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Summary. Health economic decision models are subject to considerable uncertainty, much of
which arises from choices between several plausible model structures, e.g.choices of covariates
in a regression model. Such structural uncertainty is rarely accounted for formally in decision
models but can be addressed by model averaging. We discuss the most common methods of
averaging models and the principles underlying them. We apply them to a comparison of two
surgical techniques for repairing abdominal aortic aneurysms. In model averaging, competing
models are usually either weighted by using an asymptotically consistent model assessment
criterion, such as the Bayesian information criterion, or a measure of predictive ability, such
as Akaike’s information criterion. We argue that the predictive approach is more suitable when
modelling the complex underlying processes of interest in health economics, such as individual
disease progression and response to treatment.
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1. Uncertainty in health economic decision models

Health economic decision models are routinely used to guide the choice of the most appropri-
ate treatment for patient groups on the basis of expected benefits and costs, commonly over a
lifetime (National Institute for Health and Clinical Excellence, 2008). For chronic and recur-
ring diseases, they are often implemented by using Markov models in which individuals move
between clinical states of interest in discrete time periods, and each state is associated with a
cost and benefit (Briggs et al., 2006). The parameters of these models include probabilities gov-
erning transition between the states, the costs and benefits that are associated with each state
and the effects of treatment and other covariates. Ideally, all available relevant evidence is used
to inform these parameters, which may include randomized controlled trials and population
mortality statistics. However, trials only provide information about relative effectiveness and
costs of treatments in the short term, typically 5 years or less. To compare the treatments over
patient lifetimes, extrapolations must be made, and the uncertainties that are inherent in the
short-term results may be aggravated.

The expected costs and benefits for each treatment under the model, which are used to make
the decision, are subject to uncertainty (Claxton et al., 2002). In general, decision models are
non-linear, so the expected model output does not equal the output evaluated at the expected
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values of the parameters of the model. Thus, to determine the expected costs and benefits accu-
rately, it is necessary also to consider the uncertainty surrounding the inputs to the model, as
discussed by Briggs et al. (2006), chapter 4. At the same time, considering the size and source
of uncertainties can guide future research priorities (e.g. Tappenden et al. (2004)). Thus these
uncertainties should be characterized, as discussed by Briggs (2000) and Bojke et al. (2006).
Broadly, we distinguish between

(a) the choice of the most appropriate sources of data to inform the model (judgement
uncertainty) and

(b) uncertainty about what inferences should be made from a particular set of data. Such
statistical uncertainty can be further classified as
(i) parameter uncertainty—the choice of the specific values of parameters in a chosen

model structure and
(ii) model uncertainty—the choice of the appropriate model structure (Draper, 1995).

In health economics, this might involve the set of clinical states to include, the
choice of covariate effects to include on a particular transition probability, cost or
benefit, or the choice of fixed or random-effects meta-analysis for synthesizing the
results of trials (Bojke et al., 2006).

Accounting for parameter uncertainty by probabilistic sensitivity analysis (Claxton et al., 2002;
Spiegelhalter and Best, 2003) is now well established. This involves placing probability distri-
butions on the model parameters, often posterior distributions estimated by Bayesian methods.
Monte Carlo simulation is then performed to estimate a distribution for the model outputs
which accounts for the uncertainty in the inputs. In this paper, in contrast, we discuss methods
of accounting for model uncertainty.

In health economics, although it is common to present a series of results under different struc-
tural assumptions, model uncertainty is rarely accounted for in a formal probabilistic manner.
Russell (2005) recommended constructing a probability distribution over model structures, and
Bojke et al. (2006) suggested that the model uncertainty be expressed through an extra parameter
in the model during probabilistic sensitivity analysis. We describe how the required distribution
over the choice of model structures can be obtained from the data. Essentially, this involves
deriving weights from some measure of the adequacy of each model, judged against data. This
leads to a model-averaged distribution for the model output as a weighted combination of the
model-specific output distributions. Although measures of fit may be used to choose the best
of several models which lead to different inferences, basing the decision purely on this best
fitting model implies certainty that this model, and no others, is reasonable. In reality, there is
rarely complete certainty. Weighting the outputs of the models according to the extent that the
data support them should lead to better-informed decisions. Although the individual models
themselves may be fitted from a Bayesian or classical perspective, we take a Bayesian view of the
process of averaging the model outputs, considering the weights as posterior model probabilities
for certain prior model probabilities.

In Section 2, we describe a decision model which compared two surgical methods of abdom-
inal aortic aneurysm (AAA) repair, and we describe the main sources of statistical uncertainty
in this model. In Section 3, we give a formal description of model averaging and review various
model adequacy measures which can be used to weight the competing models. We discuss the
underlying philosophies and principles behind each measure. Broadly, these are either geared
towards assessing predictive performance or uncovering a ‘true’ data-generating mechanism.
We argue that if the aim is to make predictions in situations where reality is complex, such
as in health economic models for incidence of clinical events and response to treatment, then
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predictive model assessment is preferable. In this approach, more complex models are essentially
given greater prior weight as the sample size increases. In Section 4, the model averaging methods
are applied to the aneurysm surgery decision model. Finally, we suggest further extensions of
the methods, and discuss how some other forms of model uncertainty in health economics may
be addressed.

2. Application: surgery for abdominal aortic aneurysm repair

The EVAR1 trial (EVAR Trial Participants, 2005) compared endo-vascular aneurysm repair
(EVAR) with repair by open surgery in patients with large AAAs. Following the trial, which
had an average follow-up of 3 years, a long-term model was developed (Epstein et al., 2008) to
assess the lifetime costs and benefits of EVAR compared with open repair for 74-year-old men.
Following aneurysm repair, if patients survived at least 30 days after surgery, they were assumed
to enter a long-term Markov model. This had eight states, which included hospital admissions
for non-fatal AAA or other cardio-vascular disease (CVD) events, three states representing peri-
ods spent out of hospital and states representing death from three possible causes, illustrated in
Fig. 1. In addition, a few patients receiving EVAR were converted to open repair during surgery.
After conversion to open repair, surviving patients were assumed to enter a parallel long-term
Markov model with the same states as in Fig. 1, but with some changed transition probabilities.
The transition probabilities between the states were informed by data from the EVAR1 trial,
population life tables and expert judgement. Further details of the model are given by Epstein
et al. (2008). For example, the risk of death from CVD at any time for a patient receiving EVAR
is the product of the mortality rate for CVD in the general population (from population data),
the hazard ratio for CVD death among the trial population relative to the general population
(from expert judgement) and the hazard ratio for EVAR compared with open repair (from the
EVAR1 trial).

The standard framework was assumed for predicting expected costs and benefits, as follows.
This is a discrete time, discrete state Markov model, with transition probability matrix Pt ,
which evolves over T ‘cycles’, or time units, t = 1, . . . , T . The probability distribution of the
state occupied by an individual at time t follows the recursive relationship πt =πt−1Pt , where π0

Fig. 1. Representation of the Markov decision model for aneurysm repair: states and permitted transitions
between them
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is such that all individuals are in state 1 (no event) with probability 1 at time 0. There are costs
cs, s=1, . . . , S, associated with one cycle spent in each of the S states and a fixed initial cost c0,
and future costs are discounted at a rate of 100δ% per cycle. Then the total expected cost over
T cycles for an individual undergoing a particular treatment is

E.C/= c0 +
T∑

t=1

πtc′

.1+ δ/t−1 :

There is an analogous formula for the total expected benefit E.B/. In this example, benefit
was expressed in quality-adjusted life years (QALYs) (Torrance and Feeny, 1989), and the dis-
count rate was 3.5% per year. The model is run twice, once assuming a surgical policy of
EVAR and once with a policy of open repair. Estimation focuses on the incremental cost ΔC =
E.C1/ − E.C0/ of EVAR compared with open repair, the incremental benefit ΔB = E.B1/ −
E.B0/ and the incremental cost-effectiveness ratio (ICER) ΔC=ΔB, interpreted as the cost per
QALY gained from using EVAR instead of open repair. A more effective new treatment (ΔB >0)
is accepted if its ICER lies below a maximum value acceptable to the decision maker (Johan-
nesson and Weinstein, 1993). The parameter uncertainty that is inherent in these quantities
is accounted for by probabilistic sensitivity analysis, which provides simulated distributions
of incremental costs and benefits. This leads to the probability PCE.λ/ that EVAR is cost
effective compared with open repair, defined as the probability of a positive incremental net
benefit:

PCE.λ/=P.λΔB −ΔC > 0/: .1/

This depends on a ‘threshold’ λ, the amount of money that a policy maker is willing to pay for
1 unit of benefit (such as 1 QALY).

The cost-effectiveness results for 74-year old men were presented by Epstein et al. (2008) for
a plausible ‘base case’ followed by a series of eight alternative sets of reasonable model assump-
tions. The probability that EVAR was cost effective was substantially different from the base
case under three alternative scenarios, defined by the following parameters.

(a) The first parameter is the mortality rate from CVD causes in the trial population com-
pared with the general population. In the base case, this was assumed to be a hazard
ratio of 2.00 (95% confidence interval 0.83–4.83). This was an expert judgement, loosely
informed by the result of a previous study (Brady et al., 2001). In the first alternative
scenario, this hazard ratio was set to 1, an assumption of no effect.

(b) The second is the treatment effect on the CVD mortality rate. In the base case, this
was taken to be a hazard ratio of 3.06 (95% confidence interval 1.12–8.36) for EVAR
compared with open repair. This was calculated from a piecewise exponential survival
model on the EVAR1 trial data and assumed only to operate in the second year after
the surgery. In the second alternative scenario, this hazard ratio was set to 1.

(c) The third parameter is the treatment effect on the long-term AAA mortality rate. In
the base case, this was a hazard ratio of 5.84 (0.70, 48.50) for EVAR, calculated from a
Poisson regression of the EVAR1 trial data (six AAA deaths per 15132 person-months
in the EVAR arm, versus 1 per 14720 in the open repair arm). In a third alternative
scenario, this hazard ratio was set to 1.

Under four of the remaining five scenarios, the probability of cost-effectiveness was similar
to the base case; therefore we do not consider these further in this paper. Cost-effectiveness
results were also substantially different under a final alternative scenario in which mortality
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30 days after open repair was 8%, obtained from routine hospital data, instead of the 5% that
was observed in the EVAR1 trial data. This model choice is difficult to assess formally, since
it involves judging which data are more representative of the population for which the policy
will be made. Therefore we consider only scenarios (a)–(c) above in our formal quantification
of model uncertainty in this paper.

The probability that EVAR is cost effective, PCE.λ/, for λ=£20000 per QALY, was estimated
to be 0.011 under the base case. Under each of the three alternative scenarios, the incremental
effectiveness of the EVAR treatment was higher; thus this probability was higher than under
the base case: 0.020, 0.081 and 0.067. When all the hazard ratios were simultaneously set to 1,
the probability that EVAR is cost effective was 0.52.

At the moment, the uncertainty arising from these three model choices can only be assessed
by the reader informally ‘weighting’ the results by their opinion about the plausibility of the
different scenarios. We aim to obtain a combined result which weights the individual results
according to the extent to which the data formally support the models. The decision about the
most cost-effective treatment will then take into account the uncertainty surrounding the model
choice.

2.1. Characterizing covariate selection uncertainty
In statistical terms, these model choices are problems of covariate selection in regression. For
example, choice (b) concerns whether to include treatment in a regression model for CVD
mortality, or to assume no effect of treatment. Covariate selection could, alternatively, just be
considered as parameter uncertainty. Then, predictions would be made from the largest model,
using estimated posterior distributions of effects from a model containing all possible covari-
ates. Some of these posterior distributions would be consistent with a covariate effect of zero.
However, routine use of such large models with insufficient data to inform them would lead
to poorer predictions (in a mean-squared error sense) and consequently less reliable decisions
(Harrell et al., 1996). Therefore, we consider covariate selection as uncertainty about model
structure: the question is which set of covariates do we include, as well as what are the effects of
the included covariates and their uncertainties?

Covariate selection problems are most often tackled in practice by searching for a combina-
tion of covariates with optimal combination of fit and parsimony, then basing inferences on that
single model. This ignores the uncertainty that is involved in this selection, so the uncertainty
about the eventual inference may be underestimated. As reviewed by Clyde and George (2004),
methods have been proposed to account for the model selection uncertainty. In this paper,
model averaging will be used to combine the results of models with different combinations of
covariates, using weights derived from measures of model fit and parsimony. This technique is
applicable to a wide range of model uncertainty problems as well as covariate selection.

3. Model averaging

Model averaging is a formal method of accounting for model uncertainty among predictions
yk =Mk.x/ from a series of competing models Mk, k =1, . . . , K, fitted to data x. In the Bayesian
view of model averaging (Leamer, 1978; Draper, 1995; Kass and Raftery, 1995; Hoeting et al.,
1999) the interest is in the posterior predictive distribution of y. This is calculated as the average of
the model-specific posterior predictive distributions over posterior model probabilities p.Mk|x/.

p.y|x/=∑
k

p.Mk|x/p.y|Mk, x/: .2/
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The probability that is assigned to model k is calculated as

p.Mk|x/=Ak

/∑
k

Ak .3/

where Ak is some adequacy measure for model Mk, computed in terms of data x. If available,
information on model adequacy external to the data may also contribute to Ak through prior
model probabilities. Basing inferences purely on the model with the largest Ak, or model selec-
tion, suggests complete certainty that this model is appropriate and the other models under
consideration are inappropriate. In health economic contexts there is usually uncertainty about
this choice, which model averaging takes into account.

3.1. Model adequacy measures
The likelihood is the fundamental measure of the fit of a model to data. However, the maxi-
mized likelihood will always increase with the number of parameters (such as covariate effects)
in the model. As the number of parameters grows, the predictive variance of a fitted model
increases. Therefore, a measure of adequacy is desired which makes a compromise between fit
and complexity, or bias and variance.

Historically, two distinct adequacy measures have been used to compute probabilities for
model averaging: Akaike’s information criterion AIC and marginal likelihood. We now describe
these measures in more detail. Although both of these trade off fit (measured by the likelihood)
and complexity, they represent fundamentally different views of model assessment, as we discuss
in Section 3.2.

3.1.1. Akaike’s information criterion
Suppose that a model f.x|θ/ with parameters θ is fitted to data x, obtaining maximum likeli-
hood estimates θ̂. The expected Kullback–Leibler divergence from the truth of the predictive
distribution of a replicate data set y, given this fitted model, is

Ey{Ex.log[f{y|θ̂.x/}]/}:

Akaike (1973) showed that the maximized log-likelihood log{f.x|θ̂/} was an overestimate of this
predictive discrepancy, because the parameters θ have been estimated. Using two second-order
Taylor series approximations, this bias was shown to be asymptotically equal to p, the number
of parameters in the model. The error of the approximation is O.1=

√
n/, for sample size n, if

the true process belongs to the same parametric family as f (Ripley, 1996). Hence, multiplying
by the conventional −2, Akaike (1973) defined ‘an information criterion’ as

AIC=−2 log{f.x|θ̂/}+2p: .4/

Thus, model selection based on minimum AIC seeks the model with the best predictive ability
for a new data set generated by the same process, as measured by Kullback–Leibler divergence.

For model averaging, Buckland et al. (1997) and Burnham and Anderson (2002) set

Ak = exp.−0:5 AIC/, .5/

thus transforming AIC back to the scale of probabilities. The resulting model probabilities,
Ak=ΣkAk, are often termed Akaike weights. Hjort and Claeskens (2003) rigorously assessed the
properties of the resulting model-averaged estimators. All these researchers were working from
a frequentist perspective and presented methods for calculating modified standard errors for
the model-averaged outputs to account for model uncertainty.
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3.1.2. Marginal likelihood and Bayes factors
Bayesian model comparison and hypothesis testing are conventionally based on the Bayes factor
or ratio of marginal likelihoods between models. See, for example, Kass and Raftery (1995) for
a review of their theory, computation and interpretation. The marginal likelihood f.x|M/ of a
model M fitted to data x measures the ability of all model assumptions, both likelihood and
prior, to predict the data x. It is defined by integrating the likelihood f.x|θ, M/ with respect to
the prior distribution π.θ|M/ of parameters θ:

f.x|M/=
∫

f.x|θ, M/π.θ|M/dθ: .6/

Commonly, model choice is based on maximizing the marginal likelihood, with the implicit
assumption that the prior probabilities p.M/ of all competing models are equal.

The marginal likelihood is difficult to compute in general. The integral is available only in
closed form for some very simple cases such as linear regression (Raftery et al., 1997), and other
exponential family models with conjugate priors. Approximations are usually necessary. The
most commonly used of these is a measure that is derived from Laplace integration, centred on
the posterior mode or maximum likelihood estimate θ̂ (Schwarz, 1978). Often called the Bayes-
ian information criterion BIC, this measure is an asymptotic approximation to minus twice the
logarithm of the marginal likelihood:

BIC=−2 log{f.x|θ̂/}+p log.n/: .7/

p is the number of parameters, and n is the sample size. Note that this takes the same penalized
log-likelihood form as AIC, but with a stricter penalty for complexity, which grows with the
sample size.

As discussed by Kass and Raftery (1995), the ‘sample size’ is not always clearly defined.
The term n in BIC arises from the Laplace integration via a further approximation: log.|Î|/≈
p log.n/, where Î is the observed Fisher information matrix evaluated at the maximum likeli-
hood estimate (Kass and Vaidyanathan, 1992). Informally, n is the number of units giving rise
to a distinct piece of data, e.g. the number of observations in a normal distribution model, the
sum of the denominators in a binomial logistic regression and the total number of counts in a
Poisson log-linear model for a contingency table. In health economic models, Markov transi-
tion probabilities are often estimated by using Cox or parametric survival regressions. In these
models, we take n to be the number of individuals, for consistency with logistic regression.

In Bayesian model averaging (Draper, 1995; Kass and Raftery, 1995) the weight for model k
is usually defined as

Ak =p.Mk/f.x|Mk/, .8/

where p.Mk/ is the prior probability over the model space that is assigned to model k, and
f.x|Mk/ is the marginal likelihood of model k. Assuming equal prior model probabilities p.Mk/,
the weights are therefore approximated as

Ak = exp.−0:5 BIC/: .9/

3.2. Principles behind AIC- and BIC-based model assessment
In Section 3.1, we described two classes of model adequacy measures that are used in model
averaging, based on Kullback–Leibler predictive discrepancy and marginal likelihood, and their
AIC- and BIC-approximations. These are based on fundamentally different principles. The
choice of which of these measures to use depends on the purpose of the model assessment.
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Firstly, observe that with BIC, if n � 8, there is a larger penalty for complexity (p log.n/),
compared with AIC (2p). This penalty increases with the sample size n. This relationship of
the marginal likelihood to the sample size ensures that model choice based on Bayes factors or
BIC is consistent as the sample size increases. Suppose that, as n increases, the set of candidate
models M1, . . . , MK is fixed, and the priors on the parameters π.θ|Mk/ and the model space
p.Mk/ are fixed. Then, as more data become available, there is some k such that the posterior
model probability p.Mk|x/ → 1 with probability 1 (Bernardo and Smith, 1994), i.e. selection
based on marginal likelihoods converges to a single model choice as n increases. The advantage
of this is that, if one of the candidate models is the true data-generating process, more data will
always lead to uncovering that truth.

Conversely, model selection based on AIC will not consistently select the same model from
a fixed set as the sample size increases. AIC aims to select the model with the best predictive
ability for a future observation. As discussed by Burnham and Anderson (2002), as more data
become available, better predictions will often result from larger models.

Bernardo and Smith (1994) discussed the notion of M-closed and M-open model selec-
tion scenarios. In an M-closed scenario, the set of candidate models is fixed in advance of
data collection. In an M-open scenario, the set of models under consideration is varied with
the data: typically a wider range of models would be considered as the sample size increases.
They argued that model comparison based on marginal likelihoods is only appropriate in an
M-closed situation, where it is believed that one of the candidate models is the truth. This may
be appropriate if there is a relatively low dimensional physical process generating the data, and
the aim is to determine that process. In other circumstances, models are considered as conve-
nient mechanisms to approximate highly complex processes. Then, model selection procedures
based on predictive ability, such as cross-validation or AIC, are more appropriate. As discussed
by Kadane and Lazar (2004), a compromise between the two approaches may sometimes be
desirable, depending on the relative importance that is placed on predictive ability and model
parsimony. In a Bayesian context, this compromise would involve varying the prior assumptions
on the model space or the model parameters.

3.2.1. Prior model probabilities implied by AIC
Another view on the principles underlying AIC is provided by interpreting model averaging by
using AIC as a Bayesian procedure. Burnham and Anderson (2002) observed that AIC-based
averaging (as in equation (5)) is equivalent to the conventional Bayesian model averaging pro-
cedure (as in equation (8)) using BIC to approximate f.x|Mk/, combined with specific implied
prior model probabilities:

p.Mk/∝ exp{0:5pk log.n/−pk}, .10/

i.e. the implied prior model probability depends on the sample size n, such that larger mod-
els (with a greater number of parameters pk) are more likely to be considered when there are
more data. They argued that this is usually preferable, since in real applications the truth is
usually complex. Although these implied priors might seem strongly to favour complexity (e.g.
p.M1/=0:08 and p.M2/=0:92 for n=1000 and p1 =1 and p2 =2), their influence is moderated
when combined with the BIC-based ‘model likelihood’, which has a heavy complexity penalty.
If there is additional information, external to the data, about the preference between models,
this could be used to weight the p.Mk/ of equation (10). Then the model weights would be based
on both prior information and predictive ability judged from the data.

Burnham and Anderson (2002) also compared the predictive ability of AIC- and BIC-based
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model selection by simulation. Model selection using BIC (and implied equal prior model prob-
abilities) was shown to give a lower mean-square predictive error than AIC when there was a
low dimensional ‘true model’ with only a few large effects. AIC performed better when the truth
was a more complex model with a few large effects and many small effects. Model-averaged pre-
dictions, using either method, were consistently better than predictions that were conditional
on a selected ‘best’ model.

3.3. Implementation and consequences of model averaging
Implementation of Bayesian model averaging and its consequences for inference were discussed
in detail by Hoeting et al. (1999). One important issue is how to choose the set of candidate mod-
els to be averaged over. Draper (1995) recommended that candidate models should be chosen
to ‘stake out the corners in the model space’, i.e. a set of reasonably well-supported models with
different predictive consequences should be considered: there is no point in averaging over a set
of several models which lead to very similar inferences, even though they all have very similar fits
to the data. When averaging over models which give different predictions, the model-averaged
inferences will generally have greater uncertainty than the model-specific inferences. Conversely,
as remarked by Tukey (in the discussion of Draper (1995)), when averaging over two models
with identical point estimates, one with tight confidence limits and the other with wider limits,
the variance of the averaged prediction will be between the two model-specific variances.

In general, computing posterior model probabilities for model averaging is easy by using AIC
or BIC approximations: only a maximized likelihood for each competing model is required,
which is outputted by standard software. Furthermore, for a model choice between two models
with and without a particular covariate, as in the aneurysm surgery example, there is an even
simpler way of computing posterior model probabilities. As we now show, a p-value for the
covariate effect is all that is required.

3.3.1. Posterior model probabilities for a single-covariate selection problem
For either model adequacy criterion, Ak = exp.−ak=2/, where ak is either AIC or BIC, the
posterior model probability in equation (3) can be rewritten as

p.Mk|x/= 1
1+ ∑

r �=k

exp{−.ar −ak/=2} :

Therefore the difference in ak between model k and each other candidate model r is sufficient to
be able to calculate the posterior probability of model k. Recalling the definition of AIC (equa-
tion (4)), for a choice between two models M1 and M2, the likelihood ratio between the models
is sufficient information to be able to calculate the difference in AIC, ΔAIC, and therefore the
posterior model probabilities. BIC also requires the sample size n.

Given a published covariate effect and confidence interval or standard error (as in Section 2),
the resulting two-sided Wald p-value, p, can be computed. Hence this likelihood ratio can be
estimated by assuming that this p-value is asymptotically equal to the χ2

1 p-value of minus twice
the log-likelihood ratio of M2 and M1. For example, in our model choice (b) in Section 2, we
label the model with no treatment effect on CVD mortality as M1, and the model including this
effect as M2. The posterior probability of the model with the treatment effect, under AIC-based
model averaging, is then

p.M2|x/= 1
1+ exp.−ΔAIC=2/

,
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where

ΔAIC=χ2
1.1−p/−2,

the AIC without the covariate minus the AIC with the covariate, and χ2
1.·/ is the inverse cumu-

lative distribution function of the χ2
1-distribution. Similarly, under BIC-based averaging,

p.M2|x/= 1
1+ exp.−ΔBIC=2/

,

ΔBIC=χ2
1.1−p/− log.n/:

The advantage of calculating the posterior model probability in this way is that individual
level data are not required: merely a published effect and standard error or confidence inter-
val. Individual level data would be needed if we wished to account for the uncertainty
surrounding inclusion of two or more covariates in a single regression. Then, the published
estimate and confidence interval for each covariate would not be sufficient to calculate the like-
lihood ratios between every pair of regression models with every (plausible) combination of
covariates.

Fig. 2 illustrates how the posterior model probability that is assigned to the model with the
covariate decreases as the likelihood ratio p-value for that covariate increases, under AIC-based
model averaging and BIC-based model averaging with sample sizes of 100, 1000 and 10000.
Whatever the p-value, the likelihood of the more complex model cannot be less than the likeli-
hood of the simpler model; therefore ΔAIC �−2 and p.M2|x/� .1 + e/−1 = 0:27. AIC-based
model averaging always gives reasonable weight to the more complex model, considering that
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there is always some chance that the study was underpowered to detect the effect of the covari-
ate. Conversely, as the sample size increases, BIC gives increasingly less weight to the covariate,
even for those with conventionally ‘significant’ low p-values.

4. Application to surgery for aneurysm repair

We now return to the aneurysm surgery cost-effectiveness study that was introduced in Section
2. We apply the Bayesian model averaging techniques that were discussed in Section 3 to calcu-
late posterior predictive distributions of incremental lifetime cost and effectiveness, accounting
for model uncertainty. In this study, there are three covariate selection choices, each considering
two competing models, leading to 2×2×2=8 combinations of models. We calculate four sets
of model-averaged estimates, over different sets of candidate models as follows:

(a) over the base case and a single alternative scenario, for each of the three alternative
scenarios that were described in Section 2;

(b) over all eight combinations.

Since mortality among aneurysm patients is a highly complex process, we believe that a model
adequacy measure that is based on predictive ability is more appropriate than one geared towards
determining the true data-generating mechanism. Therefore we focus on using AIC, as in equa-
tion (5), to compute posterior model probabilities. We compare these with model-averaged
results that are obtained by using equation (8); specifically, we take the BIC approximation (7)
to p.Mk|x/ combined with prior model probabilities p.Mk/ equal for all candidate models ( 1

2
when averaging two models, and 1

8 when averaging eight models).

For covariate choices (b) and (c) in Section 2, the treatment effects on CVD and AAA mortal-
ity rates respectively, the sample size used in the calculation of BIC was n=1016, the number of
individuals in the trial data on which the hazard ratios had been estimated. For covariate choice
(a), the relative hazard of CVD mortality between AAA patients and the general population, we
take the sample size from the study by Brady et al. (2001), as n=1139, which was the principal
source of data used to inform this parameter.

4.1. Results: posterior model probabilities
Table 1 presents p-values, AIC and BIC differences and resulting posterior model probabilities
for each of the three covariate choice problems that were described in Section 2. The positive

Table 1. Summary of the three model choice problems†

Parameter Hazard ratio 2-sided Sample Difference Posterior
(95% interval) p-value size n in the following probability of

criteria: model with
covariate

AIC BIC
AIC BIC

(a) Difference between trial and 2.00 (0.83, 4.83) 0.123 1139 0.373 −4.621 0.546 0.090
population in CVD death hazard

(b) Treatment effect on CVD deaths 3.06 (1.12, 8.36) 0.029 1016 2.785 −2.138 0.801 0.256
(c) Treatment effect on AAA deaths 5.84 (0.70, 48.50) 0.102 1016 1.826 −3.098 0.714 0.175

†The base case in each problem includes the covariate; the alternative case excludes the covariate.
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differences in AIC indicate that the base case model with the covariate is preferred in all three
choices by AIC. The negative differences in BIC indicate that BIC-based model selection, which
incurs a stronger penalty for model complexity, prefers the alternative simpler model without
the covariate in all three choices. The simpler model is even preferred under the second choice:
whether there is a treatment effect on the CVD death rate, for which the 95% lower confidence
limit for the hazard ratio exceeded 1.

Thus, the posterior probabilities for the models with the covariate are all greater than 0.5
under AIC assessment, and less than 0.5 under BIC assessment. The posterior probability of a
non-zero covariate effect is highest for the second choice.

4.2. Results: model-averaged cost-effectiveness analysis
These posterior model probabilities are now used to perform model-averaged cost-effective-
ness analyses. Bayesian model averaging and probabilistic sensitivity analysis are combined as
follows. To produce a sample of size N from the posterior predictive distribution of expected
incremental cost and effectiveness, averaged over models M1 and M2, N p.M1|x/ Monte Carlo
replicates from model M1 were merged with Np.M2|x/ replicates from model M2. In the
probabilistic sensitivity analysis, to be consistent with the published analysis (Epstein et al.,
2008) under the base case model, log-normal probability distributions were assigned to all haz-
ard ratios (parameter (a) and (b) in Section 2) and gamma distributions assigned to the event
rates (parameter (c)). Means and variances correspond exactly to the estimates and confidence
intervals that were presented in Section 2. Under the alternative assumptions (a)–(c), the cor-
responding hazard ratio is assumed to be 1 with zero variance. N = 5000 total Monte Carlo
replicates were used (note that our results do not exactly match those presented by Epstein et al.
(2008), who used 1000 replicates).

Posterior means and 95% credible intervals for expected incremental costs and expected
QALYs gained are presented in Table 2. Kernel density estimates of the posterior predictive
distribution of incremental net benefit (for a willingness-to-pay threshold of λ = £20000 per
QALY) are illustrated in Fig. 3, for AIC-based model averaging. Cost-effectiveness acceptabil-
ity curves, which plot the probability of positive incremental net benefit (equation (1)) against
λ, are presented in Fig. 4 for AIC- and BIC-based averaging.

Firstly, a set of model-specific (not model-averaged) results are presented for reference. These
are presented for the base case which includes all covariates, each of the three alternative scenar-
ios which exclude one covariate and combinations of the alternative scenarios which exclude
more than one covariate. In the tables and figures, assumptions (a), (b) and (c) refer to the
three alternatives described in Section 2: baseline hazard of CVD death the same as the general
population, no treatment effect on CVD death hazard and no treatment effect on AAA death
hazard respectively.

Secondly, three sets of model-averaged results are calculated: one for each model choice, aver-
aging over the base case and each of the three alternative scenarios in turn. This shows the effect
of accounting for one source of model uncertainty at a time. Finally, an overall result, averaged
over the eight combinations of assumptions implied by the three model choices, is presented,
which accounts for all three sources of model uncertainty simultaneously. The three choices
are assumed to be independent, so that the posterior model probability for a combination of
models is the product of three independent model probabilities.

The alternative assumptions, in which one of three covariate effects in turn is assumed to be
null, all produce a higher probability of cost-effectiveness than the base case model containing
all the covariates. In addition, when more than one of the covariate effects is assumed to be null,
the probability that EVAR is cost effective is even higher. The highest probability of cost-effec-
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Table 2. Cost-effectiveness analyses for single models and averaged combinations of models: posterior
means and 95% credible intervals for expected incremental cost, incremental QALYs of EVAR compared
with open repair, incremental cost-effectiveness ratio and probability of cost-effectiveness PCE.λ/ for thresh-
olds of λD£20000 and £40000 per QALY†

Incremental Incremental ICER PCE PCE
cost (ΔC) QALY (ΔB) (ΔC=ΔB) (£20000 (£40000

(£) threshold) threshold)

Single models
Base case 0 3790 −0.023 Negative 0.011 0.079

(2410, 5230) (−0.19, 0.15)
Assumption (a) 4130 0.012 353000 0.020 0.15

(2780, 5580) (−0.18, 0.20)
Assumption (b) 3710 0.083 44800 0.081 0.46

(2320, 5160) (−0.065, 0.22)
Assumption (c) 3870 0.075 51400 0.067 0.38

(2500, 5300) (−0.081, 0.23)
Assumptions (a) and (b) 4070 0.079 51400 0.076 0.42

(2680, 5500) (−0.11, 0.24)
Assumptions (a) and (c) 4210 0.14 29200 0.18 0.71

(2850, 5600) (−0.0018, 0.28)
Assumptions (b) and (c) 3790 0.18 20900 0.43 0.97

(2400, 5200) (0.085, 0.29)
Assumptions (a)–(c) 4150 0.21 19800 0.52 0.97

(2770, 5560) (0.099, 0.33)

AIC-based averaging
Base case and assumption (a) averaged 3940 −0.0072 Negative 0.013 0.12

(2560, 5380) (−0.18, 0.18)
Base case and assumption (b) averaged 3770 −0.0028 Negative 0.026 0.16

(2400, 5170) (−0.18, 0.18)
Base case and assumption (c) averaged 3800 0.0051 749000 0.024 0.17

(2450, 5210) (−0.18, 0.19)
All eight averaged 3950 0.043 92800 0.069 0.30

(2560, 5420) (−0.16, 0.24)

BIC-based averaging
Base case and assumption (a) averaged 4110 0.008 512000 0.021 0.16

(2720, 5480) (−0.18, 0.20)
Base case and assumption (b) averaged 3720 0.056 66600 0.062 0.37

(2350, 5100) (−0.14, 0.21)
Base case and assumption (c) averaged 3850 0.057 67500 0.056 0.33

(2510, 5220) (−0.12, 0.22)
All eight averaged 4110 0.17 24900 0.35 0.80

(2750, 5570) (−0.052, 0.31)

†‘Negative’ ICER indicates that EVAR was more costly and less effective on average.

tiveness at a threshold of £20000 per QALY is about 50% when it is assumed that there is no
difference between the trial and general population in CVD mortality, and no treatment effect
on either the CVD or AAA mortality rates.

By model averaging, we take into account our uncertainty about whether to include these
covariate effects in the model. AIC-based model averaging favours the base case, i.e. the model
with non-zero covariate effect. Fig. 4 illustrates that, when the AIC is used to calculate posterior
model probabilities, the model-averaged cost-effectiveness probability is closer to the base case
assumption than the null alternative. In contrast, BIC prefers the simpler model: the BIC model-
averaged cost-effectiveness acceptability curves are generally closer to those which assume no
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effect. Thus the probability of cost-effectiveness at £20000 per QALY, averaged over all models
by using AIC, is 0.069, compared with 0.35 for the same probability averaged by using BIC,
and 0.011 in the original base case.

The uncertainty surrounding the model-averaged predictions is higher in situations where the
model-specific results being averaged over are different. For example, the base case and assump-
tion (b) give very different estimates of incremental QALY (−0.023 and 0.083 respectively). The
credible interval surrounding the averaged estimate of −0.0028, and thus the incremental net
benefit, is wider than either of the model-specific credible intervals, though not substantially
(Fig. 3(b)). Similar behaviour is seen when averaging the base case and assumption (c), and
when averaging all eight combinations of models. In contrast, the estimates of incremental cost
from the base case and alternative assumptions, and the uncertainty surrounding them, are not
very different; thus the resulting model-averaged estimates of cost and their credible intervals
are also similar (Table 2).

We briefly assessed the sensitivity of the model-averaged result to the assumption that the
model choices are independent. There is no reason to believe that the hazard ratio between the
trial and general population in the CVD mortality rate may be correlated with the hazard ratio
of treatment on either CVD or AAA mortality. However, the second and third model choices
may not be independent, since treatment may affect AAA and CVD mortality in a similar way.
If these were positively correlated, then the results under the scenarios in which alternatives
(b) and (c) both hold would be underweighted, and the results under scenarios where only one
holds would be overweighted. Individual level data would be needed to estimate this correla-
tion. In the absence of such data, we performed a sensitivity analysis in which the probabilities
of alternatives (b) and (c) were perfectly correlated. Under this assumption, the model-averaged
probability of cost-effectiveness at a threshold of £20000 per QALY increased from 0.07 to 0.11.

4.3. Substantive conclusions
Estimated probabilities that EVAR is cost effective compared with open repair, for a threshold
of £20000 per QALY, ranged from 0.01 under the most probable base case, to the alternative
of 0.081 where one covariate effect was omitted, to 0.52 under a scenario where all covariate
effects were omitted. Although it is fairly clear, from considering the relative plausibility of these
scenarios, that EVAR is not conventionally cost effective, there seems to be considerable uncer-
tainty surrounding the exact probability of cost-effectiveness. Using Bayesian model averaging
based on AIC, we obtained an estimate of 0.069 for this probability, which forms a statistically
principled compromise between the alternative assumptions.

We note that Epstein et al. (2008) presented another plausible alternative scenario, in which
the 30-day mortality after open repair was 8% (from routine hospital data) instead of 5% (from
the EVAR1 trial data). Under this scenario, the cost-effectiveness of EVAR at £20000 per QALY
was 0.147 (ICER £42000 per QALY). To include this scenario in a model-averaged analysis, an
expert assessment of the plausibility of each alternative mortality rate would be required, i.e.
an assessment of how representative each alternative data source is of the population for which
the policy will be implemented.

5. Discussion

5.1. Conclusions
Bayesian model averaging can be used to account for uncertainty about health economic model
structure. This allows a set of results that are obtained under alternative scenarios to be explic-
itly weighted according to their fit to data, instead of the decision maker implicitly weighting
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them according to an informal judgement. Accounting for model uncertainty enables better-
informed decisions about the most cost-effective treatment choice. Model uncertainty is par-
ticularly important in decision problems which involve long-term extrapolation, since any
inaccuracies in models that are fitted to short-term data will be magnified when used for long-
term prediction. If there are several scenarios which are supported by the data but give different
predictions, then averaging over them can give improved estimates with more honest uncer-
tainty intervals. Although we illustrated its use for covariate choice, we envisage that model
averaging may also be useful for other common model uncertainties in health economics, such
as the choice between fixed and random-effects meta-analysis, or the shape of the relationship
of mortality to age.

We emphasize that the methods that are discussed in this paper can only account for statistical
uncertainties, i.e. uncertainties which can be assessed against data. Uncertainties about judge-
ments are equally important in health economics. These might include the choice of the most
appropriate studies of the treatment to inform the model, assumptions about how to generalize
the results of a study of one population to a different population or discount rates. As these
models involve extrapolating many years into the future, perhaps the most important judge-
ments are assumptions about potential changes in parameters, such as treatment effects and
costs. Data to inform such assumptions are not generally available. To account for these types of
uncertainty most accurately, the beliefs of experts should be elicited rigorously, as discussed, for
example, by O’Hagan et al. (2006). Model averaging, as in equation (2), may still be applied in
these situations, but with the model probabilities p.Mk|x/ determined purely from prior beliefs
instead of the fit of model k to data.

Model averaging is intended to supplement, rather than to replace, deterministic sensitivity
analyses in which results are presented under different scenarios. The scenario-specific results
are still important to illustrate the influence on the decision and research priorities if beliefs
about certain parameters were to change in the light of new evidence. Expected value of partial
perfect information (Welton et al., 2008) is a formal method for calculating the decision uncer-
tainty that is associated with each parameter, thus prioritizing what new evidence should be
collected. This can be implemented within the probabilistic framework that we use.

Using AIC or BIC approximations, model averaging may be applied easily as part of routine
probabilistic sensitivity analysis. It requires merely a maximized likelihood for each competing
model, which is presented by most statistical software, and no further computer-intensive cal-
culations, such as Markov chain Monte Carlo (MCMC) sampling. Indeed, in the very simplest
case of averaging over two models with and without a covariate, only a p-value for that covariate
is required to estimate posterior model probabilities. However, the results are dependent on the
assumptions underlying the model assessment measure that is used to weight the competing
models. When sample sizes are reasonably large, as in our example where n was about 1000,
AIC-based model averaging gives substantially more weight than BIC-based averaging to more
complex models. We believe that when the main purpose of modelling is to make predictions
based on a complex reality, as in our health economic context, then a measure that is based
on predictive ability, such as AIC, is more appropriate. Model assessment methods that are
based on marginal likelihood, such as BIC, are more suitable where it is believed that there is a
relatively simple true model underlying the data, and the purpose of modelling is to determine
that mechanism.

5.2. Further developments in model uncertainty
Our application emphasized simple, routinely applicable methods for accounting for model
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uncertainty in health economic decision problems. There are many potential variations of
these basic techniques which may be more appropriate in other situations. For example,
in smaller samples, the asymptotic approximations involved in AIC and BIC may not be
appropriate.

5.2.1. Extensions of AIC and BIC model adequacy principles
Many extensions of the principles of AIC have been proposed. Some have sought to improve
the approximation of AIC to the underlying Kullback–Leibler divergence, e.g. TIC (Takeu-
chi, 1976), GIC (Konishi and Kitagawa, 1996), the small-sample bias-corrected AICc (Hurvich
and Tsai, 1989, 1995) and the bootstrap-based EIC (Ishiguro et al., 1997). KIC (Cavanaugh,
1999) aimed to correct AIC for the asymmetry of the Kullback–Leibler distance between two
distributions. Spiegelhalter et al. (2002) derived the deviance information criterion DIC as a
generalization of AIC to hierarchical models where the number of parameters p is not well
defined. Since Bayesian hierarchical models are becoming more common in health policy eval-
uation, we would welcome investigation into whether DIC can be used as a basis for model
averaging. NIC (Murata et al., 1994) was defined with a similar aim of assessing the com-
plexities of neural network models. Claeskens and Hjort (2003) defined a focused information
criterion FIC, which was geared towards optimal estimation of the particular parameter, or
function of parameters, of most interest. The risk inflation criterion RIC (Foster and George,
1994) for linear model covariate selection aims to minimize maximum predictive risk due to
selection.

When applying marginal likelihood for small samples, it would be preferable to use a more
accurate approximation than BIC (Kass and Raftery, 1995; Han and Carlin, 2001). In our
example, the model parameters were estimated by maximum likelihood but, if fully Bayesian
inference is employed, one drawback of marginal likelihood is its sensitivity to the prior dis-
tribution π.θ|M/ for the parameters. This poses a problem if there is genuinely weak prior
information. Indeed, under improper priors, the marginal likelihood is undefined. This has
motivated several variants of Bayes factors. The BIC-approximation either implicitly disre-
gards priors for the parameters, in which case it provides an O.1/ approximation to the mar-
ginal likelihood, or assumes a ‘unit information’ reference prior (Kass and Wasserman, 1995)
under which it has an O.n−1=2/ error. A unit information prior has precision that is equiv-
alent to the information that is available in one observation. Geisser and Eddy (1979)
derived a pseudo-Bayes factor by replacing the likelihood by a cross-validatory predictive
density. The posterior Bayes factor (Aitkin, 1991) is derived by replacing the prior by the pos-
terior in the definition of the marginal likelihood. The fractional Bayes factor (O’Hagan, 1995)
and intrinsic Bayes factor (Berger and Pericchi, 1996) are based on the principle of reserving
part of the data to convert an improper prior into a proper posterior, and using this posterior
as a prior to compute a conventional Bayes factor for the remainder of the data.

Gelfand and Dey (1994) derived asymptotic approximations to some of these alternative
Bayes factors which are analogous to the BIC. Whereas BIC implies that, in the Bayes factor,
the minus twice the log-likelihood is penalized by approximately p log.n/, the pseudo-, posterior
and intrinsic Bayes factors imply penalties of p, p log.2/ and p log.n/ respectively. We would
expect variants of marginal likelihood with a predictive justification, e.g. the pseudo-Bayes
factor, whose implicit complexity penalty does not depend on sample size, to produce model
assessments similar to AIC, whose penalty is 2p. This may be a reasonable alternative to AIC
for fully Bayesian model averaging. Similarly, Stone (1977) showed that AIC model choice was
asymptotically equivalent to frequentist cross-validation. In general, computationally intensive
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methods of model selection, involving techniques such as cross-validation or bootstrap resam-
pling, can improve on simple criteria, as discussed by Hastie et al. (2001) in the context of
machine learning. For example, in the ‘stacking’ method of model averaging (Wolpert, 1992),
the weights comprising the model-averaged prediction are chosen to minimize cross-validatory
squared error.

5.2.2. Averaging over large numbers of models
Often it is desired to consider large numbers of competing models. For example, when selecting
between 10 potential covariates, then there are 210, over a 1000, candidate models. The Occam’s
window principle and algorithm (Madigan and Raftery, 1994) aims to choose a manageable set
of models which are both parsimonious and supported by the data. Firstly, models with less than
a certain posterior probability are not considered and, secondly, more complex models which
receive substantially less support than nested simpler models are not considered. An arbitrary
threshold must be chosen when applying both principles. Madigan and York (1995) described
MCMC methods to approximate expression (2), when this involves a very large number of
candidate models Mk.

5.2.3. Markov chain Monte Carlo sampling over the model space
An alternative to marginal likelihood for computing posterior model probabilities in a fully
Bayesian setting is reversible jump MCMC sampling (Green, 1995). Its advantage is that within-
model parameter estimates, posterior model probabilities and model-averaged posterior predic-
tive distributions can all be calculated simultaneously in a single MCMC run, even when there
are different numbers of parameters in each model. The MCMC sampler moves simultaneously
in the model space and parameter space, and model comparison is based on Bayes factor princi-
ples. Han and Carlin (2001) reviewed various MCMC methods for computing posterior model
probabilities, including marginal likelihood and the reversible jump.

5.2.4. Continuous model uncertainty
An attractive alternative to averaging over a discrete set of candidate models, which was rec-
ommended by Draper (1995) and Gelman et al. (2003), is to consider model uncertainty as
continuous. This involves constructing, if possible, a very general model, which includes all the
models under consideration as special cases. The models under consideration are defined by
values of a continuously varying parameter in the general model. If there is a choice between
different parametric families (e.g. a choice between a log-normal or gamma distribution for
skewed cost data) then Bayesian non-parametric methods (e.g. Ohlssen et al. (2007)) may be
necessary to build an expanded model.

For example, in the context of covariate selection, one single model containing every covar-
iate may be considered. Since the true effects of some covariates may be very small or zero,
a prior distribution is placed on the covariate effects. An informative prior could be used to
constrain parameters about which the study data contain little information, and to ensure that
the posterior distributions are consistent with expert belief. Alternatively, a hierarchical prior
could be based on the data alone, to improve predictive precision by shrinking the possibly
unnecessary coefficients towards 0. Greenland (1993) and Witte and Greenland (1996) took
this approach in the context of multiple exposures in epidemiology. For example, a prior distri-
bution π.β|τ2/=N.0, τ2/ could be placed on the covariate effect β, and τ2 could be estimated
by using the empirical Bayes procedure of maximizing the likelihood integrated over the covar-
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iate effect:
∫

f.x|β, . . . / π.β|τ2/ dβ. Ridge regression (e.g. Draper and Smith (1998)) is a similar
technique for shrinking regression coefficients.

Model averaging methods essentially consider the prior for the covariate effect to be a mixture
of a point mass on zero and a continuous distribution excluding zero. The above method is a
smoother alternative. Different methods of choosing such a smooth prior would be analogous
to the different assumptions that are involved in choosing a model adequacy measure to use for
model averaging. For example, George and Foster (2000) showed that certain priors for normal
linear regression coefficients led to selection criteria that are equivalent to AIC and BIC. How-
ever, it may be reasonable to give special prior privilege to a covariate effect of zero: some would
consider it a major difference in interpretation from stating that a treatment or risk factor has
a very small effect on a disease to stating that it has zero effect.
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