1 2	A systematic review and meta-analysis of the effectiveness of acetylcholinesterase inhibitors and memantine in treating the cognitive symptoms of dementia
3	
4	Ruth Knight ^{a*} , Mizanur Khondoker ^b , Nicholas Magill ^a , Robert Stewart ^{c,d} , Sabine Landau ^a
5	
6 7	a Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
8	b Norwich Medical School, University of East Anglia, Norwich, UK
9 10	c Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London
11	d South London and Maudsley NHS Foundation Trust, London, UK
12	
13 14	* Corresponding author: Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK; +44 (0)20
15	7848 0983; <u>ruth.s.young@kcl.ac.uk</u>
16	
17	Short title: AChEIs and memantine in treating the cognitive symptoms of dementia
18	
19	Conflicts of interest: None
20	
21 22	Funding: This paper represents independent research funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and
23 24	King's College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.
25	
26 27	Keywords: Acetylcholinesterase inhibitor, memantine, AD, Vascular dementia, systematic review, meta- analysis
28	

1 Abstract

- 2 Background: Acetylcholinesterase inhibitors (AChEIs) and memantine are commonly used in the
- 3 management of dementia. In routine clinical practice dementia is often monitored via the mini-mental
- 4 state examination (MMSE). We conducted a systematic review and meta-analysis of the effects of these
- 5 drugs on MMSE scores. **Summary:** Eighty trials were identified. Pooled effect estimates were in favour
- 6 of both AChEIs and memantine at 6 months. Meta-regression indicated that dementia sub-type was a
- 7 moderator of AChEI treatment effect with the effect of treatment versus control twice as high for
- 8 PDD/DLB patients (2.11 MMSE points at 6 months) as for AD/VaD patients (0.91 MMSE points at 6
- 9 months). Key messages: AChEIs demonstrate a modest effect versus control on MMSE scores which is
- 10 moderated by dementia sub-type. For memantine the effect is smaller.

11 Introduction

- 12 Dementia is a major health concern in elderly populations worldwide which can affect many aspects of a
- 13 person's life and functioning. There is currently no cure for most forms of dementia but several drugs
- 14 are used in its management. The acetylcholinesterase inhibitors (AChEIs) were developed as a
- 15 consequence of the cholinergic hypothesis of cognitive decline [1] and the NMDA receptor agonist
- 16 memantine as a consequence of an hypothesised role of the glutamatergic system in neurodegeneration
- 17 [2]. The effectiveness of these treatments has been evaluated in a large number of randomised
- 18 controlled trials (RCTs) across functional, global, cognitive and neuropsychiatric domains [3-5]. This
- 19 review focuses on their effects on cognition.
- 20 Measures of global cognition include the mini-mental state examination (MMSE) [6], the Alzheimer's
- disease assessment scale cognitive subscale (ADAS-cog) [7], and the Severe Impairment Battery (SIB)
- 22 [8], which focuses on those with severe cognitive impairment. Existing meta-analyses tend either to
- 23 consider cognitive outcomes on the ADAS-cog or SIB [9] or to use standardised mean differences to
- 24 combine results from several scales [10]. In this review results are analysed relating to the MMSE scale
- 25 specifically. A small number of existing meta-analyses combine cognitive outcomes on the MMSE;
- 26 however, these are mainly focused in diagnostic and medication subgroups and do not cover all
- available trials. The largest of these includes only 21 MMSE effect estimates [11], less than half of the
- 28 number included in this review.
- 29 The MMSE is the scale which is most often used in routine clinical practice to monitor dementia severity
- 30 and progression and thus the advantage of reviewed outcomes on this scale is better clinical
- 31 interpretability and relevance to routine care. In addition the volume of evidence can be substantially
- 32 increased by the inclusion of ADAS-cog results translated to MMSE scale equivalents.

33 Methods

- 34 A protocol for this systematic review was prospectively registered on PROSPERO and can be found at
- 35 <u>https://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42015025892</u>.
- 36 <u>Search strategy</u>

- 1 A two-tier search strategy was employed to identify relevant trials for inclusion in this review. First,
- 2 existing systematic reviews and meta-analyses assessing the drugs of interest were identified and
- 3 citations to included trials extracted. Following this, additional searches subdivided by dementia
- 4 diagnosis and, where necessary, drug received, were conducted to identify trials published since the
- 5 date of the most recent review.
- 6 Searches were conducted using the Web of Science, MEDLINE, PsycINFO, EMBASE and CINAHL
- 7 databases. Final searches were conducted in March 2017. Searches were combinations of; (i) drug
- 8 names e.g. "donepezil", "galantamine", "rivastigmine", "memantine"; (ii) diagnoses e.g. "Alzheimer*",
- 9 "vascular dement*", "lewy* bod*", "Parkinson* disease dement*"; and (iii) "randomi?ed" and "trial". A
- 10 full list of search terms used is provided in the supplementary material. Further searches were carried
- 11 out using the International Clinical Trials Registry Platform (ICTRP) and industry trial registers to identify
- 12 unpublished trials, and references and citing articles of selected trials were assessed to identify further
- 13 trials for inclusion.

14 Study selection criteria and data extracted

- 15 Trials were included if they met the following criteria: (i) a randomised trial designed to evaluate the
- 16 effectiveness of AChEI monotherapy, memantine monotherapy or memantine treatment in a group of
- 17 patients some, but not all, of whom received a concurrent AChEI; (ii) treatments compared to a control
- 18 group receiving placebo or no treatment; (iii) participants in the trial diagnosed with Alzheimer's disease
- 19 (AD), vascular dementia (VaD), Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB) or
- 20 frontotemporal dementia (FTD); (iv) at least one of the MMSE or ADAS-cog used as an outcome; and (v)
- 21 sufficient data provided, defined as at least one treatment effect estimate and associated standard error
- 22 (SE) on either the MMSE or ADAS-cog. Treatment effect estimates used included change score
- 23 differences and time point differences. In some cases, effect estimates and SEs had to be calculated
- 24 from other statistics (for example, confidence intervals).
- 25
- 26 From each trial data were extracted on: (i) Trial design duration, inclusion and exclusion criteria,
- 27 numbers of patients randomised to each arm, intervention and control conditions, type of
- 28 randomisation, details on blinding, cognitive assessments and measurement times; (ii) Analysis
- 29 approaches analysis method, missing data methods and effect size estimate used; and (iii) Trial data –
- 30 baseline data, attrition and adherence rates, treatment effect estimates and SEs.
- 31
- 32 Study selection and data extraction were conducted by one reviewer (RK) and a sample of each was
- 33 checked by a second reviewer (NM). Reviewers agreed on study selection in 99% of cases and
- 34 agreement regarding data extraction was also high: 87.5% for risk of bias assessment, 82.8% for baseline
- 35 measures and 75% for effect estimates. Most effect estimate discrepancies were due to
- 36 miscommunication on how these were extracted. All discrepancies were discussed and resolved.
- 37
- 38 ADAS-cog translation
- 39

- 1 The objective of the meta-analysis was to estimate the treatment effect on the MMSE; however, effect
- 2 estimates on the ADAS-cog were also collected and translated, since both scales measure global
- 3 cognition. Baseline measures from the 36 trials which measured both were used to translate. MMSE
- 4 scores range from 0 to 30 and ADAS-cog scores from 0 to 70 and both MMSE=30 and ADAS-cog=0
- 5 represent healthy cognition. Thus a linear regression of ADAS-cog on MMSE with intercept fixed at 30
- 6 was fitted. The resulting model was: MMSE=30-0.42*ADAS-cog, with a squared multiple correlation of
- 7 0.679 suggesting fairly good fit. Translation of both treatment effect estimates and SEs required only the
- 8 coefficient. Treatment effect estimates were translated using MMSE=-0.42*ADAS-cog, and the SEs using
- 9 MMSE=0.42*ADAS-cog.
- 10

11 Risk of bias assessment

- 12 The risk of bias in included studies was assessed using the Cochrane risk of bias tool [12]. This
- 13 determines whether the risk of internal bias under a series of domains is low, high or unclear. These
- 14 were combined so that a trial rated low in all domains was at low risk of bias. One domain, reporting
- 15 bias, was excluded from the combination since trial protocols were required to assess it but were not
- 16 available for most included trials due to their age.

17 <u>Statistical analyses</u>

- 18 Random-effects meta-analysis [13] was used to combine trial results. This was conducted separately for
- 19 AChEIs and memantine. Pooled effects were estimated at 3, 6 and 12 months (+14 days) after treatment
- 20 initiation. Effect estimates were also considered in AChEI drug subgroups. Heterogeneity was assessed
- using the I² statistic [14] and publication bias using funnel plots and Begg and Mazumdar's [15] rank
- correlation test. All statistical analyses were conducted using R [16] and the metafor package [17].
- 23 Meta-regressions were conducted to assess the impact of data quality on effect size estimates and test
- 24 potential moderators. The data quality factors were: (i) the inclusion of translated results; and (ii) the
- risk of bias assessment overall rating. The hypothesised potential moderators were: (i) AChEI (donepezil,
- 26 galantamine or rivastigmine); (ii) dementia diagnosis (AD, VaD, PDD/DLB or FTD); (iii) baseline MMSE
- score; and (iv) date of publication (before or after 2000). All were categorical factors except baseline
- 28 MMSE which was continuous. The Knapp and Hartung [18] adjustment was used to account for
- 29 uncertainty in the assessment of residual heterogeneity. The omnibus test of coefficients was used to
- 30 identify factors significant at the 5% and 1% levels.

31 <u>Results</u>

32 Literature search results

- 33 The search for systematic reviews identified 522 citations of which 52 were relevant, and these included
- 34 194 citations to trials. An additional 857 citations were identified by further searches for trials resulting
- 35 in 1051 possible citations. After removal of duplicates, title and abstract screening, and full text
- 36 screening, 84 references about 74 trials met the inclusion criteria. Searches in ICTRP and industry

- 1 registers and citation tracking identified a further 6 trials for inclusion. In total, 80 trials met the
- 2 inclusion criteria. The process of identifying these is detailed in Figure 1.

3 <u>Characteristics of included studies</u>

- 4 Of the included trials summarised in Table 1, half (40) investigated donepezil and the others were evenly
- 5 split amongst galantamine (13), rivastigmine (14) and memantine (13). The majority of the trials (55)
- 6 were conducted in patients with AD. Other diagnoses were VaD (9), AD and VaD (4), PDD or DLB (10)
- 7 and FTD (2). Dementia severity ranged from mild in some trials to severe in others. The trials lasted
- 8 between 4 and 104 weeks and many recorded outcome measures at intermediate time points. Forty
- 9 eight trials provided MMSE outcomes, 24 ADAS-cog and the remainder reported a mixture of the two.
- 10 The average baseline age in AChEI trials was 73.8 years and in memantine trials was 75.9 years. The
- 11 proportion of women was slightly more than half in the AChEl trials (mean 57.5%; range 7.1%-84.6%),
- and the memantine trials (mean 56.3%; range 25%-73.8%). The mean baseline MMSE was higher in the
- 13 AChEI trials (18.6 points) than the memantine trials (16.5).

14 Risk of bias assessment

- 15 The Cochrane risk of bias tool was applied to each trial and the final column of Table 1 records overall
- 16 ratings. Risk of bias was low in 14 trials, high in 45 trials and unclear in 21 trials. The large number of
- 17 trials rated high risk was mainly due to missing data methods combined with relatively high volumes of
- 18 missing data. The majority of trials used observed case or last observation carried forward analyses
- 19 which both introduce a significant risk of bias in the presence of missing data.

20 Meta-analysis results

- 21 AChEIs 3 months
- 22 At 3 months (<u>+</u>14 days) after treatment initiation, 42 trials provided 60 estimates of treatment effect.
- 23 The pooled effect estimate (Figure 2) was 1.08 MMSE points (95% CI 0.92-1.23). There was evidence of
- 24 heterogeneity (I²=68.2%) and this was later explored via meta-regression. Begg and Mazumdar's rank
- test suggested some publication bias (p=0.01) and the funnel plot supported this (Figure 3), however the
- 26 patterns did not seem overly concerning. In the drug subgroups the treatment effects ranged from 0.98
- 27 (95% CI 0.32-1.63) for rivastigmine to 1.15 (95% CI 0.69-1.61) for donepezil 3-5mg/d.

28 AChEIs – 6 months

- 29 At 6 months (+14 days) after treatment initiation, 38 trials provided 52 estimates of treatment effect.
- 30 The pooled effect estimate was 1.00 (95% CI 0.83-1.16; Figure 4), and there was evidence of
- 31 heterogeneity (I²=69.9%). Neither the funnel plot nor the rank correlation test (p=0.385) suggested
- 32 publication bias. The effect estimates in treatment subgroups ranged from 0.69 (95% CI 0.43-0.95) for
- rivastigmine to 1.39 (95% CI 0.79-2.00) for galantamine.
- 34 AChEIs 12 months

- 1 At 12 months (<u>+</u>14 days) after treatment initiation, 4 trials provided estimates of treatment effect. The
- 2 pooled effect estimate was 1.10 (95% CI 0.48-1.72; Figure 5). There was evidence for heterogeneity
- 3 (I²=79%); however, the funnel plot did not suggest any obvious publication bias and there were too few
- 4 estimates for a formal test.

5 Memantine – 3, 6 and 12 months

- 6 Treatment effect estimates were provided by 12 memantine trials: 4 at 3 months; 8 at 6 months; and 3
- 7 at 12 months after treatment initiation. The pooled effect estimates at each time point were in favour of
- 8 treatment though were much smaller than those for the AChEIs (Figure 6). At 12 months the pooled
- 9 effect did not reach significance (0.41, 95% CI -0.44 to 1.26). At all 3 time points the l² values were small
- 10 suggesting little heterogeneity.

11 Meta-regressions

- 12 High I² values observed for the AChEI meta-analyses at 3 and 6 months suggested considerable
- variability in the effect estimates and this was investigated further via meta-regression. Factors
- 14 investigated were data quality measures and potential moderators as listed in the methods section.
- 15 Tables 2 and 3 provide meta-regression coefficients, associated p-values and the p-value for the
- 16 omnibus test of parameters at 3 and 6 months respectively. Coefficients are the difference in average
- 17 effect estimates for each category versus the reference category for categorical factors and the relation
- 18 between the factor and effect estimate for continuous factors. Factors for which the omnibus test of
- 19 parameters is significant at the 5% and 1% levels are highlighted.
- 20 A true moderator of treatment effect would be expected to last over time, thus only factors significant
- 21 at both 3 and 6 months were considered. Dementia sub-type diagnosis was the only factor significant at
- both 3 months (p=0.009) and 6 months (p=0.007). Examination of diagnostic subgroup results suggested
- that the effects in the AD and VaD subgroups were the same but those in the PDD/DLB subgroup were
- 24 different.

25 <u>Meta-analyses in diagnosis subgroups</u>

- At 3 months the pooled effect estimate in the AD/VaD subgroup was 0.97 MMSE points (95% CI 0.85-
- 1.10) and in the PDD/DLB subgroup 1.99 (1.18-2.81). At 6 months the effect in the AD/VaD subgroup
- 28 was 0.91 (0.77-1.05) and in the PDD/DLB subgroup was 2.11 (0.61-3.61). All four trials providing an
- 29 effect estimate at 12 months were in the AD/VaD subgroup. The memantine trials provided too few
- 30 trials for meta-regression to be conducted; however, at both 6 months and 12 months the effects in the
- 31 PDD/DLB subgroup were significantly higher (1.90 points at 6 months and 1.80 points at 12 months)
- than those in the AD/VaD subgroup (0.36 points at 6 months and 0.31 points at 12 months).

33 Discussion

- 34 This review identified 80 trials evaluating the effects of donepezil, galantamine, rivastigmine and
- 35 memantine on cognitive function in dementia, more than in any previous review. Cognitive effects were
- 36 extracted on the MMSE, the outcome of interest, or the ADAS-cog. Baseline measures from 36 trials

- 1 which measured both were used to enable translation of ADAS-cog results to the MMSE scale. This
- 2 allowed the inclusion of 24 additional trials and results at additional time points from a further 8 trials.
- 3 The large number of studies included in this review is one of its strengths and this number is increased
- 4 by the translation of ADAS-cog results. The translation relationship has good R²; however, this
- 5 relationship has not been used elsewhere and should therefore be treated as preliminary and requiring
- 6 confirmation.
- 7 Meta-regressions of the AChEI results at 3 and 6 months identified one moderator of treatment effect,
- 8 dementia sub-type diagnosis. Treatment effects were smaller for those patients diagnosed with AD or
- 9 VaD (0.97 MMSE points at 3 months and 0.91 points at 6 months) than those diagnosed with PDD or DLB
- 10 (1.99 points at 3 months and 2.11 points at 6 months). All trials reporting effects at 12 months were for
- AD or VaD patients and these indicated a similar effect to those at 3 and 6 months (1.10 points). The
- 12 higher response seen in the PDD/DLB group is consistent with previous results [19] and may be due to
- 13 the greater cholinergic deficit seen in these conditions [20]. The effects observed in the AD/VaD
- subgroup are somewhat smaller than those in a previous review of AChEIs in AD only [5]. This may be
- 15 due to the inclusion of VaD results which evidence suggests may give rise to more mixed findings on
- 16 AChEI effect [21, 22], although meta-regression indicated no significant differences between AD and
- 17 VaD subgroups. Whilst these drugs are only licensed for the use in AD or PDD there is evidence that they
- are widely used for patients with DLB and VaD in routine clinical practice [23] and thus the inclusion of
- 19 these trial results was felt to be appropriate.
- 20 The number of trials providing estimates of memantine treatment effects was much smaller and it was
- 21 not possible to conduct meta-regression analyses; however, results were calculated for the previously
- identified subgroups. In the AD/VaD subgroup the effects were small and in favour of treatment (0.65
- 23 MMSE points at 3 months, 0.36 points at 6 months and 0.41 points at 12 months). Again the effects in
- 24 the PDD/DLB subgroup were higher (1.90 points at 6 months and 1.80 points at 12 months). Few of
- 25 these effects were significantly different from zero.
- 26 Through the results of this review, we sought to increase clinical interpretability and relevance to 27 routine care since they are estimated on the MMSE, the scale most often used to monitor dementia in 28 clinical practice. Estimation of MMSE effects also potentially enables results to be compared, contrasted 29 and in future combined with observational findings from routine clinical practice. The AChEI results suggest a treatment effect of around one MMSE point at 3, 6 and 12 months after treatment initiation. 30 31 Since studies have suggested that the annual rate of MMSE decline amongst dementia patients is 4 to 5 32 MMSE points [24] such an effect estimate is modest: equivalent to an approximately 3 month delay in 33 cognitive decline. However, while the effect sizes are small, they could have a significant impact in terms 34 of costs and hospital or nursing home admissions which have both been shown to be linked to level of 35 cognitive function as measured by the MMSE score [25]. In addition the length of time for which these
- 36 benefits continue may be of interest [23].
- 37 Use of the MMSE scale makes the results of this review more clinically applicable, however, there are
- 38 several limitations to this scale. It suffers from both floor and ceiling effects [26], though these should
- 39 not be of particular concern for the trials included in this study. In addition, it is particularly suitable for

- 1 measuring the cognitive deficits observed in AD and may be less sensitive to those in VaD [27] or FTD
- 2 [28]. However, the latter has little impact in the current review since only one included trial concerned
- 3 FTD and, as mentioned, no significant differences were found between AD and VaD sub-groups in meta-
- 4 regressions.
- 5
- 6

1 <u>References</u>

2 3	1.	Terry, A.V. and J. Buccafusco, <i>The cholinergic hypothesis of age and Alzheimer's disease-related</i> cognitive deficits: recent challenges and their implications for novel drug development. Journal
4		of Pharmacology and Experimental Therapeutics, 2003, 306 (3): p. 821-827.
5	2.	Cacabelos, R., M. Takeda, and B. Winblad, <i>The alutamateraic system and neurodegeneration in</i>
6		dementia: preventive strategies in Alzheimer's disease. International journal of geriatric
7		psvchiatry, 1999. 14 (1): p. 3-47.
8	3.	Van De Glind, E.M.M., et al., Pharmacological treatment of dementia: A scoping review of
9		systematic reviews. Dementia and Geriatric Cognitive Disorders, 2013. 36 (3-4): p. 211-228.
10	4.	Winblad, B., et al., Memantine in moderate to severe Alzheimer's disease: a meta-analysis of
11		randomised clinical trials. Dementia and Geriatric Cognitive Disorders, 2007. 24(1): p. 20-27.
12	5.	Birks, J., Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database of Systematic
13		Reviews, 2006. (1) (CD005593).
14	6.	Folstein, M.F., S.E. Folstein, and P.R. McHugh, "Mini-mental state": a practical method for
15		grading the cognitive state of patients for the clinician. Journal of psychiatric research, 1975.
16		12 (3): p. 189-198.
17	7.	Rosen, W.G., R.C. Mohs, and K.L. Davis, A new rating scale for Alzheimer's disease. The American
18		journal of psychiatry, 1984.
19	8.	Panisset, M., et al., Severe impairment battery: a neuropsychological test for severely demented
20		patients. Archives of neurology, 1994. 51(1): p. 41-45.
21	9.	Tan, CC., et al., Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for
22		the treatment of Alzheimer's disease: a systematic review and meta-analysis. Journal of
23		Alzheimer's Disease, 2014. 41 (2): p. 615-631.
24	10.	Di Santo, S.G., et al., A meta-analysis of the efficacy of donepezil, rivastigmine, galantamine, and
25		memantine in relation to severity of Alzheimer's disease. Journal of Alzheimer's Disease, 2013.
26		35 (2): p. 349-361.
27	11.	Raina, P., et al., Effectiveness of cholinesterase inhibitors and memantine for treating dementia:
28		<i>Evidence review for a clinical practice guideline.</i> Annals of Internal Medicine, 2008. 148 (5): p.
29	4.0	379-397.
30	12.	Higgins, J. and S. Green, Cochrane handbook for systematic reviews of interventions. Version 5.1.
31	10	U. The Cochrane Collaboration; 2011, 2013.
32	13.	Dersimonian, R. and N. Laird, <i>Weta-analysis in clinical trials</i> . Controlled clinical trials, 1986. 7(3):
33 24	14	U. 1/7-188. Higging L and S.C. Thempson, Quantifying hotorogenaity in a mote analysis. Statistics in
25 25	14.	modicine 2002 21 (11): p 1529-1558
36	15	Begg C B and M Mazumdar Operating characteristics of a rank correlation test for publication
30	15.	higs Biometrics 1994: n 1088-1101
38	16	B Core Team R: A language and environment for statistical computing R Foundation for
39	10.	Statistical Computing Vienna Austria 2014
40	17.	Viechtbauer, W., Conducting meta-analyses in R with the metafor package. I Stat Softw. 2010.
41		36 (3): p. 1-48.
42	18.	Knapp, G. and J. Hartung, Improved tests for a random effects meta-rearession with a single
43	- 1	<i>covariate.</i> Statistics in medicine, 2003. 22 (17): p. 2693-2710.
44	19.	Samuel, W., et al., Better cognitive and psychopathologic response to donepezil in patients
45		prospectively diagnosed as dementia with Lewy bodies: a preliminary study. International
46		journal of geriatric psychiatry, 2000. 15(9): p. 794-802.

1	20.	Tiraboschi, P., et al., Cholinergic dysfunction in diseases with Lewy bodies. Neurology, 2000.
2		54 (2): p. 407-407.
3 4	21.	Birks, J., B. McGuinness, and D. Craig, <i>Rivastigmine for vascular cognitive impairment</i> . Cochrane Database of Systematic Reviews, 2013(5)
5	22.	Birks, J. and R.J. Harvey, Donepezil for dementia due to Alzheimer's disease. The Cochrane
6		Library, 2006.
7	23.	Perera, G., et al., Factors associated with response to acetylcholinesterase inhibition in
8 9		<i>dementia: a cohort study from a secondary mental health care case register in London.</i> PloS one, 2014. 9 (11): p. e109484.
10	24.	Ballard, C., et al., The progression of cognitive impairment in dementia with Lewy bodies.
11		vascular dementia and Alzheimer's disease. International journal of geriatric psychiatry. 2001.
12		16 (5): p. 499-503.
13	25.	Knapp, M., et al., Predictors of care home and hospital admissions and their costs for older
14		neonle with Alzheimer9s disease: findinas from a large London case register, BML open, 2016
15		6(11): n_e013591
16	26	Eranco-Marina, E., et al., The Mini-mental State Examination revisited: ceiling and floor effects
17	20.	after score adjustment for educational level in an aging Mexican population. International
18		nsvchogeriatrics 2010 22 (1): n 72-81
19	27	Dong V et al. The Montreal Cognitive Assessment (MoCA) is superior to the Mini-Mental State
20	27.	Examination (MMSE) for the detection of vascular cognitive impairment after acute stroke
20		Journal of the neurological sciences 2010 299 (1): n 15-18
22	28	Ocher F et al. The mini-mental state examination in behavioral variant front temporal
22	20.	dementia and primary progressive aphasia. American Journal of Alzheimer's Disease & Other
24		Dementias [®] 2008 27 (6): n 468-473
25	29	Frolich L et al Effects of AZD3480 on Cognition in Patients with Mild-to-Moderate Alzheimer's
26	23.	Disease: A Phase IIb Dose-Finding Study Journal of Alzheimers Disease 2011 24 (2): n 363-374
27	30	Gault I M et al. A phase 2 randomized controlled trial of the alpha7 agonist ABT-126 in mild-
28	50.	to-moderate Alzheimer's dementia. Alzheimer's and Dementia: Translational Research and
29		Clinical Interventions 2015 1(1): n 81-90
30	31	Geldmacher, D.S., C. Perdomo, and B. Pratt. Effect of donenezil treatment on visual
31	51.	attention/exploration taks in natients with mild to moderately severe Alzheimer's disease: results
32		of a nilot study. Neurobiology of Aging 2000 21 (S1): n S169
32	32	Marek G L et al Efficacy and safety evaluation of HSD-1 inhibitor ABT-384 in Alzheimer's
34	52.	disease Alzheimer's and Dementia 2014 10 (5): n \$364-\$373
35	33	Peng DT XH Xu and LN Wang Efficiency and safety assessment of donenezil for treating
36	55.	mild and moderate Alzheimer disease. Chinese Journal of Clinical Rehabilitation, 2005, 9(13): n
37		170-172
38	34	Rogers SL et al Donenezil improves cognition and global function in Alzheimer disease - A 15-
39	0.11	week double-blind placebo-controlled study Archives of Internal Medicine 1998 158 (9): n
40		1021-1031
41	35	Howard B L et al Donenezil for the treatment of agitation in Alzheimer's disease New England
<u>4</u> 2	55.	Journal of Medicine 2007 357 (14): n 1382-1392
43	36	Moraes W, et al. Donenezil improves obstructive sleen annea in Alzheimer disease - A double-
44	50.	hlind nlaceho-controlled study Chest 2008 133 (3): n 677-683
45	37	Sole-Padulles, C., et al., Donenezil Treatment Stabilizes Functional Connectivity During Resting
46	57.	State and Brain Activity During Memory Encoding in Alzheimer's Disease Journal of Clinical
47		Psychopharmacology, 2013, 33 (2): p. 199-205
• •		

1	38.	Haig, G.M., et al., A randomized study of H3 antagonist ABT-288 in mild-to-moderate Alzheimer's
2		dementia. Journal of Alzheimer's Disease, 2014. 42(3): p. 959-971.
3	39.	Black, S.E., et al., Donepezil preserves cognition and global function in patients with severe
4		Alzheimer disease. Neurology, 2007. 69(5): p. 459-469.
5	40.	Burns, A., et al., The effects of donepezil in Alzheimer's disease - Results from a multinational
6		trial. Dementia and Geriatric Cognitive Disorders, 1999. 10(3): p. 237-244.
7	41.	Feldman, H., et al., A 24-week, randomized, double-blind study of donepezil in moderate to
8		severe Alzheimer's disease. Neurology, 2001. 57(4): p. 613-620.
9	42.	Gold, M., et al., Rosiglitazone Monotherapy in Mild-to-Moderate Alzheimer's Disease: Results
10		from a Randomized, Double-Blind, Placebo-Controlled Phase III Study. Dementia and Geriatric
11		Cognitive Disorders, 2010. 30 (2): p. 131-146.
12	43.	Homma, A., et al., Clinical efficacy and safety of donepezil on cognitive and global function in
13		patients with Alzheimer's disease - A 24-week, multicenter, double-blind, placebo-controlled
14		study in Japan. Dementia and Geriatric Cognitive Disorders, 2000. 11(6): p. 299-313.
15	44.	Jia, J., et al., Efficacy and Safety of Donepezil in Chinese Patients with Severe Alzheimer's Disease:
16		A Randomized Controlled Trial. Journal of Alzheimer's Disease, 2017. 56(4): p. 1495-1504.
17	45.	Maher-Edwards, G., et al., SB-742457 and donepezil in Alzheimer disease: a randomized,
18		placebo-controlled study. International Journal of Geriatric Psychiatry, 2011. 26(5): p. 536-544.
19	46.	Mazza, M., et al., Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer's
20		dementia in a randomized placebo-controlled double-blind study. European Journal of
21		Neurology, 2006. 13 (9): p. 981-985.
22	47.	Gault, L.M., et al., ABT-126 monotherapy in mild-to-moderate Alzheimer's dementia: randomized
23		double-blind, placebo and active controlled adaptive trial and open-label extension. Alzheimers
24		Research & Therapy, 2016. 8 .
25	48.	Rogers, S.L., et al., A 24-week, double-blind, placebo-controlled trial of donepezil in patients with
26		<i>Alzheimer's disease.</i> Neurology, 1998. 50 (1): p. 136-145.
27	49.	Seltzer, B., et al., Efficacy of donepezil in early-stage Alzheimer disease - A randomized placebo-
28		<i>controlled trial.</i> Archives of Neurology, 2004. 61 (12): p. 1852-1856.
29	50.	Tune, L., et al., Donepezil HCI (E2020) maintains functional brain activity in patients with
30		Alzneimer disease - Results of a 24-week, double-blind, placebo-controlled study. American
31	F 4	Journal of Geriatric Psychiatry, 2003. 11(2): p. 169-177.
32	51.	Maner-Edwards, G., et al., <i>Two randomized controlled trials of SB742457 in mila-to-moderate</i>
33		Alzneimer's disease. Alzneimer's and Dementia: Translational Research and Clinical
34 25	г р	Interventions, 2015. 1(1): p. 23-30.
35 26	52.	uos Santos Mordes, W.A., et al., The effect of donepezil on sleep and REM sleep EEG in patients with Alzhaimar disagsa: A double blind placeba controlled study. Sleep 2006, 20 (2): p. 100-205
27	52	Winhlad B ot al. Donenezil in patients with severe Alzheimer's disease: double-blind parallel
20	55.	aroun placebo-controlled study Lancot 2006 267 (0516); p. 1057-1065
30	54	Winhlad B et al. A 1-year randomized placebo-controlled study of dopenezil in patients with
40	54.	mild to moderate AD Neurology 2001 57 (3): p. 489-495
40 41	55	Mohs BC et al A 1-year placebo-controlled preservation of function survival study of
42	55.	donenezil in AD natients Neurology 2001 57 (3): n 481-488
43	56.	Bentham, P., et al., Long-term donepezil treatment in 565 patients with Alzheimer's disease
44		(AD2000): randomised double-blind trial. Lancet. 2004. 363 (9427): p. 2105-2115.
45	57.	Tariot, P.N., et al., A randomized, double-blind, placebo-controlled study of the efficacy and
46		safety of donepezil in patients with Alzheimer's disease in the nursing home setting. Journal of
47		the American Geriatrics Society, 2001. 49 (12): p. 1590-1599.

1 2	58.	Black, S., et al., Efficacy and tolerability of donepezil in vascular dementia - Positive results of a 24-week, multicenter, international, randomized, placebo-controlled clinical trial, Stroke, 2003,
3		34 (10): n 2323-2330
4	59	Roman G C et al Randomized Placebo-Controlled Clinical Trial of Donenezil in Vascular
5	55.	Dementia Differential Effects by Hinnocampal Size Stroke 2010 41 (6): p 1213-1221
6	60	Wilkinson D et al Donenezil in vascular dementia - A randomized placebo-controlled study
7	00.	Neurology 2003 61(A): n 479-486
2 0	61	Dichappe M. et al. Dependent in patients with subcortical vascular cognitive impairment: a
0	01.	randomised double-blind trial in CADASIL The Lancet Neurology 2008 7(4): p. 210-218
10	62	Aarsland D. et al. Denenazil for cognitive impairment in Parkinson's disease; a randomicad
11	02.	controlled study, Journal of Nourology Nourocurgon, and Reychiatry, 2002, 72(6): p. 708-712
11	62	Controlled Study. Journal of Neurology Neurosurgery and Psychiatry, 2002. 72(0). p. 708-712.
12	63.	Ravina, B., et al., Donepezii joi demenua in Parkinson's disease: a randomisea, aduble bina,
13		<i>placebo controlled, crossover study.</i> Journal of Neurology Neurosurgery and Psychiatry, 2005.
14	C A	/b (/): p. 934-939.
15	64.	Lerol, I., et al., Randomized placebo-controlled trial of donepezil in cognitive impairment in
16	<u> </u>	Parkinson's disease. International Journal of Geriatric Psychiatry, 2004. 19(1): p. 1-8.
1/	65.	Dubois, B., et al., Donepezil in Parkinson's disease dementia: A randomized, double-blind efficacy
18		and safety study. Movement Disorders, 2012. 27(10): p. 1230-1238.
19	66.	Ikeda, M., et al., Donepezil for dementia with Lewy bodies: a randomized, placebo-controlled,
20		confirmatory phase III trial. Alzheimers Research & Therapy, 2015. 7.
21	67.	Mori, E., et al., Donepezil for Dementia with Lewy Bodies: A Randomized, Placebo-Controlled
22		<i>Trial</i> . Annals of Neurology, 2012. 72 (1): p. 41-52.
23	68.	Wilkinson, D., J. Murray, and G.R. Grp, <i>Galantamine: a randomized, double-blind, dose</i>
24		comparison in patients with Alzheimer's disease. International Journal of Geriatric Psychiatry,
25		2001. 16 (9): p. 852-857.
26	69.	Kadir, A., et al., PET imaging of the in vivo brain acetylcholinesterase activity and nicotine
27		binding in galantamine-treated patients with AD. Neurobiology of Aging, 2008. 29 (8): p. 1204-
28		1217.
29	70.	Rockwood, K., et al., Effects of a flexible galantamine dose in Alzheimer's disease: a randomised,
30		controlled trial. Journal of Neurology Neurosurgery and Psychiatry, 2001. 71(5): p. 589-595.
31	71.	Rockwood, K., et al., Attainment of treatment goals by people with Alzheimer's disease receiving
32		galantamine: a randomized controlled trial. Canadian Medical Association Journal, 2006. 174 (8):
33		р. 1099-1105.
34	72.	Tariot, P.N., et al., A 5-month, randomized, placebo-controlled trial of galantamine in AD.
35		Neurology, 2000. 54 (12): p. 2269-2276.
36	73.	Brodaty, H., et al., Galantamine prolonged-release formulation in the treatment of mild to
37		<i>moderate Alzheimer's disease</i> . Dementia and Geriatric Cognitive Disorders, 2005. 20 (2-3): p.
38		120-132.
39	74.	Raskind, M.A., et al., Galantamine in AD - A 6-month randomized, placebo-controlled trial with a
40		6-month extension. Neurology, 2000. 54(12): p. 2261-2268.
41	75.	Wilcock, G.K., et al., Efficacy and safety of galantamine in patients with mild to moderate
42		Alzheimer's disease: multicentre randomised controlled trial. British Medical Journal, 2000.
43		321 (7274): p. 1445-1449.
44	76.	Likitjaroen, Y., et al., Longitudinal changes of fractional anisotropy in Alzheimer's disease
45		patients treated with galantamine: a 12-month randomized, placebo-controlled, double-blinded
46		study. European Archives of Psychiatry and Clinical Neuroscience, 2012. 262(4): p. 341-350.
47	77.	Hager, K., et al., Effects of galantamine in a 2-year, randomized, placebo-controlled study in
48		Alzheimer's disease. Neuropsychiatric Disease and Treatment, 2014. 10: p. 391-401.

1 2	78.	Erkinjuntti, T., et al., <i>Efficacy of galantamine in probable vascular dementia and Alzheimer's disease combined with cerebrovascular disease: a randomised trial.</i> Lancet, 2002. 359 (9314): p.
3		1283-1290.
4 5	79.	Auchus, A.P., et al., <i>Galantamine treatment of vascular dementia: A randomized trial.</i> Neurology, 2007, 69 (5): p. 448-458
6	80	Litvinenko IV et al. Efficacy and safety of adjantamine (reminul) for dementia in nations with
7	80.	Envinence, n.v., et al., Effecty and safety of galantanine (renning) for dementia in patients with
/ 0		
0	01	56 (9). p. 957-45.
9 10	81.	Koch, G., et al., Dopaminergic modulation of cortical plasticity in Alzheimer's disease patients.
10		Neuropsychopharmacology : official publication of the American College of
11	~~	Neuropsychopharmacology, 2014. 39 (11): p. 2654-2661.
12	82.	Mowla, A., et al., Does serotonin augmentation have any effect on cognition and activities of
13		daily living in Alzheimer's dementia? - A double-blind, placebo-controlled clinical trial. Journal of
14		Clinical Psychopharmacology, 2007. 27(5): p. 484-487.
15 16	83.	Iranmanesh, F., et al., <i>Piracetam, Rivastigmine and Their Joint Consumption Effects on MMSE Score Status in Patients with Alzheimer's Disease</i> , 2013, 2012, 11 (2); p. 60-63.
17	84	Agid Y et al. Efficacy and tolerability of rivastiamine in patients with dementia of the Alzheimer
18	011	type. Current Therapeutic Research-Clinical and Experimental 1998. 59 (12): p. 837-845.
19	85	Forette F R Anand and G Gharabawi A phase II study in natients with Alzheimer's disease to
20	00.	assess the preliminary efficacy and maximum tolerated dose of rivastiamine (Evelon (R))
20		European Journal of Neurology 1999 $6(A)$: n $A23-A29$
22	86	Winhlad B et al. A six-month double-blind randomized placebo-controlled study of a
22	00.	transdermal natch in Alzheimer's disease - rivastiamine natch versus cansule. International
23		Journal of Geriatric Psychiatry 2007 22 (5): n 456-467
27	87	Rosler M et al. Efficacy and safety of rivestigmine in natients with Alzheimer's disease:
25	07.	international randomised controlled trial British Medical Journal 1990 318 (7184): n 633-638
20	88	Corey-Bloom J. R. Anand and J. Veach A randomized trial evaluating the efficacy and safety of
27	00.	ENA 712 (rivestigmine tertrate) a new acetylcholinesterase inhibitor in patients with mild to
20		moderately severe Alzheimer's disease. International Journal of Coriatric Psychopharmacology
30		1998 1(2) n 55-65
30	89	Feldman H H and R Lane Rivestigmine: a placebo controlled trial of twice daily and three times
37	05.	daily regimens in patients with Alzheimer's disease Journal of Neurology Neurosurgery and
32		Psychiatry 2007 78(10): n 1056-1063
24	00	Karaman V. ot al. A 12 month study of the efficacy of rivestigming in nations with advanced
24 25	90.	moderate Alzhaimar's disages. Domentia and Coristric Cognitive Disorders. 2005. 19 (1): p. 51
26		56
30	Q1	50. Ballard C et al. Efficacy safety and tolerability of rivestigmine cansules in patients with
20	51.	probable vaccular dementia: the VantagE study. Current Modical Posoarch and Oninion 2008
20		$21(0)$ · $p_2 = 2561, 2574$
<u>40</u>	02	24 (5). P. 2501-2574. Mak M. et al. Biggstigming in Chinase nationts with subcortical vascular domentia
40	92.	Now, v., et al., Rivustiginine in chinese puterits with subconticut vusculur dementid.
41	02	Neuropsychiatric disease and treatment, 2007. 3 (6): p. 943-8.
42 43	93.	Journal of Medicine, 2004, 351 (24): p. 2509-2518.
44	94	Fox. C., et al., Efficacy of Memantine for Agitation in Alzheimer's Dementia: A Randomised
45	5	Double-Blind Placebo Controlled Trial. Plos One. 2012. 7(5)
46	95	Bakchine, S. and H. Loft, Memantine treatment in natients with mild to moderate Alzheimer's
47		disease: Results of a randomised double-blind, placebo-controlled 6-month study. Journal of
48		Alzheimers Disease 2008 13 (1): n 97-107
		, intermeter Biseuse, 2000. 20 (1), p. 37-207.

1	96.	Peskind, E.R., et al., Memantine treatment in mild to moderate Alzheimer disease: A 24-week
2		randomized, controlled trial. American Journal of Geriatric Psychiatry, 2006. 14(8): p. 704-715.
3	97.	Wang, T., et al., Effects of memantine on clinical ratings, fluorodeoxyglucose positron emission
4		tomography measurements, and cerebrospinal fluid assays in patients with moderate to severe
5		Alzheimer dementia: A 24-week, randomized, clinical trial. Journal of Clinical
6		Psychopharmacology, 2013. 33 (5): p. 636-642.
7	98.	Reisberg, B., et al., Memantine in moderate-to-severe Alzheimer's disease. New England Journal
8		of Medicine, 2003. 348 (14): p. 1333-1341.
9	99.	Ashford, J.W., et al., MR Spectroscopy for Assessment of Memantine Treatment in Mild to
10		Moderate Alzheimer Dementia. Journal of Alzheimers Disease, 2011. 26: p. 331-336.
11	100.	Wilkinson, D., et al., Memantine and Brain Atrophy in Alzheimer's Disease: A 1-Year Randomized
12		Controlled Trial. Journal of Alzheimers Disease, 2012. 29(2): p. 459-469.
13	101.	Orgogozo, J.M., et al., Efficacy and safety of memantine in patients with mild to moderate
14		vascular dementia - A randomized, placebo-controlled trial (MMM 300). Stroke, 2002. 33(7): p.
15		1834-1839.
16	102.	Wilcock, G., et al., A double-blind, placebo-controlled multicentre study of memantine in mild to
17		moderate vascular dementia (MMM500). International Clinical Psychopharmacology, 2002.
18		17 (6): p. 297-305.
19	103.	Leroi, I., et al., Randomized Controlled Trial of Memantine in Dementia Associated with
20		Parkinson's Disease. Movement Disorders, 2009. 24(8): p. 1217-1221.
21	104.	Aarsland, D., et al., Memantine in patients with Parkinson's disease dementia or dementia with
22		Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurology, 2009. 8(7):
23		р. 613-618.
24	105.	Boxer, A.L., et al., Memantine in patients with frontotemporal lobar degeneration: a multicentre,
25		randomised, double-blind, placebo-controlled trial. Lancet Neurology, 2013. 12 (2): p. 149-156.
26	106.	Vercelletto, M., et al., Memantine in Behavioral Variant Frontotemporal Dementia: Negative
27		Results. Journal of Alzheimers Disease, 2011. 23(4): p. 749-759.
20		
20		

- 1 Table 1: Characteristics of included studies (CVD=cerebrovascular disease, CADASIL=Cerebral
- 2 Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy, PRC=prolonged-
- 3 release capsule, BID=twice daily, TID=three-times daily)

Study	Diagnosis	Duration (weeks)	Cognitive measure	Trial arms (n)	Risk of bias
Donepezil					
Frolich et al., 2011[29]	AD	12	MMSE	5 or 10mg/d (161) Placebo (164)	Unclear
Gault et al., 2015[30]	AD	12	ADAS-cog	10mg/d (68) Placebo (68)	Low
Gelmacher et al., 2000[31]	AD	12	MMSE	Donepezil (6) Placebo (6)	Unclear
Marek et al., 2014[32]	AD	12	MMSE	10mg/d (66) Placebo (66)	High
Peng et al., 2005[33]	AD	12	MMSE	5mg/d (46) Placebo (43)	High
Rogers et al., 1998a[34]	AD	12	MMSE	5mg/d (157) 10mg/d (158) Placebo (153)	High
NCT00777608	AD	12	ADAS-cog	5 or 10mg/d (53) Placebo (53)	High
Howard et al., 2007[35]	AD	12	MMSE	10mg/d (128) Placebo (131)	Low
Moraes et al., 2008[36]	AD	13	ADAS-cog	5mg/d (11) Placebo (12)	Unclear
Sole-Padulles et al., 2013[37]	AD	13	MMSE	10mg/d (8) Placebo (7)	High
Haig et al., 2014[38]	AD	14	MMSE	10mg/d (60) Placebo (63)	Low
Black et al., 2007[39]	AD	24	MMSE	10mg/d (176) Placebo (167)	High
Burns et al., 1999[40]	AD	24	ADAS-cog	5mg/d (271) 10mg/d (273) Placebo (274)	Unclear
Feldman et al., 2000[41]	AD	24	MMSE	10mg/d (144) Placebo (146)	Unclear
Gold et al., 2010[42]	AD	24	ADAS-cog	10mg/d (84) Placebo (166)	High
Homma et al., 2000[43]	AD	24	ADAS-cog	5mg/d (134) Placebo (129)	Unclear
Jia et al., 2017[44]	AD	24	MMSE	5mg/d (156) Placebo (156)	Low
Maher-Edwards et al., 2011[45]	AD	24	ADAS-cog	10mg/d (67) Placebo (63)	High
Mazza et al., 2006[46]	AD	24	MMSE	5mg/d (25) Placebo (26)	High

Gault et al., 2016[47]	AD	24	MMSE	10mg/d (76) Placebo (104)	Unclear
Rogers et al.,	AD	24	MMSE	5mg/d (154)	High
1998b[48]			ADAS-cog	10mg/d (157)	C
			C	Placebo (162)	
Seltzer et al	AD	24	MMSE	10mg/d (96)	High
2004[49]				Placebo (57)	
Tune et al 2003[50]	ΔD	24		10 mg/d (14)	Unclear
Tune et al., 2005[50]	ND	2-1	NDN3 COB	Placebo (1/l)	oncicui
Maher-Edwards et	AD	24	MMSE	5 or 10mg/d (152)	High
al., 2015[51]			ADAS-cog	Placebo (145)	
dos Santos Moraes	AD	26	ADAS-cog	10mg/d (17)	Low
et al., 2006[52]				Placebo (18)	
Winblad et al.,	AD	26	MMSE	10mg/d (128)	High
2006[53]				Placebo (121)	
Winblad et al.,	AD	52	MMSE	10mg/d (142)	Unclear
2001[54]				Placebo (144)	
Mohs et al.,	AD	54	MMSE	10mg/d (214)	High
2001[55]				Placebo (217)	
Bentham et al.,	AD or	12	MMSE	5mg/d (282)	High
2004[56]	AD+VaD			Placebo (283)	
Tariot et al.,	AD or	24	MMSE	10mg/d (103)	High
2001[57]	AD+CVD			Placebo (105)	-
Black et al., 2003[58]	VaD	24	MMSE	5mg/d (198)	High
			ADAS-cog	10mg/d (206)	-
			-	Placebo (199)	
Roman et al.,	VaD	24	MMSE	5mg/d (648)	High
2010[59]				Placebo (326)	C
Wilkinson et al.,	VaD	24	MMSE	5mg/d (208)	High
2003[60]				10mg/d (215)	C
				Placebo (193)	
Dichgans et al	CADASIL	18	MMSE	10mg/d (86)	Unclear
2008[61]				Placebo (82)	
Aarsland et al.,	PDD	10	MMSE	5 or 10mg/d (8)	High
2002[62]				Placebo (6)	U
Ravina et al.,	PDD	10	ADAS-cog	5mg/d (11)	High
2005[63]			C	Placebo (11)	C
Leroi et al., 2004[64]	PDD	18	MMSE	10mg/d (7)	Unclear
				Placebo (9)	
Dubois et al.,	PDD	24	MMSE	5mg/d (195)	High
2012[65]			ADAS-cog	10mg/d (182)	0
			0	Placebo (173)	
Ikeda et al	DIB	12	MMSE	5mg/d (46)	High
2015[66]		-		10mg/d (47)	
				Placebo (49)	
Mori et al., 2012[67]	DLB	12	MMSE	3mg/d (35)	Low
· , ·[-·]			-	5mg/d (33)	
				.	

				10mg/d (37) Placebo (35)	
<u>Galantamine</u>					
Wilkinson and	AD	12	ADAS-cog	18mg/d (88)	High
Murray, 2001[68]				24mg/d (56)	
				36mg/d (54)	
				Placebo (87)	
Kadir et al., 2008[69]	AD	13	MMSE	8-16mg/d (12)	Unclear
				Placebo (6)	
Rockwood et al.,	AD	13	ADAS-cog	24-32mg/d (261)	High
2001[70]			_	Placebo (125)	_
Rockwood et al.,	AD	16	ADAS-cog	16-24mg/d (64)	Unclear
2006[71]			C C	Placebo (66)	
Tariot et al	AD	22	ADAS-cog	8mg/d (140)	Unclear
2000[72]				16mg/d (279)	
				24mg/d (273)	
				Placebo (286)	
Brodaty et al	AD	26	ADAS-cog	16-24mg/d (237)	High
2005[73]	10	20	1010 005	16-24mg/d PBC (320)	
2005[75]				$\frac{10}{24} \frac{2}{10} \frac{1}{20} \frac{1}{20}$	
Packind at al		26		24mg/d(212)	High
2000[74]	AD	20	ADA3-COg	24111g/u (212) 22mg/d (211)	Ingi
2000[74]				Diacobo (212)	
Wilcock at al		26		24ma/d (220)	Lligh
	AD	20	ADAS-COg	24111g/u(220)	півн
2000[75]				32mg/0 (218)	
	4.5	26		Placebo (215)	l los al a a o
Likitjaroen et al.,	AD	26	IVIIVISE	16mg/d (14)	Unclear
2011[76]				Placebo (11)	
Hager et al.,	AD or	104	MMSE	18-24mg/d (1028)	Low
2014[//]	AD+CVD			Placebo (1023)	
Erkinjuntti et al.,	VaD or	26	ADAS-cog	24mg/d (396)	High
2002[78]	AD+CVD			Placebo (196)	
Auchus et al.,	VaD	26	ADAS-cog	24mg/d (397)	High
2007[79]				Placebo (391)	
Litvinenko et al.,	PDD	24	MMSE	16mg/d (21)	High
2008[80]				Placebo (20)	
<u>Rivastigmine</u>					
Koch et al., 2014[81]	AD	4	MMSE	4.6mg/d (10)	Unclear
				Placebo (10)	
Mowla et al.,	AD	12	MMSE	6-12mg/d (41)	Unclear
2007[82]				Placebo (40)	
Iranmanesh et al.,	AD	12	MMSE	3mg/d (16)	Unclear
2012[83]				Placebo (16)	
Agid et al., 1998[84]	AD	13	MMSE	4mg/d (136)	High
				6mg/d (133)	-
				Placebo (133)	
Forette et al.,	AD	18	ADAS-cog	12mg/d BID (45)	High
1999[85]			U	12mg/d TID (45)	2

Winblad et al., 2007[86]	AD	24	MMSE	Placebo (24) 12mg/d capsule (297) 9.5mg/d patch (293) 17.4mg/d patch (303)	High
NCT00423085	AD	24	MMSE	9mg/d patch (284) 18mg/d patch (287) Placebo (288)	High
Rosler et al., 1999[87]	AD	26	MMSE	1-4mg/d (243) 6-12 mg/d (243) Placebo (239)	High
Corey-Bloom et al., 1998[88]	AD	26	MMSE ADAS-cog	1-4mg/d (233) 6-12 mg/d (231) Placebo (235)	High
Feldman and Lane, 2007[89]	AD	26	MMSE ADAS-cog	2-12mg/d BID (229) 2-12mg/d TID (227) Placebo (222)	Unclear
Karaman et al., 2005[90]	AD	52	MMSE	12mg/d (24) Placebo (20)	High
Ballard et al., 2008[91]	VaD	24	MMSE	3-12mg/d (365) Placebo (345)	High
Mok et al., 2007[92]	VaD	26	MMSE	6mg/d (20) Placebo (20)	Unclear
Emre et al., 2004[93]	PDD	24	MMSE	3-12mg/d (362) Placebo (179)	High
<u>Memantine</u>					
Fox et al., 2012[94]	AD	12	MMSE	20mg/d (74) Placebo (79)	Low
Bakchine and Loft, 2007[95]	AD	24	ADAS-cog	20mg/d (318) Placebo (152)	Low
Peskind et al. <i>,</i> 2006[96]	AD	24	ADAS-cog	20mg/d (201) Placebo (202)	Low
Wang et al., 2013[97]	AD	24	MMSE	20mg/d (13) Placebo (13)	Unclear
Reisberg et al., 2003[98]	AD	28	MMSE	20mg/d (126) Placebo (126)	High
Ashford et al., 2011[99]	AD	52	ADAS-cog	20mg/d (7) Placebo (6)	High
Wilkinson et al., 2012[100]	AD	52	MMSE	20mg/d (134) Placebo (144)	Low
Orgogozo et al., 2002[101]	VaD	28	MMSE	20mg/d (165) Placebo (156)	High
Wilcock et al., 2002[102]	VaD	28	MMSE ADAS-cog	20mg/d (295) Placebo (284)	Low
Leroi et al., 2009[103]	PDD	16	MMSE	20mg/d (11) Placebo (14)	High
Aarsland et al., 2009[104]	PDD/DLB	24	MMSE	20mg/d (35) Placebo (40)	Low

Boxer et al.,	FTD	26	MMSE	20mg/d (39)	Low
2013[105]				Placebo (42)	
Vercelletto et al.,	FTD	52	MMSE	20mg/d (26)	High
2011[106]				Placebo (26)	

1

2

- 3 Table 2: Meta-regressions of effects at 3 months. Coefficients, associated p-values and omnibus test of
- 4 parameters p-value provided. *=significant at 5% level. **=significant at 1% level. ref=reference
- 5 category.

Factor	Levels	Number	Coefficient (p-value)	Omnibus test p-value
		of trials		
Translation to MMSE	MMSE	28	ref	
	ADAS-cog	32	-0.471 (0.007)	0.007**
Risk of bias rating	Low	8	ref	
	Unclear	13	-0.371 (0.307)	0.521
	High	39	-0.346 (0.269)	
Medication	Donepezil	37	ref	
	Galantamine	17	0.010 (0.961)	0.864
	Rivastigmine	6	-0.153 (0.612)	
Diagnosis	AD	46	ref	
	VaD	6	-0.211 (0.373)	0.009**
	PDD/DLB	8	0.806 (0.005)	
Baseline MMSE	NA	55	-0.069 (0.092)	0.092
Date	Pre 2000	26	ref	
	2000 onwards	34	0.068 (0.703)	0.703

6

7

- 8 Table 3: Meta-regressions of effects at 6 months. Coefficients, associated p-values and omnibus test of
- 9 parameters p-value provided. *=significant at 5% level. **=significant at 1% level. ref=reference
- 10 category.

Factor	Levels	Number	Coefficient (p-value)	Omnibus test p-value
		of trials		
Translation to MMSE	MMSE	35	ref	
	ADAS-cog	17	0.117 (0.540)	0.540
Risk of bias rating	Low	3	ref	
	Unclear	9	0.269 (0.579)	0.735
	High	40	0.329 (0.443)	
Medication	Donepezil	27	ref	
	Galantamine	11	0.320 (0.139)	0.033*
	Rivastigmine	14	-0.370 (0.133)	
Diagnosis	AD	39	ref	

	VaD	9	-0.134 (0.139)	0.007*
	PDD/DLB	4	0.970 (0.001)	
Baseline MMSE	NA	52	-0.005 (0.869)	0.869
Date	Pre 2000	17	ref	
	2000 onwards	35	-0.141 (0.456)	0.456

1

- 2
- 3 Figure 1: Flow diagram of trials identified for inclusion in this review through two-tier search strategy.

4

- 5 Figure 2: Forest plot showing treatment effects from individual trials and meta-analysis results for
- 6 AChEIs at 3 months after treatment initiation

7

8 Figure 3: Funnel plot of treatment effects at 3 months after treatment initiation.

9

- 10 Figure 4: Forest plot showing treatment effects from individual trials and meta-analysis results for
- 11 AChEIs at 6 months after treatment initiation

12

- 13 Figure 5: Forest plot showing treatment effects from individual trials and meta-analysis results for
- 14 AChEIs at 12 months after treatment initiation

15

- 16 Figure 6: Forest plots showing treatment effects from individual trials and meta-analysis results for
- 17 memantine at 3, 6 and 12 months after treatment initiation.

18