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Preface 
 

This PhD thesis is written in a research paper style format in accordance to the applicable 

and existing regulation at LSHTM. The first chapter is a general introduction to 

tuberculosis, covering the topic of immunology, vaccines and correlates of protection. It 

also outlines the gaps in knowledge and sets the rationale of the project presented in the 

three manuscripts, each as a chapter, that follow. These three manuscripts are currently 

under review in international peer-reviewed journals. Unpublished pilot investigations 

and preliminary methodology development data are discussed in a separate chapter 

following the research paper chapters. The last chapter in the thesis integrates the results 

of the three discrete but related investigations as well as the unpublished data to give an 

answer to the problems stated in the introduction chapter. Reference list is provided at the 

end of each chapter in accordance to the format of LSHTM research paper style PhD 

thesis. 
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Abstract 
 
 
Drug treatment and vaccination remain the main strategies to control tuberculosis (TB), 

which is the leading infectious cause of death globally. Lengthy treatment is often cited 

as a major obstacle towards improved control of TB. It has been proposed that a 

combination of TB vaccination with pharmacological treatment, termed therapeutic 

vaccination, may provide a greater therapeutic value. Several therapeutic TB vaccine 

candidates have been developed and are currently progressing in the pipeline. We 

hypothesise that an ex-vivo mycobacterial growth inhibition assay (MGIA) can be 

implemented to investigate and accelerate development of therapeutic vaccination 

strategies for TB, in the context of both human clinical and animal murine studies. 

This thesis describes for the first time, the combined effect of immunoprophylaxis by 

routine vaccination with Bacillus Calmette–Guérin (BCG) and chemotherapy using the 

ex vivo immune assay platform. The first research chapter of the thesis elaborates a proof-

of-principle study investigating the combined effect between historical BCG vaccination 

and two major first-line TB drugs (isoniazid and rifampicin), which is considered 

essential to further expedite the development of therapeutic vaccination strategies for TB. 

The second part of the thesis describes a study in which immunisation of mice with RUTI, 

a novel therapeutic TB vaccine candidate, was shown to enhance inhibition of 

mycobacterial growth ex vivo by inducing a shift of monocyte phenotype. We also 

investigated the effects of RUTI and BCG vaccination towards ex vivo drug-mediated 

killing in mice. The third research part of the thesis discusses the impact of individual-

level factors on ex-vivo mycobacterial growth inhibition, specifically the influence of 

immune cell phenotype, cytomegalovirus-specific response and sex on immunity 

following BCG vaccination in humans.  

In the absence of an immune correlate of protection following TB vaccination, 

implementation of the ex vivo MGIA assay could be beneficial to screen TB vaccine 

candidates at early phases in order to prioritise which candidates should be tested with 

the available funding and field sites. Collectively, our findings support the 

implementation of MGIA as an effort to accelerate the development of therapeutic TB 

vaccines. 
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Chapter – 1           General Introduction 
 
 
1.1 Tuberculosis 

Tuberculosis (TB) continues to be a major cause of morbidity and mortality, mainly in 

low- and middle-income countries, despite the causative agent being discovered by 

Robert Koch more than 100 years ago in 18821. TB is a treatable airborne infectious 

disease caused primarily by Mycobacterium tuberculosis (Mtb) which constitutes the 

deadliest infection in the past 200 years2. The development of antibiotic treatment as well 

as implementation of the Bacillus Calmette–Guérin (BCG) vaccination in the last 60 years  

have resulted in a considerable decline of the disease burden3. Nevertheless, the battle 

against TB is far from over and TB remains as a prominent public health concern in many 

parts of the world. 

TB is a poverty-related disease and often erroneously considered as a disease of the past. 

This assumption was challenged in 1993, when the World Health Organization (WHO) 

declared TB as a global emergency, notably following the nosocomial outbreaks of drug-

resistant TB in some hospitals in New York city4,5. Since the disease was declared as a 

global emergency, TB has resulted in 30 million deaths and orphaned at least 10 million 

children worldwide6. Currently, the spread of human immunodeficiency virus (HIV) 

infection has been fuelling TB epidemics in several parts of the world, particularly in 

Sub-Saharan Africa7. This is due to the fact that the risk of developing the disease is 

markedly increased in immunocompromised persons8. In some other parts of the world 

including South-East Asia and South America, HIV plays a lesser role and TB is more 

associated with other immunocompromising conditions, such as diabetes mellitus9,10. 
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Furthermore, the current situation is aggravated by the emergence of multidrug-resistant 

(MDR)-TB which has been reported in virtually all countries11. 

By 2050, the Stop TB Partnership aims to eliminate TB by reducing the incidence to less 

than one case per 1 million people12. In 2015, the WHO also sets some goals with the End 

TB Strategy which aims to reduce the morbidity and mortality up to 90% and 95% 

respectively by 203513. To achieve this, an incidence reduction of 4-5% needs to be 

sustained annually. Such a target is unlikely to be achieved, considering the current global 

rate of decline is only around 1.5% per year12,14. 

 

1.1.1 Epidemiology 

According to the WHO, in 2016, it was estimated that 10.4 million individuals were 

affected by TB, of which 1.67 million cases resulted in fatality11. TB mostly affects 

humans in their productive ages, with the risk of developing active disease rising during 

adolescence, then remaining high at around 25 years of age and throughout adult life15. 

As the disease affects socially and economically active adults, the economic burden of 

the disease is considered to be huge to society16. TB is a poverty related disease 

commonly affecting vulnerable populations in less affluent countries (Figure 1). Five 

countries accounted for 56% of global new cases: India, Indonesia, China, the Philippines 

and Pakistan in 201611. The South-East Asia, African and Western Pacific regions 

contributed to the majority of TB cases in the world, with over 80% cases occurring in 30 

high-burden low-income developing countries11. In most high-income countries, 

improvement in living standards led to significant declines of TB rates over the past few 

decades. Despite this, TB still shows no signs of disappearing in the near future as the 
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disease is still affecting high-risk groups such as elderly, immigrant populations, 

homeless persons, prisoners and people with low socioeconomic status in these 

countries17.  

 
Figure 1.  Estimated TB incidence rates in 2016 (taken from WHO11). 
 

The incidence of active TB disease is approximately twofold higher in men than in 

women18. Male sex is currently recognised as a risk factor for developing tuberculosis19,20. 

It is commonly regarded that socioeconomic and cultural factors are responsible for the 

observed sex bias. This could be due to differences in smoking rates, alcohol or drug use, 

quality of sputum samples as well as better access to healthcare in males compared to 

female, thereby leading to higher diagnostic rates of TB in men and under-notification in 

women18,21. However, it has been suggested that immunology might also play a role, as 

the male bias also exists in countries without apparent differences between the sexes in 

access and health-seeking behaviour towards medical care facilities, such as in European 

and American regions18. Moreover, the sex bias does not seem to apply to children and 
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only starts to be observed during adolescence, reflecting the potential contribution of 

biological factors, such as sex hormones22. Interestingly, such observations are not 

exclusive to TB and have been described for various other infectious and autoimmune 

diseases23. A general consensus exists stating that females exhibit more robust immune 

responses towards infection and vaccination when compared to males24. 

Several risk factors have been identified towards increased susceptibility and progression 

of active TB disease, such as HIV infection, malnutrition, diabetes mellitus, indoor air 

pollution, alcohol, use of immunosuppressive drugs and tobacco smoking19. Among the 

major known risk factors, HIV infection significantly increases TB risk at least ten times, 

while type 2 diabetes mellitus as well as excessive alcohol consumption triple the risk, 

and smoking doubles the risk of developing TB19,25. In developing countries, the high 

burden of TB is due to a combination of co-morbidities with poor living conditions and 

lack of health-care resources. In addition, BCG has a low efficacy against adult 

pulmonary TB disease in countries closer to the equator where the disease is most 

endemic26,27.  

 

1.1.2 Pathogenesis 

Mtb is primarily transmitted by the aerosol route from person to person. Upon inhalation, 

mycobacteria reach the lower respiratory tract and deposit in alveoli where they 

predominantly infect alveolar macrophages28. Typically, TB pathogenesis can be divided 

into two stages, each of them can present as active disease. Some individuals, mainly 

children, progress rapidly to active disease following primary infection and this is termed 

as primary or primary-progressive TB. In many others, mostly in immunocompetent 
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adults, Mtb are contained following the primary infection in a structure called granuloma, 

but the host remains infected in a condition commonly referred to as latent TB infection 

(LTBI). In the latter scenario, active TB disease can present after many years following 

exposure, termed reactivation or post-primary TB29. Currently, it is estimated that a 

quarter or 1.7 billion of the world population is latently-infected with TB30. Among these 

individuals, there is a 5–10% lifetime risk of developing active TB, with the highest risk 

being in the first 18 months after the initial infection7. 

Recognition of mycobacterial components, termed pathogen-associated molecular 

patterns, by innate immune cells is conducted through pattern recognition receptors 

(PRRs) on their cell surfaces. Investigations have revealed that PRRs involved in the 

mycobacterial recognition process include several receptor families such as Toll-Like 

Receptors (TLRs), nucleotide oligomerization domain-like receptors, C-type lectins, 

Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Non-integrin (DC-

SIGN) and dectin-1. These receptors recognise components of Mtb such as lipoprotein, 

CpG-containing DNA, mannose-capped lipoarabinomannan and phosphatidylinositol 

mannoside28,31. Following this encounter, there could be several possible outcomes: 1) 

elimination by innate immunity, 2) elimination by acquired immunity, with or without 

memory, 3) quiescent/ LTBI, 4) subclinical disease with no or minimal symptoms or 5) 

active TB disease29,32 (Figure 2). 

In the context of TB, disease development is a function of the host’s immune competence, 

as exemplified by individuals with HIV who are at increased risk of progression to active 

disease33. In most cases, TB disease commonly affects the lungs as the primary site of 

infection (~85% cases)34. However, the infection could also spread outside the lungs and 

cause extra-pulmonary TB. The most common infection sites outside the lungs are the 
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lymph nodes, pleura, bone, gastro-intestinal tract and central nervous system7. In children, 

a typical manifestation of extra-pulmonary TB is known as miliary or disseminated TB, 

in which the infection propagates through the bloodstream and causes a widespread 

disease, often also manifesting as TB meningitis35. 

 

Figure 2. Clinical spectrum of TB infection (modified with permission from Scriba et 
al.32). 

 

1.1.3 Diagnostics 

The cardinal symptoms of active pulmonary TB disease in adults include cough, weight 

loss, night sweats or chills, fever, anorexia and malaise36. In contrast, LTBI does not show 

any clinical symptoms and the host is considered to be healthy, despite harbouring latent 

Mtb bacilli. Even in high-burden community settings, the symptoms of active pulmonary 

TB could mimic some other diseases, such as chronic obstructive pulmonary disease, lung 
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cancer, bronchiectasis, asthma or fungal infections37. Therefore, diagnostic tests have 

been developed in order to help distinguish active TB from other conditions, as well as to 

diagnose LTBI to help identifying persons who are at increased risk of developing active 

disease (i.e. individuals who are undergoing immunosuppressive therapy). 

Latent infection can be diagnosed with either a tuberculin skin test (TST) or an interferon-

gamma release assay (IGRA). TST was introduced over 100 years ago and involves 

injection of mycobacterial antigen (purified protein derivative/ PPD) to assess cellular 

immune reactivity based on the size of induration in the skin. The conventional threshold 

for TST positivity is 10 mm, although this threshold is reduced to 5 mm in high risk 

groups such as immunocompromised patients or household contacts of active TB 

patients7,34. Generally, 75% to 90% of active TB patients also react to TST38, although 

the test cannot be used to diagnose active TB by itself and requires clinical investigation 

as well as other diagnostic measures (Figure 2). Moreover, prior vaccination with BCG 

and exposure to environmental mycobacteria also affect the results of TST, rendering the 

results false positive38. Despite this, the test is inexpensive and therefore preferred in low-

income regions39. 

Immune response to TB infection is recognised to be associated with a strong type 1 

immunity, in which the hallmark is the release of interferon-gamma (IFN-γ) cytokine by 

CD4 T-cells40,41. Hence, two techniques of IGRAs have been developed to measure IFN-

γ in blood cells in response to Mtb-specific antigens. QuantiFERON TB Gold In Tube 

(Qiagen, The Netherlands; QFTGIT) or the newer QFT-GIT Plus measures the amount 

of IFN-γ released in response to in vitro stimulation of whole blood using enzyme-linked 

immunosorbent assay (ELISA). T-SPOT.TB (Oxford Immunotec, Marlborough, MA, 

USA) uses separated mononuclear cells from peripheral blood in an enzyme-linked 
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immunospot (ELISpot) assay to count the number of IFN-γ producing cells42. Both 

techniques have the advantage of measuring responses to antigens specific to Mtb, namely 

early secreted antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10), which 

are encoded from the RD1 region of the Mtb genome that is absent in BCG and most 

environmental mycobacteria43. Therefore, the specificity of IGRA is highly increased in 

comparison to the TST. Still, the inability of IGRA to differentiate latent tuberculosis 

infection from active disease44 led WHO not to endorse their use in countries with a high 

burden of TB and replacement of TST by IGRA is not recommended in middle-to-high 

incidence settings34,42. 

Laboratory diagnosis of active TB currently relies on sputum microscopy and culture with 

subsequent drug-susceptibility testing to identify resistance. Sputum microscopy 

identifies Mtb acid-fast bacilli from sputum samples of a suspected pulmonary TB case. 

It remains the most commonly used test for TB, as it is a low-cost test which can be done 

in basic laboratories attached to primary health-care clinics. Sensitivity of the test ranges 

from 65% to 80% with multiple specimens45. In many settings, the limited sensitivity of 

sputum microscopy is augmented by conventional diagnostic methods, such as clinical 

evaluation and chest radiography25. Culture remains the gold standard for diagnosis of 

TB, with sensitivity greater than 80% and specificity reported to be as high as 98%46. The 

use of solid culture medium is more cost-effective in resource-poor countries7, although 

the major limitation is the delay in obtaining results (> 3-4 weeks). The use of newer 

liquid-based culture systems (BACTEC-460 or BACTEC MGIT-960, Becton Dickinson, 

Maryland, USA) allows an automated and more rapid identification of Mtb within 10-14 

days47. A molecular diagnostic test called Xpert MTB/RIF assay could detect Mtb within 

2 hours and allow identification of rifampicin resistance48. The latter assay is currently 
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endorsed by WHO and could potentially replace microscopy as a first line diagnostic, 

despite being considered to be more sophisticated and expensive, and technical 

implementation of the assay in resource-limited settings also remains challenging42. 

  

1.1.4 Treatment and Drug Resistance 

The current treatment regimen for TB, in most parts of the world, is based on a WHO 

guideline which was published in 201049. The regimen consists of several first-line drugs, 

specifically isoniazid – H, rifampicin – R, pyrazinamide – Z, ethambutol – E and 

streptomycin – S in the case of drug-sensitive TB. For individuals with no history of 

previous TB treatment or who have received anti-TB drugs for less than 1 month, the 

regimen consists of 2 months of intensive phase treatment with isoniazid (INH), 

rifampicin (RIF), pyrazinamide (PZA) and ethambutol (EMB), followed by a 4-month 

continuation phase with INH and RIF [2HRZE/4HR]. The retreatment regimen for 

relapsed, treatment failed or treatment interrupted patients lasts for eight months and 

includes insertion of streptomycin injections in the first two months and administration 

of ethambutol throughout the treatment duration [2HRZES/1HRZE/5HRE]. LTBI can 

also be treated as a preventative measure in high risk groups, in which a regimen of INH 

for 6-9 months is recommended49. 

Resistance towards the two major first-line anti-TB drugs, INH and RIF, is referred to as 

multi-drug resistant TB, while further resistance against at least one of the 

floroquinolones and a second-line injectable anti-TB drugs is defined as extensively drug-

resistant (XDR)-TB50. The emergence of a type of TB resistant to virtually all available 

first- and second-line drugs termed totally drug-resistant (TDR)-TB has also been 
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reported in the past several years51-53. Drug-resistant TB poses a further threat towards 

global efforts to control the disease. Approximately 490,000 cases of MDR-TB occurred 

worldwide in 2016 and XDR-TB has been reported in 123 countries11. Treatment success 

rates of MDR-TB vary with only 50-60% success in most settings54,55, while in the case 

of XDR-TB the success is only around 30%3. Various risk factors leading to the 

development of drug-resistant TB have been identified56. Notably, the length of the 

standard, drug-sensitive regimen is often cited as responsible for low compliance of 

patients leading to unsuccessful treatment, eventually increasing the risk of the 

development of drug-resistance57. In addition, it has also been proposed that inter-

individual pharmacokinetic variability of a single drug in the regimen, leading to a sub-

therapeutic level in the plasma, is a contributing factor in the development of drug-

resistant TB58.  

In the context of MDR-TB, treatment is based on either a standard MDR regimen that is 

specific for each country or individually tailored regimen based on drug susceptibility 

testing49. The treatment duration could last up to 24 months with administration of drugs 

with less certain efficacy, and includes poorly tolerated second-line injectable drugs in 

the first six months49. In 2016, WHO recommended a shorter, standardised 9-12 month 

regimen for people with pulmonary MDR- or RIF-resistant TB susceptible to 

aminoglycosides and fluoroquinolones3. The 4–6-month intensive phase includes 

moxifloxacin, an injectable aminoglycoside, ethionamide or prothionamide, clofazimine, 

high-dose INH, EMB and PZA, and the 5-month continuation phase includes 

moxifloxacin, clofazimine, EMB and PZA. This regimen applies to non-pregnant 

patients, pulmonary TB cases and patients who have not undergone previous treatment 

with second-line drugs. The newer regimen was shown to have a comparable efficacy in 
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eligible patients compared to the individualised 20-24 months treatment3. More recently 

in August 2018, WHO introduced some further improvement to the MDR-TB regimen 

by creating a new priority ranking of the available drugs (Table 1) and introducing a fully 

oral regimen by the replacement of injectable agents, such as with bedaquiline59. 

Table 1. Summary of drugs used to treat TB with various susceptibility (adapted from 
Zumla et al.7 and WHO Guidance August 201859). 

Drugs Drug regimen 
Standard regimen for drug-
sensitive TB 

6 months rifampicin and isoniazid supplemented by 
ethambutol and pyrazinamide in the first two months 

Latent infection 6-9 months isoniazid 
Multi-drug resistant TB Group A (Medicines to be prioritised): 

levofloxacin/moxifloxacin, bedaquiline and linezolid 
 
Group B (Medicines to be added next): 
clofazimine, cycloserine/terizidone 
 
Group C (Medicines to be included to complete the 
regimens and when agents from Groups A and B 
cannot be used): 
ethambutol, delamanid, pyrazinamide, imipenem-
cilastatin, meropenem, amikacin (streptomycin), 
ethionamide/prothionamide, p-aminosalicylic acid 

Extensively-drug resistant TB Use drugs that remains sensitive from the MDR 
regimen, including drugs with less certain efficacy in 
group C, as well as new drugs (i.e. delamanid) 

 

Each of the anti-TB drugs possesses different mechanism of action60. INH acts primarily 

by inhibiting cell wall mycolic acid synthesis. RIF interferes with RNA synthesis by 

binding to the bacterial DNA-dependent RNA polymerase β-subunit encoded by rpoB 

gene. PZA acts by depleting membrane energy potential and is active against tubercle 

bacilli at acid pH. EMB works by interfering the biosynthesis of arabinogalactan as a 

major polysaccharide of mycobacterial cell wall. EMB is the only first-line drug that 



 34 

exerts bacteriostatic effect. Combined treatment of several drugs with different 

mechanism of actions is necessary due to the fact that populations of Mtb are not uniform 

in their susceptibility to antimycobacterial agent (Figure 3). Hence, it is crucial to treat 

with more than one drug to which the organisms are susceptible7. 

 
Figure 3. Bacterial subpopulations in TB treatment (taken with modification from 
Zhang60). 
 

Mutations in katG and inhA genes are the main cause of INH resistance. katG encodes 

multifunctional enzymes that exhibit both catalase-peroxidase and peroxynitritase 

activities, each of these considered important for activating INH prodrug and having a 

role in pathways involving reactive nitrogen as well as oxygen intermediates, 

respectively. The second main cause of resistance to INH is due to mutations in the 

promoter region of inhA and is typically more associated with low level INH resistance. 

RpoB is a target of RIF which catalyses the transcription of DNA into mRNA by using 

four ribonucleoside triphosphates as substrates. Conformational changes caused by 

mutations in rpoB can lead to RIF-resistance. Resistance to PZA is associated with pncA, 
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rpsA and panD genes. PZA resistance is most commonly due to mutations of pncA gene 

which encoded pyrazinamidase that converts the pro-drug PZA into active-form 

pyrazinoic acid. Mutations in embB and embC genes cause resistance against EMB, 

through restricting the action of drug to cease the biosynthesis of mycobacterial cell 

wall61. 

The current standard 6-month therapy for TB has been used for more than 3 decades. 

Although the regimen provides 95% cure rates for drug sensitive TB62, it is still 

considered lengthy and has failed to accelerate current efforts to eliminate TB as a global 

health concern. Figure 3 further exemplifies the need for lengthy treatment in TB. Current 

TB chemotherapy is highly effective in reducing bacterial load and rendering the patients 

non-infectious after only a few weeks after the initiation of therapy63. However, the 

therapy needs to be continued for a considerable amount of time due to the presence of 

persisters bacteria64. Although these dormant Mtb are regarded as genetically identical to 

actively replicating bacteria, they are not sensitive to anti-TB drugs thus not effectively 

targeted with the current regimen64. It has been proposed that in their metabolically 

inactive state, there is less uptake and subsequent processing of drugs65. 

Improvement to currently available chemotherapy is needed. Two approaches have been 

tentatively identified for this purpose, either by developing a novel more effective drug 

or by enhancing the host immune response to augment treatment66,67. Development of 

new TB drugs is appealing as some candidates are already in the pipeline68. However, 

results from several recent phase 3 trials aimed at shortening treatment suggested that 

although introduction of novel drugs was associated with better sputum conversion rates 

at 2 months, long-term risks of relapse are not non-inferior compared to current 

regimens69-71. Several modalities in enhancing the host immune response during TB 
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treatment have been proposed66. Current knowledge in TB immunology needs to be 

translated into intervention in order to maximise the benefit for patients in clinical 

settings. 

 

 

1.2 Tuberculosis Immunology: Roles of Immune Cells and Cytokines 

Understanding TB immunology is essential for augmenting management and treatment 

strategies for patients. This importance is exemplified by the fact that the immune system 

is able to control Mtb growth in 90% of infected individuals72. Both the innate and 

adaptive arms of the immune system play crucial roles in controlling mycobacterial 

growth. The interaction of innate and adaptive components eventually determines the 

outcome of natural infections with pathogenic mycobacteria, which can range from early 

asymptomatic clearance to latent infection and clinical disease. 

 

1.2.1 The Innate Immune Response to TB 

The cells of the innate system recognise and respond to pathogens in a nonspecific way 

and provide immediate defence against pathogens. The major innate cell types involved 

in immune responses towards Mtb infection are macrophages, neutrophils, dendritic cells 

(DCs) and natural killer cells.  

 

Macrophages 

Following its transmission and upon reaching lung parenchyma, Mtb can be phagocytosed 

either by alveolar macrophages (AMs), dendritic cells, epithelial cells or neutrophils73.  
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AMs are phagocytes that primarily take up Mtb and serve as a habitat for Mtb which have 

developed evasion mechanisms for phagocytic destruction74. AM is a type of tissue-

resident macrophage which is derived from blood monocytes. Inside AMs, Mtb may resist 

bactericidal actions by inhibiting phagolysosome function. Typically, macrophages 

acidify their phagosomes to pH 5.2 in order to kill the bacteria75,76. Production of 

antimicrobial peptides such as cathelicidin, which is involving the vitamin-D-dependent 

pathway, as well as the release of nitric oxide (NO) are also considered essential 

mechanisms77,78. By reducing recruitment of vacuolar H-ATPases, Mtb hampers the 

acidification process and thus enables Mtb  to persist inside the phagosomal vacuole76. 

Using this mechanism, mycobacteria prevent the phagosome from maturing, while also 

subsequently inhibiting trafficking to the lysosome, thus preventing phagolysosome 

fusion79. Therefore, while AMs function as the first line defence against infection, they 

also provide the main reservoir for bacterial survival and replication. Additionally, AMs 

also act as antigen presenting cells (APCs) which provide recognition for initiation of an 

adaptive immune response28.  

Macrophages can be activated by two different pathways, each serving distinct functions. 

Classically-activated macrophages, commonly referred to as M1, are induced by immune 

signals such as from TLRs and by the cytokine IFN-γ. Conversely, alternatively-activated 

(nonclassical) macrophages, termed M2, are promoted in the absence of strong TLR 

signals, and induced by cytokines such as interleukin (IL)-4 and IL-1380. In humans, 

CD14 and CD16 markers are used to distinguish the two distinct subsets of monocytes 

and macrophages. Classical CD14brightCD16- monocytes will subsequently develop into 

M1 macrophages, while nonclassical CD14dimCD16+ monocytes are regarded to be the 

precursor of M2 macrophages81,82. In mouse, a Ly6C marker is used to distinguish M1 
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and M2, represented by classical Ly6C+ and nonclassical Ly6C- monocytes/macrophages, 

respectively81,83. Traditionally, M1 macrophages are considered part of the host response 

against intracellular bacteria and involved in killing of Mtb, while M2 macrophages are 

associated with tissue repair and bacterial persistence32. However, a recent finding by 

Joosten et al. suggested that nonclassical monocytes can also produce CXCL10 or 

inducible protein-10 (IP-10), which was associated with reduced mycobacterial growth 

using an ex vivo assay system, and the observation was linked to the trained innate 

immunity mechanism84. 

 

Dendritic cells and neutrophils 

The most effective role of antigen presentation to T-cells is played by dendritic cells28. 

DCs and AMs express PRRs that bind molecules from Mtb leading to activation of the 

innate immune system79. Once infected, dendritic cells migrate to regional lymph nodes, 

where they prime naïve T-cells and produce IL-12 leading to T-cell expansion and 

secretion of cytokines29. Hence, the role of DCs is critical in bridging the innate and 

adaptive immune response. It has also been proposed that Mtb is capable of subverting 

DC function, leading to impaired T-cell responses, thus evading adaptive immunity85.  

On the other hand, neutrophils are less well studied than other immune components of 

the host response to Mtb, perhaps due to the difficulties in working with these cells86. 

Optimum killing by neutrophils and other immune cells could halt the infection at an early 

stage, while inefficient killing allows the disease to progress87. In a study of pulmonary 

TB contacts, it was identified that the risk of TB infection could be reduced with a higher 

number of neutrophils in the blood88. Neutrophils influence the development of acquired 

immunity through the production of IL-12, monocyte chemoattractant protein and other 
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cytokines, which can attract T-cells and help their maturation89. Conversely, the 

accumulation of neutrophils is seen in active TB patients where protective immunity is 

ineffective, and it has been proposed that such accumulation could limit the interaction 

between infected phagocytes and antigen-specific T-cells90,91. The role of neutrophils is 

still complex and under investigation by researchers, but their contribution is perhaps 

essential in the early response against Mtb, while their build-up could be associated with 

loss of Mtb containment. 

 

Natural Killer cells 

CD3-CD56+ natural killer (NK) cells are granular innate lymphocytes possessing potent 

cytolytic capacity. As a component of the innate immune system, NK cells are capable of 

destroying cells that harbour persistent Mtb without prior sensitisation92. Direct 

mechanisms of control by NK cells are largely through secretory products namely 

perforin, granulysin and granzymes, as well as multiple membrane-bound death receptors 

that facilitate target directed lysis, such as NKp44 which recognises various Mtb cell wall 

components, including mycolic acids93. Human NK cells exhibit the capacity to lyse Mtb-

infected macrophages in vitro, and there is increasing evidence that highlights the 

importance of NK cell function during TB disease, especially when T-cell responses are 

suboptimal94-96. In newly-diagnosed pulmonary TB patients, decreased frequencies of NK 

cell subsets were observed, which had been associated with lowered expression of 

NKp30, NKp46 and IFN-γ. This suggests that their presence is required for effective 

containment of Mtb. Meanwhile, following anti-TB treatment, partial restoration of 

cytolytic capabilities of NK cells was achieved upon the reduction of mycobacterial load 

in the lung97,98. In a recent study enrolling three independent longitudinal cohorts, the NK 
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cell frequency was also decreased in active TB patients and this was restored upon 

treatment in all cohorts99.  

While the majority of NK cells are cytotoxic, a considerable proportion of NK cells also 

produce cytokines, which is a typical feature of other lymphocytes of the adaptive 

immune system92. NK cells can produce IFN-γ and IL-22, which inhibit intracellular 

growth of Mtb in vitro by enhancing phagolysosomal fusion, and can also promote the 

production of IFN-γ from CD8 T-cells by stimulating IL-15 and IL-18 production from 

Mtb-infected monocytes100,101. In humans, NK cells are distinguished by varying 

expression levels of CD16 and CD56, which can be used to discriminate two different 

subpopulations of NK cells. CD56dimCD16+ cells are considered cytotoxic NK cells 

which have high cytolysis activity, while CD56brightCD16+/− cells are regarded as 

cytokine-producing NK cells that have less lytic activity, but could produce cytokine 

upon stimulation96. As NK cells do not express CD4 or CD8, they are also sometimes 

known as triple negative (TN) cells (CD3- CD4- CD8-)102. Although for many years the 

role of NK cells has been attributed to their cytotoxic properties, cytokine production is 

also an essential function which could place these cells as key orchestrators and regulators 

of innate and adaptive immunities. Along with IFN-γ and tumour necrosis factor (TNF)-

α which are the signature of Th1-type cytokines, NK cells can produce IL-2 to promote 

T-cell proliferation after clustering in multicellular groups96,103. 

 

1.2.2 The Adaptive Immune Response to TB 

The adaptive immune response against TB consists of both humoral and cell-mediated 

arms. Most of the cellular functions are carried out by the T and B lymphocytes, which 
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have extremely diverse and clonally specific repertoires, generated by gene 

rearrangement during their development. 

 

1.2.2.1 Cellular Immune Response 

1.2.2.1.1 Conventional T-cells 

Mtb is an intracellular pathogen thus the cell-mediated immune response is often regarded 

to play a dominant role29. T lymphocytes that express an αβ T-cell receptor (TCR), as 

well as a co-receptor CD4 or CD8, are considered conventional T-cells104. CD4+ T 

lymphocytes or T-helper (Th) cells which are major histocompatibility complex (MHC) 

class II restricted, are able to polarise into several subsets of cells upon activation and 

stimulation. CD4 T-cells have been shown to be important for the control of Mtb, as HIV 

patients are highly susceptible to TB, with a correlation between decreasing CD4 count 

and increased susceptibility as well as HIV disease progression105. Secretion of 

chemokines, such as C-C motif ligand (CCL) 2, CCL3, CCL5 and TNF-α by infected 

macrophages, attracts T-cells to the site of infection106. Each subset of CD4 T-cells 

produces distinct cytokines with different roles and functions, with the 4 main notable 

subsets being Th1, Th2, Th17 and Treg.  

Th1 cells produce IFN-γ upon IL-12 stimulation by activated DCs and macrophages, and 

are considered central in control of Mtb (Figure 4). Mutations in the IFN-γ and IL-12 

receptors have been shown to highly increase the susceptibility to mycobacterial infection 

in humans107. Mice, in which the gene for IFN-γ has been knocked out, also become very 

susceptible to TB108,109. IFN-γ promotes macrophage activation by inducing NO-

dependent apoptosis, reviving phagosomal maturation and modulating autophagy110. In 
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addition, activated macrophages also become more bactericidal through increased 

production of reactive oxygen and nitrogen intermediates111. Th1 cells also produce TNF-

α that plays a role in the formation and maintenance of granulomas112. Administration of 

anti-TNF antibodies causes activation of latent TB infection in rheumathoid arthritis 

patients113. In addition, Th1 cell produce IL-2 which is essential for T-cell proliferation114. 

T-cells which are capable of making IFN-γ, TNF-α and IL-2 are termed multifunctional 

or polyfunctional T-cells. 

 

Figure 4. Cellular adaptive immune response in TB (modified from Kaufmann74). 
Essential cytokines produced by important subsets of T-cells are denoted. In addition, 
several lymphocytes, including CD8 T-cells, are also capable of lysing Mtb infected cells 
(shaded illustration).   
 

Th2 cells produce IL-4, IL-5, IL-10 and IL-13 which promote a humoral immune 

response but counter-regulate the Th1 response73. In humans, active TB is associated with 

reduced Th1 and increased Th2 activity with upregulation of IL-4115. The effect of IL-4 

is counterbalanced by its antagonist, IL-4δ2, and healthy individuals who successfully 

controlled LTBI were shown to express high levels of Th1 cytokines and IL-4δ2116. 

Helminth infection has been associated with reduced immunity towards Mtb due to an 

increased Th2 response28, and reduced protection by BCG vaccination was linked to 

Granuloma 
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elevated IL-4 and IL-5 in mice infected with Schistosoma mansoni 117. Th17 cells produce 

IL-17, IL-21 and IL-22 that are involved in early host defence by recruitment of 

macrophages and neutrophils to the site of infection110. While IL-17 deficient mice were 

shown to succumb from infection by a hypervirulent strain of Mtb, they could still survive 

infection with less pathogenic strains118. On the other hand, excessive IL-17 production 

can lead to tissue damage due to extensive neutrophil recruitment119. 

CD4+CD25+Foxp3+ Treg cells are characterized by TGF-β and IL-10 production and can 

inhibit other subsets of CD4 T-cells28. Although the role of Treg cells could be beneficial 

in limiting excessive inflammation, an increased number of Treg cells are observed in 

active TB patients with high bacterial burden29. IL-10 is an immunoregulatory cytokine 

which is a potent suppressor of macrophage activation and may also inhibit the 

recruitment of T-cells to the lung by suppressing the expression of recruiting 

chemokines120. Certain mouse strains that produce more IL-10 are known to be naturally 

more susceptible to Mtb infection121. MHC class I-restricted CD8 T-cells also play a 

major role in immune response against TB, by secreting perforin and granulysin and 

lysing Mtb infected cells. CD8 T-cells also produce Th1 type cytokines72. Through a 

cross-presentation mechanism by APCs, mycobacterial antigens could access the class I 

MHC pathway and initiate responses by CD8 T-cells29. Following primary infection, 

most effector T-cells will die upon pathogen clearance and the remaining 10% that 

survive are known as memory T-cells. These long-lived cells have high sensitivity to 

specific antigens and will provide a more rapid and robust response following a secondary 

encounter with the same antigen32.  

In the context of Mtb infection, many of the above mentioned innate and adaptive immune 

cells will contribute to the formation of an organised structure known as the granuloma 
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(Figure 4). Granulomas are formed primarily by recruited macrophages which surround 

Mtb-infected macrophages, interspersed with recruited neutrophils and are encircled by a 

lymphocyte cuff, consisting of T-cells and B-cells32. The function of the granuloma is to 

wall off the pathogen and limit the spread of Mtb. While at the same time, a granuloma 

also provides a ‘secured’ environment for Mtb, allowing them to persist in a dormant state 

for many years112. 

 

1.2.2.1.2 Unconventional T-cells 

Unconventional T-cells comprise those lymphocytes that express γδ TCR and typically 

reside in an epithelial environment, including the respiratory tract. Another subset is the 

natural killer T (NKT) cell, which has phenotypic and functional capacities of  

conventional T-cells, as well as features of NK cells (cytolytic activity). NKT cells 

recognise glycolipids when presented in the context of CD1d. Unconventional T-cells 

have a more limited TCR repertoire in the form of cells expressing either an alternative 

γδ  TCR, or a non-diverse αβ TCR in the context of NKT cells122,123. The roles of γδ T-

cells in protection against TB include phagocytosis, cytotoxicity and induction of 

maturation of DCs124. The γδ T-cells are also the main source of IL-17125, and human γδ 

T-cells activated in vitro by phosphoantigens are capable of inducing maturation of DCs. 

They also possess phagocytosis capability similar to innate immune cells such as 

neutrophils, monocytes and DCs126. In addition, a smaller subset of αβ T-cells which do 

not express either CD4 or CD8, termed double negative (DN) T-cells (CD3+CD4-CD8-), 

also produce IFN-γ together with CD4 T-cells, NK cells and γδ T-cells following BCG 

vaccination in infants127.  
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CD1-restricted NKT cells, which can recognize lipid of mycobacteria, are also thought to 

be involved in protection against Mtb29. Among NKT cells, type I or invariant NKT 

(iNKT) cells are the most well studied, and these cells are known to carry preformed IFN-

γ mRNA in their cytoplasm, allowing rapid secretion of the cytokine upon stimulation123. 

Furthermore, iNKT cells are also thought to play roles in inducing maturation of DCs as 

well as facilitating cross-presentation of soluble antigens, leading to increased priming of 

CD8 T-cells122. In active TB patients, the frequency of iNKT cells is lower compared to 

healthy uninfected controls128. The importance of these unconventional T-cells remains 

to be further explored in TB. Nevertheless, they could potentially be targeted for 

vaccination or treatment of the disease.  

 

1.2.2.2 Humoral Immune Response and B-cells 

Antibodies as the central component of adaptive humoral immune response are produced 

by B-cells. Upon recognition of antigens by naïve B-cells, they will differentiate into 

antibody-secreting plasma cells. Earlier studies have supported a protective role for 

antibodies against Mtb, despite mycobacteria being intracellular pathogens. A higher titre 

of immunoglobulin (Ig)G specific to mycobacterial antigen has been associated with 

improvement upon treatment in adults with pulmonary TB and prevention of 

disseminated TB in children129,130. Maturation of antibody-producing cells is governed by 

a Th2 response which also favours production of neutralising antibodies, while Th1 cells 

mediate class-switching towards opsonising antibodies74. Opsonising antibodies are 

particularly important in enhancing phagocytosis of extracellular Mtb, thus they may 

provide protection by preventing dissemination of Mtb and any further progression of the 

disease131. In addition, B-cells can assist the cellular immune response by serving as 
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antigen presenting cells which influence T-cell activation, polarisation and effector 

functions and the establishment of T-cell memory132. In lung granuloma, B-cells 

contribute as a cellular component which can process and present antigen to T-cells, 

secrete antibodies and modulate inflammation through the production of IL-1032,120.  

Mice lacking B-cells exhibit suboptimal anti-tuberculous immunity associated with 

exacerbated pulmonary pathology in acute Mtb infection133. On the other hand, human 

plasmablasts and memory B-cells are elevated in Mtb-infected compared to uninfected 

individuals134. Revisiting the role of B-cells and antibody may lead to better 

understanding of the mechanisms underlying the host response to Mtb infection in order 

to generate better intervention strategies against TB. 

 

1.2.3 Trained innate immunity 

During the last half century, it has been widely believed that innate immunity does not 

possess immunological memory, which was considered specific for the adaptive immune 

response. However, in the past few years, increasing evidence has indicated that some 

innate immune cells can build immunologic memory by adapting to previous exposure to 

vaccination, pathogen or microbial components135. This phenomenon is termed “trained 

innate immunity”. To date, it has been mainly characterised in monocytes and NK cells, 

which can produce increased amounts of pro-inflammatory cytokines and display higher 

levels of surface activation markers in response to restimulation with different unrelated 

microorganisms or toll-like receptor ligands136-139. β-Glucan, a major cell wall component 

of Candida albicans, as well as the BCG vaccine are known to be able to induce trained 

immunity. β-Glucan and BCG induce trained immunity in monocytes via PRRs dectin-1 
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and NOD2 respectively, leading to enhanced signalling of the Akt (protein kinase B)-

mTOR (mammalian target of rapamycin)-hypoxia-inducible factor-1α pathway136,140. 

Moreover, induction of trained immunity is achieved by epigenetic modifications and 

metabolic changes.  

Histone modification with chromatin reconfiguration in monocytes has been shown to be 

a central mechanism of trained immunity and can influence long-term transcriptional 

regulation136. Such changes are linked with a metabolic shift from oxidative 

phosphorylation toward aerobic glycolysis, thereby increasing the capacity of innate 

immune cells to respond to stimulation139. In NK cells, BCG is also able to induce trained 

immunity through specific DNA methylation patterns as well as modulated cytokine 

responses in cytomegalovirus (CMV)-infected individuals138,141. These changes lead to 

enhanced secondary response following re-exposure to both the same or unrelated stimuli. 

In addition, NK cells also possess antigen-specific mechanisms of immune memory, 

distinct to the trained immunity phenomenon, leading to an increased IFN-γ production 

upon re-exposure of the cells with same stimulus96. This antigen-specific NK cell memory 

develops after exposure to cytokine combinations, such as IL-12, IL-15 and IL-18, which 

induce long-lived NK cells and recall responses independent of B-cells and T-cells142. 

The activated NK cells could then provide protection against reinfection by rapidly 

degranulating and producing cytokines96,141. 
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1.3 Tuberculosis Vaccines 

1.3.1 Bacillus Calmette–Guérin (BCG) 

BCG remains the only licensed TB vaccine and has been in use since 1921143. It was 

developed through over 230 successive in vitro subcultures of a strain of Mycobacterium 

bovis every 3 weeks for 13 years, until a non-pathological strain was obtained144. WHO 

estimates that the vaccine is given to over 120 million children every year145. It has been 

an important part of the Expanded Program on Immunization since the 1970s and has 

since been given more than 4 billion times146.  

BCG vaccination induces Th1 responses which are considered essential in protective 

immunity against TB, as was shown in multiple human and animal studies. Following 

BCG immunisation in infants and children, CD4 T-cell responses associated with IFN-γ 

expression, as well as cytotoxic activity were observed147,148. BCG also induces DCs 

maturation and production of IL-12 that leads to Th1 differentiation149. Activation of CD8 

T-cells producing IFN-γ, TNF-α and perforin upon BCG vaccination has also been 

reported148,150. In a study by Fletcher et al.151, the BCG-specific IFN-γ response measured 

with the ELISpot assay was associated with reduced TB disease risk over the following 

1 to 3 years of life in South African infants. This immune response following BCG 

vaccination was predominantly polyfunctional CD4 T-cells response, with less 

contribution from antigen-specific CD8 T-cells. In mice, BCG vaccination was shown to 

increase Th1-type cytokine production in the lung from CD4 and CD8 T-cells following 

aerosol challenge with Mtb compared to unvaccinated mice146,152. In a recent clinical trial 

by the Scriba group (2016)153, protection after BCG vaccination in adults were not 

associated with CD4 or CD8 T-cells, but rather with IFN-γ–producing NK cells. In this 
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study enrolling 72 participants with LTBI, BCG vaccination was given after isoniazid 

preventive therapy. 

Most published studies have reported good protection of BCG vaccination in infants and 

children against miliary and meningitis TB, two severe forms of the disease commonly 

affecting young children. In a systematic review by Mangtani et al. (2014)27, BCG is 

associated with 85% reduction in the risk of meningeal and/or miliary tuberculosis in 

children. Pulmonary TB disease in children is rare and difficult to diagnose, although 

BCG may also protect children against childhood pulmonary disease27,154. Despite this, 

among many trials and observational studies which have been conducted, the estimated 

BCG protection against pulmonary tuberculosis in adults ranges from 0 to 80%26,27. In 

the UK, BCG was shown to provide a strong protective effect up to 80% in a trial 

conducted by the British MRC155, while in some other countries such as India and 

Malawi, the vaccine provides no evidence of efficacy156,157. There are several hypotheses 

for this variable protection demonstrated in clinical trials: geographical differences and 

prevalence of environmental mycobacteria between trial sites, genetic differences 

between trial populations, variable virulence of the Mtb strains encountered by the trial 

populations and differences between strains of the BCG vaccine152.  

The systematic review by Mangtani et al. found the average BCG efficacy against 

pulmonary TB to be 73% at latitudes of ≥40o, while this figures were only 33% at latitudes 

of 20-40o and 13% at latitudes of 0-20o 27. This is consistent with greater exposure to the 

environmental mycobacteria in the warm and wet climates nearer the equator, which may 

cause masking or blocking to the effects of BCG vaccination158. There are also some 

evidences showing that UK infants make stronger Th1-type responses, including IFN-γ, 

whereas Malawian infants make stronger Th2- and regulatory-type responses159. Thus far, 
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the impact of different BCG vaccine strains has been inconclusive and the recent 

systematic review did not find evidence of such effect27,148.  

In places where BCG is protective, the duration of protection conferred by vaccination 

generally lasts up to 15 years, although studies conducted in Brazil and US (American 

Indians and Alaska Natives population) found that protection could last until 20 years and 

50 years, respectively160,161. The protection from BCG may wane overtime162, albeit 

analysis from participants of clinical trials of a TB vaccine candidate in the UK did not 

show waning of IFN-γ responses between 10 years and 30 years after BCG vaccination163. 

In the UK, school-aged BCG vaccination was recently found to offer protection against 

TB for at least 20 years, which is longer than previously thought164. 

Furthermore, BCG is known to provide protection not only against TB, but also towards 

other pathogens and diseases not related to TB, known as the non-specific effect. It is 

perhaps not surprising that BCG could provide protection against leprosy and severe 

forms of Buruli ulcer, caused by Mycobacterium leprae and Mycobacterium ulcerans, 

respectively165,166. However, BCG is also demonstrated to have a beneficial effect on 

reducing all-cause mortality in infants. A meta-analysis of three clinical trials conducted 

in West Africa on low birth-weight infants showed BCG administration reduced mortality 

by 38% within the neonatal period, due to a lower sepsis as well as respiratory infections 

not related to TB167. Interestingly, these studies as well as some previous studies reported 

that the non-specific effect after BCG vaccination is more pronounced in females rather 

than males168-170. This may suggest that females respond better to BCG vaccination, as 

has also been observed with measles, influenza and vaccinia vaccines171,172, although this 

sex-specific effect is yet to be demonstrated towards the prevention of adult pulmonary 

disease.  
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Trained innate immunity is considered to be the main mechanism behind the non-specific 

protective effect of BCG. Investigations by Kleinnijenhuis et al. in the past few years 

have revealed the mechanisms by which BCG could induce trained immunity. In a proof-

of-principle trial in which BCG vaccine was given in healthy adult volunteers in The 

Netherlands, the vaccination led to enhanced release of monocyte-derived cytokines, 

including TNF-α and IL-1β, in response to unrelated bacterial and fungal pathogens, such 

as Candida albicans (yeasts and hyphae), Staphylococcus aureus and Eschericia coli 

(LPS). In addition, immunodeficient mice lacking B- and T-cell function and vaccinated 

with BCG, also had better survival following challenge with candida infection compared 

to naïve mice (survival rate 100% and 30%, respectively)136. The nonspecific protective 

effect of BCG has also been linked to NK cells. NK cells from BCG-vaccinated 

individuals have enhanced proinflammatory cytokine production (IL-6, TNF-α and IL-

1β) in response to mycobacteria and other unrelated pathogens, and studies in mice have 

shown that BCG confers nonspecific protection against candidiasis partially through NK 

cells138. Isolated peripheral blood mononuclear cells (PBMCs) from BCG-vaccinated 

healthy adults also displayed long-lasting heterologous Th1 and Th17 responses upon 

restimulation with unrelated pathogens and TLR-ligands173. More recently, Smith et al. 

demonstrated whole blood signatures of BCG-induced trained innate immunity in UK 

infants, which includes secretion of IL-6, epidermal growth factor, platelet-derived 

growth factor -AB/BB and NK cell activation174.  

Despite the extensive work which has been conducted to decipher the BCG mechanism 

of action, new TB vaccines are still needed as BCG only provides partial protection 

worldwide27,145. Improving understanding of the mechanisms of protection induced by 
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BCG could aid the development of new vaccines. Introduction of new vaccines is 

indispensable by 2025 if we would like to achieve the WHO End TB target by 203513.  

 

1.3.2 Development of Novel Vaccines against TB 

In the past 2 decades, considerable progress has been observed in the development of 

novel vaccines against TB. From a vaccine pipeline that was practically empty of 

candidates prior to 2000, there are currently 13 TB vaccine candidates in the clinical trial 

pipeline and dozens more in preclinical development175. These candidates can be 

classified into several categories based on the proposed strategy and targeted population 

(Figure 5). Most TB vaccines in the pipeline are preventive vaccines, which aim to 

prevent the occurrence of TB infection and/or disease in healthy naïve individuals (pre-

exposure) or in already infected individuals (post-exposure). The preventive vaccines can 

be in a form that aims to substitute BCG (BCG replacement) or to boost the immune 

response after priming with BCG (prime-boost strategy)176,177. 
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Figure 5. Vaccination strategies against TB targeting different stages of infection 
(taken from Weiner & Kaufmann176). 
 

VPM 1002 is a recombinant BCG vaccine candidate which has been developed based on 

the notion of improving access to the intracellular compartment by the insertion of a 

listeriolysin gene and the deletion of a urease gene, which would allow presentation to 

MHC class I molecules and enables better cross-priming for CD8 T-cells178. MTBVAC 

is a recombinant Mtb manufactured by gene deletion of virulence factors which should 

ensure safety, while the presence of antigens found in human Mtb isolates in MTBVAC 

is expected to provide enhanced protection179. These two vaccines are initially aimed to 

replace BCG by potentially providing superior protection. On the other hand, prime-boost 

vaccine candidates are expected to induce stronger immune responses after priming with 

BCG. Such vaccines could employ a viral vector system to express one or more Mtb 

antigens, or be formulated in a protein–adjuvant combination to present Mtb antigens as 

fusion proteins180,181. MVA85A uses the viral vector system to deliver antigen 85A, a 
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highly conserved Mtb antigen, as well as several other candidate vaccines such as 

Ad5Ag85A, ChAdOx185A and TB/FLU-04L182. The use of viral vector systems is 

considered to induce high levels of antigen-specific CD4 and CD8 T-cells in individuals 

who have been primed by BCG vaccination or been exposed to environmental 

mycobacteria183. Another type of prime-boost vaccine candidate uses adjuvanted subunit 

protein to deliver various Mtb antigens. H1, H56 and H4 candidate vaccines use the IC-

31 adjuvant to deliver antigen 85B, with the addition of TB10.4 antigen for H4 vaccine 

and ESAT-6 as well as Rv2660c for H56184,185. Two other vaccine candidates, namely 

M72 and ID93, use different adjuvants developed by their manufacturers, AS01E and 

GLA-SE respectively186,187, to deliver Mtb antigens (hence their names, Figure 5). 

Adjuvants stimulate the immune system to make stronger responses to antigens, but do 

not directly induce immune responses themselves188.  

MVA85A is the pioneer sub-unit TB vaccine candidate to enter human trials and the first 

in infants since BCG was last tested. The results of MVA85A efficacy trial in infants 

were published in 2013. Even though the vaccine appeared to provide promising 

immunogenicity when tested in various pre-clinical animal models as well as in early 

phase human trials189-193, no significant efficacy was observed with MVA85A towards 

the prevention of TB disease in a trial enrolling 2,797 infants in South Africa194. 

Nevertheless, the work from the MVA85A efficacy trial has resulted in several findings 

which provide important insights on immunology and correlates of protection following 

TB vaccination102,151,195. H4:IC-31 vaccine was tested in a large phase 2 trial using a 

prevention of infection trial design. Although the preventive vaccine candidate showed 

some efficacy signals when given in adolescents previously primed with BCG at birth, 

the protection offered by H4:IC-31 was not superior compared to BCG given in 
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adolescents196. More recently, M72:AS01E vaccine was shown to provide 54% efficacy 

against active pulmonary TB disease when given in latently-infected adults197.  

Therapeutic vaccination is a unique strategy compared to preventive vaccination which 

aims to combine vaccination with drug treatment (Figure 5). Such an approach is expected 

to enhance the effectiveness and shorten the duration of TB drug treatment, as well as to 

prevent or reduce the risk of TB relapse198. This concept has gained much interest 

recently, due to the threat posed by drug-resistant TB, where drug treatment is less or no-

longer effective. 

 

1.3.3 Therapeutic Vaccination for Tuberculosis 

1.3.3.1 History of Therapeutic Vaccination in TB 

An initial attempt of therapeutic vaccination for tuberculosis was conducted in 1884 by 

Robert Koch following his discovery of Mtb, when he inoculated active TB patients with 

tuberculin, a suspension of powdered Mtb199. An exacerbated immune response termed a 

Koch phenomenon occurred following tuberculin administration. With present 

knowledge, it is possible that administration of Mtb antigens to already infected 

individuals resulted in a cytokine storm, such as by TNF-α, which would likely have been 

tissue-damaging and caused the harmful response attributable to the many deaths 

following tuberculin therapy200,201. Such a phenomenon has been the main discouraging 

factor in the development of therapeutic vaccination for TB for many years, as the 

activated immune state during TB disease is considered perilous for the introduction of 

additional Mtb antigens by a vaccine. At that time, however, due to the unavailability of 

drug treatment, Koch administered tuberculin alone when mycobacterial load would have 
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been high. A recent study provided evidence that the occurrence of the Koch response is 

associated with bacterial load202. Administering chemotherapy in advance could 

significantly reduce bacterial load and prevent the exacerbated immune response from 

therapeutic vaccination201. More recent attempts to administer a pre-exposure vaccine in 

a therapeutic manner without initial chemotherapy also resulted in strong tissue toxicity 

resembling the Koch phenomenon203,204.  

Favourable results with tuberculin had been observed during the 1950s, in which 

tuberculin was administered in adjunct to chemotherapy205-207. In a study conducted in 

1957, administration of tuberculin with para-aminosalicylic acid (PAS) and streptomycin 

as the only available TB chemotherapy at that time was associated with a better sputum 

conversion rate207. Similar studies were also conducted in TB meningitis patients, in 

which tuberculin administration was associated with improvement of clinical 

parameters205,206. These results suggested that therapeutic vaccination could be safely 

implemented when administered with chemotherapy during TB treatment. Nevertheless, 

due to the discovery of a ‘highly effective’ chemotherapy in 1960 led by Sir John Crofton, 

attention was withdrawn from the initial successes of tuberculin208. With the current 

emergence of Mtb strains that are no longer susceptible to currently available TB 

drugs66,209, the effectiveness of the chemotherapy has been challenged and an alternative 

modality apart from drug treatment is needed. 

 

1.3.3.2 Current Concept and Candidates for Therapeutic Vaccination in TB 

A concept of therapeutic TB vaccination has been reviewed by Prabowo et al. (2013)201, 

in which a revisited approach is considered essential to allow implementation of 

therapeutic vaccination into current practice. Persister bacteria are responsible for the 
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lengthy treatment of TB and transcriptome analysis has shown that these bacilli may 

express different antigens termed latency antigens210. Introduction of a latency antigen to 

overcome persister Mtb could create further synergy between drugs and vaccines201. For 

drug-sensitive TB, a therapeutic vaccine containing latency antigens could shorten the 

current regimen and prevent the occurrence of relapse, while it could potentially increase 

the low treatment success rate in the context of drug-resistant TB66,209. 

Several TB vaccine candidates are currently available in the pipeline and this has recently 

been systematically reviewed by Gröschel & Prabowo et al. (2014)211. Table 2 

summarises the profile of these candidates. Among the candidates, the RUTI vaccine is 

considered a leading candidate based on  the quality of the published clinical reports. The 

RUTI vaccine is composed of purified fragments of Mtb in liposomes grown under stress 

conditions which induces the expression of latency antigens212. The vaccine is purified to 

decrease the risk of the exacerbated immune response and fragmented to facilitate 

processing and presentation of cell wall antigens. The cell wall antigen preparation has 

an average size of 0.1 µm and exerts adjuvant properties212,213. RUTI was specifically 

developed as an adjunct for treatment for TB, both in the context of active TB treatment 

and isoniazid preventive therapy for LTBI. The vaccine has completed a phase 2a trial 

and was shown to be safe and immunogenic when given after subsequent chemotherapy 

in latent TB patients with and without HIV co-infection214. Previous pre-clinical studies 

in mice, guinea pig, goat and mini-pig have shown that RUTI was able to reduce bacterial 

load after chemotherapy and improve lung pathology compared to control215-218. A RUTI 

clinical trial in MDR-TB patients receiving chemotherapy is currently ongoing 

(NCT02711735). 

 



 58 

Table 2. Profile of several therapeutic vaccine candidates for TB (taken from 
Gröschel & Prabowo et al.211) 

Vaccine 
Candidate Name 

Manufacturer Route of 
Administration 

Immune 
Response 

Safety Remark 

M. vaccae 

Immodulon, 
London 

Intradermal, 
Oral 

Promotes Th1 
response 

Suppresses Th2 
response 

Only mild local 
reactions were 

observed 

Multiple doses 
required Anhui Longcom, 

China 
Intramuscular, 

Oral 

RUTI 
Archivel, 
Barcelona Subcutaneous 

Mixed 
Th1/Th2/Th3 

response toward 
latency antigen 

No 
hypersensitivity 

observed 

Further study to 
ensure safety is 

required 

M. smegmatis 
Wuhan Institute 

of Biological 
Product, China 

Subcutaneous 

Two-way 
immune 

modulation 
function 

Only mild local 
reactions were 

observed 

Further larger 
studies required 

M. indicus-pranii 
Immuvac, Cadila 
Pharmaceuticals, 

India 

Subcutaneous, 
Aerosol 

Promotes Th1 
response 

No human 
infection has 

ever been 
reported 

Aerosol 
administration 
may increase 
compliance 

V5 
Immunitor, 

Canada Oral 

Improved 
clinical 

parameters, 
attenuates TB-

associated 
inflammation 

No exacerbated 
immune 
response 
reported 

The exact 
content remains 

to be further 
investigated 

 

Mycobacterium vaccae is an older therapeutic vaccine candidate which has been tested 

in a large efficacy trial219. A recent meta-analysis showed that M. vaccae provided some 

benefit in improving sputum conversion rate and radiographic healing, although a single 

dose of M. vaccae failed to provide protection when tested in a phase 3 trial220. Further 

genomic characterisation has shown that the M. vaccae strain used in the trial was actually 

Mycobacterium obuense221. The use of multiple doses of M. vaccae/ obuense is probably 

needed when added to chemotherapy in TB. Another candidate is Mycobacterium indicus 

pranii (MIP) which was initially developed as a vaccine for leprosy, but has been 

retrospectively shown to be beneficial in TB co-infected patients211. In a large study 
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randomising 1,400 adults with pericarditis TB, MIP did not have a significant effect on 

morbidity and mortality of the disease when administered therapeutically222. MIP is 

currently in preparation for a large efficacy trial in India as a preventive vaccine, in a 

head-to-head comparison with VPM1002178. The next candidate is M. smegmatis, which 

in mice could promote Th1 and inhibit Th2 responses, thus resembling M. vaccae211. V5 

is an oral therapeutic vaccine initially developed and approved for management of chronic 

hepatitis, with some evidence to suggest it may also protect against TB223. In addition to 

the above mentioned candidates, H56 as a fusion protein vaccine could also be considered 

a therapeutic vaccine. The presence of Rv2660c,  a latency antigen, enables its application 

as a multistage vaccine and it has been shown in mouse and non-human primate models 

to effectively control reactivation of latent TB185,224.  

 

1.3.4 Preclinical Animal Models and Human Trials for TB Vaccine Testing 

Animal models have been used extensively in the development of new TB vaccines, with 

the clear aim to demonstrate better protection compared to BCG prior to progressing to 

human clinical trials111. Typically, the main indicator for testing the potency of new 

vaccine candidates in animal models is the reduction of the bacillary load in the lungs at 

the acute phase of the infection. While in human, protection is defined as prevention of 

TB disease and/or infection using clinical and diagnostic endpoints, and any individuals 

becoming infected are considered not protected225. Despite the difference, animal models 

are still regarded valuable as a ‘bridge’ between vaccine discovery and human testing. 

Murine models are currently the most widely used and characterised, perhaps due to the 

inexpensive and in-bred nature of the model, therefore allowing straightforward 

standardised adaptation between centres111,225. Three murine models currently exist for 
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TB vaccines testing: 1) low dose aerosol, 2) murine latent TB and 3) intratracheal 

models226. The first model is also generally known as the ‘in vivo Mtb challenge model’, 

where a preventive vaccine candidate is expected to reduce bacterial load in the lung few 

weeks following a low dose Mtb challenge (~ 50 colony forming units [CFUs])227. The 

second model is developed to test therapeutic vaccine candidates, in which infection from 

a low dose aerosol is allowed to progress for 6 weeks or more, at which time antibiotic 

treatment is started for several weeks followed by vaccination, as an attempt to assess the 

impact of therapeutic vaccine on top of TB treatment. This model was notably used to 

test RUTI and H56 candidate vaccines185,215. The intratracheal model involves inoculation 

of a high dose of Mtb and is less commonly used as it is considered not to reflect the 

natural history of TB infection228. 

Several differences exist between murine models and humans in terms of Mtb infection. 

The largely used C57Bl/6 and Balb/c mouse strains do not develop similar granuloma 

when compared to human, and they also have a different distribution of TLRs111,225. To 

overcome these issues, larger mammals can be used, such as guinea pigs and non-human 

primates (NHPs), with the latter being the closest species to humans226. However, the use 

of such mammals, especially NHPs, is very costly and requires advanced technical 

expertise, leading to only a few groups globally who are capable of conducting these 

experiments. In terms of cost, performing the murine latent TB model to test therapeutic 

TB vaccines is also considered expensive, as the experiment could last for over 20 weeks. 

Furthermore, there is an ethical consideration for performing animal experiments, as they 

endure suffering classified as moderate in severity during the study, while at the same 

time large numbers of animals may be required in order to reach statistical power229. 

Development of an ex vivo testing system, which could reduce the numbers of animals 
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used, or refine the experiment by negating the need of an in vivo challenge experiment, 

would be greatly appreciated.  

 

 
Figure 6. Pathway of licensure for a vaccine candidate (taken from Kanesa-Thasan et 
al.230). 
 

In order for a TB vaccine candidate to be licensed, several stages of testing in humans 

known as clinical trials need to be conducted. A phase 1 clinical trial in TB vaccine 

development aims to assess safety in healthy volunteers and also to gain the first insight 

of vaccine immunogenicity. Further, in a phase 2 clinical trial, a vaccine candidate is 

tested in the target population. In a phase 2a study, typically optimum dose and route, 

immunogenicity and safety of a vaccine are assessed. In a phase 2b trial, efficacy as an 

outcome is assessed in addition to safety and immunogenicity. Lastly, a phase 3 study 

aims to demonstrate efficacy in a larger number of participants in target population, often 

in multiple trial sites with different settings. Following licensure, a post marketing 

surveillance known as phase 4 should also be performed175,230. Figure 6 exemplifies the 

pathway of licensure for a vaccine candidate which could take up to a couple of decades 

from discovery.  Currently, not less than US $100 million per year of global investment 
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is dedicated for TB vaccine development at various stages231. In the case of MVA85A, 

the efficacy trial itself costed US $30 million and took 5 years to complete, yet showed 

no protection194,231. The lengthy and costly clinical trials have emphasised the need for an 

immune correlate of protection following TB vaccination which could identify promising 

candidates in early pre-clinical or clinical development.  

 

 

1.4 Immune Correlates of Protection 

A biomarker is defined as “an objective characteristic that indicates a normal or 

pathogenic biological process, or a pharmacological response to a therapeutic 

intervention or vaccination”232. Immune biomarkers or correlates of vaccine efficacy will 

substantially accelerate TB vaccine development by potentially reducing the need of 

lengthy and costly efficacy trials233. Biomarkers will be expected to be implemented to 

screen dozens of vaccine candidates currently available in the pipeline, by predicting the 

likely efficacy of these candidates and subsequently selecting the most promising 

candidates to progress to efficacy trials234. As exemplified by the case of MVA85A trial, 

it could take a decade or more to determine the efficacy for just one vaccine candidate235. 

Vaccine candidates should also be screened in the preclinical stage to determine which 

candidates should advance to human trials. Such screening efforts would be beneficial as 

well to find optimum doses for pre-clinical and clinical studies, especially in the case of 

therapeutic vaccination in which optimum combinations of vaccine and drug dose may 

need to be identified.  
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1.4.1 T-cell–based Signatures as Correlates of Vaccine-induced Immunity 

IFN-γ has been extensively used as a marker of immunogenicity in TB vaccine 

experiments and human trials126. IFN-γ is a robust cytokine, which is mainly produced by 

T-cells in large quantities and not easily degraded in culture or with storage, and its 

production can be measured by counting IFN-γ–secreting spot forming cells in an 

ELISpot assay, by ELISA or multiplex assay, or by using flow cytometry with 

intracellular cytokine staining (ICS)236. Despite this, there are discrepancies between 

studies towards the value of IFN-γ as a correlate of protection. In mice, although BCG 

vaccination induced protective T-cells in vivo, production of IFN-γ by these cells does 

not predict vaccine protection237,238. In humans, a study by Kagina et al. (2010)239 found 

that measurement of polyfunctional T-cells, making IFN-γ, TNF-α and IL-2, in BCG-

stimulated whole blood cultures from BCG-vaccinated infants at 10 weeks of age did not 

distinguish between infants who subsequently progressed to TB disease and those who 

remained healthy. However, in a more recent study by Fletcher et al. (2016)151, the 

frequencies of cells producing BCG-specific IFN-γ measured with ELISpot was 

associated with a reduced risk of developing disease, using the infants cohort of the 

MVA85A efficacy trial. Although both the Kagina and Fletcher studies were conducted 

in the same South African infant populations, the number of case infants in the latter study 

was almost double, with a higher number of controls per TB case infants (3 controls per 

case) and IFN-γ measurement was performed later in infants of the Fletcher study (4-6 

months old). On the other hand, MVA85A also induced a modestly higher polyfunctional 

T-cells than BCG alone, and this did not translate into protection194. Therefore, it is likely 

that IFN-γ production by conventional T-cells is necessary but insufficient to be used 

solely as a correlate of protection. 
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These findings have led researchers to look at other immune cell populations which could 

be associated with protection, such as γδ T-cells, Th17, CD4- CD8- DN T-cells as well as 

NK cells126,240. NK cells, in particular, are quickly recruited and secrete large quantities 

of IFN-γ and cytotoxic molecules following infection or vaccination241,242. In this context, 

it is plausible to consider that immune protection from TB is a result of coordinated 

activities from multiple cells types and immune mechanisms, rather than exclusively from 

IFN-γ or CD4 T-cells. Gene expression analysis may help to identify which pathways 

contribute to protection, and transcriptomics has previously highlighted the role of 

neutrophils and type I interferons which were once overlooked90. Yet, data analysis is 

complex and such technology is perhaps not readily applicable to resource-limited 

clinical trial sites. Consequently, an assay which could measure the summative effect of 

host immune responses following TB vaccination i.e. the ability of cells from vaccinated 

subjects to control the growth of mycobacteria ex vivo, would be of value and could allow 

a screening effort of vaccine candidates in early pre-clinical and clinical studies.  

 

1.4.2 Mycobacterial Growth Inhibition Assays (MGIAs) 

The mycobacterial growth inhibition assay (MGIA) is a functional assay which assess the 

ability of immune cells to kill or inhibit the growth of mycobacteria in an ex vivo system. 

Using intracellular inhibition of mycobacterial growth as a measure of vaccine potency, 

the MGIA is developed and expected to be able to predict clinical efficacy of TB vaccines, 

therefore allowing screening efforts in early phase of vaccine testing243. The MGIA 

involves co-culture of whole blood, human PBMCs or mouse splenocytes with 

mycobacteria, and subsequent measurement of mycobacterial growth inhibition, and 

thereby could also be regarded as an ‘ex vivo challenge model’.  
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In the past several years, many efforts have been focused on strengthening reproducibility 

as well as to standardise assays between laboratories, therefore allowing comparison of 

results between  centres. Several groups have demonstrated the use of ex vivo MGIAs in 

various different systems in human and animals in the past few decades (Figure 7), and 

this was recently reviewed by and Tanner et al. and Brennan et al.243,244. Further 

application of the MGIA to screen TB vaccine candidates is justified and their use in TB 

vaccine clinical trials and pre-clinical animal testing should be considered by vaccine 

developers. 

 
Figure 7. Classification of various MGIAs which have been developed for human 
and animal testing (taken with permission from Tanner et al.244). 

 

1.4.2.1 Whole blood MGIAs 

MGIAs can be performed using whole blood or PBMC samples from humans. In 2001, 

Wallis et al. established a whole blood MGIA to measure the bactericidal activity of anti-
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TB drugs using the BACTEC mycobacterial growth indicator tube (MGIT) system245. 

The assay was then used to monitor drug treatment of active TB patients246. Around the 

same time, Kampmann et al. also developed a whole blood assay using BCG transfected 

with luciferase (BCG-lux) as a reporter247. In this context, both the MGIT and BCG-lux 

systems are used for quantification of mycobacteria. Cheon et al. applied the MGIT assay 

and found that both primary vaccination and revaccination with BCG in US adults 

enhanced ex vivo mycobacterial growth inhibition248. Using the BCG-lux system, 

enhanced growth inhibition was also observed following BCG vaccination in South 

African infants, and this capacity was impaired with HIV infection249,250. 

In 2013, Fletcher et al. implemented the MGIT-based whole blood MGIA alongside a 

PBMC-based adaptation. In the UK where primary BCG vaccination is known to have a 

high efficacy, primary BCG vaccination was associated with enhanced inhibition of 

growth, but not following revaccination251. In this study, it was observed that a higher 

magnitude of mycobacterial growth inhibition was achieved with PBMC, rather than 

whole blood. Recently, it was discovered that the level of haemoglobin (Hb) and iron 

correlate with the ex vivo growth of mycobacteria252, thereby denoting a confounding 

factor for the use of whole blood, as Hb levels may vary between study participants. 

Mycobacteria are known to be able to utilise haemoglobin as an iron source for 

metabolism253, hence a vaccine effect could be masked due to high growth in the presence 

of abundant iron. A study by the Scriba group (2017) also did not find differences in 

growth inhibition in children aged 4 to 12 years old, which epidemiologically is immune 

from developing TB disease (known as the ‘golden age’), as well as in LTBI subjects 

compared to uninfected individuals in South Africa using the whole blood MGIA254. 

While this could be due to universally high levels of mycobacterial sensitisation in this 
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high TB burden setting (through environmental mycobacteria and/or universal BCG 

vaccination) that could affect inhibition of mycobacterial growth, the impact of varying 

levels of Hb in their study participants also could not be excluded. 

 

1.4.2.2 PBMC-based MGIAs 

Silver et al. developed a system utilising low-level infection of isolated monocytes with 

Mtb H37Rv for 1 hour, followed by a 7 day culture either alone or with unstimulated 

autologous lymphocytes. This assay is termed the ‘primary lymphocyte inhibition 

assay’255. In addition, Worku et al. also established another assay, in which antigen-

specific T-cells were expanded by stimulation prior to co-culture with infected 

monocytes, referred to as the ‘secondary lymphocyte inhibition assay’256. In 2002, Hoft 

et al. compared these two different PBMC-based assays head-to-head with the whole 

blood assay257, and found that BCG revaccination in midwestern US adults enhanced 

mycobacterial growth inhibition using the three assays, similar to the finding of Cheon et 

al248. However, it was soon realised that both of the lymphocyte inhibition assays, which 

require separation of lymphocytes and monocytes as well as pre-culture, might not be 

suitable for field use and especially considering the small volumes of infant blood236.  

The PBMC-based ‘direct’ MGIA as described by Fletcher et al.251 is considered to 

provide technical simplicity for field implementation, and the use of PBMC would allow 

cryopreserving of samples from different time points in a vaccine study. The samples can 

then be analysed altogether upon completion of the study thus minimising the potential 

impact of batch variability. In addition, using PBMC allows for any natural variation in 

monocyte phenotype or frequency to be incorporated into the readout of the assay. In 

terms of distinguishing protection following BCG vaccination, the PBMC assay did not 
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detect enhanced inhibition of growth after BCG revaccination in a UK adult population, 

in contrast to the IFN-γ response measured with ELISpot which saw an increase following 

revaccination. While both assays detected increased response following primary 

vaccination, the PBMC-based MGIA is regarded to better reflect epidemiological data, in 

which BCG revaccination is considered not providing an additional benefit where 

primary BCG vaccination is known to be highly efficacious, such as in the UK27,258. Later, 

Smith et al. found that BCG vaccination in UK infants enhanced ex vivo mycobacterial 

growth control using the PBMC-based assay and such control was correlated with a 

higher frequency of polyfunctional CD4 T-cells 259. Most recently, Joosten and colleagues 

(2018) discovered that recent exposure with Mtb and BCG vaccination also enhanced the 

capacity of PBMC to control ex vivo mycobacterial growth by the role of nonclassical 

monocytes84. This observation was associated with the trained innate immune 

mechanism, and has further supported the notion that an assay which can detect a 

comprehensive summative effect of both innate and adaptive host-immune responses, 

such as the PBMC MGIA, is needed.  

 

1.4.2.3 MGIAs in Preclinical Animal Models 

MGIA assays have also been adapted for animal models to allow pre-clinical screening 

of TB vaccine candidates prior to further investigation in human studies. This would be 

particularly useful where there is a need to test vaccine candidates for antigen dose, 

adjuvant dose or antigen-adjuvant combinations, in which MGIAs could save time, 

animals and funds. Thus far, the assays have been described using cells from mice260-263, 

cattle264,265 and non-human primates252. Using the animal models, the MGIA outcomes 
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could be correlated with protection from in vivo challenges with Mtb, hence providing 

biological validation. 

In mice, initially the MGIA was performed using infected macrophages cultured 

separately from mouse splenocytes, and then combined together. Using this MGIA, 

splenocytes from mice vaccinated with five different TB vaccines inhibited mycobacterial 

growth ex vivo, compared to naive controls260. Work by Marsay et al. in 2013 applied a 

murine splenocyte MGIA using the BACTEC MGIT system to develop a ‘direct’ 

splenocyte MGIA in order to simplify the assay and include the innate cell compartment.  

Splenocytes from BCG-vaccinated mice were better able to inhibit growth of 

mycobacteria compared to the naïve animals, and this ex vivo inhibition correlated with 

protection from in vivo challenge with Mtb261. Further optimisation work by Zelmer et 

al.262 found that detection of vaccine-induced inhibition could be improved by decreasing 

the multiplicity of infection (MOI) in the direct splenocyte MGIA. It was also 

demonstrated that the capacity to detect mycobacterial growth inhibition in BCG-

vaccinated mice was time sensitive, with the peak of growth inhibition being detected at 

6 weeks after vaccination in C57Bl/6 mice262.  

In general, the MGIA assay both in human and animals, employs a low MOI in the ex 

vivo system (~ 1 CFU/10,000 PBMCs or splenocytes) in order to prevent overwhelming 

of the vaccine effect. Performing a time course experiment in mice might also be 

necessary to identify the time point of the peak immune response when screening different 

TB vaccine candidates. Among different studies, it has been concluded that splenocytes 

are the most practical tissue to use, due to the small volume of blood in mice which 

impedes the use of whole blood or PBMCs. An adaptation of the direct ex vivo MGIA 

using murine lung cells is currently underway (Hannah Painter, personal communication). 
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It was also identified that splenocyte viability might pose as a problem in the direct 

splenocyte MGIA, and this was later improved in the work of Jensen and colleagues 

(2017) by enrichment of culture media and incubation without rotation263. 

 

1.4.2.4 Immune Mechanisms of Growth Inhibition 

Earlier works in humans using the lymphocyte inhibition assays have shown the 

contribution of CD4 and CD8 T-cells in mycobacterial growth inhibition, by the addition 

or depletion of these cell populations in the ex vivo culture system248,255,266. Moreover, 

following BCG vaccination, IFN-γ was increased when cytokine production was 

measured in MGIA culture supernatant250,251,257. However, in many of these studies, IFN-

γ did not correlate with mycobacterial growth inhibition, supporting the notion that it is 

essential but could not be used a sole marker of protection. Interestingly, in one MGIA 

study, BCG vaccination was found to enhance ex vivo responsiveness of γδ T-cells to 

mycobacteria, and this was achieved through granzyme A production from a subset of γδ 

T-cells, namely γ9δ2 T-cells, in a TNF-α–dependent manner266,267. Moreover, NK cells 

isolated from the primary lymphocyte inhibition assay were also shown to enhance 

inhibition of intracellular Mtb growth in an apoptosis-dependent manner268.  

IgG antibody responses to arabinomannan increased significantly following BCG 

vaccination in humans, with phagocytosis and intracellular growth inhibition being 

enhanced when mycobacteria were opsonised with post vaccination sera, and these 

enhancements were correlated with the IgG titres269. A higher proportion of monocytes 

to lymphocytes (ML ratio) is associated with increased mycobacterial growth and altering 

the ML ratio in vitro also affects the control of mycobacterial growth270. In addition, 

trained innate immunity has also recently been discovered to play a role in mycobacterial 
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growth inhibition, with non-classical CD14dim monocytes being associated with enhanced 

growth control following recent Mtb exposure and BCG vaccination84. In the latter study 

employing direct PBMC MGIA, several cytokines previously identified as associated 

with trained immunity, such as TNF-α, IL-1β and IL-6, were elevated in the culture 

supernatants of individuals with superior mycobacterial growth control. Moreover, 

Joosten et al. also identified CXCL10, CXCL9 and CXCL11 as additional cytokines 

associated with trained immunity based on their study84. 

In mice, IFN-γ appears to play a more dominant role as demonstrated by Marsay et al. 

with the direct splenocyte MGIA, in which IFN-γ mRNA expression was significantly 

correlated with mycobacterial growth inhibition261. This may be due to the in-bred nature 

of mice, in contrast to humans. The positive impact of CD4 and CD8 T-cells when added 

to murine splenocyte co-culture has also been demonstrated271. Interestingly, in a recent 

murine study by Jensen et al., IFN-γ production measured in the MGIA supernatant was 

also correlated with growth inhibition following immunisation with a vaccine candidate 

(H56), but the cellular source could not be identified from the measured vaccine-specific 

T-cells. This suggests that other cells, such as NK cells, may produce IFN-γ which could 

enhance growth inhibition. In summary, these studies of various immune pathways have 

shown that the MGIA could more broadly represent complex host-pathogen interactions 

and may be a more accurate surrogate of protective immunity, when compared to 

measurement of a single cytokine. 

 

1.4.2.5 The BACTEC Mycobacterial Growth Indicator Tube (MGIT) System 

Quantification of bacterial count for the MGIA can be performed using several methods 

such as quantification of BCG-lux247,250, CFU counting of infected monocytes255-257 or the 
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BACTEC MGIT system245,246,248,251,272. Use of the MGIT system allows an automated 

quantification of mycobacteria with a greater dynamic range compared to culture on solid 

media and with less variability273. The BACTEC MGIT system was initially developed 

to detect mycobacteria in human clinical samples. The system uses tubes that contain 

modified Middlebrook 7H9 liquid broth medium. The MGIT tube contains an oxygen-

quenched fluorochrome at the bottom that acts as a sensor towards depletion of the free 

oxygen level upon growth of mycobacteria. A decrease in oxygen level leads to 

disinhibition of the fluorochrome leading to a fluorescent colour under UV light. This 

change is recorded in the MGIT instrument by computer algorithm as time to positivity 

(TTP) measured in hours274. A positive MGIT tube typically contains 105 – 106 CFU per 

ml of medium274.  The TTP value has been shown to correlate well with the actual CFU 

count in culture samples275. In the instrument, MGIT tubes are incubated at a temperature 

of 37o C and monitored for increasing fluorescence every 60 minutes274. 

 

 

1.5 Project Structure 

1.5.1 Rationale of the Study 

Several therapeutic TB vaccine candidates have been developed and are currently 

progressing through the TB vaccine pipeline. It is hypothesised that the ability of a 

therapeutic vaccine to enhance  capacity to control mycobacterial growth can be measured 

ex vivo and that a vaccine effect will still be observed even in the presence of TB drugs. 

This study will implement the MGIA to investigate the impact of vaccination with BCG 

in humans and mice, as well as immunisation with the RUTI vaccine in the mouse model, 

in the absence and presence of TB drugs ex vivo. To our knowledge, no other studies have 
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used the ex vivo MGIA system to assess therapeutic TB vaccine candidates and none have 

assessed vaccine-induced growth inhibition  in the presence of drugs. The results of this 

study will provide information for TB vaccine researchers regarding the value of MGIA 

as a screening tool for therapeutic TB vaccine candidates. 

 

1.5.2 Hypothesis 

Immunisation with therapeutic tuberculosis vaccines enhances the ability of immune cells 

to control the growth of mycobacteria, in the absence and in the presence of TB drugs and 

this effect can be measured ex vivo in a growth inhibition assay. Further, the growth 

inhibition assay can be used to gain insight into the immune pathways important for the 

control of mycobacterial growth. 

 

1.5.3 Study Aims and Objectives 

The aims of the study are: 

1. To a) establish a human cohort of healthy, previously BCG immunised and BCG 

naïve individuals to be able to assess the impact of historical BCG vaccination on 

mycobacterial growth inhibition. To b) use frozen PBMC from this cohort to 

investigate if ex vivo mycobacterial growth inhibition can still be observed when cells 

are co-cultured with TB drugs. 

2. To use the mouse model to determine the impact of recent vaccination with BCG and 

with the RUTI vaccine towards ex vivo control of mycobacterial growth, in the 

absence and presence of TB drugs.  



 74 

3. To assess the impact of individual-level factors and immune cell phenotype on 

immunity following historical BCG vaccination in a human cohort of healthy, 

previously BCG immunised and BCG naïve individuals. 

4. To elucidate the immune mechanisms underlying vaccine-induced mycobacterial 

growth control both in humans and the mouse model. 

 

The objectives of the study are: 

1. To establish a human cohort with sufficient statistical power to be able to assess the 

impact of historical BCG vaccination on mycobacterial growth inhibition. 

2. To optimise and implement ex vivo growth inhibition assays using human PBMCs 

and mouse splenocytes for testing therapeutic TB vaccine candidates. 

3. To identify optimum drug concentrations for assessing the therapeutic effect of first 

line TB drugs (INH and RIF) using the growth inhibition assay. 

4. To explore essential immune mechanisms for protective immunity using ELISpot and 

ELISA to identify cytokine production, as well as using flow cytometry with surface 

staining and/or intracellular cytokine staining to characterise immune cell phenotype. 

5. To assess the impact of sex, CMV-specific response and immune cell phenotype on 

ex vivo growth inhibition in humans following historical BCG vaccination. 

 

1.5.4 Thesis Structure 

The overarching theme of this thesis is the use of mycobacterial growth inhibition assay 

as a potential platform to test therapeutic TB vaccines ex vivo. This thesis is divided into 
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6 chapters, of which 4 chapters will describe the results and discuss the main findings 

from the PhD project, mainly in manuscript style in accordance with the research paper 

style thesis format. As has been elaborated,  Chapter 1 presents a literature review of the 

topic of this thesis as well as outlining the project structure. 

In Chapter 2, the combined effect of historical BCG vaccination and TB drugs is 

demonstrated for the first time using the ex vivo MGIA system in a cohort of adult, healthy 

volunteers. This study provides proof-of-principle that immune mediated mycobacterial 

growth inhibition can be observed and measured in the presence of two major first-line 

TB drugs, which is considered an essential first-step to further expedite the development 

of MGIA as a screening tool for therapeutic TB vaccines. Data discussed in this chapter 

indicates that the efficacy of INH can be augmented following historical BCG 

vaccination, which supports findings from previous observational and animal studies. The 

observation also suggests a role for NK cells in the combined effect between BCG 

vaccination and INH. 

The impact of RUTI vaccination in the mouse model is discussed in Chapter 3, in which 

for the first time the vaccine was shown to inhibit the growth of mycobacteria ex vivo in 

a time course experiment. The nature of the ex vivo assay does not require the immune 

mechanism that underlies growth control of a vaccine candidate to be known a priori, 

while in turn could help to determine underlying mechanisms by investigating immune 

factors in samples with efficient growth inhibition. The data in this chapter show that 

RUTI vaccination induces a shift towards nonclassical monocytes phenotypes which is 

associated with enhanced growth inhibition. This finding suggests that RUTI has an 

important impact on the myeloid compartment which has not previously been identified. 

This demonstrates the value of assays such as the MGIA which assess changes in the 
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innate myeloid compartment as well as changes in adaptive immunity following 

vaccination. 

Chapter 4 will discuss the impact of individual-level factors on ex vivo mycobacterial 

growth inhibition in a cohort of healthy, adult volunteers. Specifically, it was found that 

immune cells phenotype, cytomegalovirus-specific response and sex have impacts on 

immunity following BCG vaccination, reflecting epidemiological data and previous 

human studies. Although this chapter does not directly address the therapeutic vaccination 

strategy, it provides important insights into the factors that influence mycobacterial 

growth inhibition which may need to be considered if using this assay in the context of 

clinical trials. This is important as vaccine developers will need to understand the factors 

which may confound their ability to observe a vaccine effect when they move from pre-

clinical to clinical studies. 

In Chapter 5, several unpublished pilot investigations and preliminary methodology 

development data sets will be described and discussed, such as the impact of BCG 

vaccination and RUTI towards ex vivo drug-mediated killing in the mouse model, as well 

as our early optimisation work with the MGIA in human and mouse. Finally, Chapter 6 

will integrate the discussion of the three discrete yet related investigations as well as the 

unpublished data to give answers to the problems posed in the present chapter. 



 77 

References 

1. Keshavjee S, Farmer PE. Tuberculosis, drug resistance, and the history of modern 
medicine. N Engl J Med 2012; 367(10): 931-6. 

2. Paulson T. Epidemiology: A mortal foe. Nature 2013; 502(7470): S2-3. 

3. Tiberi S, du Plessis N, Walzl G, et al. Tuberculosis: progress and advances in 
development of new drugs, treatment regimens, and host-directed therapies. Lancet 
Infect Dis 2018; S1473-3099(18): 30110-5. 

4. Frieden TR, Sterling T, Pablos-Mendez A, Kilburn JO, Cauthen GM, Dooley SW. The 
emergence of drug-resistant tuberculosis in New York City. N Engl J Med 1993; 
328(8): 521-6. 

5. World Health Organization. Tuberculosis: A Global Emergency. WHO, Geneva, 1994. 

6. Herbert N, George A, Masham of Ilton B, et al. World TB Day 2014: finding the 
missing 3 million. Lancet 2014; 383(9922): 1016-8. 

7. Zumla A, Raviglione M, Hafner R, von Reyn CF. Tuberculosis. N Engl J Med 2013; 
368(8): 745-55. 

8. Harries AD, Zachariah R, Corbett EL, et al. The HIV-associated tuberculosis epidemic-
-when will we act? Lancet 2010; 375(9729): 1906-19. 

9. van Crevel R, Dockrell HM. TANDEM: understanding diabetes and tuberculosis. 
Lancet Diabetes Endocrinol 2014; 2(4): 270-2. 

10. McMurry HS, Mendenhall E, Aravind LR, Nambiar L, Satyanarayana S, Shivashankar 
R. Co-prevalence of type 2 diabetes mellitus and tuberculosis in low- and middle-
income countries: A systematic review. Diabetes Metab Res Rev 2018: e3066. 

11. World Health Organization. Global Tuberculosis Report. WHO, Geneva, 2017. 

12. Lonnroth K, Castro KG, Chakaya JM, et al. Tuberculosis control and elimination 2010-
50: cure, care, and social development. Lancet 2010; 375(9728): 1814-29. 

13. Uplekar M, Weil D, Lonnroth K, et al. WHO's new End TB Strategy. Lancet 2015; 
S0140-6736(15): 60570-3. 

14. Dye C, Maher D, Weil D, Espinal M, Raviglione M. Targets for global tuberculosis 
control. Int J Tuberc Lung Dis 2006; 10(4): 460-2. 

15. Marais BJ, Gie RP, Schaaf HS, Beyers N, Donald PR, Starke JR. Childhood pulmonary 
tuberculosis: old wisdom and new challenges. Am J Respir Crit Care Med 2006; 
173(10): 1078-90. 

16. Floyd K, Glaziou P, Zumla A, Raviglione M. The global tuberculosis epidemic and 
progress in care, prevention, and research: an overview in year 3 of the End TB era. 
Lancet Respir Med 2018; 6(4): 299-314. 



 78 

17. Abubakar I, Stagg HR, Cohen T, et al. Controversies and unresolved issues in 
tuberculosis prevention and control: a low-burden-country perspective. J Infect Dis 
2012; 205(Suppl 2): S293-300. 

18. Neyrolles O, Quintana-Murci L. Sexual inequality in tuberculosis. PLoS Med 2009; 
6(12): e1000199. 

19. Narasimhan P, Wood J, Macintyre CR, Mathai D. Risk factors for tuberculosis. Pulm 
Med 2013; 2013: 828939. 

20. Horton KC, MacPherson P, Houben RM, White RG, Corbett EL. Sex differences in 
tuberculosis burden and notifications in low- and middle-income countries: A 
systematic review and meta-analysis. PLoS Med 2016; 13(9): e1002119. 

21. Rhines AS. The role of sex differences in the prevalence and transmission of 
tuberculosis. Tuberculosis (Edinb) 2013; 93(1): 104-7. 

22. Nhamoyebonde S, Leslie A. Biological differences between the sexes and susceptibility 
to tuberculosis. J Infect Dis 2014; 209(Suppl 3): S100-6. 

23. van Lunzen J, Altfeld M. Sex differences in infectious diseases-common but neglected. 
J Infect Dis 2014; 209(Suppl 3): S79-80. 

24. Fish EN. The X-files in immunity: sex-based differences predispose immune responses. 
Nat Rev Immunol 2008; 8(9): 737-44. 

25. Pai M, Behr MA, Dowdy D, et al. Tuberculosis. Nat Rev Dis Primers 2016; 2: 16076. 

26. Fine PE. Variation in protection by BCG: implications of and for heterologous 
immunity. Lancet 1995; 346(8986): 1339-45. 

27. Mangtani P, Abubakar I, Ariti C, et al. Protection by BCG vaccine against tuberculosis: 
a systematic review of randomized controlled trials. Clin Infect Dis 2014; 58(4): 470-
80. 

28. Dheda K, Schwander SK, Zhu B, van Zyl-Smit RN, Zhang Y. The immunology of 
tuberculosis: from bench to bedside. Respirology 2010; 15(3): 433-50. 

29. O'Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP. The immune 
response in tuberculosis. Annu Rev Immunol 2013; 31: 475-527. 

30. Houben RMGJ, Dodd PJ. The global burden of latent tuberculosis infection: A re-
estimation using mathematical modelling. PLoS Med 2016; 13(10): e1002152. 

31. Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, van Crevel R. Innate immune 
recognition of Mycobacterium tuberculosis. Clin Dev Immunol 2011; 2011: 405310. 

32. Scriba TJ, Coussens AK, Fletcher HA. Human immunology of tuberculosis. Microbiol 
Spectr 2016; 4(5): TBTB2-0016. 

33. Wejse C, Patsche CB, Kuhle A, et al. Impact of HIV-1, HIV-2 and HIV-1+2 dual 
infection on the outcome of tuberculosis. Int J Infect Dis 2014; 32(2015): 128-34. 



 79 

34. Dheda K, Barry CE, Maartens G. Tuberculosis. Lancet 2016; 387(10024): 1211-26. 

35. Perez-Velez CM, Marais BJ. Tuberculosis in children. N Engl J Med 2012; 367(4): 348-
61. 

36. Zumla A. The white plague returns to London--with a vengeance. Lancet 2011; 
377(9759): 10-1. 

37. Lawn SD, Zumla AI. Tuberculosis. Lancet 2011; 378(9785): 57-72. 

38. Huebner RE, Schein MF, Bass JB, Jr. The tuberculin skin test. Clin Infect Dis 1993; 
17(6): 968-75. 

39. Cobelens F, van den Hof S, Pai M, et al. Which new diagnostics for tuberculosis, and 
when? J Infect Dis 2012; 205(Suppl 2): S191-8. 

40. Walzl G, Ronacher K, Hanekom W, Scriba TJ, Zumla A. Immunological biomarkers of 
tuberculosis. Nat Rev Immunol 2011; 11(5): 343-54. 

41. Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol 2012; 12(8): 
581-91. 

42. Walzl G, McNerney R, du Plessis N, et al. Tuberculosis: advances and challenges in 
development of new diagnostics and biomarkers. Lancet Infect Dis 2018; S1473-
3099(18): 30111-7. 

43. Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium 
tuberculosis from the complete genome sequence. Nature 1998; 393(6685): 537-44. 

44. Rangaka MX, Wilkinson KA, Glynn JR, et al. Predictive value of interferon-γ release 
assays for incident active tuberculosis: a systematic review and meta-analysis. Lancet 
Infect Dis 2012; 12(1): 45-55. 

45. McNerney R, Cunningham J, Hepple P, Zumla A. New tuberculosis diagnostics and 
rollout. Int J Infect Dis 2015; 32(2015): 81-6. 

46. Escalante P. In the clinic. Tuberculosis. Ann Intern Med 2009; 150(11): ITC61-614; 
quiz ITV6. 

47. Pardini M, Varaine F, Bonnet M, et al. Usefulness of the BACTEC MGIT 960 system 
for isolation of Mycobacterium tuberculosis from sputa subjected to long-term storage. 
J Clin Microbiol 2007; 45(2): 575-6. 

48. Boehme CC, Nabeta P, Hillemann D, et al. Rapid molecular detection of tuberculosis 
and rifampin resistance. N Engl J Med 2010; 363(11): 1005-15. 

49. World Health Organization. Treatment of Tuberculosis Guideline: Fourth Edition. 
Geneva, 2010. 

50. Zumla A, Abubakar I, Raviglione M, et al. Drug-resistant tuberculosis--current 
dilemmas, unanswered questions, challenges, and priority needs. J Infect Dis 2012; 
205(Suppl 2): S228-40. 



 80 

51. Migliori GB, De Iaco G, Besozzi G, Centis R, Cirillo DM. First tuberculosis cases in 
Italy resistant to all tested drugs. Euro Surveill 2007; 12(5): E070517 1. 

52. Velayati AA, Masjedi MR, Farnia P, et al. Emergence of new forms of totally drug-
resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally 
drug-resistant strains in iran. Chest 2009; 136(2): 420-5. 

53. Udwadia ZF. Totally drug-resistant tuberculosis in India: who let the djinn out? 
Respirology 2012; 17(5): 741-2. 

54. Zumla A, Kim P, Maeurer M, Schito M. Zero deaths from tuberculosis: progress, 
reality, and hope. Lancet Infect Dis 2013; 13(4): 285-7. 

55. World Health Organization. Global Tuberculosis Report. Geneva, 2014. 

56. Faustini A, Hall AJ, Perucci CA. Risk factors for multidrug resistant tuberculosis in 
Europe: a systematic review. Thorax 2006; 61(2): 158-63. 

57. Dheda K, Gumbo T, Gandhi NR, et al. Global control of tuberculosis: from extensively 
drug-resistant to untreatable tuberculosis. Lancet Respir Med 2014; 2(4): 321-38. 

58. Pasipanodya JG, Srivastava S, Gumbo T. Meta-analysis of clinical studies supports the 
pharmacokinetic variability hypothesis for acquired drug resistance and failure of 
antituberculosis therapy. Clin Infect Dis 2012; 55(2): 169-77. 

59. World Health Organization. Rapid Communication: Key changes to treatment of 
multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB) WHO, Geneva 2018. 

60. Zhang Y. The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol 
2005; 45: 529-64. 

61. Hameed HMA, Islam MM, Chhotaray C, et al. Molecular Targets Related Drug 
Resistance Mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis 
Strains. Front Cell Infect Microbiol 2018; 8. 

62. Stop TB Partnership. The Global Plan to Stop TB. Geneva, 2011-2015. 

63. Joshi JM. Tuberculosis chemotherapy in the 21 century: Back to the basics. Lung India 
2011; 28(3): 193-200. 

64. Zhang Y, Yew WW, Barer MR. Targeting persisters for tuberculosis control. 
Antimicrob Agents Chemother 2012; 56(5): 2223-30. 

65. Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: success through 
dormancy. FEMS Microbiol Rev 2012; 36(3): 514-32. 

66. Schon T, Lerm M, Stendahl O. Shortening the 'short-course' therapy- insights into host 
immunity may contribute to new treatment strategies for tuberculosis. J Intern Med 
2013; 273(4): 368-82. 

67. Warner DF, Mizrahi V. Shortening treatment for tuberculosis--to basics. N Engl J Med 
2014; 371(17): 1642-3. 



 81 

68. Mitchison D, Davies G. The chemotherapy of tuberculosis: past, present and future. Int 
J Tuberc Lung Dis 2012; 16(6): 724-32. 

69. Gillespie SH, Crook AM, McHugh TD, et al. Four-month moxifloxacin-based regimens 
for drug-sensitive tuberculosis. N Engl J Med 2014; 371(17): 1577-87. 

70. Jindani A, Harrison TS, Nunn AJ, et al. High-dose rifapentine with moxifloxacin for 
pulmonary tuberculosis. N Engl J Med 2014; 371(17): 1599-608. 

71. Merle CS, Fielding K, Sow OB, et al. A four-month gatifloxacin-containing regimen for 
treating tuberculosis. N Engl J Med 2014; 371(17): 1588-98. 

72. Kaufmann SH, Hussey G, Lambert PH. New vaccines for tuberculosis. Lancet 2010; 
375(9731): 2110-9. 

73. Axelsson-Robertson R, Magalhaes I, Parida SK, Zumla A, Maeurer M. The 
immunological footprint of Mycobacterium tuberculosis T-cell epitope recognition. J 
Infect Dis 2012; 205(Suppl 2): S301-15. 

74. Kaufmann SH. Novel tuberculosis vaccination strategies based on understanding the 
immune response. J Intern Med 2010; 267(4): 337-53. 

75. Rohde KH, Abramovitch RB, Russell DG. Mycobacterium tuberculosis invasion of 
macrophages: linking bacterial gene expression to environmental cues. Cell Host 
Microbe 2007; 2(5): 352-64. 

76. Welin A, Lerm M. Inside or outside the phagosome? The controversy of the 
intracellular localization of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2012; 
92(2): 113-20. 

77. Liu PT, Modlin RL. Human macrophage host defense against Mycobacterium 
tuberculosis. Curr Opin Immunol 2008; 20(4): 371-6. 

78. Fabri M, Stenger S, Shin DM, et al. Vitamin D is required for IFN-gamma-mediated 
antimicrobial activity of human macrophages. Sci Transl Med 2011; 3(104): 104ra2. 

79. Gupta A, Kaul A, Tsolaki AG, Kishore U, Bhakta S. Mycobacterium tuberculosis: 
immune evasion, latency and reactivation. Immunobiology 2012; 217(3): 363-74. 

80. Marino S, Cilfone NA, Mattila JT, Linderman JJ, Flynn JL, Kirschner DE. Macrophage 
Polarization Drives Granuloma Outcome during Mycobacterium tuberculosis Infection. 
Infect Immun 2015; 83(1): 324-38. 

81. Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: 
circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark 
Res 2014; 2(1): 1. 

82. Sampath P, Moideen K, Ranganathan UD, Bethunaickan R. Monocyte Subsets: 
Phenotypes and Function in Tuberculosis Infection. Front Immunol 2018; 9: 1726. 

83. Mildner A, Marinkovic G, Jung S. Murine Monocytes: Origins, Subsets, Fates, and 
Functions. Microbiol Spectr 2016; 4(5). 



 82 

84. Joosten SA, van Meijgaarden KE, Arend SM, et al. Mycobacterial growth inhibition is 
associated with trained innate immunity. J Clin Invest 2018; 128(5): 1837-51. 

85. Hanekom WA, Mendillo M, Manca C, et al. Mycobacterium tuberculosis inhibits 
maturation of human monocyte-derived dendritic cells in vitro. J Infect Dis 2003; 
188(2): 257-66. 

86. Eum SY, Kong JH, Hong MS, et al. Neutrophils are the predominant infected 
phagocytic cells in the airways of patients with active pulmonary TB. Chest 2010; 
137(1): 122-8. 

87. Eruslanov EB, Lyadova IV, Kondratieva TK, et al. Neutrophil responses to 
Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. 
Infect Immun 2005; 73(3): 1744-53. 

88. Martineau AR, Newton SM, Wilkinson KA, et al. Neutrophil-mediated innate immune 
resistance to mycobacteria. J Clin Invest 2007; 117(7): 1988-94. 

89. Hartmann P, Becker R, Franzen C, et al. Phagocytosis and killing of Mycobacterium 
avium complex by human neutrophils. J Leukoc Biol 2001; 69(3): 397-404. 

90. Berry MP, Graham CM, McNab FW, et al. An interferon-inducible neutrophil-driven 
blood transcriptional signature in human tuberculosis. Nature 2010; 466(7309): 973-7. 

91. Orme IM, Robinson RT, Cooper AM. The balance between protective and pathogenic 
immune responses in the TB-infected lung. Nat Immunol 2015; 16(1): 57-63. 

92. Vankayalapati R, Barnes PF. Innate and adaptive immune responses to human 
Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2009; 89 Suppl 1: S77-80. 

93. Barcelos W, Sathler-Avelar R, Martins-Filho OA, et al. Natural killer cell 
subpopulations in putative resistant individuals and patients with active Mycobacterium 
tuberculosis infection. Scand J Immunol 2008; 68(1): 92-102. 

94. Vankayalapati R, Garg A, Porgador A, et al. Role of NK cell-activating receptors and 
their ligands in the lysis of mononuclear phagocytes infected with an intracellular 
bacterium. J Immunol 2005; 175(7): 4611-7. 

95. Sia JK, Georgieva M, Rengarajan J. Innate Immune Defenses in Human Tuberculosis: 
An Overview of the Interactions between Mycobacterium tuberculosis and Innate 
Immune Cells. J Immunol Res 2015; 2015: 747543. 

96. Choreno Parra JA, Martinez Zuniga N, Jimenez Zamudio LA, Jimenez Alvarez LA, 
Salinas Lara C, Zuniga J. Memory of Natural Killer Cells: A New Chance against 
Mycobacterium tuberculosis? Front Immunol 2017; 8: 967. 

97. Nirmala R, Narayanan PR, Mathew R, Maran M, Deivanayagam CN. Reduced NK 
activity in pulmonary tuberculosis patients with/without HIV infection: identifying the 
defective stage and studying the effect of interleukins on NK activity. Tuberculosis 
(Edinb) 2001; 81(5-6): 343-52. 



 83 

98. Bozzano F, Costa P, Passalacqua G, et al. Functionally relevant decreases in activatory 
receptor expression on NK cells are associated with pulmonary tuberculosis in vivo and 
persist after successful treatment. Int Immunol 2009; 21(7): 779-91. 

99. Roy Chowdhury R, Vallania F, Yang Q, et al. A multi-cohort study of the immune 
factors associated with M. tuberculosis infection outcomes. Nature 2018; s41586: 018-
0439-x. 

100. Vankayalapati R, Klucar P, Wizel B, et al. NK cells regulate CD8+ T cell effector 
function in response to an intracellular pathogen. J Immunol 2004; 172(1): 130-7. 

101. Dhiman R, Indramohan M, Barnes PF, et al. IL-22 produced by human NK cells 
inhibits growth of Mycobacterium tuberculosis by enhancing phagolysosomal fusion. J 
Immunol 2009; 183(10): 6639-45. 

102. Muller J, Matsumiya M, Snowden MA, et al. Cytomegalovirus infection is a risk factor 
for TB disease in Infants. bioRxiv 2017: 222646. 

103. Kim M, Kim TJ, Kim HM, Doh J, Lee KM. Multi-cellular natural killer (NK) cell 
clusters enhance NK cell activation through localizing IL-2 within the cluster. Sci Rep 
2017; 7: 40623. 

104. Pennington DJ, Vermijlen D, Wise EL, Clarke SL, Tigelaar RE, Hayday AC. The 
integration of conventional and unconventional T cells that characterizes cell-mediated 
responses. Adv Immunol 2005; 87: 27-59. 

105. Geldmacher C, Schuetz A, Ngwenyama N, et al. Early depletion of Mycobacterium 
tuberculosis-specific T helper 1 cell responses after HIV-1 infection. J Infect Dis 2008; 
198(11): 1590-8. 

106. Mendez-Samperio P. Expression and regulation of chemokines in mycobacterial 
infection. J Infect 2008; 57(5): 374-84. 

107. Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human 
model. Annu Rev Immunol 2002; 20: 581-620. 

108. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. Disseminated 
tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 1993; 178(6): 2243-
7. 

109. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role 
for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 
1993; 178(6): 2249-54. 

110. van Altena R, Duggirala S, Groschel MI, van der Werf TS. Immunology in 
tuberculosis: challenges in monitoring of disease activity and identifying correlates of 
protection. Curr Pharm Des 2011; 17(27): 2853-62. 

111. Kaufmann SH. Immune response to tuberculosis: experimental animal models. 
Tuberculosis (Edinb) 2003; 83(1-3): 107-11. 

112. Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 
2012; 12(5): 352-66. 



 84 

113. Keane J, Gershon S, Wise RP, et al. Tuberculosis associated with infliximab, a tumor 
necrosis factor alpha-neutralizing agent. N Engl J Med 2001; 345(15): 1098-104. 

114. Nelson BH. IL-2, regulatory T cells, and tolerance. J Immunol 2004; 172(7): 3983-8. 

115. Lienhardt C, Azzurri A, Amedei A, et al. Active tuberculosis in Africa is associated 
with reduced Th1 and increased Th2 activity in vivo. Eur J Immunol 2002; 32(6): 1605-
13. 

116. Demissie A, Abebe M, Aseffa A, et al. Healthy individuals that control a latent 
infection with Mycobacterium tuberculosis express high levels of Th1 cytokines and the 
IL-4 antagonist IL-4delta2. J Immunol 2004; 172(11): 6938-43. 

117. Elias D, Akuffo H, Pawlowski A, Haile M, Schon T, Britton S. Schistosoma mansoni 
infection reduces the protective efficacy of BCG vaccination against virulent 
Mycobacterium tuberculosis. Vaccine 2005; 23(11): 1326-34. 

118. Gopal R, Monin L, Slight S, et al. Unexpected role for IL-17 in protective immunity 
against hypervirulent Mycobacterium tuberculosis HN878 infection. PLoS Pathog 
2014; 10(5): e1004099. 

119. Torrado E, Cooper AM. IL-17 and Th17 cells in tuberculosis. Cytokine Growth Factor 
Rev 2010; 21(6): 455-62. 

120. Redford PS, Murray PJ, O'Garra A. The role of IL-10 in immune regulation during M. 
tuberculosis infection. Mucosal Immunol 2011; 4(3): 261-70. 

121. Beamer GL, Flaherty DK, Assogba BD, et al. Interleukin-10 promotes Mycobacterium 
tuberculosis disease progression in CBA/J mice. J Immunol 2008; 181(8): 5545-50. 

122. Arora P, Foster EL, Porcelli SA. CD1d and natural killer T cells in immunity to 
Mycobacterium tuberculosis. Adv Exp Med Biol 2013; 783: 199-223. 

123. Huang S. Targeting Innate-Like T Cells in Tuberculosis. Front Immunol 2016; 7: 594. 

124. Meraviglia S, El Daker S, Dieli F, Martini F, Martino A. gammadelta T cells cross-link 
innate and adaptive immunity in Mycobacterium tuberculosis infection. Clin Dev 
Immunol 2011; 2011: 587315. 

125. Lockhart E, Green AM, Flynn JL. IL-17 production is dominated by gammadelta T 
cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 
2006; 177(7): 4662-9. 

126. Abebe F. Is interferon-gamma the right marker for bacille Calmette-Guerin-induced 
immune protection? The missing link in our understanding of tuberculosis immunology. 
Clin Exp Immunol 2012; 169(3): 213-9. 

127. Zufferey C, Germano S, Dutta B, Ritz N, Curtis N. The contribution of non-
conventional T cells and NK cells in the mycobacterial-specific IFNgamma response in 
Bacille Calmette-Guerin (BCG)-immunized infants. PLoS One 2013; 8(10): e77334. 



 85 

128. Snyder-Cappione JE, Nixon DF, Loo CP, et al. Individuals with pulmonary tuberculosis 
have lower levels of circulating CD1d-restricted NKT cells. J Infect Dis 2007; 195(9): 
1361-4. 

129. Daniel TM, Oxtoby MJ, Pinto E, Moreno E. The immune spectrum in patients with 
pulmonary tuberculosis. Am Rev Respir Dis 1981; 123(5): 556-9. 

130. Costello AM, Kumar A, Narayan V, et al. Does antibody to mycobacterial antigens, 
including lipoarabinomannan, limit dissemination in childhood tuberculosis? Trans R 
Soc Trop Med Hyg 1992; 86(6): 686-92. 

131. Kaufmann SH. The contribution of immunology to the rational design of novel 
antibacterial vaccines. Nat Rev Microbiol 2007; 5(7): 491-504. 

132. Kozakiewicz L, Phuah J, Flynn J, Chan J. The Role of B Cells and Humoral Immunity 
in Mycobacterium tuberculosis Infection. In: Divangahi M, ed. The New Paradigm of 
Immunity to Tuberculosis. New York, NY: Springer New York; 2013: 225-50. 

133. Maglione PJ, Xu J, Chan J. B cells moderate inflammatory progression and enhance 
bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J 
Immunol 2007; 178(11): 7222-34. 

134. Sebina I, Biraro IA, Dockrell HM, Elliott AM, Cose S. Circulating B-lymphocytes as 
potential biomarkers of tuberculosis infection activity. PLoS One 2014; 9(9): e106796. 

135. Netea MG, Joosten LA, Latz E, et al. Trained immunity: A program of innate immune 
memory in health and disease. Science 2016; 352(6284): aaf1098. 

136. Kleinnijenhuis J, Quintin J, Preijers F, et al. Bacille Calmette-Guerin induces NOD2-
dependent nonspecific protection from reinfection via epigenetic reprogramming of 
monocytes. Proc Natl Acad Sci U S A 2012; 109(43): 17537-42. 

137. Cheng SC, Quintin J, Cramer RA, et al. mTOR- and HIF-1alpha-mediated aerobic 
glycolysis as metabolic basis for trained immunity. Science 2014; 345(6204): 1250684. 

138. Kleinnijenhuis J, Quintin J, Preijers F, et al. BCG-induced trained immunity in NK 
cells: Role for non-specific protection to infection. Clin Immunol 2014; 155(2): 213-9. 

139. Arts RJW, Carvalho A, La Rocca C, et al. Immunometabolic Pathways in BCG-Induced 
Trained Immunity. Cell Rep 2016; 17(10): 2562-71. 

140. Quintin J, Saeed S, Martens JHA, et al. Candida albicans infection affords protection 
against reinfection via functional reprogramming of monocytes. Cell Host Microbe 
2012; 12(2): 223-32. 

141. Sun JC, Madera S, Bezman NA, Beilke JN, Kaplan MH, Lanier LL. Proinflammatory 
cytokine signaling required for the generation of natural killer cell memory. J Exp Med 
2012; 209(5): 947-54. 

142. Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature 
2009; 457(7229): 557-61. 

143. Luca S, Mihaescu T. History of BCG Vaccine. Maedica (Buchar) 2013; 8(1): 53-8. 



 86 

144. Fine PE. Bacille Calmette-Guerin vaccines: a rough guide. Clin Infect Dis 1995; 20(1): 
11-4. 

145. Dockrell HM, Smith SG. What Have We Learnt about BCG Vaccination in the Last 20 
Years? Front Immunol 2017; 8: 1134. 

146. McShane H. Tuberculosis vaccines: beyond bacille Calmette-Guerin. Philos Trans R 
Soc Lond B Biol Sci 2011; 366(1579): 2782-9. 

147. Hussey GD, Watkins ML, Goddard EA, et al. Neonatal mycobacterial specific cytotoxic 
T-lymphocyte and cytokine profiles in response to distinct BCG vaccination strategies. 
Immunology 2002; 105(3): 314-24. 

148. Ritz N, Dutta B, Donath S, et al. The influence of bacille Calmette-Guerin vaccine 
strain on the immune response against tuberculosis: a randomized trial. Am J Respir 
Crit Care Med 2012; 185(2): 213-22. 

149. Kim KD, Lee HG, Kim JK, et al. Enhanced antigen-presenting activity and tumour 
necrosis factor-alpha-independent activation of dendritic cells following treatment with 
Mycobacterium bovis bacillus Calmette-Guerin. Immunology 1999; 97(4): 626-33. 

150. Smith SM, Malin AS, Pauline T, et al. Characterization of human Mycobacterium bovis 
bacille Calmette-Guerin-reactive CD8+ T cells. Infect Immun 1999; 67(10): 5223-30. 

151. Fletcher HA, Snowden MA, Landry B, et al. T-cell activation is an immune correlate of 
risk in BCG vaccinated infants. Nat Commun 2016; 7: 11290. 

152. Pitt JM, Blankley S, McShane H, O'Garra A. Vaccination against tuberculosis: how can 
we better BCG? Microb Pathog 2013; 58: 2-16. 

153. Suliman S, Geldenhuys H, Johnson JL, et al. Bacillus Calmette-Guerin (BCG) 
Revaccination of Adults with Latent Mycobacterium tuberculosis Infection Induces 
Long-Lived BCG-Reactive NK Cell Responses. J Immunol 2016; 197(4): 1100-10. 

154. Marais BJ, Graham SM, Maeurer M, Zumla A. Progress and challenges in childhood 
tuberculosis. Lancet Infect Dis 2013; 13(4): 287-9. 

155. B.C.G. AND vole bacillus vaccines in the prevention of tuberculosis in adolescents; 
first (progress) report to the Medical Research Council by their Tuberculosis Vaccines 
Clinical Trials Committee. Br Med J 1956; 1(4964): 413-27. 

156. Baily GV. Tuberculosis prevention Trial, Madras. Indian J Med Res 1980; 72 Suppl: 1-
74. 

157. Black GF, Weir RE, Floyd S, et al. BCG-induced increase in interferon-gamma 
response to mycobacterial antigens and efficacy of BCG vaccination in Malawi and the 
UK: two randomised controlled studies. Lancet 2002; 359(9315): 1393-401. 

158. Dockrell HM, Smith SG, Lalor MK. Variability between countries in cytokine 
responses to BCG vaccination: what impact might this have on protection? Expert Rev 
Vaccines 2012; 11(2): 121-4. 



 87 

159. Lalor MK, Floyd S, Gorak-Stolinska P, et al. BCG vaccination induces different 
cytokine profiles following infant BCG vaccination in the UK and Malawi. J Infect Dis 
2011; 204(7): 1075-85. 

160. Aronson NE, Santosham M, Comstock GW, et al. Long-term efficacy of BCG vaccine 
in American Indians and Alaska Natives: A 60-year follow-up study. JAMA 2004; 
291(17): 2086-91. 

161. Barreto ML, Cunha SS, Pereira SM, et al. Neonatal BCG protection against tuberculosis 
lasts for 20 years in Brazil. Int J Tuberc Lung Dis 2005; 9(10): 1171-3. 

162. Abubakar I, Pimpin L, Ariti C, et al. Systematic review and meta-analysis of the current 
evidence on the duration of protection by bacillus Calmette-Guerin vaccination against 
tuberculosis. Health Technol Assess 2013; 17(37): 1-372, v-vi. 

163. Rhodes SJ, Knight GM, Fielding K, et al. Individual-level factors associated with 
variation in mycobacterial-specific immune response: Gender and previous BCG 
vaccination status. Tuberculosis (Edinb) 2016; 96: 37-43. 

164. Mangtani P, Nguipdop-Djomo P, Keogh RH, et al. The duration of protection of school-
aged BCG vaccination in England: a population -based case-control study. Int J 
Epidemiol 2017: 1–9. 

165. Portaels F, Aguiar J, Debacker M, et al. Mycobacterium bovis BCG vaccination as 
prophylaxis against Mycobacterium ulcerans osteomyelitis in Buruli ulcer disease. 
Infect Immun 2004; 72(1): 62-5. 

166. Setia MS, Steinmaus C, Ho CS, Rutherford GW. The role of BCG in prevention of 
leprosy: a meta-analysis. Lancet Infect Dis 2006; 6(3): 162-70. 

167. Biering-Sorensen S, Aaby P, Lund N, et al. Early BCG-Denmark and Neonatal 
Mortality Among Infants Weighing <2500 g: A Randomized Controlled Trial. Clin 
Infect Dis 2017; 65(7): 1183-90. 

168. Stensballe LG, Nante E, Jensen IP, et al. Acute lower respiratory tract infections and 
respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG 
vaccination for girls community based case-control study. Vaccine 2005; 23(10): 1251-
7. 

169. Roth A, Sodemann M, Jensen H, et al. Tuberculin reaction, BCG scar, and lower female 
mortality. Epidemiology 2006; 17(5): 562-8. 

170. Stensballe LG, Sorup S, Aaby P, et al. BCG vaccination at birth and early childhood 
hospitalisation: a randomised clinical multicentre trial. Arch Dis Child 2017; 102(3): 
224-31. 

171. Haralambieva IH, Ovsyannikova IG, Kennedy RB, Larrabee BR, Shane Pankratz V, 
Poland GA. Race and sex-based differences in cytokine immune responses to smallpox 
vaccine in healthy individuals. Hum Immunol 2013; 74(10): 1263-6. 

172. de Bree LCJ, Koeken V, Joosten LAB, et al. Non-specific effects of vaccines: Current 
evidence and potential implications. Semin Immunol 2018; 06(002): 1044-5323. 



 88 

173. Kleinnijenhuis J, Quintin J, Preijers F, et al. Long-lasting effects of BCG vaccination on 
both heterologous Th1/Th17 responses and innate trained immunity. J Innate Immun 
2014; 6(2): 152-8. 

174. Smith SG, Kleinnijenhuis J, Netea MG, Dockrell HM. Whole Blood Profiling of 
Bacillus Calmette-Guerin-Induced Trained Innate Immunity in Infants Identifies 
Epidermal Growth Factor, IL-6, Platelet-Derived Growth Factor-AB/BB, and Natural 
Killer Cell Activation. Front Immunol 2017; 8: 644. 

175. Kaufmann SHE, Dockrell HM, Drager N, et al. TBVAC2020: Advancing Tuberculosis 
Vaccines from Discovery to Clinical Development. Front Immunol 2017; 8: 1203. 

176. Weiner J, 3rd, Kaufmann SH. Recent advances towards tuberculosis control: vaccines 
and biomarkers. J Intern Med 2014; 275(5): 467-80. 

177. Kaufmann SH, Weiner J, von Reyn CF. Novel approaches to tuberculosis vaccine 
development. Int J Infect Dis 2017; 56: 263-7. 

178. Nieuwenhuizen NE, Kulkarni PS, Shaligram U, et al. The Recombinant Bacille 
Calmette-Guerin Vaccine VPM1002: Ready for Clinical Efficacy Testing. Front 
Immunol 2017; 8: 1147. 

179. Marinova D, Gonzalo-Asensio J, Aguilo N, Martin C. MTBVAC from discovery to 
clinical trials in tuberculosis-endemic countries. Expert Rev Vaccines 2017; 16(6): 565-
76. 

180. Andersen P, Woodworth JS. Tuberculosis vaccines--rethinking the current paradigm. 
Trends Immunol 2014; 35(8): 387-95. 

181. Ottenhoff TH, Kaufmann SH. Vaccines against tuberculosis: where are we and where 
do we need to go? PLoS Pathog 2012; 8(5): e1002607. 

182. Kaufmann SHE, Lange C, Rao M, et al. Progress in tuberculosis vaccine development 
and host-directed therapies—a state of the art review. Lancet Respir Med 2014; 2(4): 
301-20. 

183. McShane H, Pathan AA, Sander CR, et al. Recombinant modified vaccinia virus 
Ankara expressing antigen 85A boosts BCG-primed and naturally acquired 
antimycobacterial immunity in humans. Nat Med 2004; 10(11): 1240-4. 

184. Weinrich Olsen A, van Pinxteren LA, Meng Okkels L, Birk Rasmussen P, Andersen P. 
Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of 
antigen 85b and esat-6. Infect Immun 2001; 69(5): 2773-8. 

185. Aagaard C, Hoang T, Dietrich J, et al. A multistage tuberculosis vaccine that confers 
efficient protection before and after exposure. Nat Med 2011; 17(2): 189-94. 

186. Day CL, Tameris M, Mansoor N, et al. Induction and regulation of T-cell immunity by 
the novel tuberculosis vaccine M72/AS01 in South African adults. Am J Respir Crit 
Care Med 2013; 188(4): 492-502. 



 89 

187. Baldwin SL, Reese VA, Huang PW, et al. Protection and Long-Lived Immunity 
Induced by the ID93/GLA-SE Vaccine Candidate against a Clinical Mycobacterium 
tuberculosis Isolate. Clin Vaccine Immunol 2015; 23(2): 137-47. 

188. Montagnani C, Chiappini E, Galli L, de Martino M. Vaccine against tuberculosis: 
what's new? BMC Infect Dis 2014; 14(Suppl 1): S2. 

189. Minassian AM, Rowland R, Beveridge NE, et al. A Phase I study evaluating the safety 
and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults. BMJ 
Open 2011; 1(2): e000223. 

190. Scriba TJ, Tameris M, Smit E, et al. A phase IIa trial of the new tuberculosis vaccine, 
MVA85A, in HIV- and/or Mycobacterium tuberculosis-infected adults. Am J Respir 
Crit Care Med 2012; 185(7): 769-78. 

191. Kashangura R, Sena ES, Young T, Garner P. Effects of MVA85A vaccine on 
tuberculosis challenge in animals: systematic review. Int J Epidemiol 2015: 1–12. 

192. McShane H, Hatherill M, Hanekom W, Evans T. Effects of MVA85A vaccine on 
tuberculosis challenge in animals: systematic review. Int J Epidemiol 2016; 45(2): 580. 

193. Williams A, Sharpe S, Verreck F, Vordermeier M, Hewinson G. Response to: 
Systematic review: animal studies of TB vaccines. Int J Epidemiol 2016; 45(2): 583-4. 

194. Tameris MD, Hatherill M, Landry BS, et al. Safety and efficacy of MVA85A, a new 
tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, 
placebo-controlled phase 2b trial. Lancet 2013; 381(9871): 1021-8. 

195. Tanner R, Kakalacheva K, Miller E, et al. Serum indoleamine 2,3-dioxygenase activity 
is associated with reduced immunogenicity following vaccination with MVA85A. BMC 
Infect Dis 2014; 14: 660. 

196. Nemes E, Geldenhuys H, Rozot V, et al. Prevention of M. tuberculosis Infection with 
H4:IC31 Vaccine or BCG Revaccination. N Engl J Med 2018; 379(2): 138-49. 

197. Van Der Meeren O, Hatherill M, Nduba V, et al. Phase 2b Controlled Trial of 
M72/AS01E Vaccine to Prevent Tuberculosis. N Engl J Med 2018. 

198. Hawn TR, Matheson AI, Maley SN, Vandal O. Host-directed therapeutics for 
tuberculosis: can we harness the host? Microbiol Mol Biol Rev 2013; 77(4): 608-27. 

199. Koch R. A Further Communication on a Remedy for Tuberculosis. Br Med J 1891; 
1(1568): 125-7. 

200. Gradmann C. Robert Koch and the pressures of scientific research: tuberculosis and 
tuberculin. Med Hist 2001; 45(1): 1-32. 

201. Prabowo SA, Groschel MI, Schmidt ED, et al. Targeting multidrug-resistant 
tuberculosis (MDR-TB) by therapeutic vaccines. Med Microbiol Immunol 2013; 202(2): 
95-104. 



 90 

202. Gil O, Guirado E, Gordillo S, et al. Intragranulomatous necrosis in lungs of mice 
infected by aerosol with Mycobacterium tuberculosis is related to bacterial load rather 
than to any one cytokine or T cell type. Microbes Infect 2006; 8(3): 628-36. 

203. Moreira AL, Tsenova L, Aman MH, et al. Mycobacterial antigens exacerbate disease 
manifestations in Mycobacterium tuberculosis-infected mice. Infect Immun 2002; 70(4): 
2100-7. 

204. Turner J, Rhoades ER, Keen M, Belisle JT, Frank AA, Orme IM. Effective preexposure 
tuberculosis vaccines fail to protect when they are given in an immunotherapeutic 
mode. Infect Immun 2000; 68(3): 1706-9. 

205. Smith HV, Vollum RL. Effects of intrathecal tuberculin and streptomycin in 
tuberculous meningitis; an interim report. Lancet 1950; 2(6625): 275-86. 

206. Smith HV. Tuberculin in the treatment of tuberculous meningitis and other conditions. 
Proc R Soc Med 1953; 46(7): 588-90. 

207. Howells CH, Swithinbank J. A trial of tuberculin with chemotherapy in the treatment of 
pulmonary tuberculosis. Tubercle 1957; 38(1): 1-15. 

208. Crofton J. Chemotherapy of pulmonary tuberculosis. Br Med J 1959; 1(5138): 1610-4. 

209. McMurray DN. Therapeutic vaccination: hope for untreatable tuberculosis? J Infect Dis 
2013; 207(8): 1193-4. 

210. Keren I, Minami S, Rubin E, Lewis K. Characterization and transcriptome analysis of 
Mycobacterium tuberculosis persisters. MBio 2011; 2(3): e00100-11. 

211. Gröschel MI, Prabowo SA, Cardona P-J, Stanford JL, Werf TSvd. Therapeutic vaccines 
for tuberculosis—A systematic review. Vaccine 2014; 32(26): 3162-8. 

212. Cardona PJ. RUTI: a new chance to shorten the treatment of latent tuberculosis 
infection. Tuberculosis (Edinb) 2006; 86(3-4): 273-89. 

213. Cardona PJ. The progress of therapeutic vaccination with regard to tuberculosis. Front 
Microbiol 2016; 7: 1536. 

214. Nell AS, D'Lom E, Bouic P, et al. Safety, tolerability, and immunogenicity of the novel 
antituberculous vaccine RUTI: randomized, placebo-controlled phase II clinical trial in 
patients with latent tuberculosis infection. PLoS One 2014; 9(2): e89612. 

215. Cardona PJ, Amat I, Gordillo S, et al. Immunotherapy with fragmented Mycobacterium 
tuberculosis cells increases the effectiveness of chemotherapy against a chronical 
infection in a murine model of tuberculosis. Vaccine 2005; 23(11): 1393-8. 

216. Guirado E, Gil O, Caceres N, Singh M, Vilaplana C, Cardona PJ. Induction of a specific 
strong polyantigenic cellular immune response after short-term chemotherapy controls 
bacillary reactivation in murine and guinea pig experimental models of tuberculosis. 
Clin Vaccine Immunol 2008; 15(8): 1229-37. 

217. Domingo M, Gil O, Serrano E, et al. Effectiveness and safety of a treatment regimen 
based on isoniazid plus vaccination with Mycobacterium tuberculosis cells' fragments: 



 91 

field-study with naturally Mycobacterium caprae-infected goats. Scand J Immunol 
2009; 69(6): 500-7. 

218. Gil O, Diaz I, Vilaplana C, et al. Granuloma encapsulation is a key factor for containing 
tuberculosis infection in minipigs. PLoS One 2010; 5(4): e10030. 

219. Immunotherapy with Mycobacterium vaccae in patients with newly diagnosed 
pulmonary tuberculosis: a randomised controlled trial. Durban Immunotherapy Trial 
Group. Lancet 1999; 354(9173): 116-9. 

220. Yang XY, Chen QF, Li YP, Wu SM. Mycobacterium vaccae as adjuvant therapy to 
anti-tuberculosis chemotherapy in never-treated tuberculosis patients: a meta-analysis. 
PLoS One 2011; 6(9): e23826. 

221. Lalvani A, Sridhar S, von Reyn CF. Tuberculosis vaccines: time to reset the paradigm? 
Thorax 2013; 68(12): 1092-4. 

222. Mayosi BM, Ntsekhe M, Bosch J, et al. Prednisolone and Mycobacterium indicus pranii 
in tuberculous pericarditis. N Engl J Med 2014; 371(12): 1121-30. 

223. V. Arjanova O, D. Prihoda N, V. Yurchenko L, Sokolenko NI, M. Frolov V. Phase 2 
Trial of V-5 Immunitor (V5) in Patients with Chronic Hepatitis C Co-infected with HIV 
and Mycobacterium tuberculosis. J Vaccines Vaccin 2010; 01(01). 

224. Lin PL, Dietrich J, Tan E, et al. The multistage vaccine H56 boosts the effects of BCG 
to protect cynomolgus macaques against active tuberculosis and reactivation of latent 
Mycobacterium tuberculosis infection. J Clin Invest 2012; 122(1): 303-14. 

225. Young D. Animal models of tuberculosis. Eur J Immunol 2009; 39(8): 2011-4. 

226. Cardona PJ, Williams A. Experimental animal modelling for TB vaccine development. 
Int J Infect Dis 2017; 56: 268-73. 

227. Orme IM. Prospects for new vaccines against tuberculosis. Trends Microbiol 1995; 
3(10): 401-4. 

228. Hernandez-Pando R, Aguilar D, Orozco H, Cortez Y, Brunet LR, Rook GA. Orally 
administered Mycobacterium vaccae modulates expression of immunoregulatory 
molecules in BALB/c mice with pulmonary tuberculosis. Clin Vaccine Immunol 2008; 
15(11): 1730-6. 

229. Reduce, refine, replace. Nat Immunol 2010; 11(11): 971. 

230. Kanesa-Thasan N, Shaw A, Stoddard JJ, Vernon TM. Ensuring the optimal safety of 
licensed vaccines: a perspective of the vaccine research, development, and 
manufacturing companies. Pediatrics 2011; 127(Suppl 1): S16-22. 

231. Kaufmann SH, Evans TG, Hanekom WA. Tuberculosis vaccines: Time for a global 
strategy. Sci Transl Med 2015; 7(276): 276fs8. 

232. Biomarkers Definitions Working G. Biomarkers and surrogate endpoints: preferred 
definitions and conceptual framework. Clin Pharmacol Ther 2001; 69(3): 89-95. 



 92 

233. Ottenhoff THM, Ellner JJ, Kaufmann SHE. Ten challenges for TB biomarkers. 
Tuberculosis (Edinb) 2012; 92: S17-S20. 

234. Fletcher HA, Dockrell HM. Human biomarkers: can they help us to develop a new 
tuberculosis vaccine? Future Microbiol 2016; 11: 781-7. 

235. Zumla AI, Schito M, Maeurer M. Advancing the portfolio of tuberculosis diagnostics, 
drugs, biomarkers, and vaccines. Lancet Infect Dis 2014; 14(4): 267-9. 

236. Dockrell HM. Towards new TB vaccines: what are the challenges? Pathog Dis 2016; 
74(2016): ftw016. 

237. Elias D, Akuffo H, Britton S. PPD induced in vitro interferon gamma production is not 
a reliable correlate of protection against Mycobacterium tuberculosis. Trans R Soc Trop 
Med Hyg 2005; 99(5): 363-8. 

238. Mittrucker HW, Steinhoff U, Kohler A, et al. Poor correlation between BCG 
vaccination-induced T cell responses and protection against tuberculosis. Proc Natl 
Acad Sci U S A 2007; 104(30): 12434-9. 

239. Kagina BM, Abel B, Scriba TJ, et al. Specific T cell frequency and cytokine expression 
profile do not correlate with protection against tuberculosis after bacillus Calmette-
Guerin vaccination of newborns. Am J Respir Crit Care Med 2010; 182(8): 1073-9. 

240. Bhatt K, Verma S, Ellner JJ, Salgame P. Quest for correlates of protection against 
tuberculosis. Clin Vaccine Immunol 2015; 22(3): 258-66. 

241. White MJ, Nielsen CM, McGregor RH, Riley EH, Goodier MR. Differential activation 
of CD57-defined natural killer cell subsets during recall responses to vaccine antigens. 
Immunology 2014; 142(1): 140-50. 

242. Fletcher HA, Schrager L. TB vaccine development and the End TB Strategy: 
importance and current status. Trans R Soc Trop Med Hyg 2016; 110(4): 212-8. 

243. Brennan MJ, Tanner R, Morris S, et al. The Cross-Species Mycobacterial Growth 
Inhibition Assay (MGIA) Project, 2010-2014. Clin Vaccine Immunol 2017; 24(9). 

244. Tanner R, O'Shea MK, Fletcher HA, McShane H. In vitro mycobacterial growth 
inhibition assays: A tool for the assessment of protective immunity and evaluation of 
tuberculosis vaccine efficacy. Vaccine 2016: 0264-410X. 

245. Wallis RS, Palaci M, Vinhas S, et al. A whole blood bactericidal assay for tuberculosis. 
J Infect Dis 2001; 183(8): 1300-3. 

246. Wallis RS, Vinhas SA, Johnson JL, et al. Whole blood bactericidal activity during 
treatment of pulmonary tuberculosis. J Infect Dis 2003; 187(2): 270-8. 

247. Kampmann B, Gaora PO, Snewin VA, Gares MP, Young DB, Levin M. Evaluation of 
human antimycobacterial immunity using recombinant reporter mycobacteria. J Infect 
Dis 2000; 182(3): 895-901. 



 93 

248. Cheon SH, Kampmann B, Hise AG, et al. Bactericidal activity in whole blood as a 
potential surrogate marker of immunity after vaccination against tuberculosis. Clin 
Diagn Lab Immunol 2002; 9(4): 901-7. 

249. Tena GN, Young DB, Eley B, et al. Failure to control growth of mycobacteria in blood 
from children infected with human immunodeficiency virus and its relationship to T cell 
function. J Infect Dis 2003; 187(10): 1544-51. 

250. Kampmann B, Tena GN, Mzazi S, Eley B, Young DB, Levin M. Novel human in vitro 
system for evaluating antimycobacterial vaccines. Infect Immun 2004; 72(11): 6401-7. 

251. Fletcher HA, Tanner R, Wallis RS, et al. Inhibition of mycobacterial growth in vitro 
following primary but not secondary vaccination with Mycobacterium bovis BCG. Clin 
Vaccine Immunol 2013; 20(11): 1683-9. 

252. Tanner R, O'Shea MK, White AD, et al. The influence of haemoglobin and iron on in 
vitro mycobacterial growth inhibition assays. Sci Rep 2017; 7: 43478. 

253. Tullius MV, Harmston CA, Owens CP, et al. Discovery and characterization of a 
unique mycobacterial heme acquisition system. Proc Natl Acad Sci U S A 2011; 
108(12): 5051-6. 

254. Baguma R, Penn-Nicholson A, Smit E, et al. Application of a whole blood 
mycobacterial growth inhibition assay to study immunity against Mycobacterium 
tuberculosis in a high tuberculosis burden population. PLoS One 2017; 12(9): 
e0184563. 

255. Silver RF, Li Q, Boom WH, Ellner JJ. Lymphocyte-dependent inhibition of growth of 
virulent Mycobacterium tuberculosis H37Rv within human monocytes: requirement for 
CD4+ T cells in purified protein derivative-positive, but not in purified protein 
derivative-negative subjects. J Immunol 1998; 160(5): 2408-17. 

256. Worku S, Hoft DF. In vitro measurement of protective mycobacterial immunity: 
antigen-specific expansion of T cells capable of inhibiting intracellular growth of 
bacille Calmette-Guerin. Clin Infect Dis 2000; 30 Suppl 3: S257-61. 

257. Hoft DF, Worku S, Kampmann B, et al. Investigation of the relationships between 
immune-mediated inhibition of mycobacterial growth and other potential surrogate 
markers of protective Mycobacterium tuberculosis immunity. J Infect Dis 2002; 
186(10): 1448-57. 

258. Mangtani P, Nguipdop-Djomo P, Keogh RH, et al. Observational study to estimate the 
changes in the effectiveness of bacillus Calmette-Guerin (BCG) vaccination with time 
since vaccination for preventing tuberculosis in the UK. Health Technol Assess 2017; 
21(39): 1-54. 

259. Smith SG, Zelmer A, Blitz R, Fletcher HA, Dockrell HM. Polyfunctional CD4 T-cells 
correlate with in vitro mycobacterial growth inhibition following Mycobacterium bovis 
BCG-vaccination of infants. Vaccine 2016; 34(44): 5298-305. 

260. Parra M, Yang AL, Lim J, et al. Development of a murine mycobacterial growth 
inhibition assay for evaluating vaccines against Mycobacterium tuberculosis. Clin 
Vaccine Immunol 2009; 16(7): 1025-32. 



 94 

261. Marsay L, Matsumiya M, Tanner R, et al. Mycobacterial growth inhibition in murine 
splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M. tb). 
Tuberculosis (Edinb) 2013; 93(5): 551-7. 

262. Zelmer A, Tanner R, Stylianou E, et al. A new tool for tuberculosis vaccine screening: 
Ex vivo Mycobacterial Growth Inhibition Assay indicates BCG-mediated protection in 
a murine model of tuberculosis. BMC Infect Dis 2016; 16: 412. 

263. Jensen C, Lindebo Holm L, Svensson E, Aagaard C, Ruhwald M. Optimisation of a 
murine splenocyte mycobacterial growth inhibition assay using virulent Mycobacterium 
tuberculosis. Sci Rep 2017; 7(1): 2830. 

264. Carpenter E, Fray L, Gormley E. Cellular responses and Mycobacterium bovis BCG 
growth inhibition by bovine lymphocytes. Immunol Cell Biol 1997; 75(6): 554-60. 

265. Denis M, Wedlock DN, Buddle BM. Ability of T cell subsets and their soluble 
mediators to modulate the replication of Mycobacterium bovis in bovine macrophages. 
Cell Immunol 2004; 232(1-2): 1-8. 

266. Worku S, Hoft DF. Differential effects of control and antigen-specific T cells on 
intracellular mycobacterial growth. Infect Immun 2003; 71(4): 1763-73. 

267. Spencer CT, Abate G, Sakala IG, et al. Granzyme A produced by gamma(9)delta(2) T 
cells induces human macrophages to inhibit growth of an intracellular pathogen. PLoS 
Pathog 2013; 9(1): e1003119. 

268. Brill KJ, Li Q, Larkin R, et al. Human natural killer cells mediate killing of intracellular 
Mycobacterium tuberculosis H37Rv via granule-independent mechanisms. Infect 
Immun 2001; 69(3): 1755-65. 

269. Chen T, Blanc C, Eder AZ, et al. Association of Human Antibodies to Arabinomannan 
With Enhanced Mycobacterial Opsonophagocytosis and Intracellular Growth 
Reduction. J Infect Dis 2016; 214(2): 300-10. 

270. Naranbhai V, Fletcher HA, Tanner R, et al. Distinct Transcriptional and Anti-
Mycobacterial Profiles of Peripheral Blood Monocytes Dependent on the Ratio of 
Monocytes: Lymphocytes. EBioMedicine 2015; 2(11): 1619-26. 

271. Cowley SC, Elkins KL. CD4+ T cells mediate IFN-gamma-independent control of 
Mycobacterium tuberculosis infection both in vitro and in vivo. J Immunol 2003; 
171(9): 4689-99. 

272. Kolibab K, Parra M, Yang AL, Perera LP, Derrick SC, Morris SL. A practical in vitro 
growth inhibition assay for the evaluation of TB vaccines. Vaccine 2009; 28(2): 317-22. 

273. Diacon AH, Maritz JS, Venter A, van Helden PD, Dawson R, Donald PR. Time to 
liquid culture positivity can substitute for colony counting on agar plates in early 
bactericidal activity studies of antituberculosis agents. Clin Microbiol Infect 2012; 
18(7): 711-7. 

274. Siddiqi SH, Rüsch-Gerdes S. Procedure Manual For BACTEC MGIT 960 TB 
System2006. http://www.finddiagnostics.org/export/sites/default/resource-
centre/find_reports/pdfs/mgit_manual_nov_2007.pdf (accessed 20 February 2018). 



 95 

275. Bowness R, Boeree MJ, Aarnoutse R, et al. The relationship between Mycobacterium 
tuberculosis MGIT time to positivity and cfu in sputum samples demonstrates changing 
bacterial phenotypes potentially reflecting the impact of chemotherapy on critical sub-
populations. J Antimicrob Chemother 2015; 70(2): 448-55. 

 



 96 

Chapter – 2          Research Paper 1 

 

 

Title: Historical BCG vaccination combined with drug treatment 

enhances inhibition of mycobacterial growth ex vivo in human 

peripheral blood cells  

 

Author list: 

Satria Arief Prabowo (1)(2), Andrea Zelmer (1)(2), Lisa Stockdale (1)(2), Utkarsh Ojha 

(3), Steven G. Smith (1)(2), Karin Seifert (1), Helen A. Fletcher (1)(2) 

 

Affiliations: 

(1) Department of Immunology and Infection, Faculty of Infectious and Tropical 
Diseases, London School of Hygiene and Tropical Medicine, UK 

(2) Tuberculosis Centre, London School of Hygiene and Tropical Medicine, UK 
(3) Faculty of Medicine, Imperial College School of Medicine, Imperial College London, 

London, UK 

 

Correspondence to: Satria Arief Prabowo, Department of Immunology and Infection, 
Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical 
Medicine, London, WC1E 7HT, UK. satria.prabowo@lshtm.ac.uk  



 97 

 

 

RESEARCH PAPER COVER SHEET 

PLEASE NOTE THAT A COVER SHEET MUST BE COMPLETED FOR EACH RESEARCH 

PAPER INCLUDED IN A THESIS. 

SECTION A – Student Details 

Student Satria Arief Prabowo 

Principal Supervisor Prof Helen A. Fletcher 

Thesis Title Accelerating Development of Therapeutic Tuberculosis 
Vaccines using an Ex Vivo Immune Assay Platform 

If the Research Paper has previously been published please complete Section B, if not 

please move to Section C 

 

SECTION B – Paper already published 

Where was the work published? - 

When was the work published? - 

If the work was published prior to 
registration for your research degree, 
give a brief rationale for its inclusion 

- 

Have you retained the copyright for the 
work?* 

Choose an item. Was the work subject to 
academic peer review? 

Choose 
an 
item. 

 

*If yes, please attach evidence of retention. If no, or if the work is being included in its published 
format, please attach evidence of permission from the copyright holder (publisher or other 
author) to include this work. 

 

SECTION C – Prepared for publication, but not yet published 

Where is the work intended to be 
published? 

Scientific Reports 

Please list the paper’s authors in the 
intended authorship order: 

Satria Arief Prabowo, Andrea Zelmer, Lisa Stockdale, Utkarsh 
Ojha, Steven G. Smith, Karin Seifert, Helen A. Fletcher 

Stage of publication Submitted, undergoing review 

 

 



 98 

 

SECTION D – Multi-authored work 

For multi-authored work, give full details of your role in 
the research included in the paper and in the preparation 
of the paper. (Attach a further sheet if necessary) 

I conceived the research idea, designed the 
experiments, performed laboratory works 
and analysed the results with advice from 
my supervisor and co-authors. I lead the 
preparation and wrote the draft of the 
manuscript, and implemented revisions 
following discussion and comments from 
my supervisor and co-authors. 

 

 

Student Signature:      Date: 17/09/2018 

 

 

Supervisor Signature:       Date: 18/09/2018 

 



 99 

Abstract 

 

Tuberculosis (TB) is a leading infectious cause of death globally. Drug treatment and 

vaccination with Bacillus Calmette-Guérin (BCG) remain the main strategies to control 

TB. With the emergence of drug resistance, it has been proposed that a combination of 

TB vaccination with pharmacological treatment may provide a greater therapeutic value. 

We implemented an ex vivo mycobacterial growth inhibition assay (MGIA) to 

discriminate vaccine responses in historically BCG-vaccinated human volunteers and to 

assess the contribution of vaccine-mediated immune response towards the killing effect 

of mycobacteria in the presence of the antibiotics: isoniazid (INH) and rifampicin (RIF), 

in an attempt to develop the assay as a screening tool for therapeutic TB vaccines. BCG 

vaccination significantly enhanced the ability of INH to control mycobacterial growth ex 

vivo. The BCG-vaccinated group displayed a higher production of IFN-g and IP-10 when 

peripheral blood mononuclear cells (PBMC) were co-cultured with INH, with a similar 

trend with RIF. A significantly higher frequency of IFN-g+ and TNF-a+ CD3- CD4- CD8- 

cells was observed, suggesting the role of Natural Killer (NK) cells in the combined effect 

between BCG vaccination and INH. Taken together, our data indicate the efficacy of INH 

can be augmented following historical BCG vaccination, which support findings from 

previous observational and animal studies. 



 100 

Introduction 

 

Tuberculosis (TB) is a leading infectious cause of death worldwide. Over the past 200 

years, the disease has killed one billion people, surpassing any other infectious disease1. 

In 2016, it is estimated that TB affected 10.4 million people and killed 1.7 million 

individuals2. The WHO “End TB” strategy aims to end the global TB epidemic in 2035 

by reducing TB incidence by up to 90% and deaths by 95%3. Optimising the use of 

current, and developing new tools are essential to achieve the desired goals. 

 

Drug treatment and vaccination remain the main strategies currently being used to control 

the TB epidemic caused by Mycobacterium tuberculosis (Mtb). The current treatment 

regimen for drug-sensitive TB lasts for 6 months and consists of several first-line drugs. 

Although the regimen provides 95% cure rates for drug-sensitive TB4, it is still considered 

lengthy and has led to poor adherence for patients in many settings5. Moreover, the 

emergence of multi-drug resistant (MDR)-TB, which is defined as resistance towards 

isoniazid (INH) and rifampicin (RIF) – the two major first-line TB drugs – has challenged 

the effectiveness of chemotherapy in the future6.  

 

Bacillus Calmette-Guérin (BCG), a live attenuated strain of Mycobacterium bovis, is the 

only vaccine licensed for TB. BCG is widely used to prevent TB in children since the 

1970s as an important part of the Expanded Program on Immunization and has since been 

given more than 4 billion times7. BCG is known to be 80% protective in the UK, although 

the vaccine is considered to have a variable efficacy in countries closer to the equator 

towards the prevention of pulmonary TB in adults8,9. Combining TB vaccination with 



 101 

drug treatment has been proposed to shorten treatment duration and prevent relapse, an 

approach known as therapeutic vaccination10,11. An early animal study by Dhillon and 

Mitchison (1989) demonstrated the beneficial effect of drug therapy combined with 

previous BCG vaccination in the guinea pig12. In a more recent study by Shang et al 

(2012), prior BCG vaccination as an adjunct to chemotherapy significantly improved 

survival of guinea pigs challenged with a virulent strain of Mtb13.  

 

A therapeutic vaccination strategy for TB is expected to provide benefits in the context 

of treatment for both active and latent TB. Evidence from leprosy, a disease caused by 

the same genus of mycobacteria, demonstrates the synergistic effect between historical 

BCG vaccination and rifampicin prophylaxis treatment for the disease, increasing 

treatment efficacy up to 80%14,15. Despite this, there are few studies which attempt to 

administer TB vaccines therapeutically after infection for enhancement of TB drug 

efficacy. This is partly due to the historical experience with tuberculin, a crude extract of 

Mtb, which resulted in an exacerbated immune response when administered 

therapeutically in active TB patients (known as the “Koch phenomenon”). However, at 

that time tuberculin was administered alone due to the lack of treatment options. Recently, 

it was shown that the occurrence of such exacerbated response is associated with bacterial 

load16. Therefore, it is suggested that a therapeutic TB vaccine needs to be administered 

following chemotherapy after the bacterial load has been sufficiently reduced, hence 

ensuring safety and allowing a beneficial synergistic effect7. 

 

In order for a novel TB vaccination strategy to be implemented, its efficacy needs to be 

demonstrated in large and expensive trials17. Recently, funders have become more 
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reluctant to provide the required investment due to the risk of failure18. As there are 

currently at least a dozen TB vaccine candidates in the clinical trial pipeline and more 

candidates under pre-clinical development19, an effort to screen these candidates at early 

phases is needed to prioritise which candidates should be tested with the available funding 

and field sites. In the context of therapeutic vaccination, a screening effort will be 

essential to narrow down the optimum vaccine and drug regimen before progressing to 

larger clinical trials. 

 

In this study, an ex vivo mycobacterial growth inhibition assay (MGIA) was implemented 

to measure vaccine-induced bacterial growth inhibition in combination with drug 

treatment following historical BCG vaccination in healthy human volunteers. In the 

absence of an immune correlate of protection following TB vaccination, the use of MGIA 

as a functional assay has gained much interest recently for its ability to assess the 

cumulative effect of multiple immune components on the control of mycobacterial 

growth20-22. Various cell types are known to play roles in protection against TB, such as 

lymphocytes, macrophages, dendritic cells and natural killer (NK) cells23. Here, the 

findings of our study, which evaluates the ability of the MGIA to discriminate the impact 

of historical BCG vaccination towards the ex vivo killing effect of mycobacteria in the 

presence of the antibiotics INH and RIF, were presented. This study, which provides 

proof-of-principle of the potential of the MGIA to measure a synergistic effect between 

vaccination and chemotherapy, is important as the MGIA can be used to further expedite 

the development of therapeutic vaccination strategies for TB. Our study shows the ability 

of the MGIA to capture vaccine mediated growth inhibition, even in the presence of 
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effective drugs that substantially reduce mycobacterial growth, and supports the 

implementation of the MGIA as a screening tool for therapeutic TB vaccine candidates.  

 

Materials and Methods 

 

Ethics statement. Participants were recruited under a protocol approved by the LSHTM 

Observational Research Ethics Committee (ref 8762). Written informed consent was 

obtained from all individuals prior to enrolment in the study. All procedures were 

performed in accordance with the Declaration of Helsinki, as agreed by the World 

Medical Association General Assembly (Washington, 2002) and ICH Good Clinical 

Practice (GCP). 

 

Study participants and blood sampling. This was an observational study in healthy 

adults with (i) no history of BCG vaccination or (ii) a history of BCG vaccination more 

than 6 months before study enrolment. Participants were aged 18 to 70 years with no 

evidence of exposure or infection with TB. Participants were excluded if they were 

suffering from any persistent medical condition or infection. Sample size was calculated 

based on the assumption of effect size 0.75, with power 0.8 and significance level 0.05 

(participants per group = 29).  Peripheral blood was collected at the amount of 50 ml and 

processed within 6 hours. Blood samples were collected in tubes containing sodium 

heparin (Sigma-Aldrich, Dorset, UK). 
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PBMCs isolation and IFN-g ELISpot. Peripheral blood mononuclear cells (PBMCs) 

were isolated from heparinised whole blood by centrifugation over 15 ml LymphoPrep 

(Stemcell, Cambridge, UK) in a LeucoSep tube (Greiner Bio-One, Stonehouse, UK) 

according to the manufacturer’s instruction. PBMCs were cryopreserved in FBS (Labtech 

International Ltd, Uckfield, UK) containing 10% DMSO (Sigma-Aldrich) and stored in -

80 oC freezer using CoolCell containers (VWR International, Lutterworth, UK). PBMCs 

were thawed and an ex vivo interferon (IFN)-g enzyme-linked immunospot (ELISpot) 

assay was performed to assess antigen-specific response as previously described22. In 

brief, PBMCs were incubated overnight for 18 hours with 20 µg/ml purified protein 

derivative (PPD) (Oxford Biosystem, Oxfordshire, UK). Positive control 

Phytohemagglutinin (PHA) (10 µg/ml, Sigma-Aldrich) and negative control (medium-

only) wells were included for each participant samples. 

 

Ex vivo Mycobacterial Growth Inhibition Assay (MGIA). Cryopreserved PBMCs 

were thawed and rested for 2 hours at 37 oC in antibiotic-free medium [RPMI-1640 

(Sigma-Aldrich) + 10% pooled human AB serum (Sigma-Aldrich) + 2 mM L-Glutamine 

(Fisher Scientific, Loughborough, UK)] containing 10 U/ml benzonase (Insight 

Biotechnology, Wembley, UK). After the rest, the cells were counted, washed and re-

suspended in the above-mentioned medium without benzonase. The percent viability of 

recovered cells was around 70 to 90% per vial. A 2-ml screw-cap tube containing 3 x 106 

PBMCs in 600 µl of medium was co-cultured with ~100 Colony Forming Units (CFU) 

of BCG for 4 days on a 360o rotator (VWR International, UK) at 37oC. BCG Pasteur 

Aeras strain was obtained from Aeras (Rockville, MD, USA) and used as the immune 

target in the MGIA. In order to assess the potential enhancing effect of historical BCG 
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vaccination towards ex vivo drug-mediated killing of mycobacteria, 6 µl of drug at 

different concentrations was added in the MGIA system to the samples from each 

participants. The drug final concentrations on the co-culture system were 1; 0.1 and 0.01 

µg/ml for INH and 0.5; 0.1 and 0.01 µg/ml for RIF. A control tube without drug was also 

set-up for each participant. INH and RIF were obtained from Sigma-Aldrich, UK and 

stock solutions were prepared in sterile tissue culture grade water and DMSO, 

respectively, as per manufacturer’s instruction. 

 

After 4 days, the 2-ml tubes were centrifuged at 12,000 rpm for 10 minutes. The MGIA 

supernatants (500 µl) were transferred to other 2 ml tubes and frozen at -80 oC for further 

analysis. The remaining cells were then lysed by addition of 400 µl of sterile tissue culture 

grade water and vortexed 3 times with 5-minutes intervals. Lysate containing 

mycobacteria was transferred to a Bactec MGIT tube supplemented with PANTA 

antibiotics and oleic acid-albumin-dextrose-catalase (OADC) enrichment broth (all from 

Becton Dickinson, Oxford, UK). The tube was placed in a Bactec MGIT 960 and 

incubated until registered positive (measured as time to positivity [TTP]). Use of a 

standard curve enables conversion of the TTP into bacterial numbers (log CFU) 

(Supplementary Fig. S1). All work with cells pre-BCG infection and involving BCG 

infected samples was done in a Biosafety Level (BSL) 2 laboratory. 

 

ELISA. MGIA supernatants were analysed to assess cytokine concentrations by enzyme-

linked immunosorbent assay (ELISA). The levels of following cytokines were measured: 

IFN-g, tumor necrosis factor alpha (TNF-a), interleukin (IL)-12p40, IL-10, IL-17, IL-6, 

granulocyte-macrophage colony-stimulating factor (GM-CSF) and interferon-gamma-
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induced protein 10 (IP-10). The concentrations of IFN-g, IL-12p40 and IL-6 were 

measured using BD OptiEIA kits (Becton Dickinson, UK), while TNF-a, GM-CSF and 

IP-10 DuoSet ELISA kits were obtained from R&D Systems (Abingdon, UK) and IL-10 

ELISA MAX Standard and IL-17 ELISA MAX Deluxe kits were supplied from 

BioLegend (London, UK). Assays were performed as described by the manufacturers.  

 

Intracellular cytokine staining (ICS) assay and flow cytometry. PBMCs were thawed 

and rested for 2 hours in a 37oC incubator with 5% CO2 after addition of 10 U/ml of 

benzonase. PBMCs were then incubated alone (medium only as negative control), with 5 

µg/ml Staphylococcus enterotoxin B (SEB; Sigma, UK) as a positive control and with 

~100 CFU BCG (as per the MGIA protocol), with and without 1 µg/ml of INH for the 

latter. Incubation with BCG was performed for 4 days and the addition of SEB was 

performed on Day 3. Two hours after the addition of SEB to the positive control tubes, 

brefeldin A (Sigma, UK) was added to all tubes which were then incubated for 18 hours 

at 37oC until Day 4. 

 

Following incubation, cells were washed with ICS FACS buffer (PBS + 0.1% BSA + 

0.01% sodium azide) and stained with Vivid live/dead reagent (Invitrogen) for 10 minutes 

at 4oC in the dark. Cells were then surface stained with anti-CD4-APC (BD Biosciences), 

anti-CD19-efluor450 and anti-CD14-efluor450 (eBiosciences) for 30 minutes at 4oC in 

the dark. After washing with FACS buffer, cells were permeabilised with 

Cytofix/Cytoperm reagent (BD Biosciences) at 4oC for 20 min, washed in Perm Wash 

buffer (BD Biosciences) and stained with anti-CD3-Horizon-BV510, anti-IL-2-FITC, 

anti-TNFa-PE-Cy7 (BD Biosciences), anti-CD8-PE (eBiosciences) and anti-IFNg-
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PerCPCy5.5 (Biolegend) for 30 min at room temperature in the dark. Cells were finally 

resuspended in 250 µL 1% paraformaldehyde (Sigma, UK) and filtered prior to 

acquisition.  

Data was acquired using an LSRII flow cytometer (BD Biosciences) and FACSDiva 

acquisition software (BD Biosciences). Compensation was performed using tubes of 

OneComp eBeads (ThermoFisher, UK) individually stained with each fluorophor and 

compensation matrices were calculated with FACSDiva. ICS flow cytometry data was 

analysed using FlowJo software version 10.4 (TreeStar Inc., Ashland, OR, USA). 

Samples were gated sequentially on singlet, live, CD14-CD19-, CD3+ (lymphoid), CD4+, 

CD8+, CD3+ CD4- CD8- (double negative = DN), CD3- CD4- CD8- (triple negative = TN) 

cells and negative control stimulation tubes were used to set cytokine gates (see 

Supplementary Fig. S2).  

 

Median cytokine responses in negative control tubes, as a percentage of the gated CD4+ 

T-cell population, were as follows: IFN-g – 0.07%; IL-2 – 0.09%; TNF-a – 0.40%. 

Median cytokine responses in positive control tubes (SEB-stimulated) were as follows: 

IFN-g – 3.16%; IL-2 – 4.24%; TNF-a – 24.35%. See Supplementary Table S1 for median 

cytokine responses of the gated CD8+ and DN T-cells as well as TN cells. Cytokine 

responses reported for all stimuli were after subtraction of background values measured 

in un-stimulated tubes. The median number of cellular events acquired for all tubes was 

168,591 (IQR: 103871 – 225963). 

 

Statistical analysis. Statistical analyses were performed in Graphad Prism 7 (GraphPad, 

La Jolla, CA, USA). To identify statistical significance of ex vivo growth inhibition (log 
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CFU values) and ELISA responses, one-way analysis of variance (ANOVA) and students 

t-test were used. Mann-Whitney U Test was performed to identify significant differences 

of the ELISpot and ICS responses between groups. Spearman’s correlation coefficient 

was used to test for correlations between growth inhibition and immune responses. 

 

Results  

Study participants.  Fifty participants were enrolled in the study; 21 vaccine-naïve 

volunteers with no history of BCG vaccination and 29 volunteers previously vaccinated 

with BCG (average time since vaccination 25.4 years prior to enrolment). Table 1 

summarises the demographic characteristics of the study participants. Almost 70% of the 

BCG-vaccinated participants were from the UK.  

 

Table 1. Demographics of participants enrolled in the study. 

Characteristic  

Total Participants : 50  

BCG-naïve ( n = 21 ) BCG-vaccinated ( n = 29 ) 

Female [no. (%)]  17 ( 81.0 % ) 15 ( 51.7 % ) 

Median age 
[yr (range)]  

30 

( 22 – 69 ) 

33 

( 22 – 63 ) 

Average time since 
BCG vaccination 
[yr (range)]  

- 
25.4 

( 9 – 52 ) 

Country of Origin 
UK [no. (%)] 5 ( 23.8 % ) 20 ( 69 % ) 
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IFN-g ELISpot response to PPD and assessment of ex vivo growth inhibition. The 

IFN-g ELISpot assay was performed to measure the magnitude of mycobacteria-specific 

response from historically BCG-vaccinated and BCG-naïve participants. The secretion of 

IFN-g in response to PPD was elevated in the samples from vaccinated individuals in 

comparison to unvaccinated individuals (median SFC 106.5 and 24, P < 0.0001, Fig. 1A). 

The growth inhibition assay was performed to assess impact of BCG vaccination on ex 

vivo mycobacterial growth. The assay was termed ‘growth inhibition’ as the immune 

responses in the vaccinated group are expected to inhibit the growth of mycobacteria 

compared to the naïve group during the 4-days co-culture. Using cryopreserved PBMCs, 

the assay showed enhanced mycobacterial growth inhibition in PBMCs from BCG-

vaccinated compared to BCG-naïve individuals (median log CFU 2.027 and 2.334, P < 

0.05, Fig. 1B). There was no statistically significant correlation between IFN-g ELISpot 

response and mycobacterial growth (P = 0.121, Spearman r = -0.22, data shown in 

Appendix 8A of this thesis). 

 

 

Figure 1. Immune response (A) and growth inhibition (B) following historical BCG 
vaccination. Assessment was performed from 21 BCG-naïve and 29 BCG-vaccinated 
participants. (A) IFN-γ production following stimulation with PPD was compared (Mann-
Whitney test). Numbers above each group represent median (range). SFC, spot forming 
cells. (B) Growth inhibition was compared using BCG input ~ 100 CFU as immune target 
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(unpaired t-test). Data are presented as total number of log CFUs per sample, which was 
determined by use of a standard curve. Dots and squares represent individual data points, 
and the central lines indicate the median response with inter-quartile range (IQR). 
 

Drug titration curves and impact of historical BCG vaccination on drug-mediated 

ex vivo growth inhibition. Drug concentrations were selected to achieve a concentration 

range where we could observe a decrease in bacterial growth, but sufficient bacterial load 

to identify any synergistic effect of vaccination in addition to the drug. Previous studies 

have identified the minimum inhibitory concentration (MIC) of INH and RIF towards 

BCG Pasteur to be 0.1 and 0.063-0.125 µg/ml, respectively24. The drug concentration of 

0.1 µg/ml was chosen as it closely depicts the MIC value of INH and RIF. Concentrations 

were then selected above and below that to assess potential synergistic effects. As 

expected, there were significant reductions of bacterial growth when BCG was co-

cultured with PBMC and 0.1 and 1 µg/ml of INH (P = 0.0001, Fig. 2A and 2B), as well 

as 0.1 and 0.5 µg/ml of RIF (P = 0.0053 and P = 0.0001, Fig. 2D and 2E) in both BCG-

naïve and vaccinated groups. Findings in this study were consistent with previously 

published results regarding the MIC and drug susceptibility of BCG Pasteur24.  

 



 111 

 

Figure 2. Growth inhibition in the absence and presence of INH (A-C) and RIF (D-
E). Mycobacterial growth was assessed in titration curves. INH inhibited mycobacterial 
growth in a dose-dependent manner in the naïve and vaccinated groups (A and B), as well 
as RIF (D and E). Data from both groups was compiled in dose-response box plots to 
identify the BCG effect in addition to the INH- and RIF-mediated killing (C and F). Dots 
and squares in the titration curves (A – B and D – E) represent individual data points from 
the participants and the central lines indicate the median response with IQR. Each group 
is represented in a single box plot with range in the dose-response analysis (C and F). 
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Samples size is indicated in the figure (for INH: n=29 BCG-vaccinated and n=21 BCG-
naïve participants; for RIF: n=25 BCG-vaccinated and n=18 BCG-naïve participants). 
Statistical significances were tested using one-way ANOVA (A– B and D – E) and 
unpaired t-test (C and F). 

 

To determine if historical BCG vaccination enhanced the drug effect, data from each 

BCG-naïve and vaccinated group were plotted in dose response box plots to observe the 

vaccine impact at various drug concentrations (Fig. 2C and 2F). BCG vaccination 

significantly enhanced the ability of INH to control mycobacterial growth at the 

concentration of 1 µg/ml (P < 0.05), with a similar trend at 0.01 µg/ml but not at 0.1 

µg/ml (Fig. 2C). The effect size of growth inhibition at INH concentration of 1 µg/ml was 

greater (0.8 log) compared to at the absence of drug (0.3 log). Meanwhile, BCG 

vaccination did not enhance the control of mycobacterial growth at RIF concentrations of 

0.1 and 0.5 µg/ml and the difference was only statistically significant at 0.01 µg/ml (Fig. 

2F). The slope of the titration curve was steeper with RIF compared to INH even though 

a lower maximum concentration of RIF was used (0.5 µg/ml). The log CFU values were 

obtained by converting the recorded time to positivity (TTP) of the Bactec MGIT 960 

used for quantification using a standard curve (see Supplementary Fig. S1). Negative log 

CFU values indicate low growth of mycobacteria which were still detected using the 

MGIT machine and extrapolated using the standard curve. 

 

Cytokine release associated with ex vivo growth inhibition. ELISA assays were 

performed using the MGIA supernatant to investigate cytokine productions (IFN-g, IP-

10, IL-10, TNF-a, IL-12p40, GM-CSF, IL-6 and IL-17) which may be associated with 

ex vivo growth inhibition at all drug concentrations.  A higher production of IP-10 was 
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observed in the BCG-vaccinated group compared to the BCG-naïve group when PBMC 

were co-cultured with 1 µg/ml of INH (P < 0.05, Fig. 3A), with a similar non-significant 

increase of IFN-g (P = 0.058). At this drug concentration, there was a statistically 

significant inverse correlation between IFN-g production and ex vivo growth inhibition 

(Spearman r = - 0.30, P < 0.05, Fig. 3B).  Notably, this was where we observed a 

significant difference in the MGIA assay. A significant increase of IP-10 was also 

observed in the BCG-vaccinated group at INH concentration of 0.1 µg/ml (Fig. 3A). 

Moreover, there was a significant positive correlation between IL-10 production and 

higher growth of mycobacteria at 1 µg/ml INH (Spearman r = 0.33, P < 0.05, Fig. 3D), 

although we did not see significant differences of IL-10 production between vaccination 

groups at various INH concentrations (Fig. 3A). Other cytokines measured using co-

culture supernatants with INH are summarised in Supplementary Table S2. In general, 

there appears to be higher cytokine productions in the historically BCG-vaccinated 

participants when compared to the BCG-naïve, in the presence and absence of drugs. 

 

Similarly to INH, a higher production of IP-10 in the vaccinated group was also observed 

during the co-culture with RIF at the concentration of 0.1 and 0.5 µg/ml (P < 0.05, Fig. 

3E), compared to the BCG-naïve group. There was a significant positive correlation 

between IL-10 production and higher growth of mycobacteria at a RIF concentration of 

0.1 µg/ml (Spearman r = 0.37, P < 0.05, Supplementary Table S2), with a similar trend 

at the concentration of 0.01 µg/ml (Spearman r = 0.34, P = 0.087, Fig. 3H). Other 

cytokines measured using co-culture supernatants with RIF are summarised in 

Supplementary Table S2. 
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Figure 3. Cytokine responses from co-culture with INH (A-D) and RIF (E-H). MGIA 
supernatants were analysed for the released cytokines IFN-g, IP-10 and IL-10. For INH, 
dark blue and dark green lines and symbols indicate BCG-naïve and BCG-vaccinated 
groups, respectively. For RIF, these were represented by dark brown (BCG-naïve) and 
dark red (BCG-vaccinated). Lines indicate mean response and shadings indicate range (A 
and E). Comparison of responses between BCG-vaccinated and BCG-naïve groups at 
different drug concentrations were performed using unpaired t-test. Correlation between 
mycobacterial growth at INH concentration of 1 µg/ml and the production of IFN-g (B), 
IP-10 (C) and IL-10 (D) were assessed using Spearman’s correlation. Correlation between 
mycobacterial growth at RIF concentration of 0.01 µg/ml (based on the significant 
difference in the MGIA assay) and the production of IFN-g (F), IP-10 (G) and IL-10 (H) 
were also assessed (Spearman’s). Note: for the correlations, non-responders were 
excluded, defined as responses below the following cut-off of the ELISA assays: 7.5 
pg/ml (IFN-g), 5 pg/ml (IP-10) and 3.5 pg/ml (IL-10). Refer to Supplementary Table S2 
for comparison and correlation of other cytokines responses. 

 

Intracellular Staining Flow Cytometry. Intracellular cytokine staining of BCG-

stimulated PBMCs followed by flow cytometry analysis was performed to detect the 

ability of historical BCG vaccination to induce cytokine-secreting lymphocytes during 

the co-culture with drug and BCG. ICS flow cytometry enabled the simultaneous 

detection of CD4+ and CD8+ T-cells as well as CD3+ CD4- CD8- DN T-cells and CD3- 

CD4- CD8- TN cells, and secretion of cytokines such as IFN-γ, TNF-α and IL-2 in BCG-

stimulated PBMCs (see Supplementary Fig. S2 for gating strategy). The selected drug 

concentration was 1 µg/ml of INH as the vaccine effect was most notable at this 

concentration and a significant correlation with cytokine response, in particular with IFN-

g and IP-10, was observed.  

In this experiment, a low dose input of BCG (~100 CFU) was used for the stimulation 

over 4 days to mimic the condition of the ex vivo MGIA experiment. Historical BCG 

vaccination was shown to result in an antigen-specific Th-1 response which was 

detectable in the ICS assay upon stimulation with BCG bacteria (Fig. 4). There was a 
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significantly higher frequency of BCG-specific CD4+ T-cells expressing IL-2 in the 

historically BCG-vaccinated group compared to the naïve in the absence of drug (mean 

frequency 0.160% and 0.011%, respectively, P < 0.01, Fig. 4B). Although statistical 

significance was not arrived at, there was also slightly higher expressions of IFN-g (mean 

frequency 0.01% and 0.0075%) and TNF-a (mean frequency 0.0875% and 0.015%) in 

the BCG-vaccinated group compared to the naïve (Fig. 4A and 4C, respectively). 

Cytokine expression of BCG-specific CD8+ T-cells appeared to follow the same pattern, 

despite the responses were lower compared to the CD4+ T-cells and did not reach 

significance (Fig. 4 D-E). The ICS panel used in this experiment allowed us to further 

look at two other lymphocyte populations: double-negative CD3+ CD4- CD8- T-cells, 

which consist primarily of gd T-cells and CD4- CD8- TCR-ab+ T-cells, and triple-

negative CD3- CD4- CD8- cells which are primarily natural-killer cells23. In the absence 

of drug, the frequencies of TN cells expressing IFN-g and TNF-a appeared to be higher 

in the BCG-vaccinated group compared to the naïve, although it did not reach significance 

(Fig. 4 J-L), and no observed difference of the cytokine expression from DN T-cells (Fig. 

4 G-I). 
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Figure 4. Frequencies of Th1 cytokine-expressing lymphocytes. Expressions were 
measured from PBMCs after stimulation with BCG, with and without 1 µg/ml of INH, 
for 4 days. The grey dot symbols represent stimulation with BCG only, while the black 
squares represent BCG+INH. Comparisons were made between the naïve (blue) and 
historically BCG-vaccinated (red) groups. Data is displayed as bar graphs and error bars 
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represent mean + standard deviation (SD). For this experiment, PBMCs from a different 
cohort of participants were used, consisted of 16 naïve and 34 historically BCG-
vaccinated participants, with a similar demographics profile and immune responses as the 
previously described. The Mann-Whitney U test was used to determine significance. The 
P value < 0.05 is considered statistically significant. 
 

When the co-culture stimulation was performed in the presence of INH to investigate the 

source of increased IFN-g production observed in the ELISA assay, a significantly higher 

frequency of IFN-g+ triple-negative cells was observed in the BCG-vaccinated group 

compared to the naïve (mean frequency 0.439% and 0.04%, respectively, P < 0.05, Fig. 

4J), suggesting NK cells as a potential source of IFN-g which could be enhanced in the 

presence of drugs. A trend of a higher frequency of TNF-a+ TN cells was also observed 

(mean frequency 1.4% and 0.388%, P = 0.069, Fig. 4L). There was no differential 

cytokine expression from CD4+, CD8+ and double-negative T-cells during the co-culture 

with 1 µg/ml of INH, proposing the role of a T-cell independent mechanism on the 

potential synergistic effect of historical BCG vaccination and drug-mediated growth 

inhibition which has been observed in our ex vivo MGIA assay. 

As the triple-negative CD3- CD4- CD8- cells identified in this study were thought to be 

mostly NK cells, surface-staining flow cytometry was performed on unstimulated 

PBMCs from the above cohort using markers for NK cells (CD3- CD56+). There was a 

significant correlation between the frequency of CD3- CD4- CD8- cells and the frequency 

of NK cells (P = 0.0001, Fig. 5A). Moreover, a  trend of inverse correlation was observed 

between the frequency of NK cells and ex vivo mycobacterial growth in the absence of 

drug (P = 0.059, Spearman r = -0.27, Fig. 5B), suggesting a role for NK cells in the control 

of mycobacterial growth. As the frequency of the triple-negative CD3- CD4- CD8- cells 
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was also increased in the BCG-vaccinated group during co-culture with 1 µg/ml of INH, 

evidence suggests that the triple-negative cells represent NK cells and they contribute to 

the increased IFN-g production associated with the combined effect between historical 

BCG-vaccination and ex vivo drug-mediated killing of INH. 

 

Figure 5. NK cells correlations. The frequency of CD3- CD4- CD8- cells was correlated 
with NK cells (CD3- CD56+) (A) and the ex vivo mycobacterial growth was associated 
with the NK cells frequency (Spearman’s correlation) (B). Surface-staining flow 
cytometry was performed to characterise NK cells. PBMCs from 16 naïve and 34 
historically BCG-vaccinated participants were used. 

 

Discussion 

Participants with historical BCG vaccination in our study were shown to elicit stronger 

IFN-γ response towards PPD antigen as well as better control of mycobacterial growth ex 

vivo. The average time since BCG vaccination was 25.4 years. Here, most of the BCG-

vaccinated participants were from the UK, where BCG vaccination is known to be 80% 

protective8. Recent studies by Mangtani et al. provided evidence that protection from 

BCG in the UK population could last at least up to 20 years25,26, which is consistent with 
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the finding of our study. Several studies in other settings also reported detectable 

protection following BCG vaccination for over than 20 years27-29.  

 

There was no significant correlation between IFN-γ production and ex vivo control of 

mycobacterial growth in our study cohort. This supports the notion that an IFN-γ response 

is only in part essential for control of mycobacterial growth. Recently, higher IFN-γ has 

been shown to correlate with lower risk of developing TB disease following BCG 

vaccination30, although some studies suggested otherwise23,31. In the Fletcher et al. study, 

CD4 T-cell activation was shown to correlate with increased TB risk, suggesting an 

interplay of immune pathways of risk and protection in the same individual30.  The IFN-

γ based assay has been recommended by a WHO panel to be used in TB vaccine trials32 

and our findings support the notion that a functional assay, which measures the 

summative effect of immune response following vaccination, might be useful in addition 

to the IFN-γ-based assay.  

 

In this study using human PBMC, INH and RIF as two front-line anti-TB drugs were 

tested. Both drugs are used for drug-sensitive TB treatment and have been regarded as 

key for success in current short-course chemotherapy. However, their effectiveness has 

been challenged by the emergence of MDR-TB and the effort to improve current 

treatment is indispensable. As BCG is a live, replicating mycobacteria, administration of 

BCG at the time of treatment may lead to clearance of BCG, thereby preventing the 

establishment of a vaccine-specific immune response. In this study, however, the impact 

of historical BCG vaccination was investigated towards mycobacterial growth inhibition 

in the presence of effective anti-mycobacterial drugs. This study serves as a proof-of-



 121 

principle for testing and screening therapeutic TB vaccine candidates in combination with 

drugs using the ex vivo MGIA system prior or in adjunct to in vivo animal or human 

testing. 

 

Historical BCG vaccination was shown to enhance the ability of PBMC to inhibit 

mycobacterial growth in the absence of drug and to further enhance the efficacy of INH 

at the concentration of 1 µg/ml. Interestingly, this concentration is close to the therapeutic 

level of INH in the plasma during treatment in human, which ranges from 2 – 5 µg/ml33,34. 

As the effect size of the growth inhibition was greater during the co-culture with 1 µg/ml 

INH compared to the absence of drug, this is considered to reflect a specific combined 

effect of historical BCG vaccination with INH. We did not observe any impact of 

historical BCG vaccination at the higher concentration of RIF. Rifampicin has been 

known to be very potent in vitro35, as demonstrated in our ex vivo system at the tested RIF 

concentration (0.1 and 0.5 µg/ml) and reflected in the steeper dose-response curve 

compared to INH. Therefore, as RIF was highly effective we could not observe any 

impact of historical BCG vaccination on RIF efficacy, despite the increased cytokine 

production observed in the ELISA assay.   

 

The enhancement of the ex vivo INH killing effect with BCG vaccination is consistent 

with a survival study in guinea-pigs conducted by Shang et al (2012) in which the 

vaccination was shown to improve the effectiveness of combined therapy and prolong 

survival13. In that study, prior administration of BCG in adjunct to therapy was superior 

compared to therapy alone. An earlier study by Dhillon and Mitchison (1989) also 

assessed the impact of previous BCG vaccination in animal models towards INH and 
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RIF12. The study used an intravenous infection model of TB and chemotherapy was 

started soon after challenge. In the guinea-pig, BCG vaccination reduced the bacterial 

count in the spleen after 20 days when administered in adjunct to INH. A similar trend 

was also observed with RIF notably during the first 14 days of the experiment, although 

the difference did not reach significance, comparable to our findings using the ex vivo 

MGIA system. 

 

With regard to INH, the drug is currently used as a prophylaxis treatment for individuals 

with latent TB, given for 9 months with an efficacy ranging from 60 – 90% for prevention 

of active TB36. A large observational prospective cohort study in Lima, Peru 

demonstrated the synergistic effect between historical BCG vaccination and INH 

prophylaxis, which was greater than each of the interventions alone in preventing active 

TB in household contacts of TB patients37. In the context of leprosy, historical BCG 

vaccination is known to boost the efficacy of RIF prophylaxis therapy. While RIF 

prophylaxis and historical BCG vaccination alone were shown to provide 58% and 57% 

protection against leprosy, the combination of both provided 80% protection in the study 

enrolling a large number of participants14. Findings in these studies suggest that there 

might be a beneficial effect of historical BCG vaccination on drug treatment which could 

have been underappreciated. This is the first time the additive effect of 

immunoprophylaxis by routine BCG vaccination and chemoprophylaxis with INH was 

demonstrated using an ex vivo system and our results warrant further investigation in 

future epidemiological studies. 
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The mechanism of BCG-induced protection is thought to be via a CD4+ Th1 type 

response, with evidence showing that BCG-specific IFN-g response measured with 

ELISpot was associated with reduced TB disease risk over the early years of life30. 

Nevertheless, there is emerging evidence that other T-cell subsets (such as CD8+ and gd 

T-cells) and NK cells may play a role in BCG-induced immune protection23. The guinea-

pig study by Shang et al suggested a possible mechanism for BCG enhancement of TB 

drug efficacy. In the animal study, combining BCG with drug therapy induced an increase 

in activated CD4 T cells co-expressing CD45hi and CT4+ as measured in blood, which 

was not observed in guinea-pigs receiving BCG alone13. In our study, although the ex 

vivo IFN-g ELISPOT was not associated with growth inhibition, we observed increased 

IFN-g and IP-10 in the vaccinated group compared to the naïve, measured by ELISA, in 

the MGIA culture supernatant when PBMCs were co-cultured with INH. Moreover, IL-

10 was shown to enhance the growth of mycobacteria ex vivo in the presence of drugs, 

although the impact appears to be independent from the vaccine effect. IFN-g promotes 

macrophage activation by enhancing phagosomal maturation, inducing NO-dependent 

apoptosis and modulating autophagy thus enhancing mycobacterial clearance38. While 

CD4 T-cells are known to be a major source of IFN-g; CD8 T-cells, NK cells, γδ T-cells 

and CD1-restricted T-cells also produce IFN-γ during infection with mycobacteria39. 

 

Flow-cytometry was used to identify the cellular source of IFN-g in MGIA supernatants 

and the assay provided evidence in supporting NK cells as the likely source of the 

cytokine. Recently, it was demonstrated that the production of IFN-γ and TNF-a by NK 

cells is functionally linked to their cytotoxic activities40. In this study, increased 

frequencies of IFN-γ+ and TNF-a+ triple-negative CD3- CD4- CD8- cells were associated 
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with the combined effect of BCG vaccination and INH. On the basis of our results, it is 

alluded that historical BCG vaccination enhances an NK cell response which contributes 

to ex vivo killing effect through the release of pro-inflammatory cytokines and cytotoxic 

granules. 

 

Findings of this study are consistent with, and provide an explanation to, a recently 

published study by Jensen and colleagues (2017)41, in which a similar ex vivo MGIA 

system was used to assess protection from a TB vaccine candidate using a mouse model. 

While their study demonstrated a correlation between IFN-g release and growth 

inhibition, the cellular source was not found among the investigated vaccine-specific T-

cells, suggesting other cell populations such as the NK cells as a potential source. In a 

human study conducted in South Africa by the Scriba group, administration of BCG 

following isoniazid preventive therapy in latently-infected TB adults was associated with 

long-lived NK cells responses42. Evidence from immunological studies following 

immunisation with malaria and rabies vaccines have revealed the important role of NK 

cells in protection from vaccine-preventable diseases through their activation by antigen-

specific CD4 T cell-derived IL-243,44. Moreover, a distinct subset of human NK cells 

expressing HLA-DR are known to expand in response to IL-2 and might aid immune 

responses to BCG45. In this study, an increased frequency of IL-2+ CD4 T-cells was 

observed in the historically-vaccinated participants upon stimulation with BCG, 

suggesting that this cytokine could drive a BCG-specific enhancement of the NK cells 

responsible for improved ex vivo killing effect in the presence of INH.  

 



 125 

In conclusion, this study has demonstrated the combined effect between historical BCG 

vaccination and INH using an ex vivo system which support findings from previous 

observational and animal studies. Therapeutic vaccination aims to administer vaccine 

during TB treatment with the hope to improve treatment success and shorten duration of 

treatment7, and although several therapeutic TB vaccine candidates are available in the 

pipeline (reviewed in46), more are needed. Therefore, the MGIA platform offers an ex 

vivo assay that could help to identify and accelerate the development of candidate 

therapeutic TB vaccines using human PBMC samples. The present human study has 

highlighted the role of NK cells in the combined effect between vaccination and drug 

treatment, suggesting that NK cells could be further explored as a target for a novel 

therapeutic vaccine against TB. 
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Supplementary Figures 

 

 

 

Supplementary Figure S1. Standard curve of BCG Pasteur Aeras used to convert 
TTP to CFU. A titration experiment was conducted to establish the relationship between 
log10 CFU and MGIT time to positivity (TTP). Linear regression analysis was carried 
out in GraphPad Prism. The resulting equation was used to calculate log10 CFU. 
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Supplementary Figure S2. ICS flow cytometry gating strategy. Gating of singlet (A), 
dump negative (live, CD14-, CD19-) (B), CD3+ lymphocytes (C) and CD4+, CD8+ as well 
as CD4- CD8- T-cells (D) was performed in sequence for each sample. Furthermore, CD3- 
CD4- CD8- lymphocytes (NK cells) was also gated (G). Cytokine gates were then set on 
unstimulated tubes (E and H) and copied to stimulated tubes (F and I). Gating for the 
following cytokines were set: IFN-γ, TNF-α and IL-2, with E & F and H & I represent 
examples for IL-2 and TNF-α, respectively. 

 

 

 

Supplementary Tables 

 

Supplementary Table S1. Median cytokine responses in negative and positive control 
tubes of the ICS assay. 
 

Gated cell population Negative Control Positive Control 
(SEB-stimulated) 

IFN-g IL-2 TNF-a IFN-g IL-2 TNF-a 
CD4+ T-cell 0.07% 0.09% 0.40% 3.16% 4.24% 24.35% 
CD8+ T-cell 0.19% 0.05% 0.27% 11.55% 1.88% 23.65% 
CD3+ CD4- CD8- (DN) T-cell 0.63% 1.47% 0.80% 0.20% 0.09% 1.05% 
CD3- CD4- CD8- (TN) cell 0.12% 0.10% 0.85% 2.10% 1.80% 4.68% 

 

 

 

Supplementary Table S2. Summary of mean cytokine responses measured with 
ELISA assays, assessed from MGIA supernatant samples from the co-culture with 
INH and RIF. Responses between BCG-naïve and BCG-vaccinated groups were 
compared using unpaired t-test. Correlations were investigated using Spearman’s 
correlation at certain drug concentrations (INH 1 µg/ml; RIF 0.01 and 0.1 µg/ml) based 
on the MGIA data. For the correlations, non-responders were excluded, defined as 
responses below the following cut-off of the ELISA assays: 7.5 pg/ml (IFN-g), 5 pg/ml 
(IP-10), 3.5 pg/ml (IL-10), 20 pg/ml (TNF-a), 8 pg/ml (IL-12p40), 1 pg/ml (GM-CSF), 
10 pg/ml (IL-6) and 0 pg/ml (IL-17). ND, not detected.
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Cytokines Mean Cytokine Response (pg/ml) 
INH RIF 

Without drug 0.01 µg/ml 0.1 µg/ml 1 µg/ml Without drug 0.01 µg/ml 0.1 µg/ml 0.5 µg/ml 
Naïve BCG Naïve BCG Naïve BCG Naïve BCG Naïve BCG Naïve BCG Naïve BCG Naïve BCG 

IFN-g  15.07 23.53 17.12 51.18 26.1 39.46 50.38 102.7 15.84 25.8 44.49 48.63 103.5 111.7 74.69 125.4 
p=0.177 p=0.141 p=0.289 p=0.058 p=0.163 p=0.815 p=0.809 p=0.191 

Correlation 
with MGIA 

   r -0.30 
*p=0.049 

 r 0.051 
p=0.813 

r -0.021 
p=0.896 

 

IP-10 151.7 302.7 87.51 264.7 44.45 267.5 64.9 270.2 151.7 302.7 149 368.6 33.01 245.8 38.86 300.5 
p=0.151 p=0.064 *p=0.034 *p=0.031 p=0.151 p=0.195 *p=0.0055 *p=0.035 

Correlation 
with MGIA 

   r -0.21 
p=0.343 

 r -0.34 
p=0.180 

r -0.26 
p=0.258 

 

IL-10 35.31 62.44 42.54 76.05 43.62 75.86 46.65 53.1 35.31 62.44 37.83 49.3 37.18 62.66 51.75 69.38 
p=0.184 p=0.310 p=0.236 p=0.772 p=0.184 p=0.676 p=0.284 p=0.615 

Correlation 
with MGIA 

   r 0.33 
*p=0.033 

 r 0.34 
p=0.087 

r 0.37 
*p=0.019 

 

TNF-a 10.97 82.04 25.6 113.9 17.91 132.2 23.87 43.82 10.97 82.04 22.82 49.68 17.61 81.85 65.19 129.2 
p=0.156 p=0.199 p=0.102 p=0.499 p=0.156 p=0.610 p=0.274 p=0.510 

Correlation 
with MGIA 

   r -0.22 
p=0.529 

 r 0.60 
p=0.350 

r 0.53 
p=0.098 

 

IL-12p40 5.588 47.71 33.56 111.4 76.3 120.9 30.42 32.98 5.588 47.71 22.35 33.07 81.68 92.55 42.45 139.5 
p=0.179 p=0.169 p=0.602 p=0.923 p=0.179 p=0.722 p=0.824 p=0.324 

Correlation 
with MGIA 

   r -0.30 
p=0.407 

 r 0.64 
p=0.139 

r 0.44 
p=0.075 

 

GM-CSF 0.024 45.11 0 44.08 15.75 89.94 7.536 9.88 0.024 45.11 0.9781 8.111 5.658 35.87 4.117 57.44 
p=0.126 p=0.139 p=0.241 p=0.803 p=0.126 p=0.427 p=0.311 p=0.331 

Correlation 
with MGIA 

   r 0.080 
p=0.333 

 r - 
p= - 

r -0.058 
p=0.933 

 

IL-6 250.4 335.3 289 227.4 203.3 299.7 233.6 238.4 250.4 335.3 375.8 189.9 277.5 264.1 272.1 267.1 
p=0.324 p=0.558 p=0.274 p=0.954 p=0.324 p=0.139 p=0.886 p=0.965 

Correlation 
with MGIA 

   r 0.021 
p=0.911 

 r 0.22 
p=0.424 

r 0.059 
p=0.759 

 

IL-17 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 
p= - p= - p= - p= - p= - p= - p= - p= - 

Correlation 
with MGIA 

   r - 
p= - 

 r - 
p= - 

r - 
p= - 
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Abstract 

 

Tuberculosis (TB) is a major global health problem and there is a need for an improved 

treatment. A strategy to combine vaccination with drug treatment, termed therapeutic 

vaccination, is expected to provide benefit in shortening treatment duration and 

augmenting treatment success rate. RUTI candidate vaccine has been specifically 

developed as a therapeutic vaccine for TB. The vaccine is shown to reduce bacillary load 

when administered after chemotherapy in murine and guinea pig models, and is also 

immunogenic when given to healthy adults and individuals with latent TB. In the absence 

of a validated correlate of vaccine-induced protection for TB vaccine testing, the 

mycobacterial growth inhibition assay (MGIA) has been developed as a comprehensive 

tool to evaluate vaccine potency ex vivo.  

In this study, we investigated the potential of RUTI vaccine to control mycobacterial 

growth ex vivo and demonstrated the capacity of MGIA to help the identification of 

essential immune mechanisms. We found an association between the peak response of 

vaccine-induced growth inhibition and a shift in monocyte phenotype following RUTI 

vaccination in healthy mice. The vaccination significantly increased the frequency of 

non-classical Ly6C- monocytes in the spleen after two doses of RUTI. Furthermore, 

mRNA expressions of Ly6C--related transcripts (Nr4a1, Itgax, Pparg, Bcl2) were 

upregulated at the RUTI peak response. This is the first time the impact of RUTI has been 

assessed on monocyte phenotype. Given that non-classical Ly6C- monocytes are 

considered to play an anti-inflammatory role, our findings in conjunction with previous 

studies have demonstrated that RUTI could induce a balanced immune response, 

promoting an effective cell-mediated response whilst at the same time limiting an 
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excessive inflammation. On the other hand, the impact of RUTI on non-classical 

monocytes could also reflect its impact on trained innate immunity which warrants further 

investigation.  

In summary, we have demonstrated a novel mechanism of action of the RUTI vaccine, 

which suggests the importance of a balanced M1/M2 monocyte function in controlling 

mycobacterial infection. The MGIA could be used as a screening tool for therapeutic TB 

vaccine candidates and may aid the development of therapeutic vaccination regimens for 

TB in the near future. 

 

Keywords: RUTI, vaccine, tuberculosis, monocytes, mycobacteria, growth inhibition 

assay
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Introduction 

 

Tuberculosis (TB) remains a leading cause of death from infectious disease and is 

responsible for an estimated annual 1.6 million deaths globally1. With the emergence of 

drug-resistant TB, there is a dire need for new therapy and for shorter, more effective, 

safer and better tolerated treatment regimens. Vaccination could help to achieve these 

objectives. TB vaccines are regarded to be equally effective against drug-sensitive and 

drug-resistant strains, due to the nature of drug-resistant mutations which are not 

considered to change the immunological profile of the organism2. A strategy to combine 

vaccination with drug treatment, termed therapeutic vaccination, is expected to improve 

current treatments3. This concept was first introduced by Robert Koch upon the discovery 

of TB bacilli and his initial attempts to administer tuberculin4. Currently several 

therapeutic TB vaccines candidates are available in the vaccine pipeline. 

The RUTI vaccine is among the few candidates currently in the clinical pipeline which 

has been specifically developed as a therapeutic TB vaccine. The vaccine is composed of 

purified cellular fragments of Mycobacterium tuberculosis (Mtb) bacilli in liposomes 

cultured under stress (to mimic intra-granulomatous conditions) to induce latency 

antigens which would typically be hidden from the immune system5. The immune 

response to RUTI has been studied in animal models and clinical studies and is 

characterised by a poly-antigenic response. Its main immunotherapeutic effect is thought 

to be through induction of a T helper-1 (Th1) response, not only against growth-related 

antigens but also structural antigens as shown in the murine model3,6. RUTI vaccination 

generated a poly-antigenic response in healthy volunteers (phase I study), as well as in 
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HIV-positive and HIV-negative patients with latent TB after isoniazid treatment for 1 

month in a phase II clinical trial7,8.  

The lack of an immune correlate of protection has been hampering the development of 

novel TB vaccines, as lengthy and expensive clinical trials with protracted follow-up 

periods are needed to demonstrate efficacy and proceed to licensure9. For a single vaccine 

candidate, it generally takes at least a decade to reach efficacy trials from discovery2,9. If 

we are going to achieve the WHO target to eliminate TB by 2050, major progress is 

required to overcome the painstakingly slow progress. Such an immune correlate could 

also be used to help identify vaccine candidates with the greatest potential efficacy. 

The mycobacterial growth inhibition assay (MGIA) has been developed as a simple and 

comprehensive tool to evaluate vaccine immunogenicity ex vivo10,11.  As an assay that 

measures the summative vaccine-mediated host capacity to control mycobacterial 

growth, the MGIA is proposed as a screening tool for TB vaccine candidates12-14. The 

nature of the ex vivo assay does not require that the vaccine-mediated immune mechanism 

which underlies growth control to be known in advance, while in turn the MGIA could 

help to determine immune mechanisms of protection through investigation of the cellular 

frequencies, phenotypes and cytokines that associate with enhanced growth inhibition15-

17. Several variations of human and murine MGIAs have been described in the literature 

(reviewed in11). Here, we implemented the assay using direct co-culture of mouse 

splenocytes with mycobacteria, based on recent optimisation work14, to investigate the 

potential of the RUTI vaccine to control mycobacterial growth ex vivo.  

Monocytes are highly plastic and heterogeneous circulating cells, which are known to 

change their functional phenotype in response to environmental stimulation18,19. Two 
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distinct subpopulations of mouse monocytes have been identified, commonly referred to 

as Ly6C+ and Ly6C- monocytes20. Ly6C+ monocytes represent classical pro-inflammatory 

and phagocytic monocytes which could subsequently differentiate into M1 macrophages, 

while Ly6C- monocytes are regarded as non-classical anti-inflammatory monocytes 

which could differentiate into M2 macrophages18. In addition to the induction of an 

antigen-specific Th1 response, evidence suggests the potential importance of a balanced 

M1/M2 monocyte function in controlling mycobacterial infection19,21. In a previous 

murine study, the RUTI vaccine was shown to reduce intragranulomatous infiltration and 

decrease Tumour Necrosis Factor (TNF)-a expression in Mtb infected mice6. We 

hypothesise that immunisation with RUTI will lead to improved control of mycobacterial 

growth ex vivo and such observation will be used to gain insight into the mechanism of 

immune protection.  

In this study, we investigated the impact of RUTI vaccination in mice using the ex vivo 

MGIA assay and found an association between peak response of vaccine-induced growth 

inhibition and a shift in monocyte phenotype. Our study demonstrates the benefit of the 

ex vivo MGIA to aid the identification of immune mechanisms of action for therapeutic 

TB vaccine candidates. The MGIA could be used as a tool for screening such vaccine 

candidates and might aid the development of therapeutic vaccine regimens for TB 

patients. 
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Materials and Methods 

Animals 

Six to seven week-old female C57Bl/6 mice (Charles River, UK) acclimatised for at least 

5 days were housed and handled in the Biological Services Facility (BSF) at London 

School of Hygiene and Tropical Medicine (LSHTM), UK. Mice were provided standard 

sterilised food and water ad libitum. Animals were housed in specific pathogen-free 

individually vented cages with environmental enrichment, with equal day and light cycle, 

at temperature between 19o – 23oC and relative humidity of 45 – 65%. Mice were 

allocated to cages as groups of six. All animal work was carried out in accordance with 

the Animals (Scientific Procedures) Act 1986 under a license granted by the UK Home 

Office (PPL 70/8043), and approved locally by the LSHTM Animal Welfare and Ethics 

Review Body. 

 

Immunisation 

Seven experimental groups were established, with six mice per group (Figure 1). Mice in 

the treatment groups were vaccinated with RUTI, which is based on purified fragments 

of Mtb in liposomes cultured under stress conditions, manufactured by Archivel Farma 

(Badalona, Catalonia, Spain). Vaccination with RUTI (batch A14, 204 µg) was 

performed subcutaneously once or twice (three weeks apart), as has been described 

previously6,22. Five groups of mice were vaccinated with RUTI at week 0, among which 

three groups were boosted at week 3. Mice were sacrificed at week 1, 3, 4, 6 and 9 as the 

designated time points of this experiment. Two groups of mice sacrificed at week 1 and 

6 served as naïve controls.  
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Figure  1. Experimental design and vaccination schedule. As indicated in the figure, 
orange arrows mean RUTI vaccination (dotted if boosting). The purple X represents 
endpoint (mice sacrifice). Enzyme-linked immunospot assay and mycobacterial growth 
inhibition assay were performed at each endpoint. In total, 42 mice were sacrificed at all 
time points (6 mice per group). 
 

Mycobacteria and culture conditions 

Bacillus Calmette-Guérin (BCG) Pasteur strain was obtained from Aeras (Rockville, MD, 

USA) as frozen aliquots. These were stored at -80oC until needed. Mycobacterial 

suspensions for infection inoculum and BACTEC MGIT standards were prepared in 

antibiotic-free media (described below). All work with cells pre-BCG infection and 

involving BCG infected samples were performed in Biosafety Level (BSL) 2 laboratory. 

 

Ex vivo Mycobacterial Growth Inhibition Assay (MGIA) 

At the determined time points, spleens were removed aseptically from mice and single 

splenocyte suspensions were prepared by homogenisation through 100 µm cell strainers 
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followed by lysis of red blood cells and washing. Cells were adjusted to 5 x 106 

splenocytes per 300 µl in antibiotic-free media [RPMI-1640 (Sigma-Aldrich, Dorset, UK) 

+ 10% heat-inactivated FBS (Labtech International Ltd, Uckfield, UK) + 2mM L-

Glutamine (Fisher Scientific, Loughborough, UK)]. Mycobacteria were diluted in a 

sufficient volume for all samples in the same media to a concentration of 90 CFU per 300 

µl. Aliquots of bacteria (300 µl) were added to the splenocytes, and the splenocytes-

mycobacteria co-culture (600 µl) was then incubated in 48-well plates (Sigma-Aldrich, 

UK) at 37oC for 4 days.  

After 4 days, splenocytes-mycobacteria mixtures were collected from the 48-well plates 

by pipetting up and down three times before transferring to 2 ml screw cap tubes. The 

tubes were centrifuged at 12,000 rpm in a bench top micro centrifuge and the supernatants 

were removed (500 µl) while ensuring the pellets remain intact. Sterile tissue culture 

grade water (500 µl) was added to the 48-well plates which were incubated at room 

temperature for 5 minutes, followed by pipetting up and down for five times before 

transferring to the 2 ml screw cap tubes with pellets. The pellets were dissolved by 

pipetting, and lysates containing mycobacteria were transferred to Bactec MGIT tubes 

supplemented with PANTA antibiotic and oleic acid-albumin-dextrose-catalase (OADC) 

enrichment broth (all from Becton Dickinson (BD), Oxford, UK). The MGIT tubes were 

incubated in a Bactec MGIT liquid culture system (BD) until registered positive. The 

resulting time to positivity (TTP) was converted to bacterial numbers (log10 CFU) using 

a standard curve. The standard curve was obtained by a linear regression analysis of TTP 

values from inoculated BCG in 10-fold dilutions against CFUs obtained from plating 

aliquots of BCG onto 7H11 agar plates containing 10% OADC supplement (Yorlab, 

York, UK) and 0.5% glycerol. Direct-to-MGIT controls were included at each time point, 
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defined as 90 CFU BCG directly placed into Bactec MGIT system without any pre-

incubation (at day 0). To compare the growth inhibition between time points, log10 CFU 

values were normalised using the direct-to-MGIT controls by subtracting or adding the 

values based on the average TTP of direct-to-MGIT controls.  

 

Interferon (IFN)-g ELISpot 

To measure antigen-specific responses towards mycobacterial antigen following RUTI 

vaccination over the time course, an IFN-g ELISpot assay was performed. Single cell 

suspensions of mouse splenocytes were resuspended in RPMI-1640 media containing 

10% heat-inactivated FBS and 2mM L-Glutamine. 96-well microtiter ELISpot plates 

(MAIPS4510, Millipore, Watford, UK) were coated with 10 µg/ml rat anti-mouse IFN-γ 

(clone AN18, Mabtech, Nacka Strand, Sweden). Free binding sites were blocked with the 

above mentioned media. 2.5x105 of total splenocytes were added and incubated in 

duplicate with 10 µg/ml Purified protein derivative (PPD) (Oxford Biosystem, 

Oxfordshire, UK), RPMI media as a negative control, or phytohemaglutinin (PHA) (1 

µg/ml, Sigma-Aldrich) and phorbol myristate acetate (PMA) (0.1 µg/ml, Sigma-Aldrich) 

as a positive control. Cells were incubated overnight at 37oC with 5% CO2. IFN-γ was 

detected with 1 µg/ml biotin labelled rat anti-mouse antibody (clone R4-6A2, Mabtech) 

and 1 µg/ml alkaline phosphatase-conjugated streptavidin (Mabtech). The enzyme 

reaction was developed with BCIP/NBT substrate (5-Bromo-4-chloro-3-indolyl 

phosphate/Nitro blue tetrazolium) (MP Biochemicals, UK) and stopped by washing the 

plates with tap water when individual spots could be visually detected (up to 3 minutes). 

Upon completion of the colour development stage, spots were quantified using an 

automated plate reader with ELISpot 5.0 software. IFN-γ-specific cells are expressed as 
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the number of spot forming cells (SFC) per million splenocytes after non-specific 

background was subtracted using negative control wells. 

 

Flow Cytometry 

Single splenocyte suspensions were fixed and red blood cells were lysed using PhosFlow 

lyse-fix solution (Becton Dickinson, Oxford, UK) for 30 minutes at 4oC prior to freezing. 

Fixed cells were then re-suspended in freezing media (FBS containing 10% DMSO) at 

the concentration of 106 cells per ml and stored in a -40oC freezer from each time point. 

Frozen cells were thawed by adding FACS buffer (PBS containing 5% FBS) and pipetting 

up and down to encourage thawing. Cells were added to 10 ml of FACS buffer and 

centrifuged for 10 minutes at 1800 rpm. Cells were re-suspended in FACS buffer 

(concentration 107 cells/ml) and were left for 15 minutes on ice for rehydration. 

Fc block (anti-mouse CD16/32, eBioscience, Loughborough, UK) was added to cells and 

left for a further 10 minutes on ice prior to surface staining. Cells were aliquoted in FACS 

tubes (100µl each, 106 cells) and stained with the following titrated antibody: 1.25 µl 

CD3-APC/Cy7 (clone 17A2), 2.5 µl CD45R/B220-BV510 (clone RA3-6B2), 1.25 µl 

CD11b-PerCP/Cy5.5 (clone M1/70), 2.5 µl Ly6G-BV711 (clone 1A8) and 5 µl Ly6C-

BV421 (clone HK1.4). All antibodies were purchased from Biolegend (via Fisher 

Scientific). 

Cells were incubated for 30 minutes at RT in the dark and washed prior to analysis. 

Fluorescence minus one (FMO) controls were set using cells for each antibody and used 

to guide gating. OneComp beads (eBioscience, Loughborough, UK) were used to 

calculate compensation by staining with single antibodies as per manufacturer’s 
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instruction. Cells were acquired on a BD LSR II flow cytometer. Data was analysed with 

FlowJo software version 10.4 (Treestar Inc., USA). 

 

Real-Time Quantitative PCR 

To quantitatively analyse the mRNA expressions in splenocytes following RUTI 

vaccination, real-time quantitative reverse transcriptase PCR (qRT-PCR) assays were 

performed. 5x105 splenocytes were stimulated overnight with PPD (final concentration 

10 µg/ml). Cells were pelleted, lysed in 200 µl RLT buffer containing 10 µl/ml b-

mercaptoethanol and stored in -40oC freezer from each time point. Cells were thawed and 

RNA was extracted using the RNAeasy mini kit (Qiagen, Manchester, UK) according to 

the manufacturer’s instructions. After a DNAse treatment with RNase-free DNAse set 

(Qiagen, UK), total RNA concentration was determined by spectrophotometry with a 

Nanodrop (Labtech International, Heathfield, UK). One microgram of each sample of 

total RNA was reverse-transcribed into complementary DNA (cDNA) using Omniscript® 

Reverse Transcription kit (Qiagen, UK) according to the manufacturer’s 

recommendation, using oligo(dT) (Invitrogen, UK) to obtain cDNA. Each PCR was 

carried out in a 20 µl volume in the presence of 10 µl of 2x QuantiTect SYBR Green PCR 

Master Mix (Qiagen, UK), 1 µl of cDNA (or water as a negative control), MgCl2 to a 

final concentration of 2.5 mM and primers to a final concentration of 0.5 µM. PCR was 

carried out for 10 minutes at 95oC denaturation, followed by 40 cycles at 95oC for 15 

seconds and 60oC for 1 minute in Applied Biosystems 7500 (Applied Biosystems, CA, 

USA). 
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Analyses were performed for gene expressions of Nr4a1, Cebpb, Itgax, Pparg, Bcl2 

(markers of Ly6C-), Ccr2, Sell, Ly6C2 (markers of Ly6C+) and b-actin (housekeeping 

gene). Primers used were listed in Table 1. mRNA expressions of b-actin was quantified 

for every target sample to normalise for efficiency in cDNA synthesis and RNA loading. 

A ratio based on the b-actin mRNA expression was obtained for each sample.  

 

Table 1. Specific sets of primers of real-time PCR. F, forward primer; R, reverse primer. 

Gene names Primer Sequences (5’ – 3’) Nucleotide 
position Accession number 

Ly6C--related 

Nr4a1 (F) GCACAGCTTGGGTGTTGATG 
(R) CAGACGTGACAGGCAGCTG 

1616-1635 
1802-1784 NM_010444.2 

Cebpb (F) GCTGAGCGACGAGTACAAGA 
(R) TGCTCCACCTTCTTCTGCAG 

767-786 
916-897 NM_001287738.1 

Itgax (F) TTTGGGTGCCCATAGAGCTG 
(R) ATACCTGAGGGTGGGAGACC  

2994-3013 
3059-3040 NM_021334.2 

Pparg (F) TCTCTCCGTAATGGAAGACC 
(R) GCATTATGAGACATCCCCAC 

550-569 
1023-1004 NM_001127330.2 

Bcl2 (F) AGGATTGTGGCCTTCTTTGA 
(R) CAGATGCCGGTTCAGGTACT 

1837-1856 
1956-1937 NM_009741.5 

Ly6C+-related 

Ccr2 (F) AGAGAGCTGCAGCAAAAAGG 
(R) GGAAAGAGGCAGTTGCAAAG 

2338-2357 
2522-2503 NM_009915.2 

Sell (F) TCAGACTCCTTGCGCATAG 
(R) GTGGCTGTCACTCACAGATAG 

1511-1529 
1649-1629 NM_001164059.1 

Ly6C2 (F) TGCCTCGGTCTTCCAAGTTC 
(R) ACTTCTTATGCAGGGGCCAC 

416-435 
545-526 NM_001252058.1 

Housekeeping gene 

b-actin (F) CATCCGTAAAGACCTCTATGCCAAC 
(R) ATGGAGCCACCGATCCACA 

973-997 
1143-1125 NM_007393.5 
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Statistical analysis 

Statistical analysis was carried out using GraphPad Prism version 7 (GraphPad, La Jolla, 

CA, USA). A p value of <0.05 was considered statistically significant. The specific tests 

used for each analysis are described in the figure legends. 

 

 

Results 

RUTI vaccination did not induce antigen-specific IFN-g but did improve 

mycobacterial growth inhibition in murine splenocytes 

To assess the immune response to mycobacterial antigens from mice vaccinated with 

RUTI, splenocytes were stimulated with PPD and the number of IFN-g-producing cells 

was measured using the ELISpot assay (Figure 2, red line). We found a weak, non-

significant response at one week following the second vaccination with RUTI (week 4, 

p=0.08). This response appeared to have decreased by week 6. Significant control of 

mycobacterial growth was observed 1 week after the first vaccination and 3 weeks after 

the second RUTI vaccination (week 6) when compared to the baseline control (p<0.05, 

Figure 2, blue line). A trend of reduction was still observed 6 weeks after the second 

vaccination (week 9), although it did not reach significance (p=0.064).  
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Figure 2. ELISpot (Red Line). IFN-g response in mice receiving vaccination with RUTI 
was measured. Modest PPD antigen-specific responses were detected in splenocytes of 
healthy C57BL/6 mice across time points. The splenocytes were stimulated overnight 
with PPD, and the responses were detected using the IFN-g ELISpot assay. SFC, spot-
forming cells. Dark red line indicates mean response, and shading indicates range. 
Statistical significance was tested using Mann-Whitney test. MGIA (Blue Line). RUTI 
vaccination induced mycobacterial growth inhibition in murine splenocytes, performed 
ex vivo in a 48-well plate. Dark blue line indicates mean mycobacterial growth, and 
shading indicates range. One-way ANOVA was used to test for significance, followed by 
t-test. *p < 0.05; **p < 0.01. 

 

In a separate experiment performed in rotating tubes instead of 48 well plates (Figure 

S1A in Supplementary Material), RUTI-induced control of mycobacterial growth was 

superior to BCG-induced control when both vaccines were given six weeks prior to 

sacrifice (p<0.005, Figure S1B). Therefore, week 6 appeared to be the peak response of 

RUTI in the ex vivo MGIA system. Growth control was also significant when compared 

to an age-matched control group (p<0.05, Figure S2A in Supplementary Material).  

RUTI vaccination led to control of mycobacterial growth as measured by the MGIA, 

despite a weak, non-significant antigen-specific IFN-g response. This was consistent with 
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results of a separate experiment with RUTI and BCG, in which BCG induced IFN-g-

secreting cells whereas RUTI did not and yet cells from RUTI immunised mice were 

better able to control mycobacterial growth than cells from BCG vaccinated mice (Figure 

S1C and D in Supplementary Material). The lack of robust IFN-g response following two 

doses of RUTI in healthy mice has been observed previously during potency testing for 

batch release (Archivel Farma, personal communication). Then, four doses of RUTI were 

required for induction of a detectable IFN-g response. Although IFN-g is associated with 

control of TB infection in mice and reduces the risk of TB disease in humans23-25, some 

studies suggested IFN-g alone was not sufficient26,27. As the MGIA measures the 

summative effect of immune responses from all cellular components, our data implied an 

alternative mechanism by which growth inhibition could be enhanced ex vivo following 

RUTI vaccination. 

 

Shift of monocyte phenotype following RUTI vaccination in healthy mouse 

splenocytes 

In this experiment, we investigated the impact of RUTI vaccination on the population of 

immune cells in the spleen using flow cytometry (Figure 3 and Figure S3 in 

Supplementary Material). RUTI did not alter the percentages of monocytes/macrophages, 

T-cells and B-cells in the spleen of healthy mice (p>0.05, Figure S3 A, C, D). We also 

measured monocyte to lymphocyte (ML) ratio as a factor influencing mycobacterial 

growth inhibition28,29, defined as the percentage of monocytes/macrophages divided by 

the percentage of T-cells and B-cells. We did not find a significant change of ML ratio 

following RUTI vaccination across time (Figure S3B). 
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Figure 3. The shift of Ly6C+ and Ly6C- monocytes/macrophages populations 
following RUTI vaccination in healthy mice. (A) Gating strategy for flow cytometric 
analysis. Splenocytes from C57BL/6 mice were fixed, stained and data acquired as 
described in Materials and Methods. Cell debris was gated out by use of FSC-SSC gate, 
followed by gating on single cells (FSC-A and FSC-H). A sequential gating strategy was 
then applied to determine the frequency of T-cells (CD3+), B cells (B220+), 
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monocytes/macrophages (CD11b+ Ly6G- ssclow) and the phenotypes of the 
monocytes/macrophages (Ly6C+ or Ly6C-) as a percentage of live cells. Plots shown are 
from a sample of a C57BL/6 spleen. (B) The frequencies of Ly6C+ and Ly6C- 
monocytes/macrophages were compared at each time point following RUTI vaccination. 
Dark brown and dark purple lines represent mean percentages of Ly6C+ and Ly6C- 

monocytes/macrophages, respectively and shading indicates range. Statistical 
significance was tested using unpaired t-test, *p < 0.05; **p < 0.01; ***p < 0.005. 

 

We then further characterised monocyte phenotype based on the Ly6C marker, and 

observed a significant increase of Ly6C- monocytes/macrophages (non-classical) at 

weeks 3, 6 and 9 following RUTI vaccination (p<0.05, Figure 3B). The peak increase of 

Ly6C- cells was observed at week 6, with the shift being evident compared to both 

baseline and age-matched naïve control at week 6 (Figure S2B in Supplementary 

Material). The Ly6C+ monocytes/macrophages (classical) population appeared to be 

decreasing following vaccination, although there was an initial significant increase 

observed at week 1 (p<0.05, Figure 3). The shift of Ly6C+/Ly6C- phenotype at week 6 

was notably consistent with the peak response of the ex vivo mycobacterial growth 

inhibition assay, in which enhanced inhibition was observed following two doses of RUTI 

vaccination. We found no correlation between higher frequency of Ly6C- 

monocytes/macrophages and lower growth of mycobacteria across time points (p=0.247, 

Spearman r = -0.20, data shown in Appendix 8B of this thesis). 

 

Gene expression of Ly6C+- and Ly6C-- related markers induced by RUTI 

vaccination 

To confirm findings from the flow cytometry analysis described in the previous section, 

we performed real-time qRT-PCR looking at transcripts associated with Ly6C+ and Ly6C- 

monocytes/macrophages. The selection of transcripts was based on a recent publication 
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by Mildner et al. (2017) regarding genomic characterisation of murine monocytes20. We 

chose differentially expressed transcripts between the two monocyte subsets from several 

gene clusters of monocyte development. Three transcripts, namely Nr4a1, Itgax and 

Pparg, were selected from a cluster which was strongly upregulated in Ly6C- compared 

to Ly6C+ monocytes. Cebpb was selected from a cluster that showed a gradual increase 

of expression from Ly6C+ to Ly6C- monocytes. Bcl2 belongs to a cluster characterised 

by transcripts associated with a progenitor phenotype of MDP (monocyte-macrophage 

DC progenitor), which was highly expressed in Ly6C- monocytes. In addition, transcripts 

associated with Ly6C+ monocytes were selected from clusters involved in cell cycle (Sell 

and Ly6C2) as well as maturation of Ly6C+ monocytes (Ccr2). 

The mRNA expressions of Ly6C--related transcripts, including Nr4a1, Itgax, Pparg, Bcl2, 

were significantly upregulated following the second RUTI vaccination at week 6 (p<0.05, 

Figure 4A and C-E), with a trend of upregulation for Cebpb (p=0.136, Figure 4B). While 

we did not observe a difference in expression of Ccr2, a Ly6C+ -related gene, following 

RUTI vaccination at the peak time point, we saw significant upregulations of Sell and 

Ly6C2 at week 6 (p<0.05, Figure 4G-H). Quality control for the PCR assay was also 

performed (Figure S4 in Supplementary Materials). 
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Figure 4. mRNA expressions of Ly6C- -related (A – E) and Ly6C+ -related genes (F 
– H) in mice following vaccination with RUTI at week 6 compared to the age-matched 
naïve control group. Data are expressed as ratio obtained after dividing every value by 
the expression of b-actin in each sample and multiplying it by a factor (ranging from 101 
to 103). The box plots show the minimum and maximum values (ends of the whiskers), 
the median (band near the middle of the box) and interquartile ranges. Statistical 
significance was tested using unpaired t-test, *p < 0.05; **p < 0.01; ***p < 0.005. 
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Discussion 

Vaccination with RUTI resulted in enhanced control of mycobacterial growth, notably at 

three weeks following the second vaccination (week 6), which was considered as the peak 

response of the vaccine observed in the ex vivo assay system. In addition, there was also 

a significant reduction of mycobacterial growth at one week after the first vaccination. 

There was no significant induction of antigen-specific IFN-γ as measured by ELISpot or 

ELISA. These observations were replicated in a separate experiment and support the 

notion that the two assays measure different aspects of immunity following vaccination, 

with the MGIA being reflective of the summative effect of host immune responses at the 

point of tissue harvest, compared to the IFN-γ-based assay which is an assessment of a 

T-cell mediated recall response following vaccination.  

In this context, we argue that the ex vivo assay is more capable of measuring the direct, 

short-term effect of vaccination, while the IFN-γ response is more representative of the 

medium- to long-term protection conferred by vaccination. This was supported by a 

recent finding of Fletcher et al. in which PPD-specific IFN-γ response was associated 

with reduced risk of developing TB disease in BCG-vaccinated South African infants25. 

In testing therapeutic vaccine candidates, it might be more relevant to measure the direct 

effect of vaccination, as it would represent the immediate and potentially synergistic 

impact of a vaccine during TB chemotherapy. This was depicted in the ex vivo assay, in 

which significant mycobacterial growth inhibition was observed at one week following 

the first RUTI vaccination, when there was no apparent increase of IFN-γ response at this 

time point.  
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The ex vivo MGIA was shown to be able to capture the impact of distinct aspects of 

protective immunity as a part of a summative measurement of cellular immune responses. 

In this experiment, we performed flow cytometry to characterise immune cells associated 

with enhanced growth inhibition across time. RNA was also isolated to investigate gene 

expression by RT-qPCR. The important finding in our present study was the impact of 

RUTI vaccination in shifting the phenotype of Ly6C+/Ly6C- monocytes/macrophages in 

the spleen of healthy mice. This was the first time the impact of RUTI on monocyte 

phenotype has been assessed. In addition, while others have shown a lack of correlation 

between antigen-specific IFN-g and mycobacterial growth inhibition, this is the first 

demonstration of vaccine induced mycobacterial growth inhibition in the absence of 

antigen-specific IFN-g. Our results suggest that the enhanced control of mycobacterial 

growth ex vivo was associated with the increase of Ly6C- monocytes (non-classical, anti-

inflammatory), which were both observed three weeks after the second vaccination with 

RUTI (week 6).  

We confirmed the flow cytometry finding by demonstrating the upregulation of 

transcripts associated with Ly6C- cells at the peak time point (week 6), while the Ly6C+ 

gene transcript (Ccr2) remained unchanged. Among the significantly upregulated 

transcripts in our study was Nr4a1, which is obligatory for Ly6C- monocytes 

development30. Expression of Nr4a1 as a monocyte survival factor is regulated by 

Cebpb20,31, which was also elevated following RUTI vaccination. In addition, the 

expressions of all other Ly6C--associated transcripts (Itgax, Pparg, Bcl2) were 

significantly upregulated following vaccination in our study. As Ly6C- monocytes are 

known to mature from Ly6C+ 32,33, the increased expression of some Ly6C+ transcripts 

(Sell and Ly6C2) at the peak time point was regarded as a consequence of transition from 
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Ly6C+ to Ly6C-. Ly6C- monocytes do not represent a distinct lineage and instead arise 

from the conversion of Ly6C+ cells34 and approximately 92% of expressed transcripts are 

shared between the two monocyte subsets35. Our results suggest that RUTI could enhance 

Ly6C+ cell frequency and induce maturation of Ly6C+ to Ly6C- monocytes. This was 

evidenced by our results in which an initial increase of Ly6C+ monocytes was observed 

at week 1 following the first RUTI vaccination, followed by the shift towards Ly6C- and 

the decrease of Ly6C+ monocytes at the subsequent time points. 

Ly6C- monocytes secrete anti-inflammatory cytokine upon bacterial infection in vivo and 

when recruited to tissue, are more likely to differentiate into M2 macrophages32. This is 

in contrast to  Ly6C+ monocytes, which are more likely to mature into pro-inflammatory 

M1 macrophages33. In relation to our findings, the study by Guirado et al.6 demonstrated 

a decrease of intragranulomatous infiltration in the lungs upon administration of RUTI in 

infected mice after treatment. One of the notable findings in that study was a significant 

decrease of TNF-a at the earliest time point after RUTI administration, measured by 

mRNA expression in the lung. Among the producers of TNF-a during bacterial infection 

are Ly6C+ monocytes which will subsequently differentiate into M1 macrophages18,36. 

Although our experiment differs with the one previously performed by Guirado and 

colleagues in several aspects (including the investigated target organ), the decrease of 

TNF-a observed in the previous study could be associated with the impact of RUTI on 

monocyte populations which has been discovered in our investigation. 

RUTI is a poly-antigenic vaccine made from fragmented Mtb bacilli designed to induce 

the host immune response against latency epitopes, which is grown under stress, purified 

and delivered in liposomes. The part of RUTI formulation that could potentially influence 



 160 

monocyte phenotype remains to be further explored. Nevertheless, our study has revealed 

an interesting mechanism of action of RUTI as a therapeutic vaccine for TB. As reviewed 

by Prabowo and colleagues37, it is essential to prevent the occurrence of an exacerbated 

immune response for a successful therapeutic vaccination strategy in TB. This was 

exemplified in a recent study, in which an excessive inflammation from the T-cell 

compartment could also be deleterious in TB38. The fact that RUTI vaccination could 

induce a shift towards an anti-inflammatory monocyte phenotype might be considered as 

an advantage in this context and such approach should be further investigated in future 

studies. 

While this could imply that less inflammation might be beneficial for the ex vivo control 

of mycobacterial growth following RUTI vaccination in healthy mice, our results should 

be interpreted with prudence in relation to previous results of RUTI testing in in vivo 

animal models. The observed trend of correlation between the frequency of Ly6C- 

monocytes/macrophages and growth of mycobacteria across time points hinted that this 

was only one aspect contributing to the enhanced ex vivo growth control and other factors 

might be playing roles. In a murine model infected with Mtb, RUTI has been shown to 

trigger a balanced Th1/Th2 response as well as Immunoglobulin (Ig)G1, IgG2a and IgG3 

antibodies against 13 Mtb antigens, reflecting its broad immunogenicity39. In addition, 

the vaccine was also shown to induce a Th3 response as a subset population of regulatory 

T-cells39. In another mouse study, RUTI administration following drug therapy in 

infected mice stimulated stronger IFN-γ secretion by CD4+ and CD8+ T-cells compared 

to BCG against early secretory antigen target (ESAT)-6, Ag85B, and PPD and also 

induced an immune response against structural antigens Ag16 kDa and Ag38 kDa6. While 

immune responses in infected and drug-treated mice could be reasonably different in 
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comparison to healthy mice as was done in our ex vivo study, the fact that RUTI did not 

induce an exacerbated immune response in various animal studies could be linked to its 

impact on Ly6C- monocytes which was discovered in our investigation. In the 

experimental animals immunised with RUTI, no elevated IgE levels were observed40. In 

this study, histology also revealed no eosinophilia, necrosis or granulomatous infiltration, 

as well as allergic or hypersensitivity reactions. Taken together, these findings and 

observations suggest that RUTI could induce a balanced immune response, promoting an 

effective cell-mediated response whilst at the same time limiting an excessive 

inflammation, which could be beneficial for its implementation as a therapeutic vaccine 

for active TB patients undergoing treatment. 

Intriguingly, a recent study by Joosten et al. demonstrated the protective effect of human 

nonclassical CD14dim monocytes in inhibiting mycobacterial growth following recent 

Mtb exposure and BCG vaccination through the trained innate immunity mechanism41. 

As Ly6C- monocyte is the equivalent of CD14dim monocyte in mice18, our results could 

also suggest an impact of RUTI on trained innate immunity which has not been 

characterised before. BCG is known to induce trained immunity on human monocytes 

and such ability has been attributed to the non-specific protective effect conferred by the 

vaccine42,43. A synthetic mycobacterial structure – muramyl tripeptide (MTP) – is also 

considered to induce trained immunity44, and interestingly, both MTP and RUTI are 

delivered in liposomes. Further studies are required to elucidate downstream and 

upstream pathways related to the potential effect of RUTI on trained innate immunity. 

In summary, we have demonstrated the benefit of the ex vivo MGIA assay to help 

streamlining and identifying immune mechanisms of a therapeutic TB vaccine candidate. 
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Our results could be complemented by further experiments, such as by using cells from 

infected mice. Depleting specific population of monocytes and using genetically deficient 

mice could also provide more insight on the mechanism of protection by Ly6C- 

monocytes in the ex vivo assay system. Future investigation of the novel immune 

mechanism of RUTI observed in our study is also warranted in upcoming clinical trials 

of the vaccine and could potentially accelerate the development of a therapeutic vaccine 

regimen for TB patients in the near horizon. 
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Supplementary Figures 

 
Figure S1. RUTI vaccination induced mycobacterial growth inhibition in murine splenocytes in comparison with BCG, performed 
in rotating tubes. Groups of mice were immunised with BCG, RUTI or placebo/ saline (A). RUTI vaccination enhanced mycobacterial 
growth inhibition which was superior to BCG (B). IFN-g responses in mice receiving vaccination with RUTI and BCG were assessed using 
ELISpot and ELISA assays (C and D). Statistical significance was tested using t-test (B and D) and Mann-Whitney test (C). A p value <0.05 
was considered statistically significant. 
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Figure S2. (A) An additional naïve group was set up at the peak time point (week 6). No difference in growth inhibition was observed 
between the naïve group at week 1 and week 6. The box plots show the minimum and maximum (ends of the whiskers), the median (band 
near the middle of the box) and interquartile ranges. (B) The proportion of Ly6C+ and Ly6C- monocytes/macrophages was not shifted in the 
naïve groups on week 1 and week 6, in contrast to the RUTI-vaccinated groups. Error bars represent the median +/- interquartile range. 
Statistical significance was tested using t-test. A p value <0.05 was considered statistically significant. *p < 0.05; **p < 0.01; ***p < 0.005.
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Figure S3. The frequency of monocytes/macrophages (A), ML ratio (B) as well as the frequency of T cells (C) and B cells (D) were 
determined in spleen using the gating strategy described in Figure 3. The frequencies of monocytes/macrophages (CD11b+ Ly6G- ssclow), T 
cells (CD3+) and B cells (B220+) were used to calculate the ML ratio. The ML ratio was obtained by dividing the percentage of 
monocytes/macrophages by the sum of the percentages of T and B cells. Error bars represent the median +/- interquartile range. p values 
were determined using ordinary ANOVA. A p value <0.05 was considered statistically significant. 



 170 

 

Figure S4. mRNA expressions of b-actin was analysed for every target sample (A) to normalise for efficiency in cDNA synthesis and RNA 
loading. A ratio based on the b-actin mRNA expression was obtained for each sample. Following qPCR, single peaks were present in the 
melting curve analysis for every target gene (B – J). 
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Abstract 

 

Introduction: Understanding factors associated with varying protection from vaccination 

with Bacillus Calmette-Guérin (BCG) is essential to develop a new vaccine against 

tuberculosis (TB). Investigation of individual-level factors affecting mycobacterial-

specific immune responses could provide insights for vaccine developers to understand 

what may confound their ability to observe a vaccine effect when testing candidates in 

clinical trials. The mycobacterial growth inhibition assay (MGIA) has been developed as 

a measure of vaccine immunogenicity ex vivo and may serve as a better correlate of 

vaccine-induced protection. 

Aims: To assess the impact of immune cell phenotype, cytomegalovirus (CMV)-specific 

response and sex on ex vivo growth inhibition following historical BCG vaccination in a 

cohort of healthy individuals (n=100). 

Methods: Peripheral blood mononuclear cells (PBMC) cryopreserved at the time of 

sample collection were thawed and incubated with live BCG for four days following 

which inhibition of BCG growth was determined. Essential immune mechanisms were 

investigated using ELISpot and ELISA to identify cytokine productions, as well as using 

flow cytometry with surface staining and intracellular cytokine staining to characterise 

immune cell phenotype and CMV-specific response. 

Results: A higher frequency of cytokine-producing NK cells in peripheral blood was 

associated with enhanced ex vivo mycobacterial growth inhibition following historical 

BCG vaccination. We confirmed findings from previous studies regarding the role of T-

cell activation associated with a CMV-specific response as a risk factor for TB disease 
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and our study is the first to show the association with ex vivo mycobacterial growth. 

Interestingly, BCG-vaccinated females in our cohort controlled mycobacterial growth 

better than males, which may provide an explanation to the higher number of TB cases in 

males worldwide, in addition to the sociocultural factors. 

Conclusion: The present study has displayed the value of MGIA in assessing changes in 

the innate immune compartment as well as in adaptive immunity following BCG 

vaccination. Individual-level factors influence capacity to control mycobacterial growth 

and the MGIA tool could be used by vaccine developers to assess how their candidate 

may perform in different populations. 

 

Keywords: BCG, tuberculosis vaccine, growth inhibition assay, cytomegalovirus, sex, 

NK cell
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Introduction 

Tuberculosis (TB) is the number one cause of death from infectious disease worldwide 

and it is currently estimated that a quarter of the world population is infected with 

Mycobacterium tuberculosis (Mtb)1,2. The introduction of Bacillus Calmette-Guérin 

(BCG) vaccination and chemotherapy in the past century provided optimism to fight the 

disease.  Despite this, drug-resistant TB is now a major risk to global health security, and 

BCG as the only licensed vaccine for TB is known to have variable efficacy against 

contagious adult pulmonary TB3,4. BCG remains the most widely used vaccine 

worldwide, mainly because it provides good protection against TB in children3. BCG has 

been given to more than 4 billion individuals since its wide implementation in the 1970s 

with favourable safety records5. Understanding factors associated with varying BCG 

protection is essential to improve current vaccination practice as well as to develop new 

vaccines against TB.  

It has been proposed that the observed variation in BCG efficacy is attributed to 

individual-level factors which influence host mycobacteria-specific immune responses6-

8. In a recent systematic review, protection following BCG vaccination was shown to vary 

according to the geographical latitudes in which the vaccine was given. Protection was 

higher in trials further from the equator where exposure to environmental mycobacteria 

is lower, and this protection gradually decreases in the latitudes closer to the equator3. In 

some places with high exposure to environmental mycobacteria, BCG demonstrated 

limited evidence of efficacy against adult pulmonary TB when tested in large clinical 

trials7,9. In the UK, a country where exposure to environmental mycobacteria is regarded 

to be minimum (latitude > 40o), BCG is known to provide protection up to 80% against 
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pulmonary TB10 and vaccination of school-aged children could protect until at least 20 

years11. 

Another factor that may influence the mycobacteria-specific immune response is sex. 

Globally, TB case rates are much higher in men than in women, as reflected by a global 

male to female ratio (M:F) of 1.7 for case notifications in 201612. This difference is seen 

in all regions of the world, including Europe, and in some countries such as Vietnam, the 

M:F ratio is as high as 4.512. Males contribute to 65% of TB cases worldwide and although 

it has been alluded that socioeconomic and cultural factors are contributing to the 

observed sex bias, differences in the immune responses between the sexes also play a 

role13,14. It is generally acknowledged that females exhibit more robust immune responses 

towards infection and vaccination compared to males15. In the context of susceptibility to 

TB, differences in immune cells frequencies and functions have been thought to 

contribute to higher TB rates in males16. With regard to BCG vaccination, there is 

currently limited evidence concerning the impact of sex on its protective effect against 

pulmonary TB in adults, although some studies reported higher tuberculin skin test 

response and larger BCG scar formation in males compared to females17,18. Analysis from 

participants of clinical trials of a TB vaccine candidate in the UK showed that males 

exhibited a higher baseline response of interferon-gamma (IFN-γ)8. Interestingly, BCG is 

also thought to provide a non-specific protective effect against unrelated pathogens, thus 

contributing in reduction of overall cause of mortality, and this effect is more pronounced 

in females rather than males19-21. 

In addition, several other factors have been proposed to explain the variable efficacy of 

BCG, such as genetic differences between trial populations, variable virulence of the 
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circulating Mtb strains as well differences between strains of the BCG vaccine itself, 

although in the latter case findings between studies have shown equivocal results3,22. 

Recently, Fletcher et al. found that T-cell activation is an immune correlate of risk of TB 

disease in BCG-vaccinated infants in a study enrolling a large cohort of infants23. Chronic 

exposure to antigen from persistent viral or bacterial infection is known to cause 

continuous T-cell activation which could lead to dysfunction of antigen specific T-cells24. 

Further to the finding of the infant study, it was identified that cytomegalovirus (CMV)-

specific IFN-γ responses were associated with T-cell activation and could have 

contributed to increased risk of developing TB disease25. 

The mycobacterial growth inhibition assay (MGIA) has been developed as a measure of 

vaccine immunogenicity ex vivo. Following optimisation works in the past few years26-

28, the assay has gained attention for its potential ability to detect vaccine-mediated 

inhibition of growth following BCG vaccination in adults and infants29-31. The assay 

described in the present study involves direct co-culture of peripheral blood mononuclear 

cells (PBMCs) with mycobacteria, and subsequent measurement of mycobacterial growth 

inhibition as a functional assessment of vaccine response. Several studies have 

demonstrated the ability of the MGIA to detect changes in the innate and adaptive 

compartment following vaccination. The frequency of polyfunctional T-helper-1 cells 

correlated with ex vivo inhibition of mycobacterial growth following BCG vaccination in 

UK infants30. The ratio of host monocyte to lymphocyte cells (ML ratio) is associated 

with risk of TB disease32-34, and altering the ML ratio in vitro affects the control of 

mycobacterial growth, with a higher ML ratio associated with higher growth of 

mycobacteria35. More recently, Joosten and colleagues (2018) found that the capacity to 

control mycobacterial growth following recent Mtb exposure and BCG vaccination is 
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associated with nonclassical monocytes, and this observation is reflective of the trained 

innate immune mechanism31. In a study by Jensen et al., IFN-γ was associated with 

reduction of mycobacterial growth ex vivo following immunisation with a TB vaccine 

candidate in mice36. However, in that study the source of IFN-γ was not found among the 

investigated vaccine-specific T-cells, suggesting potential contribution from other cells, 

such as NK cells. 

Characterisation of immune cell phenotype which contributes to protection following 

BCG vaccination is crucial for augmenting vaccination strategies against TB. Moreover, 

investigating individual-level factors affecting mycobacterial-specific immune responses 

could provide insights for vaccine developers to understand what may confound their 

ability to observe a vaccine effect when testing candidates in clinical trials. In this study, 

the impacts of immune cell phenotype, CMV-specific response and sex on vaccine-

specific mycobacterial growth inhibition following historical BCG vaccination were 

demonstrated in adult healthy volunteers. The findings further confirm evidences from 

previous studies regarding the role of T-cell activation associated with a CMV-specific 

response as a risk factor for TB disease23,25 using the ex vivo MGIA. The result presented 

in this study suggest that BCG vaccinated females control mycobacterial growth better 

than males, which is consistent with the observation of higher number of TB cases in 

males worldwide. A higher frequency of cytokine-producing NK cells in peripheral blood 

was also found to be associated with enhanced inhibition of mycobacterial growth ex vivo 

following historical BCG vaccination. Collectively, our data indicate the that individual-

level factors influence capacity to control mycobacterial growth and that the MGIA tool 

could be used by vaccine developers to assess how their candidate may perform in 

different populations. 
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Materials and Methods 

Study participants and ethics statement 

We recruited 100 healthy adult participants with (i) no history of BCG vaccination or (ii) 

a history of BCG vaccination more than 6 months before study enrolment. Verbal 

interviews were conducted to determine eligibility based on the absence of any major 

chronic illness, current medication administration or symptoms of infection. Participants 

were aged 18 to 80 years with no evidence of exposure or infection with TB. Participants 

were excluded if they were suffering from any persistent medical condition or infection. 

Written informed consent was obtained from all participants prior to enrolment in the 

study. Individuals were recruited under protocols approved by the LSHTM Observational 

Research Ethics Committee (ref 8762 and 10485). All procedures were conducted in 

accordance with the Declaration of Helsinki, as agreed by the World Medical Association 

General Assembly (Washington, 2002) and ICH Good Clinical Practice (GCP). 

 

Blood sampling and PBMCs isolation 

Peripheral blood was collected at the amount of 50 ml and processed within 6 hours. 

Blood samples were collected in tubes containing sodium heparin (Sigma-Aldrich, 

Dorset, UK). Peripheral blood mononuclear cells were isolated from heparinised whole 

blood by centrifugation over 15 ml LymphoPrep (Stemcell, Cambridge, UK) in a 

LeucoSep tube (Greiner Bio-One, Stonehouse, UK) according to the manufacturer’s 

instruction. PBMCs were cryopreserved in FBS (Labtech International Ltd, Uckfield, 

UK) containing 10% DMSO (Sigma-Aldrich) and stored in -80 oC freezer using CoolCell 
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containers (VWR International, Lutterworth, UK). PBMCs were transferred to a cryobox 

after a minimum of an overnight in a CoolCell container. 

 

IFN-g Enzyme-linked immunospot (ELISpot) assay 

PBMCs were thawed and an ex vivo IFN-g ELISpot assay was performed to assess 

antigen-specific response. The ELISpot assay was performed using a human IFN-g 

ELISpot kit (capture mAb 1-D1K, Mabtech, Nacka Strand, Sweden). Duplicate wells 

containing 3x105 PBMC were stimulated overnight for 18 hours with 20 µg/ml purified 

protein derivative (PPD) (Oxford Biosystem, Oxfordshire, UK), Phytohemagglutinin 

(PHA) (10 µg/ml, Sigma-Aldrich) as a positive control or media alone as a negative 

control. IFN-γ was detected with 1 µg/ml biotin labelled rat anti-mouse antibody (clone 

7-B6-1, Mabtech) and 1 µg/ml alkaline phosphatase-conjugated streptavidin (Mabtech). 

Results are reported as spot forming cells (SFC) per million PBMCs, calculated by 

subtracting the mean of the unstimulated wells from the mean of antigen wells and 

correcting for the numbers of PBMC in the wells. Spots were quantified using an 

automated plate reader with ELISpot 5.0 software as well as checked manually. 

 

Ex vivo Mycobacterial Growth Inhibition Assay 

Cryopreserved PBMCs were thawed and rested for 2 hours at 37 oC in antibiotic-free 

medium [RPMI-1640 (Sigma-Aldrich) + 10% pooled human AB serum (Sigma-Aldrich) 

+ 2 mM L-Glutamine (Fisher Scientific, Loughborough, UK)] containing 10 U/ml 

benzonase (Insight Biotechnology, Wembley, UK). After the rest, the cells were counted, 
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washed and re-suspended in the above-mentioned medium without benzonase. The 

percent viability of recovered cells was around 70 to 90% per vial. A 2-ml screw-cap tube 

containing 3 x 106 PBMCs in 300 µl of medium was co-cultured with ~100 Colony 

Forming Units (CFU) of BCG in 300 µl for 4 days (total volume 600 µl) on a 360o rotator 

(VWR International, UK) at 37oC. BCG Pasteur Aeras strain was obtained from Aeras 

(Rockville, MD, USA) and used as the immune target in the MGIA.  

After 4 days, the 2-ml tubes were centrifuged at 12,000 rpm for 10 minutes. The MGIA 

supernatants (500 µl) were transferred to other 2 ml tubes and frozen at -80 oC for further 

analysis. The remaining cells were then lysed by addition of 400 µl of sterile tissue culture 

grade water and vortexed 3 times with 5-minutes intervals. Lysate containing 

mycobacteria was transferred to a Bactec MGIT tube supplemented with PANTA 

antibiotics and oleic acid-albumin-dextrose-catalase (OADC) enrichment broth (all from 

Becton Dickinson, Oxford, UK). The tube was placed in a Bactec MGIT 960 and 

incubated until registered positive (measured as time to positivity [TTP]). Use of a 

standard curve enables conversion of the TTP of a sample tube into bacterial numbers 

(log CFU) (Supplementary Fig. S1). All work with cells pre-BCG infection and involving 

BCG infected samples was done in Biosafety Level (BSL) 2 laboratory. 

 

Enzyme-linked immunosorbent assay (ELISA) 

MGIA supernatants were analysed to assess cytokine concentrations by ELISA. The 

levels of following cytokines were measured: IFN-g, tumor necrosis factor alpha (TNF-

a), interleukin (IL)-12p40, IL-10, IL-17, IL-6, granulocyte-macrophage colony-

stimulating factor (GM-CSF), interferon-gamma-induced protein 10 (IP-10), perforin, 
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granzyme, IL-32 and IL-22. The concentrations of IFN-g, IL-12p40 and IL-6 were 

measured using BD OptiEIA kits (Becton Dickinson, UK), while TNF-a, GM-CSF, IP-

10, granzyme B, IL-32 and IL-22 DuoSet ELISA kits were obtained from R&D Systems 

(Abingdon, UK), IL-10 ELISA MAX Standard and IL-17 ELISA MAX Deluxe from 

BioLegend (London, UK), and perforin ELISA kit from Abcam (Cambridge, UK). 

Assays were performed according to the manufacturers’ instruction. 

 

Flow cytometric immune phenotyping 

Cryopreserved PBMCs were thawed and upon 2 hours resting at 37 oC, cell surface flow 

cytometry was performed. Cells were resuspended in FACS buffer (1% FBS in PBS with 

0.02% sodium azide). Fc block (Becton Dickinson, UK) was added (2.5 µg per million 

cells) and incubated for 10 minutes at room temperature prior to surface staining. Cells 

were aliquoted in FACS tubes (100µl each, 1x106 cells) and stained with 1 µl/ml Live 

Dead Blue Stain (Invitrogen), followed by staining with the following titrated antibody 

for the lymphocyte panel: 2.5 µl CD3-AF700 (clone UCHT1, Ebioscience, 

Loughborough, UK), 1.25 µl CD4-APC/Cy7 (clone RPA-T4, BioLegend), 1.25 µl CD8-

Superbright645 (clone RPA-T8, Ebioscience), 2.5 µl CD19-FITC (clone HIB19, 

BioLegend), 2.5 µl CD56-APC (clone HCD56, BioLegend), 2.5 µl CD16-BV510 (clone 

3G8, BioLegend), 5 µl HLA-DR-PE (clone L243, BioLegend), 5 µl LAG3-PE/Cy7 (clone 

11C3C65, BioLegend) and 1.25 µl PD1-BV421 (clone EH12.2H7, BioLegend).  

For the monocyte panel, the cells were stained with the following titrated antibodies: 2.5 

µl CD3-AF700 (clone UCHT1, Ebioscience), 2.5 µl CD19-FITC (clone HIB19, 
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BioLegend), 2.5 µl CD14-BV421 (clone HCD14, BioLegend), 2.5 µl CD16-BV510 

(clone 3G8, BioLegend), 1.25 µl CD86-APC/Cy7 (clone IT2.2, BioLegend), 5 µl HLA-

DR-PE (clone L243, BioLegend), 5 µl CD206-APC (clone 15-2, BioLegend), 5 µl 

CD163-BV605 (clone GHI/61, BioLegend), 2.5 µl CD64-APC/Cy7 (clone 10.1, 

BioLegend) and 5 µl CD123-BV650 (clone 6H6, BioLegend). Cells were incubated for 

30 minutes at RT in the dark, washed and fixed prior to analysis. Fluorescence minus one 

(FMO) controls were set using cells for each antibody and used to guide gating. OneComp 

beads (eBioscience) were used to calculate compensation by staining with single 

antibodies as per manufacturer’s instruction. Cells were acquired on a BD LSR II flow 

cytometer. Data was analysed with FlowJo software version 10.4 (Treestar Inc., USA). 

Results are presented as percentages of cells after gating out of dead cells and doublets. 

CD4+ and CD8+ T-cells were identified from CD3+ CD19- cells, whereas CD56+ NK cells 

were identified from CD3- CD19- cells. CD56dim CD16+ and CD56bright CD16+/- cells were 

identified as cytotoxic and cytokine-producing NK cells, respectively (Supplementary 

Fig. S2A, lymphocyte gating). Furthermore, CD4+ and CD8+ T-cells were gated for T-

cell activation markers: HLA-DR, LAG3 and PD1 using the FMO. Meanwhile, CD14+ 

monocytes were gated from CD3- CD19- cells, and  CD14bright CD16+/- and CD14dim 

CD16+ cells were identified as M1 and M2 monocytes, respectively (Supplementary Fig. 

S2B, monocyte gating). In addition, CD86 and HLA-DR markers were used to confirm 

M1 phenotype, while CD206 and CD163 markers were used to affirm M2 phenotype37. 

CD64+ and CD123+ cells were also gated from CD14+ monocytes as activated 

monocytes38. 
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Intracellular cytokine staining (ICS) flow cytometry 

PBMCs were thawed and rested for 2 hours in a 37oC incubator with 5% CO2 after 

addition of 10 U/ml of benzonase. PBMCs were then incubated alone (medium only) as 

a negative control, with 5 µg/ml Staphylococcus enterotoxin B (SEB; Sigma, UK) as a 

positive control, with ~100 CFU BCG (as per the MGIA protocol) and with 10 µg/ml 

CMV peptide pool (5 peptides, 2 µg/ml/peptides, ANASPEC, Fremont, CA, USA). The 

CMV peptide pool used is the same as the previous study25. The incubation with BCG 

was performed for 4 days and the addition of SEB and CMV was performed on Day 3. 

Two hours after the addition of SEB and CMV to the respective tubes, brefeldin A 

(Sigma, UK) was added to all tubes which were then incubated for 18 hours at 37oC until 

Day 4. 

Following incubation, cells were washed with ICS FACS buffer (0.1% BSA in PBS, with 

0.01% sodium azide) and stained with Vivid live/dead reagent (Invitrogen) for 10 minutes 

at 4oC in the dark. Cells were then surface stained with anti-CD4-APC (BD Biosciences), 

anti-CD19-efluor450 and anti-CD14-efluor450 (eBiosciences) for 30 minutes at 4oC in 

the dark. After washing with ICS FACS buffer, cells were permeabilised with 

Cytofix/Cytoperm reagent (BD Biosciences) at 4oC for 20 min, washed in Perm Wash 

buffer (BD Biosciences) and stained with anti-CD3-Horizon-BV510, anti-IL-2-FITC, 

anti-TNFa-PE-Cy7 (BD Biosciences), anti-CD8-PE (eBiosciences) and anti-IFNg-

PerCPCy5.5 (Biolegend) for 30 min at room temperature in the dark. Cells were finally 

resuspended in 250 µL 1% paraformaldehyde (Sigma, UK) and filtered prior to 

acquisition.  
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Data was acquired using an LSRII flow cytometer (BD Biosciences) and FACSDiva 

acquisition software (BD Biosciences). Compensation was performed using tubes of 

OneComp eBeads (ThermoFisher, UK) individually stained with each fluorophor and 

compensation matrices were calculated with FACSDiva. ICS flow cytometry data was 

analysed using FlowJo software version 10.4 (TreeStar Inc., Ashland, OR, USA). 

Samples were gated sequentially on singlet, live, CD14-CD19-, CD3+ (lymphoid), CD4+, 

CD8+ cells and negative control stimulation tubes were used to set cytokine gates (see 

Supplementary Fig. S3, ICS gating). Median cytokine responses in negative control tubes, 

as a percentage of the gated CD4+ T-cell population, were as follows: IFN-g – 0.07%; IL-

2 – 0.09%; TNF-a – 0.40%. Median cytokine responses in positive control tubes (SEB-

stimulated) were as follows: IFN-g – 3.16%; IL-2 – 4.24%; TNF-a – 24.35%. Cytokine 

responses analysed for all stimuli (BCG and CMV) were after subtraction of background 

values measured in un-stimulated tubes. 

 

Statistical analysis 

To identify statistical significance of ex vivo growth inhibition (log CFU values) and 

ELISA responses, students t-test were used. Mann-Whitney U Test was performed to 

identify significant differences of the ELISpot, cell surface flow cytometry and ICS 

responses between groups. Spearman’s correlation coefficient was used to test for 

correlations between growth inhibition and immune responses. A multiple comparison 

correction was included (Bonferroni), as indicated in each figure legend. Statistical 

analyses were performed in Graphad Prism 7 (GraphPad, La Jolla, CA, USA). 

 



 187 

Results 

Demographics of enrolled participants 

One hundred participants were enrolled in the study; 37 vaccine-naïve volunteers with no 

history of BCG vaccination and 63 volunteers previously-vaccinated with BCG (average 

time since vaccination 29.4 years prior to enrolment). Table 1 summarises the 

characteristics of the study participants. Almost 70% of the BCG-vaccinated participants 

were from the UK. 

Characteristic Total Participants : 100 
Naïve ( n = 37 ) BCG Vaccinated ( n = 63 ) 

Female [no. (%)] 28 ( 75.7 % ) 42 ( 66.7 % ) 
Median age [yr (range)] 31 

( 23 – 70 ) 
39 

( 24 – 80 ) 
Average time since BCG 
vaccination [yr (range)] 

- 29.4 
( 10 – 58 ) 

Country of Origin 
UK [no. (%)] 8 ( 21.6 % ) 44 ( 69.8 % ) 

Table 1. Characteristics of study participants. 

 

Assessment of ex vivo growth inhibition and cytokine responses  

The growth inhibition assay was performed to assess the impact of historical BCG 

vaccination on ex vivo mycobacterial growth control. Using cryopreserved PBMCs, 

enhanced growth inhibition in PBMCs from BCG-vaccinated individuals was observed 

compared to vaccine-naïve individuals (median log CFU 1.680 and 2.027, p<0.0001, 

Figure 1A). There was no correlation between the age of participants and time since 

vaccination with ex vivo mycobacterial growth (p>0.1, Spearman’s correlation, data 

shown in Appendix 8C of this thesis). The IFN-g ELISpot assay was performed to 
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measure the magnitude of the mycobacteria-specific response. The secretion of IFN-g in 

response to PPD was elevated in samples from vaccinated individuals in comparison to 

unvaccinated individuals (median SFC 109.5 and 48, p<0.0001, Figure 1B). There was a 

significant inverse correlation between higher IFN-g ELISpot response and lower 

mycobacterial growth (p=0.022, Spearman r = -0.23, Figure 1C), although the association 

was not significant when the correlation was performed in the BCG-vaccinated group 

only (p=0.836, Spearman r = 0.027, data shown in Appendix 8D of this thesis).  

ELISA assays were performed using the MGIA supernatant to investigate cytokine 

production which may be associated with ex vivo growth inhibition. Trends for higher 

production of Th1-type cytokines (IFN-g, IP-10, TNF-a, IL-12) as well as GM-CSF 

(p=0.0512) were observed in the BCG-vaccinated group compared to the vaccine-naïve 

group (Table 2). There was a statistically significant correlation between higher IL-10 

production and higher mycobacterial growth (Spearman r = 0.37, p=0.0003, Table 2), 

with a trend of higher TNF-a production with reduced mycobacterial growth (Spearman 

r = -0.35, p=0.0558). Meanwhile, historical BCG-vaccination significantly increased the 

frequency of IL-2+ CD4 T-cells in the BCG-vaccinated group upon 4 days of stimulation 

with BCG in the MGIA system (p=0.0077, Supplementary Figure S4). Similar trends 

were observed with the frequencies of IFN-g+ as well as TNF-a+ CD4 T-cells, and to a 

lesser extent with Th1-cytokine+ CD8 T-cells (Supplementary Figure S4). There were no 

significant correlations between the frequencies of BCG-specific CD4 and CD8 T-cells 

and mycobacterial growth, although the observed trends suggest that these cells may 

contribute to control of growth (Supplementary Table S1).  
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Figure 1. Growth inhibition and immune responses following historical BCG 
vaccination. Assessment was performed from 37 BCG-naïve and 63 BCG-vaccinated 
participants. (A) Growth inhibition was compared using BCG input ~ 100 CFU as 
immune target (unpaired t-test). Data is presented as total number of log CFUs per 
sample, which was determined by use of a standard curve. (B) IFN-γ production from 
PBMC following stimulation with PPD was compared (Mann-Whitney test). Numbers 
above each group represent median (range). SFC, spot forming cells. (C) The correlation 
between ex vivo growth inhibition and PPD-specific IFN-γ response was assessed 
(Spearman’s correlation). A p value <0.05 was considered statistically significant. Dots 
and squares represent individual data points, and the central lines indicate the median 
response with inter-quartile range (IQR). ****p<0.0001. 
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Cytokine 
(pg/ml) 

Comparison Correlation with ex vivo 
mycobacterial growth 

Naïve BCG-vaccinated p-value r p-value 
IFN-g 12.47 [8.245-16.69] 23.37 [10.8-35.94] 0.1962 -0.027 0.8432 
IP-10 111.7 [55.42-168] 204.5 [112.1-297] 0.1505 0.19 0.1158 
TNF-a 37.97 [2.547-73.4] 97.98 [38.61-157.4] 0.1471 -0.35 0.0558 
IL-12 27.6 [3.033-52.17] 63.61 [20.83-106.4] 0.2299 -0.23 0.3158 
IL-10 52.55 [31.07-74.03] 59.99 [36.56-83.41] 0.6688 0.37*** 0.0003 
GM-CSF 7.729 [-1.688-17.15] 88.54 [26.19-150.9] 0.0512 -0.37 0.1552 
IL-6 356.7 [246.1-467.3] 315 [236.5-393.4] 0.5293 0.071 0.5449 
IL-17 0.00 [0.00-0.00] 0.1596 [0.00-0.4083] 0.3291 -0.13 0.2141 

 
Table 2. Summary of mean cytokine responses measured with ELISA assays, 
assessed from MGIA supernatant samples after 4 days of co-culture. Comparisons were 
made between naïve and BCG-vaccinated groups (unpaired t-test), the values indicate 
mean of concentration in pg/ml [95% CI]. Correlations were assessed with ex vivo 
mycobacterial growth among responders (Spearman’s correlation). A p value <0.05 was 
considered statistically significant (in bold), and after a multiple testing correction only 
values with p <0.0063 were considered significant (underlined). n= 37 BCG-naïve and 
n=63 BCG-vaccinated participants. ***p<0.001. 

 

Effects of the historical BCG vaccination on the frequencies of circulating leukocyte 

subsets 

Historical BCG vaccination did not influence the frequencies of circulating leukocytes in 

T-cell, NK cell and monocyte compartments (Supplementary Table S2). However, 

significant correlations were observed between the frequencies of NK cells and enhanced 

control of mycobacterial growth ex vivo in the naïve and BCG-vaccinated groups (p<0.05, 

Spearman’s correlations, Table 3). In the BCG-vaccinated group, the higher frequency of 

cytokine-producing NK cells was associated with reduced mycobacterial growth 

(Spearman r = -0.41, p=0.015, Figure 2A). A higher production of perforin was observed 

from the cells of BCG-vaccinated participants compared to naïve (p=0.018, Figure 2B). 

The production of perforin significantly correlated with enhanced growth inhibition 

(Spearman r = -0.44, p=0.013, Figure 2C and Supplementary Table S3), and the 
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association was still significant when the correlation was performed in the BCG-

vaccinated group only (Spearman r = -0.36, p=0.037, data shown in Appendix 8E of this 

thesis). Correlations with other measured NK cells products and cytokines (granzyme, 

IL-32, IL-22) did not reach significance (Supplementary Table S3). There was also a non-

significant trend of T-cell frequency in peripheral blood being protective against 

mycobacterial growth in cells from BCG-vaccinated participants (Spearman r = -0.30, 

p=0.087, Table 3). 

Leukocyte subsets 
Correlation with ex vivo mycobacterial growth 

All participants Naïve BCG-vaccinated 
r p-value r p-value r p-value 

T-cells -0.068 0.6367 0.29 0.2708 -0.30 0.0866 
   CD4 T-cells -0.041 0.7764 0.17 0.5172 -0.091 0.6080 
   CD8 T-cells 0.24 0.0938 0.36 0.1714 0.093 0.6011 
   CD4/CD8 ratio -0.16 0.2718 -0.20 0.4579 -0.058 0.7448 
NK cells -0.27 0.0593 -0.71** 0.0028 -0.19 0.2833 
   Cytokine NK cell -0.26 0.0702 -0.47 0.0679 -0.41* 0.0147 
   Cytotoxic NK cell -0.25 0.0814 -0.64** 0.0093 -0.19 0.2699 
   NK cell ratio -0.2 0.1602 -0.35 0.1866 -0.087 0.6241 
Monocytes 0.12 0.4244 -0.0088 0.9758 0.13 0.4638 
   ML ratio 0.064 0.6609 -0.044 0.8714 0.083 0.6390 
   M1 monocytes -0.076 0.5993 -0.28 0.2867 -0.031 0.8610 
   M2 monocytes -0.16 0.2784 -0.16 0.5458 -0.12 0.4978 
   M1/M2 ratio 0.059 0.6831 -0.17 0.5283 0.15 0.3939 
   CD64+ monocytes -0.063 0.6659 -0.29 0.2664 0.028 0.8759 
   CD123+ monocytes -0.072 0.6169 -0.27 0.3025 0.015 0.9313 
   Suppressor monocytes 0.21 0.1414 0.31 0.2381 0.089 0.6149 

Table 3. Correlation of immune cell frequencies in peripheral blood and ex vivo 
mycobacterial growth inhibition. Assessment was performed from 16 BCG-naïve and 34 
BCG-vaccinated participants. Correlations were performed from a total of 50 participants, 
as well as from each naïve and BCG-vaccinated groups respectively (Spearman’s 
correlation). A p value <0.05 was considered statistically significant (in bold), and after 
a multiple testing correction only values with p <0.0031 were considered significant 
(underlined). Note: The ML ratio was obtained by dividing the percentage of monocytes 
by the sum of the percentages of T- and B-cells. The NK cell ratio was obtained by 
dividing the percentage of cytokine-producing by cytotoxic NK cells. *p<0.05, **p<0.01. 
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Figure 2. NK cells correlations. A higher frequency of cytokine-producing NK cells 
(CD56bright CD16+/-) correlated with enhanced ex vivo mycobacterial growth inhibition 
(Spearman’s correlation) (A). A perforin ELISA was performed from MGIA supernatants 
and the response was compared between vaccination groups (unpaired t-test) (B). The 
production of perforin was associated with enhanced ex vivo growth inhibition 
(Spearman’s) (C). A p value <0.05 was considered statistically significant. *p<0.05, 
**p<0.01. 

 

Impacts of CMV-specific T-cell response and T-cell activation on ex vivo 

mycobacterial growth inhibition 

CMV-specific T-cells producing IFN-g+ and TNF-a+, notably in the CD8 compartment, 

were significantly associated with frequency of T-cells expressing LAG3 and PD1 

markers (p<0.05, Spearman’s correlations, Table 4 and Figure 3 A-D). Historical BCG-

vaccination did not appear to influence CMV-specific response nor T-cell activation 
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between groups (Supplementary Table S2 and S4). Furthermore, T-cell activation was 

shown to correlate with higher growth of mycobacteria ex vivo, particularly in the naïve 

group (Figure 3 and Supplementary Table S5). LAG3+ CD4 T-cells were significantly 

associated with growth of mycobacteria (p=0.047), with a similar trend for LAG3+ CD8 

T-cells (p=0.072) (Figure 3 F and I). There was no correlation between the CMV-specific 

T-cell response and the frequency of BCG-specific cytokine+ T-cells (p>0.05, Spearman’s 

correlations, data shown in Appendix 8F of this thesis). 

CMV-specific 
cytokine+ T-cells 

Correlation with activated T-cells 
HLA-DR+ CD4 T-cells LAG3+ CD4 T-cells PD1+ CD4 T-cells 

r p-value r p-value r p-value 
IFN-g+ CD4 T-cells 0.026 0.8748 -0.004 0.9805 0.20 0.2112 
IL-2+ CD4 T-cells -0.045 0.7823 -0.056 0.7310 -0.0082 0.9601 
TNF-a+ CD4 T-cells 0.054 0.7401 0.058 0.7239 0.091 0.5757 
  HLA-DR+ CD8 T-cells LAG3+ CD8 T-cells PD1+ CD8 T-cells 
IFN-g+ CD8 T-cells 0.31 0.0552 0.39* 0.0140 0.44** 0.0049 
IL-2+ CD8 T-cells -0.087 0.5917 0.0024 0.9885 -0.15 0.3609 
TNF-a+ CD8 T-cells 0.28 0.0799 0.35* 0.0281 0.33* 0.0375 

Table 4. Correlation of CMV-specific T-cell responses and T-cell activation. 
Associations were investigated from 3 different subsets of CMV-specific cytokine+ T-
cells producing IFN-g+, IL-2+ or TNF-a+, respectively. Three markers were used for T-
cell activation: HLA-DR, LAG3 and PD1. A p value <0.05 was considered statistically 
significant (in bold), and after a multiple testing correction only values with p <0.0083 
were considered significant (underlined) (Spearman’s correlation). n=50 participants, 
consisted of 16 BCG-naïve and n=34 BCG-vaccinated participants. *p<0.05, **p<0.01. 
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Figure 3. CMV-specific responses were associated with higher CD8 T-cell activation, 
expressing markers LAG3 (A-B) and PD1 (C-D) respectively. Activated CD4 and CD8 
T-cells (E-J) were correlated with higher growth of mycobacteria, notably in the naïve 
groups (F, I). A p value <0.05 was considered statistically significant (Spearman’s 
correlation). n=50 participants, consisted of 16 BCG-naïve and 34 BCG-vaccinated 
participants. *p<0.05, **p<0.01. 
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Impact of sex on ex vivo mycobacterial growth inhibition and cytokine responses  

In this study,  it was demonstrated that sex was associated with several differences in 

immune responses following historical BCG vaccination. First, BCG-vaccinated females 

were shown to exhibit superior capacity to control mycobacterial growth when compared 

to males (p=0.029, Figure 4B). In contrast, males appear to have a higher IFN-γ response 

from PPD-stimulated PBMCs as well as higher IP-10 production in the MGIA 

supernatant, both in naïve and BCG-vaccinated groups (Figure 4 C-F). Supplementary 

Table S6 summarises the sex comparisons of all measured cytokines from the MGIA 

supernatants.  
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Figure 4. Sex impact on growth inhibition and immune responses following 
historical BCG vaccination. Assessment was performed from 37 BCG-naïve (A, C, E) 
and 63 BCG-vaccinated participants (B, D, F). (A-B) Growth inhibition was compared 
between sex and data was presented as total number of log CFUs per sample (unpaired t-
test). (C-D) IFN-γ production from PBMC following stimulation with PPD was compared 
(Mann-Whitney test). Numbers above each group represent median (range). SFC, spot 
forming cells. (E-F) IP-10 was measured from MGIA supernatants using ELISA assay 
(mean, unpaired t-test). Dots and squares represent individual data points, and the central 
lines indicate the median response with IQR. *p<0.05. 

 

Impact of sex on immune cells phenotype 

In the BCG-vaccinated group, females had a higher frequency of cytokine-producing NK 

cells (p=0.018, Figure 5A). There was also a higher CD4/CD8 ratio in females compared 

to males in the naïve group (p=0.028, Figure 5B). Interestingly, there was a higher 

frequency of monocytes in males in the BCG-vaccinated group (p=0.049, Figure 5C). 

There was also a trend of higher ML ratio in BCG-vaccinated males compared to females 

(p=0.08, Supplementary Table S7). In terms of T-cell activation, BCG-vaccinated 

females exhibited a lower frequency of LAG3+ CD8 T-cells (p=0.0297, Figure 5D). While 

in the naïve group, females also had lower frequencies of activated CD8 T-cells 

expressing HLA-DR, LAG3 and PD1 (p<0.05, Supplementary Table S7). The lower 

frequencies of activated T-cells in females may be a consequence of lower CMV-specific 

CD8 T-cells response (Figure 5E and Supplementary Table S7).  
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Figure 5. Comparison by sex of immune cells phenotype (A-C), T-cell activation (D) 
and CMV-specific T-cell response (E). Assessment was performed from 16 BCG-naïve 
and 34 BCG-vaccinated participants. The box plots show the minimum and maximum 
values (ends of the whiskers), the median (band near the middle of the box) and 
interquartile ranges. Blue and red colour represent males and females, respectively. A p 
value <0.05 was considered statistically significant (Mann-Whitney). *p<0.05, **p<0.01, 
****p<0.0001.  

 

 

Discussion 

The present study reports that mycobacterial growth inhibition can be detected ex vivo 

following historical BCG vaccination in adult healthy volunteers. In this study, the 

average time since BCG vaccination was 29.4 years prior to enrolment. Our results are in 

line with previous studies such as Fletcher et al.29 which detected the impact of historical 

BCG vaccination after more than 20 years using the same PBMC-based MGIA. Most 

vaccinated individuals enrolled in our study are UK participants immunised with BCG 



 198 

during their school age (12-13 years old), which has been shown in a recent study by 

Mangtani et al. to provide protection for over 20 years11. A higher IFN-γ response was 

also observed in the BCG-vaccinated group compared to the naïve group using the 

ELISpot assay, reflecting the presence of BCG-specific memory cells. Moreover, there 

was a significant correlation between IFN-γ response and lower mycobacterial growth in 

all cohort participants, although the association did not reach significance in the BCG-

vaccinated group only. Several published MGIA studies reported increased IFN-γ 

production following BCG vaccination29,39,40, and BCG-specific IFN-γ response 

measured with the ELISpot assay is known to be associated with reduced TB disease risk 

following BCG vaccination in infants23. The ELISpot assay measures all cells that secrete 

IFN-γ in response to antigen stimulation, including NK cells and gd T-cells in addition to 

conventional T-cells.  Focusing on the conventional T-cells response, in this study, we 

did not observe a significant association between Th1-type cytokine-expressing T-cells 

and ex vivo mycobacterial growth inhibition, although the data suggest that they may be 

protective. This finding was in contrast with the study of Smith et al.30 which showed an 

association between MGIA control capacity and the frequency of polyfunctional CD4 T-

cells when studying a small cohort of BCG-vaccinated infants, but was consistent with 

the finding of Joosten et al.31 using the same PBMC-based MGIA, as well as with a study 

by Kagina et al.41 which showed no association between polyfunctional T-cells and the 

risk to develop TB disease following BCG vaccination. 

We also observed higher Th1-type cytokines in the MGIA supernatants from BCG-

vaccinated participants compared to the naïve, although statistical significance was not 

arrived at. Interestingly, there was a strong significant correlation between IL-10 

production and reduced control of mycobacterial growth. This observation replicates an 
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earlier finding using PBMC from the MVA85A trial participants cohort, in which IL-10 

was associated with reduced ex vivo growth inhibition, and was significantly predictive 

of mycobacterial growth through inhibition of other pro-inflammatory cytokines42. 

Addition of recombinant IL-10 to the ex vivo MGIA system has been shown previously 

to promote mycobacterial growth42,43. IL-10 is known to have immunosuppressive 

activity by inhibiting T-cell proliferation and IFN-γ production, leading to reduced 

macrophage activation44. The capacity of individuals to produce IL-10 may need to be 

considered when assessing TB vaccine effects in clinical trials. 

In this study, the frequency of NK cells – in particular cytokine-producing NK cells – is 

notably associated with enhanced ex vivo mycobacterial growth inhibition following 

historical BCG vaccination. This may account for the correlation between IFN-g ELISpot 

response and control of mycobacterial growth. The results again support a recent finding, 

in which a greater frequency of putative cytokine-producing CD16- NK cells was 

associated with reduced mycobacterial growth in the multiple regression analysis of 

MVA85A correlate of risk study42,45. Cytokine-producing NK cells are the main source 

of NK-cell derived cytokines such as IFN-γ, TNF-a and GM-CSF46, which were modestly 

increased in the MGIA supernatants of the BCG-vaccinated group in this study. Initially, 

cytotoxicity and cytokine-producing functions of NK cells are often regarded as two 

distinct functions with little synergy between them as a result of early association of the 

two distinct subsets of NK populations46,47. However, it was recently shown that IFN-γ 

and TNF-a synergistically enhance NK cell cytotoxicity through NF-κB-dependent up-

regulation of intracellular adhesion molecule-1 expression in target cells, hence rendering 

the cells more sensitive to cytolysis activities48. In the present study, BCG-vaccinated 
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participants produced a higher level of perforin and the secretion of these lytic granules 

was associated with enhanced growth inhibition.  

Although considered a component of innate immune system, an emerging body of 

evidence has revealed that NK cells can also behave in a memory-like manner following 

infection or vaccination (reviewed in49,50). NK cells isolated from pleural fluid express 

the memory marker CD45RO and produce higher amounts of IFN-γ and IL-22 in response 

to stimulation with IL-12, IL-15 and BCG when compared with CD45RO- cells51,52. Even 

though NK cells do not have antigen receptors generated by genetic rearrangement, they 

possess receptors which allow direct antigenic contact, resulting in subsequent cellular 

activation50. Moreover, NK cells can also undergo secondary responses following 

activation by cytokines, such as IL-12, IL-15 and IL-1853,54. This process will generate 

antigen-specific NK cells, which lead to an enhanced response following re-exposure 

with the same stimulus. In addition, work by Kleinnijenhuis et al. also unveil that BCG 

vaccination promotes augmented secondary responses towards the same and unrelated 

stimulus through the trained innate immunity mechanism55. The growth inhibition assay 

has recently been shown to be able to detect contribution from the trained innate immune 

compartment, following Mtb exposure and BCG vaccination, by the role of nonclassical 

monocytes31. Our present study has shown the additional contribution of NK cells to ex 

vivo mycobacterial growth control, and in line with this, recent clinical trials also reported 

that immune cells associated with protection from TB disease and after BCG vaccination 

were not T-cells, but IFN-γ–producing NK cells56,57. 

Furthermore, it was demonstrated that a CMV-specific response may be associated with 

T-cell activation, in particular in the CD8 compartment, and this activation is correlated 
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with mycobacterial growth ex vivo. In HIV infection, T-cell activation has been 

established as a risk factor for acquisition of infection as well as progression from 

infection to disease58-60. In TB, evidence has emerged denoting the role of CMV and T-

cell activation on TB disease risk23,25, and our study is the first the show such association 

with ex vivo mycobacterial growth. In this study, we chose to measure CMV-specific T-

cell cytokine response with ICS flow cytometry rather than with serology, as evidence in 

the literature showed that CMV-antibody levels do not correlate with the size of the T-

cell response against CMV and the ICS method is more sensitive for detection of CMV-

specific cytokine-producing T-cells61,62. The previous study by Muller et al. reported that 

CMV positive infants who developed TB disease had lower frequency of putative NK 

cells and lower expression of genes associated with NK cells25. In the present study, we 

did not observe a significant correlation between the CMV-specific T-cell response and 

NK-cell frequency (data shown in Appendix 8G of this thesis). However, CMV infection 

is recognised to drive the expansion of NKG2C+ NK cells63, which do not respond well 

to IL-12 and IL-18 stimulation discussed above, although they may still degranulate and 

produce cytokine in response to direct contact stimulation64,65. Further studies are 

required to better understand the interplay between CMV-specific responses, T-cell 

activation and NK cells in the context of BCG vaccination.  

Differences in TB disease notification rates between the sexes are well documented and 

thought to be a result of biological factors, in addition to social factors13,16,66. Therefore, 

it is of interest that our study demonstrated a higher capacity of BCG-vaccinated females 

to control mycobacterial growth ex vivo compared to males. In conjunction with this data, 

we found that females had a higher frequency of cytokine-producing NK cells, and lower 

frequency of activated T-cells as well CMV-specific response. In addition, females also 
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had a lower monocyte frequency, with a trend of a lower ML ratio compared to males. 

Altogether, these individual-level factors appear to contribute to the enhanced growth 

inhibition in females following BCG vaccination. The only contrasting finding the was 

the trend of higher IFN-γ production in males compared to females, which has been 

observed previously8,18,67. A balanced immune response is required to protect against TB 

disease and perhaps, in males, stronger immune responses may lead to detrimental 

exaggerated inflammatory responses68.  

Such a sex specific effect has also been observed with measles and smallpox vaccines, 

where females are more protected than males following vaccination69,70. The 

epidemiological observation that the sex bias in TB does not arise until puberty has 

suggested the important role of sex hormones13. Sex hormones have diverse effects on 

many immune cell types, including T-cells, B-cells, neutrophils, dendritic cells, 

macrophages and NK cells (reviewed in16). In general, testosterone is considered to 

downregulate the Th1 response, whereas estrogen is believed to enhance it16. Males have 

also been shown in a previous study to display a higher ML ratio compared to females32. 

Moreover, genetic or epigenetic differences between sex may play a role as well in the 

observed sex-differential protective effect15, aside from sex hormones. 

In summary, we have demonstrated the impact of individual-level factors on ex vivo 

mycobacterial growth inhibition in a cohort of healthy, adult volunteers. Our results 

indicate that immune cell phenotype, cytomegalovirus-specific response and sex have 

impacts on immunity following BCG vaccination. These ex vivo observations are 

reflective of epidemiological data and published human studies, and such impacts may 

need to be considered when testing TB vaccine candidates in trial populations. 
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Importantly, researchers should consider routinely stratifying the trial population for 

analysis by sex in clinical vaccine studies, as the impact of sex in infectious diseases is 

common but often neglected71. The MGIA assay offers an ex vivo testing platform for 

assessment of a wide range of candidate TB vaccines, with the ability to reflect inter-

individual variation which may be important for vaccine effectiveness. This present study 

has displayed the value of MGIA in assessing changes in the innate immune compartment 

as well as the adaptive immunity following BCG vaccination. The ex vivo MGIA is 

therefore an important additional tool for the TB vaccine community and should continue 

to be assessed for its ability to act as a correlate of vaccine-induced protection.  
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Supplementary Figures 

 

 
Supplementary Figure S1. Standard curve of BCG Pasteur Aeras used to convert 
TTP to CFU. A titration experiment was conducted to establish the relationship between 
log10 CFU and MGIT time to positivity (TTP). Linear regression analysis was carried 
out in GraphPad Prism. The resulting equation was used to calculate log10 CFU. 
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Supplementary Figure S2. Cell surface flow cytometry gating strategies. (A) 
Lymphocyte gating. For each sample, gating of singlet, live cells, CD19-, CD3+ (T-cells) 
and CD56+ (NK cells) was performed in sequence. Subsequently, CD4 or CD8 T-cells as 
well as CD56dim CD16+ or CD56bright CD16+/- NK cell were also gated. Furthermore, CD4 
and CD8 T-cells were gated for T-cell activation markers. Gates were set on FMO 
controls and copied to the samples. Gating for the following markers were performed: 
LAG3, HLA-DR and PD1, with above examples represent the latter two. (B) Monocyte 
gating. Gating of singlet, live cells, CD3-CD19- and CD14+ (monocytes) was performed 
in sequence for each sample. Next, CD14bright CD16+/- (M1) or CD14dim CD16+ (M2) 
monocytes were gated. M1 was further defined by CD86 and HLA-DR markers, while 
M2 was confirmed by CD206 and CD163 markers. CD64+ and CD123+ activated 
monocytes were also gated from CD14+ monocytes using the FMO controls. 
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Supplementary Figure S3. ICS flow cytometry gating strategy. Gating of singlet (A), 
dump negative (live, CD14-, CD19-) (B), CD3+ lymphocytes (C) and CD4+, CD8+ as well 
as CD4- CD8- T-cells (D) was performed in sequence for each sample. Cytokine gates 
were then set on unstimulated tubes (E) and copied to stimulated tubes (F). Gating for the 
following cytokines were set: IFN-γ, TNF-α and IL-2, with E & F represent an example 
of IL-2.
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Supplementary Figure S4. Frequencies of Th1 cytokine-expressing T-cells. 
Expressions were measured from PBMCs after stimulation with ~100 CFU BCG for 4 
days. Among CD4 and CD8 T-cells (A and B), comparisons were made between the naïve 
(blue) and historically BCG-vaccinated (red) groups. Data is displayed as bar graphs and 
error bars represent mean + SD. The Mann-Whitney U test was used to determine 
significance and p value <0.05 was considered statistically significant. n=16 naïve and 34 
historically BCG-vaccinated participants. 
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Supplementary Tables 
 
 

BCG-specific 
cytokine+ T-cells 

Correlation with ex vivo mycobacterial growth 
All participants Naïve BCG-vaccinated 

r p-value r p-value r p-value 
IFN-g+ CD4 T-cells -0.0055 0.9703 0.031 0.9098 0.005 0.9784 
IL-2+ CD4 T-cells  -0.23 0.1196 -0.25 0.5000 0.038 0.8377 
TNF-a+ CD4 T-cells -0.2 0.1673 -0.21 0.4241 -0.14 0.4413 
IFN-g+ CD8 T-cells -0.16 0.2674 -0.063 0.8167 -0.23 0.2030 
IL-2+ CD8 T-cells  0.11 0.4658 0.64 0.0060 0.045 0.8058 
TNF-a+ CD8 T-cells -0.038 0.7964 0.071 0.7940 0.079 0.6670 

 
Table S1. Correlation of BCG-specific T-cell response and ex vivo mycobacterial growth. 
Associations were assessed from total 50 participants, as well as from each naïve and 
BCG-vaccinated groups respectively (Spearman’s correlation). A p value <0.05 was 
considered statistically significant (not corrected for multiple comparisons). 
 
 

Leukocyte subsets 
(% live cells) Naïve BCG-vaccinated p-value 

T-cells 67.84 [63.53-72.15] 66.12 [62.96-69.28] 0.7537 
   CD4 T-cells 43.76 [39.48-48.04] 44.69 [41.31-48.08] 0.7149 
   CD8 T-cells 18.98 [16.02-21.94] 16.48 [14.49-18.46] 0.1396 
   CD4/CD8 ratio 2.502 [2.066-2.939] 3.142 [2.596-3.688] 0.2428 
NK cells 5.933 [4.176-7.691] 6.699 [5.122-8.277] 0.7970 
   Cytokine NK cell 0.765 [0.5785-0.9515] 0.6488 [0.5412-0.7565] 0.2202 
   Cytotoxic NK cell 3.99 [2.636-5.344] 4.905 [3.503-6.307] 0.8736 
   NK cell ratio 5.275 [3.899-6.65] 7.314 [5.395-9.233] 0.4154 
Monocytes 8.541 [6.512-10.57] 7.571 [6.47-8.672] 0.5468 
   ML ratio 0.1116 [0.08108-0.1422] 0.09897 [0.08217-0.1158] 0.6175 
   M1 monocytes 3.489 [2.196-4.781] 3.192 [2.514-3.871] 0.8571 
   M2 monocytes 0.2256 [0.1648-0.2865] 0.2812 [0.2083-0.3541] 0.6616 
   M1/M2 ratio 18.7 [10.38-27.01] 15.01 [11.46-18.55] 0.7812 
   CD64+ monocytes 4.303 [2.515-6.092] 4.069 [3.183-4.955] 0.8774 
   CD123+ monocytes 4.00 [2.457-5.543] 3.838 [3.015-4.661] 0.9221 
   Suppressor monocytes 0.2356 [0.1402-0.331] 0.1673 [0.1313-0.2034] 0.0888 
Activated T-cells    
   HLA-DR+ CD4 T-cells 7.381 [5.656-9.106] 7.291 [5.57-9.013] 0.4615 
   LAG3+ CD4 T-cells 0.6619 [0.5543-0.7694] 0.6256 [0.5179-0.7332] 0.3450 
   PD1+ CD4 T-cells 3.263 [2.712-3.813] 3.647 [3.066-4.228] 0.5399 
   HLA-DR+ CD8 T-cells 6.043 [3.853-8.232] 6.135 [4.564-7.707] 0.6285 
   LAG3+ CD8 T-cells 0.405 [0.2873-0.5227] 0.3726 [0.2959-0.4494] 0.5466 
   PD1+ CD8 T-cells 2.643 [2.029-3.256] 2.985 [2.34-3.631] 0.8094 
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Table S2. Impact of historical BCG vaccination on immune cell frequencies. 
Comparisons were made between naïve and BCG-vaccinated groups (Mann-Whitney), 
the values indicate mean of live cells percentage [95% CI]. Assessment was performed 
from 16 BCG-naïve and 34 BCG-vaccinated participants. A p value <0.05 was considered 
statistically significant (not corrected for multiple comparisons). 
 
 

Cytokine 
(pg/ml) 

Comparison Correlation with ex vivo 
mycobacterial growth 

Naïve BCG-vaccinated p-value r p-value 
Perforin 1421 [1177-1664] 1884 [1645-2124]* 0.0179 -0.44** 0.0013 
Granzyme 33.63 [2.33-64.94] 60.11 [2.283-117.9] 0.5394 -0.023 0.8738 
IL-32 26.75 [22.83-30.67] 28 [24.47-31.52] 0.6611 -0.073 0.6160 
IL-22 0.00 [0.00-0.00] 7.607 [-7.357-22.57] 0.4839 -0.064 0.6595 
 
Table S3. Summary of mean NK cells cytokine responses measured with ELISA assays. 
Comparisons were made between naïve and BCG-vaccinated groups (unpaired t-test), the 
values indicate mean of concentration in pg/ml [95% CI]. Correlations were assessed with 
ex vivo mycobacterial growth (Spearman’s correlation). A p value <0.05 was considered 
statistically significant. n=16 BCG-naïve and n=34 BCG-vaccinated participants. 
*p<0.05, **p<0.01. 
 
 

CMV-specific 
cytokine+ T-cells 

(% live cells) 
Naïve BCG-vaccinated p-value 

IFN-g+ CD4 T-cells 0.6446 [0.3842-0.905] 1.319 [0.4458-2.191] 0.9829 
IL-2+ CD4 T-cells  1.009 [0.4506-1.568] 1.652 [0.8894-2.414] 0.7056 
TNF-a+ CD4 T-cells 3.255 [2.164-4.346] 3.982 [2.344-5.62] 0.7812 
IFN-g+ CD8 T-cells 1.555 [0.8136-2.297] 2.744 [1.403-4.086] 0.7924 
IL-2+ CD8 T-cells  0.3308 [0.09425-0.5673] 0.6881 [0.3361-1.04] 0.4612 
TNF-a+ CD8 T-cells 2.934 [1.788-4.079] 4.924 [3.1-6.748] 0.2490 

 
Table S4. CMV-specific T-cell responses. Comparisons were made between naïve and 
BCG-vaccinated groups (Mann-Whitney), the values indicate mean of live cells 
percentage [95% CI]. A p value <0.05 was considered statistically significant (not 
corrected for multiple comparisons). n=16 BCG-naïve and n=34 BCG-vaccinated 
participants. 
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Activated T-cells 
Correlation with ex vivo mycobacterial growth 

All participants Naïve BCG-vaccinated 
r p-value r p-value r p-value 

HLA-DR+ CD4 T-cells -0.029 0.8399 0.35 0.1809 -0.14 0.4220 
LAG3+ CD4 T-cells -0.015 0.9165 0.51* 0.0466 -0.27 0.1274 
PD1+ CD4 T-cells -0.052 0.7197 0.15 0.5757 -0.053 0.7660 
HLA-DR+ CD8 T-cells 0.13 0.3748 0.3 0.2566 0.071 0.6902 
LAG3+ CD8 T-cells 0.18 0.2184 0.46 0.0721 0.075 0.6734 
PD1+ CD8 T-cells 0.025 0.8610 0.11 0.6817 0.0069 0.9692 

 
Table S5. Correlation of activated T-cells and ex vivo mycobacterial growth. 
Associations were assessed from total 50 participants, as well as from each naïve and 
BCG-vaccinated groups respectively (Spearman’s correlation). A p value <0.05 was 
considered statistically significant (not corrected for multiple comparisons). *p<0.05. 
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Cytokine 
(pg/ml) Naïve-Male Naïve-Female p-value BCG-vaccinated - 

Male 
BCG-vaccinated - 

Female p-value 

IFN-g 10.39 [3.976-16.8] 13.14 [7.772-18.5] 0.5785 20.37 [8.289-32.46] 24.87 [6.65-43.09] 0.7392 
IP-10 196.7 [37.72-355.6] 84.39 [26.68-142.1] 0.0825 291.7 [108.4-474.9] 161 [53.55-268.4] 0.1849 
TNF-a 35.07 [-5.432-75.57] 38.91 [-7.344-85.16] 0.9265 107.3 [-9.475-224] 93.33 [22.35-164.3] 0.8268 
IL-12 42.96 [-32.43-118.4] 67.7 [-28.17-163.6] 0.7731 40.64 [-19.23-100.5] 75.1 [16.97-133.2] 0.4523 
IL-10 67.05 [29.53-104.6] 47.89 [21.21-74.57] 0.4454 62.27 [19.76-104.8] 58.84 [29.57-88.12] 0.8916 
GM-CSF 15.2 [-12.24-42.65] 5.327 [-4.645-15.3] 0.3689 35.59 [-10.84-82.02] 115 [23.92-206.1] 0.2330 
IL-6 463.5 [201.8-725.2] 322.3 [195.3-449.4] 0.2726 319.9 [177.2-462.7] 312.5 [214.6-410.4] 0.9295 
IL-17 0.00 [0.00-0.00] 0.00 [0.00-0.00] n/a 0.00 [0.00-0.00] 0.2394 [-0.1366-0.6154] 0.3687 

 
Table S6. Comparison by sex of mean cytokine responses measured with ELISA assays, assessed from MGIA supernatant samples after 4 
days of co-culture. Assessment was performed from 37 BCG-naïve (9 males, 28 females) and 63 BCG-vaccinated participants (21 males, 42 
females). Comparisons were made between males and females in each group (unpaired t-test), the values indicate mean of concentration in 
pg/ml [95% CI]. A p value <0.05 was considered statistically significant (not corrected for multiple comparisons).  
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Leukocyte subsets 
(% live cells) Naïve – Male Naïve – Female p-value BCG-vaccinated –  

Male 
BCG-vaccinated – 

Female p-value 

T-cells 69.62 [62.53-76.71] 67.03 [60.91-73.14] 0.4922 65.44 [58.02-72.87] 66.3 [62.57-70.02] 0.4995 
   CD4 T-cells 39.78 [31.7-47.86] 45.57 [40.02-51.13] 0.1804 43.59 [35.39-51.79] 44.98 [41.01-48.96] 0.8427 
   CD8 T-cells 24.18 [17.33-31.03]** 16.62 [14.06-19.18] 0.0087 16.56 [11.52-21.6] 16.46 [14.14-18.77] 0.9394 
   CD4/CD8 ratio 1.741 [1.018-2.465] 2.848 [2.397-3.299]* 0.0275 2.876 [1.944-3.808] 3.211 [2.543-3.879] 0.8027 
NK cells 3.824 [0.2743-7.374] 6.892 [4.787-8.997] 0.1451 5.82 [0.7967-10.84] 6.927 [5.209-8.646] 0.4269 
   Cytokine NK cell 0.588 [0.1865-0.9895] 0.8455 [0.6135-1.077] 0.2051 0.4071 [0.2441-0.5702] 0.7115 [0.5903-0.8326]* 0.0183 
   Cytotoxic NK cell 2.55 [-0.3777-5.478] 4.645 [3.005-6.284] 0.2674 4.183 [-0.4383-8.804] 5.092 [3.582-6.602] 0.3987 
   NK cell ratio 4.323 [1.705-6.942] 5.707 [3.86-7.554] 0.4409 8.197 [1.091-15.3] 7.085 [5.127-9.044] 0.6410 
Monocytes 6.652 [4.059-9.245] 9.4 [6.597-12.2] 0.3773 9.204 [6.842-11.57]* 7.148 [5.883-8.413] 0.0494 
   ML ratio 0.083 [0.04796-0.118] 0.1246 [0.08207-0.1672] 0.3773 0.1187 [0.08337-0.1541] 0.09385 [0.07418-0.1135] 0.0824 
   M1 monocytes 2.772 [0.924-4.62] 3.815 [1.967-5.663] 0.5833 3.539 [2.244-4.833] 3.103 [2.282-3.924] 0.5248 
   M2 monocytes 0.254 [0.01668-0.4913] 0.2127 [0.1684-0.2571] 0.8926 0.2514 [0.1121-0.3907] 0.2889 [0.2006-0.3772] 0.8270 
   M1/M2 ratio 15.57 [-2.966-34.11] 20.11 [9.089-31.14] 0.7427 16.83 [8.988-24.68] 14.53 [10.32-18.74] 0.4027 
   CD64+ monocytes 3.082 [1.316-4.848] 4.858 [2.256-7.46] 0.6612 4.781 [3.108-6.455] 3.884 [2.819-4.95] 0.2941 
   CD123+ monocytes 3.044 [1.272-4.816] 4.435 [2.197-6.672] 0.6612 4.393 [2.796-5.99] 3.694 [2.704-4.685] 0.3755 
   Suppressor monocytes 0.196 [0.1374-0.2546] 0.2536 [0.1095-0.3978] 0.8938 0.1921 [0.03059-0.3537] 0.1609 [0.1295-0.1923] 0.8759 
Activated T-cells       
   HLA-DR+ CD4 T-cells 8.306 [3.852-12.76] 6.961 [4.842-9.08] 0.3773 8.776 [1.51-16.04] 6.907 [5.329-8.485] 0.7651 
   LAG3+ CD4 T-cells 0.722 [0.4286-1.015] 0.6345 [0.5068-0.7623] 0.4906 0.7814 [0.3113-1.252] 0.5852 [0.4942-0.6762] 0.3517 
   PD1+ CD4 T-cells 3.41 [2.022-4.798] 3.195 [2.495-3.896] 0.7624 3.981 [2.014-5.949] 3.561 [2.943-4.178] 0.6844 
   HLA-DR+ CD8 T-cells 9.738 [2.882-16.59] 4.363 [3.161-5.564]** 0.0032 6.787 [3.03-10.54] 5.966 [4.119-7.813] 0.5312 
   LAG3+ CD8 T-cells 0.58 [0.2923-0.8677] 0.3255 [0.2101-0.4408]* 0.0380 0.5314 [0.2458-0.8171] 0.3315 [0.262-0.4009]* 0.0297 
   PD1+ CD8 T-cells 4.058 [3.1-5.016] 1.999 [1.634-2.364]*** 0.0007 3.207 [1.808-4.606] 2.928 [2.157-3.699] 0.4027 
CMV-specific cytokine+ T-cells       
   IFN-g+ CD4 T-cells 0.522 [-0.01317-1.057] 0.7213 [0.3524-1.09] 0.4351 2.831 [-0.7875-6.45] 0.789 [0.4012-1.177] 0.4554 
   IL-2+ CD4 T-cells  0.674 [-0.004646-1.353] 1.219 [0.3168-2.121] 0.5237 2.099 [0.03712-4.16] 1.496 [0.6306-2.36] 0.4890 
   TNF-a+ CD4 T-cells 3.068 [1.063-5.073] 3.373 [1.688-5.057] 0.7242 5.836 [0.07525-11.6] 3.334 [1.891-4.776] 0.4247 
   IFN-g+ CD8 T-cells 2.282 [0.6636-3.9] 1.101 [0.2655-1.937] 0.1274 4.72 [0.4053-9.035] 2.053 [0.8223-3.284] 0.2581 
   IL-2+ CD8 T-cells  0.222 [-0.02421-0.4682] 0.3988 [0.0009476-0.7966] 0.4584 0.9314 [0.1728-1.69] 0.603 [0.1736-1.032] 0.2026 
   TNF-a+ CD8 T-cells 4.192 [1.553-6.831] 2.148 [1.044-3.251] 0.1181 7.73 [1.209-14.25] 3.942 [2.501-5.383] 0.1618 
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Table S7. Impact of sex on immune cell frequency, T-cell activation and CMV-specific T-cell response. Comparisons were made between 
males and females in each group (Mann-Whitney), the values indicate mean of live cells percentage [95% CI]. Assessment was performed 
from 16 BCG-naïve (5 males, 11 females) and 34 BCG-vaccinated participants (7 males, 27 females). A p value <0.05 was considered 
statistically significant. *p<0.05, **p<0.01, ****p<0.0001. 
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Chapter – 5   Pilot Investigations and Preliminary 

Methodology Development 

 

 
5.1 Impact of BCG vaccination in mice on MGIA in the presence of TB drugs 

5.1.1 Introduction 

As described in Chapter 2, historical BCG vaccination in humans was shown to enhance 

the ex vivo drug-mediated killing of INH, and this was reflective of previously published 

in vivo human observational and animal studies. It was not attainable to access PBMC 

from recently BCG immunised participants during this study. Therefore, it was of interest 

to see if recent BCG vaccination in mice could enhance the efficacy of INH or RIF. 

Moreover, PZA and EMB as additional first-line TB drugs were also tested ex vivo using 

splenocyte samples of BCG-vaccinated mice. In this chapter, the impact of BCG-

vaccination on ex vivo drug-mediated killing in mouse splenocytes has been observed and 

the related immune mechanisms were also explored by measuring cytokine production. 

 

5.1.2 Materials and Methods 

Animal procedure and vaccination 

Female C57Bl/6 mice aged between 6-7 weeks were supplied commercially from Charles 

River Laboratories, UK. Mice were kept in an individual cage in LSHTM Biological 

Service Facility (BSF) supplied with bedding, nesting material and enrichment. A 

maximum number of 6 mice per cage was applied. Autoclaved water and food pellets 

were provided. Procedures were performed under a personal licence issued by United 
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Kingdom Home Office under the Animals (Scientific Procedure) Act and under project 

licence number 70/8043. In two separate experiments, 5-6 female C57Bl/6 mice aged 6-

7 weeks were vaccinated with BCG Pasteur Aeras and another 5-6 mice were injected 

with saline. Mice were immunised subcutaneously in the skin fold lateral of the abdomen 

with 4 x 105 CFU BCG in 100 µl of saline and left for 6 weeks to mount a sufficient 

immune response prior to sacrifice.  

 

Splenocytes harvesting from mice 

Mice were sacrificed and spleens were dissected aseptically inside a sterile cabinet and 

placed in 5 ml of antibiotic-free media (RPMI+10% FBS+L-Glutamine) in 15 ml falcon 

tubes. Spleens were poured with the media into a 100 µm nylon mesh cell strainer (BD) 

in a small petri dish. Spleens were then mashed through the strainer using the plunger 

from a 5 ml syringe. Using a Pasteur pipette, cells were transferred to 15 ml Falcon tubes 

and were spun at 1500 rpm for 5 minutes. Supernatants were discarded by decanting and 

pellets were loosened by tapping the bottom of the tube. Erythrocytes were lysed by 

adding 3 ml of RBC lysis buffer (Sigma) for 2 minutes at room temperature. To dilute the 

lysis buffer, up to 15 ml of media was added and the cells were pelleted again. Cells were 

resuspended in 10 ml of media for counting. 

 

Interferon-g ELISpot 

Ex vivo ELISPOT assay was performed to measure IFN-γ secretion from mouse 

splenocytes. The assay was conducted in a 96-well plate coated with antibody to capture 

the production of IFN-γ. Mouse splenocytes were resuspended in media to yield the cell 

concentration of 0.3 x 106 cells / 100 µl. Coating solution was prepared by adding anti-
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IFN-γ antibody to carbonate-bicarbonate buffer (Sigma) to produce a final concentration 

of 15 µg/ml. To each well, 50 µl of coating solution was added until the entire surface of 

the well was covered. The plate was then incubated overnight at 4 oC on a flat surface. 

After incubation, the plate was washed 5 times with sterile PBS (200 µl per well) and 

blocked by adding 100 µl of media to each well. The plate was further incubated at 37 oC 

for 2-5 hours. Without washing the plate, the blocking solution was flicked out and 100 

µl of cell suspension was added to each well. Six wells were set up for each sample, with 

a duplicate of wells stimulated with PHA as positive control, a duplicate of wells 

stimulated with PPD to measure antigen-specific response, and a duplicate of wells added 

with media as negative control. Mabtech kit (Nacka Strand, Sweden) was used and the 

rest of the procedure was performed as described in Chapter 3. 

 

Bacterial strain for vaccination and growth inhibition assay 

BCG Pasteur Aeras, an early passage Pasteur strain, was used for vaccination as well as 

for an immune target of the growth inhibition assay. BCG stocks were prepared and 

distributed by Aeras for this project. BCG stocks were kept as aliquots at -70 oC. Each 

stock was equivalent to 2 x 108 CFU/ml. Prior to usage, a stock was thawed and kept on 

ice before being diluted with appropriate media to a desired concentration. The same BCG 

stock was used throughout this project (including data presented in Chapter 2, 3 and 4). 

 

Generation of a standard curve 

An experiment had been conducted in our group to correlate the TTP data from the MGIT 

to log10 CFU of BCG Pasteur Aeras suspension using plate counting (Figure 1). In brief, 

BCG stock was serially diluted 7 times (10-1–10-7) in tubes containing 1.08 ml of 7H9 
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broth. Duplicate MGIT tubes were set for each dilution and 500 µl of dilution was added 

to the respective MGIT tubes. Each dilution was plated on 7H11 agar plates and incubated 

for 1.5 - 2 weeks. Colonies were counted and plotted against the TTP values. The same 

standard curve was used throughout this project (as has been described in Chapter 2, 3 

and 4). 

 

Figure 1. Correlation between TTP and log10 CFU as MGIT standard curve.  
 

Determination of drug concentrations 

Optimum drug concentration was determined based on a dilution in which there was a 

decrease in bacterial growth, but sufficient bacterial load to identify synergistic effect of 

vaccination in addition to the drugs. Different BCG strains have been shown to possess 

different susceptibility towards anti-TB drugs1. In this mouse study we aimed to test four 

first-line TB drugs: INH, RIF, PZA and EMB. Previous studies have identified the 

minimum inhibitory concentration of INH and RIF towards BCG Pasteur to be 0.1 and 

0.063-0.125 µg/ml respectively, with no previous data for PZA and EMB1. Thus, drug 
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concentrations of 1; 0.1 and 0.01 µg/ml for all 4 drugs were chosen in this study. The 

concentration of 0.01 µg/ml was introduced to identify whether the vaccine will enhance 

the drugs effect when used at a lower concentration. For RIF, the concentration of 1 µg/ml 

was replaced with 0.5 µg/ml in concordance to a preliminary titration experiment in which 

the earlier concentration resulted in very minimum growth that is not detected by the 

MGIT system. Drugs were diluted in sterile tissue culture grade water for INH, PZA and 

EMB and in DMSO for RIF (final DMSO concentration in cell culture < 0.001%). 

 

Ex vivo MGIA 

Day 1: Mouse splenocytes were resuspended in antibiotic-free media (RPMI+10% 

FBS+L-Glutamine) to be co-cultured with BCG and TB drugs ex vivo. Control tubes 

containing no drugs were also established for each mouse. The co-culture was performed 

in 2 ml screw cap tubes placed on a rotator in a CO2 controlled incubator. For each tube, 

300 µl of mouse splenocytes (5 x 106) and 300 µl of BCG input (~100 CFU) as well as 6 

µl of TB drug dilution (except for control) were added. The tubes were continuously spun 

at 37 oC for 4 days. The tubes were labelled with sample ID, date and the added drug 

concentration accordingly. 

Day 4: After 4 days, the 2 ml tubes were removed from the incubator. MGIT tubes were 

supplemented on the day of specimen inoculation. MGIT PANTA (Polymyxin B, 

Amphotericin B, Nalidixic Acid, Trimethoprim, Azlocillin) was prepared by pouring 15 

ml MGIT OADC (Oleic acid, Albumin, Dextrose and Catalase) supplement into a bottle 

of lyophilized MGIT PANTA. To each respective MGIT tube, 0.8 ml of this enrichment 

was added. MGIT tubes were labelled to match the 2 ml tubes and then supplemented. 

The 2 ml tubes were centrifuged at 12,000 rpm for 10 minutes. The supernatants (500 µl) 
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were transferred to other 2 ml tubes and frozen at -80 oC for further analysis. The 

remaining cells were then lysed by the addition of 400 µl of sterile tissue culture grade 

water and vortexed 3 times in 5 minutes intervals. 500 µl of sample was added to the 

respective MGIT tubes. Tubes were placed in the MGIT machine and TTP values were 

recorded.  

 

ELISA 

MGIA supernatants were analysed to assess cytokine concentrations by ELISA. The 

levels of following cytokines were measured: IFN-g, TNF-a, IL-12p40, IL-10, IL-17, IL-

6, GM-CSF and IP-10. The concentrations of IFN-g, IL-12p40 and IL-6 were measured 

using BD OptiEIA kits (Becton Dickinson, UK), while TNF-a, GM-CSF and IP-10 

DuoSet ELISA kits were obtained from R&D Systems (Abingdon, UK), and IL-10 

ELISA MAX Standard and IL-17 ELISA MAX Deluxe kits were sourced from 

BioLegend (London, UK). Assays were performed as described by the manufacturers. 

 

Statistical analysis 

Statistical analyses were performed in Graphad Prism 7 (GraphPad, La Jolla, CA, USA). 

To identify statistical significance of ex vivo growth inhibition (log CFU values) and 

ELISA responses, one-way analysis of variance (ANOVA) and students t-test were used. 

Mann-Whitney U Test was performed to identify significant differences of the ELISpot 

response between groups. Spearman’s correlation coefficient was used to test for 

correlations between growth inhibition and immune responses. 
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5.1.3 Results 

Measurement of IFN-γ ELISpot response and growth inhibition 

To assess the impact of BCG vaccination on induction of antigen-specific cells in mice, 

the ELISpot assay was performed to measure the production of IFN-γ following 

stimulation with PPD antigen. BCG vaccination significantly enhanced the production of 

PPD antigen-specific IFN-γ response in BCG-vaccinated mice compared to the naïve 

group (p<0.0001, Figure 2A). BCG-vaccinated mice also significantly controlled the 

growth of mycobacteria when compared to saline-injected mice (p<0.05, Figure 2B).  

 

Figure 2. (A) Production of antigen-specific IFN-γ response measured with ELISpot. 

PPD antigen-specific cells were measured in mice splenocytes from BCG-vaccinated and 

naïve groups (Mann-Whitney test). Numbers above each group represent median (range). 

(B) Ex vivo control of mycobacterial growth between naïve and vaccinated mice. 

Inhibition of growth was compared using splenocytes from naïve (n=11) and vaccinated 

mice (n=11, unpaired t-test). Data is displayed as median with IQR. Presented data is 

pooled from two experiments. 
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Drug titration curve and impact of BCG vaccination on drug-mediated growth inhibition 

In addition to INH and RIF as tested in the human study, two additional drugs PZA and 

EMB were also tested in the mouse experiment. This was possible due to the large number 

of cells obtained from a mouse spleen,  double the number that can be obtained from 50 

ml of human blood. Due to the lack of previous data regarding the susceptibility of BCG 

Pasteur Aeras towards PZA and EMB in the MGIT system, drug concentrations in the 

range selected for INH were used.   

There was a significant reduction in mycobacterial growth when BCG was co-cultured 

with mouse splenocytes at an INH concentration of 0.1 and 1 µg/ml (Figure 3 A and B) 

and RIF concentration of 0.1 and 0.5 µg/ml (Figure 4 A and B) in both saline-injected 

and BCG-vaccinated mice. No significant reduction of bacterial growth was observed 

with 0.01 µg/ml of INH and RIF. The slope of the titration curve was similar to the one 

observed in the experiment with human PBMCs as described in Chapter 2, with the curve 

of RIF being steeper compared to that of INH. In this explorative experiment with PZA 

and EMB, no dose – response relationship was observed in any of the drug concentrations 

tested (Figure 5 and 6).  
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Figure 3. Growth inhibition in BCG-vaccinated and saline-injected mice, in the 
absence and presence of INH. The ability of drug to inhibit mycobacterial growth was 
assessed in a titration curve. INH inhibited mycobacterial growth in a dose-dependent 
manner in the naïve (A) and BCG-vaccinated (B) mice. Data from both groups was 
compiled in a dose-response box plots to identify the vaccine effect in the presence of 
drug (C). Dots and squares represent individual data point in the titration curves (A and 
B) and data is displayed as median with IQR. Each group of is represented in a single box 
plot with range in the dose-response analysis (C). Presented data is pooled from two 
experiments. Statistical significances were tested using one-way ANOVA (A and B) and 
unpaired t-test (C). 
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Figure 4. Growth inhibition in BCG-vaccinated and saline-injected mice, in the 
absence and presence of RIF. The ability of drug to inhibit mycobacterial growth was 
assessed in a titration curve. RIF inhibited mycobacterial growth in a dose-dependent 
manner in the naïve (A) and BCG-vaccinated (B) mice. Data from both groups was 
compiled in a dose-response box plots to identify the vaccine effect in the presence of 
drug (C). Dots and squares represent individual data point in the titration curves (A and 
B) and data is displayed as median with IQR. Each group of is represented in a single box 
plot with range in the dose-response analysis (C). Presented data is pooled from two 
experiments. Statistical significances were tested using one-way ANOVA (A and B) and 
unpaired t-test (C). 

 

To determine if BCG vaccination could enhance the drug effect, data from each naïve and 

vaccinated group were plotted in a dose response analysis to observe the vaccine impact 

at various drug concentrations. BCG vaccination enhanced the ability of INH to control 

mycobacterial growth at the concentration of 1 µg/ml (p<0.05) but the differences did not 

reach significance at other drug concentrations (Figure 3C). Meanwhile, BCG vaccination 

did not significantly influence control of mycobacterial growth at any RIF concentrations 
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tested (Figure 4C). As there was no dose-response relationship observed between PZA 

and EMB in the chosen concentrations, no vaccine impact towards PZA and EMB could 

be assessed in this experiment (Figure 5C and 6C).  

 

 
Figure 5. Growth inhibition in BCG-vaccinated and saline-injected mice, in the 
absence and presence of PZA. The ability of drug to inhibit mycobacterial growth was 
assessed in a titration curve. Addition of PZA did not result in dose-dependent inhibition 
of mycobacterial growth in both naïve (A) and BCG-vaccinated (B) groups, as also shown 
in the dose-response analysis (C). Dots and squares represent individual data point in the 
titration curves (A and B) and data is displayed as median with IQR. Each group of is 
represented in a single box plot with range in the dose-response analysis (C). Statistical 
significances were tested using one-way ANOVA (A and B) and unpaired t-test (C). 
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Figure 6. Growth inhibition in BCG-vaccinated and saline-injected mice, in the 
absence and presence of EMB. The ability of drug to inhibit mycobacterial growth was 
assessed in a titration curve. Addition of EMB did not result in dose-dependent inhibition 
of mycobacterial growth in both naïve (A) and BCG-vaccinated (B) groups, as also shown 
in the dose-response analysis (C). Dots and squares represent individual data point in the 
titration curves (A and B) and data is displayed as median with IQR. Each group of is 
represented in a single box plot with range in the dose-response analysis (C). Statistical 
significances were tested using one-way ANOVA (A and B) and unpaired t-test (C). 
 
 

Cytokine production associated with ex vivo growth inhibition  

ELISA assays were performed using the MGIA supernatant to investigate cytokine 

production which may be associated with ex vivo growth inhibition at all drug 

concentrations (INH and RIF). There was significantly higher IP-10 and TNF-α 

production at INH concentration of 0.1 and 0.01 µg/ml, respectively (p<0.05, Figure 7), 
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but this did not correspond with enhanced growth inhibition, which was observed at 1 

µg/ml INH (Figure 3). There were also non-significant trends for higher production of IL-

6 in the BCG-vaccinated group compared to the vaccine-naïve group when splenocytes 

were co-cultured with INH (Figure 7), which was not observed in humans. With RIF, we 

did not see any significantly enhanced cytokine production in the presence of drug (Figure 

8), which could be due to the lack of impact of BCG towards ex vivo drug killing of RIF 

in this experiment (Figure 4). Interestingly, in the absence of drug, there was a trend of 

correlation between higher IL-10 production and higher growth of mycobacteria (p=0.09, 

Figure 9A), as has been demonstrated in humans. We did not observe robust IFN-g 

production in mice in the presence and absence of drugs (Figure 8 and 9), which was in 

contrast to humans. At an INH concentration of 1 µg/ml, there was a significant 

correlation between higher production of IL-6 and lower growth of mycobacteria 

(Spearman r = -0.59, p=0.0059, Figure 9B). Notably, this was also where we observed a 

significant difference in the MGIA assay with mouse splenocytes. 
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Figure 7. Cytokine responses from co-culture with INH. MGIA supernatants were 
analysed for the released cytokines IP-10, IFN-g, IL-10, GM-CSF, TNF-α, IL-6, IL-12 
and IL-17. Comparison of responses between BCG-vaccinated and BCG-naïve groups at 
different drug concentrations were performed using unpaired t-test. A p value <0.05 is 
considered statistically significant. Data is displayed as median with IQR. 
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Figure 8. Cytokine responses from co-culture with RIF. MGIA supernatants were 
analysed for the released cytokines IP-10, IFN-g, IL-10, GM-CSF, TNF-α, IL-6, IL-12 
and IL-17. Comparison of responses between BCG-vaccinated and BCG-naïve groups at 
different drug concentrations were performed using unpaired t-test. A p value <0.05 is 
considered statistically significant. Data is displayed as median with IQR. 
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Figure 9. Correlation between cytokine productions and growth inhibition. The 
production of IL-10 was associated with higher growth of mycobacteria in the absence of 
drug (A) and the production of IL-6 was associated with lower mycobacterial growth at 
INH concentration 1 µg/ml (B). Correlations between cytokine production and 
mycobacterial growth were assessed using Spearman’s correlation. Dots and squares 
represent individual data points. 

 

5.1.4 Discussion 

In the present study, a higher IFN-γ response was observed in the BCG-vaccinated mice 

compared to naïve mice. BCG-vaccinated mice also demonstrated improved capacity to 

control the growth of mycobacteria ex vivo. The magnitude of difference between 

vaccinated and naïve groups was higher in mice (~0.6 log) compared to historically BCG-

vaccinated humans, as described in Chapter 2 and 4. These results further supported our 

findings from the human study, as BCG vaccination given at a determined time point in 

mice (6 weeks prior to sacrifice) resulted in a similar enhanced killing with INH ex vivo, 

but no notable effect on RIF. Our results were also consistent with an earlier murine study 

by Marsay et al.2, which found enhanced ex vivo growth inhibition using mouse 

splenocytes following BCG vaccination in mice in the absence of drug. In our study, the 

magnitude of mycobacterial growth difference was higher (0.6 log) compared to the 
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Marsay study (0.2 log), as we adopted an optimised protocol based on the study of Zelmer 

et al.3. The study by Marsay et al. and Zelmer et al. also showed that the ex vivo growth 

inhibition using BCG as immune target was correlated with an in vivo challenge 

experiment in mice using Mtb Erdman2,3. Moreover, the study by Marsay et al. also 

demonstrated the protective effect of IFN-γ towards ex vivo mycobacterial growth using 

gene expression analysis2, similar to our finding using the ELISpot assay as well as 

Zelmer et al. using the IFN-γ knockout mice3. 

This study, using spleen cells from BCG immunised mice, was performed in year one of 

my PhD. The objective was to refine my laboratory techniques including the 

microbiological and immunological assays required for this project and to ensure that the 

author was proficient in all assays before handling samples from my human BCG cohort. 

In addition, these experiments, although not conclusive, gave the author sufficient 

confidence in the approach to proceed with analysis of human samples. Murine cell 

viability was lower and the standard deviation within groups was significantly higher than 

what can now be achieved with this assay using murine cells. As viability was low and 

standard deviation was high, data from these experiments must be interpreted with 

prudence. 

In this study, cell viability from mouse splenocytes was relatively lower as the assay was 

performed in rotating tubes rather than culture plates. It was later identified that 

optimising assay conditions, including the use of culture plates instead of tubes, could 

substantially increase viability of splenocytes (viability increase from 21% to 46% at day 

4 of culture)4. This impacted our ability to observe significant growth inhibition and to 

observe secretion of cytokine from splenocytes, as they are less robust than PBMC. The 

author has since optimised the procedures to better preserve cell viability, including by 
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the use of culture plates rather than rotating tubes in the 4 day MGIA culture, as was 

performed in Chapter 3. Nevertheless, this study was the first to assess the impact of 

recent BCG vaccination in mice towards ex vivo killing of first-line tuberculosis drugs 

using the MGIA assay. It was found that BCG enhanced the capacity of INH to control 

mycobacterial growth ex vivo at the concentration of 1 µg/ml, and this gave confidence 

to proceed with our experiments using human PBMC. We did not find an impact of BCG 

on RIF effect in mice, as RIF is the most active drug in the regimen and significantly 

decrease the bacterial growth in the MGIA system5, therefore no additional impact of 

BCG was observed on top of RIF.  

With regard to PZA, we did not observe a drug effect using the ex vivo assay as BCG 

Pasteur is known to be resistant towards this drug. This result was consistent with the 

literature as most of the vaccine strains of Mycobacterium bovis BCG are resistant 

towards PZA1. In the case of EMB, a higher dose is required in future studies as BCG 

Pasteur maybe sensitive towards EMB if a higher concentration is used. Some BCG 

vaccine strains are shown to be sensitive to 5 µg/ml of EMB1. Alternatively, it may be 

preferable to use Mtb when assessing growth inhibition in the presence of TB drugs in 

the future. This data was important in guiding our choice of INH and RIF only for the 

human study. Our preliminary data also suggest that the assay can be implemented in a 

murine model using splenocytes samples to assess vaccine impact on drug-mediated 

killing of mycobacteria. 

Data from our mouse experiment suggested that BCG vaccination may enhance the 

killing effect of INH. A similar phenomenon has been observed by Dhillon and 

Mitchison, in which BCG vaccination was shown to enhance the effect of INH and RIF 

in guinea-pig6. More recently, Shang et al. also showed that BCG vaccination improved 
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the effectiveness of combined therapy in prolonging survival following in vivo infection 

with Mtb7. In the latter study, administration of BCG in adjunct to therapy was superior 

compared to therapy alone. The combined therapy consisted of INH, RIF and PZA but 

the author did not assess the impact of BCG towards individual drugs. The MGIA assay 

could provide an advantage in this regard, as the ex vivo nature of the assay makes it 

flexible to test various conditions of different drugs and vaccine combinations, hence 

allowing an easier assessment of vaccine effect at an individual drug level. 

Furthermore, the ex vivo MGIA assay could also help in identifying immune mechanisms 

of vaccine-induced growth inhibition. The protective effect of IFN-γ (ELIspot) and 

negative effect of IL-10 were also demonstrated following BCG vaccination using the 

murine assay. When measuring the MGIA supernatant for cytokine production using 

ELISA, we noticed that the secretions of certain cytokines such as IFN-γ and GM-CSF 

were less robust in mice compared to humans. As elaborated above, this may be due to 

the fact that after 4 days of culture, mouse splenocytes are less viable compared to human 

PBMCs4. Indeed, the author explored this and did find lower assay variability when using 

plates for splenocyte cell culture. Another possible explanation would be the different 

kinetics between cytokines over 4 days of culture i.e. some cytokine responses might peak 

at day 2 or 3 instead of day 4, and this has been observed by Tanner et al. using human 

PBMCs8. In order to allow periodic cytokine assessment without disturbing the ex vivo 

assay system, only a small amount of supernatant is allowed to be obtained in between 

the 4 days culture and this would be possible using a highly-sensitive Multiplex assay 

(Luminex) for cytokine measurement. For this project, cytokine assessment could only 

be performed with ELISA which requires a large amount of supernatant and this can only 

be collected at day 4.  
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Interestingly, the data showed trends of higher IL-6 production in the BCG-vaccinated 

mice at day 4 and this correlates with enhanced mycobacterial growth inhibition in the 

presence of 1 µg/ml INH. IL-6 is a cytokine which has been previously associated with 

trained innate immunity9,10 and this observation in murine study is consistent with our 

notion in the human studies discussed in the previous chapters. Unfortunately, it was not 

possible to perform immune cell phenotyping with flow cytometry in this murine study 

as the cells were not of sufficient viability, thus the cells which produce these cytokines 

measured in the MGIA supernatant remain elusive. Nevertheless, this experiment has 

demonstrated that the murine MGIA assay could be used to assess vaccine-mediated 

killing of mycobacteria ex vivo in the presence of TB drugs. Our study described in this 

section acts as a proof-of-principle that the MGIA assay can be used to screen different 

vaccine and drug combinations in the mouse model. 

 

 

5.2 Impact of RUTI vaccination in mice on MGIA in the presence of INH and RIF 

5.2.1 Introduction 

RUTI is a leading therapeutic TB vaccine candidate which has been studied in various 

animal models and in several clinical trials11. In mice, the vaccine has been previously 

shown to augment the efficacy of INH and RIF treatment following TB infection in 

vivo12,13. This study sought to investigate whether this finding could be recapitulated 

using the ex vivo MGIA assay. The impact of RUTI vaccination on ex vivo mycobacterial 

growth control in the absence of drug has been elaborated in Chapter 3. In this chapter, it 

was found that RUTI vaccination also enhanced the ex vivo killing of INH and RIF using 

mouse splenocyte samples, although the effect appears to be dependent on the age of the 
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vaccinated mice. Again, this experiment was performed at an early stage in my PhD to 

determine if it was possible to detect growth inhibition with a vaccine other than BCG. 

The assay was performed in rotating tubes so cell viability was low and the standard 

deviation within the group was high and data should be interpreted with care. 

Nevertheless, our data suggested that the MGIA could be further developed as a screening 

tool for therapeutic TB vaccine candidates using mouse splenocytes samples. The 

developers of the RUTI vaccine were sufficiently interested in this data to allow us to 

proceed with further experiments with RUTI as reported in Chapter 3 before. 

 

5.2.2 Materials and Methods 

Animal procedure and vaccination 

In the first experiment, female C57Bl/6 mice aged between 6-7 weeks supplied 

commercially from Charles River Laboratories (UK) were used. Twenty mice were 

divided into four groups (five mice per group, Figure 10). Mice in two treatment groups 

were injected subcutaneously with 204 µg of RUTI vaccine twice in a three-week interval 

(week 0 and week 3). Two different batches of RUTI (A12 and A14) were tested. Mice 

in another treatment group were injected with 4 x 105 CFU BCG at week 0 and saline at 

week 3. The last group of mice were injected with saline at weeks 0 and 3. All mice in 

this experiment were sacrificed six weeks after commencing the study. 



 242 

 

Figure 10. Experiment design of first RUTI experiment. Two different batches of 
RUTI vaccine were tested (A12 and A14). 
 

For the second experiment, female C57Bl/6 mice aged between 13-14 weeks (Charles 

River, UK) were used. Eighteen mice were divided into three groups (six mice per group, 

Figure 11). Mice in the RUTI-treated group were injected subcutaneously with 204 µg of 

RUTI A14 twice in a three-week interval (week 0 and week 3). Mice in the BCG-treated 

group were injected with 4 x 105 CFU BCG at week 0 and saline at week 3. The mice in 

the control group were injected with saline at weeks 0 and 3. All mice in this experiment 

were also sacrificed six weeks after commencing the study. 
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Figure 11. Experiment design of second RUTI experiment. RUTI vaccine (batch A14) 
was tested in comparison to BCG. 
 

Splenocytes harvesting, ex vivo growth inhibition assay and statistical analysis 

Upon mice sacrificed in both experiments, the subsequent procedures were conducted as 

described in section 5.1.2. Spleens were processed to obtain single cell suspensions and 

5x106 splenocytes were used as the cellular input for the ex vivo MGIA assay. BCG 

Pasteur Aeras (~100 CFU) was used as the immune target, and INH was added in the 

following concentrations 0.01, 0.1 or 1 µg/ml. For RIF, the tested concentration was 0.01, 

0.1, 0.25 or 0.5 µg/ml. Statistical analysis was performed in Graphad Prism 7. To identify 

statistical significance of ex vivo growth inhibition (log CFU values), students t-test were 

used and a p value <0.05 was considered significant.  
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5.2.3 Results 

Impact of RUTI vaccination on mycobacterial growth inhibition in the absence of drug 

In the first experiment, vaccination with RUTI reduced the growth of mycobacteria ex 

vivo compared to the saline-injected mice (p<0.01 and p=0.06 for RUTI batch A12 and 

A14 respectively, Figure 12A). An enhanced growth inhibition appeared to be also 

observed with BCG, although it did not reach significance. The reduction of 

mycobacterial growth conferred by RUTI was superior compared to BCG.  There was no 

statistically significant difference of growth inhibition between two RUTI batches tested 

(p>0.1, Figure 12A).  

Mycobacterial growth inhibition following RUTI vaccination was also compared in the 

second experiment. Vaccination with RUTI significantly reduced the growth of 

mycobacteria ex vivo compared to the saline-injected mice (p<0.005, Figure 12B). A 

similar non-significant reduction of growth was also observed with BCG. The growth 

reduction in the RUTI-vaccinated group was superior compared to the BCG (p<0.005, 

Figure 12B). The magnitude of difference was lesser for both RUTI and BCG in the 

second experiment, in which older mice were used. 
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Figure 12. Ex vivo control of mycobacterial growth between RUTI-vaccinated 
groups in the absence of drug. In the first experiment, two different batches of RUTI 
vaccine were tested (A). In the second experiment, older mice were used and only RUTI 
batch A14 was tested (B). Significant difference between treatment groups was observed 
(p<0.05, one-way ANOVA). Unpaired t-test was used for pairwise comparison and p 
value <0.05 was considered statistically significant. Each symbols represents individual 
data point. Data is displayed as median with IQR. 
 

Impact of RUTI vaccination on drug-mediated growth inhibition (first experiment) 

A dose-dependent decrease of bacterial load was observed in the ex vivo system at the 

INH concentration of 0.1 and 1 µg/ml, but not at 0.01 µg/ml (Figure 13A). This was 

consistent with the previously known MIC of INH towards BCG Pasteur. In the presence 

of drugs, there was a significant reduction of bacterial growth when RUTI-vaccinated 

splenocytes were co-cultured with all concentration of INH compared to saline-injected 

naïve control (p<0.05, Figure 13 B-D). Difference in RUTI batches tested (A12 and A14) 

did not result in a significant difference in the ability of mycobacterial growth control in 

the presence of INH (p>0.1). BCG vaccination provided a similar beneficial effect in the 

presence of INH compared to RUTI, although the magnitude of difference was lower and 

did not reach significance in this experiment with only 5 mice per group. 
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A similar dose-dependent decrease of bacterial load with RIF was observed, and the curve 

was steeper compared to INH (Figure 14A). This was also consistent with the previously 

known MIC of RIF towards BCG Pasteur. In the presence of drugs, there were significant 

reductions of bacterial growth when RUTI-vaccinated splenocytes were co-cultured with 

all concentrations of RIF compared to control (p<0.05, Figure 14 B-D). Vaccination with 

RUTI A14 displayed a similar trend with RUTI A12, although at the RIF concentration 

0.01 µg/ml RUTI A14 was less able to control mycobacterial growth ex vivo compared 

to RUTI A12 (p<0.05, Figure 14B). 
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Figure 13. Ex vivo control of mycobacterial growth following RUTI vaccination in 
the presence of INH. Vaccine effects were assessed in a dose-response curve (A). 
Differences between drug concentrations were described in separate graphs, with INH 
0.01 µg/ ml (B), INH 0.1 µg/ ml (C) and INH 1 µg/ ml (D), respectively. Refer to Figure 
12A for similar graph in the absence of drugs. Each symbols represents individual data 
point in the graphs (B-D) and each group of data in a same condition is represented in a 
single symbol in the dose-response curve (A). Data is displayed as median with IQR. 
 

 

 

Figure 14. Ex vivo control mycobacterial growth following RUTI vaccination in the 
presence of RIF. Vaccine effects were assessed in a dose-response curve (A). 
Differences between drug concentrations were described in separate graphs, with RIF 
0.01 µg/ ml (B), RIF 0.1 µg/ ml (C) and RIF 0.5 µg/ ml (D), respectively. Refer to Figure 
12A for similar graph in the absence of drugs. Each symbols represents individual data 
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point in the graphs (B-D) and each group of data in a same condition is represented in a 
single symbol in the dose-response curve (A). Data is displayed as median with IQR. 
 

Impact of RUTI vaccination on drug-mediated growth inhibition (second experiment) 

In this repeat experiment, older mice were used due to a technical consideration. A dose-

dependent decrease of bacterial load was observed in the presence of INH (Figure 15A). 

There was a significant reduction of bacterial growth when RUTI-vaccinated splenocytes 

were co-cultured with INH concentration 0.01 µg/ml compared to saline-injected naïve 

control (p<0.001, Figure 15B). In this experiment, we observed different trends of growth 

inhibition at higher INH concentrations compared to the previous experiment, despite the 

similar mycobacterial input and other experiment conditions. At INH concentration 0.1 

µg/ml, the RUTI effect appeared to diminish compared to control (Figure 15C), while a 

reversed effect of increased mycobacterial growth was observed at the highest INH 

concentration (p<0.05, Figure 15D). BCG vaccination provided trends of beneficial 

effect towards increased control of mycobacteria growth in the presence of INH, being 

significant at the concentration of 1 µg/ml (p<0.005, Figure 15D).  
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Figure 15. Ex vivo control of mycobacterial growth following RUTI vaccination in 
the presence of INH. Vaccine effects were assessed in a dose-response curve (A). 
Differences between drug concentrations were described in separate graphs, with INH 
0.01 µg/ml (B), INH 0.1 µg/ml (C) and INH 1 µg/ml (D), respectively. Refer to Figure 
12B for a similar graph in the absence of drugs. Each symbols represents individual data 
point in the graphs (B-D) and each group of data in a same condition is represented in a 
single symbol in the dose-response curve (A). Data is displayed as median with IQR. 

 

In the presence of RIF, a dose-dependent decrease of bacterial load was also observed 

(Figure 16A). There was a significant reduction of bacterial growth when RUTI-

vaccinated splenocytes were co-cultured with RIF concentration of 0.01 µg/ml compared 

to control (p<0.001, Figure 16B). We also observed different trends of growth inhibition 

at higher RIF concentrations compared to our first experiment. At RIF concentration of 

0.1 µg/ml, the RUTI effect appeared to diminish (Figure 16C), while a reversed effect of 
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increased mycobacterial growth was also observed at the highest RIF concentration 

(p<0.05, Figure 16D). BCG vaccination did not provide statistically significant impact 

towards control of mycobacteria growth in the presence of RIF (Figure 16). 

 

Figure 16. Ex vivo control mycobacterial growth following RUTI vaccination in the 
presence of RIF. Vaccine effects were assessed in a dose-response curve (A). 
Differences between drug concentrations were described in separate graphs, with RIF 
0.01 µg/ml (B), RIF 0.1 µg/ml (C) and RIF 0.25 µg/ml (D), respectively. Refer to Figure 
12B for a similar graph in the absence of drugs. Each symbols represents individual data 
point in the graphs (B-D) and each group of data in a same condition is represented in a 
single symbol in the dose-response curve (A). Data is displayed as median with IQR. 
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5.2.4 Discussion 

Vaccination with RUTI resulted in enhanced control of mycobacterial growth ex vivo 

compared to both naïve and BCG-vaccinated mice in the absence of drug. This 

observation replicates findings from the in vivo challenge experiment with RUTI, in 

which the vaccine was given in untreated infected mice and was shown to reduce bacillary 

load in both lung and spleen14. The impact of RUTI on mycobacterial growth control was 

better than BCG in the ex vivo mouse study, while in the in vivo challenge experiment, 

BCG appeared to provide a slightly better protection than the candidate vaccine14. This 

might be due to the fact that in the in vivo study, RUTI was given in infected mice. In the 

context of the MGIA assay, the vaccine was given in healthy mice to be challenged with 

mycobacteria ex vivo. Giving RUTI in healthy mice might help the identification of 

essential immune mechanisms prior to its administration in infected mice. This has been 

demonstrated in Chapter 3 of this thesis, in which such an approach has unraveled a 

valuable immune mechanism which was not identified before during in vivo testing in 

infected mice. When tested in a survival study in guinea pigs, both RUTI and BCG 

improved survival in Mtb infected animal up to 50 weeks, in which 60-80% of the 

vaccinated animals survived, while only less than 20% of the unvaccinated animals 

survived at week 5014. In the ex vivo MGIA experiment, there was mostly no significant 

difference between the two RUTI batches tested. 

In the presence of drugs, RUTI vaccination in C57Bl/6 mice aged 6-7 weeks resulted in 

enhanced capacity of INH and RIF to control mycobacterial growth ex vivo at all tested 

drug concentrations. The benefit of RUTI vaccination when administered after 

chemotherapy in vivo in Mtb-infected C57Bl/6 mice aged 6-7 weeks have been 

demonstrated previously, in which the vaccine reduced bacillary load in lung and spleen 
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further than what was conferred by the chemotherapy alone12,13. However, when the 

impact of RUTI was tested in the presence of drugs ex vivo in older mice (strain C57Bl/6 

aged 13-14 weeks), we saw different observations at higher drug concentrations, in which 

vaccination with RUTI resulted in a reversed effect in promoting mycobacterial growth 

at the highest INH and RIF concentrations. Given the very similar conditions of these two 

experiments, except the mouse age, it was speculated that the reverse effect in the latter 

experiment could be due to a reduced capacity of the older mice to mount sufficient 

immunity against mycobacterial infection. This was also supported by the fact that the 

magnitude of mycobacterial growth reduction in the absence of drug was lower in the 

older mice. Alternatively, as this experiment was performed at an early stage in my PhD, 

while the author was still optimising the techniques, it is probable that low cell viability 

confounded results and led to higher standard deviation within the groups and between 

experiments and this data should therefore be interpreted with discretion. Several in vivo 

studies have demonstrated the impaired capacity of older mice to develop effective 

immune responses against TB15-17, and in future experiments it would be important to 

explore if this impact of mouse age on MGIA was real.  

Nevertheless, it was encouraging to observe in this study that the MGIA assay was able 

to assess the effects of a therapeutic vaccine towards ex vivo mycobacterial growth control 

and this supported our further studies with the RUTI vaccine. With BCG, we have 

demonstrated consistent results of the ex vivo assay using mouse and human samples. 

Implementation of the ex vivo assay using PBMCs from participants vaccinated with 

investigational vaccine candidates in clinical trials could be pursued to assess the 

association with clinical protection during treatment. The RUTI clinical trial in MDR-TB 

patients receiving chemotherapy which is currently ongoing (NCT02711735) would 
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provide an opportunity for this purpose. In summary, the MGIA assay has been shown to 

able to assess a therapeutic effect on mycobacterial growth control and may be useful for 

the screening of immune therapeutic compounds in both a pre-clinical and clinical 

samples.  

 

5.3 Optimisation of the murine and human MGIA assays 

5.3.1 Introduction 

Several optimisations attempts were performed during the course of this project with the 

murine MGIA utilising splenocyte samples and the PBMC-based human MGIA. The 

main purposes of the optimisation efforts are to minimise variability and maximise the 

discriminant ability of the MGIA assays. Optimisation measures included determination 

of optimum cell number and bacterial input to be used in the assay. Identification of 

optimum bacterial input is crucial as too high bacterial input can overwhelm the vaccine 

effect18. Moreover, the impact of different culture method (rotating tubes vs 48-well plate) 

as well as culture medium (for human PBMC) were also investigated. 

 

5.3.2 Materials and Methods 

Initially, the murine MGIA assay as described in section 5.1.2 was performed with the 

following varying conditions: different bacterial inputs were chosen that represented the 

TTP value of 7.5 or 8.5 days using the standard curve (equal to approximately 500 CFU 

or 100 CFU, respectively). Moreover, different cellular numbers of splenocytes to be used 

as an input for the ex vivo MGIA assay were also investigated (1, 3 or 5 million, 
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respectively). Subsequently, a head-to-head comparison between culture method in 

rotating tubes or 48-well plate was performed in the RUTI time course study, leading to 

an optimised protocol as described in Chapter 3. Similar optimisation efforts were also 

performed for human PBMC, with the following varying conditions: cellular input 1 

million vs 3 million and culture medium containing 10% FBS vs 10% pooled human AB 

serum. Furthermore, a comparison between cultures in rotating tubes and 48-well plate 

was also performed for PBMC. This has led to an optimised protocol as described in 

Chapter 2 and 4. 

 

5.3.3 Results and Discussion 

With regard to mycobacterial input, the CFU input equivalent to TTP 8.5 days was shown 

to be superior in distinguishing mycobacterial growth control between naïve and 

vaccinated mice groups (Figure 17). Subsequent comparison had also been performed in 

this project to identify optimum cellular input, with higher cellular concentration resulting 

in less variability and better differences between the two groups (Figure 18). This study 

further showed a better magnitude of difference between naïve and vaccinated group with 

less variability when the culture was performed in 48-well plate instead of rotating tubes 

for mouse splenocytes (Figure 19). These findings have led us to implement the following 

optimised conditions for the murine MGIA utilising mouse splenocytes: culture 

performed in a 48-well plate, with cellular input 5 million splenocytes and BCG target 

TTP 8.5 days (~ 100 CFU), as described in Chapter 3.  
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Figure 17. Comparison of different mycobacterial input to identify optimum 
condition for investigation of vaccine effect in mice. Each symbols represents 
individual data point. Data is displayed as median with IQR. 
 

 
Figure 18. Comparison of different cellular input to identify optimum condition for 
investigation of vaccine effect in mice. Each symbols represents individual data point. 
Data is displayed as median with IQR. (Data was obtained from published literature3 with 
permission from Dr Andrea Zelmer). 

    1 x 106     3 x 106     5 x 106 
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Figure 19. Comparison of different culture method in rotating tubes (A) or 48-well 
plate (B) to identify optimum condition for investigation of vaccine effect in mice. 
The box plots show the minimum and maximum values (ends of the whiskers), the median 
(band near the middle of the box) and interquartile ranges. 

 

For the human PBMC-based MGIA, an INH titration experiment was initially performed 

in different experiment conditions to better identify the impact of vaccine on top of the 

drug. When two different culture media were compared, it was found there was less 
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growth of mycobacteria during PBMC co-culture with media containing 10% FBS 

compared to 10% pooled human AB serum, and this effect was more notable when 1 

million cellular PBMC input was used (Figure 20A). With 3 million cellular input, less 

variability within group was observed and the effect of FBS on reducing mycobacterial 

growth was also less notable (Figure 20B). The use of pooled human AB serum is 

considered to represent a more natural environment for human PBMC compared to FBS8. 

It was found that a higher growth of mycobacteria with BCG input TTP 7.5 days (Figure 

21) and the author decided to use input TTP 8.5 days in order not to overwhelm the 

vaccine effect. In contrast to our finding with mouse splenocytes, a better magnitude of 

difference between naïve and vaccinated groups was observed when PBMC was cultured 

in rotating tubes instead of 48-well plate (Figure 22). These findings have led the author 

to implement the following optimised conditions for the PBMC-based MGIA: culture 

performed in rotating tubes, with cellular input 3 million PBMC and BCG target TTP 8.5 

days (~ 100 CFU), as described in Chapter 2 and Chapter 4.  
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Figure 20. Comparison of different cellular input and culture media to identify optimum condition for investigation of vaccine effect 
in human. Titration experiments using different concentrations of INH were performed with two different cellular inputs: 1 million (A) or 3 
million (B). In addition, two different culture media were also tested: containing 10% FBS (grey) or 10% pooled human AB serum (black). 
Each symbols represents individual data point. Data is displayed as median with IQR. 
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Figure 21. Comparison of different mycobacterial input to identify optimum condition for investigation of vaccine effect in human. 
A titration experiment with different concentrations of INH was performed with two different mycobacterial inputs: TTP 8.5 days (black) or 
TTP 7.5 days (grey). Each symbols represents individual data point. Data is displayed as median with IQR. 
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Figure 22. Comparison of different culture method to identify optimum condition for investigation of vaccine effect in human. Culture 
was performed either in rotating tubes (A) or 48-well plate (B) in the absence of drug. Each symbols represents individual data point. Data 
is displayed as median with IQR.
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Chapter – 6    General Discussion and Conclusion 

 

 
6.1 Overall Discussion and Key Findings 

 A major problem in tuberculosis control is the long duration of drug treatment, both in 

the context of active and latent TB1. Moreover, the effectiveness of current treatment is 

challenged by drug-resistant TB, which although only contributes to a lesser proportion 

of cases compared to drug-sensitive TB, is difficult to cure and requires prolonged and 

more expensive treatment2,3. Therapeutic vaccination as an approach has been proposed 

to enhance efficacy and reduce duration of treatment, and several candidates have been 

developed and are currently progressing through the TB vaccine pipeline4. The lack of 

correlates of protection has hampered the development of novel TB vaccines, as it will 

take at least a decade from discovery before the efficacy of a vaccine can be demonstrated 

in advanced phase 3 clinical trials5. Moreover, there is currently inadequate funding for 

TB vaccine research as well as limited field trial sites with sufficient capacity to conduct 

robust TB vaccine trials6. Therefore, vaccine candidates need to be screened at an early 

stage in order to narrow down which candidates should be prioritised for more advanced 

animal studies and clinical trials. 

The MGIA as a functional assay has been developed to directly measure the ability of 

heterogeneous populations of host lymphocytes and other immune cells to inhibit the 

growth of mycobacteria ex vivo. The use of a validated and robust surrogate of vaccine-

induced protection could reduce the number or even replace the need of animal challenge 

experiments and accelerate vaccine development by potentially shortening clinical trials. 

The growth inhibition assay could be used to gain insight into the immune pathways 
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essential for the control of mycobacterial growth. This could help provide a better 

understanding of the TB immune control, as well as directing future design of more 

effective vaccines.  

In the present PhD project described in this thesis, an optimised human PBMC-based 

MGIA as well as murine MGIA using splenocyte samples were implemented to 

investigate the potential of MGIA as a tool for screening therapeutic TB vaccines. The 

first objective of this thesis was to establish a human cohort of healthy, previously BCG 

immunised and BCG naïve individuals in order to assess the impact of historical BCG 

vaccination on mycobacterial growth inhibition in the absence and presence of drugs. 

During the course of this project, a total 100 participants was enrolled, of which samples 

from 50 participants were used to investigate the impact of BCG vaccination on two major 

first-line TB drugs (INH and RIF), as discussed in Chapter 2. In this chapter, historical 

BCG vaccination was shown to enhance the ability of INH (but not RIF) to inhibit the 

growth of mycobacteria ex vivo. This finding reflects human epidemiological data and 

published animal studies, and therefore demonstrates the capacity of the MGIA as a 

potential screening tool for therapeutic TB vaccines. Importantly, the presence of drugs 

did not interfere with our ability to measure immune mediated mycobacterial growth 

inhibition. In addition, potential immune mechanisms were also identified. With regard 

to the combined effect between BCG vaccination and INH, increased  IFN-γ and IP-10 in 

the MGIA supernatants were observed in participants with superior growth control. 

Interestingly, the source of IFN-γ did not appear to be from CD4 or CD8 T-cells, but 

rather from NK cells. This is consistent with emerging evidences from clinical studies 

denoting the essential protective role of NK cells in TB infection and vaccination7,8. 
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The role of NK cells was further characterised in Chapter 4, in which growth inhibition 

was assessed in the absence of drug with the cohort of 100 participants. Enhanced ex vivo 

mycobacterial growth control was attributed to the cytokine-producing NK cells, and an 

association was also observed between the production of perforin in MGIA supernatants 

and inhibition of growth. NK cells have lately been discovered to be able to act in a 

memory-like manner9, which could be under the direction of T-cells (Figure 23). In 

addition, NK cells are a component of the innate system in which the trained immunity 

phenomenon has been observed10.  

Furthermore, several other immune cell phenotypes and cytokines were demonstrated to 

be correlated with mycobacterial growth control, such as activated T-cells, monocyte 

frequency and IL-10 production. CMV-specific responses were associated with T-cell 

activation and these were associated with increased mycobacterial growth ex vivo in our 

cohort. These findings have emphasised the value of the MGIA as a summative measure 

of host immune responses which could serve as a better correlate of protection (Figure 

23), rather than just measuring one cytokine such as IFN-γ. Intriguingly, we found that 

BCG-vaccinated females responded better than males when assessed using the ex vivo 

MGIA assay in the cohort of 100 participants. This is the first time such a large cohort 

has been examined using MGIA with sufficient statistical power to assess the impact of 

sex. As globally, males are more affected by TB when compared to females and immune 

differences are thought to play a role, our findings suggest that females might be better 

protected from BCG vaccination. Further in this regard, investigating individual-level 

factors affecting mycobacterial-specific immune responses could help vaccine developers 

to understand what may influence their ability to observe a vaccine effect when testing 

candidates in clinical trials. 
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Figure 23. Illustration of the contribution of immune cells from various 
compartments on the ex vivo mycobacterial growth inhibition assay system (adapted 
with modification from11). 

 

Our finding in historically BCG-vaccinated humans is also supported by the mouse 

model, in which recent BCG vaccination is shown to enhance the ex vivo efficacy of INH, 

as discussed in Chapter 5. In this context, the murine MGIA assay could be implemented 

as well to screen therapeutic TB vaccine candidates in pre-clinical testing stage. In the 

same chapter, the impact of RUTI in enhancing the ex vivo efficacy of INH and RIF has 

also been demonstrated in one of the experiments, although we could not fully replicate 

this result in a repeat experiment. Regardless of this issue, we observed a consistent 

impact of RUTI vaccine in both experiments in the absence of drug and decided to 

proceed with further experiments using an optimised protocol (culture performed in 48-
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well plate instead of rotating tubes for mouse splenocytes).  In Chapter 3, a time course 

experiment was performed to characterise the kinetic of the immune response to RUTI in 

the murine MGIA assay in the absence of drug. A peak vaccine response measured by 

growth inhibition was observed at week 6 after two doses of RUTI. Compellingly, the 

results also showed a shift of monocyte phenotype in the spleen in this experiment and 

such shift concurred with the peak response of RUTI in the MGIA assay. 

In this study, RUTI vaccination was shown to induce nonclassical Ly6C- monocytes in 

the spleen of healthy mice, characterised using flow cytometry and further confirmed 

using qPCR. Most evidence in the literature propose the role of Ly6C- monocytes as anti-

inflammatory and the fact that their increase is associated with enhanced ex vivo growth 

control has further supported the importance of a balanced immune response in the 

context of mycobacterial containment12. On the other hand, the finding by Joosten et al.13 

regarding the role of nonclassical monocytes in trained innate immunity should also be 

taken into consideration when interpreting the RUTI data as this might represent a novel 

mechanism of action by the vaccine. Altogether, the present investigations in humans and 

mice using the ex vivo MGIA assays have demonstrated its benefit in identifying immune 

mechanisms following immunisation with TB vaccines.  

 

6.2 Strengths and Limitations of the Research Presented 

During the course of this PhD project, 100 healthy adult volunteers were enrolled and this 

sample size gives sufficient statistical power to assess the impact of historical BCG 

vaccination and sex on mycobacterial growth inhibition. Moreover, this study was 

conducted in the UK, enrolling mostly UK BCG-vaccinated participants, where BCG is 
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known to provide a high level of protection. With this study characteristic, we were able 

to demonstrate the impact of individual-level factors on ex vivo mycobacterial growth 

inhibition. Our study is also the first to demonstrate the impact of vaccination on top of 

drug treatment using the ex vivo MGIA assay and this serves as an important proof-of-

principle to implement the MGIA as a screening tool for therapeutic TB vaccines. With 

regard to the mouse study, the author was privileged to be able to test the RUTI vaccine 

in my project as a promising therapeutic TB vaccine candidate. 

For this project, the LSHTM blood donation system for research purposes was utilised, 

in which only 50 ml of blood could be taken from each participant in accordance to the 

ethical permission given to this study. With the amount of PBMCs isolated from the 

restricted volume of blood, this study can only test two major first-line TB drugs with 

several different concentrations as well as without drug. Stored PBMC samples from 

participants of this study have all been used for early optimisation work, MGIA, ELISpot 

and cell surface as well as ICS flow cytometry. In addition, there was also a budget 

consideration which could only allow us to perform the MGIA assay with drugs in 50 

participants. For this project, cytokine production can only be measured from the MGIA 

supernatant by ELISA, in which a large volume of sample is required and this can only 

be done at day 4 in order not to disturb the MGIA culture system. Moreover, the MGIA 

system is very sensitive to contamination and requires intensive training in order to master 

the technique. In addition, some of the results presented in this study were only reaching 

non-significant trends, albeit close to statistical significance. In future studies, 

significance may be achieved with larger sample size or further optimised assay with less 

variability.  
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In relation to the murine MGIA assay, it was found that cell viability was a notable issue 

as mouse splenocytes are less robust compared to human PBMCs during the 4 day culture. 

This issue has been addressed in this study, by switching culture conditions in 48-well 

plates instead of rotating tubes, where we subsequently observed more consistent results 

with less variability in the optimised conditions. Finally, in the future it would be 

important to compare the control of Mtb growth alongside the control of BCG growth. 

We could not do that in this study as we wished to process a large number of samples 

with a wide range of immune assays and did not have the ability to perform many of these 

immune assays in the BSL3 laboratory. 

 

6.3 Conclusion 

In conclusion, this thesis has demonstrated that immunisation with therapeutic 

tuberculosis vaccines can enhance the ability of immune cells to control the growth of 

mycobacteria, in the absence and in the presence of TB drugs, and this effect can be 

measured ex vivo with the growth inhibition assay. Specifically, it has been shown that 

BCG vaccination in humans and mice, and RUTI vaccination in mice could enhance ex 

vivo control of mycobacterial growth. Further, the growth inhibition assay can be used to 

gain insight into the immune pathways important for the mycobacterial growth control. 

Indeed, although more work is needed, MGIA has the potential to be further implemented 

in pre-clinical and clinical vaccine testing, as an endeavour to accelerate the development 

of therapeutic tuberculosis vaccines. 
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6.4 Future Directions 

The thesis described above has extended our understanding of immune mechanisms as 

well as the value of the ex vivo MGIA assay in testing therapeutic TB vaccine candidates. 

Nevertheless, the findings raise further questions which will need to be addressed in 

future studies. Using the human cohort, the impact of historical BCG vaccination towards 

ex vivo drug-mediated killing of INH and RIF has been demonstrated. While the 

effectiveness of these two drugs are unequivocally challenged by MDR-TB, it will be 

important in the future to investigate the impact of BCG and other therapeutic vaccines 

towards second-line TB drugs, which are less effective than the first-line drugs. Given 

the current treatment success rate of MDR-TB ranging only around 50% in many service 

conditions worldwide, there is certainly a room for improvement by introducing 

therapeutic vaccination in order to maximise benefit for patients in the clinical setting.  

Various cellular components, as well as cytokines, and their role in the MGIA have been 

demonstrated in this study. In particular, IL-10 has been shown to be an influential 

immunoregulatory cytokine in the MGIA, which is in line with previous studies. It will 

be interesting to characterise which cells are the major producers of this cytokine and to 

further demonstrate its importance by the use of splenocytes from IL-10 knockout mice. 

Unfortunately, due to time and capital constraints, this could not be achieved in this 

project. Furthermore and importantly, our study has highlighted the role of NK cells for 

ex vivo control of mycobacterial growth in the presence and absence of drug. Therefore, 

NK cells could be further explored as a target for a novel therapeutic vaccine against TB. 

In this regard, the exact mechanism of NK cell protection following BCG vaccination on 

ex vivo mycobacterial growth remains to be further elucidated. It may be that its role is 
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through antigen-specific memory-like response of NK cells, or through the trained innate 

immunity mechanism. 

The observed impact of sex following BCG vaccination in our cohort of 100 participants 

warrants further investigation in larger epidemiological studies. To our knowledge, no 

study has identified a differential protection between sex following BCG vaccination 

against adult pulmonary TB, despite the abundance of TB cases in males worldwide. 

Nevertheless, the non-specific protective effect of BCG on overall mortality and reduced 

incidence of respiratory infections – not related to TB – is more pronounced in young 

females compared to males14-16. In this context, it is speculated that the notable BCG-

induced enhanced growth inhibition in females could be more reflective of the non-

specific protective effect conferred by the vaccine, which has been linked to the trained 

innate immune mechanism13,17. Therefore, it will be fascinating in the future to investigate 

downstream and upstream pathways related to this mechanism, such as by looking at 

DNA methylation. A recent study did not find an association between in vitro addition of 

sex hormones and BCG-induced trained innate immunity on adult monocytes18. However, 

considering the results of the our present study, it will be worth looking at such impact 

on another cell population in which trained innate immunity has been described10, that is 

the NK cells. 

The importance of trained innate immunity mechanism may also be attributed to impact 

of RUTI in driving nonclassical monocytes in mice. Nonetheless, our ex vivo data still 

needs to be confirmed by in vivo studies with Mtb to better demonstrate the impact of 

RUTI on trained innate immunity. In our study, splenocyte samples were used in the 

murine MGIA as it is considered to be the most practical tissue to use. Development of 
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MGIA with mouse lung cells is currently underway in our group (Hannah Painter, 

personal communication), as an attempt to better reflect the natural infection site of the 

mycobacteria. Furthermore, studies are required to better understand the interplay 

between CMV-specific response, T-cell activation and NK cells in the context of BCG 

vaccination, in which the mouse model could serve as a platform for mechanistic 

exploration. 
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APPENDIX 2. Ethical approval 2 for human study 
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APPENDIX 3. Information sheet for study participants 

 
 

Collection of Normal Human Blood for Research Use 
 

The Faculty of Infectious and Tropical Diseases conducts epidemiological and laboratory research on a 
number of important human pathogens. The research aims to give us a better understanding of the 
epidemiology and pathogenesis of certain infectious diseases and to assist in the development of new 
vaccines and drugs or diagnostic tests. As part of this research, there is a continuing need to obtain 
samples of human blood, from people who have not been exposed to or infected with the pathogen of 
interest. On occasion, it also very helpful to obtain blood from people who know they have been exposed 
to certain pathogens (such as malaria, leishmaniasis, tuberculosis etc). These samples either act as 
negative and positive controls for comparison with samples taken from infected or immune individuals 
or are used to develop and validate new techniques prior to commencing new projects in disease endemic 
areas. For some types of work, samples obtained from the Blood Transfusion Service are sufficient. But 
for other projects, freshly obtained samples are needed and it is helpful if the researcher can obtain repeat 
samples from the same donors (for example where tissue-typing data is required). 
The staff and students of LSHTM represent a potentially invaluable resource for this research. Although 
many staff and students are entirely based in the UK or Europe, others come to the School from a wide 
variety of different backgrounds and may have been exposed to a variety of different pathogens. The 
School’s Research Ethics Committee has therefore agreed that all incoming staff and research students 
will be asked whether they would like to volunteer to take part in these research projects. 
Volunteers will be asked to fill out a simple form indicating their country of origin and other countries 
where they have lived. This information will be held on a confidential database. An anonymised version 
of the database (where names have been replaced by code numbers) will be available to individual 
researchers in order to identify potential blood donors for their particular project. Volunteers will then 
be contacted, given details of the project and asked whether they would like to take part. If they agree, 
they will sign a consent form and a blood sample – of between 1 and 100mls depending on the project 
– will be collected by a clinician or qualified phlebotomist. 
It is unlikely that any of the data collected will have any direct clinical relevance to the donor, but if this 
is the case it will be made clear on the consent form and any relevant data will be fed back to the donors. 
Any donor who wishes to see the results of any tests performed on his/her blood will be allowed to do 
so. By agreeing to go on the register of potential donors, volunteers do not commit themselves to take 
part in any particular project and may withdraw their name from the list at any time. There are no direct 
benefits to joining the register (donors will not be paid or receive any other benefit in kind) and no record 
will be kept of those who decide not to join. Blood samples will not be screened for evidence of current 
viral infections (such as HIV, hepatitis viruses etc) but people who know they have been exposed or 
infected are requested not to volunteer. 
For more information on the blood donor scheme and a consent form, please contact Ms Carolynne 
Stanley, Faculty of Infectious and Tropical Diseases (carolyn.stanley@lshtm.ac.uk). 
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APPENDIX 4. Consent form for study participants 

Collection of normal human 
 blood for research use:   

Consent Form 
 

Name:   

Date of birth:  

Department \ Unit:   

Keppel Street or Tavistock Place 
Office\room no: 

  

Work telephone number:   

Email address:   

Are you: Staff 
               Student 

YES\NO 
YES\NO 

If student: when are you due to complete 
your studies? 

  

Are you a regular blood donor in: 
The UK 
Elsewhere 

 
YES\NO 
YES\NO 

Have you had a Tetanus inoculation? YES\NO 

Have you had a Rabies vaccination? YES\NO 

Have you been BCG-vaccinated? YES\NO 

Do you still have a visible scar from this 
BCG vaccination? 

YES\NO\NA 

Country of origin   

Have you lived in any countries apart from 
your country of origin and the UK? 

YES\NO 

If YES, please list the countries and the 
dates when you lived there 

 
   

Blood group if known.  
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Have you ever visited a malarious zone? YES\NO 

Have you ever had malaria? YES\NO 

Have you had a Hep B vaccination? YES\NO 

 
I would like my name to be added to the register of potential blood donors for research 
projects within LSHTM. 
I understand that I may be asked to donate blood as part of a research project conducted by 
LSHTM staff or research students. I will be free to take part, or refuse to take part, in any of 
these projects. 
All projects will have received ethical approval from the LSHTM Research Ethics Committee 
and individual informed consent will be required for each project. 
Blood will be collected only by clinically qualified staff or a qualified phlebotomist whose 
name is held on a register of phlebotomists. 
I will be entitled to see all data arising from the use of my blood, on request. 
My blood will not be screened for HIV, Hepatitis B, Hepatitis C or any other persistent virus 
infection unless this it is specifically stated on the consent form for the project(s) for which I 
volunteer. 
I am not aware that I suffer from any persistent medical condition or infection which affects my 
suitability to be a blood donor. 
I understand that, in order to maintain confidentiality, information arising from research 
projects will be kept on an anonymised database and that individual researchers will not 
normally be aware of my identity. The database containing my name will be securely 
maintained and will not be made available to researchers.  
 
   
  
Name (in capitals) 
Signature 
Date 
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APPENDIX 5. Material transfer agreement for RUTI vaccine study 
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APPENDIX 6. Conference papers 
 
 
I. Keystone Symposia: New Approaches to Vaccines for Human and Veterinary 

Tropical Diseases, Cape Town, South Africa, 22 – 26 May 2016. 
 
 
The impact of immunotherapeutic tuberculosis vaccination towards drugs control of 
mycobacterial growth ex-vivo 
 
Satria Arief Prabowo1, Andrea Zelmer1, Lisa Stockdale1, Merce Amat 2, Pere-Joan 
Cardona2,3, Helen Fletcher1 
1 Department of Immunology and Infection, London School of Hygiene & Tropical 
Medicine, London, United Kingdom 
2 Archivel Farma SL, Barcelona, Spain 
3 Unitat de Tuberculosi Experimental, Health Sciences Research Institute “Germans Trias 
i Pujol” Foundation (IGTP), Barcelona, Spain 
 
Background: Current effort to effectively control tuberculosis (TB) is hindered by 
lengthy treatment and the emergence of drug resistance. Combining vaccination with drug 
therapy will enhance host immune response and improve the effectiveness of current 
treatment. Identification of optimum regimens is needed. Mycobacterial growth 
inhibition assay (MGIA) is a functional assay that measures the summative ability of host 
immune cells to inhibit the growth of mycobacteria ex-vivo. Recent evidence suggests 
that the assay might be a better correlate of protection following vaccination. 
Methods: The ability of BCG and RUTI®, a therapeutic TB vaccine candidate, to enhance 
drug killing of isoniazid (INH) and rifampicin (RIF) were assessed. Splenocytes of 
vaccinated mouse (n=6) and PBMC of historically BCG-vaccinated human (n=20) were 
co-cultured ex-vivo for 4 days with drugs and Mycobacterium bovis BCG as an immune 
target. 
Results: Vaccination with RUTI® in mouse resulted in significant decrease of bacterial 
load ex-vivo in the presence of INH and RIF compared to naïve (p<0.05, 2 log magnitude), 
with a similar trend with BCG but to a lesser extend. Historical vaccination with BCG in 
human also exerted enhanced control of drugs killing ex-vivo (p<0.05, 0.5-1 log 
magnitude). Ex-vivo control of mycobacterial growth was not correlated with IFN-gamma 
response in human (p>0.05). 
Conclusion: This study provided evidence regarding the benefit of therapeutic TB 
vaccination in enhancing drug efficacy. Ex-vivo MGIA could potentially be applied to 
identify optimum regimen in early phase clinical trials. Immune mechanisms responsible 
for enhanced ex-vivo growth control warrant further investigation. 
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II. 47th Union World Conference on Lung Health, International Union Against 
Tuberculosis and Lung Diseases, Liverpool, United Kingdom, 26-29 October 
2016. 

 
 
The impact of previous BCG vaccination in enhancing the effectiveness of tuberculosis 
drugs to control mycobacterial growth ex-vivo 
 
Satria Arief Prabowo1, Andrea Zelmer1, Lisa Stockdale1, Steven Smith1, Karin Seifert1, 
Helen Fletcher1 
1 Department of Immunology and Infection, London School of Hygiene & Tropical 
Medicine, London, United Kingdom 
 
Background: Current effort to effectively control tuberculosis (TB) is hindered by 
lengthy treatment and the emergence of drug resistance. Combining vaccination with drug 
therapy will enhance host immune response and improve the effectiveness of current 
treatment. Bacillus Calmette–Guerin (BCG) remains the only licensed TB vaccine to 
date. Several pre-clinical animal studies have suggested the benefit of BCG vaccination 
in adjunct to current treatment. A proof-of-principle study using human samples as well 
as identification of optimum regimens are needed before such concept can be further 
advanced. Mycobacterial growth inhibition assay (MGIA) is a functional assay that 
measures the summative ability of host immune cells to inhibit the growth of 
mycobacteria ex-vivo. There is a recent interest as the assay has been shown to better 
reflect epidemiological data in distinguishing protection and might be a better correlate 
of protection following TB vaccination. 
 
Methods: We developed an ex-vivo MGIA to assess the ability of isoniazid (INH) and 
rifampicin (RIF) to inhibit the growth of mycobacteria using peripheral blood 
mononuclear cell (PBMC) from historically BCG-vaccinated and naïve volunteers (n=20, 
respectively). PBMCs were co-cultured for 4 days with Mycobacterium bovis BCG as an 
immune target in the presence of drugs. 
 
Results: BCG-vaccinated participants were superiorly capable of inhibiting 
mycobacterial growth ex-vivo compared to the naïve (p< 0.005). The average time since 
BCG vaccination in this study was 23.8 years. There was a trend towards lesser inhibition 
of growth in BCG-vaccinated participants originated from regions closer to the equator. 
BCG vaccination enhanced the ability of INH to control mycobacterial growth at the drug 
concentrations of 0.01 and 1 ug/ml (p< 0.05). In the presence of RIF, improved drug 
killing by vaccination was observed at the concentration of 0.01 ug/ml (p< 0.005). Ex-
vivo control of mycobacterial growth was not correlated with IFN-gamma response 
measured with ELISpot (p>0.5). 
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Conclusions: This study provided evidences regarding the benefit of BCG in enhancing 
drugs effectiveness ex-vivo. Immune mechanisms responsible for such enhanced drug 
killing remains to be elucidated. Implementation of the assay to screen optimum 
combinations of drugs and TB vaccine candidates in early phase clinical trials worth 
further consideration. 
 
The author receives a PhD scholarship from the Indonesian Endowment Fund for 
Education (LPDP). 
 
 
 
III. 35th Annual Meeting of European Society for Paediatric Infectious Diseases 

(ESPID), Madrid, Spain, 23 – 27 May 2017. 
 
 
The impact of previous BCG vaccination in enhancing the effectiveness of tuberculosis 
drugs to control mycobacterial growth ex-vivo 
 
Satria Arief Prabowo1,2, Andrea Zelmer1,2, Lisa Stockdale1,2, Steven Smith1,2, Karin 
Seifert1, Helen Fletcher1,2 
1 Department of Immunology and Infection, London School of Hygiene & Tropical 
Medicine, London, United Kingdom 
2 Tuberculosis Centre, London School of Hygiene & Tropical Medicine, London, United 
Kingdom 
 
Background: Current effort to effectively control tuberculosis (TB) is hindered by 
lengthy treatment and the emergence of drug resistance. Combining vaccination with drug 
therapy will enhance host immune responses and improve the effectiveness of current 
treatment. Several pre-clinical animal studies suggest the benefit of Bacillus Calmette–
Guerin (BCG) vaccination in adjunct to treatment. A proof-of-principle study is needed 
to identify optimum regimens prior to clinical investigation in children and adults. 
 
Methods: We implemented an ex-vivo mycobacterial growth inhibition assay (MGIA) to 
assess the ability of isoniazid (INH) and rifampicin (RIF) in inhibiting the growth of 
mycobacteria when co-cultured with peripheral blood mononuclear cells (PBMCs). 
PBMCs were obtained from historically BCG-vaccinated and naïve participants (n=100), 
and were co-cultured for 4 days with Mycobacterium bovis BCG as an immune target. 
 
Results: BCG-vaccinated participants were superiorly capable of inhibiting 
mycobacterial growth ex-vivo compared to the naïve (p< 0.0001). BCG-vaccinated 
females were better abler to control mycobacterial growth than males (p< 0.05), which 
could explain the epidemiological abundance of TB cases in male worldwide. BCG 
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vaccination enhanced the ability of INH to control mycobacterial growth at the drug 
concentrations of 0.01 and 1 ug/ml (p< 0.05), and RIF at the concentration of 0.01 ug/ml 
(p< 0.005). BCG-induced inhibition of mycobacterial growth was associated with 
increased IFN-g and IP-10 production in the presence of drugs (p< 0.05), with correlations 
observed towards the increase of TNF-a and GM-CSF and the reduction of IL-10 in the 
absence of drugs (p< 0.05). 
 
Conclusions: This study provided preliminary evidences regarding the benefit of BCG 
in enhancing TB drug effectiveness ex-vivo. Clinical studies are warranted in children and 
adults to further elucidate the benefit of BCG in adjunct to TB treatment. 
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Historical BCG vaccination combined with drug treatment enhances inhibition of 
mycobacterial growth ex vivo in human peripheral blood cells 
 
Satria Arief Prabowo1,2, Andrea Zelmer1,2, Lisa Stockdale1,2, Steven Smith1,2, Karin 
Seifert1, Helen Fletcher1,2 
1 Department of Immunology and Infection, London School of Hygiene & Tropical 
Medicine, London, United Kingdom 
2 Tuberculosis Centre, London School of Hygiene & Tropical Medicine, London, United 
Kingdom 
 
Current effort to effectively control tuberculosis (TB) is hindered by lengthy treatment. 
Combining vaccination with drug therapy will enhance host immune responses and 
improve the effectiveness of current treatment. Mycobacterial growth inhibition assay 
(MGIA) is a functional assay which measures the summative ability of host immune cells 
to inhibit the growth of mycobacteria ex-vivo. The impact of historical Bacille Calmette-
Guerin (BCG) vaccination towards the ex-vivo drugs killing of isoniazid (INH) and 
rifampicin (RIF) were assessed (n=100). BCG vaccination enhanced the ability of INH 
and RIF to control mycobacterial growth (p<0.05). BCG-induced inhibition of 
mycobacterial growth was associated with increased IFN-g and IP-10 production in the 
presence of drugs (p< 0.05). This study provides evidence regarding the benefit of BCG 
vaccination in enhancing effectiveness of TB drugs ex-vivo. Implementation of the MGIA 
assay to screen optimum combinations of drugs and TB vaccine candidates in early phase 
clinical trials worth further consideration. 
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V. 5th Global Forum on Tuberculosis Vaccines, New Delhi, India, 20 – 23 
February 2018. 

 
Historical BCG vaccination combined with drug treatment enhances inhibition of 
mycobacterial growth ex vivo in human peripheral blood cells 
 
Satria Arief Prabowo1,2, Andrea Zelmer1,2, Lisa Stockdale1,2, Steven Smith1,2, Karin 
Seifert1, Helen Fletcher1,2 
1 Department of Immunology and Infection, London School of Hygiene & Tropical 
Medicine, London, United Kingdom 
2 Tuberculosis Centre, London School of Hygiene & Tropical Medicine, London, United 
Kingdom 
 
Background: Current effort to effectively control tuberculosis (TB) is hindered by 
lengthy treatment and the emergence of drug resistance. Combining vaccination with drug 
therapy will enhance host immune responses and improve the effectiveness of current 
treatment. Several pre-clinical animal studies suggest the benefit of Bacillus Calmette–
Guérin (BCG) vaccination in adjunct to treatment. A proof-of-principle study is needed 
to identify optimum regimens. Mycobacterial growth inhibition assay (MGIA) is a 
functional assay that measures the summative ability of host immune cells to inhibit the 
growth of mycobacteria ex-vivo. 
Methods: We implemented an ex-vivo MGIA to assess the ability of isoniazid (INH) and 
rifampicin (RIF) to inhibit the growth of mycobacteria using peripheral blood 
mononuclear cell (PBMC) from historically BCG-vaccinated and naïve volunteers 
(n=100). The average time since BCG vaccination was 23.8 years. PBMCs were co-
cultured for 4 days with Mycobacterium bovis BCG as an immune target. 
Results: BCG-vaccinated participants were superiorly capable of inhibiting 
mycobacterial growth ex-vivo compared to the naïve (p< 0.0001). BCG-vaccinated 
females were better able to control mycobacterial growth than males (p< 0.05). BCG 
vaccination enhanced the ability of INH to control mycobacterial growth at the drug 
concentrations of 0.01 and 1 ug/ml (p< 0.05), and RIF at the concentration of 0.01 ug/ml 
(p< 0.005). BCG-induced inhibition of mycobacterial growth was associated with 
increased IFN-g and IP-10 production in the presence of drugs (p< 0.05). 
Discussion and Conclusion: This study provides evidence regarding the benefit of BCG 
vaccination in enhancing effectiveness of TB drugs ex-vivo. Clinical studies might be 
warranted to further elucidate the benefit of BCG in adjunct to treatment. Implementation 
of the MGIA assay to screen optimum combinations of drugs and TB vaccine candidates 
in early phase clinical trials worth further consideration. 
 
Key words: growth inhibition, BCG, therapeutic vaccine, MGIA 
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VI. 62nd Acid Fast Club Summer Meeting, Jenner Institute, University of Oxford, 
Oxford, United Kingdom, 5 – 6 July 2018. 

 
 
Historical BCG vaccination combined with drug treatment enhances inhibition of 
mycobacterial growth ex vivo in human peripheral blood cells 
 
Satria Arief Prabowo1,2, Andrea Zelmer1,2, Lisa Stockdale1,2, Steven Smith1,2, Karin 
Seifert1, Helen Fletcher1,2 
1 Department of Immunology and Infection, London School of Hygiene & Tropical 
Medicine, London, United Kingdom 
2 Tuberculosis Centre, London School of Hygiene & Tropical Medicine, London, United 
Kingdom 
 
Vaccination and chemotherapy remain the main strategies to control tuberculosis (TB), 
while combination of both could provide a greater therapeutic value. We implemented an 
ex vivo mycobacterial growth inhibition assay (MGIA) to measure vaccine-induced 
inhibition following historical BCG vaccination in human volunteers towards the drug 
effect of isoniazid (INH) and rifampicin (RIF). BCG vaccination enhanced the ability of 
INH to control mycobacterial growth ex vivo by increased IFN-g and IP-10 production. 
A higher frequency of IFN-g+ and TNF-a+ CD3- CD4- CD8- cells was observed, 
suggesting the role of Natural Killer (NK) cells. Our ex vivo data are consistent and 
support findings from previous observational and animal studies. 
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APPENDIX 8. Additional data 

 

 

Appendix 8A (Figure). Correlation between IFN-g ELISpot response and 
mycobacterial growth. Statistical significance was tested using Spearman’s correlation. 
A p value < 0.05 was considered significant. n= 21 naïve and 29 BCG-vaccinated. 

 

 

Appendix 8B (Figure). Correlation between the frequency of Ly6C- 

monocytes/macrophages and mycobacterial growth control following RUTI 
vaccination across time points. Statistical significance was tested using Spearman’s 
correlation. A p value < 0.05 was considered significant. n= 42 mice. 
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Appendix 8C (Figure). Correlation between the age of participants (a) and time 
since vaccination (b) with ex vivo mycobacterial growth. Statistical significance was 
tested using Spearman’s correlation. An analysis was also performed by stratifying the 
time since BCG vaccination (c), unpaired t-test. A p value < 0.05 was considered 
significant. n= 37 naïve and 63 BCG-vaccinated. 

 

 

Appendix 8D (Figure). Correlation between IFN-g ELISpot response and 
mycobacterial growth in the naïve (a) and BCG-vaccinated (b) groups. Statistical 
significance was tested using Spearman’s correlation. A p value < 0.05 was considered 
significant. n= 37 naïve and 63 BCG-vaccinated. 

a b 

c 

a b 
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Appendix 8E (Figure). Correlation between the production of perforin and 
mycobacterial growth inhibition in the naïve (a) and BCG-vaccinated (b) groups. 
Statistical significance was tested using Spearman’s correlation. A p value < 0.05 was 
considered significant. n= 16 naïve and 34 BCG-vaccinated. 
 

BCG-specific 
cytokine+ T-cells 

Correlation with CMV-specific cytokine+ T-cells 
All participants Naïve BCG-vaccinated 

r p-value r p-value r p-value 
IFN-g+ CD4 T-cells 0.19 0.2515 0.51 0.0758 0.068 0.7369 
IL-2+ CD4 T-cells  0.13 0.4253 0.0 0.99 0.11 0.5999 
TNF-a+ CD4 T-cells -0.046 0.7761 -0.19 0.5513 0.021 0.9180 
IFN-g+ CD8 T-cells 0.042 0.7990 -0.26 0.4103 0.065 0.7473 
IL-2+ CD8 T-cells  -0.18 0.2775 -0.078 0.8205 -0.2 0.3158 
TNF-a+ CD8 T-cells 0.18 0.2675 -0.27 0.5385 0.21 0.2887 

Appendix 8F (Table). Correlation between BCG-specific T-cell response and CMV-
specific T-cell response. Associations were assessed from total 50 participants, as well 
as from each naïve (n=16) and BCG-vaccinated (n=34) groups respectively (Spearman’s 
correlation). Correlations were investigated from 3 different subsets of BCG-specific 
cytokine+ CD4 and CD8 T-cells expressing IFN-g+, IL-2+ or TNF-a+ with each respective 
CMV-specific T-cell. A p value <0.05 was considered statistically significant.  

 

CMV-specific 
cytokine+ T-cells 

Correlation with NK cells 
Cytokine NK cell Cytotoxic NK cell 
r p-value r p-value 

IFN-g+ CD4 T-cells 0.25 0.1176 0.27 0.0898 
IL-2+ CD4 T-cells  0.23 0.1596 0.25 0.1225 
TNF-a+ CD4 T-cells 0.26 0.0995 0.28 0.0795 
IFN-g+ CD8 T-cells 0.047 0.7713 0.16 0.3232 
IL-2+ CD8 T-cells  0.071 0.6634 0.081 0.6212 
TNF-a+ CD8 T-cells 0.028 0.8633 0.23 0.1621 

Appendix 8G (Table). Correlation between CMV-specific T-cell response and NK-
cells frequency. Associations were investigated with cytokine-producing and cytotoxic 
NK cell populations, respectively. A p value <0.05 was considered statistically significant 
(Spearman’s correlation). n= 50 participants (16 naïve, 34 BCG-vaccinated). 

a b 




