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Abstract 14 

Plasmodium gametocytes can induce an immune response that interferes with the 15 

development of sexual stage parasites in the mosquito gut. Many early studies of the 16 

sexual stage immune response noted that mosquito infection could be enhanced as well 17 

as reduced by immune sera. For Plasmodium falciparum, these reports are scarce, and 18 

the phenomenon is generally regarded as a methodological 19 

artefact. Plasmodium transmission enhancement (TE) remains contentious, but the 20 

clinical development of transmission-blocking vaccines based on sexual stage antigens 21 

requires that it is further studied. In this essay, we review the early literature on the 22 

sexual stage immune response and transmission-modulating immunity. We discuss 23 

hypotheses for the mechanism of TE, suggest experiments to prove or disprove its 24 

existence, and discuss its possible implications. 25 

 26 
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 30 

Glossary 31 

Transmission modulating immunity: If antibodies targeting Plasmodium proteins 32 

with a role in parasite development (e.g., Pfs48/45, Pfs230, and Pfs25) are ingested by 33 

mosquitoes along with mature gametocytes in a blood-meal, antibody interaction can 34 

prevent parasite development and cause mosquito transmission potential to be reduced 35 

or blocked. As described in this review, these or other immune components may also 36 

enhance immunity, by unknown mechanisms. Transmission modulating immunity may 37 

be naturally acquired (see below, pre-fertilisation antigens) or elicited by vaccination.  38 

Mosquito feeding assay (MFA): xenodiagnostic assay used to determine the 39 

infectiousness of Plasmodium gametocytes to Anopheles mosquitoes. Mosquito feeding 40 

assay may refer to skin feeding assays, in which mosquitoes are allowed to feed directly 41 

on a subject’s skin, direct membrane feeding assays (DMFA), in which mosquitoes 42 

feed on venous blood maintained at body temperature in a membrane feeding device, or 43 

standard membrane feeding assays (SMFA), in which mosquitoes feed on cultured 44 

gametocytes in a membrane based feeder system. 45 

Transmission reducing activity (TRA)/% inhibition: TRA is the percent inhibition of 46 

infection (normally measured as the mean oocyst intensity) in a group of mosquitoes 47 

under test conditions, relative to a group of mosquitoes under control conditions. Test 48 

conditions may be the presence of a transmission reducing drug or antibody in the 49 

infectious blood meal, while control conditions would indicate the absence of the 50 

antibody in the same blood meal, or more properly the presence of an antibody which 51 

has no effect on transmission. 52 

Relative infectivity: An alternative metric to TRA/% inhibition for transmission data, 53 

in which the mean oocyst intensity in test mosquitoes is presented as a value relative to 54 

the mean oocyst intensity in control mosquitoes. TRA and relative infectivity are used 55 

both used in the literature; in this review we favour the use of relative infectivity 56 

(enhancement being positive, and reduction being negative). 57 

Gametocyte: the sexual stages of the malaria parasite capable of reproduction in the 58 

mosquito. Female and male gametocytes circulate in the human peripheral blood, where 59 
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they may be ingested by blood-feeding Anopheles mosquitoes and continue sexual 60 

development. 61 

Gamete: sexually dimorphic parasite forms that develop from gametocytes activating in 62 

the mosquito gut to undergo fertilisation. Female gametocytes give rise to a single 63 

female gamete, male gametocytes give rise to up to 8 motile microgametes; each female 64 

gamete may be fertilised by a male microgamete. 65 

Pre-fertilisation antigen: Antigens present during gametocyte development that are 66 

retained during gamete formation and may have important roles in gamete fertility. 67 

Naturally acquired transmission modulating immunity is due to exposure to pre-68 

fertilisation antigens including Pfs48/45 and Pfs230. 69 

Malaria transmission blocking vaccine (MTBV): Vaccines designed to elicit 70 

transmission reducing/blocking immunity in humans. MTBV may be based on antigens 71 

present pre- and post-fertilisation, or non-Plasmodium antigens. 72 

 73 

Antibodies and Plasmodium transmission 74 

A dominant role of specific antibodies in controlling malaria disease severity was first 75 

demonstrated in the 1960s by Cohen and McGregor [1, 2]. IgG from immune adults was 76 

passively transferred to children with severe disease, rapidly reducing their parasite 77 

density and improving their symptoms. Anti-Plasmodium antibodies have since been 78 

shown to have multiple functions: preventing erythrocyte invasion by merozoites [3], 79 

activating complement [4], stimulating neutrophil respiratory burst [5], opsonising 80 

infected cells for phagocytosis [6, 7], reversing rosetting [6], preventing cells from 81 

binding to the microvasculature [8, 9], and inhibiting sporozoite traversal or hepatocyte 82 

invasion [10, 11]. Antibody responses against the transmissible gametocyte stages of 83 

the parasite can also interrupt the parasites life cycle by preventing the parasites sexual 84 

development in the mosquito midgut (Box 1). In short, the consequences of antibody 85 

responses to Plasmodium parasites appear overwhelmingly disadvantageous for their 86 

survival and transmission.  87 

In other host-pathogen systems, parasite-antibody interactions may be more beneficial 88 

to the pathogen. In 1964 Hawkes showed that highly diluted antibodies increased the 89 

viral yields of flaviviruses including West Nile virus and Japanese encephalitis virus 90 
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[12]. Antibody dependent enhancement (ADE) of infection has since been observed in 91 

vitro for many other viruses of medical and veterinary importance, including Dengue 92 

virus (DENV), Human immunodeficiency virus (HIV), Zika Fever Virus, and foot-and-93 

mouth disease virus (FMDV) [12, 13]. Viruses with evidence for ADE share a few key 94 

features: all replicate inside macrophages, all show a degree of antigenic diversity, and 95 

all cause the production of partially neutralising antibodies [13]. For DENV, 96 

enhancement has been linked with severe clinical consequences during secondary, 97 

heterotypic infection in humans [12-18]. Halstead proposed that this was due to the 98 

opsonisation of DENV particles by cross-reactive IgG, which would bind the virus to Fc 99 

receptors on the macrophage surface, and possibly mediate immune suppression to 100 

further increase viral load [19, 20].  101 

For malaria parasites, there is sparse evidence of immune enhancement of asexual 102 

parasite infection; monoclonal antibodies (mAb) to a Plasmodium asparagine rich 103 

protein enhance invasion and growth of in vitro parasite cultures [21], and some 104 

sporozoite specific antibodies, though inhibitory at high concentration, appear to 105 

enhance hepatocyte invasion when diluted [22]. For sexual stage malaria parasites, 106 

immune transmission enhancement (TE) is a common feature of the early literature in 107 

both humans [23-29] and animals [30, 31]. In one of the most recent and 108 

comprehensive assessments of transmission-modulating immunity in humans, standard 109 

membrane feeding assays (SMFA) showed that a significant proportion (7%) of 642 110 

immune sera from gametocyte positive individuals in Cameroon, Indonesia and 111 

Tanzania enhanced the infectivity of gametocytes from culture by >20% [32]. 112 

Observations of antibody-mediated Plasmodium TE have been associated with low titres 113 

of gamete-specific antibodies – while high titres are associated with the more 114 

established and better quantified phenomenon of transmission-reduction (TR). An 115 

untested hypothesis is that though low titres of anti-gamete antibodies may be unable 116 

to reduce transmission, their binding to proteins present on both male and female 117 

gametes may increase sexual interaction in the mosquito gut, increasing the likelihood 118 

of successful fertilisation [24, 33].  119 

Malaria control has entered a new era, in which declining global malaria incidence has 120 

made elimination a realistic prospect, with vaccines targeting sexual stage parasites in 121 

development as part of the intervention arsenal [34]. The consequences of naturally 122 
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acquired anti-gametocyte immunity for transmission efficiency are increasingly being 123 

studied [35, 36]; TE as a possible counteracting immunological phenotype has not been 124 

examined in recent years. Moreover, malaria transmission-blocking vaccines (TBV) are 125 

currently being assessed in human volunteers [37], and trials with transmission or 126 

incidence outcomes at the community level can be anticipated in the near future. As the 127 

efficacy of malaria TBV’s depends on the dynamics of the immune response to sexual 128 

stage Plasmodium antigens, the evidence and potential mechanisms for antibody-129 

mediated Plasmodium TE, however equivocal, require re-examination. 130 

 131 

Assessing immune modulation of Plasmodium transmission  132 

Assessing immune modulation of transmission requires measurement of gametocyte 133 

viability and infectiousness. In vitro assays can measure the interaction of immune 134 

factors with intra-erythrocytic gametocytes [38, 39], and assess their inhibition of 135 

gamete activity or the formation of post-zygotic parasites [40, 41]. The most 136 

comprehensive assays for assessing transmission modulation are mosquito-feeding 137 

assays, in which mosquitoes are allowed to feed on potentially infectious blood, and 138 

transmission is later confirmed by the detection of Plasmodium oocysts in the mosquito 139 

gut or sporozoites in the salivary glands. The blood source can either be from naturally 140 

infected gametocyte carriers or non-malaria exposed donor blood mixed with 141 

gametocytes from culture. In the former, transmission modulation by immune factors 142 

can be demonstrated with direct membrane feeding assays (DMFA) by feeding 143 

infectious blood to mosquitoes separately with the donors own (autologous) serum, or 144 

with the serum of an individual with no exposure to malaria [42]; higher relative 145 

infectivity with naïve serum would reflect serum mediated TR, while the opposite 146 

would reflect TE [43, 44]. The standard membrane feeding assay (SMFA) with cultured 147 

gametocytes allows for repeated measurements under controlled conditions [43], with 148 

transmission modulation by added immune factors measured against controls fed the 149 

same gametocyte-containing blood.  150 

Using these assays, abundant evidence has accumulated that TR immunity exists in 151 

Plasmodium exposed populations. Indirect evidence comes from studies showing that 152 

mosquito infection rates tend to increase in the field-based DMFA when autologous 153 

serum is replaced by naive serum [25-27, 45, 46]. The use of SMFA has formally 154 
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demonstrated that whole serum and (now more common) purified IgG from malaria-155 

exposed individuals can reduce mosquito infection rate and density [32, 47, 48]. The use 156 

of purified IgG has the advantage that the transmission modulating effect of antibodies 157 

of this  class of immunoglobulins can be examined independent of other serum 158 

components such as antimalarial drugs [49]. 159 

 160 

Evidence for immune transmission-reduction and enhancement 161 

Animal models 162 

The existence of TR immunity was first definitively demonstrated in Plasmodium 163 

gallinaceum infected chickens that had been immunised with inactivated gametocytes 164 

or gametes [40, 50, 51]. Anti-gamete antibodies appeared to be to be short-lived, but 165 

their titre was positively associated with gametocyte density and TR activity. Serum 166 

from the immunised birds retained TR activity in mosquito feeding assays for 1-2 167 

months, at which point monitoring ceased. Antibodies that bound gamete surfaces were 168 

also observed in infected control birds immunised only with inactivated asexual stage 169 

parasites, indicating de novo antibody generation in response to live sexual-stage 170 

parasites [40, 51]. TR immunity was subsequently demonstrated by similar methods in 171 

mice (Plasmodium yoelli) [52] and monkeys (Plasmodium knowlesi) [53, 54]. 172 

Inoculations with high densities of P. knowlesi microgametes stimulated long-lived TR 173 

activity, which was successfully boosted by annual infection with blood stage parasites 174 

and thus lasted the full 6 years of follow up in most animals [53]. 175 

Longitudinal observations of the immune response to viable infections were made from 176 

Rhesus macaques infected with Plasmodium cynomolgi (a close relative of Plasmodium 177 

vivax) [30]; figure 1 is a graphic representation of anti-gamete antibody titres and 178 

infectivity to mosquitoes during these infections. Anti-gamete indirect 179 

immunofluorescence test (IFT) titres increased rapidly, in line with increasing parasite 180 

density. Relative infectivity in the DMFA was highest prior to peak parasitaemia, when 181 

anti-gamete titres were low and increasing. Peak parasitaemia coincided with the start 182 

of a decline into TR activity, which was strongest between 11-19 days after patency, 183 

when anti-gamete immuno-fluorescence test (IFT) titres peaked. As in chickens, anti-184 

gamete antibodies appeared to have short half-lives. In monkeys, enhancement was 185 
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again observed around 3 months after treatment during convalescence, when antibody 186 

titres were similar to the pre-peak period (<1:320 reciprocal titre). The authors 187 

reported that when total infectivity for each monkey was calculated as the sum of each 188 

days mean oocyst count, 78-95% of the total infectivity between 0-150 days was during 189 

a period when the animal’s sera resulted in enhancement of transmission. In separate 190 

experiments, transmission of P. cynomolgi from monkeys with prior P. knowlesi 191 

infection was enhanced three-fold [31]. Here though, transmission modulation was not 192 

attributable to serum factors; sera from monkeys previously infected had no enhancing 193 

effect on gametocytes from monkeys with no prior infection. 194 

 195 

Immune enhancement and reduction of transmission to mosquitoes in natural 196 

infections in humans 197 

Cross sectional assessments 198 

The first serological assessments of anti-gamete responses during naturally acquired 199 

human infections showed evidence of serum mediated TR and TE [27]. Mendis et al. 200 

showed that Sri Lankan patients with acute P. vivax infections produced antibodies that 201 

bound P. vivax gamete proteins, and that their titre correlated with serum-mediated TR 202 

activity in the DMFA. Notably, gametocytes from 3 of the 40 patients studied were less 203 

infective to mosquitoes in the presence of naïve serum than autologous serum, 204 

suggestive of TE.  205 

In 1988, Graves et al. published the first direct evidence of TR immunity in humans 206 

infected with P. falciparum [55], also demonstrating that malaria-exposed human sera 207 

recognised sexual stage proteins Pfs230 and Pfs48/45 (Box 2). Among SMFA 208 

experiments that were duplicated, enhancement of infection (131-204% of the control) 209 

was observed in 6/33 individuals, the remainder showing variable levels of reduction 210 

(0.6-89% of the control). These data from an area of intense transmission were 211 

compared with an area of unstable transmission in Sri Lanka [25]. All Sri Lankan donors 212 

were P. falciparum infected, and all infections were primary and symptomatic. TR 213 

activity, assessed by serum replacement DMFA, was observed in 23/41 individuals, 214 

while TE (relative infectivity between 125 and 400% of the controls) was observed in 215 

13/41 individuals. Interestingly, immuno-precipitation of Pfs230 (in which the 216 
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fluorescent conjugate recognised IgG only) correlated poorly with TR activity, while 217 

immuno-fluorescence assays (recognising IgG and IgM) correlated well. 218 

In 1999 Healer et al. analysed TR immunity in 26 Gambian sera in SMFA experiments 219 

[28]. Again, both reduction (5/26) and enhancement (7/26) were observed; 220 

enhancement up to 10 times higher than control. High Pfs230 and Pfs48/45 Ab 221 

reactivity was associated with low relative infectivity in the SMFA; low reactivity had no 222 

clear association with infectivity. Importantly, both TR and TE were statistically 223 

significant and reproducible. 224 

Other analyses of sexual stage immunity with cross sectional or convenience sampling 225 

have generally restricted their analyses to individuals with observable gametocytes by 226 

microscopy. DMFA data from gametocyte carriers in high-endemic Yaoundé, Cameroon 227 

showed that immune modulation occurred on a spectrum, with the majority of samples 228 

showing some level of reduction. Among the 65 gametocytaemic donors TR (<50% of 229 

the control oocyst intensity, referred to as ‘high’ reduction) was common (29/65 sera), 230 

while very marginal higher infection (between 100-110% relative infectivity) was 231 

observed in 7/65 donors. [29]. Justifiably, the latter was dismissed as evidence of 232 

transmission enhancement. In DMFA experiments with serum replacement, the 233 

transmission modulating effect of Cameroonian and Gambian sera was observed to vary 234 

for autologous and non-autologous parasite isolates [56]. Of the 41 serum/isolate 235 

combinations tested, 16 blocked and 2 enhanced transmission; both enhancing sera 236 

blocked with different parasite isolates. Only one serum showed a consistent (blocking) 237 

effect for all parasite isolates, indicating significant variability due to gametocyte 238 

density, antibody titre, and/or antigenic polymorphism. 239 

The most recent study with a specific focus on TE and TR immunity was by van der Kolk 240 

[32], using 642 sera from patent P. falciparum gametocyte carriers in Cameroon, 241 

Indonesia and Tanzania. The authors concluded that TR immunity was more common 242 

than TE and had a larger effect size. Effect size was calculated as the relative 243 

infectivity/the standard deviation of oocyst intensities; TR (effect size >0.2) was present 244 

in 48% of sera, TE (effect size <0.2) in 7% of sera. Of 18 sera with TE in the primary 245 

experiment, 6 (33%, p=0.01) retained their TE activity in a secondary feed. Of 175 sera 246 

with TR, 101 (58%, p<0.001) retained TR in a second experiment. TR was associated 247 

with anti Pfs48/45 and Pfs230 seropositivity whilst TE was not, i.e. individuals with 248 
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antibody titres over a defined cut-off were as common in the group that enhanced as in 249 

the group that had no effect on transmission. A more informative analysis would have 250 

assessed the association of specific antibody concentrations with ranked transmission 251 

modulation. 252 

 253 

Longitudinal assessments 254 

A hypothesis that emerged from studies in animal models was that gamete antibodies 255 

might have both TE and TR properties, which manifest according to their concentration 256 

that varies over time (Figure 1)[30]. Such detailed assessments in humans may become 257 

more viable with controlled human malaria infections allowing gametocyte production 258 

[57, 58] but existing data from naturally acquired malaria infections inevitably start 259 

from the point of patency or symptom presentation, excluding the assessment of 260 

transmission-modulation early in the infection during antibody proliferation. 261 

Among P. vivax patients sampled by Mendis and colleagues, six patients were followed 262 

for 100 days after treatment and cure [26]. TR activity generally declined in line with 263 

anti-gamete Ab titres, which had a half-life of around 2-months. However, by 80 days 264 

post-treatment, serum from one individual was associated with TE 8 times higher than 265 

the control. TR antibodies from these donors were later studied in the SMFA and 266 

compared with parallel dilutions of anti-gamete mAb [24]. The results were 267 

noteworthy: at high dilutions/low antibody concentrations, TR serum and mAb 268 

promoted infection in mosquitoes feeding on blood that failed to infect mosquitoes in 269 

their absence. 270 

Various studies have assessed TR activity longitudinally but did not report TE. Non-271 

immune Javanese migrants arriving in Indonesian Papua acquired anti-gamete Ab and 272 

TR immunity rapidly, and antibody titre appeared correlated with infection frequency 273 

[59]. Assessments in Tanzania showed inconsistent patterns of TR activity with age, but 274 

demonstrated the short-lived nature of sexual stage specific antibodies [60, 61]. The 275 

object of these studies was specifically to examine immune TR, so relative infectivity in 276 

the SMFA was capped at 100%, and TE was not reported.  277 

 278 

Monoclonal antibodies enhancing and reducing transmission to mosquitoes 279 
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Monoclonal or polyclonal antibodies can be tested in DMFA or SMFA at a range of 280 

dilutions, allowing assessment of the relationship between antibody titre and 281 

transmission modulation. Most data available are for the transmission modulating effect 282 

of P48/45 and P230 mAb.  283 

Pieiris and colleagues showed that when transmission blocking P. vivax mAb (targeting 284 

Pvs48/45) were diluted out in P. vivax gametocyte infected blood, the mAb TR activity 285 

declined until at low titre they gave rise to enhanced transmission [24]. Diluted still 286 

further, infection intensity returned to the same level as the control baseline. IgG 287 

purified from the hybridoma supernatants showed the same effect. As for the human 288 

sera from Sri Lanka described above, vivax specific mAb (diluted in naïve sera) were 289 

able to promote infection in serum replacement DMFA experiments in which 290 

gametocyte density was insufficient to cause infection alone. 291 

Ponnudurai and colleagues investigated the impact of diluting P. falciparum 292 

gametocytes densities and mAb concentrations independently [62]. Unexpectedly, 293 

gametocyte dilution increased mosquito infection rate in the presence of anti-Pfs48/45 294 

mAb, while decreasing infection rate in the presence of anti-Pfs25 mAb. This difference 295 

may be due to increased fertilisation efficiency in parasites escaping reduction at low 296 

Pfs48/45 antibody concentrations. When both mAb were diluted with static parasite 297 

densities, relative infectivity initially declined, then enhanced by 19.1-23% at low titre 298 

(0.01 – 0.02mg/ml), before returning to baseline infectivity at the lowest tested titre 299 

(0.01-0mg/ml). This variation was judged to be ‘within normal range’ relative to the 300 

control, and therefore in contrast to the enhancement of transmission by low antibody 301 

concentrations observed s with P. vivax’. These conclusions precipitated a view that 302 

enhancement, if present, was lower in magnitude for P. falciparum than for other 303 

species combinations. 304 

A recent assessment aimed to compare SMFA outputs between two laboratories, using 305 

the same mAb and human sera [63] (Figure 2). Pfs48/45 mAb (85RF45.1) caused 306 

variable enhancement at the lowest tested concentration (1.2ug/mL) in one laboratory 307 

(TropIQ, Netherlands), and variable reduction in the second lab at the same 308 

concentration (LMVR, Bethesda, MD, USA). Further dilutions would be required to 309 

clarify the effect of low 85RF45.1 mAb titres. On the other hand, IgG from human serum 310 

caused enhancement at the lowest titre (23ug/mL) at both labs: this across 3 replicates 311 
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in each. Pfs25 mAb (4B7) caused no enhancement in either lab, but the lowest dilution 312 

had not reached baseline in either laboratory. 313 

Of note, mAb against central peptides of the D2 region of gametocyte/gamete protein 314 

Pfs47 were recently shown to block transmission to mosquitoes, while mAb against 315 

proteins at the N-terminus of the same region were shown to double the mean oocyst 316 

density relative to controls [64]. These latest observations go against the hypothesis 317 

that TE may be due to non-antibody components of immune sera. 318 

 319 

Testing immune transmission modulation and the mechanisms of action 320 

There are several reasons why historic evidence on the existence of immune-mediated 321 

TE in needs to be interpreted with caution. Box 3 summarises the uncertainties that 322 

surround prior reporting on TE.  323 

Despite these limitations, taken together previous assessments provide equivocal 324 

evidence for Plasmodium TE, suggesting that low titres of antibodies in gametocyte 325 

exposed individuals may enhance transmission, while high titres of the same antibodies 326 

may reduce transmission (Figure 2B). Several possible mechanisms of action for TE 327 

have been proposed. As gamete proteins are known to be present on both male and 328 

female gametes (Pfs48/45 and Pfs230), enhancement could feasibly occur if antibodies 329 

were able to bind simultaneously to proteins on both gamete sexes [24]. With IgG, the 330 

presence of two binding sites makes this possible, though multiple gamete binding 331 

would potentially be more effective with multi-meric IgM antibodies. Peiris and 332 

colleagues suggested alternatively that enhancement may occur when low titres of 333 

proteins critical to gamete fertilisation bind native protein, positively affecting protein 334 

conformation, or that enhancement may be due to antibody mediated prevention of 335 

inhibition by other human or mosquito factors [24]. The latter hypothesis would not be 336 

unique to transmission stage parasites: Non-neutralising antibodies binding Merozoite 337 

surface protein-1 (MSP-1) outside the MSP-119 region appear to compete with anti-338 

MSP-119 specific antibodies for its binding site during the parasites erythrocytic cycle. 339 

Anti-MSP-119 antibody binding results in the inhibition of MSP processing, which is 340 

required for cell invasion, whereas the binding of non-specific MSP antibodies results in 341 

no such inhibition [65], thus enhancing infection rates. 342 
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De Arruda-Mayer suggested that TE of P. cynomolgi infection after exposure P. knowlesi 343 

may be due to the absence of inhibitory serum factors during secondary infection rather 344 

than the presence of enhancing factors, though they could not prove this [31]. Da et al. 345 

showed that Plasmodium berghei infection was higher after dilution with uninfected 346 

blood, despite the resulting decrease in parasite density [66]. It is therefore possible 347 

that non-specific factors may contribute to transmission modulation (either the 348 

presence of inhibitory factors during primary infections, or the absence of enhancing 349 

factors). 350 

Several experiments can be proposed to confirm the existence of transmission 351 

enhancement and elucidate its mechanism (Box 4). 352 

 353 

Is malaria transmission enhancement relevant? 354 

As the sparse data described above suggests there is some degree of TE of for 355 

Plasmodium, the obvious question is how this might impact broader transmission 356 

dynamics. Modelling the impact of TE requires sensible parameterisation of its 357 

frequency and magnitude, both of which are unknown. 358 

Epidemiology  359 

When accurately quantified there appears to be a relatively simple, saturating 360 

relationship between gametocyte density and mosquito infection rate [67]. In endemic 361 

populations, gametocyte density is generally low and over-dispersed; surveys in Kenya, 362 

Burkina Faso and the Gambia show that individuals who infect mosquitoes tend to 363 

infect few (2-23% infection rate, with sample sizes between 19-97 mosquitoes) [68]. 364 

Based on the sparse evidence we have described, TE appears to have a lower effect size 365 

than TR. However, as low gametocyte densities and low infection rates are the norm, 366 

even small increases in mosquito receptivity to parasite development could significantly 367 

affect population transmission potential. The relevance of intermediate TR activity on 368 

controlled transmission between rodents has been demonstrated, warning against a 369 

narrow focus on highly effective TR as the sole determinant of transmission efficiency 370 

[69]. Similar experiments with antibodies causing low and intermediate TE would be 371 

highly informative. 372 
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Few studies have aimed to link transmission-modulating immunity with natural 373 

transmission rates in human populations. A recent study showed that high sexual stage 374 

antibody titres were associated with significant transmission reduction in individuals 375 

with high gametocyte burdens, but not in individuals with sub-microscopic infections 376 

[35]. These assessments modelled the impact of specific antibody responses (Pfs48/45 377 

and Pfs230) on natural infectivity in the DMFA. The absence of transmission inhibition 378 

may be due only to the absence of reducing antibodies, but it is tempting to speculate 379 

that enhancement may be apparent in some of these individuals. There is evidence from 380 

longitudinal studies in Dielmo, Senegal that the efficiency of malaria transmission 381 

increases as malaria is controlled. Between 1990 and 2007, slide prevalence of malaria 382 

parasites decreased from 68 to 30%, while over the same period the proportion of 383 

mosquitoes with sporozoites increased from 5 to 14% [70]. The increased transmission 384 

was linked to higher gametocyte biomass in infected individuals, which could occur if 385 

commitment rates were driven up by increased expression of the AP2-G protein [71]. 386 

The role of transmission modulating immunity was not considered, but it is possible 387 

that the low antibody titres that result from infrequent parasite exposure (and thus 388 

immune boosting) have enhanced the efficiency of transmission from infected 389 

individuals gradually over time [70]. 390 

Vaccines 391 

Trials to evaluate the safety and immunogenicity of Pfs25 and Pfs230 based TBVs in 392 

Malian adults are ongoing [37]. Such trials are welcome and long overdue, providing 393 

hope that these or other candidate TBVs close to clinical assessment [72] may soon be 394 

tested at the population level. If TE exists and is associated with low or waning antibody 395 

titres, TBVs based on gametocyte proteins like Pfs230 could induce antibodies that 396 

initially cause transmission blockade but may be followed by a period of TE. The 397 

experiments suggested above will confirm if TE exists, and if it does, whether it is likely 398 

to be induced by current TBV candidates, or instead by a response to alternative 399 

epitopes within same protein, by a specific response to different (non-TR) proteins, or 400 

by non-specific serum factors. In general, it is essential that the half-life of sexual stage 401 

antibodies and the duration of their efficacy after exposure to natural gametocyte 402 

antigens or TBVs be determined. It would also be prudent to ensure that individual 403 

based studies assessing the longevity of immune response to TBV candidates in Phase I 404 
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and II trials continue follow up until and for a short time after antibody titres appear 405 

return to baseline. Phase III trials, evaluated with transmission, infection or clinical 406 

incidence outcomes, should incorporate longitudinal monitoring to rule out the possible 407 

effects of TE, and assess the association of antibody titre with immune boosting by re-408 

infection. 409 

 410 

Concluding remarks 411 

We have known for decades that antibodies with specificity for gametocyte proteins can 412 

inhibit Plasmodium establishment in the mosquito midgut. The knowledge that it could 413 

work both ways, inhibiting and enhancing, could change our understanding of natural 414 

malaria transmission and effect the development of vaccines based on sexual stage 415 

proteins. At present, the evidence for TE in P. falciparum is incomplete whilst 416 

comparatively more evidence exists for P. vivax. If TE is proven to occur, several 417 

important questions will need to be answered to determine its relevance (see 418 

Outstanding Questions). If TE effects are reproducibly observed in malaria exposed 419 

human sera, it will be of significant interest to determine its mechanism and interpret 420 

its role in natural malaria epidemiology; experiments to test its existence and 421 

mechanism are suggested in Box 4. The potential induction of TE by TBVs will also need 422 

to be investigated before it can be excluded.  423 
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Figure legends 438 

Figure 1. The relationship between anti-gamete antibody titre and infectivity to 439 

mosquitoes during natural infection. A. Data from Naotunne et al. 1990 [30] showing 440 

the relative infectivity of 4 toque monkeys (Macaca sinica) infected with P. cynomolgi to 441 

Anopheles tessellatus mosquitoes. Relative infectivity was calculated as the geometric 442 

mean oocysts in mosquitoes after a blood meal containing each monkeys own serum, as 443 

a percentage of the geometric mean oocysts in mosquitoes after a blood meal in which 444 

the monkeys serum was removed and replaced with naïve (from an uninfected monkey) 445 

serum (*100). The infectious blood meal was centrifuged and washed before 446 

resuspension in either autologous or non-immune sera. Reciprocal IFT titre is given as 447 

reactivity to a gamete enriched mixture of P. cynomolgi parasites. B. Graphical 448 

representation of the same data, with explanation of transmission modulating effects of 449 

the anti-gamete antibodies. 450 

 451 

Figure 2. Serial dilution of actual (A) and representative (B) transmission-blocking 452 

human IgG in the standard membrane feeding assay (SMFA). A. Transmission inhibition 453 

and titre of transmission blocking human IgG from a Dutch expatriate, who had lived for 454 

many years in Cameroon and was gametocytaemic at the time of sampling (redrawn 455 

from the original data of figure 4 of Miura et al. 2016 [doi: 10.1186] [63]).The sera were 456 

tested in triplicate SMFA at two independent institutions; TropIQ (Nijmegen, the 457 

Netherlands), and the Laboratory of Malaria and Vector Research (LMVR/ NIH, 458 

Bethesda, MD, USA). Transmission inhibition (inhibition %) attributed to test antibodies 459 

was calculated as the % inhibition of mean oocyst density relative to isotypic controls 460 

(IgG from malaria naïve donors). Exact TR activity from replicates is denoted as F1/2/3. 461 

Mix denotes the best estimate of the TR activity from the combined replicates, with 95% 462 

confidence intervals (CI). SMFA was performed as described above, and full details are 463 

in the paper in which these data were presented [63]. Average oocysts in the isotypic 464 

control experiments of LMVR-F1, -F2, -F3, TropIQ-F1, -F2 and -F3 experiments were 3.9, 465 

60.3, 14.0, 16.9, 4.3 and 5.9, respectively. B. Theoretical transmission reduction and 466 
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enhancement as a function of antibody titre, as might be apparent in a longer serial 467 

dilution of the same antibody as in panel A. The Orange line represents IgG with 468 

enhancing and reducing properties, the blue line represents IgG with only reducing 469 

properties. 470 

 471 

Box 1. Immune responses to sexual stage Plasmodium sp. 472 

During their replication in the blood, a minority of Plasmodium schizonts become 473 

committed to sexual development, producing merozoites that form gametocytes when 474 

they invade healthy RBCs. P. falciparum gametocytes develop in the bone marrow, and 475 

when almost mature are released back into the blood where they may be ingested by 476 

blood feeding mosquitoes. The infectiousness of gametocytes to mosquitoes is 477 

influenced by numerous factors, including gametocyte density [52-54, 73, 74], maturity 478 

[75], sex-ratio [76], and human immune factors [77].  479 

Human immunity may influence gametocyte transmission either by affecting 480 

gametocyte formation and survival in the blood, or by affecting the life stages that 481 

emerge in after ingestion by mosquitoes. There is some evidence that inflammatory 482 

cytokines (TNF-α) may induce cell-mediated killing of asexual parasites and 483 

gametocytes in hosts experiencing acute paroxysm [78, 79]. However, cell-mediated 484 

gametocyte-specific killing in humans appears minimal or absent [80, 81]. Because 485 

mature gametocytes lack the erythrocyte surface proteins of their asexual progenitors, 486 

antibody responses targeting gametocyte-infected erythrocytes are also either absent 487 

or difficult to detect [38, 39, 82, 83]. Eventually though, all gametocytes not transmitted 488 

to mosquitoes break down in the blood, eliciting responses against gametocyte antigens 489 

that are inaccessible to antibodies whilst gametocytes are circulating in the blood 490 

stream. These gametocyte specific antibodies may be ingested by mosquitoes alongside 491 

transmissible gametocytes, and if these antibodies interact with parasite proteins 492 

involved in gametocyte activation or gamete fertilisation they may inhibit the parasites 493 

further development in the mosquito. In this way, exposure to the sexual stages of 494 

Plasmodium or to specific sexual stage antigens can induce transmission-modulating 495 

(more commonly, transmission-reducing [TR]) immunity: an immunity elicited in the 496 

blood, which functions only in the mosquito. 497 



17 
 

 498 

Box 2. Pfs48/45 and Pfs230 499 

Early immunisation studies that stimulated interest in TR immunity [40, 50, 51] were 500 

followed quickly by others that identified Pfs48/45 and Pfs230 as immuno-dominant 501 

gamete surface proteins [84-86]. Monoclonal antibodies against Pfs48/45 protein are 502 

able to bind and neutralise gametes and have potent transmission reducing activity in 503 

mosquito feeding assays [84], whereas mAb specific to the larger Pfs230 lacked TR 504 

activity in primary tests [84]. It was shown elsewhere that the TR activity of α-Pfs230 505 

mAb was due to the antibodies activation of complement mediated gamete lysis [87-89]. 506 

The protein’s presence in gametocytes is indicated by their recognition in malaria 507 

endemic populations, and has been proven by proteomic analyses [90, 91]. 508 

Van Dijk et al. showed that Pfs48/45 was anchored to the gametocyte surface, and was 509 

essential for fertilisation [92]. When Pfs48/45 was knocked-out, Pfs230 was not 510 

observed on the gamete surface, indicating the protein was retained on the gamete 511 

surface only by its association with Pfs48/45. On the other hand, targeted disruption of 512 

Pfs230 also significantly inhibited oocyst production, indicating a central role in gamete 513 

fertility, possibly in the formation of exflagellation centres by male gametes [93, 94]. 514 

Recognition of Pfs48/45 and Pfs230 in malaria exposed individuals is often but not 515 

always associated with TR activity [28, 45, 59, 61, 77, 95]. This has led to an assumption 516 

that other unknown gamete surface proteins may be jointly mechanistic in the 517 

development of antibody responses with TR activity. Recent data show empirically that 518 

naturally acquired human antibodies against Pfs48/45 and Pfs230 can reduce mosquito 519 

transmission, independent of other serum antibodies [36], and that immune sera with 520 

potent TR activity recognise unknown proteins on the surface of female gametes. 521 

Antibody responses to proteins other than Pfs48/45 and Pfs230 are associated with TR 522 

activity in the SMFA, and reduced transmission efficiency in the DMFA [36]. 523 

 524 

Box 3. Factors influencing the reliability of observations of transmission 525 

enhancement 526 

Assay performance 527 

 The SMFA is optimised for assessment of strong transmission reduction 528 
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The SMFA has been optimised to achieve consistently high oocyst intensity and 529 

prevalence in control infections [96]. Though strong TR effects are detectable in 530 

these ‘saturated’ conditions, TE may be masked. There are similar concerns that 531 

because the SMFA does not produce naturalistic mosquito infections (ideally 532 

with the majority of mosquitoes harbouring 1-5 oocysts [97, 98]), the assay may 533 

not do justice to the effects of intermediate TR/TE activity [69].  534 

 The impact of non-specific factors in blood meals is unknown  535 

It is conceivable that higher non-specific antibody content in a blood meal may 536 

be nutritive to parasites or mosquitoes, and that this could (directly or 537 

indirectly) benefit parasite survival. Most previous assessments of immune 538 

TR/TE have used isotypic controls to calculate relative infectivity (e.g. naïve 539 

serum vs test serum, non-specific mAb vs TR mAb), but it has become 540 

commonplace to use non-isotypic human or foetal bovine serum as a control for 541 

feeds with additional purified antibodies, or m. If any transmission modulation is 542 

due to non-specific blood meal components, the use of non-isotopic controls 543 

could give rise to apparent TR/TE where there is none. 544 

Reporting 545 

 Transmission enhancement is not reported 546 

TE is often regarded as an artefact of the feeding system and not recorded. 547 

Relative infectivity is often floored at 100% (i.e. 0% TR activity) in published 548 

data. Artefact or otherwise, the true extent to which TE is observed is unlikely to 549 

be fully reflected in the literature. 550 

Experimental design 551 

 Sample selection is biased toward transmission reduction 552 

The majority of studies have focused on infectivity or TR activity, sampling only 553 

gametocyte positive individuals to boost infectiousness in the DMFA, or ‘to 554 

increase the chances of observing anti-gamete responses’ [32]. Low sexual stage 555 

antibody titre and TE may be most apparent at start and end of an infection, at 556 

which times gametocytes are more likely to be sub-patent [99]. Indiscriminate 557 

sampling or prospective longitudinal sampling may be more appropriate study 558 

designs to capture the full range of immune transmission modulation. 559 
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 Immune transmission modulation may vary between Plasmodium species 560 

Parasite species and strains are used interchangeably to provide evidence for 561 

TE/TR, but differences in species gametocyte development may affect kinetics of 562 

sexual stage immunity. 563 

 Is IgG purification appropriate for testing TE? 564 

Assessments of transmission modulation have focused on the impacts of total 565 

IgG, but it is possible other antibody classes (e.g. IgM), sub-classes (e.g. IgG3), or 566 

as above – non antibody factors may have different transmission modulating 567 

properties, and that such effects are generally missed.  568 

 569 

Box 4. Considerations for testing Plasmodium transmission enhancement (TE) 570 

Does TE occur, and does it occur as a function of serum titre? 571 

To determine if TE occurs at low serum/Ab titre, dilution series SMFA (with serum, 572 

purified serum Ab or mAb) should be conducted, ensuring that total antibody content is 573 

consistent between feeds. Dilution should continue beyond the point at which relative 574 

infectivity reaches 100% (TR activity 0%); if TE occurs at low titres, further dilution 575 

would return infectivity to the level of the control (Figure 2B). 576 

Is TE due to anti-gamete antibodies, or non-specific immune factors?  577 

SMFA could be conducted using whole sera, purified IgG (and other Ab isotypes), and 578 

sera after extraction of antibodies to clarify the transmission-modulating effects of 579 

antibody and non-antibody serum factors; controls should be isotypic i.e. SMFA with 580 

whole endemic sera should use malaria naïve sera as controls. 581 

Does TE occur with antibodies specifically elicited by TBV’s? 582 

SMFA should include antibodies specific to both pre-fertilisation antigens (Pfs48/45 583 

and Pfs230) and post-fertilisation antigens (e.g. Pfs25), to investigate mechanisms other 584 

than enhancement of gamete fertilisation (e.g. enhanced midgut homing/binding by 585 

ookinetes). SMFA should be conducted with and without complement; though some 586 

sexual stage antibodies (α-Pfs230) are known to have complement mediated TR activity 587 

[87] it is unclear whether the mechanisms leading to enhancement would be similarly 588 

dependent. Experiments should also include both functional (blocking) and non-589 
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functional mAb, as it is currently unclear whether TE is due to Ab binding to TR 590 

epitopes, distinct non TR epitopes, or whether any gamete binding is sufficient [64]. 591 

Is TE due to binding antigens on adjacent gametes? 592 

This hypothesis could be tested with bi-specific antibodies; one fab region targeting a 593 

gamete antigen, the other targeting a non-malaria specific antigen (e.g. an HIV protein). 594 

If the presence of two binding sites is responsible for enhancement with IgG, dilution of 595 

bi-specific antibodies will result in a linear decline of TR activity with Ab titre, while 596 

mono-specific antibodies will cause enhancement at lower titres [100].  597 

Do different antibody classes/sub-classes modulate transmission differently?  598 

IgM has more binding sites than IgG, which increases the likelihood of binding different 599 

gametes. Each bond may have lower affinity, but multiple binding may result in a net 600 

increase in avidity. Purification of IgM from immune sera for the SMFA is therefore of 601 

significant interest for the assessment of transmission modulation. As antibody 602 

concentration, affinity, circulation time, and complement activating activity could 603 

feasibly affect transmission modulating activity [88], assessments focused on antibody 604 

sub-class would also be valuable. 605 

 606 
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