple) or, in one case, suspected 
recombination with a MAD20-like allele with a divergent sequence (red). The number of times each allele was found in Africa is shown (right hand side of figure). There was 
only one sample with an MR recombinant allele in Asia, which was identical to one of the African alleles (indicated with an asterisk).  
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Figure 2.16 Alignment of K1-like sequences suggests shared origin for most abundant alleles on each continent.  Short (90-100 bp) reads mapping to msp1 block 2 were 
extracted and assembled using Velvet. The frequency of each unique alleles was determined by comparison with all assembled sequences. K1-like alleles with a frequency 
of over 2% in the population of all K1-like alleles in either Africa (A, n= 367) or Asia (B, n=172) were aligned. The proportion of all sequences represented by of each allele in 
either Africa (A) or Asia (B) is shown to the right of the sequence as a percentage. 



113 
 

2.4 Discussion 
 

In this chapter two approaches were developed to allow the extraction of repetitive sequence data 

from short sequence reads. The first approach utilised the de novo assembly algorithm Velvet and 

the second approach used a msp1b2RefLib representing the range of MSP-1 block 2 sequences to 

align short reads. The combination of these two approaches allowed for typing of all sequences 

present in the Pf3k dataset and the assembly of over 700 novel MSP-1 block 2 sequences.  

It was shown that, by increasing the k-mer length to 81, the DBG-based assembler Velvet (Zerbino 

and Birney, 2008) can assemble short reads from even long msp1 block 2 sequences in agreement 

with both the theory behind de Bruijn graphs and work using ideal data that shows an increased k-

mer length results increased assembly (albeit with increased computational costs) (Li et al., 2012).  

However, the longer the repeat region of original msp1 block 2 sequence, the less likely that 

algorithms for de novo assembly will be able to resolve the sequence (figure 2.5), as would be 

expected (Li et al., 2012, Leggett et al., 2013). It is important to note however, that, due to the 

imperfect nature of the repeat sequences of msp1 block 2 (Miller et al., 1993), whilst the repeat 

region may expand beyond the k-mer length the presence of some unique sequence within the 

repeat will mean that the repeat lengths “seen” by the assembler are a fraction of this length (Li et 

al., 2012). The probability of sequence assembly increases with depth of coverage (figure 2.5), which 

is expected as the k-mer length is close to the length of the repeat sequence meaning that increasing 

the number of reads (i.e. the coverage) will increase the probability of reads containing k-mers that 

span the repeat sequence and allow resolution of the de Bruijn graph. This is in agreement with 

modelling of assembly algorithms using perfect data that shows increased assembly with increase of 

coverage depth (Li et al., 2012). With a coverage depth of over 80-fold assembly of an msp1 block 2 

sequence containing a long perfect repeat was always achieved using ideal data. However, when 

using real data the coverage depth will need to be higher due to the presence of sequencing errors 

and multi-clone infections which essentially dilute the number of reads that can be used for 
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assembly. One approach to reduce bias in de novo assembly of repeat regions would be to exclude 

samples with coverage below a certain threshold. However, this is impractical as coverage varies 

across the genome, so the coverage at any given locus may differ dramatically from the genome 

wide mean. When considering just the locus of interest, given that the original sequence length and 

number of alleles present is unknown, a true estimation of the coverage is impossible to obtain.   

By building a library of msp1 block 2 sequences from published long read sequence data (sequences 

used are listed in appendix 7.4) it was possible to align short (30-100 bp) reads and determine the 

allelic types present 99.4% of isolates. The fact that the allele frequencies determined by alignment 

to a sequence library do not differ significantly from those determined by PCR genotyping in East 

Africa (which has the greatest number of historical data) and that shifts in allele frequencies from 

PCR data are seen in favour of both K1-like and MAD20-like alleles suggest there is no systematic 

bias in the method developed here (table 2.3). The changes in allele frequencies are unlikely to be 

due to actual shifts as these have been shown to be stable over time (Tanabe et al., 2007a, Noranate 

et al., 2009, Silva et al., 2000). It is probable that decreased sensitivity of alignment of short read 

sequence data to detect alleles at low frequencies in mixed genotype infections has resulted in 

fewer of the less frequent alleles being detected in both West Africa, where there was a small but 

significant increase in the frequency of K1-like alleles in comparison to historical PCR data, and Asia, 

where there was a greater increase in MAD20-like alleles. The larger shift in allele frequencies 

relative to PCR data in Asia is likely due to a much higher degree of heterogeneity between study 

sites (figure 2.12), caused by increased population isolation due to ecological barriers to 

transmission in this region (Pumpaibool et al., 2009, Anderson et al., 2000) compared to Africa 

(Duffy et al., 2017, Mobegi et al., 2014). Mixed genotype infections are common in P. falciparum, 

especially in areas of high endemicity (Anderson et al., 2000). Accordingly, infections containing 

multiple allelic types were at a much higher frequency in African populations compared to Asian 

populations (table 2.4; figure 2.11).The replication of findings made using PCR-based genotyping 

methods clearly demonstrates the validity of the approach developed here to call msp1 block 2 
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genotypes using short read sequence data from whole genome sequencing studies and encourages 

the use of this approach both for future analysis of msp1 block 2 genotypes and other polymorphic 

repeat sequences in the P. falciparum genome. Unlike PCR amplification, this approach does not 

yield the length of the repeat sequence, preventing estimations of the multiplicity of infection (MOI). 

However, estimates of MOI can be made from whole genome data, which will have a higher 

accuracy than those based on a single locus (Assefa et al., 2014, Murray et al., 2016). 

Determination of the presence of rare MR recombinant alleles (Takala et al., 2006) is important if 

this approach is to be used for surveying changes in allele frequencies resulting from vaccination 

with MSP-1 block 2 antigens as increased immune pressure on alleles present in the vaccine may 

result in selection for other alleles. The presence of unique and conserved sequence at the site of 

the recombinantion between MAD20-like and RO-33-like sequences (Takala et al., 2002) allows for 

the detection of these alleles from reads aligned to a msp1b2RefLib (section 2.3.5). The use of 

specific sequences to distinguish the presence of recombinant and allelic types from mixed genotype 

infections further commends the use of libraries of reference sequences for genotyping complex 

polymorphic repeat sequences using short read data.  

The use of de novo assembly not only allows determination of allelic type length but also gives the 

structure of the repeat sequence. Targeted de novo assembly was first attempted using msp1 block 

2 sequence reads mapped to the msp1 locus of the 3D7 reference genome. It was predicted that 

polymorphic reads that did not align to the reference genome could still be captured as their mates 

would be mapped to the conserved sequences flanking block2. However, a far better outcome of 

targeted de novo assembly is achieved if reads are first aligned to a library of polymorphic sequences 

prior to assembly due to the increased read depth that will aid the assembly of complex regions (Li 

et al., 2012) figure 2.5). Comparison of the ratios of allelic types in single-genotype infections 

determined by de novo assembly and alignment of short reads shows that de novo algorithm used 

does not result in a bias towards any one allelic type (table 2.6) thus encouraging the use of this 
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approach for the study of repeat sequences. However, it should be noted that de novo assembly will 

fail when the repeat length is longer than the read length (Li et al., 2012) figure 2.2), and therefore 

this approach is limited by the length of the repeat and sequencing read.  

The targeted de novo assembly of msp1 block 2 reads described here has generated by far the 

largest single dataset of msp1 block 2 sequences, yielding a greater number of sequences than all 

studies so far have deposited in GenBank. Analysis of sequences obtained by targeted de novo 

assembly resulted in the identification of 224 K1-like and 123 MAD20-like unique alleles, the 

majority of which were present only in Africa (table 2.7), in agreement with previous studies that 

show decreased diversity at this locus in Asia (Tanabe et al., 2007b). The number of unique alleles 

identified here is an order of magnitude greater than that determined by fragment size 

polymorphism in previous studies (Branch et al., 2001, Takala et al., 2006).This is due to 

polymorphism in both the repeat length and the sequence of the repeat; variation in length of block 

2 sequence is far lower than the variation in the sequence. This is relevant to consideration of 

vaccine design, as repeat expansion will not necessarily create novel epitopes, whereas variation in 

the repeat sequence will always change the epitopes presented to the immune system.  

Analysis of the wealth of sequence data generated by de novo assembly of msp1 block 2 sequences 

allowed the analysis of variation in the encoded tripeptide repeats of K1-like, MAD20-like and MR 

recombinant alleles. This is the first dataset encompassing large numbers of clinical isolates from 

both Africa and Asia and thus allows direct comparison of sequences between the two major zones 

of malaria transmission. The diversity of all allelic types was far greater in Africa compared to Asia 

(table 2.7). However, in the case of MAD20-like alleles there was a greater diversity of repeat 

structures in Asia and the increased numbers of distinct alleles in Africa was driven by the expansion 

of a single tripeptide repeat (section 2.3.9). This is in contrast to K1-like alleles which in Asia almost 

exclusively encode a single tripeptide repeat structure but in Africa encompass a wide range of 

repeat structures and lengths, leading to the astounding diversity recorded here and in other studies 
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(Noranate et al., 2009). The stark differences in the tripeptide repeat structures between the 

continents have implications for vaccine design as it may be the case that a formulation containing a 

greater number of K1-like repeat structures would be optimal for Africa, whereas one with a greater 

number of MAD20-like repeat structures would perform better in Asia (see chapter 3).  

The efficiency of parallel sequencing enables generation of sequence data for a large number of 

parasite isolates. Targeted de novo approaches can harness this data to provide information on 

highly polymorphic regions and reveal rare variants, as has been shown here for all msp1 block 2 

allelic types. The error correcting algorithms present in DBG based assemblers remove erroneous 

bases present in a small number of reads due to sequencing errors. This is an advantage over PCR-

based sequencing where errors are harder to detect. De novo assembly is, however, limited by its 

dependency on high read depth (figure 2.5). This sets a threshold for the quality of sequencing, but 

also means that sequences present at low levels in mixed genotype infections will not be assembled 

as is reflected in the much lower frequency of mixed genotype infections detected by de novo 

assembly (section 2.3.8) as opposed to alignment (section 2.3.5) of short reads despite the potential 

for de novo assembly to detect mixed genotype  infections containing different msp1 block 2 alleles 

of the same allelic type. The use of coloured de Bruijn graphs has been proposed to enhance the 

assembly of different alleles from mixed  genotype infections (Iqbal et al., 2012). It would be of 

interest to see if this approach can aid with assembly of alleles present at low frequency although 

this algorithm has not yet been released publically. NGSreper is a new algorithm that has been 

developed to assemble repeat sequences from short read data by using identical reads that are 

present at a frequency above the average read depth to identify and assemble repeat sequences 

(Lian et al., 2016). Whilst this algorithm has been developed to assemble long repeat sequences, it 

would be of interest to test this with msp1 block 2 as well as the longer repeat sequences present in 

other antigens but the algorithm has not been made publically available. However, any algorithm 

that attempts to calculate the repeat length based on coverage will result in errors.   
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Chapter 3 - Obtaining a universal catalogue of MSP-1 block 2 epitope 

sequences from short read data 
 

3.1 Introduction 
 

Predicted intrinsically disordered sequences are abundant in P. falciparum proteins and correlate 

with the presence of repeats (Feng et al., 2006). These disordered sequences are also common in 

known targets of immune responses and are predicted to present linear B-cell epitopes (Guy et al., 

2015, Feng et al., 2006). Antibodies recognising the repetitive linear epitopes present in RTS,S, the 

only licensed malaria vaccine, correlate with protection in vaccinated individuals and have been 

shown to prevent infection in a mouse model (Kester et al., 2009, Olotu et al., 2011, Foquet et al., 

2014).  

The block 2 region of MSP-1 is encoded by a highly polymorphic region of the msp1 gene that can be 

classified into four allelic types (section 2.1). The K1-like, MAD20-like and MR recombinant alleles all 

encode tripeptide repeats which vary both in length and composition. The variation in K1-like 

repeats is of a higher complexity than that seen for MAD20-like and MR recombinant alleles (section 

2.3.9). RO-33-like sequences do not encode repeats and are conserved, with just 6 non-synonomous 

single nucleotide polymorphisms (SNPs) resulting in 7 different peptide sequences (section 2.3.9). 

Despite the marked difference in the encoded peptide sequences four allelic types are predicted by 

both DISOPRED (Jones and Cozzetto, 2015) and DisEMBL (Linding et al., 2003) algorithms to be 

disordered. Predictions made with BepiPred (Larsen et al., 2006) highlight this region of MSP-1 as 

the most probable to present linear B-cell epitopes for all three major allelic types (K1-like, MAD20-

like and RO-33-like, see section 2.1), consistent with recognition by sera from malaria exposed 

individuals (section 2.3.10 and (Polley et al., 2003b)). Tetteh et al (2005) constructed a synthetic K1-

like tripeptide repeat sequence designed to elicit antibody responses to the range of different K1-

like repeat structures (section 2.3.9 and (Miller et al., 1993)). The authors of this study first produced 

23 peptides corresponding to all combinations of four K1-like tripeptides (serine-alanine-glutamine 
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(SAQ), serine-glycine-alanine (SGA), serine-glycine-threonine (SGT) and serine-glycine-proline (SGP)) 

encoded by 49 K1-like msp1 block 2 sequences from Zambian isolates. They then probed these 

peptides with 24 adult sera samples from malaria exposed adults that had shown reactivity to K1-

like MSP-1 block 2 antigens. This experiment informed the design of a synthetic DNA construct, 

named the K1 super repeat, encoding 12 of the peptides that showed the best reactivity profile 

against the panel of sera. This sequence was combined with the RO-33 sequence and the MAD20-

like Wellcome sequence to produce a polyvalent hybrid antigen (PVHAf) that was shown to elicit 

antibodies recognising a range of MSP-1 block 2 sequences, both as recombinant and native 

antigens, following immunisation of rabbits (Tetteh and Conway, 2011).  

Linear B-cell epitopes do not require the tertiary protein structure provided by entire protein 

domains in order to present biologically relevant epitopes, meaning that multiple epitopes could be 

efficiently combined into a single polyvalent vaccine. Such a vaccine could be designed to present 

epitopes from multiple P. falciparum proteins as well as multiple sequence variants of a single 

antigen. This concept has been used to design a polyvalent hybrid antigen protein (PVHAf) that 

contains a K1-like sequence designed to incorporate a range of K1-like repeat polymorphisms 

(Tetteh et al., 2005a) fused with the RO-33 and MAD20 sequences (Tetteh and Conway, 2011). The 

antigen also contains two predicted T-cell epitopes from the block 1 region of MSP-1. This antigen 

expresses well in Escherichia coli (E. coli; section 4.2.1) and has been shown to be recognised by sera 

from clinically immune individuals and elicit antibodies following immunisation of rabbits that 

recognise both recombinant antigens and parasite strains representing the range of MSP-1 block 2 

sequence diversity (Tetteh et al., 2005a, Tetteh and Conway, 2011).  

Linear B-cell epitopes typically range in length from 4 to 12 amino acids and can be highly specific, 

with just a single amino acid substitution resulting in loss of antibody binding (Buus et al., 2012). The 

successful alignment of repetitive, short read sequences to a library of reference sequences allows 

for the exploration of potential epitopes without the need for the assembly of the whole sequence, 
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as even the shortest reads will encode multiple epitopes. The use of short read data to determine 

epitope frequencies has the potential to inform vaccine design, as hybrid antigens can be designed 

to incorporate epitopes representing the global sequence diversity. The use of short reads is 

expedient, as such genomic sequence data are available for large numbers of parasite isolates 

recently sampled form endemic regions. 

This chapter details the analysis of amino acid sequences determined by alignment of short reads to 

the library of reference sequences (appendix 7.4) described in the previous chapter (section 2.3.4) 

and their subsequent use in designing polyvalent hybrid antigen constructs. These designs are then 

tested in silico to determine the number of potential epitopes in the set of de novo assembled Pf3k 

msp1 block 2 sequences (tSRA, section 2.3.9) that are present in each design thus allowing 

comparison between designs and with the previously described PVHAf (Tetteh and Conway, 2011). 

 

3.2 Materials and methods 
 

3.2.1 Data sources 

 

In order to create short read sequencing data from known sequences, long read sequences were 

randomly split into “synthetic reads”. These synthetic reads were created from 964 MSP-1 block 2 

sequences in the long read dataset (LRD, described in section 2.3.1, additional data file 

“long_read_sequences.fa”) using a modified version of to_perfect_reads (available from from 

https://github.com/sanger-pathogens/Fastaq) as described above (section 2.2.2). Raw reads were 

extracted from BAM files downloaded from the Pf3k project and aligned to a library of MSP-1 block 2 

reference sequences as described above (section 2.2.5). MSP-1 block 2 sequences from the Pf3k 

data were obtained by de novo assembly of reads mapping to the MSP-1 locus and reads aligned to 

the msp1b2RefLib as described above (sections 2.2.4 and 2.2.5). The amino acid sequence of MSP-1 

block 2 polyvalent hybrid antigen F was obtained from the publication (Tetteh and Conway, 2011).  
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3.2.2 Translation of aligned reads 

 

Reads were first aligned to a msp1b2RefLib of 15 MSP-1 block 2 sequences (appendix 7.4) as 

described above (section 2.2.5). The resulting BAM files containing all mapped reads were converted 

into SAM format using SAMtools (Li et al., 2009). Python scripts (appendix 7.7) were developed to 

extract the cigar string, containing mapping information, and obtain the position of the first base of 

the read relative to the sequence it is mapped to. This position was then used to translate the read 

in frame with the sequence to which it was aligned.  

3.2.3 Analysis of nonamers and design of minimal polyvalent antigens 

 

Python functions (appendix 7.7) were defined to split translated reads into all possible nonamer 

sequences and output all nonamer sequences along with the fraction of all reads in which the 

nonamer occurred for each sample. Python was also used to write a function to determine the 

population-wide frequency, scaled to account for inter sample variation in coverage depth (appendix 

7.5), for each unique nonamer, calculated by summing, across all samples containing the nonamer, 

the number of times each nonamer occurred in a given sample divided by the total number of 

aligned reads in that sample (figure 3.2). The python function “nonamerise” was also used to split 

amino acid sequences encoded b long read or de novo assembled sequences into nonamer 

sequences for comparison and validation. 

3.3 Results 
 

3.3.1 Short reads can be accurately translated based on alignment to a sequence library 

 

To determine whether DNA sequence reads could be translated to amino acid sequence based on 

alignment to a sequence library, synthetic reads generated from long read dataset (LRD, section 

2.3.1) sequences (section 2.2.2) were first aligned to a sequence library and then translated. The 

whole of the read spanning the block 2 region was translated using the mapping information to 

determine the correct frame. The resulting reads were then split into nonamer sequences, as the 
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standard, linear antibody epitope is nine amino acids long (Buus et al., 2012). The nonamers were 

then listed and duplicates removed. By comparing the unique nonamers obtained from the 

translation of synthetic reads to those determined by splitting all LRD sequences (section 2.3.1) used 

for synthetic read generation into nonamers it was determined that 84.9% (1155/1361) and 84.3% 

(1147/1361) of unique nonamers were recovered by translation of aligned 100 bp and 75 bp 

synthetic short read sequences respectively. The nonamers that were missing following translation 

of aligned reads resulted from rare sequence variants not represented in the msp1b2RefLib, 

meaning that the synthetic reads containing these sequences did not map. No new nonamers were 

generated, indicating accurate translation of aligned reads.  

3.3.2 Prevalence of nonamer epitopes varies by region 

 

Following the success of translating synthetic reads (see above section 3.3.1), all 9.39 x 105 reads 

from the Pf3k dataset that had been aligned (section 2.2.5) to the msp1b2RefLib (appendix 7.4) were 

translated as described above (sections 3.2.2 and 3.3.1) and broken into all possible nonamer 

sequences resulting in a total of 1.47 x 107 nonamers. By comparing nonamer sequences to MSP-1 

block 2 sequences encoded by sequences in the LRD and short read assembled (SRA) datasets it was 

determined that 8.06 x 106 (54.8%) nonamer sequences were of the K1 type, 2.99 x 106 (20.3%) were 

of the MAD20 type and 1.46 x 106 (9.92%) were RO-33-like. Whilst K1-like and MAD20-like 

sequences were detected in almost equal proportions globally (table 2.2), the increased coverage of 

African and culture adapted samples (appendix 7.5), both of which are enriched for K1-type alleles, 

combined with the increased length of K1-like alleles results in the increased fraction of nonamer 

sequences being identified as K1-like.  Due to the similarity between the MR recombinant 5’ 

sequence and MAD20-like 5’ sequence and between the MR recombinant 3’ sequence and 3’ RO-33-

like sequences, some of the nonamers identified as MAD20-like or RO-33-like would have originated 

from MR recombinant sequences.  The unique sequence generated by recombination of MAD20-like 

and RO-33 like sequence present in MR alleles was identified in 3.07 x 104 nonamers. There were 
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2.17 x 106 (14.7% of total) nonamer sequences that were not present in any sequences present in 

either the LRD or SRA datasets. These nonamers are the result of sequencing errors and frameshifts 

introduced by gapped mapping of reads and each sequence only occurs once. These sequences were 

retained for further analysis as application of this method to antigens for which there is not such a 

wealth of sequence data would not permit the filtering of nonamer sequences by comparison to 

known sequences.  

Removing duplicate nonamer sequences left a total of 1.99 x 105 unique sequences globally. The 

majority (99.6%) of these unique sequences could not be identified by comparison to known MSP-1 

block 2 sequences. This is due to the fact that sequencing errors and frameshifts introduced by 

gapped alignments result in the generation of a large number of unique sequences. Of the 764 

unique sequences that could be matched to nonamer sequences of the known K1-like, MAD20-like 

or RO-33-like sequences present in LRD and SRA databases, 372 (48.7%) were of the K1-type, 229 

(30.0%) of the MAD20-type and 163 (21.3%) of the RO-33 type. This is expected given the increased 

complexity of K1-like tripeptide repeat sequences compared to those encoded by MAD20-like 

alleles, and the lack of repeat sequences in RO-33-like alleles resulting in far less polymorphism 

(section 2.3.9). 

African samples yielded a total of 753 unique nonamer sequences that could be identified, of which 

372 (49.4%) were of the K1 type, 218 (29.0%) were of the MAD20-type and 163 (21.6%) were of the 

RO-33 type. One hundred and fifty of these nonamers sequences were only found in African 

samples, with 98 (65.3%) of these belonging to the K1 type, 10 (6.67%) belonging to the MAD20 type 

and 42 (28.0%) belonging to the RO-33 type. Of the 753 unique nonamer sequences found in Africa 

that could be classified as K1-like, MAD20-like or RO-33-like, 603 (80%) were also found in Asia 

where an additional 11 sequences were found that are not seen in Africa, resulting in 614 unique 

nonamer sequences in Asia. There were 274 K1 type unique nonamer sequences present in Asia, all 

of which were also seen in Africa. The K1 type nonamer sequences account for a slightly smaller 
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proportion (44.6%) of unique nonamer sequences in Asia than in Africa but this is not significant (p = 

0.088, χ2 test), due to the decreased complexity of K1-like alleles in Asia (section 2.3.9), but still 

comprise the greatest proportion of unique nonamer sequences detected in Asia. There were a 

similar number of MAD20 type nonamer sequences that were exclusive to Asia (11) or Africa (10). 

The small increase in complexity of Asian MAD20-like sequences relative to African MAD20-like 

sequences (due to the presence of serine-valine-alanine-serine-valine-alanine (SVASVA) motifs and 

the serine-aspartic acid-glycine (SDG) tripeptide) results in a small but significant increase in the 

proportion of unique nonamers of the MAD20 type which represent 219 (35.7%) of all unique 

nonamer sequences (p < 0.001, χ2 test). Due to the fact that the SNP in the RO-33 allele that is 

exclusive to Asia is also found in an African allele (figure 2.14), all Asian RO-33-like nonamers are also 

found in Africa. The slight reduction, relative to Africa, in the proportion of unique RO-33-like 

nonamers in Asia, which account for 121 (19.7%) of unique nonamers found in Asia, is a result of the 

reduced number of RO-33-like alleles present in Asia compared to Africa (section 2.3.9), although 

this shift is too small to be statistically significant (p = 0.38, χ2 test).  

Due to the difference in coverage depth between samples (appendix 7.5), it was necessary to scale 

the number of nonamer sequences counted for each sample against the number of reads mapped 

reads (section 3.2.3, figure 3.2). As the frequencies of different allelic types vary between continents 

(table 2.2) the frequency of each nonamer was determined as a percentage of all nonamers of that 

allelic type present in either Africa or Asia. The majority of tripeptide nonamer sequences occur at 

low frequencies. Due to the fact that the vast majority of variation within K1-like and MAD20-like 

allelic families is due to changes in the tripeptide repeat, nonamers arising from this region were 

examined and, for clarity, only nonamers beginning with the first serine of the tripeptide were 

considered. Five K1 type tripeptide nonamers are found at high (> 1.0%) frequency in Asia (figure 3.1 

a), as they are all encoded by the K1-like repeat structure that is found in over 80% of Asian K1-like 

alleles (figure 2.13 and section 2.3.9). These same nonamers are also found at high, but slightly 

reduced, frequencies in Africa. There are two nonamers that are above 1% frequency in Africa but 
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rare in Asia (figure 3.1 a) both arising from the SAQSGA motif encoded by K1-like alleles of the 3D7-

like subtype, which is at a far higher frequency in African isoaltes (section 2.3.9). An additional 

nonamer sequence, SGTSGPSGT, is present at high (>0.4%) frequency in both Africa and Asia. This 

nonamer is found in just over a fifth of K1-like sequences with the Asian or K1-like subtype structure 

in Asia, but is present in a greater number of alleles in Africa as it occurs in a wider array of different 

repeat structures encoded by African alleles. The remaining African nonamers present at high 

(>0.25%) frequencies are rare in Asia, as they arise from repeat structures that are not commonly 

found in Asia (section 2.3.9).  

The picture for MAD20-like tripeptide nonamers is the reverse of that seen for K1-like, with five 

nonamers present in the repeat structure which is most common in Africa at high frequencies in 

both continents but notably higher in Africa (figure 3.1 b). As predicted from analysis of the 

differences in MAD20-like repeat structure, the nonamer derived from expanded SGG repeats 

(SGGSGGSGG) is higher in Africa than in Asia. Five nonamers originating from Asian repeat structures 

containing SVASVA motifs or SSG tripeptides are seen at high frequency in Asia but are at low 

frequency or absent from African isolates. It is interesting to note however, that the SVASVA motif, 

which was not seen in de novo assembled, African MAD20-like tripeptide repeats, is present in at 

low frequencies in Africa. Nonamers containing the SKGSVA and SKGSVT motifs are common in both 

Africa and Asia, with SKGSVT being at a higher frequency in Africa, as would be predicted form the 

de novo assembled sequences which show this motif to be enriched in Africa (section 2.3.9). 
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Figure 3.1. Regional variation in frequencies of most common nonamers. 75-100 bp reads were 
aligned to a library of MSP-1 block 2 reference sequences and then translated (section 3.2.2). The 
translated reads were then broken into nonamer sequences and the frequency of each nonamer, 
scaled for coverage depth (figure 3.2), was calculated. The frequency of nonamers originating from 
K1-like tripeptide repeats (a) are shown as the percentage of all K1-like nonamers present in either 
in Africa (dark red) or Asia (pink). The frequency of MAD20-like tripeptide nonamers (b) are shown 
as a percentage of all MAD20-like nonamers in Africa (dark blue) or Asia (light blue). For clarity, only 
nonamers beginning with the first serine of the tripeptide that have a frequency of > 0.25% are 
shown.  

 

 

3.3.3 An algorithm for designing polyvalent hybrid antigens was designed and optimised 

 

An algorithm was developed in order to use the translated reads to design peptide sequences that 

would include as many nonamer epitopes presented by the different MSP-1 block 2 alleles as 

possible in a minimal length by combining nonamer sequences derived from translated reads (figure 

3.2). The algorithm considers two factors when deciding whether or not to include a given nonamer 

sequene. The first is the frequency of the nonamer in the population, which is determined by 

summing the frequency of the nonamer in each sample after normalising for differences of coverage 

depth between samples (figure 3.2). The second factor is the number of residues that need to be 

added to incorporate a given nonamer into the proposed antigen sequence such that a minimal 

length is achieved. These two factors are combined in an inclusion score (figure 3.2) which is 

calculated for each nonamer sequence with every iteration of the algorithm. The seed forming 

propensity (sfp) is a linear scaling factor that determines the degree to which the algorithm will 

incorporate nonamers based on their relative frequency as opposed to the number of residues that 

need to be added to the sequence; the higher the sfp the greater weight that is given to the 

frequency of the nonamers and the lower the sfp the greater weight that is given to the ability to 

incorporate a given nonamer with a minimal increase in antigen length.  
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𝑧 = 𝑙 + (𝑠𝑓𝑝 × 𝑓𝑠) 

Equation 3.1. Formula for calculating nonamer inclusion scores. Inclusion scores (z) for each 

nonamer are calculated in each iteration as the sum of the length of the overlap (l) and the product 

of the seed forming propensity parameter (sfp) and the scaled frequency (fs). 

 

The algorithm will use the nonamer with the highest frequency in the population as the first seed. 

Inclusion scores are then calculated for all remaining nonamers and the nonamer with the highest 

score is then added to the antigen. If there is an overlap between the new nonamer and the 

beginning or end of any seed, the longest overlapping sequence will be used to incorporate the new 

nonamer into a seed sequence; if the new nonamer has no overlap with any seeds it will be added as 

an additional seed sequence. The algorithm then checks whether the addition of the new nonamer 

has created any overlaps between the ends of any seed sequences and, if so, uses the shared 

sequence to combine the pair of overlapping sequences into one seed sequence. This process is 

performed iteratively until a pre-set maximum length for the antigen is reached. 

In order to optimise the sfp parameter, synthetic reads were created from msp1 block 2 sequences 

from the LRD (described in section 2.3.1) and these reads were mapped (section 2.2.5) to the 

msp1b2RefLib (appendix 7.4) and translated (section 3.2.2). The unique nonamers generated from 

the translated reads were then fed into the polyvalent hybrid antigen design alogorithm with varying 

sfp parameter values and a maximum length of 231 amino acids (set to be the same length as the 

MSP-1 block 2 sequences present in the manually designed polyvalent hybrid antigen F (Tetteh and 

Conway, 2011)). The number of nonamer epitopes of each LRD sequence that was present in the 

antigen was determined and the percentage of these epitopes as the total of all unique epitopes was 

calculated for polyvalent hybrid antigen sequences generated by the algorithm with a range (1-200) 

of sfp parameter values (figure 3.3). Altering the sfp parameter resulted in significant changes in the 

coverage of MSP-1 block 2 nonamers by the resulting antigen sequence, with median values ranging 

from 64 to 93%. The highest median coverage of all allelic types combined was for the antigen 
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design produced by the algorithm with an sfp of 51. However, an sfp of 71 was chosen as optimal as 

the antigen produced with this sfp parameter value, whilst having a lower median coverage of K1-

like alleles, had better median coverage of other allelic types (table 3.1).  

The antigen produced by the algorithm (with an optimal sfp of 71) was compared to the polyvalent 

hybrid antigen designed by eye. Across all sequences in the LRD, the median percentage of nonamer 

epitopes present in polyvalent hybrid antigen F was determined to be 76%, significantly lower than 

that for the antigen produced by the optimised algorithm (92%, p < 0.001, Wilcoxon rank-sum). The 

K1-like super repeat (Tetteh et al., 2005b), which is present in the polyvalent hybrid antigen F, 

contains a high proportion of K1 type nonamer sequences found in the LRD (median 93% across all 

K1-like sequences) with at least 40% of nonamers in each LRD K1-like sequence being present in the 

polyvalent hybrid antigen F and the majority having over 90% of their nonamer sequences 

represented. The antigen designed using nonamers of translated synthetic reads by the algorithm 

with an optimised sfp of 71 made only a very slight improvement on this, with a median value of 

94% of nonamers present in LRD sequences also present in the algorithm and with at least 45% of 

nonamers in each sequence represented (table 3.1). In addition to the K1-super repeat, the 

polyvalent hybrid antigen contains the Wellcome MAD20-like allele and RO-33 sequences. The 

antigen designed by the algorithm using nonamer sequneces from the LRD included a wider range of 

MAD20-like motifs as well as an MR-like sequence, with the G97D mutation (section 2.3.9). The 

inclusion of these additional sequences means that the antigen sequence design by the algorithm 

performed better than the polyvalent hybrid antigen F in regards to RO-33-like and MR recombinant 

sequneces in the LRD and much better in regards to MAD20-like sequences (table 3.1). In order to 

determine whether equivalent coverage of nonamers could be achieved with a shorter antigen 

sequence, the same approach was used to analyse antigens designed with a range (50-225 amino 

acid) lengths. Decreasing the antigen length dramatically reduces the number of sequences with 

moderate (> 50%) and high (>75%) of their composite nonamer sequences included in the antigen. It 

was therefore decided to continue with an antigen length of 231 amino acids.  
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Figure 3.2 Flow chart showing how polyvalent hybrid antigens were generated from short sequence reads. 

Short sequence reads are first aligned to the msp1b2RefLib of msp1 block 2 sequences (see Chapter 2). 

Aligned reads are then translated (see above section 3.2.2) and the unique nonamer amino acid sequences 

stored. Scaled frequencies are calculated for each unique nonamer based on the number of reads in which it 

occurs and the total number of reads mapping to the msp1b2RefLib for the sample. The scaled frequencies 

are summed for each unique nonamer sequence and the nonamer with the highest scaled frequency is 

selected as the first seed. The remaining nonamers are then scored based on the product of their scaled 

frequency (multiplied by a linear scaling factor) and the degree of overlap with the end of the seed(s) 

(overlaps of less than three amino acid residues are ignored). The highest scoring nonamer is then added to 

the seed(s) by either adding amino acids to the end of an extant seed or by adding the nonamer as a new 

seed. After adding a nonamer to a seed, overlaps between seeds are found and, if present, seeds are 

merged. This process is repeated iteratively until a predetermined maximum length has been reached for 

the antigen.
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Figure 3.3 Optimisation of seed forming propensity for polyvalent hybrid antigen algorithm. Nonamers 

generated from translation (section 3.2.2) of synthetic reads (section 2.2.2) created from sequences 

deposited in LRD (section 2.3.1) and aligned to the msp1b2RefLib (appendix 7.4) were used to create 

polyvalent hybrid antigen sequences with the algorithm described above using a range of seed forming 

propensity values (sfp; see above). Histograms show the distribution of the percentage of all nonamers 

represented in the resultant polyvalent hybrid antigen sequences for each sequence in the LRD. Bars are 

coloured by the allelic type of the sequence with K1-like (red), MAD20-like (blue), RO-33-like (green) and MR 

recombinant (purple) sequences shown.  
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spf K1-like MAD20-like RO-33-like MR All 

1 0.91 (0.49-1.0) 0.19 (0.0-0.75) 0.64 (0.42-0.76) 0.2 (0.14-0.78) 0.64 (0.0-1.0) 

2 0.91 (0.49-1.0) 0.19 (0.0-0.75) 0.64 (0.42-0.76) 0.2 (0.14-0.78) 0.64 (0.0-1.0) 

4 0.91 (0.45-1.0) 0.76 (0.4-1.0) 0.62 (0.42-0.73) 0.47 (0.47-0.78) 0.8 (0.4-1.0) 

6 0.76 (0.38-0.86) 0.81 (0.42-1.0) 0.62 (0.42-0.76) 0.47 (0.47-0.78) 0.76 (0.38-1.0) 

8 1.0 (0.45-1.0) 0.81 (0.42-1.0) 0.6 (0.4-0.71) 0.47 (0.47-0.78) 0.82 (0.4-1.0) 

11 1.0 (0.47-1.0) 0.9 (0.33-1.0) 0.69 (0.49-0.78) 0.65 (0.57-0.84) 0.9 (0.33-1.0) 

21 1.0 (0.48-1.0) 0.9 (0.33-1.0) 0.6 (0.4-0.71) 0.65 (0.57-0.78) 0.93 (0.33-1.0) 

31 0.96 (0.45-1.0) 0.94 (0.33-1.0) 0.67 (0.42-0.82) 0.55 (0.55-0.86) 0.91 (0.33-1.0) 

41 0.94 (0.45-1.0) 1.0 (0.49-1.0) 0.62 (0.33-0.73) 0.49 (0.49-0.69) 0.92 (0.33-1.0) 

51 0.98 (0.47-1.0) 0.96 (0.42-1.0) 0.62 (0.33-0.73) 0.49 (0.49-0.72) 0.93 (0.33-1.0) 

61 0.94 (0.31-1.0) 0.94 (0.51-1.0) 0.44 (0.07-0.44) 0.29 (0.24-0.45) 0.9 (0.07-1.0) 

71 0.94 (0.45-1.0) 1.0 (0.44-1.0) 0.8 (0.13-0.8) 0.51 (0.5-0.74) 0.92 (0.13-1.0) 

81 0.94 (0.45-1.0) 1.0 (0.44-1.0) 0.8 (0.13-0.8) 0.51 (0.5-0.74) 0.92 (0.13-1.0) 

91 1.0 (0.45-1.0) 0.88 (0.44-0.98) 0.8 (0.13-0.8) 0.49 (0.45-0.61) 0.89 (0.13-1.0) 

100 0.93 (0.38-1.0) 0.8 (0.42-0.89) 0.22 (0.0-0.23) 0.49 (0.18-0.59) 0.8 (0.0-1.0) 

110 0.92 (0.42-1.0) 0.8 (0.42-1.0) 0.27 (0.06-0.28) 0.39 (0.22-0.48) 0.8 (0.06-1.0) 

120 0.96 (0.4-1.0) 0.8 (0.42-1.0) 0.24 (0.0-0.26) 0.49 (0.2-0.57) 0.8 (0.0-1.0) 

130 0.94 (0.44-1.0) 0.74 (0.33-0.91) 0.29 (0.0-0.3) 0.47 (0.24-0.59) 0.8 (0.0-1.0) 

140 0.94 (0.45-1.0) 0.74 (0.33-0.91) 0.31 (0.0-0.33) 0.45 (0.25-0.57) 0.8 (0.0-1.0) 

150 0.94 (0.45-1.0) 0.74 (0.33-0.91) 0.31 (0.0-0.33) 0.47 (0.25-0.59) 0.8 (0.0-1.0) 

160 0.94 (0.45-1.0) 0.74 (0.33-0.91) 0.31 (0.0-0.33) 0.47 (0.25-0.59) 0.8 (0.0-1.0) 

170 1.0 (0.45-1.0) 0.8 (0.42-0.89) 0.31 (0.0-0.33) 0.47 (0.25-0.57) 0.8 (0.0-1.0) 

180 1.0 (0.45-1.0) 0.8 (0.42-0.89) 0.31 (0.0-0.33) 0.47 (0.25-0.57) 0.8 (0.0-1.0) 

190 0.94 (0.42-1.0) 0.74 (0.33-0.91) 0.36 (0.07-0.37) 0.37 (0.27-0.5) 0.8 (0.07-1.0) 

200 0.94 (0.42-1.0) 0.74 (0.33-0.91) 0.36 (0.07-0.37) 0.37 (0.27-0.5) 0.8 (0.07-1.0) 

PVH 
antigen F 0.93 (0.4-0.96) 0.65 (0.29-0.97) 0.76 (0.16-0.76) 0.45 (0.36-0.63) 0.76 (0.16-0.97) 

 

Table 3.1. Coverage of nonamer epitopes in LRD sequences by antigens designed by algorithm using 

translated reads. Synthetic reads were generated from msp1 block 2 sequences in LRD (section 2.3.1, 

additional data file “long_read_sequences.fa”). These reads were then aligned and translated, as described 

above. The nonamer sequences present in these reads were used to generate polyvalent hybrid antigen 

sequences using the algorithm described above (section 3.3.3) with a range of seed forming propensity (sfp) 

parameters. The fraction of the unique nonamers present in each LRD sequence was then determined for 

every antigen generated. Fractions of nonamers covered for different allelic types are shown for each 

antigen with the range of coverage in parentheses. The antigen resulting from the optimal spf value is 

highlighted in bold. The polyvalent hybrid (PVH) antigen F, designed by eye, is shown for comparison.  
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Figure 3.4 In silico comparison of antigens designed by algorithm and by eye. Synthetic reads created from LRD 
sequences (section 2.3.1) were translated and used to create a polyvalent hybrid antigen with an algorithm that 
combines the most frequent nonamer sequences (section 3.2.3). The antigen produced following optimisation of this 
algorithm (see above) was then compared to the polyvalent hybrid antigen F designed manually (Tetteh and 
Conway, 2011); the number of polyvalent hybrid antigen nonamer sequences found in each MSP-1 block 2 sequence 
from LRD as a fraction of all unique nonamers in that sequence was determined for each antigen. Histograms show 
the distribution of the percentage of unique nonamers covered by the polyvalent hybrid (PVH) antigen F (left) and 
the antigen produced by the optimised algorithm (right), with colours showing the allelic type of the sequence; K1 
(red), MAD20 (blue), RO-33 (green) and MR (purple)
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Figure 3.5 Effect of length of antigen on coverage of sequences. The algorithm for designing polyvalent hybrid antigens was used to generate antigens with a range (50 – 
225 amino acids) of lengths from nonamer amino acid sequences extracted from synthetic reads (section 2.2.2) aligned to the msp1b2RefLib and then translated (section 
3.2.2).  The resultant antigens were then compared to all sequences from LRD (section 2.3.1) to determine the fraction of nonamer epitopes presented in each sequence 
that were covered by each antigen. Histograms show the frequency distribution of the percentage of epitopes covered by the antigens of different length for the three 
major allelic types; K1 (red), MAD20 (blue), RO-33 (green) and for the MR-like recombinant alleles (purple)
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3.3.4. Design of region specific polyvalent antigens to incorporate range of epitopes 

 

The optimised algorithm (section 3.3.3) was then used to design polyvalent hybrid antigens based on 

the frequency of nonamer sequences obtained from aligning reads in the Pf3k dataset to the 

msp1b2RefLib (appendix 7.4) and translating these reads according to their alignment (section 

3.2.2). The maximum length set for the antigens designed by the algorithm was chosen to be 231 

amino acids, as this is the length of the msp1 block 2 sequences present in the previously designed 

polyvalent hybrid antigen which is easily expressed in E. coli ((Tetteh and Conway, 2011) and section 

4.2.1). Due to the variation in nonamer frequencies between samples from Africa and Asia (figure 

3.1), in addition to designing a global antigen sequence based on the nonamer frequencies seen 

across all samples, antigen sequences were also designed based only on the frequency of nonamers 

present in either Africa or Asia. For each of the three sample sets the algorithm output a single RO-

33-like sequence. When using the global and African samples sets, one complete and one 

incomplete K1-like and one complete and one incomplete MAD20-like sequence. When using the 

Asian samples, the algorithm out put one complete K1-like sequence and five incomplete MAD20-

like sequences. The tripeptide repeat sequences from incomplete K1- and MAD20-like sequences 

produced by the algorithm where then concatenated by eye to give one complete K1-like sequence 

and one complete MAD20-like sequence for each antigen design (figure 3.6). Whilst all three antigen 

designs contain sequences from the three major allelic types, it is clear that a greater proportion of 

the African polyvalent hybrid antigen comprises K1-like sequence variants, whereas the Asian 

polyvalent hybrid antigen contains a greater proportion of MAD20-like sequence. This is caused by 

the variation in the frequency of allelic types between Africa and Asia (table 2.2) but also by the 

increased complexity of K1-like repeat structures in Africa compared to Asia and the increased 

complexity of MAD20-like repeat structures in Asia compared to Africa. Increased complexity of 

repeat structure leads to a greater number of unique nonamer sequences and, therefore, the need 

to create a longer synthetic repeat sequence to represent these nonamers.  



137 
 

The sequences obtained by de novo assembly of Pf3k data were then used to test the coverage of 

the nonamer peptide sequences in proposed polyvalent hybrid antigens. As described previously 

(section 3.3.3), the antigens designed by the algorithm were tested against each sequence present in 

the SRA dataset individually; the number of nonamers in a given SRA sequence that were present in 

the antigen sequence was determined as a percentage of all nonamers in the given sequence. This 

gives a percentage coverage for the antigen for each of the 1523 sequences in the SRA dataset. Each 

antigen could then be assessed by distribution of coverage achieved across the sequence in the SRA 

(figure 3.7).  Results of this analysis show that the global antigen achieved a median coverage of 85% 

(range 47-100%) of nonamers (table 3.2). This was slightly lower than the performance of the 

previously described polyvalent hybrid antigen, (PVHAf; 93%, range 33-100%) but this difference was 

not significant (p = 0.24, Wilcoxon rank-sum). Comparing the coverage of nonamers in SRA 

sequecnes of each allelic type by these two antigens shows that the PVHAf performed better against 

K1-like and RO-33-like sequences but the novel PVHAg performed better against MAD20-like 

sequences (p < 0.001, Wilcoxon rank-sum, figure 3.7). This is to be expected as the PVHAf includes 

the K1 super repeat, which is designed to incorporate a range of K1-like nonamers (Tetteh et al., 

2005b), but only a single MAD20-like allele (Tetteh and Conway, 2011). The reason that the PVHAg 

achieves a poorer coverage of RO-33-like sequences is that the variation at position 67, where an 

aspartic acid is seen in almost all African alleles and a glycine is seen in the vast majority of Asian 

alleles, is not included in the sequence produced by the algorithm, meaning that nonamers 

containing this position are not covered. This shows how this approach to antigen design can work 

well for polymorphic repeat sequences, but is not ideal for dealing with dimorphism at a single 

amino acid position.  

As expected, both the African (PVHAaf) and Asian (PVHAas) antigens contained a higher proportion 

of sequences from the populations that they were designed for (table 3.2, figure 3.7). Whilst the 

improvement of the Asian antigen over PVHAf was starker, both antigens cover a higher percentage 

of nonamers present in sequences from their respective continents than PVHAf (p < 0.001, Wilcoxon 
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rank-sum, table 3.2, figure 3.7). This is due to the fact that the antigens designed for either Africa or 

Asia reflect the tripeptide repeat structures that occur at higher frequencies in alleles from either 

continent (section 2.3.9).   
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Antigen Popn All alleles K1-like MAD20 -like RO-33-like MR-like 

PVHAg All 0.85 (0.47-1) 0.96 (0.65-1) 0.84 (0.59-1) 0.78 (0.54-0.78) 0.58 (0.47-0.65) 

PVHAaf All 0..79 (0.33-1) 1.0 (0.74-1) 0.71 (0.33-1) 0.96 (0.54-1) 0.72 (0.65-0.75) 

PVHAas All 0.78 (0.47-1) 0.82 (0.48-1) 0.97 (0.62-1) 0.78 (0.54-1) 0.58 (0.47-0.63) 

PVHAf All 0.93 (0.33-1) 0.98 (0.78-1) 0.63 (0.33-1) 0.96 (0.54-1) 0.51 (0.51-0.63) 

PVHAaf Afrcia 1.0 (0.33-1) 1.0 (0.74-1) 0.85 (0.33-1) 1.0 (0.54-1) 0.72 (0.65-0.75) 

PVHAf Africa 0.98 (0.33-1) 0.98 (0.78-1) 0.79 (0.33-1) 1.0 (0.54-1) 0.51 (0.51-0.63) 

PVHAas Asia 1.0 (0.54-1) 1.0 (0.75-1) 0.97 (0.68-1) 1.0 (0.54-1) 0.58 (0.58-0.58) 

PVHAf Asia 0.78 (0.33-0.78) 0.98 (0.89-1) 0.54 (0.33-1) 0.78 (0.78-1) 0.51 (0.51-0.51) 

 

Table 3.2 Comparison of coverage of MSP-1 block 2 sequences by novel designs for polyvalent 
hybrid antigens. Nonamer amino acid sequences from translated reads were used to create 
polyvalent hybrid antigen sequences using an algorithm that combines these nonamer sequences 
based on their frequency in the population. One antigen (global polyvalent hybrid antigen, PVHAg) 
was designed using nonamers from all samples in the Pf3k data and two antigens were designed 
using nonamer sequences from Africam and Asian Pf3k samples (African polyvalent hybrid antigen, 
PVHAaf and Asian polyvalent hybrid antigen global, PVHAas, respectively). These antigens were then 
tested against peptide sequences in the tSRA dataset (section 2.3.9). The number of unique 
nonamers from each tSRA sequence which occurred in the tested antigen sequence was determined 
as a fraction of all unique nonamer sequences present in each tSRA sequence. The median fraction 
of nonamers present in the antigen sequences are shown, with the range in parenthesis for each 
antigen tested against de novo assembled sequences from all regions for all allelic types and each 
allelic type individually. The region specific antigens were also tested against de novo assembled 
sequences from the region for which the antigen was designed. The manually designed polyvalent 
hybrid antigen f (PVHAf) (Tetteh and Conway, 2011) is included for comparison. 
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Figure 3.6 Sequences of proposed polyvalent antigen designs. Short reads were aligned to a library of MSP-1 block 2 reference sequences (appendix 7.4) 

and then translated (section 3.2.2). The nonamer sequences form these translated reads were used to design polyvalent hybrid antigens containing as much 

sequence diversity as possible whilst being under 232 amino acids in length. This was done for nonamer sequences from all, African and Asian parasites to 

design a global (PVHAg) African (PVHAaf) and Asian (PVHAas) antigen. The sequences comprising the polyvalent hybrid antigens are shown, with each 

discrete sequence on a new line. The MSP-1 block 2 sequences present in the previously designed polyvalent hybrid antigen (PVHAf) is show for 

comparison. K1-like sequences are highlighted in red, MAD20-like in blue and RO-33-like in green.   
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Figure 3.7 Nonamer peptide coverage of allele sequences in the tSRA dataset by proposed 

polyvalent hybrid antigens. Short reads from Pf3k samples were aligned to the msp1b2RefLib 

(appendix 7.4) and translated (section 3.2.2). Nonamer sequences from these translated reads were 

used to design polyvalent hybrid antigens (section 3.3.3).  Polyvalent hybrid antigens were designed 

from all nonamer sequences (global polyvalent hybrid antigen, PVHAg) and from African (African 

polyvalent hybrid antigen, PVHAaf) and Asian nonamer sequences (Asian polyvalent hybrid antigen, 

PVHAas). These antigens were tested in silico against each de novo assembled sequence in the tSRA 

dataset (section 2.3.9) by determining the fraction of nonamer sequences represented in the 

antigen. Histograms show the frequency distribution of the percentage of nonamers from each tSRA 

sequence that are present in each antigen. Bars are coloured by sequence type: K1-like (red), 

MAD20-like (blue), RO-33-like (green) and MR-like (purple). Polyvalent hybrid antigen F (PVHAf), 

which has a K1-super repeat designed manually, combined with Wellcome (MAD20-like) and RO-33 

sequences, was tested against tSRA sequences in the same manner for each population. (A) All 

antigens were compared against all sequences in the tSRA (n=1522). (B) The African antigen design 

(PVHAaf) was also compared against African tSRA sequences (n=787) and, (C), the Asian antigen 

(PVHAas) was compared against Asian sequences (n=735). 
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3.4 Discussion  
 

Short read data generated from LRD sequences (section 2.3.1) was used to validate the translation 

of short reads based on alignment to the sequence library described previously (section 2.3.4). No 

spurious amino acid sequences resulted from the translation of reads using the frame suggested by 

their alignment, demonstrating the validity of this approach. Furthermore, over 80% of unique 

nonamer sequences present in the LRD dataset were recovered by this approach, indicating its 

potential for extracting nonamer amino acid sequence data from short reads containing polymorphic 

repeat sequences. The nonamer sequences that were not detected from this approach originated 

from rare sequences that do not align to the msp1b2RefLib, showing a key weakness of this 

approach. However, the design of hybrid vaccine antigens will be based on the most common 

sequence variants and this method can therefore be applied here.  

Applied to the short read data from the Pf3k project, translation of the reads resulted in a 10-fold 

larger number of unique nonamer sequences than those present in the LRD sequences. This is in part 

due to the larger number of sequences present in this data set which contains almost three times as 

many samples and, due to the presence of mixed genotype infections, at least four times as many 

sequences (section 2.3.5). However, the increase in the unique number of nonamer sequences is 

doubtless also driven by translation of reads containing sequencing errors that would not be present 

in the in silico generated reads. These reads were not excluded from the analysis, as subsequent 

steps to analyse nonamer sequences ignored nonamers present at low frequencies. The analysis of 

regional nonamer frequencies (figure 3.1) reflected the pattern seen in the de novo assembled 

sequences (section 2.3.9) and in previous studies employing long read sequencing (Tanabe, 2013, 

Noranate et al., 2009), which suggests the method is valid. The fact that the most frequent K1-like 

tripeptide repeat nonamers seen in Pf3k samples from Africa are represented by the 12-mer 

peptides that were recognised by antibodies from multiple sera samples collected from adults living 



144 
 

in the same region (Tetteh et al., 2005b) is further evidence that the approach of translating short 

read sequence to determine nonamer frequency is appropriate.  

The design of polyvalent hybrid antigen proteins aims to incorporate the maximum amount of 

sequence diversity into the shortest possible antigen sequence in order to give an antigen that can 

be easily produced and has the potential to elicit an antibody response against a wide range of 

alleles. To do this, an algorithm was developed that ranks nonamer sequences based on their 

frequency in the population and their degree of overlap with other nonamer sequences. The highest 

ranked nonamers are then incorporated into a polyvalent hybrid antigen construct as they offer the 

greatest increase in representation of sequence diversity with the minimal increase of construct 

length. The algorithm uses a linear scaling factor, termed sfp, which adjusts the weighting of 

nonamer frequency and overlap in determining the score for each nonamer (equation 3.1). This 

parameter was optimised to produce antigen sequences containing the highest number of nonamer 

sequences for each LRD sequence. The antigen produced by the optimised algorithm compared 

favourably with the previously described PVHAf (Tetteh and Conway, 2011) when analysed against 

LRD sequences.  

The established difference in the frequencies of the allelic types (section 2.3.6), along with the 

greater diversity present in the African sequences, leads to a marked difference in nonamer 

frequencies between the two continents (figure 3.1). With this in mind, the algorithm was used to 

design three separate antigens; one global antigen (PVHAg) from all the data and two regional 

antigens using data from African isolates (PVHAaf) or Asian isolates (PVHAas) only. As expected on 

the basis of the allele frequencies, the African and Asia antigens contained greater proportions of 

K1- and MAD20-like sequences respectively.  

All three antigens designed by an algorithm to include nonamer sequences based on their frequency 

and the increase in antigen length required to include them contain a higher proportion of MAD20-

like allele sequences than PVHAf (figure 3.7, table 3.2), which is to be expected as this antigen 
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contains only a single MAD20-like allele (Tetteh and Conway, 2011). The MAD20-like hybrid 

sequences designed by this algorithm could replace the Wellcome (MAD20-like) allele that is in the 

present antigen. This update to the PVHAf would be likely to be of greater importance if the antigen 

was to be tested as a vaccine in Asia, where the increased complexity of MAD20-like repeat 

structures (section 2.3.9) may enable vaccine escape if only single MAD20 allele is included in a 

vaccine formulation. It is unfortunate that the sequence of another proposed MSP-1 block 2 hybrid 

antigen, which contains a synthetic MAD20 sequence designed to present a wider range of MAD20-

like epitopes has not been made publicly available and so could not be compared to the antigen 

sequences designed algorithmically (Cowan et al., 2011). 

PVHAf contains a synthetic K1-like repeat that is designed to incorporate a range of naturally 

occurring variants; encouragingly, the antigens designed by the algorithm are predicted to cover a 

comparable degree of K1-like sequences. This demonstrates the successful use of short read 

sequence data to design antigens that incorporate a range of sequence diversity without the need to 

first assemble sequences. Given that the reference sequence library contains a modest number (15) 

of different allele sequences, it is therefore feasible that limited long read sequencing of complex 

repeat regions would allow the capture of population-wide nonamer frequencies from short read 

data and the subsequent design of hybrid antigens that represent the naturally occurring sequence 

diversity. Given the prevalence of polymorphic repetitive sequences in P. falciparum vaccine 

candidates predicted to present linear B-cell epitopes (Feng et al., 2006, Guy et al., 2015), this tool 

has the potential to aid in the design of vaccine candidates that condense a large number of allelic 

variants into a relatively short protein sequence.  

Antigens comprising the two main variants of another merozoite surface protein, MSP-2, have 

already been proposed and shown to elicit cross-strain immune responses (Krishnarjuna et al., 

2016). The algorithm described here could be used to incorporate greater sequence diversity into a 

hybrid MSP-2 antigen and could also be applied to other P. falciparum antigens predicted to present 
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polymorphic, linear B-cell epitopes, such as Merozoite Surface Protein Duffy Binding Like 1 (MSPDBL-

1), MSPDBL-2 and Serine Repeat Antigen 5 (SERA-5).  
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Chapter 4 - Experimental approaches toward producing recombinant 

monoclonal antibodies against MSP-1 
 

4.1 Introduction 
 

Multiple studies have shown a correlation between presence of IgG against MSP-1 block 2 and 

protection from malaria (reviewed in (Fowkes et al., 2010)), but a direct causal effect and the mode 

of action of these antibodies is still unclear. Whilst studies control for exposure to malaria, it is still 

possible that IgG against MSP-1 block 2 are markers of exposure and do not directly convey 

protection. Vaccination will only boost antibodies against the antigen or antigens present in the 

vaccine and it is therefore important to establish that naturally-acquired antibodies against a specific 

antigen are efficacious prior to development as a vaccine target.  

Immunization of Aotus monkeys with MAD20-like MSP-1 block 2 resulted in control of parasitaemia 

for two out of four individuals infected with a homologous parasite strain, indicating that antibodies 

against MSP-1 block 2 can provide protection in this model of infection (Cavanagh et al., 2014). 

However, anti MSP-1 block 2 antibodies obtained both by animal immunization and affinity 

purification of human sera did not show significant, direct inhibition of in vitro parasite growth 

(Cowan et al., 2011, Galamo et al., 2009), implying that antibodies against this region of MSP-1 have 

an indirect mode of action. Indeed, antibodies affinity purified from clinically immune adult sera 

from Côte d’Ivoire against a K1-like MSP-1 block 2 antigen showed allele-specific inhibition of 

parasite growth in the presence of naïve monocytes, demonstrating the potential for anti-MSP-1 

block 2 antibodies to trigger cellular inhibition of parasites (Galamo et al., 2009). Rabbit antibodies 

raised by immunisation with MAD20-like MSP-1 block 2 antigens were shown to inhibit invasion of 

merozoites expressing homologous MSP-1 block 2 in the presence of active human complement 

proteins, suggesting that activation of the complement cascade by anti-MSP-1 block 2 antibodies 

results in either blocking of invasion, lysis of the merozoite or both (Boyle et al., 2015). Whilst these 

studies give some evidence for the efficacy of anti-MSP-1 block 2 IgG, antibodies against all three 
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allelic types have not been tested for their efficacy against parasites bearing the homologous MSP-1 

block 2 allelic type. Furthermore, only the study looking at antibody dependent cellular inhibition of 

parasite growth used human antibodies. It is therefore necessary to further investigate the efficacy 

of human antibodies against all allelic types of MSP-1 block 2 to evaluate this promising antigen as a 

vaccine target.  

Specific human antibodies can be purified from sera collected from individuals with clinical immunity 

by means of their affinity for a specific antigen (Wofsy and Burr, 1969). However, this technique has 

a number of drawbacks: the antibodies with the highest affinity will never be recovered as they will 

remain bound to the antigen; poor yields can result in the need for large volumes of sera, often only 

achievable by pooling sera from multiple donors, potentially obscuring variation between 

individuals; the resulting antibodies are a polyclonal mix that cannot be replicated; and it can never 

be certain that low levels of non-specific antibodies remain in the preparation. For these reasons, 

production of human monoclonal antibodies was attempted. 

Human monoclonals can be produced by immortalisation of B-cells collected from exposed donors 

(Traggiai, 2012). Screening of antibodies expressed by the resultant cultures can then determine 

reactivity to antigens of interest. This approach has been used for the production of monoclonals 

recognising P. falciparum merozoite surface proteins (MSPs) (Maskus et al., 2015, Maskus et al., 

2016, Stubbs et al., 2011) and other blood-stage antigen targets (Sirima et al., 2016, Barfod et al., 

2007, Berzins et al., 1985, Udomsangpetch et al., 1986). Reverse transcription of B-cell mRNA and 

cloning of sequences encoding FAb fragments into phage display libraries represents another 

approach for producing human monoclonals and has been applied to blood stage antigens including 

MSP-1 block 2 (Lundquist et al., 2006, Cheng et al., 2007, Sowa et al., 2001). Sorting of antigen-

specific cells has the advantage of avoiding labour intensive cell culture and screening and has the 

potential to produce large numbers of monoclonals (Muellenbeck et al., 2013). This enables 

screening of a greater number of memory B-cells, and was therefore selected for use in this project 
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due to the predicted low frequency of MSP-1-specific memory B-cells in malaria exposed adults 

(Nogaro et al., 2011).  

Human B-cells recognise antigen epitopes via cell-surface receptors (B-cell receptors, BCRs), 

consisting of two heavy and two light immunoglobulin chains. During B-cell development, the 

immunoglobulin heavy (IgH) chain variable region is formed by the recombination of one of over 51 

variable region (V) with one of 25 diversity (D) and one of 6 joining (J) genes present at the IgH locus 

on chromosome 14 (Watson et al., 2013, Murphy et al., 2008, Davis et al., 1980) figure 4.1). 

Recombination of one of 30-40 V genes with one of 4-5 J genes present at either the Ig 

(chromosome 2) or Ig (chromosome 22) loci occurs to produce a light chain variable region (figure 

4.1). Huge diversity is created by the possible combinations of these genes and by the addition of 

non-templated nucleotides at the joining sites. The variable regions of the heavy and light 

immunoglobulin chain are responsible for binding antigen, so it is this vast diversity created though 

V(D)J recombination that creates unique naïve B-cells and forms the basis of their recognition of a 

vast number of antigens. Following V(D)J recombination, mRNA transcripts from the IgH and either 

the Ig or Ig loci are expressed and spliced such that the V(D)J genes encoding the variable region 

are joined to the exons encoding the constant domains (figure 4.1). 
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Figure 4.1. Schematic representation of recombination at the IgH and Ig/ loci to produce heavy and light chain immunoglobulin transcripts. During 
development of the pre B-cell in the bone marrow, the IgH locus on chromosome 14 undergoes two steps of recombination to join a single D gene (yellow) 
with a single J gene (purple) and then to join the recombined DJ genes with a single V gene (green). Maturation of the pre B-cell to a pro B-cell is marked by 

the recombination of either the Ig or Ig locus, in which a single V gene (red) is joined to a single J gene (grey). Splicing of mRNA transcripts from both 
heavy and light chain loci results in a transcript encoding the unique variable region followed by three (heavy chain) or a single (light chain) constant region.  
Figure adapted from (Janeway et al., 2001).
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In frame recombination results in the expression of the light and heavy immunoglobulin chains 

consisting of a variable domain, encoded by recombined V(D)J genes and one (for light chains) or 

three (for heavy chains) constant domains; two heavy and two light chains are joined by disulphide 

bonds to form a BCR (figure 4.2). Within both heavy and light chain variable domains there are three 

complementarity determining regions (CDRs) which contain the majority of residues that contact the 

antigen separated by four framework regions (FR) that contain fewer antigen binding residues and 

are involved in forming the immunoglobulin domain structure (Davies et al., 1990) figure 4.2). It is 

therefore the CDRs that are primarily involved in antigen binding.  

If the BCR binds to foreign antigen, the naïve B-cell is activated and undergoes clonal expansion. 

Some of the cells resulting from this expansion will become plasma cells that secrete the BCR as 

soluble immunoglobulin, other cells will undergo affinity maturation in the germinal centre, a 

process by which additional diversity is generated by targeted mutation of the recombined V(D)J 

genes, known as somatic hypermutation (SHM), and selective retention of B-cells with higher affinity 

for the specific antigen (Jacob et al., 1991, Pham et al., 2003). This affinity-matured population will 

go on to form memory B-cells that persist in the absence of antigen and form the basis of humoral 

immune memory (McHeyzer-Williams and McHeyzer-Williams, 2005).  
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Figure 4.2 Schematic representation of BCR structure. The BCR consists of two heavy and two light 
chains comprising four and two immunoglobulin domains respectively. Each chain has an N-terminal 
variable domain encoded by joining of a V (green) D (yellow) and J (purple) gene for the heavy chain 
variable domain (VH) and by joining of a V (red) and J (grey) gene for the light chain variable domain 
(VL) (Schroeder and Cavacini, 2010). Within the variable domains there are three complimentary 
determining regions (CDR1-3) which are primarily involved in antigen recognition (Davies et al., 
1990). Figure adapted from (Janeway et al., 2001). 
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The presence of MSP-1 specific memory B-cells, as detected by ELISpot assay, has been 

demonstrated in children living in a malaria endemic region of Kenya, and these cells persist longer 

than detectable antibody responses for children living in a region of Kenya (Ngerenya) in which a 

drop in malaria transmission meant that they were previously exposed to malaria but had not 

recently been exposed  (Ndungu et al., 2012). Although the titres of antibodies against P. falciparum 

merozoite antigens do not always correlate with frequencies of memory B-cells recognising that 

antigen (Nogaro et al., 2011, Ndungu et al., 2012), the fact that MSP-1 block 2 antibodies can be 

detected in a high proportion (47%) of adults, who have a history of malaria, but no concurrent 

infection, shows that MSP-1 block 2 elicits an immune response in exposed adults (Polley et al., 

2003b). Assuming a normal B-cell response to this antigen in adults, this indicates that MSP-1 block 

2-specific memory B-cells will be present in adults resident in malaria endemic settings, such as 

Kintampo, Ghana, the site for this study (Owusu-Agyei et al., 2012).  

Fluorescence assisted cell sorting (FACS) can be used to separate cells based on their fluosrescent 

properties, and thus to isolate fluorescently labelled cells. The use of fluorescent antigen to purify 

antigen-specific B-cells by this technique is well-established (Greenstein et al., 1980, Hayakawa et al., 

1987, Julius et al., 1972, McHeyzer-Williams et al., 2000, Townsend et al., 2001). This method has 

been used to isolate memory B-cells recognising a malaria vaccine candidate through chemical 

linkage of a fluorophore to the recombinant GLURP-MSP-3 hybrid antigen, GMZ2 (Muellenbeck et 

al., 2013). Work with tetanus toxin has shown that the tetramerisation of antigens, via biotinylation 

and subsequent binding to fluorescently labelled streptavidin,  can increase the specificity of B-cell 

labelling and thus increase the proportion of B-cells isolated that encode antigen-specific 

immunoglobulin (Franz et al., 2011).  

BCR-encoding mRNAs from single, isolated B-cells can be reverse transcribed and the V(D)J genes 

encoding the variable region can be amplified by nested PCR (Tiller et al., 2008). The amplified 

fragments can be sequenced and cloned into expression vectors for recombinant expression of 
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antigen-specific monoclonal antibodies in a human cell line (Dodev et al., 2014). This approach can 

therefore be used to reproduce high-affinity, naturally occurring, human MSP-1 block 2 specific 

antibodies. 

In order to produce recombinant human monoclonal antibodies against MSP-1 block 2, biotinylation 

and tetramerisation of a hybrid antigen representing all MSP-1 block 2 types (polyvalent hybrid 

(PVH) antigen F (Tetteh and Conway, 2011)) was attempted. The approach used to produce these 

tetramers was unsuccessful due to a failure to chemically biotinylate the antigen. In order to assess 

whether  P. falciparum antigen tetramers could be used to isolate specific memory B-cells from 

exposed individuals, a full length MSP-1 antigen was used that had already been biochemically 

biotinylated. Once isolated, the variable regions of the heavy and light chain immunoglobulin 

expressed by individual MSP-1-specific B-cells were analysed. These antibodies could then be used 

to map the MSP-1 block 2 epitopes that are recognised by B-cells and also be used in in vitro assays 

to investigate the efficacy of antibodies recognising this antigen.  

 

4.2 Materials and methods 
 

4.2.1 Polyvalent hybrid (PVH) MSP-1 antigens 

 

Microbeads with E. coli BL21 cells transfected with pET-15b-PVH antigen F plasmids (Tetteh and 

Conway, 2011) (a kind gift from Dr Kevin Tetteh) were used to inoculate starter cultures of 5 mL of 

lysogeny broth (LB, (Bertani, 1951)) with 100 µg mL-1 ampicllin and incubated overnight with at 37˚C. 

6.25 µg of pET-15b-PVH antigen F plasmid was purified from one 5 mL culture using NucleoSpin 

Plasmid purification kit (Macherey-Nagel). Purified plasmid was sequenced using the BigDye 

Terminator v3.1 Cycle Sequencing kit (Applied Biosystems) using manufacturer’s instructions. The 

pET forward sequencing primer (5’-TAATACGACTCACTATAGGG-3’, 10 µM) was added to the 

sequencing reaction, performed under the following conditions: 96 ˚C for 1 minute followed by 25 
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cycles of 96 ˚C for 30 seconds, 50 ˚C for 5 second and 60 ˚C for 3 minutes and 45 seconds. Following 

sodium acetate/ethanol precipitation to remove unincorporated dyes, reaction products were 

dissolved in highly de-ionised formamide buffer (Applied Biosystems) and analysed by 

electrophoresis using an ABI3730 sequencer. All DNA sequence chromatograms were examined and 

readings were corrected by eye where necessary using Finch TV (Geospiza). 

Purified pET-15b-PVH antigen F plasmid was mutated by polymerase incomplete primer extension 

(PIPE) (Klock and Lesley, 2009) using PVHAntigenF-S26C-3pOLfwd (sequence: 5’-

GACCCATGAATGCTATCAGGAACTGGTTAAAAAACTGGAAG-3’) and PVHAntigenF-S26C-3pOLrev 

(sequence: 5’-TCCTGATAGCATTCATGGGTCACGGATCCGGTA—3’) primers designed to introduce an A 

→ T mutation at position 78 of the PVH antigen F sequence and to linearise the pET-15b-PVH antigen 

F plasmid with complementary 3’ overhangs. 25 ng of plasmid DNA was combined with forward and 

reverse primers (0.5 µM) and Phusion Flash High-Fidelity PCR Master Mix (Thermo Scientific), 

containing Phusion Flash II DNA Polymerase and exposed to an initial denaturation step of of 98˚C 

for 10 seconds followed by 30 cycles of denaturation at 98 ˚C for 1 second, followed by annealing 

and extension at 72˚C for 90 seconds. Following thermocycling, parental plasmid was digested with 

DpnI in CutSmart buffer (New England Biolabs) for 15 minutes at 37˚C with mixing. Mutant plasmids 

were used to transfect E. coli NEB 10 β cells (New England Biolabs) via heat-shock and transfectants 

were selected by overnight growth on ampicillin plates. 5 mL cultures of LB with 100 µg mL-1 

ampicllin were inoculated with 9 individual colonies and grown overnight at 37 ˚C. Plasmids were 

purified and sequenced as above; corrected sequences were aligned using Clustal Omega (Sievers et 

al., 2011). Purified plasmid bearing the desired mutation was used to transfect E. coli BL21 cells 

made chemically competent by use of Mix n Go kit (Zymoresearch) according to manufacturer’s 

instructions. Successfully transfected cells were selected by growth on ampicillin plates and one 

colony was used to inoculate one 5 mL starter culture of LB with 100 µg mL-1 ampicllin; a second 

start culture was inoculated with a microbead containing E. coli BL21 cells transfected with parental 

pET-15b-PVH antigen F plasmids. After overnight growth at 37 ˚C 4 mL of starter cultures was used 
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to inoculate two 1 L cultures of ZYM-5052 autoinduction media (Studier, 2005) complemented with 

100 µg mL-1 ampicllin. Following growth overnight at 37 ˚C cells were pelleted, freeze-thawed and 

then mechanically lysed using a FastPrep™ with Matrix beads B (MP Biomedical). Cell lysates were 

clarified by centrifugation at 15,000 g and diluted 1:1 in PBS with 10 mM imidazole. His-tagged 

protein was bound to Ni-Nitrilotriacetic acid beads (Thermo Scientific). Following washing in 15 mL 

of PBS with 25 mM imidazole, PVH antigens were eluted in 3 mL of 250 mM imidazole in PBS. Eluted 

protein was transferred into PBS and concentrated using spin columns (molecular weight (MW) cut-

off 10 kDa, Amicon). Protein concentration was estimated by reaction of 5 µL samples with 5 mL of 

Protein Assay Dye Reagent (Bio-Rad) for 10 minutes at room temperature prior to measurement of 

absorbance at 595 nm. Estimation of protein concentration by comparison to a standard curve 

constructed with bovine serum albumin (BSA, Sigma) showed that 1.45 mg of mutated PVHS26C 

antigen F and 2.01 mg of PVH antigen F had been produced. Samples of PVH antigens were 

denatured and analysed on 10% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-

PAGE, figure 4.6). PVH antigen FS26C was reacted with a 20-fold excess of maleimide-(polyethylene 

glycol (PEG))11-biotin (Thermo Scientific) for 2 hours at room temperature. Excess maleimide-PEG11-

biotin was removed using spin columns (MW cut-off 10 kDa, Amicon).  
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Figure 4.3 Schematic representation of the introduction of a free sulfhydryl group into the polyvalent hybrid (PVH) MSP-1 antigen. In order to introduce a free sulfhydryl 

(SH) group that could be crosslinked to a biotin moiety by formation of a thiolether with a malemide group, the polyvalent hybrid antigen F (PVHAf), encoding MSP-1 block 

1 T-cell epitopes (black and white chequered) followed by the synthetic K1 super repeat (Tetteh et al., 2005a) (black and white striped) flanked by the K1 non-repeat 

regions (black) linked to the RO-33 allelic sequence followed by the MAD20-like Wellcome allelic sequence, was mutated to introduce substitute a cysteine residue at 

position 26 in the first block 1 T-cell epitope in place of the original serine. Figure adapted from (Tetteh and Conway, 2011). 
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4.2.2 Full length MSP-1 antigen 

 

Supernatant from HEK293E cells transiently co-expressing BirA biotinylation enzyme and a full-

length, his-tagged P. falciparum 3D7 MSP-1-rat CD4 fusion protein with a C-terminal BirA 

biotinyaltion site (MSP-1 biotinyaltion site linker histidine tag (MSP1-BLH) (Crosnier et al., 2013)), 

was a kind gift from Dr Gavin Wright. Imidazole and NaCl were added to supernatants to a final 

concentration of 10 mM and 100 mM respectively. Supernatants were then bound to a HisTrap HP 1 

mL column (GE Healthcare Life Sciences) overnight. Column was washed in phosphate buffer (16.4 

mM K2HPO4, 3.96 mM KH2PO4, 20 mM imidazole, 100 mM NaCl, pH 7.4) for 5 column volumes 

following return of A280 to baseline. His tagged proteins were eluted in 100 mM imidazole in 

phosphate buffer (16.4 mM K2HPO4, 3.96 mM KH2PO4, 100 mM imidazole, 100 mM NaCl, pH 7.4). 

Eluted fractions under the A280 peak were collected and 100 L samples of eluted fractions were 

reacted with 5 mL of Protein Assay Dye Reagent (Bio-Rad) for 5 minutes at room temperature prior 

to measurement of absorbance at 595 nm; protein concentration was estimated by comparison to a 

standard curve constructed with bovine serum albumin (BSA, Sigma). 

Samples of eluted fractions containing over 1 g mL-1 protein were analysed by SDS-PAGE (figure 

4.4a). Protein bands, from a simultaneously run, unstained SDS-PAGE gel were transferred to a 

nitrocellulose membrane (Amersham), incubated for 30 minutes at room temperature in blocking 

buffer (3% milk powder, 0.1% TWEEN-20 in 25 mM Tris base, 200 mM NaCL) before probing with 

rabbit α his tag antibody (1:1000 dilution in blocking buffer, Raybiotech), washing in TBS/TWEEN 

(0.1% TWEEN-20 in 25 mM Tris base, 200 mM NaCL) and detection with DyLight™ 680 labelled goat  

α rabbit IgG antibody (100 ngmL-1, KPL). Unbound labelled antibody was removed by washing in 

TBS/TWEEN and read fluorescence was read using an Odyssey® imager (LI-COR Biosciences) at 700 

nm (figure 4.4b).  Eluted fractions with over 0.25 mg mL-1 protein were pooled and dialysed against 

PBS. Post dialysis protein yield was estimated by Bradford assay (see above) to be 1.4 mg purified 

Bio-MSP1-BLH
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Figure 4.4 Analysis of purified Bio-MSP1-BLH. (A) Coomassie stained gel showing purification of Bio-

MSP1-BLH and (B) Western blot showing presence of his-tagged Bio-MSP-BLH protein in eluted 

fractions. 5 µL PageRuler™ Prestained Ladder (lane 1) 10 µL of pre-purification supernatant (lane 2), 

10 µL flow through (lane 3), 10 µL wash (lane 4), 10 µL of fraction A2 (lane 5) and 10 µL each of 

fractions A6-A9 (lanes 6-9) were loaded onto a 10% SDS-PAGE gel and run at 200V for 40 minutes. 

Gels were either washed in H2O, stained with Bio-Safe™ Coomassie stain (Bio-rad) and destained in 

H2O (a) or transferred onto a nitrocellulose membrane (Amersham), probed with rabbit α his tag 

antibody (1: 10 000 dilution Raybiotech) and detected with DyLight™ 680 labelled goat  α rabbit IgG 

antibody (100 ngmL-1, KPL) (b). Blot was washed and read on an Odyssey® imager (LI-COR 

Biosciences) at 700 nm.  

 

4.2.3 Tetramerisation of antigens 

 

For optimisation of antigen tetramerisation, purified antigens were mixed with streptavidin (SA, 

Sigma) at a range of molar ratios and incubated at 4 ˚C for 30 minutes. Samples were loaded onto a 

4-12% NuPAGE gel (Novex) and run for 1 hour and 30 minutes. Gels were stained washed three 

times for 5 minutes in H2O, stained with Bio-Safe™ Coomassie stain (Bio-rad) for 1 hour and 

destained in H2O for 30 minutes. 

For preparation of MSP-1 antigen tetramers for use in labelling B-cells (section 4.2.5), purified 

BioMSP1-BLH was mixed with streptavidin-R-phycoerythrin (SAPE, Molecular Proves) in an 8:1 molar 

ratio and incubated on at  4 ˚C  for 30 minutes. Aggregates were removed by centrifugation prior to 

dilution to a final concentration of 0.125 µg mL-1 in PBS. 
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4.2.4 Sample collection  

 

Healthy adult males aged 18 – 49 years (median age 31 years) who had lived in Kintampo North 

Municipal district for over 4 months were recruited (a description of the ecology and malaria 

transmission of Kintampo can be found (section 2.2.6) above). Adult donors on the London School of 

Hygiene & Tropical Medicine anonymous blood donors’ register, who had no history of malaria were 

also recruited. 60 mL of venous blood was collected and samples sent for haematology. Plasma was 

separated by centrifugation and tested for reactivity to five MSP-1 block 2 antigens (section 2.2.8) by 

ELISA as described above (section 2.2.9). Peripheral blood mononuclear cells (PBMC) were separated 

by density gradient centrifugation with Lymphoprep™ (Alere Technologies) and cell count and 

viability by trypan blue exclusion was assessed prior to cryopreservation at -80˚C in 10% dimethyl 

sulfoxide (DMSO) in heat-inactivated foetal bovine serum (FBS). Ethical approval for this study was 

granted by the London School of Hygiene & Tropical Medicine (reference 9161), Kintampo Health 

Research Centre (reference 2015-4) and the Ministry of Health, Ghana.  

4.2.5 Preparation of B-cells 

 

Cell counts, viability and the percentage of CD19+ve were used to rank samples by the predicted 

number of B-cells. For exposed (Kintampo) samples only those for which plasma reacted to one or 

more MSP-1 block 2 samples were thawed. B-cells were enriched through magnetic depletion of 

non-B-lymphocytes and erythrocytes using EasySep™ human B-cell enrichment kit (STEMCell). 

Enriched B-cells were stained with FVS-780 (BD Bioscience) prior to blocking of FC receptors with 

Trustain™ (BioLengend). Cells were then labelled with anti-CD19-BB515, anti-CD27-APC, anti-CD3-

PerCP, anti-CD14-PerCP (BD Bioscience) and anti-CD16-PerCP (BioLegend) at recommended 

concentrations before binding of MSP-1-SAPE antigen tetramers at 4°C for 30 minutes. Unbound 

antibodies and antigen tetramers were removed by washing prior to loading of cells onto a BD FACS 

Aria II (BD Biosciences). Individual, CD19+ve, CD27high, CD3/CD14/CD16-ve, MSP-1-SAPE+ve cells were 

sorted into a 96 well PCR plate containing 4 µL of lysis buffer (0.5X PBS, 10 mM dithiothreitol (DTT) 
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and 2U µL-1 RNAsin® (Promega) per well. Immediately following sorting, plates were sealed and 

stored at -80°C. 

4.2.6 Amplification of Ig gene variable regions  

 

The PCR strategy for amplification of Ig gene variable regions from B-cell messenger ribonucleic acid 

(mRNA) published by Wardemann and Kofer (2013) was adapted to specifically amplify sequences of 

Ig gene variable regions from single B-cells. Random hexamer primers (Roche) were used to reverse 

transcribe total B-cell RNA with SuperScript II® reverse transcriptase (Invitrogen). Ig gene specific 

primer mixes (table 4.1) were then used to amplify Ig gene variable regions from cDNA in a nested 

PCR reaction under the following conditions: 94°C for 15 min followed by 50 cycles of 94°C for 30 s, 

58°C (IgH and Ig k ) or 60°C (Ig l ) for 30 s and 72°C for 55 s followed by 72°C for 10 min. 3.5 µL of first 

round PCR product was then used in a second round of PCR with the following conditions: 94°C for 

15 min followed by 50 cycles at 94°C for 30 s, 62°C for 30 s and 72°C for 45 s followed  by 72°C for 10 

min. 10 µL of second round PCR product was loaded onto a 2% agarose gel and products of the 

correct size (450 bp for IgH, 510 bp for Igκ and 405 bp for Igλ) were sequenced using the BigDye 

Terminator v3.1 Cycle Sequencing kit and analysed as described above (section 4.2.1). 

4.2.7 Ig gene sequence analysis 

 

Sequences were aligned using Clustal Omega (Sievers et al., 2011) and then adjusted manually to 

preserve Chothia numbering (Al-Lazikani et al., 1997). Complimentarity-determining regions (CDRs) 

were determined by alignment to germline sequences in the IMGT database (Giudicelli et al., 2006) 

using IMGT/V-QUEST (Giudicelli et al., 2004). Alignment to all sequences in the IMGT database was 

performed with igBLAST (Ye et al., 2013). Unusual residues were identified by comparison to 

antibody sequences in the European Nucleotide Archive (ENA), Kabat database (Johnson and Wu, 

2001) and the Proetin Data Bank (PDB) (Berman et al., 2002) by abYsis (Swindells et al., 2017). 

Estimates of selection on Ig sequences were calculated using Bayesian estimation of Ag-driven 

SELectIoN (BASELINe) with the focused algorithm (Uduman et al., 2011, Yaari et al., 2012). 
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Reaction Primer Sequence 

IgH first PCR 

5'L-VH1 ACAGGTGCCCACTCCCAGGTGCAG 

5'L-VH3 AAGGTGTCCAGTGTGARGTGCAG 

5'L-VH4/6 CCCAGATGGGTCCTGTCCCAGGTGCAG 

5'L-VH5 CAAGGAGTCTGTTCCGAGGTGCAG 

3'CCH outer GGAAGGAAGTCCTGTGCGAGGC 

3'CCH1 GGAAGGTGTGCACGCCGCTGGTC 

3'CαCH1 TGGGAAGTTTCTGGCGGTCACG 

IgH second 
PCR 

5'AgeI VHI CTGCAACCGGTGTACATTCCCAGGTGCAGCTGGTGCAG 

5'AgeIVH1/5 CTGCAACCGGTGTACATTCCGAGGTGCAGCTGGTGCAG 

5'AgeIVH3 CTGCAACCGGTGTACATTCTGAGGTGCAGCTGGTGGAG 

5'AgeIVH3-23 CTGCAACCGGTGTACATTCTGAGGTGCAGCTGTTGGAG 

5'AgeIVH4 CTGCAACCGGTGTACATTCCCAGGTGCAGCTGCAGGAG 

5'AgeIVH4-34 CTGCAACCGGTGTACATTCCCAGGTGCAGCTACAGCAGTG 

3'CCH1 GGGAATTCTCACAGGAGACGA 

3'IgG (internal) GTTCGGGGAAGTAGTCCTTGAC 

3'CαCH1-2 GTCCGCTTTCGCTCCAGGTCACACT 

Igλ first PCR 

5'LV1 GGTCCTGGGCCCAGTCTGTGCTG 

5'LV2 GGTCCTGGGCCCAGTCTGCCCTG 

5'LV3 GCTCTGTGACCTCCTATGAGCTG 

5'LV4/5 GGTCTCTCTCSCAGCYTGTGCTG 

5'LV6 GTTCTTGGGCCAATTTTATGCTG 

5'LV7 GGTCCAATTCYCAGGCTGTGGTG 

5'LV8 GAGTGGATTCTCAGACTGTGGTG 

3'C CACCAGTGTGGCCTTGTTGGCTTG 

Igλ second 
PCR 

5'AgeIV1 CTGCTACCGGTTCCTGGGCCCAGTCTGTGCTGACKCAG 

5'AgeIV2 CTGCTACCGGTTCCTGGGCCCAGTCTGCCCTGACTCAG 

5'AgeIV3 CTGCTACCGGTTCTGTGACCTCCTATGAGCTGACWCAG 

5'AgeIV4/5 CTGCTACCGGTTCTCTCTCSCAGCYTGTGCTGACTCA 

5'AgeIV6 CTGCTACCGGTTCTTGGGCCAATTTTATGCTGACTCAG 

5'AgeIV7/8 CTGCTACCGGTTCCAATTCYCAGRCTGTGGTGACYCAG 

3'XhoIC CTCCTCACTCGAGGGYGGGAACAGAGTG 

Igκ first PCR 

5’LVκ1/2  ATGAGGSTCCCYGCTCAGCTGCTGG 

5’LVκ3  CTCTTCCTCCTGCTACTCTGGCTCCCAG 

5’LVκ 4  ATTTCTCTGTTGCTCTGGATCTCTG 

3’Cκ543  GTTTCTCGTAGTCTGCTTTGCTCA 

Igκ second 
PCR 

5’PanVκ GTTTCTCGTAGTCTGCTTTGCTCA 

3’Cκs494  GTGCTGTCCTTGCTGTCCTGCT 
 

Table 4.1 List of primer mixes used in amplification of Ig gene variable regions. Primers used for 

nested PCR amplification of heavy chain (IgH) and light chain (Igλ and Igκ) variable regions 

(Wardemann and Kofer, 2013). All primer sequences shown in 5’ to 3’.  
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4.3 Results 
 

4.3.1 Cysteine residue successfully introduced to T-cell epitope of polyvalent hybrid MSP-1 antigen 

 

PVH antigen F contains no cysteine residues (Tetteh and Conway, 2011) meaning a cysteine residue 

could be introduced which would then allow reaction of the free sulphydryl with maleimide-biotin 

resulting in targeted biotinylation. In order to introduce a cysteine residue into PVH antigen F, 

primers were designed that would anneal to the gene sequence encoding part of the block 1 

sequence present in PVH antigen F and introduce a thymine at position 78 resulting in an S26C 

mutation in the encoded amino acid sequence. The primers were designed to initiate DNA synthesis 

away from the site of mutation and contained complementary 3’ sequences, such that the plasmid 

encoding PVH antigen F would be linearised and then re-ligated in vivo when cloned into E. coli cells 

as described previously (Klock and Lesley, 2009). Following degradation of non-linear plasmid by 

DpnI, an endonuclease that targets methylated DNA, E. coli were transfected and selected by 

resistance to ampicillin. Sequencing of the plasmids present in these colonies showed that four out 

of 9 had the desired mutation (figure 4.5). Subsequent expression of the PVH antigen FS26C construct 

was successful (figure 4.6). 
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Figure 4.5. Sequence alignment of PVH antigen FS26C with PVH antigen F shows introduction of 

cysteine. Primers designed to introduce an A → T mutation in codon 26 of PVH antigen F were used 

to linearise pET-15-B plasmids encoding PVH antigen F. Linearised, mutated plasmids were 

transfected into E. coli cells where in vivo ligation re-constituted circular plasmids. Inserts of pET-15-

B plasmids purified from cloned transfectants were sequenced. The sequence from the plasmid 

present in colony 6 is shown compared to the parental plasmid, sequenced by the same method, 

along with the predicted amino acid sequence. The mutated base is high-lighted.  
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Figure 4.6 Analysis of purified PVH antigens. Following purification of PVH antigens from E. coli cell 

lysate on Ni-NTA beads (ThermoFisher Scientific), 8 L samples were loaded onto a 10% SDS-PAGE 

gel with 5 L prestained protein markers (Fermentus). Gel was run at 120 V for 1 hour and then 

stained (in 0.1% Coomassie R250 (Bio-Rad), 10% acetic acid, 40% methanol) for 1 hour and then de-

stained (in 20% methanol, 10% acetic acid) overnight. PVH antigen bands migrated with an apparent 

mass of 42 kDa (above predicted molecular weight of 27 kDa) as reported previously (Tetteh and 

Conway, 2011).  
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4.3.2 Chemical biotinylation and tetramerisation of polyvalent hybrid antigen fails 

 

In order to incorporate a biotin moiety into the PVH antigen F, the free sulphydryl introduced into 

the PVH antigen FS26C was reacted with maleimide-PEG11-biotin (comprising a maleimide group 

joined to biotin by a polyethylene glycol linker). It was expected that this biotinylated PVH antigen 

(BioPVH antigen FS26C) could then be tetramerised via ligation of single PVH antigens to each of the 

four biotin binding sites present in streptavidin (SA) tetramers. To assay tetramerisation, BioPVH 

antigen FS26C was combined with SA in a range of molar ratios and the resulting complexes run on a 

native protein gel. Formation of multimeric complexes would result in size shift of the protein band, 

which is not seen (figure 4.7), indicating that tetramers were not formed. The failure of chemical 

biotinylation of this antigen could result from a local pH that inhibits the formation of the thioether 

bond between the malemide and sulfhydryl moieties or steric hindrance preventing access to the 

sulfhydryl group of the introduced cysteine residue. Biotinylation can also be achieved using the 

E.coli enzyme BirA (Fairhead and Howarth, 2015). This would require the introduction of a BirA 

biotinylation consensus sequence (Schatz, 1993) into the PVH antigen F and subsequent validation of 

this antigen. However, for expediency, it was decided that a well validated MSP-1 antigen that had 

been expressed by a collaborator (section 4.2.2 (Crosnier et al., 2013)) and already included a biotin 

moiety (introduced by addition of a BirA biotinylation sequence and coexpression with BirA) would 

be used for production of MSP-1 antigen tetramers.  
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Figure 4.7. Native protein gel showing no change in mass of biotinylated polyvalent hybrid antigen 

following incubation with streptavidin. A cysteine residue was introduced into the block 1 sequence 

of PVH antigen F. The free sulphydryl of the mutant protein (PVH antigen FS26C) was biotinlyated 

using maleimide chemistry. Biotinylated PVH antigen FS26C (BioPVHAFS26C) was mixed with 

streptavidin (SA, Sigma) at a range of molar ratios and incubated at 4˚C for 30 minutes prior to non-

denatured samples being run on a 4-12% NuPAGE native acrylamide gel (Novex). NativeMark™ 

unstained protein markers (MW, Novex), Streptavidin (SA) and Biotinylated PVH antigen FS26C 

(BioPVHAFS26C,) were loaded in lanes one, two and three respectively. Multimerisation of 

BioPVHAFS26C through SA binding to biotin would result in a size shift, which is not seen.  
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4.3.3 Tetramerisation of biotinylated full-length MSP-1 was optimised 

 

A panel of biotinylated merozoite surface proteins had been expressed in mammalian expression 

systems for use in a high-throughput screen to detect erythrocyte invasion ligands (Bartholdson et 

al., 2013, Crosnier et al., 2013). This panel included full-length 3D7 MSP-1, which was obtained for 

use in this study. This antigen is expressed as a fusion with domains three and four of rat CD4. There 

is no reason to expect that B-cells would recognise this protein, and it has been shown that it is not 

reactive with a panel of adult human sera (Crosnier et al., 2013). It should be noted that to avoid 

addition of large glycans during expression that would not be present in native P. falciparum 

proteins, potential N-linked glycosylation sites were mutated in the MSP-1 antigen. This results in 14 

single amino acid substitutions (serine or threonine to alanine) in MSP-1. Whilst it is possible that 

these changes would alter the recognition of these antigens by individual B-cells, it is unlikely that 

these small changes would have a large impact on overall immunogenicity. Indeed this antigen was 

shown to be immunoreactive with Kenyan adult sera (Crosnier et al., 2013).  

Due to co-expression with BirA and the presence of a C-terminal BirA biotinylation site, MSP1-BLH is 

expressed with a biotin tag (BioMSP1-BLH, figure 4.8) (Crosnier et al., 2013). This allows for 

tetramerisation of the MSP-1 protein by binding to SA tetramers. Use of R-pyhcoerythrin (R-PE) 

labelled SA (SAPE) would then render this complex fluorescent and allow for the labelling of B-cells 

recognising MSP-1 (see below section 4.3.4). An excess of BioMSP1-BLH was undesirable as free 

MSP-1 protein could compete for BCR binding, resulting in lower fluorescence of antigen specific B-

cells. Excess of SAPE was also undesirable as it would increase the number of monomeric, dimeric 

and trimeric BioMSP1-BLH-SAPE complexes; B-cells bind antigen tetramers with a higher affinity 

than monomers (Franz et al., 2011) and so presence of these smaller complexes could also reduce 

antigen specific B-cell labelling. Hence, optimisation of the molar ratio of BioMSP1-BLH:SA 
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tetramers4 was performed to identify the ratio at which the majority of BioMSP1-BLH was present in 

a tetrameric complex with SA (BioMSP1-BLH-SA)4. Primarily, BioMSP1-BLH was combined with SA in 

a wide range of molar ratios (1:2 – 64:1) and the resulting protein complexes analysed by native gel 

electrophoresis showing that the optimal molar ratio was between 8:1 and 16:1 (figure 4.9a). To get 

a finer estimate of the optimal molar ratio, BioMSP1-BLH was combined with SA at a range of molar 

ratios between 8:1 and 16:1 (and also at 6:1 and 18:1) and analysed by native gel electrophoresis, 

revealing that a molar ratio of 14 BioMSP1-BLH to 1 SA tetramer was optimal for formation of 

BioMSP1-BLH tetramers  (figure 4.9b).

                                                           
4 Streptavidin (SA) was used in place of R-pyhcoerythrin (R-PE) labelled SA (SAPE) as it is a much smaller 
protein complex and therefore amenable to analysis by native gel electrophoresis. The molar ratio at which 
biotinylated proteins form tetramers with SA and SAPE is predicted to be very similar as the introduction of the 
R-PE label does not impact the affinity of SA for biotin (GOTHOT, A., GROSDENT, J. C. & PAULUS, J. M. 1996. A 
strategy for multiple immunophenotyping by image cytometry: model studies using latex microbeads labeled 
with seven streptavidin-bound fluorochromes. Cytometry, 24, 214-25.).  
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Figure 4.8 Schematic 
representation of 
biotinylation of MSP-1 
construct. BioMSP1BLH 
consists of full-length 
recombinant MSP-1 (3D7 
allelic sequence, blue) fused 
at the C-terminus with 
domains 3 and 4 of rat CD4 
(rat CD4d3+4, red) which 
has a BirA biotinylation site 
(sequence shown) followed 
by a hexa-histidine tag 
(sequence shown) at the C-
terminus. Co-expression 
with E. coli BirA enzyme 
(green) results in the 
biotinylation of the lysine 
residue of the BirA 
biotinylation site. Figure 
adapted from (Fairhead and 
Howarth, 2015)
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Figure 4.9. Native PAGE showing change in mass of biotinylated MSP-1 following incubation with 

streptavidin. Biotinylated MSP1-BLH (BioMSP1-BLH) contains a BirA biotinylation site and was co-

expressed with BirA resulting in enzymatic biotinylation. BioMSP1-BLH was mixed with a range of 

molar ratios of streptavidin (SA, lanes 3-9). NativeMark protein markers, BioMSP1-BLH and SA were 

run for comparison (lanes 1,2 and 10 respectively). Multimerisation of BioMSP1-BLH through binding 

to SA results in an increase in size shift. At a ratio of 14 BioMSP1-BLH:1 SA (lane 7, right hand gel) the 

majority of BioMSP1-BLH is present as the largest complex consisting of four molecules of BioMS1-

BLH bound to the SA tetramer. This complex is present at higher ratios of BioMSP1-BLH:SA, but there 

is greater excess of BioMSP1-BLH.  
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4.3.4 Isolation of MSP-1 specific memory B-cells 

 

In order to isolate MSP-1 specific memory B-cells for the production of monoclonal antibodies, B-

cells were enriched from peripheral blood mononuclear cells (PBMC) collected from adults living in a 

malaria endemic region. Viability of PBMC, as determined by Trypan blue exclusion, was low for 

malaria exposed donors (mean 15%, range 3.3-35%) as they had been stored at -80°C for 17-20 

months. In comparison the viability was high for the more recently sampled naïve donors (mean 

86%, range 71-100%, p < 0.001). Antigen specific memory B-cells were sorted based on labelling with 

anti-CD19 and anti-CD27 antibodies and binding to MSP-1-SAPE tetramers (figure 4.10). CD27+ve 

memory B-cells were found to be 32.6% (SD = 11.1%) of circulating B-cells, consistent with 

frequencies in previously published data (Morbach et al., 2010). One million one hundred and sixty 

thousand memory B-cells from 16 malaria exposed donors were analysed by flow cytometry (cells 

from 9 donors were pooled and run as three samples) from which 82 (7 in 100,000) were antigen 

positive (table 4.2, appendix 7.9). All 82 antigen positive B-cells were isolated by sorting and lysed 

for amplification and sequencing of mRNA.  

In order to determine if labelling with MSP-1-SAPE was due to specific antigen binding, B-cells from 

10 naïve donors were prepared under the same conditions as those from exposed donors. These 

samples had almost identical frequencies of memory B-cells as the exposed samples (31.4%, SD = 

8.92%). One million eight hundred and ten thousand memory B-cells were sampled and 70 (4 in 

100,000) were identified as antigen positive (table 4.2). Whilst antigen positive memory B-cells 

occurred at a lower frequency in naïve than in exposed samples, the difference was not statistically 

significant (p = 0.19, Wilcoxon rank sum). However, it is interesting to note that four out of 10 

exposed samples had frequencies of antigen positive memory B-cells in excess of 1 in 10,000, 

whereas only one naïve sample had a frequency greater than this (table 4.2). In both the naïve and 

exposed samples, there was a large amount of variation in the frequency of antigen positive cells 

between individuals (figure 4.11). 
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Figure 4.10. Gating strategy for isolation of MSP-1 specific B-cells. Lymphocytes were selected from 

magnetically enriched B-cells based on forward- and side scatter characteristics. Doublets were 

excluded by comparison of width and area of forward scatter signal. Dead cells were excluded by 

increased staining with FVS-780. Non-B-cells were excluded based on expression of CD3, CD14 and 

CD16. Memory B-cells were selected by expression of CD19 and high expression of CD27. MSP-1-

specifc cells were isolated on the basis of labelling with MSP-1-SAPE.  
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 Sample Memory B-cells 

(1000s) 

Antigen 

positive 

Frequency 

antigen positive 

(per 10,000 cells) 

naive 

503M 43.3 0 0.0 

332M 528 63 1.2 

527F 126 2 0.16 

247F 165 0 0.0 

357F 161 2 0.12 

642F 62 0 0.0 

407F 246 0 0.0 

063F 104 4 0.38 

528M 128 0 0.0 

463M 83.3 4 0.48 

 Total 1810 70 0.39 

exposed 

EIMKB031928 253 62 2.5 

EIMKB32 104 12 1.6 

EIMKB40 40.4 1 0.25 

EIMK024849 484 2 0.041 

EIMKB10 76 0 0.0 

EIMKB05 0.64 1 16 

EIMKB44 87.6 2 0.23 

EIMKB24 68.8 0 0.0 

EIMKB38 3.75 0 0.0 

EIMKB092742 1.81 2 11 

 Total 1160 82 0.71 
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Table 4.2 Cell counts for malaria exposed and naïve samples. B-cells were isolated from adults with 

no history of malaria (naïve) and adults resident in a malaria endemic region (exposed). Memory B-

cells were identified by expression of CD27. Antigen positive cells were identified by binding to MSP-

1-SAPE. Cell counts are shown along with the frequency of antigen positive cells per 10,000 memory 

B-cells. Totals are for each group (naïve and exposed). 

  



176 
 

 

  

 

Figure 4.11. Comparison of MSP-1 positive memory B-cells between malaria exposed and naïve 

individuals. Memory B-cells were incubated with MSP-1-SAPE tetramers. Antigen positive cells were 

identified by flow cytometry. The frequency of antigen positive cells per 10,000 memory B-cells is 

shown for malaria exposed and naïve adults. Although a greater number of the malaria-exposed 

individuals had MSP-1 positive B-cells at frequencies > 1 in 10,000, there was no significant 

difference between the populations.  
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4.3.5 Ig gene variable regions sequenced for two antigen positive B-cells 

 

RT-PCR followed by nested PCR was performed on all 82 sorted B-cells from 14 donors in order to 

amplify the Ig variable regions expressed by the cell as part of the B-cell receptor (BCR). Each sort 

plate contained a well into which 20 B-cells were sorted to act as a positive control and at least four 

wells with no cells as a negative control. Three out of five (60%) positive control wells yielded PCR 

products, however, PCR amplification from non-control wells was seen on both of the plates for 

which the positive controls failed. There was no amplification from negative control wells (0 out of 

22). Six heavy chain and 15 (10 kappa and 5 lambda) light chain genes were successfully amplified 

from 8 out of 82 (9.7%) antigen positive memory B-cells from 5 donors, as determined by presence 

of PCR products of the correct size (450 bp for IgH, 510 bp for Igκ and 405 bp for Igλ). The frequency 

of successful amplification of the variable region from B-cell cDNA was much lower than had been 

observed in preliminary work done in the same laboratory using non-antigen specific memory B-cells 

from malaria-naïve donors, in which 74 out of 79 (94%) cells yielded at least one PCR product, with 

44 (56%) of these having a heavy chain and a single light chain (Serene, 2015).  

Two (2.4%) of the 82 antigen positive memory B-cells (EIMKB32 cell B11 and EIMKB031928 cell C11) 

yielded both a heavy and light chain variable region (figure 4.12). Sequence analysis of these PCR 

products showed both cells were expressing Ig gamma (IgG1) heavy chains and lambda light chains 

with productive V(D)J recombinations (figure 4.12). V, D and J gene usage was determined by 

alignment to V-BASE and Immunogenetics (IGMT) databases of germline sequences. Both BCR 

sequences had a high number of mutations (86 bases out of 1.16 kb across all four immunoglobulin 

chains) compared to the reference germline sequences, suggesting a high degree of somatic hyper-

mutation (table 4.3). By comparison to sequences in the Kabat, IMGT and Protein Data Bank (PDB) 

databases (Bernstein et al., 1977, Johnson and Wu, 2001, Lefranc et al., 2015) it was determined that 
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the heavy chain of EIMKB32-B11 also encodes a high number (9 out of 98) of unusual residues that 

occur at that position in less than 1% of known antibody sequences (figure 4.12). Two such residues 

are also found in each of the two light chains from EIMKB32-B11 and EIMKB031928-C11. 

Affinity maturation is a process by which SHM of the BCR variable domains generates a pool of B-cell 

clones which compete for available antigen with other B-cells and soluble antibody molecules, 

resulting in selection of BCRs that have increased affinity for their cognate antigen (section 4.1). If 

there was no selection acting on variants produced by SHM the ratio of synonymous to non-

synonymous mutations throughout the variable domain would be determined solely by the 

mechanism of SHM (Dunn-Walters and Spencer, 1998, Hershberg et al., 2008). As the FR regions 

form the structure of the variable region, it is predicted that non-synonymous mutations in these 

regions will tend to be removed during affinity maturation, as they will not increase antigen affinity 

and may lead to non-functional BCRs (Siskind and Benacerraf, 1969, Hershberg et al., 2008). Indeed 

the ratio of non-synonymous to synonymous mutations in the 16 FRs of the two BCR sequences 

analysed here is lower than predicted by a model of SHM without selection (p < 0.01), suggesting 

that non-synonymous changes in these sequences have been selected against in the process of 

affinity maturation (table 4.4). 

A ratio of non-synonymous to synonymous mutations in the CDRs greater than what is predicted 

under a model of neutral selection is indicative of antigen-driven, positive selection on the 

immunoglobulin sequence, as the CDRs contain the majority of amino acid residues that are in direct 

contact with antigen BCRs (Siskind and Benacerraf, 1969, Hershberg et al., 2008). There is an 

increase in non-synonymous mutations in the CDRs expressed by EIMKB32-B11 BCR above what is 

predicted by the null model although this is not significant (table 4.4). The ratio of non-synonymous 

to synonymous mutations in the CDRs expressed by EIMKB031928-C11 is lower than that predicted 

by the model of neutral selection, although this is not significant (table 4.4).  
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The sequence of the heavy chain of the BCR of EIMKB32-B11 was found to be highly similar (79.6% 

amino acid sequence identity) to that of Pf143 (figure 4.13), an antibody binding fragment (Fab), 

found by screening E. coli expressed immunoglobulin genes amplified from six patients being treated 

for malaria for binding to the C-terminal fragment of MSP-1 (MSP-119) (Cheng et al., 2007). Surface 

plasmon resonance demonstrated that this Fab has high affinity for the conserved region of MSP-119 

and immunofluorescence experiments indicated binding to merozoites (Cheng et al., 2007). The 

sequence of the heavy chain variable region of Pf143 also contains a high number (7) of rare 

residues found in less than 1% of antibody sequences. Four of these 7 residues, present in the CDR2 

and FR3, are shared with the BCR of EIMKB32-B11 (figure 4.13). The CDR3 region of the Ig molecule 

is usually the most important in determining its affinity (Rock et al., 1994, Xu and Davis, 2000). The 

heavy chain expressed by EIMKB32-B11 encodes a very long (24 amino acid) CDR3 (figure 4.12), 

which is divergent from the sequence encoded by Pf143 and all other CDR3 sequences present in 

IMGT, Kabat and PDB databases. 

The PCR strategy used to amplify the variable regions results in the amplification of 99 bp of the IgH 

constant region. The BCRs of both EIMKB32-B11 and EIMKB031928-C11 have a rare variant in this 

region that results in the change of amino acid triplet SSK to CSR. This variant is also present in the 

Pf143 constant region (figure 4.14).  
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Figure 4.12. Deduced amino acid sequence of Ig variable regions from two MSP-1-specific memory B-cells. Ig gene transcripts were reverse transcribed 

from two MSP-1-specific memory B-cells and the variable regions were amplified by nested PCR. Agarose gels of second round PCR products, stained with 

ethidium bromide and visualised with UV light showing amplification of heavy chain (IgH) and lambda light chain (Igλ) from EIMKB32 cell B11 (B11) and 

EIMKB031928 cell C11 (C11) are shown (top). PCR products were sequenced and the encoded amino-acid sequences of the light and heavy chain variable 

regions are shown for both BCRs (bottom). Immunogenetics (IMGT® (Giudicelli et al., 2006)) complementarity-determining regions (CDRs), as determined 

by IgBLAST (Ye et al., 2013), are labelled. Insertions are highlighted in grey. Arrows show positions of unusual residues that occur in fewer than 1% of 

antibody sequences as determined by abYsis (Swindells et al., 2017).  
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Table 4.3 V(D)J gene usage for variable regions of two anti-MSP-1 antibodies. Sequences of variable regions of Ig gene transcripts were aligned to 

germline sequences in the V-BASE and Immunogenetics (IGMT) databases of germline sequences with IMGT/V-QUEST (Giudicelli et al., 2004) to determine 

Antibody  Chain V gene  

(reference) 

% Identity D gene  

(reference) 

% Identity J gene  

(reference) 

% Identity 

EIMKB32-B11  IgH VI-4.1b  
(Shin et al., 1991) 

89.8 (264/294 )  D3-3 

(Corbett et al., 

1997) 

100 (7/7) JH5a  

(Ravetch et al., 

1981) 

91.7 (44/48)  

 Igλ 1c.10.2  

(Williams et al., 1996) 

95.6 (281/294) 

 

N/A N/A JL3b  

(Kawasaki et al., 

1997) 

94.4 (34/36) 

EIMKB031928-C11  IgH WHG16  

(Kuppers et al., 1992) 

91.7 (264/288) D1-26 

(Corbett et al., 

1997) 

92.3 (12/13) JH3b  

(Mattila et al., 1995) 

95.6 (43/45) 

 Igλ V2-14  

(Kawasaki et al., 1997)  

 

93.4 (269/288) N/A N/A JL2/JL3a  

(Udey and 

Blomberg, 1987) 

94.4 (34/36) 
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usage of V, D and J genes. For each variable region sequenced the identity of the germline gene with the closest nucleotide sequence is shown with the 

percentage identity and number of matching bases. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Alignment of EIMKB32-B11 IgH gene sequence with high affinity anti-MSP-119 Fab sequence. Alignment of deduced amino acid sequence of 

the heavy chain of EIMKB32-B11 BCR with the heavy chain of Pf143, a Fab with high affinity for recombinant MSP-119 (Cheng et al., 2007), showing similar 

sequence in complementarity-determining regions (CDRs; shaded red) 1 and 2 and rare amino acid residues (found in <1% of antibody sequences; in red) in 

CDR2 and framework region (FR; shaded green) 3.  
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Table 4.4 Analysis of somatic hyper-mutation for evidence of antigen-driven selection. The Ig 

variable regions encoded by the two MSP-1 specific memory B-cells for which both a heavy and light 

chain variable region were successfully amplified were aligned to the closest germline gene 

sequence to determine mutations likely resulting from somatic hypermutation (SHM). Counts of 

non-synonymous (NS) and synonymous (S) mutations are shown for complementarity determining 

regions (CDR) and framework regions (FR) for both the heavy (VH) and light (VL) chain variable 

regions compared to the expected frequency of these mutations predicted by the Bayesian 

estimation of Ag-driven SELectIoN (BASELINe) under neutral selection (Uduman et al., 2011, Yaari et 

al., 2012). BASELINe then uses the odds ratio between observed and expected NS and S mutations to 

calculate a selection value (∑) for CDRs and FRs; values > 0 indicate positive selection and values < 0 

indicate negative selection. Selection values for each CDR and FR is shown as well as the combined 

scores for each immunoglobulin molecule and all four sequences. Significance of selection values, as 

calculated by Z-test, are indicated (** = p < 0.01).  

  

Antibody Sequence Observed  Expected Selection (∑) 

CDR FR CDR FR 

NS S NS S NS S NS S CDR FR 

EIMKB32-B11 VH 

 

5 4 15 6 0.15 0.04 0.58 0.23 -0.0475 -0.378 

VL 

 

3 1 6 2 0.16 0.02 0.58 0.24 0.461 -0.158 

Combined 

 

        0.207 -0.268 

EIMKB031928-

C11 

VH 

 

5 3 9 7 0.27 0.05 0.49 0.19 -0.756 -0.814** 

VL 

 

3 0 8 5 0.14 0.03 0.61 0.22 0.0792 -0.469 

Combined         -0.339 -0.642 

All sequences 

combined 

         -0.066 -0.455** 
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Figure 4.14. Alignment of IgH constant region containing rare variant present in three MSP-1-

specific antibodies. The amino acid sequence of the heavy chain constant region of EIMKB32-B11 

(B11), EIMKB031928-C11 (C11) and Pf-143 are shown. The two amino acid changes relative to the 

major allele of the constant region (IgH-constant) are highlighted (black box). 
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4.4 Discussion 
 

To demonstrate that MSP-1 specific memory B-cells could be isolated from malaria exposed donors, 

fluorescently labelled antigen was produced. Fluorescent tagging of the antigen via ligation of 

introduced biotin moieties by R-phycoerythrin conjugated streptavidin not only couples the antigen 

to the brightest fluorophore available but also results in the formation of antigen tetramers that 

have been shown to increase affinity for BCRs (Franz et al., 2011). Via introduction of a cysteine 

residue in the block one sequence present in the PVH antigen F, it was expected that chemical 

biotinylation could be performed to allow streptavidin-mediated tetramerisation and fluorescent 

labelling of the PVH antigen F to create a reagent for labelling MSP-1 block 2 reactive memory B-

cells, which could be used to produce recombinant monoclonal antibodies against this vaccine 

candidate. PIPE cloning was successfully used to introduce a single nucleotide change into the PVH 

antigen F sequence. However, this did not allow for chemical biotinylation and subsequent 

tetramerisation of the antigen. The most probable explanation for the failure of this approach is 

inhibition of the reduction of the free sulphydryl by maleimide, either by a local non-neutral pH or 

steric hindrance.  In order to overcome this issue, a BirA site could be added to the PVH antigen F; 

co-expression with BirA would then result in high-efficiency of in vivo biotinylation. Due to time 

constraints on this project, this approach was not attempted and as an alternative a full-length, 

biotinylated MSP-1 antigen was obtained from a collaborator. This full length MSP-1 antigen only 

contains one K1-like sequence and presents a far greater number of epitopes in addition to block 2. 

The antigen was used to demonstrate that tetrameric antigens can be used to isolate memory B-cells 

recognising P. falciparum antigens from malaria exposed donors.  

The number of memory B-cells analysed for malaria exposed individuals was far lower than 

expected. This was due to the viability of PBMC after thawing of exposed samples, which was much 

lower than that reported for this method of cryopreservation (Disis et al., 2006). The fact that the 

viability of naïve cells, was within the range reported (Disis et al., 2006), suggested that the storage 



234 
 

of these samples at -80°C for up to 17 months longer than the intended 3 month temporary storage 

resulted in damage to the cells. For future work, cells should be transferred to liquid nitrogen 

storage, if storage for longer than a few months is needed. For optimum yields, it is recommended 

that cell sorting is done at the site of collection as this would avoid cryopreservation, but this is not 

currently possible in malaria endemic areas in West Africa due to the lack of cell sorting facilities.  

The large degree of variability in the frequency of MSP-1 specific memory B-cells detected in 

different individuals can be explained by individual differences in the B-cell repertoire and response 

to this antigen (Riley, 1996) as well as variation in exposure due to heterogeneity in transmission 

(Bejon et al., 2011, Bousema et al., 2011, Clark et al., 2008, Drakeley et al., 2005, Kreuels et al., 2008, 

Mueller et al., 2012, Stewart et al., 2009). The identification of memory B-cells from naïve individuals 

binding to MSP-1 was not expected. Although the vast majority of these cells were identified in a 

single individual, cells binding MSP-1 were identified in five out of ten individuals (table 4.2). This 

could be explained by the presence of cross-reactive BCRs or by non-specific binding of memory B-

cells to the MSP-1-SAPE tetramer. Given the variation in the frequency of antigen positive memory 

B-cells in both naïve and exposed samples, analysis of a greater number of samples will be required 

to determine if the trend for increased antigen binding in exposed samples observed here is 

significant.  

The number of B-cells for which a heavy and light chain sequence was obtained was an order of 

magnitude below what has been published for this PCR strategy (Tiller et al., 2008) and from work 

done in our laboratory with non-antigen-specific memory B-cells (Serene, 2015). This could possibly 

arise from cells being sorted onto the sides of wells rather than the bottom due to accumulation of 

salt crystals in the nozzle of the cell sorter. Alternatively, increases in storage and preparation time 

may have meant that B-cell mRNA was degraded prior to sorting. The fact that only three of five 

wells into which 20 B-cells were sorted gave PCR products suggest the former explanation, as it 
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would be expected that increasing the number of cells in the well, and thus total mRNA by a factor 

of 20 would overcome any issues with mRNA quality.  

The two BCR variable region sequences presented here are the first sequences of malaria antigen 

specific BCRs from West Africa. Both BCRs contain rare variants in the heavy chain constant domain. 

These rare variants are also found in the constant region of an antibody, possibly of African origin, 

that has been shown to bind to the C-terminal region of MSP-1 (Cheng et al., 2007). The first of these 

rare variants introduces an additional cysteine residue into the constant region. It is tempting to 

speculate that this may alter the pattern of cysteine bond formation in the mature antibody 

molecule which could allow for enhanced binding of the antibody to its cognate epitope or increased 

capacity for cross-linking of FC receptors enhancing downstream immune activation.  

The BCR of cell EIMKB32-B11 has an unusual heavy chain sequence that contains 11 rare amino acid 

substitutions and has a CDR3 that is longer than 90% of those found from sequencing over 37 million 

BCRs from three adult donors (DeWitt et al., 2016). The CDR3 typically exerts the greatest influence 

over antigen recognition (Xu and Davis, 2000) and the unusual properties of the CDR3 of EIMKB32-

B1 could therefore endear this antibody with interesting properties. Indeed, a recent study 

discovered an antibody with an insertion resulting from recombination with LAIR-1 that has a broad 

specificity against variant antigens of the RIFIN family expressed on the surface of P. falciparum 

infected RBCs (Tan et al., 2016). To determine if the unusual CDR3 expressed by EIMKB32-B11 gives 

this antibody molecule broad specificity against MSP-1 it will be necessary to express this antibody 

and determine its affinity for a panel of MSP-1 antigens representing the naturally occurring 

variation seen in this antigen (Miller et al., 1993).  

Analysis of the distribution of synonomous and non-synonomous changes in the variable region 

sequences introduced by somatic hypermutation (SHM) during B-cell maturation indicates that non-

synonomous changes in the FRs of both antibody sequences had been subjected to negative 

selection (table 4.4). This is evidence that both memory B-cells have undergone affinity maturation, 
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a process in which mutations in the FRs are likely to be selected against as they could result in non-

functional BCRs. The same process would result in signatures of positive selection on the CDRs as 

mutations in these antigen-binding regions that increase antigen affinity would be positively 

selected for. Although not significant, there is a signature of positive selection on the CDRs of 

EIMKB32-B11, suggesting that this memory B-cell has undergone affinity maturation (table 4.4). The 

remarkable sequence similarity with the heavy chain of an antibody fragment, Pf143, that has been 

shown to have high affinity for MSP-1 (Cheng et al., 2007) might suggest that this memory B-cell 

does indeed encode an antibody with affinity for MSP-1. However, if the sequence of the Pf143 

antibody fragment was amplified form a donor of African descent, this similarity could be the result 

of shared germline variants that show up as rare mutants due to under representation of African 

germline Ig gene sequences in Ig gene databases. Unfortunately, amplified Ig gene sequences from 

eight donors (six of Japanese and two of African descent) were mixed before cloning into expression 

vectors and selection for affinity to MSP-119 meaning that the origin of the Pf143 sequence is 

impossible to ascertain (Professor Hiroshi Tachibana, personal communication).The CDR1 and CDR2 

of the IgH chain of EIMKB32-B11 and Pf143 are very similar but the CDR3 and light chains are 

divergent (figure 4.13). It would therefore be of interest to produce a monoclonal antibody using the 

BCR sequence from EIMKB32-B11 to investigate how these changes alter antigen specificity. 

The CDRs of EIMKB031928-C11 show signatures of negative selection. Whilst not significant, it could 

indicate that this memory B-cell is the product of polyclonal activation as there is no evidence of 

positive selection of mutations in the CDRs. PfEMP1, expressed on the surface of infected RBCs, has 

been reported to stimulate polyclonal expansion of B-cells (Donati et al., 2004), but this has not been 

reported for MSP-1.  

It remains unclear whether the population of memory B-cells in the blood is representative of the 

cells that will differentiate into antibody producing plasma cells on re-exposure to antigen, and thus 

contribute to control of future infections (Gourley et al., 2004, Tarlinton, 2006). Evidence from 
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studies in mice would suggest that migration of memory B-cells from the germinal centres is driven 

by selection, as the degree of somatic hypermutation seen in circulating B-cells increases with time 

following antigen exposure (Blink et al., 2005). This could mean that memory B-cells with a higher 

affinity for antigen are retained in the germinal centres and may not be sampled by isolating 

memory B-cells from blood but would contribute to future antibody responses. In order to avoid this 

potential bias, sampling the blood from concurrently infected, clinically immune individuals would 

allow for the analysis of the plasma cells that are producing antibody in response to infection. Whilst 

this would require the use of fresh blood, as these cells cannot be cryopreserved, the expansion of 

this cell population in response to infection should enhance isolation of antigen-specific cells (Franz 

et al., 2011). In mice infected with P. chabaudi, the numbers of MSP-1 specific memory B-cells and 

antibody secreting plasma cells varied dramatically over the time following infection, suggesting that 

the timing of sampling will dramatically impact the success of this approach (Nduati et al., 2010). 

In conclusion, the work presented here highlights several key areas which need to be addressed in 

order for labelling with P. falciparum antigen tetramers for isolation specific antibody producing cells 

for use in the production of large numbers of monoclonal antibodies. In order for this approach to 

yield the best results, fresh blood from infected individuals should be used to allow for the isolation 

of plasma cells. This will not only boost the yield of monoclonal antibodies but also capture the 

antibody specificities that are produced in response to infection.  
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Chapter 5 - Discussion 
 

5.1 The use of short read data for the analysis of population-wide variation in repeat 

sequences 
 

This thesis has detailed the development of bioinformatic tools that allow short read data to be used 

for the analysis of polymorphic and repetitive sequences in the context of P. falciparum vaccine 

design. Polymorphic repeat sequences, a common feature of P. falciparum antigens (Anders et al., 

1988, Feng et al., 2006), can often be grouped into allelic types (Anders et al., 1993). Whilst there is 

variation in repeat sequence and length within these groups, it is of use to be able to classify 

individual alleles by this method. This has classically been done by using type-specific PCR to amplify 

parasite DNA (Farnert et al., 2001). Work presented in this thesis demonstrates that the short read 

sequence data generated from whole genome sequencing can be leveraged to determine the allelic 

types present in an isolate. Using MSP-1 block 2 as an example, a sequence library was constructed 

and validated. Short read sequences from the Pf3K project were then aligned to this sequence 

library to determine the allelic types present in the isolate. This novel method produced results that 

agree with historical data for MSP-1 block 2 determined by PCR genotyping as expected given the 

temporal stability of allele frequencies (Tanabe et al., 2007a, Noranate et al., 2009, Silva et al., 

2000). This approach allows for population-wide survey of the alleles present at polymorphic loci of 

interest, which is of use both in the design of multi-allelic vaccines and in the monitoring of the 

effects such vaccines would have on allele frequencies in parasite populations.  

De novo assembly is known to struggle with repeat sequences (Li et al., 2010). Work presented in 

this thesis demonstrates that an optimised de novo assembly algorithm (Zerbino and Birney, 2008) 

can assemble msp1 block 2 repeat sequences. The probability of assembly is dependent on the 

length of repeat sequence and on the coverage depth (figures 2.4 and 2.5), which can be boosted by 

first mapping reads to a sequence library. The assembly of reads aligned to a sequence library 

resulted in generation of the largest single dataset of msp1 block 2 sequences. However, this 
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approach will run into difficulties when repeat sequences are longer than the read length, which is 

the case for a considerable number of P. falciparum genes (Aspeling-Jones, 2013). Two algorithms 

for assembling retroviral genomes use a stepwise approach to extend contigs in which the distance 

between paired reads is used to confirm the mapping of a reads overlapping the end of a contig 

(Hunt et al., 2015, Ruby et al., 2013). It would be of interest to see if this approach could be adapted 

to overcome the issue of long repeat sequences.  

The recent advance of long (upwards of 10 kb) read whole genome sequencing technologies, notably 

Pacific Bioscieneces (PacBio) and Oxford Nanopore Technologies (ONT) presents another method for 

overcoming assembly of repeat sequences (Koren and Phillippy, 2015). ONT applications still struggle 

with the AT rich genome of P. falciparum but PacBio sequencing has been used to successfully 

assemble a complete genome for the 3D7 lab strain (Vembar et al., 2016). However, the increased 

cost of this sequencing technology combined with the requirement for large amounts of DNA may 

limit its application to studies at the population level. Whilst the Pf3k consortium has used PacBio 

sequencing to look at a small number of clinical isolates, the real power of this technology may be in 

the rapid assembly of novel genomes, as has been done for P. malariae and P. ovale (Rutledge et al., 

2016). 

The work presented here on msp1 block 2 is proof of principal that, through alignment to a 

sequence library, short read data can be used for both typing and assembling highly polymorphic 

regions. Such approaches could be applied to any gene of interest, so long as sufficient sequence 

data is available to construct a sequence library. For well-studied antigens, sufficient sequence data 

is available to construct such libraries, however, this is not the case for novel vaccine candidates that 

are less well characterised. It is probable that the sequences obtained from de novo assembly of 

read pairs in which at least one mate maps to the polymorphic repeat locus in the 3D7 reference 

sequence (as done for msp1 block 2, see section 2.3.2) would be sufficient for the construction of a 

sequence library, however, this remains to be tested. Given the relatively small number of 
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sequences required, reference libraries allowing the analysis of population-wide variation of novel 

repeat antigens could be constructed from long read sequencing of a handful of isolates and lab 

lines. 

Whilst a combination of alignment and de novo assembly can yield full length sequence data from 

short reads, reads from a large fraction (24%) of isolates could not be assembled by this method and 

this approach does not guarantee that all sequences present in an isolate will be assembled. Due to 

the fact that intrinsically disordered protein domains, such as those often encoded by repetitive 

sequences, present linear B-cell epitopes the complete sequence is not necessary for the 

identification of potential epitopes. This thesis demonstrates that it is possible to extract a the major 

potential epitope sequences from reads aligned to a sequence library and describes the 

development of an algorithm that can use these short amino acid sequences and their frequency in 

the population to design hybrid antigens. Many established and novel P. falciparum candidate 

vaccine antigens contain intrinsically disordered domains that are predicted to present linear B-cell 

epitopes (Feng et al., 2006, Guy et al., 2015) and this approach can be used to design polyvalent 

hybrid antigens for each of these using existing short read sequence data.  

5.2 The use of tetramerised antigens for the isolation of antigen-specific memory B-cells  
 

The ability to isolate immune cells recognising P. falciparum  antigens promises to allow for both the 

ex vivo analysis of the immune response to such antigens and the production of human monoclonal 

antibodies for analysis of the mechanisms by which these antibodies control parasite replication. 

One approach to isolating antigen-specific B-cells employs fluorescently labelled antigen tetramers 

for use in sorting B-cells. These tetramers have the potential to bind to cognate B-cells with high 

specificity via the B-cell receptor (BCR) (Franz et al., 2011). This thesis details the production of P. 

falciparum antigen tetramers based on MSP-1 and their use to isolate memory B-cells from malaria 

exposed adults.  
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The work presented here suggests that utilisation of the E. coli BirA system for biotinylation of 

antigens is preferable. Previous work has shown that memory B-cells can be isolated from naturally 

exposed individuals (Muellenbeck et al., 2013) but the work presented in this thesis is the first 

attempt to do this with tetramerised antigens, which should increase the specificity of B-cell 

labelling. Whilst this approach was able to isolate memory B-cells, the yield was far lower than 

expected. This was due to prolonged storage of B-cells at -80°C which limited the number of cells 

that could be analysed. The successful sequencing of Ig variable regions from two isolated, antigen 

specific, memory B-cells demonstrates the robustness of the method described by Wardemann and 

Koffer (2013) and hints at the potential presence of distinct germline Ig genes amongst African 

populations that have not been well sampled previously. Further work is still needed to prove that 

the antibody sequences isolated by the approach described here do in fact bind to both recombinant 

and native MSP-1 protein.   

Production of recombinant human monoclonals from B-cells isolated on the basis of binding to 

fluorescently labelled antigen merits further application to the study of naturally acquired immune 

responses to P. falciparum. This approach avoids any bottleneck introduced by either Epstein Barr 

Virus (EBV) transformation of B-cells or successful expression of FAb fragments in E. coli, which may 

select against certain subtypes of cells or antibodies. The approach also allows the study of antibody 

secreting cells ex vivo, with the potential to isolate antibody sequences from the plasma cells that 

actually produce antibodies in response to infection (Franz et al., 2011).   

5.3 Tools for the design and validation of vaccine antigens based on polymorphic repeat 

sequences 
 

Using the methods described in this thesis, polyvalent hybrid antigens can be easily designed for a 

large panel of antigen domains predicted to present linear B-cell epitopes. These synthetic antigens 

can be expressed with BirA tags allowing enzymatic biotinylation and subsequent tetramerisation 

with fluorescently labelled streptavidin. These tetramers can be used to isolate memory B-cells 
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recognising the hybrid antigens from clinically immune individuals. Expression of monoclonal 

antibodies from these individuals will then allow analysis of which proposed hybrid antigens are 

targets of functional immunological memory through assaying the antigen specific monoclonal 

antibodies for activity in growth inhibition, opsonic phagocytosis and complement-mediated 

inhibition assays. Combining this functional screening with epitope mapping will enable 

determination of any bias both in the recognition of linear epitopes and in the functionality of 

immune responses to them. This information can then be used to inform the design of multi-allelic, 

multi-antigen vaccines with the potential to elicit memory responses against functional epitopes 

present in a number of different alleles of different blood stage antigens.  

5.4 Concluding remarks 
 

This thesis details the use of short read data for the analysis of highly polymorphic repeat sequence. 

It is shown that this data can be used for the analysis of repeat sequences, which is of high relevance 

to the study of P. falciparum antigens. The msp1 block 2 repeat sequence was used in this study as it 

is very well characterised, nevertheless, the approaches employed here have produced the largest 

global survey of msp1 block 2 sequences. Whether antibody responses to MSP-1 block 2 antigens are 

protective is still an issue of debate. The bioinformatics approaches presented in this thesis could 

easily be adapted for use with other polymorphic repeat sequences, which are a common feature of 

P. falciparum antigens.  

This thesis also outlines the first use of antigen tetramers for the isolation of memory B-cells specific 

for P. falciparum antigens from naturally exposed individuals. Although the approach did not yield 

the as many cells as expected, it shows that this technique can be used for isolation of memory B-

cells from naturally exposed individuals. The work also produced two antibody sequences that are 

likely to encode antibodies against MSP-1. Future work combining the two methods developed here 

could produce a library of polyvalent hybrid antigens and cognate human monoclonals that would 

guide the development of vaccines targeting a number of P. falciparum antigens.  
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7. Appendices 
 

7.1 Msp1 block 2 genotyping studies 
 

Region Study K1 MAD20 RO-33 MR 

Cental Africa 

Boyou-Akotet et al., 2015 71 64 38 N/A 

Mawili-Mboumba et al., 2015 110 35 94 N/A 

Yavo et al., 2016 30 23 17 N/A 

Apinjoh et al., 2015 113 77 64 59 

Conway et al., 2000 67 46 11 N/A 

Mayengue et al., 2011 60 36 29 N/A 

Aubouy et al., 2003 47 33 19 N/A 

Dolmazon et al., 2008 41 103 201 N/A 

Total 539 417 473 59 

East Africa 

Branch et al., 2001 640 544 564 N/A 

Conway et al., 2000 46 22 18 N/A 

Mohammed et al., 2015 43 15 31 N/A 

Mwingira et al., 2011 248 142 105 N/A 

Peyerl-Hoffman et al., 2001 182 93 80 N/A 

Robinson et al., 2011 3 3 2 N/A 

Takala et al., 2002 168 131 147 48 

Takala et al., 2006 344 261 286 105 

Tanabe et al., 2007 388 218 222 N/A 

Jiang et al., 2000 17 6 4 N/A 

Juliano et al., 2010 48 18 11 N/A 

Total 2127 1453 1470 153 

North Africa 

Conway et al., 2000 24 22 20 N/A 

Mahdi Abdel Hamid et al., 2016 57 71 71 N/A 

Hamid et al., 2013 12 15 16 N/A 

Total 93 108 107   

Southern 
Africa 

Conway et al., 2000 43 20 10 N/A 

Total 43 20 10 N/A 

 

(Takala et al., 2002, Takala et al., 2006, Tanabe et al., 2007a, Jiang et al., 2000, Juliano et al., 2010, Hamid et al., 2013, Mahdi Abdel Hamid 

et al., 2016, Bouyou-Akotet et al., 2015, Mawili-Mboumba et al., 2015, Yavo et al., 2016, Apinjoh et al., 2015, Conway et al., 2000, 

Mayengue et al., 2011, Aubouy et al., 2003, Dolmazon et al., 2008, Branch et al., 2001, Mohammed et al., 2015, Mwingira et al., 2011, 

Peyerl-Hoffmann et al., 2001, Robinson et al., 2011) (Ayanful-Torgby et al., 2016) (Bamidele Abiodun et al., 2016) (Liljander et al., 2009) 

(Niang et al., 2016, Niang et al., 2017, Ogouyemi-Hounto et al., 2013a, Ogouyemi-Hounto et al., 2013b, Kolawole et al., 2016, Tanabe et al., 

2010, Ahmedou Salem et al., 2014) (Schleiermacher et al., 2001) (Soulama et al., 2009) (Noranate et al., 2009) (Scherf et al., 1991) 

(Ghanchi et al., 2010) (Joshi et al., 2007) (Saha et al., 2016, Saha et al., 2012) (Raj et al., 2004) (Gosi et al., 2013) (Jongwutiwes et al., 1992) 

(Khaminsou et al., 2011) (Mohd Abd Razak et al., 2016) (Kang et al., 2010) (Sakihama et al., 1999, Sakihama et al., 2007, Sakihama et al., 

2006) (Sulistyaningsih et al., 2013) (Tanabe, 2013) (Yuan et al., 2013) (Al-abd et al., 2013)   
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Region Study K1 MAD20 RO-33 MR 

West Africa 

Ayanful-Torgby et al., 2016 62 60 52 N/A 

Bamidele Abiodun et al., 2014 34 12 7 N/A 

Conway et al., 2000 102 61 35 N/A 

Liljander et al., 2009 197 129 126 N/A 

Mwingira et al., 2011 171 98 102 N/A 

Niang et al., 2016 83 104 71 N/A 

Niang et al., 2017 143 140 100 N/A 

Ogouyèmi-Hounto, Gazard et al., 2013 75 59 73 N/A 

Ogouyèmi-Hounto, Ndam et al., 2013 175 129 130 N/A 

Kolawole et al., 2016 27 20 23 N/A 

Robinson et al., 2011 6 2 2 N/A 

Tanabe et al., 2010 20 8 3 1 

Ahmedou Salem et al., 2014 102 77 74 N/A 

Schleiermacher et al., 2001 173 43 151 N/A 

Soulama et al., 2009 153 119 123 N/A 

Yavo et al., 2016 53 33 29 N/A 

Noranate et al., 2009 247 145 132 22 

Scherf et al., 1991 9 2 15 N/A 

Total 1832 1241 1248 23 

Africa Total 4634 3239 3308 235 

South Asia 

Ghanchi et al., 2010 62 109 33 N/A 

Joshi et al., 2007 76 56 39 N/A 

Saha et al., 2012 136 90 150 N/A 

Saha et al., 2016 68 36 64 N/A 

Raj et al., 2004 71 197 140 N/A 

Total 413 488 426 N/A 

South East 
Asia 

Conway et al., 2000 142 422 91 N/A 

Gosi et al., 2013 118 7 7 N/A 

Jongwutiwes et al., 1992 6 16 4 N/A 

Juliano et al., 2010 1 12 1 N/A 

Khaminsou et al., 2011 154 107 72 N/A 

Mohd Abd Razak et al., 2016  28 18 19 N/A 

Kang et al., 2010 46 57 N/A N/A 

Sakihama et al., 1999 9 58 11 N/A 

Sakihama et al., 2006 104 120 82 N/A 

Sakihama et al., 2007 19 37 1 N/A 

Sulistyaningsih et al., 2013 9 19 2 N/A 

Tanabe et al., 2013  9 17 0 N/A 

Yuan et al., 2013 83 115 77 N/A 

Total 728 1005 367 N/A 

West Asia 
Al-abd et al., 2013 33 16 31 N/A 

Total 33 16 31 N/A 

Asia Total 1174 1509 824 N/A 
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Region Study K1 MAD20 RO-33 MR 

Melanesia 

Sakihama et al., 2006 73 117 213 N/A 

Tanabe et al., 2010 22 49 5 N/A 

Total 95 166 218 N/A 

Amazon 
basin 

Snewin et al., 1991 3 15 26 N/A 

Gómez et al., 2002 12 66 27 N/A 

 Terrientes et al, 2005 0 46 0 N/A 

Montoya et al., 2003 0 100 0 N/A 

Osorio et al., 2007a, 2007b 41 416 0 N/A 

Guerra et al., 2006 8 118 3 N/A 

Jimenez et al., 2010 11 94 6 N/A 

Kimura et al., 1990 2 1 3 N/A 

Medeiros et al., 2013 18 12 26 N/A 

Scopel et al., 2005 20 18 11 N/A 

Tanabe et al., 2009 22 13 15 N/A 

Maestre et al., 2013 20 434 9 N/A 

Zervos et al., 2012 38 38 0 N/A 

Ferreira et al., 1998 37 15 25 N/A 

Silva et al., 2000 121 79 136 N/A 

Total 195 1386 151 N/A 

All Total 6256 6379 4637 705 
 

 

PubMed was searched using the terms “plasmodium falciparum”, “msp1” and “genotyping” on the 

22nd March 2017, returning 85 studies. All papers were read and all studies presenting data on 

genotyping of msp1 block 2 were included resulting in a total of 78 studies. The counts of K1-like, 

MAD20-like, RO-33-like and, where applicable, MR recombinant alleles detected are shown. Studies 

are categorised by region, with totals shown for each region along with totals for Africa, Asia and all 

studies. 

  



282 
 

7.2 Long read sequences from GenBank in the long read dataset (LRD)  

Accession numbers sequences Reference 

AB116596-AB116601 6 Tanabe et al., 2004 

AB276001-AB276018, AB300615-AB300614 20 Tanabe et al., 2007b 

AB502443-AB502745, AB715435-AB715519 388 Tanabe et al., 2013 

AB502746-AB502795 50 Tanabe, 2009 

AB827737-AB827762 26 Tanabe, 2013 

AF061119-AF061151 33 Jiang et al., 2000 

AF062348-AF062349 2 Jiang et al., 1999 

AF218248 1 Shan, 1999 

AF462449-AF462456, AY826427-AY826431, 
DQ377133-DQ377137 18 Takala et al., 2006 

AJ635200 1 AlFadhli and Orjih, 2004 

AY714585-AY714586 2 Scopel et al., 2005 

DQ026701-DQ026702 2 Joshi et al., 2005 

DQ447647 1 Colborn, 2006 

DQ485417-DQ485451 35 Joshi et al., 2007 

DQ855130-DQ855135 5 Kwiek et al., 2007 

EU032016-EU037095 262 Noranate et al., 2009 

HM153166-HM153256 91 Juliano et al., 2010 

HQ821869-HQ821872 4 Mobassir, 2010 

JF300128 1 Bharti, 2011 

JX315617, JX412318-JX412322, JX416338-JX416341 9 Medeiros et al., 2013 

KP318436-KP318438 3 Sehgal, 2014 

KR063228-KR063231 4 Sehgal, 2015 

L10380, M77713-M77737 26 Jongwutiwes et al., 1992 

M19143-M19144 2 Peterson et al., 1988 

M32111-M32116 6 Kimura et al., 1990 

M35727/Y00087 1 Certa et al., 1987 

M37213 1 Chang et al., 1988 

M55001 1 Scherf et al., 1991 

X02919 1 Holder et al., 1985 

X03371 1 Mackay et al., 1985 

X03831 1 Weber et al., 1986 

X05624 1 Tanabe et al., 1987 

X15063 1 Myler, 1989 

X52962-X52963 2 Ranford-Cartwright et al., 1991 

X61930 1 Olafsson et al., 1992 

Z35327 1 Pan et al., 1995 
 

GenBank was searched with the search terms: “plasmodium falciparum [organism] msp1”; 

“plasmodium falciparum [organism] msa1”; and “plasmodium falciparum [organism] gp195” on 4th 

December 2015. All sequences containing msp1 block2 were downloaded. Duplicate sequences from 

the same laboratory strain were removed leaving 964 sequences (additional data file 

“long_read_sequences.fa”). The GenBank accession numbers for the sequences are shown with the 

number of sequences and the reference for the study for which they were produced.  
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7.3 Python script for generating dummy reads  
The script shown below is a modification of to_perfect_reads, part of the Fastaq package 

downloaded on 10th November 2015 from https://github.com/sanger-pathogens/Fastaq and is 

distributed under the GNU public license, version 3, June 2007 (https://github.com/sanger-

pathogens/Fastaq/blob/master/LICENSE). Modifications are highlighted in red.  

def make_dummy_reads(seq_dir, out_dir, real_reads_file_basename, mean_insert, insert_std, 

coverage, readlength): 

#cycles through all fasta files in a directory and creates simulated #reads from each sequence 

with quality scores from a fastq file #containing reads generated from Illumina sequencing 

#NB real read file must have reads of same length as dummy reads 

    import os 

    import random 

    import linecache 

    from math import floor, ceil 

    os.mkdir(out_dir) 

    real_reads1 = real_reads_file_basename+'_1.fastq' 

    real_reads2 = real_reads_file_basename+'_2.fastq' 

#calculate number of reads in Illumina read file 

    num_realines = sum(1 for line in open(real_reads1)) 

    print(int(num_realines/4), ' reads in', real_reads1) 

#create list of line numbers with quality scores 

     

 = range(4,num_realines, 4) 

    filecounter = 0 

#cycle through fasta files in directory 

    for infile in os.listdir(seq_dir): 

        ref='' 

        rq1 = [] 

        rq2 = [] 

#check if file is fasta 

        if infile.endswith('.fa'): 

            filecounter +=1 

            print('Working on file number ', filecounter, ' of ', len(os.listdir(seq_dir))) 

#read in file 

            with open(seq_dir+'/'+infile, 'r') as i: 

                lines = i.readlines() 

                for line in lines: 

#read in sequence 

                    if line.startswith('>'): 

                        ref_id = line.split('>')[1].strip('\n') 

                        ref_id = ref_id.strip('\\n') 

#get sequence ID 

                    else: 

                        ref=ref+line.strip('\n') 

            ref = ref.strip('\\n') 

#determine fasta file names 

            outfile1 = 

out_dir+'/'+ref_id+str(mean_insert)+str(insert_std)+str(coverage)+str(readlength)+'.fastq1' 

            outfile2 = 

out_dir+'/'+ref_id+str(mean_insert)+str(insert_std)+str(coverage)+str(readlength)+'.fastq2' 

#calculate out how many dummy reads to make 

            read_pairs = int(0.5 * coverage * len(ref) / readlength) 

#generate list of quality score lines (randomly picked from Illumina #reads file) 

            for x in range(read_pairs): 

                rndm_qual_line = random.choice(qualines) 

                rq1.append(str(linecache.getline(real_reads1, rndm_qual_line))) 

                rq2.append(str(linecache.getline(real_reads2, rndm_qual_line))) 

# create dictionary for recording coordinates of the read to avoid creating same read name 

#twice 

            used_fragments = {} 

            x = 0 

            pair_counter = 1 

            while x < read_pairs: 

#randomly select insert size (isize) normal distribution based on #standard deviation 

(insert_std) around mean insert size #(mean_insert) 

                isize = int(random.normalvariate(mean_insert, insert_std)) 

#if insert size is longer than the input sequence or shorter than #the readlength then re-

calculate 



284 
 

                while isize > len(ref) or isize < readlength: 

                    isize = int(random.normalvariate(mean_insert, insert_std)) 

#calculate middle of insert (if insert size is odd, randomly select #between two middle 

integers 

                middle_pos = random.randint(ceil(0.5 *isize), floor(len(ref) - 0.5 * isize)) 

#determine read start points 

                read_start1 = int(middle_pos - ceil(0.5 * isize)) 

                read_start2 = read_start1 + isize - readlength 

#set readname 

                readname = ':'.join([ref_id, str(pair_counter), str(read_start1+1), 

str(read_start2+1)]) 

                fragment = (middle_pos, isize) 

#check if fragment has been used before 

                if fragment in used_fragments: 

                    used_fragments[fragment] += 1 

#if fragment used before append "dup.x" to readname (where x = #number of times fragment is 

used) 

                    readname += '.dup.' + str(used_fragments[fragment]) 

                else: 

                    used_fragments[fragment] = 1 

#generate dummy read pair using sequence fragment and quality score #from Illumina reads file 

                read1 = '@'+readname + '/1\n'+ref[read_start1:read_start1 + 

readlength]+'\n+\n'+rq1[x] 

                read2 = '@'+readname + '/2\n'+ref[read_start2:read_start2 + 

readlength]+'\n+\n'+rq2[x] 

#write out read pair 

                with open(outfile1, 'a') as o: 

                    o.write(read1) 

                with open(outfile2, 'a') as o: 

                    o.write(read2) 

                pair_counter += 1 

                x += 1 
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7.4 Sequences used in the msp1b2RefLib 
Allelic type Accession 

number 

Sequence fragment used 

K1 

AB502525 gtattaaatgaaGAAGAAATTACTACAAAAGGTGCAAGTGCTCAAAGTGGTGCAAGTGCTCAAAGTGGTGCAAGTGCTCAAAGTGGTACAAGTGGTCCAAGTGGT

CCAAGTCCATCATCTCGTTCAAACACTTTACCTCGTTCAAATACTTCATCTGGTGCAAGCCCTCCAGCTGATGCAagcgattcagat 

AB502454 gtattaaatgaaGAAGAAATTACTACAAAAGGTGCAAGTGCTCAAAGTGGTGCAAGTGCTCAAAGTGGTACAAGTGCTCAAAGTGGTACAAGTGCTCAAAGTGGT

ACAAGTGGTACAAGTGGTACAAGTGGTACAAGTGGTACAAGTGGTACAAGTGGTACAAGTGGTACAAGTGGTACAAGTGGTACAAGTGGTACAAGTGGTCC

AAGTGGTCCAAGTGGTACAAGTCCATCATCTCGTTCAAACACTTTACCTCGTTCAAATACTTCATCTGGTGCAAGCCCTCCAGCTGATGCAagcgattcagat 

HM153224 gtattaaatgaaGAAGAAATTACTACAAAAGGTGCAAGTGCTCAAAGTGGTACAAGTGGTACAAGTCCATCATCTCGTTCAAACACTTTACCTCGTTCAAATACTTC

ATCTGGTGCAAGCCCTCCAGCTGATGCAagcgattcagat 

DQ485422 gtattaaatgaaGAAGAAATTACTACAAAAGGTGCGAGTGCTAGTGCTCAAAGTGGTGCAAGTGCAAGTGGTGCAAGTGCTCCAAGTGGTACAAGTGGTCCAAGT

CTTCCATGTGGTACAAGTCCATCATCTCGTTCAAACACTTTACCTCGTTCAAATACTTCATCTGGTGCAAGCCCTCCAGCTGATGCAagcgattcagat 

AB502448 gtattaaatgaaGAAGAAATTACTACAAAAGGTGCAAGTGCTCAAAGTGGTACAAGTGGTACAAGTGGTCCAAGTGGTACAAGTCCATCATCTCGTTCAAACACTT

TACCTCGTTCAAATACTTCATCTGGTGCAAGCCCTCCAGCTGATGCAagcgattcagat 

MAD20 

EU032192 gtattaaatgaaGGAACAAGTGGAACAGCTGTTACAACTAGTACACCTGGTTCAAAGGGTTCAGGTGGCTCAGTTGCTTCAGGTGGTTCAGGTGGTTCAGTTGCTT

CAGTTGCTTCAGGTGGCTCAGTTGCTTCAGTTGCTTCAGGTGGCTCAGTTGCTTCAGGTGGTTCAGGTAATTCAAGACGTACAaatccttcaga 

EU032179 gtattaaatgaaGGAACAAGTGGAACAGCTGTTACAACTAGTACACCTGGTTCAAAGGGTTCAGGTGGCTCAGTTGCTTCAGGTGGCTCAGTTGCTTCAGGTGGCT

CAGTTGCTTCAGGTGGCTCAGTTGCTTCAGGTGGTTCAGTTGCTTCAGGTGGCTCAGTTGCTTCAGGTGGTTCAGTTGCTTCAGGTGGTTCAGGTGGCTCAGTT

GCTTCAGGTGGTTCAGGTAATTCAAGACGTACAaatccttcagat 

M77714 gtattaaatgaaGGAACAAGTGGAACAGCTGTTACAACTAGTACACCTGGTTCAGGTGGTTCAGTTACTTCAGGTGGTTCAGTTACTTCAGGTGGTTCAGTTACTTC

AGTTGCTTCAGTTGCTTCAGTTGCTTCAGTTGCTTCAGTTGCTTCAGGTGGTTCAGGTAATTCAAGACGTACAaatccttcagat 

M77721 gtattaaatgaaGGAACAAGCGGAACAGCTGTTACAACTAGTACACCTGGTTCAGGTGGTTCAGTTACTTCAGGTGGTTCAGTTACTTCAGGTGGTTCAGGTGGTT

CAGTTGCTTCAGTTGCTTCAGTTGCTTCAGTTGCTTCAGGTGGTTCAGGTAATTCAAGACGTACAaatccttcagat 

HM153255 tattaaatgaaGGAACAAGTGGAACAGCTGTTACAACTAGTACACCTGGTTCAGGTGGTTCAGTTACTTCAGGTGGTTCAGGTAATTCAAGACGTACAaatccttcag

at 

RO-33 

M32114 aaaatggtattaAAGGATGGAGCAAATACTCAAGTTGTTGCAAAGCCAGTACCTGCTGTAAGTACTCAAAGTGCTAAAAATCCTCCAGGTGCTACAGTACCTTCAG

GTACTGCAAGTACTAAAGGTGCTATAAGATCTCCAGGTGCTGCAaatccttcagat 

DQ485448 aaaatggtattaAAGGATGGAGCAAATACTCAAGTTGTTGCAAAGCCTGCAGAAGCTGTAAGTACTCAAAGTGCTAAAAATCCTCCAGGTGCTACAGTACCTTCAG

GTACTGCAAGTACTAAAGGTGCTATAAGTTCTCCAGGTGCTGCAaatccttcagat 
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AB116598 aaaatggtattaAAGGATGGAGCAAATACTCAAGTTGTTGCAAAGCCTGCAGGTGCTGTAAGTACTCAAAGTGCTAAAAATCCTCCAGGTGCTACAGTACCTTCAG

GTACTGCAAGTACTAAAGGTGCTATAAGATCTCCAGGTGCTGCAaatccttcagat 

AB715486 aaaatggtattaAAGGATGGAGCAAATACTCAAGTTGTTGCAAAGCCTGCAGGTGCTGTAAGTACTCAAAGTGCTAAAAATCCTCCAGGTGCTACAGTACCTTCAG

GTACTGCAAGTACTAAAGGTGCTATAAGATCTCCAGGTGCTGCAaatccttcagat 

AB300614 aaaatggtattaAAGGATGGAGCAAATACTCAAGTTGTTGCAAAGCCTGCAGATGCTGTAAGTACTCAAAGTGCTAAAAATCCTCCAGGTGCTACAGTACCTTCAG

GTACTGCAAGTACTAAAGGTGCTATAAGATCTCCAGGTGCTGCAaatccttcagat 

 

The GenBank accession numbers of all sequences used in the msp1b2RefLib (section 2.3.4) are list grouped by allelic type. The msp1 block 2 sequence is shown in capitals, 

with the block 1 and block 3 sequence fragments, also included in the library, shown in lower case. 



287 
 

7.5 Coverage of the msp1b2RefLib by reads from Pf3k data 
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Short reads from the Pf3k project were aligned to the msp1b2RefLib (appendix 6.5). Fold coverage was calculated for each allelic type by dividing the number of bases in 

the reads mapped to sequences of a given allelic type by the total length of reference sequences of that allelic type. Coverage was then calculated for each of the 2400 

samples by summing the coverage of each allelic type. The distribution of coverage across all samples (a) is shown (bin width = 5). Due to increased coverage of culture 

adapted samples (section 2.3.7) these were removed from further analysis. The distribution of coverage across (b) African samples was higher than (c) Asian samples (p < 

0.001, Wilcoxon signed rank test). The coverage across (d) K1-like, (e) MAD20-like and (f) RO-33-like sequences from African samples with a single allelic type of msp1 block 

2 is not significantly varied (p > 0.5, Wilcoxon signed rank test). The coverage across (g) K1-like, (h) MAD20-like and (i) RO-33-like sequences from Asian samples with a 

single allelic type of msp1 block 2 is not significantly varied (p > 0.4, Wilcoxon signed rank test).
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7.6 Map showing location of sites of studies contributing to the Pf3k project 

 

Figure 6.1 Pf3k study sites cover range of malaria endemicity. Map showing the location of the 25 sites from which samples in the Pf3k project were collected. All sites are 

shown as red dots and labelled with the name of the site with the number of samples in parentheses. The map, adapted from Gething et al 2011, is coloured according to 

endemicity of P. falciparum with a continuum from dark blue (0%) to red (70%) indicating the age-standardised annual mean percentage of children aged 2-10 years 

predicted to be positive for P. falciparum parasites (PfPR2-10) in 2010 based on surveys of parasite prevalence conducted between January 1985 and June 2010. Countries 

with unstable transmission, defined as an annual incidence of P. falciparum (PfAPI) of less than 0.1 per 1000 people in 2010 or no transmission, defined as PfAPI of zero in 

2010 are coloured dark and light grey, respectively. Countries not contributing data are coloured white. {Gething, 2011 #996}
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7.7  Python functions for translating aligned reads, obtaining and analysing nonamers 
The python functions for translating aligned reads (translate_reads), splitting translated sequences 

into nonamers (get_all_nonamers) and determing the frequency of nonamers (analyse_nonamers) 

are shown below.  

import os 

import re 

import pandas 

import pickle 

import subprocess 

 

ref_length={"K1_AB502485":327, 

"K1_HM153224":147, 

"K1_AB502454":309, 

"K1_JX416340":183, 

"K1_DQ485422":204, 

"MAD20_AB502473":255, 

"MAD20_AB502471":219, 

"MAD20_Thai807":192, 

"MAD20_DQ026702":156, 

"MAD20_HM153185":159, 

"RO-33_AB502489":162, 

"RO-33_HQ821872":147, 

"RO-33_B440":162, 

"RO-33_DQ485450":156, 

"RO-33_KP318438":162,} 

 

codon_library = {'TTT':'F', 'TTC':'F', 'TTA':'L', 'TTG':'L','TCT':'S', 'TCC':'S', 'TCA':'S', 

'TCG':'S', 

'TAT':'Y', 'TAC':'Y', 'TAA':'*', 'TAG':'*','TGT':'C', 'TGC':'C', 'TGA':'*', 

'TGG':'W','CTT':'L',  

'CTC':'L', 'CTA':'L', 'CTG':'L','CCT':'P', 'CCC':'P', 'CCA':'P', 'CCG':'P','CAT':'H', 

'CAC':'H',  

'CAA':'Q', 'CAG':'Q','CGT':'R', 'CGC':'R', 'CGA':'R', 'CGG':'R','ATT':'I', 'ATC':'I', 

'ATA':'I',  

'ATG':'M','ACT':'T', 'ACC':'T', 'ACA':'T', 'ACG':'T','AAT':'N', 'AAC':'N', 'AAA':'K', 

'AAG':'K', 

'AGT':'S', 'AGC':'S', 'AGA':'R', 'AGG':'R','GTT':'V', 'GTC':'V', 'GTA':'V', 

'GTG':'V','GCT':'A',  

'GCC':'A', 'GCA':'A', 'GCG':'A','GAT':'D', 'GAC':'D', 'GAA':'E', 'GAG':'E','GGT':'G', 

'GGC':'G',  

'GGA':'G', 'GGG':'G', 'TCN':'S', 'TTN':'?', 'TAN': '?', 'TGN' : '?', 'CTN':'L', 'CCN':'P', 

'CAN':'?',  

'CGN':'R', 'ATN':'?', 'ACN':'T', 'AAN':'?', 'AGN':'?', 'GTN':'V', 'GCN':'A','GAN':'?', 

'GGN':'G',  

'ANA':'?','ANT':'?','ANG':'?','ANC':'?','TNA':'?','TNT':'?','TNG':'?','TNC':'?','GNA':'?','GNT

':'?', 

'GNG':'?','GNC':'?','CNA':'?','CNT':'?','CNG':'?','CNC':'?','NAA':'?','NAT':'?','NAG':'?','NAC

':'?', 

'NTA':'?','NTT':'?','NTG':'?','NTC':'?','NGA':'?','NGT':'?','NGG':'?','NGC':'?','NCA':'?','NCT

':'?', 

'NCG':'?','NCC':'?','NAN':'?', 

'NTN':'?','NGN':'?','NCN':'?','NNA':'?','NNT':'?','NNG':'?','NNC':'?', 

'ANN':'?','TNN':'?','GNN':'?','CNN':'?','NNN':'?' } 

 

rp_mapping = {0:0,2:1,1:2} 

 

def save_obj(obj, name ): 

    with open(name + '.pkl', 'wb') as f: 

        pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) 

 

def load_obj(name ): 

    with open(name + '.pkl', 'rb') as f: 

        return pickle.load(f) 

 

def build_allele_dictionary(csv_with_all_alleles): 

    allele_dictionary = {} 
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    with open(csv_with_all_alleles, "r") as i: 

        lines = i.readlines() 

    for line in lines[1:]: 

        sid = line.split(",")[1] 

        allele = line.split(",")[2] 

        allele_dictionary[sid] = allele 

    save_obj(allele_dictionary, "allele_dictionary") 

 

def unpack_cigar(cigar_string): 

#will find longest matching region and return dictionary with values #for M,I, D and S five 

prime of first matching base of longest #matching region and three prime of this base 

(including this base) 

    cigar = {"M5":0,"I5":0,"D5":0,"S5":0,"M3":0,"I3":0,"D3":0,"S3":0} 

    operations = filter(None, re.split("[0-9]+", cigar_string)) 

    values = filter(None, re.split("[M I D N S H P = X]+", cigar_string)) 

    op_vals = zip(values,operations) 

    long_window = 0 

    for o_v in op_vals: 

        if o_v[1] == "M": 

            match_window = int(o_v[0]) 

            if match_window > long_window: 

                long_window = match_window 

                best_match_o_v = o_v 

    for i in op_vals[:op_vals.index(best_match_o_v)]: 

        if i[1] == "M": 

            cigar["M5"] = cigar["M5"]+int(i[0]) 

        else: 

            if i[1] == "I": 

                cigar["I5"] = cigar["I5"]+int(i[0]) 

            else: 

                if i[1] == "D": 

                    cigar["D5"] = cigar["D5"]+int(i[0]) 

                else: 

                    if i[1] == "S": 

                        cigar["S5"] = cigar["S5"]+int(i[0]) 

    for i in op_vals[op_vals.index(best_match_o_v):]: 

        if i[1] == "M": 

            cigar["M3"] = cigar["M3"]+int(i[0]) 

        else: 

            if i[1] == "I": 

                cigar["I3"] = cigar["I3"]+int(i[0]) 

            else: 

                if i[1] == "D": 

                    cigar["D3"] = cigar["D3"]+int(i[0]) 

                else: 

                    if i[1] == "S": 

                        cigar["S3"] = cigar["S3"]+int(i[0]) 

    return(cigar) 

 

 

def find_frame(ref_start_pos, cigar): 

    x = rp_mapping[ref_start_pos%3]  

#determines number of bases that need to be clipped if read started #at best mapping position 

    y = x + cigar["S5"] + cigar["M5"] + cigar["I5"] 

#adds x to get total number bases prior to reference point 

    z = y%3 

    return(z) 

 

 

 

def translate(read): 

#input mapping read output region of read mapping to ref as list of #amino acids 

    with open("Skipped_reads.csv", "w") as o: 

        o.write("") 

    ref = read.split("\t")[2] 

    seq = read.split("\t")[9] 

    ref_pos = int(read.split("\t")[3])-1 

    cigar_string = read.split("\t")[5] 

    if any(x in cigar_string for x in ["P","N","H","=","X"]): 
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        with open("Skipped_reads.csv", "a") as o: 

            o.write(read) 

        pass 

    cigar = unpack_cigar(cigar_string) 

    ref_start_pos = ref_pos+cigar["M5"]+cigar["D5"] 

    ref_end_pos = ref_pos+cigar["M5"]+cigar["M3"]+cigar["S3"] 

    if ref_pos - cigar["S5"] < 0: 

        seq_start_pos = cigar["S5"]-ref_pos 

        cigar["S5"] = cigar["S5"]-seq_start_pos 

    else: 

        seq_start_pos = 0 

    if ref_end_pos <= ref_length[ref]: 

        seq_end_pos = len(seq) 

    else: 

        if ref_end_pos > ref_length[ref]: 

            seq_end_pos = len(seq) - (ref_end_pos-ref_length[ref]) 

    f = find_frame(ref_start_pos, cigar) 

    return("".join([codon_library[seq[i:i+3]] for i in range(seq_start_pos+f, (((seq_end_pos-

seq_start_pos-f)/3)*3)+(seq_start_pos-f),3)])) 

 

 

def translate_reads(bam, translated_read_dir): 

    sample_id = str(bam).split("/")[1][:-11] 

    sam = sample_id+"_mapped.sam" 

    translated_reads = [] 

    subprocess.call(["samtools", "view","-h", "-o", sam, bam]) 

    with open(sam, "r") as sam: 

        lines = sam.readlines() 

    for read in lines: 

        if read.startswith("@"): 

            pass 

        else: 

            if read.split("\t")[2] != "*" and read.split("\t")[5] != "*": 

#checks that read is mapped and has cigar string (i.e. is itself #mapped not just its mate 

pair) 

                transalted_read = translate(read) 

                allele_type = read.split("\t")[2].split("_")[0] 

                with open(translated_read_dir+"/"+sample_id+"_translated.csv", "a") as o: 

                    o.write(read.split("\t")[0]+","+transalted_read+"\n") 

                translated_reads.append((transalted_read, allele_type)) 

    sam = sample_id+"_mapped.sam" 

    subprocess.call(["rm", str(sam)]) 

    return(translated_reads) 

 

 

def nonamerise(amino_acid_sequence): 

#input string of amino aicd sequence output list of all nonamers 

    return([amino_acid_sequence[i:i+9] for i in range(0, len(amino_acid_sequence)-9, 1)]) 

 

def get_all_nonamers(directory_with_all_bams): 

#will take each sam in directory, translate all mapped reads and #output to new directory 

#(..._translated_reads) 

#will output csv file containing info on nonamers 

    translated_read_dir = "Translated_reads" 

    if not os.path.isdir(translated_read_dir): 

        os.mkdir(translated_read_dir) 

    all_nonamers = [] 

    with open("all_nonamers.csv", "w") as o: 

        o.write("Sample_id,Fraction_of_total_reads_translated,Nonamer_sequence,Alle_type\n") 

    for bam in os.listdir(directory_with_all_bams): 

        if bam.endswith(".bam"): 

            print(directory_with_all_bams+"/"+bam) 

            translated_reads = translate_reads(directory_with_all_bams+"/"+bam, 

translated_read_dir) 

            for translated_read in translated_reads: 

                nonamers = nonamerise(translated_read[0]) 

                for nonamer in nonamers: 

                    with open("all_nonamers.csv", "a") as o: 
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                        o.write(bam[:-

11]+","+str(float(1)/float(len(translated_reads)))+","+nonamer+','+translated_read[1]+"\n") 

def analyse_nonamers(csv_with_all_nonamers): 

nonamers = pandas.read_csv(csv_with_all_nonamers) 

    for un in set(nonamers["Nonamer_sequence"]): 

        df = nonamers.loc[nonamers["Nonamer_sequence"] == un] 

        weighted_frequency = sum(df["Fraction_of_total_reads_translated"]) 

        with open("nonamer_summary.csv", "a") as o: 

            o.write(un+","+str(weighted_frequency)+"\n") 
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7.8 Python script for algorithm to design polyvalent hybrid antigens 
The python script (compile_nonamers) for generating polyvalent hybrid antigen designs (section 

3.3.3) is shown below. 

def compile_nonamers(nonamer_list, outfasta, maxlength, iterations, new_seed_propensity, 

min_overlap):#nonamer_list needs to be csv sorted by frequency with nonamer seq in first 

column 

    nonamers = [] 

    length = 0 

    seeds = [] 

    with open(nonamer_list, "r") as i: 

        lines = i.readlines() 

    for line in lines: 

        nonamers.append((line.split(",")[0],float(line.split(",")[1].strip("\n")))) 

    for x in range(0,iterations,1): 

        nonamer_matches = [] 

        if length >= maxlength:#checks max length has not been exceded 

            break 

        else: 

            n = 0 

            for nonamer in nonamers: 

                i=0 

                overhangs = [] 

                for seed in seeds: 

                    if nonamer[0] in seed: 

                        nonamers.remove(nonamer) 

                        break 

                    else: 

                        left = find_left_overhang(seed, nonamer[0], min_overlap) 

                        right = find_right_overhang(seed, nonamer[0], min_overlap) 

                        if left == None and right == None:#no matching ends found 

                            pass 

                        else: 

                            if left == None and right != None:#right match found 

                                overhangs.append((right, "r", i))#triple denotes the overhang, 

#right or left and the index of the seed 

                            else: 

                                if left != None and right == None:#left match found 

                                    overhangs.append((left, "l", i)) 

                                else:#overlaps at both ends so store best overlap (i.e. 

#shortest overhang), NB right hand overhangs chosen if both equal 

                                    if len(right) <= len(left): 

                                        overhangs.append((right, "r", i)) 

                                    else: 

                                        if len(left) < len(right): 

                                            overhangs.append((left, "l", i)) 

                    i+=1 

                shortest = 9 

                if len(overhangs) == 0:#no end matches found nonamer stored as a potential new 

#seed 

                    nonamer_matches.append((nonamer[0], "n", None, len(nonamer[0])-

new_seed_propensity*nonamer[1],n))#creates quintuple with nonamer/overhang sequence; left of 

seed, right of seed or new seed; seed index; inclusion score; nonamer index) 

                else:    

                    for overhang in overhangs: 

                        if len(overhang[0]) < shortest: 

                            shortest = overhang[0] 

                            best_overhang = overhang 

                        nonamer_matches.append(best_overhang+(len(best_overhang[0])-

new_seed_propensity*nonamer[1],n,))#creates quintuple with nonamer/overhang sequence; left of 

seed, right of seed or new seed; seed index; inclusion score; nonamer index) 

                n+=1 

            include = 9 

            for nonamer_match in nonamer_matches: 

                if nonamer_match[3] < include: 

                    include = nonamer_match[3] 

                    nonamer_to_include = nonamer_match 

            nonamers = 

nonamers[:nonamer_to_include[4]]+nonamers[nonamer_to_include[4]+1:]#removes nonamer from 

#list            

            if nonamer_to_include[1] == "r": 

                seeds[nonamer_to_include[2]] = 

seeds[nonamer_to_include[2]]+nonamer_to_include[0] 

            else: 

                if nonamer_to_include[1] == "l": 
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                    seeds[nonamer_to_include[2]] = 

nonamer_to_include[0]+seeds[nonamer_to_include[2]] 

                else: 

                    if nonamer_to_include[1] == "n": 

                        seeds.append(nonamer_to_include[0]) 

        seeds = merge_seeds(seeds, min_overlap) 

        length = sum(len(s) for s in seeds) 

        print(x) 

        print(seeds) 

    antigen = "-".join(seeds) 

    print(antigen) 

    with open(outfasta, "w") as o: 

        o.write("> "+nonamer_list+"_antigen_maxlength_"+str(maxlength)+"\n"+antigen) 

 

 

def find_right_overhang(seed, nonamer, min_overlap): 

    for i in range(len(nonamer)-1,0+(min_overlap-1),-1): 

        if nonamer[:i] == seed[-i:]: 

            return(nonamer[i:]) 

 

def find_left_overhang(seed, nonamer, min_overlap): 

    for i in range(1,len(nonamer)+1-min_overlap,1): 

        if nonamer[i:] == seed[:9-i]: 

            return(nonamer[:i]) 

 

def merge_seeds(seeds, min_overlap): 

    for seed in seeds: 

        seeds.remove(seed) 

        if any(seed in string for string in seeds): 

            pass 

        else: 

            seeds.append(seed) 

    matches = [] 

    combinations = list(itertools.combinations(seeds,2)) 

    for combo in combinations: 

        left = find_left_overhang(combo[0], combo[1], min_overlap) 

        right = find_right_overhang(combo[0], combo[1], min_overlap) 

        if left == None and right == None:#no matching ends found 

            pass 

        else: 

            if left == None and right != None:#right match found 

                matches.append((right, "r", combo))#triple denotes the overhange, right or 

#left and the index of the seed 

            else: 

                if left != None and right == None:#left match found 

                    matches.append((left, "l", combo)) 

                else:#overlaps at both ends so store best overlap (i.e. shortest overhang), NB 

#right hand overhangs chosen if both equal 

                    if len(right) <= len(left): 

                        matches.append((right, "r", combo)) 

                    else: 

                        if len(left) < len(right): 

                            matches.append((left, "l", combo)) 

    for match in matches: 

        if match[1] == "r": 

            seeds.append(match[2][0]+match[0]) 

        else: 

            if match[1] == "l": 

                seeds.append(match[0]+match[2][0]) 

        seeds.remove(match[2][0]) 

        seeds.remove(match[2][1]) 

    return(seeds) 

 



297 
 

7.9 FACS plots showing labelling of memory B-cells with MSP-1-SAPE antigen tetramers 
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B-cells enriched from peripheral blood mononuclear cells (PBMC) taken from malaria exposed (a) or naïve (b) donors were labelled with FVS-780 anti-CD19-BB515, anti-

CD27-APC, anti-CD3-PerCP, anti-CD14-PerCP, anti-CD16-PerCP and MSP-1-SAPE tetramers (section 4.2.5). Dead (FVS-780 positive) and non-B (CD3/CD14/CD16 positive) 

were gated out prior to gating of CD19, CD27 double positive memory B-cells. Plots show fluorescence (arbitrary units) in the BB515 channel against fluorescence in the PE 

channel. Cells above 103 fluorescence units in the PE channel (black dots) were sorted as MSP-1-SAPE positive cells. MSP-1-SAPE negative cells (red contour plot) were sent 

to waste.
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7.10 List of additional data files 
File name Description 

long_read_sequences.fa Fasta file containing all sequences in 

LRD 

Pf3k_short_read_assembled_translated_sequences.csv CSV file containing all amino acid 

sequences encoded by sequences 

assembled from Pf3k short read data. 

Column 1: Sample ID, column 2: Region, 

column 3: country, column 4: site, 

column 5: clone (for samples yielding 

multiple sequences, denoted as c1…c4), 

column 6: allelic type, column 7: length 

of MSP-1 block 2 length (number of 

amino acid residues), column 8: 

predicted MSP-1 block 2 amino acid 

sequence.  

 

Table shows all additional data files with a description of their contents. All files can be found on 

attached compact disc or downloaded from https://tinyurl.com/HAJ2017. Abbreviations: ID-

identification, CSV - comma separated values.  
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