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Abstract
Background: Uncovering the key sequence elements in gene promoters that regulate the
expression of plant genomes is a huge task that will require a series of complementary methods for
prediction, substantial innovations in experimental validation and a much greater understanding of
the role of combinatorial control in the regulation of plant gene expression.

Results: To add to this larger process and to provide alternatives to existing prediction methods,
we have developed several tools in the statistical package R. ModuleFinder identifies sets of genes
and treatments that we have found to form valuable sets for analysis of the mechanisms underlying
gene co-expression. CoReg then links the hierarchical clustering of these co-expressed sets with
frequency tables of promoter elements. These promoter elements can be drawn from known
elements or all possible combinations of nucleotides in an element of various lengths. These sets
of promoter elements represent putative cis-acting regulatory elements common to sets of co-
expressed genes and can be prioritised for experimental testing. We have used these new tools to
analyze the response of transcripts for nuclear genes encoding mitochondrial proteins in Arabidopsis
to a range of chemical stresses. ModuleFinder provided a subset of co-expressed gene modules that
are more logically related to biological functions than did subsets derived from traditional
hierarchical clustering techniques. Importantly ModuleFinder linked responses in transcripts for
electron transport chain components, carbon metabolism enzymes and solute transporter
proteins. CoReg identified several promoter motifs that helped to explain the patterns of expression
observed.

Conclusion: ModuleFinder identifies sets of genes and treatments that form useful sets for analysis
of the mechanisms behind co-expression. CoReg links the clustering tree of expression-based
relationships in these sets with frequency tables of promoter elements. These sets of promoter
elements represent putative cis-acting regulatory elements for sets of genes, and can then be tested
experimentally. We consider these tools, both built on an open source software product to
provide valuable, alternative tools for the prioritisation of promoter elements for experimental
analysis.
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Background
The regulation of gene expression is one of the most inten-
sively studied areas of biology. The regulation of transcrip-
tion, the first committed step in gene expression, is
achieved via the interaction of transcription factors with
cis acting regulatory elements (CAREs) [1]. A complete
understanding of the interaction between transcription
factors and regulatory sequences will ultimately lead to a
picture of the regulatory networks operating in a biologi-
cal system. Genome wide studies on the expression of
transcription factors are currently underway in attempts to
gain data that can be used to understand the complex
nature of gene regulation that exists to coordinate cellular
functions [2-4]. The structure of such regulatory networks
(multi-component regulatory factors that have overlap-
ping but also discrete activities) for a plant can begin to be
hypothesized using the ~1,500 transcription factors in
Arabidopsis in a combinatorial manner to achieve regula-
tion of the 28,000 or more genes [5-7].

The completion of the Arabidopsis nuclear genome
sequence means that the analysis of plant gene expression
has changed from probing the expression of a single or
few genes at a time to simultaneous analysis of the expres-
sion of virtually every gene [8]. This change in the amount
of data available represents a considerable challenge for
biologists to extract knowledge from these data and use it
in a productive manner to investigate the mechanisms
underlying gene regulation, i.e. the further dissection of a
complex network of combinatorial control.

The analysis of Arabidopsis microarray expression data sets
can be carried out from single gene analysis to whole
genome approaches. At a single gene level many research-
ers can simply look up how their gene or genes of interest
are changing under a large number of conditions. This
approach has been facilitated by the use of tools such as
Genevestigator, which enables complex array data to be
easily interrogated for a gene of interest [9]. At a wider
genome level hierarchical clustering has been applied to
complete genome transcriptomic data during growth and
development [10-13], following various biotic and abi-
otic treatments [14-16] and after alterations in transcript
abundances due to changes in nutrient availability [17].
Development of analysis packages such as MAPMAN has
allowed plant biologists to visualize transcriptomic data
on metabolic pathways that should lead to a greater
understanding and use of transcriptomic data [18].

Even though large-scale analysis like those above can and
has identified novel associations of biological signifi-
cance, the clustering methods used can also tend to split
or miss relationships in such data. The transcripts from a
group of genes may respond to a number of parameters in
a similar manner, but in additional treatments their

response may differ. In a hierarchical cluster analysis of all
these treatments the relationship between these genes will
often be masked and they will be separated to different
parts of the clustering tree. This loss of association is fur-
ther compounded by the fact that clustering of gene
expression data is often carried out with the intent to iden-
tify co-expressed genes and then these data used to eluci-
date the regulation of these genes, i.e. to identify CAREs
and the transcription factors that bind them. As transcrip-
tion factor binding sites are small in size (6 to 10 bp [1])
compared to the large number of DNA bases in promoter
regions, there is a significant challenge in identifying these
regions of important sequence. Direct experimental con-
firmation requires considerable effort, so computational
efforts to identify the most likely putative CAREs are
essential. The identification of similar CAREs in co-
expressed genes thus becomes crucial as it will determine
the quality of input for such analysis.

An alternative approach to hierarchical clustering to ana-
lyse array expression data is to define associations based
on similarities in transcript abundance in a subset of treat-
ments. Such two way clustering or biclustering uses itera-
tive approaches to define relationships between subsets of
genes and subset of treatments. This approach has been
most widely used in the analysis of transcript datasets
from cancer samples [19-25]. Various approaches such as
the progressive iterative signature algorithm (PISA) [26],
gene expression mining server (GEMS) [25], coupled two-
ways clustering (CTWC) [27] and X-Motifs [28] use this
principle to search for relationships that go largely unde-
tected using hierarchical clustering.

We have taken a biclustering approach to identify co-
expressed genes and the prediction of the CAREs. Firstly
we have simplified the number of genes analyzed by using
only a subset, in this example those that encode proteins
located in mitochondria [29,30]. Secondly we have iden-
tified genes that are co-expressed in response to subsets of
treatments using a novel approach via a tool we have
developed and named ModuleFinder. The pattern of co-
expressed genes produced in ModuleFinder can be
exported to visualize functional groups in tools such as
MAPMAN. To predict CAREs we have used the hierarchi-
cal clustering produced in ModuleFinder and the assump-
tion that the resulting hierarchical tree structure of the
expression data is a reflection of patterns of CAREs in pro-
moter regions. Thus the hierarchical relationships identi-
fied based on the expression data can be used to identify
these promoter elements. We have developed a tool
named CoReg to undertake this CARE prediction.
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Results and discussion
Existing approaches are not well suited to identifying 
shared responses among numerous non-linear-related 
treatments
Cluster analysis is a useful technique for identifying genes
whose expression patterns across a given set of treatments
are similar. For example, such analysis will cluster
together all those genes whose expression is up-regulated
in response to treatments A, B and C, down regulated in
response to treatments D, E and F, and unaffected by treat-
ments G and H (Figure 1, cluster 1). However since
expression data from all treatments is used in the analysis,
this cluster will not include genes that are up-regulated in
response to A, B, C and G, and down-regulated in
response to D, E, F and H (Figure 1, cluster 3). These will
be grouped together into a separate cluster since their
expression patterns differ under treatments G and H (Fig-
ure 1, cluster 3). The similarity between the clusters in
response to treatments A to F is masked in the analysis and
the cluster tree. Yet from a biological point of view, the
fact that both clusters display co-ordinated expression in
response to treatments A to F is very interesting. It may
indicate that they are co-regulated by a factor that is
induced or activated under treatments A-C and repressed
or inactivated under treatments D-F. Thus it would be
informative to identify the genes of cluster 1 and 3, and
the treatments A-F, as a co-ordinated gene expression
module. Such a module contains more member genes,
and in the analysis of this larger set it can be argued it is

more likely that a biological significant mechanism might
become apparent than in analysis of the two separate
smaller groups produced by classical cluster analysis.

We have thus developed ModuleFinder in R with the aim
of identifying gene expression modules in a way that facil-
itates the subsequent interpretation of results. The
method was designed to allow easy visualization not only
of the expression patterns of discrete modules, but also of
the relationships between the modules. The aim of Mod-
uleFinder is to identify gene expression responses that are
shared among subsets of treatments and genes; the
approach is to first identify gene clusters that are co-
expressed in a small subset (often a pair) of treatments,
then look for other treatments in which these gene clus-
ters are expressed in a similar co-ordinated manner. This
approach ignores the differences in treatment effects and
focuses on the shared effects on gene expression, which
are expected to be related to the activation of common
gene regulatory pathways.

The ModuleFinder algorithm
ModuleFinder takes as its input a matrix of expression data
from a set of experiments, for example the set of average
log expression ratios for genes from a range of experimen-
tal treatments compared to a control. It also requires a
matrix of p-values associated with each data point, provid-
ing an assessment of how likely it would be to observe the
gene expression values if there was really no change in

Shared gene expression responses can be split in simple cluster analysisFigure 1
Shared gene expression responses can be split in simple cluster analysis. A) Classical cluster analysis groups together genes whose 
expression patterns are similar across all available experiments. This cluster analysis of genes 1 to 12 in treatments A to H 
splits the genes into three separate clusters. B) Clusters 1 and 3 (genes 1–4 and 9–12) are co-ordinately expressed in response 
to treatments A-F.
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experimental compared to control conditions. P-values
may be calculated from the original expression measures
via an appropriate statistical method, e.g. t-tests.

The algorithm begins with a subset of experiments and
extracts the genes whose expression levels differ from con-
trol conditions in those experiments, according to the p-
values provided. ModuleFinder then clusters the genes
hierarchically and splits them into co-expressed modules
based on the resulting clustering tree. Next, the algorithm
searches for another experiment (outside the initial sub-
set) that fits the expression patterns of these modules. The
new experiment is added to the module and the genes are
re-clustered. Experiments are added one by one in an iter-

ative procedure of searching for matching experiments
and re-clustering the genes, until no more experiments
can be found that fit the module expression patterns. The
resulting subsets of genes and experiments are referred to
as gene expression modules, as they define not only gene
clusters but also subsets of genes whose expression is co-
ordinated in a specific subset of experiments. A general
scheme of the program is illustrated in Figure 2A.

The ModuleFinder algorithm can be run in either a super-
vised or unsupervised fashion. In an unsupervised run,
the algorithm first searches for pairs of experiments in
which gene expression was similar (i.e. highly correlated),
then builds gene expression modules based on these cor-

An overview of the operation of ModuleFinderFigure 2
An overview of the operation of ModuleFinder. A) Flow diagram of ModuleFinder. Sets of expression data are taken as input, subsets 
of genes and experiments are hierarchically clustered and then experiments with similar expression profiles are added consec-
utively (indicated with an asterisk), expression data and TreeView cluster files are saved after each addition and the entire run 
is documented in a PDF file. B) The PDF output file includes a heatmap, clustering tree and functional breakdown of the mod-
ules at each stage of the run.
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related pairs. On the other hand, the user can identify a
particular subset of experiments they are interested in, and
run the algorithm in a supervised manner by specifying
the names of the experiments to provide an initial subset.
This initial set will then be added to by iterative additions
of related experiments.

The main output of ModuleFinder is a PDF file containing
clustering trees and expression heat maps of the modules
produced after the addition of each new experiment. It
also includes pie charts displaying the breakdown of each
module according to the functional categories of its mem-
ber genes (Figure 2B). In addition, cluster files are written
at each stage for easy viewing of clusters, heat maps and
gene annotations in tree viewing programs compatible
with TreeView and its java versions, which can run on any

platform [31]. Excel-compatible, comma-separated files
containing the expression data for the subsets of genes
and experiments are also saved at each stage (Figure 2A).

Using ModuleFinder to identify modules within the 
expression of a set of nuclear genes encoding 
mitochondrial proteins (NGMP)
Traditional hierarchical clustering was compared to Mod-
uleFinder in analysing the expression of 374 Arabidopsis
NGMPs in a set of microarray experiments where Arabi-
dopsis suspension cell cultures were subjected to 16 differ-
ent chemical stresses [32]. The clustering trees and
expression heat maps using a standard clustering method
(hierarchical clustering using a Euclidean distance meas-
ure and the McQuitty method of linkage) are shown in
Figure 3A[33]. The full clustering tree and heat map show-

Traditional hierarchical cluster versus ModuleFinder analysis of 374 Nuclear Genes encoding Mitochondrial Proteins (NGMPs)Figure 3
Traditional hierarchical cluster versus ModuleFinder analysis of 374 Nuclear Genes encoding Mitochondrial Proteins (NGMPs). A) The 
374 NGMPs were clustered into 16 clusters in response to 16 treatments. This analysis split genes that have related function in 
a subset of treatments. B) Using the same starting set of genes and treatments, but seeding the ModuleFinder with salicylic acid 
and rotenone treatments (indicated in red) a different grouping of genes is produced. This output contained only 51 genes, 
divided into 8 modules; this used a p-value cut-off of 0.1, Euclidean distance, complete linkage and a between-to-within-groups 
variance ratio > 4. The number to the left of the heat map indicates the cluster number that these genes belonged to in the 
analysis carried out in A above.
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Visualization of the expression of Nuclear Genes encoding Mitochondrial Proteins using MAPMANFigure 4
Visualization of the expression of Nuclear Genes encoding Mitochondrial Proteins using MAPMAN. Pictorial representation of mito-
chondrial functions of the changes in gene expression from ModuleFinder as carried out in Figure 3B. The mitochondrial outer 
membrane contains the Translocase of the Outer Membrane (TOM) complex and the Translocase of the Inner Membrane 
17:23 and 22 (TIM17:23 and TIM22) which are responsible for the import of all mitochondrial proteins synthesised in the 
cytosol [60]. The substrate carriers refer to the family of mitochondrial carrier proteins characterised by six transmembrane 
regions and responsible for the import and export of various metabolites in and out of mitochondria [61]. The mitochondrial 
electron transport chain consisting of four multi-subunit electron transport complexes and the ATP synthase complex are 
labelled I to V. The alternative electron transport chain components, alternative NAD(P)H dehydrogenases (NDH) and alter-
native oxidase (Aox) are shown. The TCA cycle and a range of other functions of mitochondria are listed [62]. The boxes rep-
resent the average gene expression for the 47 genes in Fig 3B divided into the functional annotation for these genes in Mapman.
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ing all individual gene responses are shown in Supple-
mentary Figure 1A. A set of 16 clusters can be defined
from this analysis ranging in size from 4 to 89 genes. For
the ModuleFinder analysis, four experiments comprising
salicylic acid at 10 and 100 µM and rotenone after 3 and
12 hours were selected as an initial experiment subset.
These treatments had been shown to induce similar
responses in the expression of the alternative respiratory
pathway components of plant mitochondria [32]. Using a
p-value cut-off of 0.1, a total of 51 (14%) of the genes
could be selected in these experiments and clustered into
eight modules. A further seven treatments were added by
ModuleFinder and are shown in Figure 3B. A number of
genes that were separated into several different clusters
using hierarchical clustering (Figure 3A) were placed into
the same modules or closely related modules by Module-
Finder (Figure 3B). Therefore the similarity in biological
response to these treatments becomes readily apparent,
with genes that are uniformly induced and genes that are
uniformly repressed by the treatments are identified.
Analysis of the same data set using the coupled two-way
clustering (CTWC) algorithm yielded an intermediate set
of results to the traditional hierarchical clustering and
analysis by ModuleFinder (data not shown). Of the 24
genes whose transcript abundance was increased as
shown in Figure 3B, 7 and 4 were placed in two close clus-
ters, indicating that the CTWC algorithm and Module-
Finder were placing gene together that were split in the
traditional hierarchical clustering [27]. However using
several iterative clustering steps with treatments (sample
clusters in CTWC terminology) the apparent relationships
between treatments defined by ModuleFinder were not
evident in the CTWC results. This may be due to the fact
that the initial clustering of treatments and genes is based
on the entire data set, so the problems illustrated in Figure
1 remain. Furthermore CTWC works by clustering genes
into subsets, then clustering samples into subsets. Each
gene subset-sample subset pair is then considered as a
sub-matrix and genes and samples are re-clustered within
that sub-matrix [21,27]. The result is a collection of sub-
sets of genes and samples (gene expression modules),
which theoretically should display co-ordinated expres-
sion patterns. However, this fragmentation of the data
into small discrete modules makes it difficult to interpret
the CTWC results and particularly difficult to see overall
trends in the expression patterns displayed by Module-
Finder.

Visualization of ModuleFinder sets in MAPMAN
The output from ModuleFinder can be visualized using
MAPMAN to display functional categories. MAPMAN is a
Java program that allows users to annotate images with
data from a text file [18]. Once the appropriate images
and annotation files are loaded into the program, users
can load in a file containing a list of gene identifiers with

values assigned to each (e.g. an expression value from a
particular experiment), and the genes are mapped onto
the pathway image, coloured according to the value (e.g.
expression level) in the loaded file. This helps users to rec-
ognize if a number of genes in a pathway were induced or
repressed in an experiment. A number of mappings and
annotated images come with the standard MAPMAN
download, but users can also add their own. To facilitate
functional interpretation of the results presented here,
which focus specifically on this set of mitochondrial-tar-
geted genes, a new MAPMAN annotation was developed
to aid visualization of changes in expression of compo-
nents of the various pathways of plant mitochondria (Fig-
ure 4). The mapping includes the classical and alternative
mitochondrial electron transport chains in some detail, as
well as components of the mitochondrial import machin-
ery, substrate transporters and TCA cycle enzymes, and
can be used to visualize data from any source in which
genes are labelled with AGI locus identifiers. The neces-
sary files are available as part of the ModuleFinder package.
The annotated image highlighted that the highest up-reg-
ulated group contained two genes that together form an
alternative respiratory pathway: alternative oxidase 1a
(Aox1a) and an external class alternative NADH dehydro-
genase (NDB2). The next most up-regulated group con-
tained several mitochondrial substrate carriers and genes
involved in metabolism. The annotated image also sug-
gested some down-regulation of genes involved in import
of proteins and substrates into the mitochondria, as well
as functions associated with expression of the mitochon-
drial genome (DNA/RNA processing, transcription and
protein synthesis).

Building a framework for understanding the biological 
implications of the gene regulation observed
Combining the MAPMAN overview with a more detailed
analysis using the wider literature provided an even
deeper view of the biological response to rotenone and
salicylic acid, showing this process was helpful for a biol-
ogists' interpretation of the dataset. Rotenone is an inhib-
itor of complex I function, thus preventing matrix-located
NADH from the TCA cycle entering the classical respira-
tory chain. Salicylic acid can have a similar effect, as it
appears that along with its defence signalling functions
this compound can inhibit the respiratory chain in plants
[34]. This effect appears to be through inhibition of the
dehydrogenases of the mitochondrial electron transport
chain [35]. Induction of the Aox and NADH dehydroge-
nase are the clearest direct response to this targeted inhi-
bition of mitochondrial function evident from both types
of cluster analysis (Figure 3). Using the classical cluster
analysis it appeared that the up-regulation of gene expres-
sion in response to respiratory poisons was split, in clus-
ters 2, 4, 5, 15 and 16, and down-regulation split into 1,
3, 10 and 14 (Fig 3A, Supplementary Figure 1A). Many of
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the genes in cluster 9 and 15 are involved in protein syn-
thesis or mitochondrial biogenesis (Supplementary Figure
1B). We have previously reported that changes in protein
import into mitochondria and a general up-regulation of
genes encoding components involved in mitochondrial
biogenesis occur as a result of chemical and environmen-
tal stresses [36,37].

Using ModuleFinder a larger picture of the effects of these
chemical stresses on the expression of mitochondrial
components becomes evident. In the defined subset of co-
expressed genes the induction of the alternative transport
chain components is coupled to the induction of tran-
scripts encoding for eight different substrate dehydroge-
nases, providing new avenues for NADH generation, or in
the case of the electron transfer flavoprotein (At1g50940),
provision of electrons to ubiquinone. Significantly, the
new carbon substrates for these NADH generating path-
ways, while including the organic acids of the TCA cycle,
are likely to be generated by catabolism of amino acids.
Enzymes involved in valine, isoleucine, cysteine, tyrosine,
alanine and glutamate catabolism are induced. Concomi-
tant with this change in substrate for energy generation is
the upregulation of transcripts for 4 mitochondrial carrier
proteins, most of unknown function. Down-regulation is
observed for components of the classical electron trans-
port chain complexes I and III, a separate set of five mito-
chondrial substrate carriers (most of unknown function)
and lipid biosynthesis pathways for phosphotidylglyerol
and phosphotidylethanolamine. Interestingly, both genes
for NAD-malic enzyme (At4g00570, At2g13560) are
down-regulated. This protein normally bridges the TCA
cycle to allow the anaplerotic removal of organic acids for
functions elsewhere in the cell. Together the insights from
this analysis suggests that these simple chemical inhibi-
tors appear to initiate the signals for a complicated re-
organisation of mitochondrial function within the plant
cell that can now been investigated independently.

Searching for common regulatory elements in the 
promoters of co-expressed genes
Genes whose transcription is co-ordinately regulated may
exhibit co-ordinated expression patterns. Thus co-expres-
sion of a group of genes may be indicative of co-regulation
at the transcriptional level [38]. To determine whether
this is the case for a given cluster of co-expressed genes,
such as those shown above, the promoter regions of the
genes need to be analyzed. Transcription factors (TFs)
bind to specific DNA sequences, which are usually only 6
to 10 base pairs long [1]. These short sequences are often
referred to as promoter motifs or sequence elements.
Transcriptional regulation in eukaryotes most often
occurs through the combinatorial action of multiple TFs
[1,39,40]. For example, the induction and repression of
Arabidopsis genes in response to red and blue light or

abscisic acid (ABA) is dependent on combinations of mul-
tiple light-responsive or ABA-responsive promoter ele-
ments [41,42]. It is therefore expected that the promoter
regions of co-expressed genes may share numerous TF
binding sites, including some that are also present in the
promoter regions of genes whose expression patterns are
quite different. A limitation of this type of approach is that
genes may be regulated by the same transcription factor(s)
but display different pattern(s) of transcript abundance
due to the fact that post-transcriptional processes that
affect their transcript stability may differ.

Aims of promoter analysis
Modules of co-expressed genes identified using Module-
Finder (Figure 3B), or groups of genes identified as co-
expressed by other methods, provide an opportunity to
discover potential regulatory sequence elements that may
be responsible for the observed co-expression. The aims of
such an analysis could be:

(a) to identify promoter sequence elements (possible TF
binding sites) that are common to genes within a module,

(b) to identify promoter sequence elements that are com-
mon to up-regulated genes or downregulated genes but
not both,

(c) to identify combinations of promoter sequence ele-
ments that are common within a module but not shared
by other modules, and

(d) to use the identified promoter motifs to construct test-
able hypothetical models of gene regulation that explain
observed expression patterns in terms of patterns of regu-
latory elements.

Various motif recognition tools are available which can
identify promoter sequence elements that are common
among a group of genes, many of them available as web-
based programs [43,44]. However this becomes difficult
when there are large numbers of large groups to be ana-
lyzed, as the processing times for these programs generally
increase exponentially with the number of sequences
taken as input data. Assuming such programs could be
employed, it would be possible to build up a model of the
regulatory network responsible for observed patterns of
gene expression by applying these tools repeatedly to gene
clusters defined by cluster analysis or gene modules
defined by ModuleFinder analysis. Unfortunately such a
process would be time consuming and error-prone. The
identification of motifs conserved in multiple sequences
is a complicated computing task and can consume signif-
icant processing time. To achieve the aims outlined above,
this task must be repeated for each module and subset of
modules and each potential motif would then have to be
Page 8 of 15
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searched against all the other promoter sequences. Keep-
ing track of module memberships and relationships, pro-
moter sequences and motifs is a complicated task in itself.
If this involves using the current web-based tools it
requires considerable uploading, copying and pasting of
gene lists and sequences, which can also introduce errors.
A more attractive alternative is to try to identify sequence
elements whose presence in gene promoter regions can be
correlated with observed gene expression levels [45]. This
approach was implemented using clustering-based meth-
ods in a novel tool called CoReg (Co-Regulation of Co-
Expressed Genes) to undertake promoter analysis by

deducing models of gene co-regulation to explain
observed patterns of gene co-expression.

The CoReg algorithm
CoReg aims to identify regulatory elements in the pro-
moter regions of a set of co-expressed genes, which
explain the observed expression patterns of those genes. It
is based on the assumption that there is a relationship
between the degree of similarity in gene expression and
the degree of similarity in the combination of transcrip-
tion factors binding within gene promoters. CoReg takes
as its starting point a hierarchical clustering of a set of
genes according to their expression in a set of experiments,
for example the output of ModuleFinder. The user is then
asked to break the hierarchical tree down into discrete
groups of genes (Figure 5A). The assignment of genes into
discrete groups can be recorded in a text file, which can be
loaded into MAPMAN to aid interpretation of the func-
tional significance of these groups (as indicated above).
The CoReg algorithm then navigates down the tree, stop-
ping at the first point at which the tree splits into two
branches, and searches for sequence elements whose fre-
quency of occurrence in promoter sequences varies greatly
between the two groups of genes defined by the branches.
For example, depending on the parameters set it will iden-
tify any sequence elements that are present in the promot-
ers of all the genes in one group but none in the other
group, or in promoters of >80% of the genes in one group
but <20% of the second group. The two branches resulting
from the first split are then each broken down into two
groups and sequence elements identified in each, then the
process is repeated until the specified groups are reached.
This process is illustrated in Figure 5B. CoReg can also
search for sequence elements that are 'characteristic' of
each group, in that their frequency is particularly high or
low in that group. A separate frequency tolerance value
may be set for this purpose. The user provides CoReg with
a list of sequence elements to search for, these may be
known elements from databases such as PlantCare [46],
Place [47], AGRIS [48] or Athamap [49], or list of all pos-
sible combinations of nucleotides ranging from 3 to X
nucleotides, where X would be an upper limit to the size
of a transcription factor binding site. Degenerate binding
sites can also be included where N can be any nucleotide.
All these potential motifs can be included in a single file
and the user can select the elements that match the expres-
sion profile (Figure 5 and 6). The example provided con-
tains a built-in list of all hexamers, that is all possible
sequences of the bases A, C, G, T of length six.

The frequency of each of the identified sequence elements
in each of the gene groups is then calculated, and dis-
played as a greyscale heatmap (dubbed frequency map) in
which black corresponds to a frequency of 80–100%,
shades of grey intermediate values and white 0–20% (Fig-

An overview of the operation of CoRegFigure 5
An overview of the operation of CoReg. The expression data 
output from ModuleFinder is taken as input (A) and the user 
defines the number of groups for analysis by CoReg. Files are 
also saved for visualization of expression data by MAPMAN. 
B) Sequence elements are identified that are unevenly distrib-
uted between the promoters of groups defined in A. The fre-
quencies of these elements in each group are recorded. C) 
Various combinations of elements can be selected and saved.
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CoReg analysis of the salicylic acid/rotenone module group from Nuclear Genes encoding Mitochondrial ProteinsFigure 6
CoReg analysis of the salicylic acid/rotenone module group from Nuclear Genes encoding Mitochondrial Proteins. The eight modules 
produced by ModuleFinder (Figure 3) were analyzed by CoReg. A) From the variety of elements detected in the upstream 
regions, five were selected which produced a tree structure that closely resembled the tree structure produced from the 
expression data. B) Hypothetical models of elements governing gene expression are shown based on these elements, which 
can be tested by experimental analysis. The sequences previously identified as regulatory elements in plants are indicated.
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ure 5B–C). The gene groups are then clustered according
to the frequencies of the identified elements in the pro-
moter regions of their member genes (Figure 5C). At this
point, the algorithm has done the bulk of its work, and it
is up to the user to drive the selection of a final subset of
the identified sequence elements. The user can choose to
try random subsets of sequence elements, chosen by
CoReg using random sampling methods, or can select
their own subsets to try. For each subset of sequence ele-
ments, the image window is updated to display a fre-
quency map for the subset of elements, and a hierarchical
tree showing the gene groups clustered according to these
frequencies. The aim here is to try to find a subset of
sequence elements such that, when the gene groups are
clustered according to the frequencies of the elements in
the promoter regions of their member genes, the resulting
tree has the same structure as the expression-based hierar-
chical clustering tree. It can then be proposed that the
selected sequence elements capture the structure of the
observed gene expression patterns, and it can be hypothe-
sised that the sequences correspond to regulatory ele-
ments that are responsible for these patterns of gene
expression. Experiments may then be designed to test
these hypotheses in the laboratory.

While the criteria of tree matching provides a good visual
cue to spot relationships between gene expression and the
occurrence of sequence elements, it is up to the user to
decide when they have found a set of sequence elements
that might explain the observed expression patterns. The
frequency maps themselves provide visual cues, helping
the user to spot other patterns that may be useful. Thus,
rather than providing the user with a definitive list of pro-
moter elements that might be regulatory, CoReg is a tool
for the user-driven exploration of patterns relating gene
co-expression and co-regulation. CoReg scans for the spe-
cific elements present and thus will not identify degener-
ate elements.

Using CoReg to identify putative sequence elements in 
subsets of co-expressed nuclear genes encoding 
mitochondrial proteins
We have used CoReg to analyze the gene expression mod-
ules identified by ModuleFinder analysis as described in
the example above (Figure 3B). To do this, the file con-
taining expression data for the 51 genes in the module,
created during the ModuleFinder run, was loaded into
CoReg along with the promoter sequences for these genes.
The built-in list of hexamers was taken as the list of
sequence elements for the search. The hierarchical cluster-
ing tree was broken down into eight groups – four up-reg-
ulated (Group 1 to 4) and four down-regulated (Group 5
to 8) in response to the various treatments. The resulting
tree is shown in Figure 6A. The maximum frequency toler-
ance was set to 0.35 and the characteristic frequency toler-

ance to 0.1, meaning that at each split in the tree, any
sequence element present in promoters of >65% of the
genes in one group but <35% of the other group would be
identified as interesting, as would any sequence elements
with a frequency of >90% in one group but <10% in all
other groups. A subset of 6 of these elements was identi-
fied which resulted in a clustering of the gene groups that
was quite similar to the expression-based clustering (Fig-
ure 6A). This suggests that although the element-based
tree did not precisely match the expression-based tree, the
uniqueness of expression pattern is reflected in the
uniqueness of its promoter composition, relative to the
other groups. Therefore the high frequency of the ele-
ments TTCTGC and ATGTAC correlate with the down reg-
ulation of modules SR 5 to 8, while the high frequency or
AAAAGC, TTCCAG and AACTAT correlate with the up reg-
ulation of modules SR 1 to 4. GATGAC is present in all
except the most highly downregulated module SR5.

These correlation patterns can then be used to model gene
regulatory networks that can be prioritised for experimen-
tal testing (Figure 6B). Of the six elements chosen to
define the expression patterns obtained from the microar-
ray analysis two have been previously identified to be
involved in regulation of gene expression. The motif GAT-
GAC, identified in CoReg analysis as a regulatory element
present in all except the most highly downregulated mod-
ule SR5, is part of two regulatory elements documented in
the PlantCARE database: the As-1-box of tobacco (Plant-
CARE ID: NT~as-1-box) and OCS-element of Arabidopsis
(PlantCARE ID: AT~ocs-element). These were both identi-
fied as being involved in the induction of gene expression
in response to salicylic acid, auxin and oxidative stress
[50-54]. The alternative oxidase gene (Aox1a) is a member
of SR4, contains this GATGAC element and transcript
abundance of Aox is known to be induced by salicylic acid
in several species [35,55,56].

Conclusion
Using a large number of plant microarray analyses to help
pinpoint the mechanisms of gene regulation is limited by
the range of tools currently available. We have developed
ModuleFinder to identify sets of genes and treatments that
in our hands contain more biologically related functions
for analysis of the mechanisms behind co-expression in
non-linear-related sets. We then developed CoReg to link
the clustering tree of expression-based relationships in
these gene sets with frequency tables of promoter ele-
ments. These sets of promoter elements represent putative
CAREs for sets of genes, and can then be tested experimen-
tally. We consider these tools, both built on an open
source software product, provide a valuable alternative
tool to those widely available for the prioritisation of pro-
moter elements for experimental analysis.
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Methods
Data sources and processing
The changes in gene expression in response to the addi-
tion of various compounds to Arabidopsis suspension cells
were measured as outlined previously [32]. Data for the
addition of chitin to 50 mg/mL (Sigma, Sydney) and
flagellen22 peptide to 1 µM (Auspep, Parkville, Victoria)
are included here and arrays were carried out as described
in Clifton et al. 2005 [32]. Average gene expression levels
were calculated across replicate chips; in each case, a min-
imum of two replicates was available. For each experi-
mental variable or time point, the log ratio of expression
under experimental conditions to appropriate control
conditions was determined for each gene. These log ratios
formed the input for ModuleFinder and CoReg analysis.
Only a subset of the >22,000 genes on the Affymetrix gene
chips were analyzed in the examples presented here. This
gene subset comprised 374 genes, derived from a set of
proteins identified in isolated Arabidopsis mitochondria
by liquid chromatography-tandem mass spectrometry
[30]. For CoReg analysis, promoter sequences were taken
as the 3000 base-pair sequences upstream of each gene,
retrieved from TAIR.

Programming in R
ModuleFinder and CoReg were developed in R, a computer
language and environment for statistical computing [57].
An advantage of R is that it is available as free software and
runs on a wide variety of UNIX platforms and similar sys-
tems, Windows and MacOS. Most importantly R provides
a variety of built-in statistical and graphical techniques,
including a variety of cluster analysis methods and facili-
ties for displaying cluster trees and heat maps, while also
allowing users to extend R's capabilities by defining their
own functions.

Statistical methods used in ModuleFinder
ModuleFinder filters out the genes whose expression did
not change under all experiments in the initial subset.
This is done by considering a matrix of p-values provided
by the user, which reflects the results of a test for differen-
tial expression (including correction for multiple testing if
appropriate), and filtering out all genes whose p-values
are above a user-defined cut-off in any of the experiments
in the subset. The default p-value cut-off is 0.05, but can
be set by the user to any value between zero and one. In
the examples presented here, the p-values used were
derived from two-sided t-tests comparing the robust
multiarray analysis-processed expression measures from
replicates of control and experimental conditions [5]. In
each case, a minimum of two replicates was available.

ModuleFinder uses R's hclust function for hierarchical clus-
tering of genes based on the expression values provided in
the input expression data file. The default clustering

method uses a Euclidean distance measure and the Ward
linkage method [58], but can be set by the user to any of
the hierarchical clustering methods available in R. (These
include Minkowski, Canberra, maximum, minimum and
Manhattan distances, and the complete, single, average,
centroid and McQuitty [33] methods of linkage.)

Having defined modules containing genes that are co-
ordinately expressed in response to a subset of experi-
ments, ModuleFinder searches for further experiments in
which these modules also display co-ordinated expression
responses. For each experiment not already in the mod-
ule, the variance of the gene expression measures within
each module is calculated using the var function in R
(var(x1,.., xn) = sum(xi-mean(x))2/(n-1)). A small within-
module variance can be interpreted as a high level of co-
expression among the genes in the module. The sum of
these within-module variance measures is calculated as an
overall measure of how well gene expression in the exper-
iment fits the set of modules. A measure of between-mod-
ule variance is also calculated for each experiment
(between-module var = sum(meanmodule i -meanall mod-

ules)2). Large values here indicate that the modules had
distinct expression patterns in the experiment. The exper-
iment that most closely 'fits' the module structure will dis-
play co-ordinated gene expression within modules and,
ideally, distinct patterns of gene expression between mod-
ules. That is, it will have small within-module variances
and a large between-module variance. The algorithm thus
looks for the experiment with the highest ratio of
between-module variance to sum of within-module vari-
ances.

CoReg algorithm
The primary data set used by CoReg is a table representing
the incidence of each of a list of potential sequence ele-
ments (e.g. hexamers, known motifs) in a list of gene pro-
moters. This is a table of sequence elements on the
horizontal axis, gene names on the vertical axis and values
of TRUE or FALSE indicating whether or not the element
was found in a search of the gene's promoter sequence.
String matching is used to search for sequence elements in
promoter sequences. This table can be prepared inde-
pendently, or CoReg can build one from a list of sequence
elements and a file containing gene promoter sequences
in FASTA format input by the user.

The user is then asked to input a table of expression data.
The genes in this table must appear in the incidence table,
and must be labelled in the same way (e.g. AGI locus iden-
tifier). CoReg, like ModuleFinder, uses R's hclust function
for hierarchical clustering of genes based on the expres-
sion values in this table. Distance and linkage methods
can be set by the user to any of those available in R (see
above). The user is also asked to indicate branches defined
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by the tree that they consider to be gene expression clus-
ters.

The resulting hierarchical clustering tree is split into two
branches, separating the genes into two discrete groups
(say A and B). The incidence table is then used to deter-
mine, for each sequence element in the table, the propor-
tion of genes in each group that contain that element. This
is dubbed the 'frequency' of the element in those two
groups (say fi, A and fi, B, where i denotes sequence element
i). These frequencies are then compared to a user-defined
tolerance level, f. Any sequence element that occurs with
frequencies fi, A <f and fi, B > (1-f) is recorded in a list of
sequence elements that may be able to explain the differ-
ence in expression patterns of the two groups. The same
process (splitting into two branches and searching for ele-
ments whose frequencies are different in the two groups
defined by the split) is repeated for each of the two
branches in an iterative procedure, stopping when the
final user-defined clusters are reached.

In addition, the frequencies of each sequence element in
each of the user-defined clusters is compared to a second
user-defined tolerance level g. Any sequence elements
whose frequency is below g or above 1-g in exactly one of
these clusters, is added to the list of interesting sequence
elements.

The gene expression clusters defined by the user are then
themselves clustered, according to the frequencies of all
the recorded sequence elements. The same method cho-
sen for expression-based hierarchical clustering is used at
this step. The user is then given the opportunity to select
subsets of the recorded sequence elements and cluster
according to those, the aim being to isolate a subset of
sequence elements leading to a hierarchical structure sim-
ilar to that defined by the expression-based hierarchical
clustering tree.

ModuleFinder and CoReg are available for downloading
from [59]. Alternatively a package will be emailed on
request containing program files, instruction files and
examples files. We request that users cite this manuscript
if using these programs.
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