
PhoP: A Missing Piece in the Intricate Puzzle of
Mycobacterium tuberculosis Virulence
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Abstract

Inactivation of the transcriptional regulator PhoP results in Mycobacterium tuberculosis attenuation. Preclinical testing has
shown that attenuated M. tuberculosis phoP mutants hold promise as safe and effective live vaccine candidates. We focused
this study to decipher the virulence networks regulated by PhoP. A combined transcriptomic and proteomic analysis revealed
that PhoP controls a variety of functions including: hypoxia response through DosR crosstalking, respiratory metabolism,
secretion of the major T-cell antigen ESAT-6, stress response, synthesis of pathogenic lipids and the M. tuberculosis persistence
through transcriptional regulation of the enzyme isocitrate lyase. We also demonstrate that the M. tuberculosis phoP mutant
SO2 exhibits an antigenic capacity similar to that of the BCG vaccine. Finally, we provide evidence that the SO2 mutant persists
better in mouse organs than BCG. Altogether, these findings indicate that PhoP orchestrates a variety of functions implicated
in M. tuberculosis virulence and persistence, making phoP mutants promising vaccine candidates.
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Introduction

The lifecycle of intracellular pathogens requires adaptation to

the environment prevailing in the host tissues either to interact

with cells or to survive within them. This is particularly important

for M. tuberculosis which is transmitted by aerosol route with the

lung being the primary organ affected. Once M. tuberculosis reaches

the alveoli it is engulfed by professional phagocytes such as

macrophages. Initially, M. tuberculosis is able to replicate within

macrophages until a cell-mediated immunity is mounted by the

host. Then, macrophages are activated by interferon-c (IFN-c)

and, are able to control the intracellular growth of M. tuberculosis by

triggering a hostile environment that includes acidification of the

phagosome, lysosome maturation and production of NO and

reactive oxygen/nitrogen intermediates. However, the tubercle

bacillus has evolved strategies to cope with the macrophage

defences which include prevention of the phagosome acidification

and the arrest of the phagosome maturation [1]. Surviving

bacteria are believed to enter a state of persistence [2] which can

be lifelong. This persistent lifestyle is probably a key reason for the

success of M. tuberculosis as intracellular pathogen. Indeed, one-

third of the human population is latently infected with the bacilli,

which represent an important niche.

The ability to persist for long periods in the host depends largely

on the capacity of M. tuberculosis to acquire and utilize nutrients

from the macrophage phagosome. M. tuberculosis switches meta-

bolic pathways to utilise fatty acids rather than carbohydrates

during persistent infection [3,4]. In addition, M. tuberculosis likely

encounters a hypoxic environment during latent infection. The

tubercle bacillus is able to elicit an initial hypoxic response through

the transcriptional regulation of the dormancy regulon [5,6].

Following the initial adaptation to oxygen deprivation, long-term

survival of M. tuberculosis is accomplished by an enduring hypoxic

response (EHR) which consists of a transcriptional response much

larger than the dormancy regulon and maintained for a much

longer period [7]. On the other hand, bacterial exposure to the

harsh phagosomal ambience requires a stress response to deal with

the oxidative, nitrosative and acidic stresses found in macrophages.

Overall, in order to successfully survive intracellularly, M.

tuberculosis possesses regulatory networks to adapt its metabolism

to the environment prevailing within phagosomes. Some works

have studied the bacterial transcriptome to reveal the intracellular

response of M. tuberculosis [4,8–10].

In this work we have focused on the phoP gene, which encodes

the transcriptional regulator of the two-component system (2CS)

PhoPR. Inactivation of phoP results in high attenuation of M.

tuberculosis. The mutant is impaired to grow in macrophages and

BALB/c mice; however, it is not completely eliminated and

persists in in vitro cultured-macrophages and also in mouse organs

[11]. This attenuated phenotype and the ability to persist in the
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host probably contribute to confer a protective immunity in mice

and guinea pigs that results in a higher level of protection against

tuberculosis than that conferred by the current BCG vaccine strain

[12]. Further supporting the role of PhoP in virulence regulation,

very recent works have demonstrated that a point mutation in

PhoP contributes to avirulence of the H37Ra strain, since this

mutation abrogates secretion of the ESAT-6 antigen and the

synthesis of acyltrehalose-based lipids in this strain [13–15].

In this work we compare both the transcriptome and the

proteome of M. tuberculosis wild type with a phoP mutant to

characterize the PhoP regulon, and we test the antigenic capacity

and persistence of the phoP mutant in mice model. Our results

strongly suggest that PhoP controls essential processes for virulence

and persistence in M. tuberculosis.

Results

Identification of the PhoP regulon by transcriptome and
proteome approaches

In a global approach to characterize the PhoP regulon we

compared the transcriptome of an M. tuberculosis clinical isolate

with its phoP mutant [16]. Seventy-eight genes - approximately 2%

of the coding capacity of the M. tuberculosis genome - showed

significant differences between both strains (Table S1). In our

transcriptomic analysis, the phoP gene itself appears downregulated

in the mutant; this serves as an excellent internal control and

provides confidence in the results. Additionally, down-regulation

of the adjacent phoR gene strongly supports our previous

observations that both genes are transcribed in an operon [17].

Genes positively regulated by PhoP include those required for

hypoxia adaptation, genes involved in aerobic/anaerobic respira-

tion, genes within the Region of Difference 1 (RD1), genes

encoding stress proteins and genes involved in lipid metabolism.

Amongst the few genes negatively regulated by PhoP, we found

the icl-fadB2-umaA1 operon (Figure 1). In a complementary

approach to identify genes regulated by PhoP we compared the

protein expression patterns of the wild type strain and the phoP

mutant. Analysis from two sets of 2D electrophoresis gels revealed

that ICL, EspB - an antigenic protein encoded in the extended

RD1 (extRD1) region - and stress proteins such as Hsp65

(GroEL2) and alpha crystallin (HspX or Acr) are differentially

expressed between both strains. In agreement with the microarray

Figure 1. The M. tuberculosis PhoP regulon. The PhoP regulon was identified by comparing transcriptional profiles of the M. tuberculosis wild
type and the phoP mutant using DNA microarrays. Some of the more relevant genes to virulence and intracellular survival are listed and grouped by
function. Green and red arrows indicate genes whose expression is positively or negatively regulated by PhoP, respectively.
doi:10.1371/journal.pone.0003496.g001
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data, alpha crystallin, EspB, and Hsp65 gave higher expression in

the wild type whereas ICL gave higher expression in the phoP

mutant (Figure 2 and Table S2). Remarkably, a number of PhoP

regulated genes have been previously shown to be differentially

expressed upon M. tuberculosis infection of macrophages and

dendritic cells (Table S1). These findings point at PhoP as a

regulator of key functions for intracellular survival in M. tuberculosis.

PhoP mediates early and enduring hypoxic responses in
M. tuberculosis

Under the initial hypoxic conditions within macrophages, M.

tuberculosis enters a dormant state characterized by the induction of

the so called dormancy regulon which includes approximately 50

genes [5,18] under the control of 2CS DosRST [19–21]. In this

work we show that part of the DosR regulon, including the dosRS

genes themselves, is under the control of PhoP as indicated as

initial hypoxic response in Figure 1. In addition, alpha crystallin -

a latency antigen which also belongs to the DosR regulon [5] - also

appears downregulated in the phoP mutant in our proteome

comparison (Table S2). Altogether, these observations indicate

that PhoP might regulate the dormancy regulon through cross-

talking with DosR. To really confirm that dosR is under the control

of PhoP, we carried out qRT-PCR analyses. Our results

demonstrate that dosR expression is reduced in the phoP mutant

with respect to the wild type strain and, complementation of the

phoP mutant with the phoPR operon restores dosR expression to wild

type levels (Figure 3). The DosRS 2CS was initially discovered for

being higher expressed in the virulent M. tuberculosis H37Rv than

in its avirulent counterpart H37Ra [22,23]. Hence, DosRS was

initially named DevRS, an acronym for differentially expressed in

virulent strain. Here, we demonstrate by qRT-PCR that dosR is

downregulated in H37Ra with respect to H37Rv (Figure S1). This

is probably a consequence of a Ser219Leu mutation in PhoP from

H37Ra. On the other hand, it has been recently demonstrated

that following the initial adaptation to hypoxia through the DosR

regulon, M. tuberculosis initiates an EHR [7]. Interestingly, we show

for the first time that PhoP also regulates a subset of genes from the

EHR as indicated as enduring hypoxic response in Figure 1. In

sum, these findings suggest that PhoP serves as a link between the

early and enduring hypoxia responses in M. tuberculosis.

PhoP regulates respiratory functions in M. tuberculosis
In order to adapt to fluctuations in the oxygen levels during

infection, M. tuberculosis switches from aerobic to anaerobic

respiration [10,24]. Here we show for the first time that PhoP

positively regulates nuo genes from the NADH dehydrogenase

operon as described as respiration in Figure 1. This enzymatic

complex functions as the primary electron acceptor via oxidation

of NADH to NAD+. We confirmed by qRT-PCR that the nuoB

gene is transcribed at lower levels in the phoP mutant than in the

wild type and the complemented strains (Figure 3). Downregula-

tion of nuo genes in the phoP mutant indicates that PhoP probably

controls the expression of the entire nuo operon. NuoG inhibits

apoptosis in macrophages and increases virulence in immuno-

compromised mice [25]. Thus, downregulation of the nuoG gene in

the phoP mutant (Z-Score = 1.88) would contribute to both,

attenuation and increased apoptosis, which in turn would result

in better antigen presentation [26]. We also show for the first time

that PhoP regulates the expression of the enzyme alanine

dehydrogenase (ald). This enzyme contributes to maintain the

NADH pool by recycling NAD+ through the conversion of

pyruvate to alanine when oxygen, as a terminal electron acceptor,

becomes limiting [27]. Additionally, PhoP controls the genes

involved in utilisation of nitrogen and sulphur sources in oxygen

limiting conditions such as the nitrite transporter narK1 and the

sulphur reduction operon nirA-cysH [28].

PhoP regulates genes within the RD1 region required for
virulence and ESAT-6 secretion

RD1 is a genomic region essential for M. tuberculosis virulence

[29] which is present in virulent members of the M. tuberculosis

complex but deleted from all BCG vaccines [30]. RD1 encodes the

dedicated secretion system ESX-1, which assures export of the

major T-cell antigen complex ESAT-6/CFP10 [31–33]. Here, we

show, as a novel finding, that PhoP positively regulates many genes

within the RD1 as described in Figure 1. Some of these genes are

Figure 2. Protein expression patterns of M. tuberculosis and the phoP mutant. Areas of 2D-polyacrylamide gels show differences in the
protein expression patterns between the wild type strain and the phoP mutant. Spots that showed at least three-fold differential expression across
triplicate gels were selected for identification by mass spectrometry. EspB and Hsp65 are more expressed in the wild type strain while ICL shows a
higher expression in the phoP mutant. The vertical arrows indicate decreased (Q) or increased (q) expression in the M. tuberculosis phoP mutant
relative to the parent strain.
doi:10.1371/journal.pone.0003496.g002
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required for RD1-mediated virulence (Figure 4) [31] and their

downregulation in the M. tuberculosis phoP mutant probably

contributes to attenuation. Our previous studies with the M.

tuberculosis phoP mutant SO2 have demonstrated the presence of

ESAT-6 in cell-free extracts [12] but not in the culture filtrate

[14]. From our data of the PhoP regulon in M. tuberculosis, we

attempted to infer the mechanism by which PhoP influences

ESAT-6 secretion. Recent works have demonstrated the require-

ment of EspB for ESAT-6/CFP10 co-secretion [34,35]. The espB

gene lies within the extRD1 region and also belongs to the PhoP

regulon identified in this work, since it appears downregulated in

the M. tuberculosis phoP mutant in our proteome and transcriptome

comparisons (Figure 1 and Figure 2). Thus, decreased expression

of EspB in the phoP mutant might be responsible for the lack of

ESAT-6 export in this strain [14]. Additionally, it has been

recently identified a novel transcription factor encoded by the

rv3849 gene which promotes secretion of ESX-1 substrates,

including ESAT-6 [36], and hence was renamed EspR, an

acronym for ESX-1 secreted protein regulator. Remarkably, the

rv3849 gene appears downregulated in the M. tuberculosis phoP

mutant in our transcriptome comparison (Table S1). Taken

together, the co-ordinate regulation of EspB and EspR by PhoP

would contribute to unravel a novel transcriptional mechanism for

the control of ESAT-6 secretion.

PhoP regulates the stress response in M. tuberculosis
Stress proteins play an important role for intracellular survival

protecting M. tuberculosis against oxidative, nitrosative and/or acidic

stresses [4]. Our transcriptome comparison shows that three genes

encoding stress proteins are positively regulated by PhoP as

indicated in Figure 1. Moreover, our proteomics studies indicate

that, in addition to alpha crystallin, the stress protein Hsp65 appears

downregulated in the phoP mutant (Figure 2). The global control of

stress proteins throughout the genome suggests that PhoP co-

ordinately regulates the expression of stress-inducible genes.

PhoP controls genes of the lipid metabolism
downregulated in the avirulent strain H37Ra

Previous works have demonstrated that inactivation of PhoP

abrogates the synthesis of acyltrehalose-based lipids [16,37]. Our

Figure 3. Quantification of gene expression by qRT-PCR. Relative expression levels of the dosR, nuoB, lipF, pks3 and icl genes. The relative
quantity (RQ) for each gene in the phoP mutant and the complemented strain were calculated with respect to the gene expression levels in the wild
type strain. The expression levels of each gene in each strain were normalized to the levels of sigA mRNA. Primers and probe sequences for the
aforementioned genes as well as for the endogenous control sigA are listed in Table S3.
doi:10.1371/journal.pone.0003496.g003
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transcriptome comparison shows that PhoP positively regulates

genes implicated in the lipid metabolism as indicated in Figure 1.

Additionally to pks3, rv1184c, fadD21 and pks2 which participate in

the synthesis of acyltrehalose-based lipids [16], we found that

PhoP regulates expression of lipF coding for a lipid esterase

required for virulence in mice [38] and fadD9 which encodes a

hypothetical fatty acid-CoA ligase. In addition, we found that

PhoP controls the fas gene encoding a fatty acid synthase which,

together with the FAS II system, generates precursors for the

synthesis of mycolic acids. Recent work has established a role for

PhoP in M. tuberculosis H37Ra attenuation, since the Ser219Leu

mutation in PhoP is responsible for the lack of acyltrehalose-based

lipids in this strain [13]. Indeed, some genes of the PhoP regulon

are downregulated in H37Ra with respect to H37Rv [39]. We

confirmed by qRT-PCR that lipF and pks3 expression is reduced in

both, H37Ra (Figure S1) and the M. tuberculosis phoP mutant

(Figure 3). Complementation of the mutant with the phoP gene

restored expression of these genes to wild type levels (Figure 3).

Expression of the persistence factor ICL is increased in
the M. tuberculosis phoP mutant

In addition to hypoxia adaptation, the ability of M. tuberculosis to

persist in the host depends largely on the capacity to utilise fatty

acids during infection [3,4]. Fatty acids are degraded to acetyl-

CoA and propionyl-CoA subunits. The glyoxylate pathway is

required for carbon anaplerosis of acetyl-CoA during starvation,

while the methylcitrate cycle is required for propionyl-CoA

metabolism and detoxification [40,41]. Both pathways share the

enzyme ICL [40]. Due to its role in the utilisation of

intraphagosomal carbon sources, ICL has been shown to be

required for persistence and virulence of M. tuberculosis in

macrophage and mice [42]. Our results from the transcriptome

and the proteome comparison consistently show as a novel finding

that PhoP negatively regulates the expression of ICL as shown in

Figure 1 and Figure 2. qRT-PCR studies showed that icl

expression was higher in the phoP mutant than in the wild type

strain (Figure 3). Unexpectedly, complementation did not restore

expression of the icl gene to wild type levels. Consequently in vitro

studies were performed to check the complementation of ICL

expression. We tested the ability of the ICL inhibitor 3-

nitropropionate (3-NP) [43] to block growth of the wild type and

the phoP mutant in media containing either glucose or propionate

as the sole carbon sources. No differences in 3-NP sensitivity were

observed when the wild type or the phoP mutant strains were

grown in glucose as carbon substrate. However, when bacteria

were forced to induce icl expression to metabolise propionate as

unique carbon source [40], the phoP mutant was less sensitive to 3-

NP when compared to wild-type bacteria (Figure 5). In addition,

complementation of the mutant with the phoPR operon restored 3-

NP sensitivity (Figure 5). These results demonstrate that the phoP

mutant is better pre-adapted than the parental strain to survive

under environmental conditions which require icl expression, and

this may possibly due to the higher ICL levels in this mutant.

Immunological properties of the phoP mutant
In preclinical studies we have previously shown that the SO2

phoP mutant is more attenuated than BCG and confers protective

immunity against tuberculosis in mice and guinea pigs [12]. In

Figure 4. Schematic representation of the PhoP-regulated genes within the extRD1 region. The extRD1 region includes genes essential
for ESAT-6/CFP10 secretion (blue), genes essential for ESAT-6/CFP10 expression (green) and genes implicated in RD1-mediated virulence (red). Genes
identified as positively regulated by PhoP are indicated (+).
doi:10.1371/journal.pone.0003496.g004

Figure 5. Determination of sensitivity to the ICL inhibitor 3-NP.
The wild type, phoP mutant and complemented strains were tested for
their ability to grow in 7H9 medium supplemented with glucose or
propionate as sole carbon sources in the presence of 3-NP. A change
from blue to pink coloration is indicative of resazurin reduction and
consequently it correlates with bacterial viability. No differences in 3-NP
sensitivity were observed when the wild type, the phoP mutant or the
complemented strains were grown in glucose as unique carbon source.
The phoP mutant is less sensitive to 3-NP than the parental strain when
grown in propionate as sole carbon supplier, indicating higher levels of
ICL expression in the mutant. Complementation of the mutant with the
phoPR operon renders bacteria as susceptible to 3-NP as the parental
strain when propionate is the unique carbon source.
doi:10.1371/journal.pone.0003496.g005
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order to test whether SO2 was able to elicit antigen-specific

responses comparable to the BCG vaccine, BALB/c mice were

immunized with both strains and one month after the initial

inoculation, Ag85A- and Hsp65-specific responses were measured

by ELISA. We observed that even if both strains present similar

antigenic capacity, mice immunised with the SO2 phoP mutant

exhibit better anti-Hsp65 and anti-Ag85A responses than BCG-

vaccinated mice (Figure 6). Additionally, given that a number of

vaccine candidates in clinical and preclinical studies are based on

Ag85-complex [44], immunity to this antigen is a substantial

benefit for the SO2 vaccine candidate. Alternatively, given that

persistence in the host could be a potential advantage for a live

attenuated vaccine, together with the evidence that ICL is

required for chronic persistence of M. tuberculosis in mice [42] led

us to study the persistence of the SO2 phoP mutant. BALB/c mice

were intravenously inoculated with either BCG or SO2. Both

BCG and the phoP mutant could be readily detected in spleen and

lungs at 1 month after immunization, but BCG was more rapidly

Figure 6. Hsp65- and Ag85A-specific responses exhibited by mice immunised with M. tuberculosis phoP mutant and BCG. Cells from
spleen, lungs and lymph nodes from mice immunised with either BCG or the phoP mutant were stimulated with Hsp65 or Ag85A (p 85) and IFNc
production was measured by ELISA. Bars represent mean and SD from two separate experiments. Asterisks indicate significant differences in IFN-c
production. A higher percentage of Hsp65-specific cells is found in spleen and lymph nodes from mice immunized with SO2 when compared with
BCG-immunised mice. Lymph nodes from SO2-immunised mice contained a higher fraction of cell responding to Ag85 in comparison with BCG-
immunised mice.
doi:10.1371/journal.pone.0003496.g006
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cleared from spleen and particularly from lungs than SO2 after 3

months (Figure 7). The increased persistence exhibited by the SO2

phoP mutant could result in prolonged exposure to the immune

system and consequently in long-term immunogenicity.

Discussion

In this work we identify the PhoP regulon in a clinical isolate of

M. tuberculosis. Although the PhoP regulon has been previously

studied in H37Rv demonstrating regulation of genes involved in

complex lipid biosynthesis [37], in this work we extend the PhoP

regulatory network with genes essential for virulence and

persistence in M. tuberculosis not previously described. Our results

demonstrate that PhoP positively regulates six major circuits: i) the

early and enduring hypoxic responses, ii) functions for aerobic and

anaerobic respiration, iii) genes within RD1 required for virulence

and ESAT-6 secretion, iv) the stress response, v) the lipid

metabolism and vi) the M. tuberculosis persistence through the

control of ICL (Figure 1).

Insights into the transcriptional response to the macrophage

environment have served to identify functions required for the

intracellular lifestyle of M. tuberculosis [4,8–10]. Remarkably, the six

transcriptional networks under the control of PhoP identified in

this work appears differentially expressed in response to macro-

phage infection (Table S1), indicating that PhoP might control key

functions for intracellular survival.

Hypoxia response
We demonstrate that PhoP mediates the early hypoxic response

in M. tuberculosis through crosstalk with DosR. Accordingly, part of

the DosR regulon is downregulated in the phoP mutant (Figure 1).

It has been demonstrated that the DosR regulon is induced in

response to macrophage infection [4,8–10], supporting the role of

these genes in the adaptation to oxygen deprivation and exposure

to oxidative radicals through sensing NO, CO or low O2 found

within macrophages [20,21,45]. Some genes of the DosR regulon

are known to be important T-cell antigens [46] and recent work

has demonstrated that the attenuated BCG vaccine is defective for

induction of two dormancy genes, narK2 and narX [47].

Conversely, the Beijing strain associated with epidemic spread

and enhanced virulence has been shown to constitutively express

the DosR regulon [48], which suggests a possible role for the DosR

regulon in virulence and consequently, downregulation of DosR in

the phoP mutant could contribute to the attenuated phenotype of

this strain.

Aerobic and anaerobic respiration
PhoP regulates the synthesis of some components of the NADH

dehydrogenase complex (Figure 1), the primary electron acceptor

of the aerobic respiratory chain. Downregulation of nuo genes has

been reported in response to macrophage infection [4,9,10],

indicating the shift in the respiratory state from aerobic to micro-

aerobic or anaerobic. PhoP also controls the expression of the ald

gene (Figure 1). Ald might be involved in NADH regeneration

under limiting O2 environments [27] and hence, it appears

induced in M. tuberculosis upon infection of macrophage and

dendritic cells [4,10]. The ald gene is upregulated in M. tuberculosis

upon nutrient starvation [49] and in Mycobacterium marinum during

persistent infection [50], which suggest a role for this enzyme in

hypoxia-mediated persistence [51]. In addition, it has been shown

that all BCG strains lack a functional Ald enzyme and this may

results in restricted ability of BCG to persist within the host [52].

Genes of the anaerobic respiration belonging to the PhoP regulon

include the nitrite transporter narK1 and the sulphur reduction

operon, nirA-cysH (Figure 1), all of which have been differentially

expressed in response to macrophage infection [8,9,53] and

further supporting the metabolic shift from aerobic to anaerobic

respiration. CysH could have a secondary role in protecting M.

tuberculosis during the chronic phase of infection [54]. Indeed, an

M. tuberculosis cysH mutant is attenuated and generates protective

Figure 7. Persistence of BCG and the M. tuberculosis phoP mutant in BALB/c mice. Animals were intravenously infected with either BCG or
the SO2 phoP mutant. Bars represent mean and SD of log10 CFUs recovered from spleen and lungs of inoculated animal at 1 and 3 months after the
initial infection. Asterisks indicate significant differences in CFU counts. We were unable to compare persistence of the SO2 phoP mutant with the
wild type since the latter strain kills animals by day 60 post infection (data not shown).
doi:10.1371/journal.pone.0003496.g007
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efficacy against tuberculosis infection equivalent to that of BCG

[55]. In this context, downregulation of the cysH gene in the phoP

mutant could contribute to the attenuated phenotype and the

protection against disease displayed by this strain.

RD1-mediated virulence
A number of works supports the role of the RD1 region in

virulence: complementation of BCG with RD1 increases virulence

in mice [29] and conversely, deletion of RD1 in M. tuberculosis

produces attenuation [56,57]. Concretely, the rv3865 and rv3866

genes are involved in RD1-mediated virulence [31]. Thus,

downregulation of these genes in the phoP mutant could contribute

to attenuation. On the other hand, the espB homolog in the fish

pathogen M. marinum is required for virulence and intracellular

growth in infected macrophages [35,58]. Further supporting the

role of EspB in virulence, it has been shown that this protein is

absent from the attenuated BCG vaccine [59].

Stress response
Molecular chaperons play a possible role in protecting M.

tuberculosis against the oxidative radicals produced in phagosomes

and thus, their expression is upregulated within macrophages

[4,8,60]. The PhoP regulon includes genes of the stress response

(Figure 1). In addition, the phoP gene itself appears upregulated

under heat-stress [61]. We also demonstrate that even though the

phoP mutant displays decreased expression of stress proteins, this

strain is able to elicit an anti-Hsp65 response comparable to that of

the vaccine strain BCG (Figure 6). This might result as a

consequence of the persistent phenotype of the phoP mutant, since

prolonged exposure of the mutant to the immune system likely

results in better anti-Hsp65 responses.

Lipid metabolism
Some genes of the PhoP regulon required for the synthesis of

acyltrehalose-based lipids are upregulated in response to macro-

phage infection [4,8–10,62]. This suggests that these lipids might

play a role in either virulence or immunomodulatory processes.

Other genes from the PhoP regulon which are also upregulated in

response to macrophage infection include lipF and fadD9 [4,8–10].

Altogether, these findings suggest that PhoP might control the cell

envelope remodelling in response to the intracellular environment.

Persistence
The ability of M. tuberculosis to persist for long period in the

infected host is probably the result of a number of metabolic

adaptations. Among them, one of the most studied is the

anaplerotic utilisation of intracellular carbon sources through the

glyoxylate shunt enzyme ICL [40,42,63]. Various works coincide

to show upregulation of the icl gene after M. tuberculosis infection of

macrophages and dendritic cells [4,8–10,53,62], which reflects the

key implications for this enzyme in intracellular persistence. In this

work, we demonstrate that PhoP negatively regulates icl expression

by transcriptomic and proteomic comparisons (Figure 1 and

Figure 2), as well as in qRT-PCR analyses (Figure 3) and

biochemical studies (Figure 5). The increased expression of ICL in

the phoP mutant could account for the persistent phenotype

displayed by this strain upon infection of BALB/c mice (Figure 7).

General conclussion
Overall, we can conclude that PhoP regulates key functions

required for the intracellular survival and persistence of M.

tuberculosis. Therefore, inactivation of phoP results in downregula-

tion of genes required to successfully survive within macrophages

and consequently in M. tuberculosis attenuation. On the other hand,

we provide evidence that ICL is expressed at higher levels in the

phoP mutant than in the parental strain. Thus, M. tuberculosis phoP

mutants would be better pre-adapted to persist in the host. Taken

together, these observations provide a plausible explanation for the

attenuated but persistent phenotype displayed by phoP mutants

and allow understanding the potential applications as vaccine

candidates [64].

Materials and Methods

Bacterial strains used in this study
We used the phoP deletion mutant previously constructed in the

M. tuberculosis clinical isolate MT103. This mutant was constructed

by replacing an EcoRV-BclI restriction fragment internal to the

phoP gene with a hygromycin resistance marker [16]. The mutant

was complemented with the entire phoPR operon using the

replicative plasmid pJUZ1K [16]. The phoP mutant SO2

constructed in the MT103 strain [11] was used to test the

immunological properties. The strains H37Rv [65] and H37Ra

(ATCC nu 25177) were also used in this study.

RNA isolation
The M. tuberculosis wild type, the phoP mutant and complement-

ed strains were grown until the desired OD600 in 7H9-ADC 0.05%

Tween 80 at 37uC under aerobic conditions. The RNA from

bacterial pellet was stabilised using the RNAprotect Bacteria

Reagent (QIAGEN) following manufacturer’s recommendations.

Cells were resuspended in 1 ml acid phenol:chloroform (5:1) and

0.4 ml lysis buffer (0.5% SDS, 20 mM NaAc, 0.1 mM EDTA) and

transferred to 2 ml Lysing Matrix B screw-cap tubes containing

0.1 mm silica spheres (Q-BIOgene). Cells were disrupted by three

30 s pulses in a FastPrep homogenizer (Q-BIOgene). After

centrifugation, RNA from the supernatant was further extracted

with 0.9 ml chloroform:isoamyl alcohol (24:1). Total RNA was

precipitated with NaAc/isopropanol and washed with 70%

ethanol. The extracted RNA was treated with RNase-free DNase

(Ambion) and the RNA was then further purified, using the

RNeasy kit (Qiagen). DNA contamination was ruled out by lack of

amplification products after 35 cycles of PCR and the integrity of

the RNA was checked by gel electrophoresis in a 1% agarose gel.

DNA microarray analysis
Two independent cultures of each, the wild type strain and the

phoP mutant were grown until OD600<0.45. At this point RNA

was prepared and Cy3/Cy5 labeled for use in genome-wide

transcription profiling experiments using glass slide microarrays. A

Virtek Chipwriter (model SDDC2) was used to print oligonucle-

otides on Sigmascreen microarray slides (Sigma). Lyophilized 70-

mers from the TB Array-Ready Oligo Set (Operon) were

resuspended and printed in duplicate as twenty-four 24624 grids.

Duplicate hybridizations were performed for each dye combina-

tion (Cy5 vs Cy3 and Cy3 vs Cy5), amounting to 8 independent

hybridizations using 4 different biological RNA samples. All spots

flagged as misrepresentative (array artefacts, etc.) were analytically

ignored. Total spot intensity minus the surrounding background

produced a corrected spot intensity. Negative corrected spot

intensities were set to +1. Intensity ratios (Cy3/Cy5 or Cy5/Cy3)

were determined using corrected spot intensities and log10

transformed. Values for each gene were obtained for each array

in duplicate (inherent to array design) and averaged. For each

array, a representative Z-score, indicative of how many standard

deviations a data point lies above or under the population mean,

was calculated for each gene. Z-scores for each gene were
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averaged across the replicates within each experiment to minimize

the probability of observing such variations by chance alone. Only

genes with average Z-scores $2 or #22 were considered as

statistically significant.

quantitative Real-Time PCR (qRT-PCR)
Expand Reverse Transcriptase (Roche) was used to prepare

randomly primed cDNA libraries from 1 mg of each RNA sample.

cDNA prepared in this manner was diluted 1:10 prior to use in

subsequent qRT-PCR experiments. The primers and FAM-

labelled TaqMan probes used in qRT-PCR experiments were

designed using the Primer Express Software (Applied Biosystems)

and are listed in Table S3. qRT-PCR was carried out in a

StepOne Plus instrument (Applied Biosystems) using standard

reaction conditions recommended by the manufacturer.

2D-electrophoresis and mass spectrometry
For preparation of cellular proteins, 100 ml cultures of the wild

type and the phoP mutant were grown in 7H9-ADC-0.05% Tween

80 to OD600<0.8 and cells were pelleted by centrifugation. Pellets

were washed twice with PBS and then resuspended in cold PBS.

To avoid proteolytic degradation protease inhibitors (2.5 mg/ml

pepstatin A, 5 mg/ml leupeptin, 25 mg/ml pefabloc and 1 mg/ml

aprotinine) were added prior to cell lysis. Mycobacteria were

disrupted by sonication using a bioruptor (Diagenode) for ten

cycles (45 sec at high power) allowing to cool in an ice-water bath

for 1 min between pulses. The proteins were treated with 9 M

urea, 70 mM DTT and 2% Triton X-100 to obtain completely

denatured and reduced proteins. The mixture was incubated

30 min at room temperature with regular mixing and then

centrifuged. The supernatant containing whole-cell protein

extracts was filtered through a 0.22 mm-pore-size low protein

binding filter. The cellular proteins were separated by 2D gel

electrophoresis. First dimension separation was carried out by

loading 90 mg onto IEF strips pH4-7 (GE healthcare) followed by

isoelectric focusing for 64000 Vhr on the IPGphor (Amersham/

GEhealthcare). Second dimension separation was carried out

using 20625 cm polyacrylamide gels and the EttanDALTtwelve

separation unit (Amersham) according to the manufacturer’s

manual. Gels were stained with silver nitrate (Silver stain,

Amersham), digitised using a AGFA duoscan T2500 and analysed

and compared using PDquest 7.4.0 (Bio-rad). For subsequent MS

analysis, gels were rerun with 150 mg proteins and stained with a

mass spectrometry compatible silver stain (SilverQuest, Invitro-

gen). Protein spots of interest were excised from gel and were sent

to the Free University in Amsterdam for Mass Spectrometry (4800

MALDI TOF/TOF, Applied Biosystems). Identification of

proteins was performed using MALDI-MS peptide mass finger-

printing and Mascot Search (http://www.matrixscience.com) with

a species-limited search filter, which restricted the search to M.

tuberculosis complex.

Resazurin microtiter assay for determination of sensitivity
to 3-NP

Sensitivity to 3-NP was determined by the resazurin assay. 3-NP

was dissolved in water and 2-fold serial dilutions of the inhibitor

were made in 7H9 AS (5 mg/ml albumin, 0.85 mg/ml NaCl in

7H9 medium) in microtiter plates, being the final 3-NP

concentration range 1000-1.62 mg/ml. Cultures of wild type, the

phoP mutant and complemented strains were grown in 7H9 AS

supplemented with 0.1% of either glucose or propionate as sole

carbon sources. When OD600 of the cultures reached a value of

0.3–0.5, 0.1 ml of each bacterial suspension were added to the

microtiter plate containing 0.1 ml dilutions of 3-NP. The plates

were incubated for 24 h at 37uC. Then, 20 ml of a 0.01%

resazurin solution were added per well, colouring them blue.

Plates were incubated at 37uC for additional 24 h. After

incubation plates were read for color change from blue to pink,

indicative of resazurin reduction by viable bacteria.

Measurement of T-cell responses against M. tuberculosis
Hsp65 and Ag85A

Animal work was performed with approval from the local

Ethical Committee for Experimentation in Animals in Mexico.

Two separate experiments were performed, 8 weeks old male

BALB/c mice (4 per group) were immunised by subcutaneous

inoculation in the base of tail vein with 8000 CFUs of the BCG

Phipps vaccine and 2500 CFUs of the SO2 phoP mutant. One

month after the initial immunisation, mice were euthanased and

cell suspensions were prepared from spleen, lungs and lymph

nodes. Cells were stimulated with 5 mg/ml of either Hsp65 or

Ag85A for 48 h. Then, IFNc production in the supernatant was

measured by ELISA.

Infection of BALB/c mice and enumeration of CFUs in
mouse organs

BALB/c (H-2d) mice were bred in the Animal Facilities of the

Pasteur Institute of Brussels, from breeding couples originally

obtained from Bantin & Kingman (UK). 8–10 weeks old BALB/c

mice (4 per group) were intravenously inoculated with 56105

CFUs of either the BCG vaccine (GL2 strain) or the SO2 phoP

mutant. Mice were sacrificed humanely at 1 and 3 months after

the initial immunisation. Spleen and lung tissue were aseptically

removed and processed to enumerate the number of bacteria.

Tissues were homogenised in 10 ml of sterile PBS using a Dounce

Homogenizer. Viable counts were performed on serial dilutions of

the homogenate, plated on 7H11-OADC Middlebrook agar and

enumerated after 3 weeks growing at 37uC. Numbers of CFU/

organ were converted to log10 CFU values. Results are reported

as mean log10 CFU+/2SD of four mice tested individually.

Supporting Information

Table S1 Whole-genome transcriptional profiling comparing

the M. tuberculosis wild type strain with the phoP mutant. The upper

part of the table shows the 74 genes with higher expression in the

wild-type than in the mutant strain. The lower part of the table

shows the 4 genes with higher expression in mutant than in the

wild type. The Z-score, indicative of how many standard

deviations a data point lies above or below the population mean,

is the average for that gene across 4 DNA microarrays using 2

RNA samples each of wild type and the phoP mutant (8

hybridizations in total). Genes are shaded depending on their

function. Violet indicates genes from the DosR and Enduring

Hypoxic Response regulons. Yellow refers to genes of the

respiratory metabolism. Orange indicates genes implicated in

lipid metabolism. Green denotes genes encoding stress proteins.

Blue refers to genes within RD1. The icl gene implicated in M.

tuberculosis persistence is shaded in red. Gray indicates PhoP-

regulated genes identified in previous works for being differentially

expressed upon M. tuberculosis infection of macrophages and

dendritic cells [4,8–10].

Found at: doi:10.1371/journal.pone.0003496.s001 (0.45 MB

PDF)

Table S2 Mass spectrometry analysis of cellular proteins

differentially expressed in M. tuberculosis wild type and its phoP
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mutant. A protein is positively identified if the confidence interval

is .95%, with at least one sequenced peptide displaying a

confidence interval of .99%, and if the experimental molecular

weight (MW) and isoelectric point (pI) correspond to the

theoretical MW and pI. The fold change in expression is the

average for each spot of the triplicate gels in two independent

experiments using different biological samples.

Found at: doi:10.1371/journal.pone.0003496.s002 (0.01 MB

PDF)

Table S3 Primers and probes used in qRT-PCR experiments

Found at: doi:10.1371/journal.pone.0003496.s003 (0.01 MB

PDF)

Figure S1 Relative expression levels of the dosR, lipF and pks3

genes in H37Ra with respect to H37Rv. The expression levels of

each gene in each strain were normalized to the levels of sigA

mRNA. Primers and probe sequences for the aforementioned

genes as well as for the endogenous control sigA are listed in Table

S3.

Found at: doi:10.1371/journal.pone.0003496.s004 (0.44 MB

PDF)
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