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• HAP is an important health risk in low-
income urban settings, such as Nairobi's
slums.

• Under business-as-usual, the current
trend of slowly improving indoor air
quality will stop.

• For it to continue, a drastic acceleration
in take-up of clean cookstoves is
needed.

• This needs money, and one way to raise
money is to invest inHIA andmonitoring.

• This can turn a cycle of ‘non-attention
and no funds’ into one of ‘raised aware-
ness and more resources’.
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58% of Nairobi's population live in informal settlements in extremely poor conditions. Household air pollution is
one of the leading causes of premature death and disease in these settlements. Regulatory frameworks and gov-
ernment budgets for household air pollution do not exist and humanitarian organisations remain largely inatten-
tive and inactive on this issue. The purpose of this paper is to evaluate the effectiveness of potential indoor-air
related policies, as identified together with various stakeholders, in lowering household air pollution in Nairobi's
slums. Applying a novel approach in this context, we used participatory systemdynamicswithin a series of stake-
holder workshops in Nairobi, to map andmodel the complex dynamics surrounding household air pollution and
draw up possible policy options. Workshop participants included community members, local and national
policy-makers, representatives from parastatals, NGOs and academics. Simulation modelling demonstrates that
under business-as-usual, the current trend of slowly improving indoor air quality will soon come to a halt. If
we aim to continue to substantially reduce household PM2.5 levels, a drastic acceleration in the uptake of clean
stoves is needed.We identified the potentially high impact of redirecting investment towards household air qual-
itymonitoring and health impact assessment studies, therefore raising the public's and the government's aware-
ness and concern about this issue and its health consequences. Such investments, due to their self-reinforcing
nature, can entail high returns on investment, but are likely to give ‘worse-before-better’ results due to the
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time lags involved. We also discuss the usefulness of the participatory process within similar multi-stakeholder
contexts. With important implications for such settings this work advances our understanding of the efficacy of
high-level policy options for reducing household air pollution. It makes a case for the usefulness of participatory
system dynamics for such complex, multi-stakeholder, environmental issues.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Nairobi city, according to themost recent national census, is home to
3.14 million inhabitants (Kenya National Bureau of Statistics, 2010),
having grown from just under half a million at the country's indepen-
dence in 1963. The city's population growth is fuelled both by natural
increase and migration from rural and other urban areas. For a long
time, Nairobi has been the country's principal city and it remains an at-
tractive destination for people looking for livelihood opportunities that
are lacking in the mostly agricultural rural areas.

The rapid growth of the city's population has not been accompanied
by sufficient provision of affordable housing and other social amenities,
leading to the proliferation of slum settlements. It is estimated that
Nairobi has over 150 slum settlements, scattered across the city. These
settlements, which occupy b5% of the city's land mass, are home to an
estimated 60–70% of the city population (Beguy et al., 2015). Numerous
studies have reported the challenges that slum residents face, including
the near absence of the public sector and poor access to public goods
and services, with negative implications for various health outcomes
(Kyobutungi et al., 2008; Mugisha, 2006).

Typical housing units in Nairobi's slums have tin/corrugated iron
roofing and mud or tin/corrugated iron sheet walls. Most households
rent one room measuring about 10 ft. by 10 ft. and these rooms serve
as the kitchen, bedroom and living room (APHRC, n.d.). The rooms
usually have one door and one window, although in some cases there
are no windows at all. Most households rely on kerosene (paraffin) for
cooking and lighting as well as charcoal or wood for cooking. In the
poorest of households, the use of plastic waste, cloth rags and other un-
conventional fuels has been reported (Muindi et al., 2014). These fuels
generate high levels of potentially harmful air pollution into the indoor
environment. A separate study recorded high levels of particulate mat-
ter with aerodynamic diameter of 2.5 μm and less (PM2.5), especially in
the evenings and in households burning charcoal/wood and kerosene
(Muindi et al., 2016). In addition to housing features and behaviours
that impact on the air quality, slums tend to be in areas close to primary
sources of air pollutants. For example, many slums are built near busy
highways, within industrial zones or near open dumpsites. Outdoor
measurements of PM2.5 concentrations in slum areas found that there
was spatial and temporal variations with slum villages close to major
outdoor sources such as dumpsites having higher concentrations,
while mornings and evenings were also noted to have elevated levels
(Egondi et al., 2016). In a context of weak or non-existent policies to
minimize emissions from various sources, slums experience high expo-
sure to air pollution compared to non-slum areas of the city.

Household air pollution is estimated to result in a global burden
on mortality of around 2.6 million premature deaths each year (GBD
2016 Mortality Collaborators, 2017). The most important contributor
is biomass burning for cooking or heating, used by roughly half the
world's population. The situation is exacerbated by factors including
poor housing, inadequate ventilation and overcrowding, with women
and children often exposed to particularly high levels of pollution. It
has been established that large benefits can be gained from reducing
air pollution, e.g. through switching to cleaner fuel sources such as
LPG (liquid petroleum gas) (Morgan, 2015). Despite apparent benefits,
in Kenya, to the best of the authors' knowledge, there are currently no
programmes focusing on air pollution fromahealth point of view, either
at national or at county level. This might be due to lack of specific
internal or donor funding but could also be the result of a lack of
understanding at governmental level on themagnitude and importance
of the issue.

This paper therefore aims to investigate the comparative effects of a
series of policy options on household air pollution in two of Nairobi's
numerous slums, Korogocho and Viwandani. It analyses prerequisites,
implications, and significance of public awareness and concern about
household air pollution.We develop a systemdynamicsmodel that cap-
tures major drivers of household air pollution and potential policies
aimed at mitigating them. We estimate potential improvements in the
weight of the health burden associated with household air pollution
as a result of various combinations of policies in order to identify bene-
ficial policy directions.

2. Methods

This study combines methods including participatory modelling
workshops, systemdynamics (SD)modelling, and health impact assess-
ment (HIA). In the following sub-sections, we introduce the study sites
as well as each method, review the structure of the SD model, and vali-
date the model to existing data.

2.1. The study sites: Korogocho and Viwandani

Korogocho is a slum settlement to the northeast of Nairobi city about
12 km from the city centre. It borders the Dandora dumpsite, Nairobi's
official municipal dumpsite which is the final resting place for mixed
waste streams from the city. This has been a source of pollution for res-
idents of surrounding communities, with air pollution from burning
garbage as well as soil and water pollution being key challenges.
Viwandani is a slum settlement in the industrial zone of the city, with
industries being visible sources of air and water pollution in the area.
It lies about seven kilometres from the city centre and is home to a
youthful, more educated and highlymobile population seeking employ-
ment in industries. In contrast Korogocho's population is older and less
educated, and the majority have lived in the slum longer, compared
with Viwandani's residents. Both slums face a shared challenge of pov-
erty and exclusion especially with regards to the provision of govern-
ment services such as health and education (Emina et al., 2011).

2.2. Participatory system dynamics workshops

The issue of household air pollution concerns various stakeholders
besides the residents, including local decision makers, government
policymakers, parastatals, and non-governmental actors. Therefore, to
increase the chances of research resulting in increased awareness and
commitment to change among all actors involved, we organised a series
of threemulti-stakeholder workshops in Nairobi and used participatory
system dynamics to frame the discussions. Participants included a di-
verse group of stakeholders, including individuals with expertise on
air quality and its impacts on health, as well as those working on policy
development and implementation. Attendants also included commu-
nity members from both slums, academia, representatives from the
local and national governments, national parastatals, national and inter-
national NGOs, and United Nations agencies.

In our modelling session, we asked participants to identify the most
central variables concerning indoor air quality. These variables were

http://creativecommons.org/licenses/by/4.0/
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then gradually added to a causal loop diagram on a large whiteboard
by asking participants to identify the chains of causality within the
system. Following this process, we captured the overall causal struc-
ture of the system within the model and identified any emerging
feedback loops, i.e. chains of causal relationships involving circular
causality.

Each workshop was followed by off-site refinement, formalisation
and calibration of the system dynamics model, where the model
was further elaborated, adding more variables and closing some of
the previously open feedback loops. As part of this refinement, we
sent out a questionnaire to ten members of the stakeholder group
asking them to rate various policies identified during the workshops
based on their relative importance to household air pollution. Subse-
quently, out of a total of fourteen policies, we picked seven which
were considered to be the most important, to be included in the
model.

During the second and third workshop rounds, we sought to verify
with the participants whether the model's components, inter-linkages,
and resulting behaviour resonatedwith them and reflected their under-
standing of themany inter-related issues around indoor air pollution in
Nairobi's slums.

‘Participatory system dynamics modelling’ and ‘group model building’
(Vennix, 1996) (terms which are sometimes used synonymously)
are useful for organizing the collective knowledge of stakeholders
in a visual structure that promotes learning and allows for construc-
tive, targeted discussions. When tackling complex problems with
multiple stakeholder groups involved, taking a participatory ap-
proach is preferred to ‘expert mode’, where the modellers construct
a model ‘at their desk’ based on available sources of information
(Antunes et al., 2015; Vennix, 1996). This combined approach
allowed us to make use of the diverse set of expertise available in
our interdisciplinary stakeholder groups, while complementing
that with rigorous quantitative modelling to simulate the implica-
tions of the group's assumptions about the structure of the system.
Allowing policymakers to rely on their own thinking process in
collaboratively building a model engenders a sense of ownership
and commitment to the outcome of the modelling process and in
this way increases the chances of successful implementation of
resulting policies (Vennix, 1996).

During our field trips, the project team also held two separate focus
group discussions with community members from Korogocho and
Viwandani, within the informal settlements where they live. The focus
group discussions revolved around indoor air quality, barriers in the
community's adoption of clean cook stoves and other issues touching
on housing, outdoor air and community/individual agency to agitate
for action against known polluters.

2.3. Health impact assessment

We used a life table model (Miller and Hurley, 2003) to quantify the
impact of changes in exposure to household air pollution. The model
was driven by changes in long-term (annual average) exposure to
PM2.5, a key constituent of household air pollution and the most
consistent and robust predictor of mortality due to air pollution in stud-
ies of long-term exposure (Cohen et al., 2017). Based on changes in
PM2.5 exposure (generated by the system dynamics model), the life
table model calculates changes in the pattern of deaths in the popula-
tion over time and the corresponding impact of these on the duration
of life, expressed as total life years gained or lost in the population. As
seen later in the Scenario analysis section, this will enable us to observe
how results of our policy scenarios in terms of differences in household
air pollution translate to health outcomes in terms of the avoided life
years lost. The baseline population and mortality data for the local
population, used to set up the model, were obtained from the Nairobi
Urban Health and Demographic Surveillance System (NUHDSS)
(Emina et al., 2011).
2.4. Quantitative system dynamics

The qualitative causal diagram resulting from the participatory
workshops was refined, and the health impacts were incorporated
into the system dynamicsmodel. We also wanted to understand the re-
sults of different policies on this complexmodel. Since such interactions
are too large and complex to simulate mentally, computer simulation is
the only practical way to test them (Richardson, 1986; Sterman, 2000).
The inherent complexity observed in the structure of the system under
investigation in this study makes SDmodelling a highly suited method-
ology to deal with this complexity. It enhances our understanding
of complex systems through transparent modelling of the systems'
structure. Using computer simulation models, SD helps us pinpoint
the sources of policy resistance, and thus, design more effective
policies (Sterman, 2000). Therefore, we brought in real world data to
develop a quantified and formal system dynamics simulation model
from the collaborativemaps generated through stakeholderworkshops.
We quantified and parameterised it before applying it for policy
analysis.
2.4.1. Model structure
The participatory process and subsequent off-site refinement re-

sulted in a model with N150 variables. The model structure is identical
for both slums, except that it is differently parametrised for each
context.1 Due to its complexity, here we describe only a highly simpli-
fied causal loop diagram. The full model documentation is detailed in
Appendix A. The model in its digital format, along with all scenario
and sensitivity runs, can be found as Supplementary material published
with this paper.

Fig. 1 portrays the simplified causal loop diagram arrived at by dis-
tilling the key feedback structure of the formal system dynamics
model. The legend explains the colour coding. Starting with the central
variable of household air pollution highlighted in red as ourmain indica-
tor, we will explain backwards (against the direction of the arrows)
along the chains of causality to investigate the key dynamics of the sys-
tem as modelled here. The key drivers of the average level of household
air pollution (proxied in this study by the concentration of PM2.5) in
Nairobi's slums are the levels of outdoor air pollution and ventilation, as
external factors, and the proportion of households using clean stoves/
lighting internally. This study focuses mainly on exploring the internal
factors, i.e. the prevalence of clean appliances. In line with the findings
of the workshops, we assume in our model that prevalence of clean
lighting ismainly driven by the electricity grid coverage and to some ex-
tent by the prices of electric lights. The prevalence of clean cook stoves,
on the other hand, is driven by their prices, relative prices of clean ver-
sus “dirty” fuels, and finally the levels of public expenditure in providing
subsidised appliances. The lower the prices of clean cook stoves and/or
clean fuels, the higher the take-up and usage of these by residents of the
informal settlements.

The funds available for subsidising clean cook stoves come from the
total funds spent for combatting household air pollution, effective expen-
diture to reduce household air pollution. This expenditure is modelled to
be driven not only by public concern about household air pollution, but
also by the extent of enforcement, political will and good governance.
To capture this, we have used theWorld Bank'sWorldwide Governance
Indicators for Kenya (Kaufmann et al., 2010). This data consists of six
separate indicators capturing various aspects of governance: (i) voice
and accountability, (ii) political stability and absence of violence, (iii)
government effectiveness, (iv) regulatory quality, (v) rule of law, and
(vi) control of corruption. These are indicators ranging from −2.5
(weak) to (2.5) strong. We have averaged the six indicators and con-
verted the result to an index between zero and one to come up with
an aggregate past governance indicator (0.383out of 1). The future target



Fig. 1. Simplified causal loop diagram of the model; hash marks on certain relationships represent delays.
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is set by the user as a policy/scenario variable (in green). While we ac-
knowledge the fact that the situation in the two slums in this study dif-
fers from Kenya as a whole, nonetheless this data was the best proxy
available for our purpose.

Public concern about household air pollution comes from two sources in
the model: either direct monitoring of indoor air pollution levels or
through awareness about the health burden associated with household
air pollution, which can be estimated through HIA studies. The extent to
which eithermonitoring orHIA are systematically carried out in the infor-
mal settlements depends on the levels of funds available for each, which
are in turn determined bymultiplying the total effective expenditure to re-
duce household air pollution by the share of this expenditure going to ei-
ther of these initiatives. The extent of awareness and concern generated
through each channel are also driven by the actual levels of indoor air pol-
lution; directly so in the case of monitoring and in the case of health im-
pact assessment, travelling through exposure to air pollution, health burden
due to air pollution and health burden attributed to household air pollution.
Exposure itself is a consequence of either household or outdoor air
pollution. Outdoor air pollution lies outside the scope of this study (see
Section 4.2) and it is fed as exogenous data to the model. Past levels of
PM2.5, 166 μg/m3 for Korogocho and 67 μg/m3 for Viwandani, are set
according to the limited available real-world data (APHRC, n.d.), and its
future levels are incorporated as a scenario variable.

2.4.2. Main feedback loops
The causal structure of the system dynamics model (Fig. 1) shows

three noteworthy feedback loops within the system that might drive
or counter change in the real world. R1: Monitoring and R2: HIA belong
to the class of feedback loops known as ‘reinforcing’, while B1: Clean
Stoves is known as a ‘balancing’ loop. The inherently different nature
of these feedback loops can have a decisive effect on the ultimate suc-
cess of policies.

In the B1: Clean Stoves balancing feedback loop, a potential increase
in expenditure for clean cook stoves should, ceteris paribus, help bring
down household air pollution. A decrease in air pollution is likely to
make the public slightly less concerned about this issue, and a less
worrisome public (be it the government, the communities, or NGOs)
would then perhaps think that the issue has to some extent been
contained and no longer warrants the previously increased level of allo-
cated funds and decide to divert those additional funds to other more
pressing problems, bringing the level of expenditure back close to the
initial lower level; hence the use of the label ‘balancing’.

Yet, if expenditure formonitoring or health impact assessment stud-
ies is increased, once the results of such studies are published, this new
information couldmake the publicmore anxious about indoor air pollu-
tion, which in the model leads to a higher budget allocated to this issue
for the next year. Therefore, an increase in the share of household air
quality for monitoring/health impact assessment has the potential to in-
crease the available resources the next time round. This argument
makes a theoretical case for allotting a share of the available budget to
monitoring and health impact assessment, a policy that we are going
to test in Section 3.2.2.

2.4.3. Model validation
In SD modelling, validation depends on the model purpose, and it

consists of an iterative process of building confidence in the usefulness
of the model, rather than establishing its objective ‘truth’ (Barlas and
Carpenter, 1990). There exist a number of well-established tests to
help to verify the usefulness of the model to its purpose, which include
both structural and behavioural tests (Barlas, 1996; Senge and Forrester,
1980). Ourmodel has undergone several validity tests, both structurally
and behaviourally, including dimensional consistency checks,
extreme condition tests, behaviour-reproduction tests and behaviour-
sensitivity tests. The structure has also been validated against expert
opinion during the multi-stakeholder workshops as well as ongoing
collaboration with co-authors from APHRC who have knowledge of
the local context. The model has been parametrised using the limited
numerical data available from various sources, including the NUHDSS
database. Detailed information on model formulations can be found in
Appendix A, and a full list of model parameters for the two contexts is
reported in Appendix D. Selected sensitivity tests are reported in
Appendix B.
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The behaviour of the model has also been validated against time-
series data from the NUHDSS database. We start the model in 2003,
where NUHDSS starts, and validate it using data available until today.
For instance, in Fig. 2, the model's Base Run (grey curves) captures the
general long-term trend in historical data (black curves) fairly well.
Since the focus of this project is long term policymaking, the fact that
short-term oscillations are not captured is not considered a limitation
of the model for our purpose.

The prevalence of both clean stoves and clean lighting in the two
slums under study has been generally increasing since 2003. Note, how-
ever, that the scales of the graphs are very different for clean stoves
(upper plots) and clean lighting (lower plots), with the take up of
clean stoves being far slower than that of clean lighting. The generally
upward trend is only broken by the most recent datapoint for access
to clean lighting in both communities. This fall could have been due to
recent efforts to clamp down on illegal and unsafe connections espe-
cially widespread in slum areas. The fall is captured well by model sim-
ulation, as prevalence in clean lighting is tightly driven by access to
electricity in our model, for which historical data is available. The idio-
syncrasies of developments in ownership of clean stoves among house-
holds are however less straightforward, and themodel onlymanages to
capture the general upwards trend, mainly a result of a slow increase in
funds available for the provision of clean cookstoves. In particular, the
steep increase in the prevalence of clean stoves in both slums during
2014–2015 is thought to be due to a project called Prima Gas, which
made LPG more affordable for low-income groups by allowing cus-
tomers to partially refill their cylinders from a mobile refill point for
the amount of cash they have in hand; starting at a minimum of 50
Kenyan shillings (CapitalFM, 2012). As this external driver is not
accounted for in the model, we cannot replicate this recent steep rise.
Note however that, as portrayed further ahead in Fig. 4, the scales of
the curves for lighting and for stoves are so different that, when
shown in the same graph, model simulation seems to overlap
completely with historical data. As the same model structure with
different parameters is used for both contexts, we maintain that the
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Fig. 2. Proportion of households owning clean stoves (upper plots) and clean ligh
model has successfully passed the ‘family-member’ test as it can be
said to represent a ‘family’ of social systems, i.e. the socio-physical sys-
tem surrounding household air pollution in low-income slum settings.

The scarcity of available time-series data for important variables in
the model, including our central indicator household air pollution,
posed a challenge to the behavioural validation of the model. This is a
limitation that entails a degree of caution regarding the use of the
model as the only input to policymaking. Nevertheless, while taking
such limitations into account, the model still offers valuable insights
for policy, as we will further report in the next sections.

3. Results

In this section, we will start by examining the Base Run, which is
the model's projection of current trends under business-as-usual.
Next, we will explore three different scenarios and consider potential
implications.

3.1. Base run

Firstly, let us look at future developments of our main indicators
according to the model's projections of current trends under business-
as-usual. These projections are not merely extrapolations of current
trends. Instead, variables can undergo changes in trend, as the behav-
iour of the model is driven by its structure, and not by its inputs. For
brevity, some of the scenario analysis graphs are presented only for
Korogocho. In these instances, the results for Viwandani show similar
behaviour with identical implications.

Allowing themodel to run up to 2040 (Fig. 3), we see that household
air pollution (proxied by PM2.5 concentration) continues to fall slowly
(in both slums), before reaching a plateau around 2030. The available
data provides reasonable historical evidence on the prevalence of
clean appliances since 2003, which enables us to postulate the implied
behaviour of household air pollution from our model. This suggests that
household air pollutionhas been slowly falling over recent years, indicating
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a gradual improvement in household air quality, which is a result of elec-
tric lights replacing polluting kerosene lights in most households. An ex-
ception to this generally improving trend occurs in the year 2014, when
prevalence of electric lighting actually falls (Fig. 4), as mentioned earlier
in Model validation, and household air pollution consequently rises. Ac-
cording to the simulation, we will eventually reach a point where almost
all households in the informal settlements under study have access to
electricity and electric clean lighting.2 Therefore, from that point onwards
the only way, within the boundaries of our model, to further reduce the
generation of air pollution in households is through more extensive
take-up of clean cook stoves. However, as depicted in Fig. 4 (Korogocho
only), growth in the prevalence of clean stoves is completely dwarfed
by that of clean lighting. In other words, the former is so slow that the
resulting improvements from clean stoves are almost imperceptible
once the prevalence of clean lighting reaches saturation around 2030.
Therefore, under business-as-usual, we will reach a point where even
the current slow improvements in household air quality will come to a
halt. We will therefore explore some policy scenarios for achieving
more substantial reductions in household air pollution.

3.2. Scenario analysis

3.2.1. Description of scenarios
Policy and scenario variables used in the model are of three distinct

types. The first type consists of what-if scenario variables concerning
the prices of different fuel types, prices of stoves, and quality of
governance. These are variables determined at a higher, usually
national, administrative level. Secondly, there are those decisions that
could be made at a local community level concerning the allocation
of any available funds to spend towards mitigating household air
pollution. It is assumed that these funds could be divided between
direct provision of subsidised clean cookstoves to slum residents as
well as indoor air monitoring and HIA initiatives. Finally, there are
factors related with outdoor air pollution and ventilation, which are
only crudely included in the model as exogenous drivers of household
air pollution. These variables can be adjusted by the model user to ob-
serve effects of changes in outdoor air pollution and ventilation on clos-
ing in towards acceptable household air pollution levels.

We envisaged three scenarios corresponding to the three distinct
types of policy and scenario variables described above. Our three
2 Kenya is working to achieve ‘universal access’ to electricity by 2020, whereby 95% of
homes will be covered, through the Last Mile Connectivity Project (Kenya Power, n.d.).
However, USAID predicts that by 2020, 70–80% of the population will have access
(USAID, 2016). With this in mind, in our model we assumed that we reach ‘universal ac-
cess’ to electricity in the slums by 2040, the end of our simulation period.
scenarios are summarised in Table 1. The scenarios are additive. Our
first scenario involves manipulating the prices of fuels and appliances.
The second scenario adds a modified allocation of resources to that, so
that more resources go towards monitoring and HIA. Finally, the third
scenario adds an assumption of a substantial improvement in outdoor
air quality and ventilation. A detailed characterization of these scenarios
with regards to parameter values in the model can be found in
Appendix C.

Scenario I (fuel and stove prices) involves a redirection of subsidies
from kerosene to LPG and to supporting local manufacturers of clean
stoves. It also entails drastically improving the enforcement of any
existing regulations, as well as reducing existing corruption that could
lead to misallocations of available funds for tackling household air pollu-
tion. In the model, these assumptions are proxied by a step-wise 50% in-
crease in kerosene prices, 25% decrease in prices of LPG, and 50% decrease
in prices of clean cook stoves and clean lighting. These changes are as-
sumed to be implemented in three steps: the first one in 2017, and then
every three years in 2020 and 2023. We also assume a gradual 50% im-
provement in good governance by the end of our simulation period: 2040.

In Scenario II (+ monitoring and HIA), we accompany the above
changes in policywith gradually ratcheting up the share of the available
budget going towards monitoring and health impact assessment, up to
15% for each by 2023. This will gradually bring down the share of the
available budget going to the provision and/or subsidising of clean
cook stoves to 70% by 2023. It is worth noting that the size of the avail-
able budget is not fixed and is endogenously determined under the in-
fluence of public concern about household air pollution. The effective
amount of funding is also mediated by good governance.

Finally, in our most comprehensive scenario, Scenario III (+ outdoor
and ventilation), we complement the above indoor-air related policies
with a drastic (50%) reduction in outdoor air pollution, and, in the
case of Korogocho, a drastic (50%) improvement in ventilation, to
demonstrate the potential of improving household air via improve-
ments in outdoor air. In Viwandani, our base assumption for the degree
of ventilation in households, estimated based on the limited data avail-
able, is already quite high (67%). Note that improvement in ventilation
in the absence of improvements in outdoor air quality, can lead to a
worsening of indoor air quality, as the outdoor is often more polluted
than the indoor in Nairobi's slums.

3.2.2. Results of scenarios
We will now compare the results of these scenarios against each

other and against the Base Run. In Fig. 5 (Korogocho only), the projected
future path of household air pollution under various assumptions is
shown. The graph shows how each scenario performs better than the
previous one, thanks to a more comprehensive package of policies



Table 1
Summarised description of scenarios.

Scenario Summarised description Notes

Scenario I: fuel and stove prices • Lower LPG prices
• Lower prices of clean stoves
• Higher kerosene prices
• Better governance

Adjusting prices of fuels can be attained by lowering/increasing
subsidies. Lower stove prices could be a result of supporting local
manufacturers. Funds for increasing LPG subsidies or supporting
stove manufacturers can be sourced from savings on kerosene
subsidies.

Scenario II: + monitoring and HIA • All of the above,
• Plus a higher share of available budget spent for monitoring
and health impact assessment.

Scenario III: + outdoor and ventilation • All of the above,
• Plus a drastic fall in outdoor air pollution,
• Plus an improvement in ventilation (only for Korogocho)

This is the most comprehensive scenario.
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implemented. However, the scale of improvements resulting from
adding each set of policies is different from other ones.

Fig. 6 gives a clearer picture of how the three scenarios fare against
each other. This bar graph captures the improvement that each portfolio
of policies generates above business-as-usual (Base Run), by 2040. This
improvement in household air pollution results in a comparable im-
provement in life years lost to air pollution, as seen in Fig. 7. Results
show that manipulating fuel subsidies and appliance prices alone,
even combined with drastic improvements in enforcement (Scenario I)
does not result in any substantial improvements by the end of our sim-
ulation period. If, however, we complement this by investing in moni-
toring and health impact assessment (Scenario II), we can hope for a
much more significant betterment of indoor air quality that is likely to
result in roughly proportionate improvements in life years lost to air pol-
lution (Fig. 7). The best results by far, however, are only made possible
via combining the above policies with a drastic reduction in outdoor
air pollution and an improvement in ventilation (Scenario III).

Therefore, as projected by the model, policies like redirecting fuel
subsidies to cleaner fuels, reducing stove prices, and strengthening
good governance, even when combined, do relatively little to improve
household air pollution. This is because currently the amount of funds
allocated to combatting household air pollution is so low that incremen-
tal increases or reallocations fall short of achieving any substantial im-
provements over business-as-usual. This means that to see more
visible impact, we require available funds to grow by orders of magni-
tude, which implies that public concern over household air pollution
needs to be raised exponentially. This is precisely what investing in
monitoring and health impact assessment can achieve thanks to the
self-reinforcing nature of the feedback loops involved, as seen in Fig. 1.
Household Air Po
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Furthermore, what is striking is that even with investments in moni-
toring and health impact assessment (Scenario II), we would still end up
far above the WHO guideline for acceptable exposure to annual average
PM2.5 (10 μg/m3, thin black line in Fig. 5). This points to the fact thatwith-
out tackling the sources of outdoor air pollution, it will not be possible to
get indoor air pollution closer to acceptable levels. However, the alarming
result from simulation is that evenwith Scenario III assumptions, that give
the best results amongour scenarios,we endup at a level of pollution that
is still about five times higher than WHO guideline.

3.2.2.1. Synergies among policies.We saw earlier that our comprehensive
portfolio of exclusively indoor-related policies, Scenario II, yields a 25.5%
improvement in household air pollution and prevention of 351 potential
life years lost to air pollution per year in Korogocho by 2040. But
what is the contribution of each single policy in this total progress?
Fig. 8 outlines these contributions for our two indicators of interest,
household air pollution and life years lost. These values are obtained by
simulating each individual policy separately, in the absence of any
other interventions, and then comparing improvements against the
baseline scenario.

From Fig. 8, it becomes clear that most improvements stem from
investment in HIA and monitoring policies, which then helps bring in
further funds for the provision of clean cookstoves. More interestingly,
the substantial upper section of the contributions is not brought about
by any individual policy, but from the synergy among all those imple-
mented. These synergies are triggered only as a result of the R1 and R2
reinforcing feedback loops described in Section 2.4.2, and therefore de-
pend on the implementation of HIA and monitoring. These reinforcing
mechanisms can potentially enlarge the size of the ‘pie’ of available
llution: Scenarios
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funding and make the resulting improvements larger than the sum of
improvements from implementing single policies.

4. Discussion and conclusion

4.1. Findings and implications

In this study we built a quantitative system dynamics model on the
problem of household air pollution in Nairobi's slums, using inputs ob-
tained during rounds of multi-stakeholder participatory modelling
workshops. We used the formal and tested system dynamics model to
compare three hypothetical scenarios involving different portfolios of
policies, which helped us in better understanding the dynamics of the
socio-physical system.

Although there was not an abundance of numerical data for
parameterisation, calibration and validation of the quantitative system
dynamics model, which makes the model more suited to exploratory
purposes, severalwell-founded and useful insights still emerged as a re-
sult of this study. Our results show that under business-as-usual, the
current trend of slowly improving indoor air quality would come to a
halt due to the saturation of the take-up of electric lighting and the ex-
tremely slow rate of take-up of clean stoves. This should be taken as a
warning sign that if we aim to reach WHO's suggested guideline in
terms of acceptable PM2.5 levels, a drastic acceleration in the take-up
of clean stoves will be needed. According to our model's projections –
without investing unfounded faith in their point-accuracy – even with
a comprehensive package of indoor-air focused policies, there is little
hope of closing the gap between status quo and WHO guidelines for
air pollution by 2040.3 Even for the current downward trend to con-
tinue, our results, as well as our engagement with the community,
have led us to believe that arriving anywhere near the WHO guideline
will require addressing sources of outdoor air pollution, such as
neighbouring dumpsites, industrial sites, traffic, etc. in parallel to
sources of indoor air pollution. This will pose complications in imple-
mentation, as these dumpsites are sources of employment and liveli-
hood for many slum residents.

Our simulation results also point to the potentially high impact of
working towards raising the public's and the government's awareness
and concern about household air pollution and its consequences for res-
idents' health. To achieve this, our study suggests diverting some of the
available budget (however big or small it is) to household air quality
monitoring and health impact assessment studies, to ‘close the loop’
and bring the issue of household air quality higher up on the list of
3 In reality, outcomesmay not necessarily be this bleak, because there aremyriad other
potential self-reinforcingmechanisms not included in ourmodel thatmight change things
as we move towards 2040, such as for instance effects of breakthrough technological ad-
vances, improvements in income and quality of life, or major slum upgrade programmes
that may fundamentally change the structure of the system.
public/government priorities. Such investments, due to the self-
reinforcing nature of the dynamics involved, can entail high return on
investment, as the policymaker would be able to leverage the results
of such studies to enlarge ‘the size of the pie’ of available money and re-
sources (loops R1 and R2 in Fig. 1). We saw in the previous section how
investments in monitoring and HIA have the potential to create syner-
gies among existing policies. However, one must recognise that
redirecting investments towards monitoring and health impact assess-
ments may lead to slightly worse results in the short-term due to the
time it takes before these policies pay off. In the world of politics, this
delay may pose a serious implementation challenge.

The workshops held during this study engaged stakeholders in the
gradual but rigorous process of developing a system dynamics model.
It also demystified the completed model as stakeholders were involved
in the model-building process from identifying simple relationships to
complex inter-linkages of sectors. Testimonials from participants led
us to believe that they found the process useful, both in terms of discov-
ering aspects and dynamics of the air pollution issue which they were
previously unaware of thanks to the expertise brought in by other
stakeholders, and in terms of becoming familiar with ‘group model
building’ as a powerful problem structuring and policy analysis method.

Previous studies have empirically assessed air pollution (Egondi et al.,
2016; Muindi et al., 2016) and its impact on health (GBD 2016 Mortality
Collaborators, 2017), or they have focused on the feeling of helplessness
of slum residents towards the issue (Muindi et al., 2014). This study offers
a framework to try and bring these diverse strands of research together.
Through this work, we have contributed to the literature by addressing
the issue of the slow take-up of clean cookstoves in low-income slum set-
tings by bringing the physical, social and policy aspects together in an in-
tegrated quantitativemodel with a holistic and dynamic lens.We did this
through engaging community members and local policymakers in the
process with the aim of raising the issue's priority on their agendas and
fostering a shared appreciation of important feedback mechanisms.

4.2. Limitations and future work

It is important to note that the model presented in this paper is de-
rived through a participatory process with a particular set of stake-
holders and therefore represents one possible model of the system
that does not capture every possible mechanism. Therefore, we must
stress that the model is not presented here as the definitive model of
household air pollution in slums, but only as a highly simplified
perspective that we believe is useful for deriving the sort of insights
highlighted in the previous section.

Onemust also recognise the limitations imposed on this studydue to a
shortage of available time-series data on such key variables such as
household and outdoor air pollution (where we had only one data point
for each variable), as well as past expenditures on related policies,
among other variables. It is not that such data externally drives the
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model, rather that such data would have been useful for a more in-depth
comparison of simulated behaviour against real-world observations.

Importantly, while our replication of historical data for the number of
households owning clean lightingwas very good, themain driver of this in-
dicator in our model is electricity coverage, which is taken as exogenous
real-world data fed into the model, with an assumption of full electricity
coverage of slums by 2040. In this respect, all our scenarios are equal.
The scenarios differed substantially, however, in the speed of take-up of
clean cook stoves, which makes that a key component of the model, far
more influential than clean lighting in determining future differences be-
tween scenarios. In terms of model validation, however, our simulation
onlymanages to capture the general trend for this variable, and therefore
the fit could not be described as an exceptionally good fit (Fig. 2, upper
section). Replication of historical data is a key behavioural test for the val-
idation of system dynamics models. Therefore, the model's inability to
capture historical developments closely enough entails further caution
in using this analysis as the only input to policymaking.

Policies for decreasing household air pollution are certainly
not limited to those investigated in this paper. Behavioural change
interventions, for instance, could succeed in moving households
from cooking inside their rooms to cooking outdoors. Such behav-
ioural policies are not considered within the scope of this study.

Another limitation of this study is the exogenous treatment of the
level of outdoor air pollution, which was included as a scenario variable
whose future value is set by themodel user. For amore realistic treatment
of the problem of household air pollution, it would be useful to model
outdoor air pollution as an endogenous variable that is a composite of pol-
lution that originates indoors and diffuses locally, as well as industrial,
Fig. 8. [Korogocho only] Individu
waste and transport pollution. Endogenising outdoor air pollutionpresents
a potentially fruitful opportunity for further research in this line.

When we asked workshop participants to articulate their hopes for
Nairobi slums, only one participant mentioned the reduction of house-
hold air pollution. Other issues such as land ownership, services and
wastemanagement weremuch higher on people's agendas. Even though
the air pollution-related health burden is known to be very large, to our
knowledge there are currently no programmes focusing on air pollution
from a health point of view, neither at national nor at county level. This
lack of attention (Zimmermann et al., 2017) presents an interesting co-
nundrum and another potentially fruitful area for further research.

This project and modelling work was influenced by the limited
attention that household air pollution has received so far. Because of
this inattention, very little data on household air pollution has been col-
lected to date. Increased investments in researching household air pol-
lution would lead to more abundant scientific evidence, which could be
used to produce more useful and reliable policy recommendations.
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Appendix A. Model documentation

In this appendix, the formulation and parametrisation of the system dynamicsmodel is explained in detail. Themodel is built in the well-established
system dynamics simulation software Vensim. Thewhole 150-plus-variablemodel is presented in smaller pieces, with visual snapshots to aid under-
standing. The following table elaborates the colour-coding and other information needed to interpret the diagrams.
Table A-1

Model coding explained.
n

Th
Code
Lo

U
V

R
G
B
B

4 As mentioned in the Limitations and future work section, this
ificantly complement this work.
5 Syntax: IF THEN ELSE (Condition, Outcome if True, Outcome if Fal
e breakpoint is Time = 2017 (current time).
Meaning
wer-case variable
 Endogenous variable (formulated based on other variables within the model). The dynamic behaviour of such
variables is given by software simulation.
pper-case variable
 Constant. Such constants are either fixed parameters (black), or policy/scenario variables set by the user (green)

ariable with first word in upper case, rest in lower case
 Exogenous (data) variable. Past behaviour of such variables is given by historical data. Variable stays constant

for future simulation, unless otherwise specified.

ed variable
 Key indicator.

reen variable
 Policy/scenario variable, decided upon by the user.

lue variable, in angle brackets
 ‘Shadow’ variable, copied from another section of the model.

lue arrows
 Causal relationships, from cause to effect. Each (endogenous) variable is formulated based on variables

connected to it via incoming arrows.

rey arrows
 Initial condition setting.
G
We have parametrised two versions of themodel, one for each one of the two slums under study, Korogocho and Viwandani. The twomodels are iden-
tical in structure but parametrised differently to reflect the conditions in each setting. Therefore, each of the twomodels is an aggregate representation of
one of the two slums, and when, for instance, we talk about household air pollution, we refer to the ‘average’ household within the context.
The model is comprised of two sectors (or ‘views’ as they are called in the Vensim software): The Core Structure, and the Policy Structure. Below we
start with a detailed explanation of formulation of the Core Structure, which is followed with the Policy Structure being elaborated next.
In documenting equations, units are indicated in brackets. Where no units are indicated, the variable is dimensionless.
A.1. Core structure

A.1.1. Household air pollution
Fig. A-1 portrays the formulation of our central indicator, household air pollution (sometimes abbreviated to HAP). Household air pollution is the
weighted average of indicated household air pollution and outdoor air pollution. The weight is given by the extent of ventilation.

household air pollution μg=m3¼ indicated household air pollution μg=m3� � � ð1−
ventilationÞ þ outdoor air pollution μg=m3� � � ventilation
Fig. A-1. Formulation of household air pollution.
Outdoor air pollution, proxied by the concentration of PM2.5, is assumed to be constant in the past,4 set to 166 μg/m3 for Korogocho and 67 μg/m3 for
Viwandani, based on a single data point available from Egondi et al. (2016). For the future, a target for outdoor air pollution can be set by the user for
the year 2040 (Final Time of simulation). The following formulation will then linearly change current outdoor air pollution towards the set target5:

Outdoor air pollution μg=m3� � ¼ IF THEN ELSE ðTimeb2017;OUTDOOR AIR
POLLUTION PAST μg=m3� �

;

OUTDOOR AIR POLLUTION PAST μg=m3� �þ ðTARGET FOR OUTDOOR AIR
POLLUTION 2040 μg=m3� �

−OUTDOOR AIR POLLUTION PAST μg=m3� �Þ � ðTime−
2017Þ= FINAL TIME−2017ð ÞÞ
is a major shortcoming of the current indoor-air-focused model. A separate model of outdoor air dynamics would sig-

se). This formulation is often used in themodel to specify two different rules for a variable in the past and in the future.
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Ventilation is similarly assumed to be constant in the past, with a future target set by the user. Ventilation is defined as an index between zero and 1,
where a value of zero (no ventilation) would denote that outdoor air has no effect on household air pollution, and 1 (full ventilation – nowalls around)
would mean that household air pollution is entirely determined by outdoor air pollution. The past value is obtained deriving information from Muindi
et al. (2016). In Muindi et al.'s paper (Table A-2), PM2.5 levels for households using LPG/electricity is given as 72.0 [μg/m3] for Korogocho and 45.6
[μg/m3] for Viwandani. Since these household are using clean fuels, we assume that this pollution is coming from outdoors. Therefore, we can obtain
a very rough estimate for ventilation pastbydividing the given levels of household air pollution for households using clean fuels by the level of outdoor air
pollution. (Ventilation past for Korogocho = 72/166 = 0.4. Ventilation past for Viwandani = 45.6/67 = 0.68).
Table A-2

Distribution of households by cooking fuel type and mean PM2.5 levels.
Source Muindi et al. (2016), page 7. Numbers in square brackets added here.
Outcome
P

P

Korogocho (24)
 Viwandani (48)
 Total
 Test statistic
roportion of households using different cooking fuels (%)
 χ2 (p-value)
24.6 (p b 0.001)
Charcoal or wood
 [1] 62.5
 [7] 14.6
 [13] 30.6

Kerosene
 [2] 12.5
 [8] 72.9
 [14] 52.8

LPG/electricity
 [3] 25.0
 [9] 12.5
 [15] 16.7

M2.5 mean levels for different cooking fuels (μg/m3)
 t-Statistic (p-value)

Charcoal or wood
 [4] 126.5
 [10] 75.7
 [16] 110.0
 6.59 (p b 0.001)

Kerosene
 [5] 109.0
 [11] 58.7
 [17] 61.9
 7.43(p b 0.001)

LPG/electricity
 [6] 72.0
 [12] 45.6
 [18] 59.1
 10.04 (p b 0.001)
Indicated household air pollution in our model comes from two sources: cooking and lighting. Pollution from these two sources is added together.
The contribution of each source is calculated as the typical pollution resulting from using traditional appliances (additional pollution from traditional
stoves/lighting) times the prevalence of those appliances, i.e. 1 minus the prevalence of clean stoves/lighting.

Indicated household air pollution μg=m3� � ¼
1−prevalence of clean stovesð Þ � ADDITIONAL POLLUTION FROM TRADITIONAL
STOVES μg=m3� �þ
1−prevalence of clean lightingð Þ � ADDITIONAL POLLUTION FROM TRADITIONAL
LIGHTING μg=m3� �

Additional pollution from traditional stoves/lighting are two parameters which are estimated based onMuindi et al. (2016) by subtracting the level of
household air pollution in a household using clean fuels from that of a household using dirty fuels, assuming the difference to be attributable to the use
of traditional stoves.
The level of household air pollution in households using dirty fuels is calculated as theweighted average of those using kerosene and those using char-
coal/wood. For Korogocho, according to the numbers in Table A-2, this is:

4½ � � 1½ �= 1½ � þ 2½ �ð Þ þ 5½ � � 2½ �= 1½ � þ 2½ �ð Þ ¼
126:5 μg=m3� � � 62:5%= 62:5%þ 12:5%ð Þ þ 109:6 μg=m3� � � 12:5%= 62:5%þ 12:5%ð Þ ¼ 123:7
μg=m3� �

:

And for Viwandani:

10½ � � 7½ �= 7½ � þ 8½ �ð Þ þ 11½ � � 8½ �= 7½ � þ 8½ �ð Þ ¼
75:7 μg=m3� � � 14:6%= 14:6%þ 72:9%ð Þ þ 58:7 μg=m3� � � 72:9%= 14:6%þ 72:9%ð Þ ¼ 61:5
μg=m3� �

:

Therefore, the difference between households using dirty fuels with those using clean fuels (LPG/electricity, [6] and [12] in the table above) is given
for each setting:

Korogocho½ � additional pollution from traditional stoves ¼ 123:7 μg=m3� �
−72 μg=m3� �

¼ 51:7 μg=m3� �
:

Viwandani½ � additional pollution from traditional stoves ¼ 61:5 μg=m3� �
−45:6

μg=m3� � ¼ 15:9 μg=m3:

We attribute these figures to the use of non-clean stoves, and we use the above values for additional pollution from traditional stoves in each setting.
This method of estimation gives rather different values for additional pollution from traditional stoves for the two slums. This may be because in
Korogocho the population predominantly uses charcoal, while in Viwandani households mostly use kerosene. A useful extension of this study
could be towards disaggregating the representation of these fuels in the model.
As for lighting, we use a similarmethod based on the following diagram from the same article (Muindi et al., 2016). In this case, data for Korogocho is
incomplete (Fig. A-2), so we use the parameter obtained for Viwandani in both models:

additional pollution from traditional lighting ¼ 181:7 μg=m3� �
–114:7 μg=m3� � ¼ 67

μg=m3� �
:



Fig. A-2. PM2.5 levels associated with lighting fuels.
Source: Muindi et al. (2016), Supplementary materials.
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Prevalence of clean lighting/stoves is defined as the number of households using clean lighting/stoves divided by total number of households.
The latter is a data series available from the Nairobi Urban Health Demographic Surveillance System (NUHDSS) (Emina et al., 2011). The
prevalence variables are shadow variables that are copied from another section of the model, which we will describe later in this appendix
(see Appendix A.2.3).
A.1.2. Health burden and public awareness
Next, we describe how we capture life year lost to air pollution and public awareness about it in our model (Fig. A-3).
Exposure to air pollution is calculated as aweighted average of household air pollution and outdoor air pollution, using proportion of time spent indoors as
the weighting factor.

Exposure to air pollution μg=m3� � ¼
household air pollution μg=m3� � � PROPORTION OF TIME SPENT INDOORS
þoutdoor air pollution μg=m3� � � 1−PROPORTION OF TIME SPENT INDOORSð Þ
Fig. A-3. Formulation of life years lost to air pollution.
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It is assumed that the population of the slum, on average, spends two thirds of their time indoors. This is a rough estimate given by
local experts from APHRC. Obviously, this is a simplification, as this parameter would be different for different subsets of the population,
e.g. children, women, etc. However, this simplification corresponds to the high-level aggregate view we take in our model. Changes in
this parameter would affect life years lost to air pollution, but it would not change the general patterns of behaviour of other key
indicators.
Life years lost to air pollution is obtained from exposure to air pollution using a life table model, as explained in the Methods section of this article
(see Section 2.3) (Fig. A-4).
Fig. A-4. Health burden calculation. Exposure to air pollution on the x-axis and life years lost on the y-axis. Korogocho (left) and Viwandani (right).
Thereafter, life years lost attributed to air pollution is proxied by the former variable multiplied by proportion of households covered by health impact
assessment, which is a shadow variable copied from another section of the model which we will describe later (see Appendix A.2.2). In other
words, it is assumed that the health burden of air pollution is correctly attributed to its cause only to the extent that the population is covered by
health impact assessment studies.

life years lost attributed to air pollution year½ � ¼
life years lost to air pollution year½ � � proportion of households covered by health im‐
pact assessment

Afterwards, this latter variable is normalized by dividing it by its initial value and named relative life years lost attributed to air pollution.
Normalization allows us to arrive at a dimensionless indicator of the perceived air pollution related health burden in a respective settlement,
which takes a value of unity at the beginning of the simulation, and which allows summation with public awareness about air pollution from
monitoring, explained in the next section. An exponential smooth (i.e. delayed version) of this variable is taken as a proxy for public awareness
about air pollution from health burden (a dimensionless variable). The delay is formulated as a third-order exponential smooth with a time
constant of two years (public concern delay), using the software's built-in SMOOTH3 function.6 This assumption implies that it takes on average
about two years for results of health impact assessment studies to translate into public awareness. Sensitivity analysis on this uncertain
parameter is carried out and reported on in Appendix B.2.

public awareness about air pollution from health burden ¼
SMOOTH3ðrelative life years lost attributed to air pollution; PUBLIC CONCERN DE‐
LAYÞ
A.1.3. Monitoring and public awareness
Health impact assessment is not the only way to create awareness about household air pollution within the population. Awareness could also be
raised by directly monitoring household air pollution (Fig. A-5).
6 The SMOOTH function is used to take time averages and represent expectations. The figure in front (in this case 3) indicates the order of the smoothing. Syntax: SMOOTH3 (input,
smoothing time).



Fig. A-5. Formulation of Public concern about household air pollution.
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To model the role of monitoring, first we measure the distance [of household air pollution] to WHO guideline of 10 μg/m3, reflecting the assumption
that public concern in this case would be a function of this gap.

distance to who guideline ¼ household air pollution−WHO GUIDELINE

Subsequently, we assume that this gap is only revealed to the extent that indoor airmonitoring is carried outwithin the population. Therefore, in line
with our method used above for health impact assessment:

distance to who guideline revealed through monitoring ¼
distance to who guideline � proportion of households covered by indoor air monitoring

Proportion of households covered by health impact assessment is formulated in Appendix A.2.2. This latter variable is then normalized as above to arrive
at relative distance toWHO guideline revealed. Thereafter, public awareness about HAP frommonitoring is an exponential smooth of this latter variable,
obtained in the same way as for health impact assessment.

public awareness about HAP from monitoring ¼
SMOOTH3 relative distance to who guideline revealed; PUBLIC CONCERN DELAYð Þ

Finally, public concern about HAP is simply the sum of the awareness coming from the two sources, previously made comparable through normalisation.

public concern about HAP ¼ public awareness about hap from monitoring
þpublic awareness about air pollution from health burden
A.1.4. Expenditure
The next step is to translate this public concern into public expenditure to reduce HAP. Of all the sectors of the model, this is the one where the least
amount of reliable data was available, as information on such expenditures in the past was hard to get by, and initiatives to combat household air pol-
lution have so far been very rare. Therefore, we had tomake certain assumptions based on expert judgment aswell as calibrating to limited available
data. Nevertheless, we report various tests, including sensitivity tests presented in Appendix B.1, to investigate the implications of our assumption
and of potential errors in those assumptions. Here, we make our assumptions explicit.



Fig. A-6. Formulation of expenditure.
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Firstly, we obtain the growth rate in public concern, using the software's built-in TREND7 function.

public concern growth rate ¼ TREND ðpublic concern about hap;GROWTH TIME
HORIZON; INITIAL PUBLIC CONCERN GROWTH RATEÞ

The smoothing (i.e. averaging) time, growth time horizon, is set to half a year, and the initial public concern growth rate is zero.
The key assumption here is that growth rate in the expenditure to reduce household air pollution is proportional to the growth rate in public concern. In
otherwords, it is assumed that expenditurewill be raised/reduced at a speed proportional to the speed of changes in public concern. This relationship
ismediated by the constant parameter expenditure growth ratemultiplier (equation below). This constantwas estimated through calibration based on
reasonable values for expenditure (according to evidence, see next page), and set at 0.75. This means that for every 1% increase in public concern, ex-
penditurewould go up by 0.75%. Thismultiplier is a crucial parameter in themodel, and onewhich affects themodel's behaviour significantly. There-
fore, a sensitivity analysis is carried out on this parameter and reported on in Appendix B.1.

change in expenditure to reduce household air pollution ¼ Expenditure To Reduce
HAP
�public concern growth rate � EXPENDITURE GROWTH RATE MULTIPLIER

In the language of system dynamics modelling, Expenditure to reduce HAP is what is called a ‘stock’ variable, and the rate of change in expenditure to
reduce household air pollution is a ‘flow’ variable. Stock variables are denoted inside a box and flow variables are shown as valvesflowing into or out of
stocks. The small ‘cloud’where thefloworiginates signifies that the source of this change is outside themodel boundary or irrelevant for our purpose.
A stock is a level that is, at any point in time, the result of the accumulation of its net flow (inflowsminus outflows), plus any ‘initial’ value assigned to
it. In otherwords,mathematically, a stock is an initial value plus the integral of its net flow. In the case of the above diagram, there is solely one inflow.
Therefore:

Expenditure to reduce household air pollution ¼ initial expenditure to reduce indoor
air pollutionþ INTEG change in expenditure to reduce household air pollutionð Þ

The stock's initial value is a constant parameter forwhich datawas not available. In 2015, total government expenditure in Nairobi for preventive and
promotive health, covering TB, malaria, family planning, and environmental health has been KES 43M. If we assume that this is divided roughly
equally between the four areas, each area, including environmental health, gets just under KES 11M. Korogocho is roughly 1/200 of Nairobi's popu-
lation, so again if we assume that expenditure is divided evenly, Korogocho residents get roughly KES 55,000 per year. This is the total environmental
health budget. Then wemake the rough assumption that about a fifth of this, KES 11,000 (roughly USD 110) per year goes to fighting indoor air pol-
lution. The population of Viwandani is 1.5 times that of Korogocho. Therefore, for Viwandani we assume a value 1.5 higher (KES 16,500). These are
very low figures, in line with the information obtained in our workshops pointing out the almost complete non-attention to household air pollution in
the government's budgeting.
Thus, we set the initial expenditure such that by 2015, expenditure goes up to the order of roughly KES 11,000 for Korgocho and KES 16,500 for
Viwandani. Clearly, this is a very rough estimate that we had to make because of lack of data. However, our sensitivity analysis reveals that minor
variations (±25%) in this parameter do not affect any of the policy insights obtained.
Out of all the budget allocated for HAP, according to our workshop participants, only a portion of it is effectively spent in initiatives to reduce pollu-
tion, with most of it being wasted through misallocations, in a system where corruption is still a main obstacle. To capture the effect of such misal-
locations,we have included a good governanceparameter (Fig. A-7), as outlined earlier in Section 2.4.1. This is an index between zero and 1, driven for
the past years by data available from theWorld Bank (TheWorld Bank, 2011). The current value of 0.383means that out of every shilling allocated to
a policy or initiative, 0.383 of it is ultimately spent on that policy or initiative. The future value (green variable) is a policy variable set by the user as a
target to be achieved by 2040.
7 Syntax: TREND (input, averaging time, initial trend).



Fig. A-7. Formulation of good governance and effective expenditure.
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The effective expenditure is then used in other sectors of themodel to provide subsidised cook stoves, or to fund indoor airmonitoring or health impact
assessment (HIA) studies. The overall picture of the Core Structure of themodel presented so far is shown below in Fig. A-8 to give an overview. Next,
we will present the second (and final) model sector, the Policy Structure.
Fig. A-8. Core structure of the model.
A.2. Policy structure

A.2.1. Expenditure allocation
We assume that any funds available for fighting HAP will be divided among three types of initiatives, namely: subsidising clean cook stoves, funding
indoor air monitoring, and funding HIA studies. Although in the past the little available money has been almost entirely allocated to the provision of
subsidised appliances, in the future, we leave it to the user of themodel to decide on this allocation. Themodel structure reflecting this is portrayed in
Fig. A-9.
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For each of the initiatives, on the left-hand side, there is one parameter in black, representing the past shares allocated to each initiative. The past
setting for these shares of expenditure is 98% (virtually all of the funds) to stove subsidies, and 1% to each of the other two initiatives (virtually
nothing8). Then, each initiative also has three green variables, which represent three step-changes in the future, which can be varied by the user.
The first of these step changes happens immediately (time = 2017), while the other two take place in three-year intervals, capturing a gradual
shift in policy. The equation for one of the share variables is shown below as an example:

share of indoor air quality expenditure for monitoring ¼
IF THEN ELSE ðTimeb2017; SHARE OF INDOOR AIR QUALITY EXPENDITURE
FOR MONITORING PAST;
IF THEN ELSE ðTimeb2020; SHARE OF INDOOR AIR QUALITY EXPENDITURE
FOR MONITORING 2017;
IF THEN ELSE ðTimeb2023; SHARE OF INDOOR AIR QUALITY EXPENDITURE
FOR MONITORING 2020;
SHARE OF INDOOR AIR QUALITY EXPENDITURE FOR MONITORING 2023ÞÞÞ

It is essential that the sum of the three shares equal one (i.e. 100%). However, the user might not adhere to this rule. Therefore, in the next step we
normalise the three shares to ensure that they sum up to unity. The following is the equation for one of the normalised variables as an example:
8 The reason we do not use a 100% - 0% - 0% division is issues related to division by zero errors that occur because of normalization of certain variables in the model.

Fig. A-9. Division of funds.
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normalised share of indoor air quality expenditure for monitoring ¼
share of indoor air quality expenditure for monitoring=ðshare of indoor air quality ex‐
penditure for monitoring þ share of air quality expenditure for health impact assess‐
ment þ share of air quality expenditure for appliance subsidiesÞ
A.2.2. Indoor air monitoring and health impact assessment
Below, the structure for modelling indoor air monitoring coverage is shown (Fig. A-10). We have an identical structure for health impact assessment
coverage. Therefore, we present here only one of the two structures.
Fig. A-10. Formulation of indoor air monitoring coverage.
Indoor air monitoring coverage is a stock variable capturing the extent of coverage at any point in time. This level is increased via an inflow and de-
creased via a natural depreciation outflow.
Effective expenditure to reduce household air pollution (blue variable on the top-left) was explained earlier. Multiplying this by the normalized share of
indoor air quality expenditure for monitoring gives the amount of expenditure for indoor air monitoring. Subsequently, simply dividing this latter var-
iable by the unit cost of indoor air monitoring per household gives the rate of increase in indoor air monitoring coverage. We need to add aMIN function
to this formulation to ensure that the rate does not exceed the physical maximum. This maximum possible rate of increase is essentially the gap be-
tween total number of households and indoor air monitoring coverage, divided by the time needed to close this gap, gap closing time constant (assumed
equal to one year). This standard structure ensures a naturally smooth asymptotic behaviour if/when we approach full coverage in the future. The
complete equation for the rate of increase is therefore the following:

increase in indoor air monitoring coverage ¼
MIN ðexpenditure for indoor air monitoring=UNIT COST OF INDOOR AIR MONI‐
TORING PER HOUSEHOLD;
TOTAL number of households−Indoor Air Monitoring Coverageð Þ=GAP CLOSING
TIME CONSTANTÞ

According to an appraisal made by co-authors from APHRC, we can assume that it would suffice to monitor one household out of an area comprising
1000 households. The cost of onemonitoring setup is around USD 1000. Therefore, Unit cost of indoor airmonitoring is given as roughly USD 1 (or KES
100) per household, which is the value we use in the model.
The equation for the stock of coverage is straightforward:

indoor air monitoring coverage ¼ initial indoor air monitoring coverage
þINTEG ðincrease in indoor air monitoring coverage−depreciation of investment in
indoor air monitoringÞ

initial indoor airmonitoring coverage, at the beginning of our simulation (year 2003), is known to be almost non-existent, and thus set to 1 household.9

The depreciation outflow is formulated as a standard first-order decay by dividing the stock level by a constant depreciation time, assumed to be equal
to 5 years.

depreciation of investment in indoor air monitoring ¼
Indoor Air Monitoring Coverage=INVESTMENT DEPRECIATION TIME

The stock of coverage is then divided by the total number of households to obtain the proportion of households covered by indoor airmonitoring indicator.
We used this variable earlier to formulate the level of public awareness about air pollution.
9 Once again in order to avoid division by zero issues.
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A.2.3. Access to clean stoves
Next, we focus on the indicator number of households using clean stoves (Fig. A-11), which we used earlier to obtain the prevalence of clean stoves.
Fig. A-11. Formulation of number of households using clean stoves.
The number of households using clean stoves (indicated in red) is a function of number of house owning clean stoves, as well as fuel cost of LPG stove
relative to kerosene stove. The premise here is that as the cost of using a clean LPG stoves rises relative to the use of a kerosene stove, fewer people,
even among those who already own a gas stove, would be using clean LPG stoves. This is captured in the effect of relative fuel prices on clean stoves
usage graph function (Fig. A-12), which was estimated in consulting with local experts:
Fig. A-12. Effect of relative fuel prices on clean stove usage.
This graphical function postulates that as long as an LPG stove is equally or less expensive to use than a kerosene stove, households owning an LPG
stove will use it 85% of the time (see the first point on the graph at (1, 0.85)). The 85% estimate is to account for ‘fuel stacking’, which is the use of
multiple fuels/stoves at one time. As LPG becomes relatively more expensive, the percentage of the time that households owning clean stoves
would actually use them drops quickly. In the model, as shown in the graph, we assume that this percentage would reach zero gradually by the
point where using an LPG stove is 10 times more expensive than a kerosene stove (see the (10, 0) point). Therefore:

number of households using clean stoves ¼ Number Of Households Owning Clean
Stoves�
EFFECT OF RELATIVE FUEL PRICES ON CLEAN STOVE USAGE ðfuel cost of lpg
stove relative to kerosene stoveÞ

Later in this section, we will see how the fuel cost of LPG stove relative to kerosene stove variable is formulated. But first, we will focus on the stock of
number of households owning clean stoves. The initial value for this stock, initial number of households using clean stoves, is given by the NUHDSS
dataset. Changes in this stock are a result of households acquiring clean cook stoves, either subsidised or on the free market. An upper limit structure
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reflecting what is physically possible is included in the same way as for the stock of indoor air monitoring coverage, as seen earlier. The equations for
the stock and its inflow are therefore:

number of households owning clean stoves ¼ initial number of households owning
clean stovesþ INTEG change in households with access to clean stovesð Þ
change in households with access to clean stoves ¼
MIN ðhouseholds acquiring market price clean stovesþ households acquiring subsi‐
dised clean stoves; ðTOTAL number of households−Number Of Households Owning
Clean StovesÞ=GAP CLOSING TIME CONSTANTÞ

Later in this sectionwewill see how households acquiringmarket price clean stoves is formulated. Butfirst, the number of subsidised stoves distributed
equals to the funds allocated divided by the amount of subsidy per stove. Themoney available is obtained bymultiplying the effective expenditure to
reduce household air pollution by normalised share of air quality expenditure for appliance subsidies. The cost of each subsidised stove for the govern-
ment equals its price multiplied by the proportion of appliance prices subsidised. This proportion is set to 0.5, estimated by co-authors from APHRC.
The Price of clean stoves is set according to data in the past (KES 2000),10 and the target future price is decided upon by the user as a policy variable.

households acquiring subsidised clean stoves ¼ expenditure for clean stove subsidies=
price of clean stoves � PROPORTION OF APPLIANCE PRICES SUBSIDISEDð Þ

As for the rate of acquisition of clean cook stoves on the market, the Fig. A-13 demonstrates that in our model, we have assumed three drivers for it:
stove prices, relative fuel prices, as well as public concern for HAP. Relative variables are values normalized via dividing by initial values. The strength
of each one of the above drivers is captured using an elasticity formulation, making percentage changes in the acquisition rate proportional to per-
centage changes in its drivers. The elasticities are based on the literature where available, and otherwise estimated numerically (using Monte Carlo
methods) to give the best possible fit with the available time-series data for number of households owning clean stoves. The initial acquisition rate is
also estimated in the same way. The final equation for the acquisition rate is11:

households acquiring market price clean stoves ¼
INITIAL HOUSEHOLDS ACQUIRING MARKET PRICE CLEAN STOVES
�relative fuel cost of lpg stove relative to kerosene stove ˆ ELASTICITY OF CLEAN
STOVE ACQUISITION TO FUEL PRICES
�relative price of clean stoves ˆ ELASTICITY OF CLEAN STOVE ACQUISITION TO
STOVE PRICES
�relative public concern about hapˆ ELASTICITY OF CLEAN STOVE
ACQUISITION TO PUBLIC CONCERN
Earlier, we mentioned fuel cost of LPG stove relative to kerosene stove as a driver of clean stove usage. Fig. A-14 depicts how this driver is formulated:

Fig. A-13. Formulation of households acquiring market price clean stoves.
10 Estimated based on market prices online (e.g. https://www.jumia.co.ke/cooking).
11 Value based onDale and Fujita (2008). Dishwasher elasticity is−0.42. This appears to be the closest in termsof context and level of ‘luxury’ to clean cook stove.We used−0.5 for clean
cook stoves' price elasticity.

Fig. A-14. Formulation of fuel cost of LPG stove relative to kerosene stove.

https://www.jumia.co.ke/cooking
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The relative cost is calculated by dividingmonthly fuel cost of an LPG stove bymonthly fuel cost of a kerosene stove. Each of the costs is obtained bymul-
tiplying the price of the fuel by itsmonthly usage. Data forMonthly usagewas obtained based on focus groupswith slum residents. Residents said that
each 6 kg LPG canister lasts them about 3 months. As for kerosene, residents said that they used about KES 50 per day, which translates to 24 l per
month, at a current price of KES 64 per litre. Past price data comes from the Kenyan National Bureau of Statistics (KNBS). Future prices are policy var-
iables (in green) which the user can decide to increase/decrease in three steps separated by three years each.
It should be noted that in our conversations with residents of Korogocho and Viwandani, we found out that the bottleneck for using LPG stoves for
many families is the high cost of LPG refill cylinders which are usually offered in 6 or 13 kg, rather than the cost of the stove itself. This bottleneck
is not included in the model. We expect, however, that the associated dynamics be of a similar nature to when we assume the bottleneck to be
the stove itself.
A.2.4. Access to clean lighting
Finally, we will explore how the number of households using clean lighting is formulated (Fig. A-15). This indicator (highlighted in red) is as-
sumed to be equal to the number of households owning clean lighting stock variable, i.e. all households owning clean lighting use that type of
lighting all the time. The stock of number of households owning clean lighting is initialized using available data from NUHDSS. The rate of change
in the stock is driven by two factors: electricity coverage and price of clean lighting. Electricity coverage data was made available via NUHDSS.
Target electricity coverage 2040 is set at 100%, assuming that by 2040 there will be full coverage in our two slums of interest. From this coverage
data, electricity coverage growth rate is obtained by subtracting electricity coverage delayed from electricity coverage and dividing it by growth
rate time horizon (=0.5 year). Electricity coverage delayed is simply a fixed delay of electricity coverage, the delay time being set equal to growth
rate time horizon.12
Fig. A-15. Formulation of number of households using clean lighting.
electricity coverage growth ¼
electricity coverage−Electricity Coverage Delayedð Þ=GROWTH TIME HORI‐
ZON
Electricity Coverage Delayed ¼ DELAY FIXED ðelectricity coverage;
GROWTH TIME HORIZON; ELECTRICITY COVERAGE 2002Þ

Subsequently, the indicated change in households with access to electricity is the total number of households multiplied by electricity coverage growth,
which assumes that the rates of growth in electricity coverage is almost equal to the rate of growth in the number of households owning clean lighting.
The only difference is that this latter is subsequentlymodified by an effect from the price of clean lighting. Past price datawas provided by local APHRC
experts, and future target price is set by the user as a policy variable (in green), to be reached linearly by 2040. Relative price of clean lighting is the
12 Vensim's built-in function. Syntax: DELAY FIXED (input, delay time, initial value).
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normalized version obtained by dividing current price by its initial value. The effect is then formulated using an elasticity formulation that is multi-
plied by indicated change. The elasticity of clean lighting acquisition to lighting prices is set at−0.6 (Fouquet and Pearson, 2012, p. 17).

change in households with access to clean lighting ¼ indicated change in
households with access to electricity
�relative price of clean lighting ˆ ELASTICITY OF CLEAN LIGHTING
ACQUISITION TO LIGHTING PRICES

Like our previous flow variables, a cap is applied to this rate to reflect a physical maximum (i.e. the second argument of theMIN function). This aux-
iliary part of the equation is not shown here for the sake of simplicity.
Putting together all the pieces of structure described in this section gives a complete picture of the model's Policy Structure (Fig. A-16).
Fig. A-16. Policy structure.
Appendix B. Sensitivity testing

In this section,wewill report severalMonte Carlo tests to investigate the sensitivity of themodel's behaviour to some of the parameters. In such tests,
we specify an uncertainty range and stochastic distribution for the parameter(s) under investigation, and based on this configuration, the software
will run a large number of simulations, which we set to 300 times, while randomly varying the specified parameter according to the specified range
and distribution function. Subsequently, we can visualise the results as sensitivity graphs with confidence bounds. The two parameters chosen for
sensitivity testing here are ones that were deemed to be particularly uncertain and influential on model behaviour in the course of building the
model. There are of course other uncertain parameters as well, but these were considered not as uncertain or crucial in terms of behaviour as the
two parameters reported here.
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B.1. Expenditure growth rate multiplier
First, we examine the sensitivity of model behaviour to the expenditure growth rate multiplier, a parameter that determines the strength of the rela-
tionship between changes in public concern about household air pollution on the one hand, and expenditure to reduce household air pollution on the
other. In our model, this parameter is set equal to 0.75, which means that if the public becomes 10%more concerned about household air pollution,
expenditure to reduce household air pollution will go up by 7.5%. However, this is only an assumption, and in the real world the strength of this
relationship might be lower or higher than that. Therefore, we run a Monte Carlo analysis, with the assumptions of Scenario II, where we vary this
parameter between 0.25 and 1 based on a uniform distribution. The result of this test on the variable expenditure to reduce HAP are visualised in
Fig. B-1.
Fig. B-1. Sensitivity of expenditure to reduce household air pollution to expenditure growth rate multiplier.
In 50% of simulations, results lie in the yellow region, in 75% of simulations in the green region, in 95% within the blue region, and in
every case within the grey region. This test demonstrates that model behaviour is highly sensitive to changes in this uncertain parameter.
Also, the model is built such that expenditure initially rises exponentially as the public becomes more concerned, and more money goes
into health impact assessment and monitoring. Afterwards, the spending reaches a plateau where HAP has not yet reached acceptable
levels, but at this point that is entirely attributable of outdoor air pollution, which is assumed to stay constant in the model. In the
real world, under such circumstances, expenditure would be quickly diverted from an exclusive focus on HAP once almost all households
own clean appliances, and thus the expenditure graph should go down rather than stay constant. However, such structure for limiting
expenditure is not included in our model as the circumstances where it would be needed are not likely to occur within our normal
range of parameters.
This sensitivity test reveals the significant sensitivity of our model's behaviour to the one uncertain parameter which characterises how
strongly changes in public concern translate into changes in expenditure. In more intuitive terms, if increases in public concern do not lead
to any substantial increase in expenditure, then the reinforcing loops described earlier would not be set in motion to bring any visible improve-
ments in household air quality. Thus, empirical research aimed at quantifying the strength of this relationship is needed to build more confi-
dence in the model.

B.2. Public concern delay

For this second test, we consider the public concern delay parameter because it determines how long it takes on average for indoor airmonitoring and
indoor-air-related health impact assessment studies to generate concernwithin the public. Such information delays of the system give it its dynamic
behaviour and are therefore crucial in a long-term policy analysis model. Having assumed an uncertain value of two years for this parameter, it is
important to investigate how potential errors in this estimate will affect our results.
Thus, we run a Monte Carlo analysis with public concern delay as our uncertain parameter, with 300 randomly generated inputs with a
normal distribution (mean: 2 years, standard deviation: 0.4 years, range: 0.5 to 3.5 years), once again together with our assumptions
for Scenario II. Fig. B-2 plots the results of this configuration for household air pollution. The solid dark green curve in the middle is
Scenario II itself. It can be observed that the model is sensitive to this parameter. The shorter the delay, the more quickly studies generate
concern and concern brings in available funds, and the steeper the reduction in household air pollution. Also notable is that in all cases air
quality eventually reaches a plateau with no further improvements to be expected from within the dwellings, the rest of the pollution coming
entirely from the outdoors.



Fig. B-2. Sensitivity of household air pollution to public concern delay.
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One implication of this analysis is that the sooner the results of health impact assessment and monitoring studies are brought to the fore
of the public's attention, the more quickly our self-reinforcing mechanisms would be put in motion, with the potential to achieve full
prevalence of clean cook stoves several years earlier (Fig. B-3). Note that even in the most rapid take-up scenarios (shortest delays)
we never reach 100% prevalence, as, according to our field research, even when all households own an LPG cook stove, they do not always
use it, a practice known as fuel stacking: For certain foods, households would use traditional cook stoves, even when they have access to
clean LPG stoves.
Fig. B-3. Sensitivity of prevalence of clean cook stoves to public concern delay.
B.3. Bivariate sensitivity
In this section, we run aMonte Carlo sensitivity test where the above two parameters are allowed to vary in tandem. The result, as shown in Fig. B-4,
show considerably wider confidence bounds, especially in the 50% bounds towards higher pollutant concentrations. This tells us that, according to
themodel, simultaneous random variations in both parameters are more likely to lead to less pronounced improvements in household air pollution.
In other words, the test reveals that, given this uncertainty in parameters, our model is more likely to overestimate, rather than underestimate,
improvements in household air pollution.



Fig. B-4. Sensitivity of household air pollution to public concern delay and expenditure growth rate multiplier.
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Appendix C. Scenario parametrisations
Policy/scenario variable
Fu

Fu

Fu

Fu

Fu

T

T

T

T
T

A

A

E

E

Unit
 Base
run
Scenario I
 Scenario II
 Scenario III
ture share of air quality expenditure for
appliance subsidies
Dimensionless
 98%
 =
 @2017: 90%
@2020: 80%
@2023: 70%
@2017: 90%
@2020: 80%
@2023: 70%
ture share of indoor air quality expenditure
for monitoring
Dimensionless
 1%
 =
 @2017: 5%
@2020: 10%
@2023: 15%
@2017: 5%
@2020: 10%
@2023: 15%
ture share of air quality expenditure for
health impact assessment
Dimensionless
 1%
 =
 @2017: 5%
@2020: 10%
@2023: 15%
@2017: 5%
@2020: 10%
@2023: 15%
ture price of kerosene
 KSH per litre
 63.4
 @2017: 70
@2020: 80
@2023: 90
@2017: 70
@2020: 80
@2023: 90
@2017: 70
@2020: 80
@2023: 90
ture price of LPG
 KSH per 6 kg cylinder
 1246
 @2017: 1160
@2020: 1080
@2023: 1000
@2017: 1160
@2020: 1080
@2023: 1000
@2017: 1160
@2020: 1080
@2023: 1000
arget for price of clean stoves 2040
 KSH per unit
 2000
 By 2040 linearly
down to 1000
By 2040 linearly
down to 1000
By 2040 linearly down to 1000
arget for price of clean lighting 2040
 KSH per unit
 1000
 By 2040 linearly
down to 500
By 2040 linearly
down to 500
By 2040 linearly down to 500
arget for good governance 2040
 Dimensionless
(conceptualised as a 0 to 1
index)
0.383
 By 2040 linearly up
50% to 0.575
By 2040 linearly up
50% to 0.575
By 2040 linearly up 50% to 0.575
arget for ventilation 2040 (only Korogocho)
 Dimensionless
 0.4
 =
 =
 By 2040 linearly up to 0.6

arget for outdoor air pollution 2040
 Microgram/cubic metre
 166
 =
 =
 By 2040 linearly down to 83

(Korogocho) and 33.5 (Viwandani)
Appendix D. List of all parameters

This table excludes policy/scenario variables for various scenarios, which are reported separately in Appendix C above.
Parameter name
 Value
(Korogocho model)
Value
(Viwandani model)
Source
 Note
dditional pollution from traditional
lighting
67 [μg/m3]
 =
 Estimated based on Muindi et al.
(2016)
See Appendix A.1.1
dditional pollution from traditional
stoves
51.7 [μg/m3]
 15.9 [μg/m3]
 Estimated based on Muindi et al.
(2016)
See Appendix A.1.1
lasticity of clean lighting acquisition to
lighting prices
−0.5
 =
 Obtained through calibration
 Calibrated to historical data on prevalence of
clean lighting
lasticity of clean stove acquisition to
 −0.3
 =
 Obtained through calibration
 Calibrated to historical data on prevalence of



(

1133K. Dianati et al. / Science of the Total Environment 660 (2019) 1108–1134
continued)
Parameter name
E

E

E

E

G
G

In

In

In

In

In

In

In

In
M

M

O

P

P

P

P

Sh

Sh

Sh

Ta
U

U

V

Value
(Korogocho model)
Value
(Viwandani model)
Source
 Note
fuel prices
 clean stoves

lasticity of clean stove acquisition to
public concern
0.2
 =
 Obtained through calibration
 Calibrated to historical data on prevalence of
clean stoves
lasticity of clean stove acquisition to
stove prices
−0.4
 =
 Obtained through calibration
 Calibrated to historical data on prevalence of
clean stoves
lectricity coverage 2002
 0.01
 =
 Estimated by extrapolating into the
past the electricity coverage in 2003
and 2004
NUHDSS data on households supplied with
electricity from the national grid
xpenditure growth rate multiplier
 0.75
 =
 Assumption
 See Appendix B.1 for an analysis of sensitivity
to this assumption
ap closing time constant
 1 [year]
 =
 Assumption
 Standard system dynamics modelling practice

rowth time horizon
 0.5 [year]
 =
 Assumption
 Measuring half-yearly growth rate in electric-

ity coverage

itial expenditure to reduce indoor air
pollution
9500 [KSH/year]
 12,500 [KSH/year]
 Estimation
 See Appendix A.1.4
itial health impact assessment
coverage
1
 =
 Assessment of APHRC co-authors
 Virtually non-existent HIA in 2003. See
Appendix A.2.2
itial indoor air monitoring coverage
 1
 =
 Assessment of APHRC co-authors
 Virtually non-existent monitoring in 2003. See
Appendix A.2.2
itial households acquiring market price
clean stoves
12
[households/year]
21
[households/year]
Obtained through calibration
 Calibrated to historical data on prevalence of
clean stoves
itial number of households owning
clean lighting
148 [households]
 221 [households]
 NUHDSS
 Nairobi Urban Health and Demographic
Surveillance System
itial number of households owning
clean stoves
6 [households]
 12 [households]
 NUHDSS
itial public concern growth rate
 0
 =
 Assumption
 Representing the initial non-existence of HIA
or monitoring initiatives
vestment depreciation time
 5 [years]
 =
 Assumption

onthly kerosene usage for cooking
 24 [litre/month]
 =
 Price data from the Kenyan National

Bureau of Statistics (KNBS). Usage
data from residents' estimates
See Appendix A.2.3
onthly LPG usage for cooking
 0.33
[canister/month]
=
 Price data, see below. Usage data from
residents' estimates.
utdoor air pollution past
 166 [μg/m3]
 67 [μg/m3]
 Egondi, Muindi, Kyobutungi, Gatari, &
Rocklöv (2016)
rice of kerosene past
 63.4 [KSH/litre]
 =
 Prices regulated by the Energy
Regulatory Authority
http://www.erc.go.ke/index.php?
option=com_
content&view=article&id=162&Itemid=666
rice of LPG past
 1246 [KSH/canister]
 =
 Kenya National Bureau of Statistics
(KNBS) and local newspapers
https://www.knbs.or.ke/data-releases/
roportion of appliance prices subsidised
 0.4
 =
 Assumption
 This assumption was validated against expert
judgment of APHRC co-authors.
ublic concern delay
 2 [years]
 =
 Assumption
 See Appendix B.2 for an analysis of sensitivity
to this assumption
are of air quality expenditure for
appliance subsidies past
0.98
 =
 Assumption
 Representing the allocation of virtually all
resources to subsidising appliances in the past
are of air quality expenditure for
health impact assessment past
0.01
 =
 Assumption
 Representing the allocation of virtually no
resources to HIA in the past
are of indoor air quality expenditure
for monitoring past
0.01
 =
 Assumption
 Representing the allocation of virtually no
resources to monitoring in the past
rget electricity coverage 2040
 1
 =
 See footnote 2
 Full coverage assumed by 2040

nit cost of health impact assessment
per household
100
[KSH/household]
=
 Appraisal made by co-authors from
APHRC
nit cost of indoor air monitoring per
household
100
[KSH/household]
=
 Appraisal made by co-authors from
APHRC
entilation past
 0.4
 0.68
 Estimation based on Muindi et al.
(2016)
See Appendix A.1.1
HO guideline
 10 [μg/m3]
 =
 (World Health Organization, 2006)
W
Appendix E. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2018.12.430.
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